xref: /openbmc/linux/drivers/md/dm.c (revision feac8c8b)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set *bs;
152 	struct bio_set *io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
163 
164 /*
165  * Bio-based DM's mempools' reserved IOs set by the user.
166  */
167 #define RESERVED_BIO_BASED_IOS		16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169 
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 {
172 	int param = READ_ONCE(*module_param);
173 	int modified_param = 0;
174 	bool modified = true;
175 
176 	if (param < min)
177 		modified_param = min;
178 	else if (param > max)
179 		modified_param = max;
180 	else
181 		modified = false;
182 
183 	if (modified) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned __dm_get_module_param(unsigned *module_param,
192 			       unsigned def, unsigned max)
193 {
194 	unsigned param = READ_ONCE(*module_param);
195 	unsigned modified_param = 0;
196 
197 	if (!param)
198 		modified_param = def;
199 	else if (param > max)
200 		modified_param = max;
201 
202 	if (modified_param) {
203 		(void)cmpxchg(module_param, param, modified_param);
204 		param = modified_param;
205 	}
206 
207 	return param;
208 }
209 
210 unsigned dm_get_reserved_bio_based_ios(void)
211 {
212 	return __dm_get_module_param(&reserved_bio_based_ios,
213 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 }
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216 
217 static unsigned dm_get_numa_node(void)
218 {
219 	return __dm_get_module_param_int(&dm_numa_node,
220 					 DM_NUMA_NODE, num_online_nodes() - 1);
221 }
222 
223 static int __init local_init(void)
224 {
225 	int r = -ENOMEM;
226 
227 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 	if (!_rq_tio_cache)
229 		return r;
230 
231 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 				      __alignof__(struct request), 0, NULL);
233 	if (!_rq_cache)
234 		goto out_free_rq_tio_cache;
235 
236 	r = dm_uevent_init();
237 	if (r)
238 		goto out_free_rq_cache;
239 
240 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 	if (!deferred_remove_workqueue) {
242 		r = -ENOMEM;
243 		goto out_uevent_exit;
244 	}
245 
246 	_major = major;
247 	r = register_blkdev(_major, _name);
248 	if (r < 0)
249 		goto out_free_workqueue;
250 
251 	if (!_major)
252 		_major = r;
253 
254 	return 0;
255 
256 out_free_workqueue:
257 	destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 	dm_uevent_exit();
260 out_free_rq_cache:
261 	kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 	kmem_cache_destroy(_rq_tio_cache);
264 
265 	return r;
266 }
267 
268 static void local_exit(void)
269 {
270 	flush_scheduled_work();
271 	destroy_workqueue(deferred_remove_workqueue);
272 
273 	kmem_cache_destroy(_rq_cache);
274 	kmem_cache_destroy(_rq_tio_cache);
275 	unregister_blkdev(_major, _name);
276 	dm_uevent_exit();
277 
278 	_major = 0;
279 
280 	DMINFO("cleaned up");
281 }
282 
283 static int (*_inits[])(void) __initdata = {
284 	local_init,
285 	dm_target_init,
286 	dm_linear_init,
287 	dm_stripe_init,
288 	dm_io_init,
289 	dm_kcopyd_init,
290 	dm_interface_init,
291 	dm_statistics_init,
292 };
293 
294 static void (*_exits[])(void) = {
295 	local_exit,
296 	dm_target_exit,
297 	dm_linear_exit,
298 	dm_stripe_exit,
299 	dm_io_exit,
300 	dm_kcopyd_exit,
301 	dm_interface_exit,
302 	dm_statistics_exit,
303 };
304 
305 static int __init dm_init(void)
306 {
307 	const int count = ARRAY_SIZE(_inits);
308 
309 	int r, i;
310 
311 	for (i = 0; i < count; i++) {
312 		r = _inits[i]();
313 		if (r)
314 			goto bad;
315 	}
316 
317 	return 0;
318 
319       bad:
320 	while (i--)
321 		_exits[i]();
322 
323 	return r;
324 }
325 
326 static void __exit dm_exit(void)
327 {
328 	int i = ARRAY_SIZE(_exits);
329 
330 	while (i--)
331 		_exits[i]();
332 
333 	/*
334 	 * Should be empty by this point.
335 	 */
336 	idr_destroy(&_minor_idr);
337 }
338 
339 /*
340  * Block device functions
341  */
342 int dm_deleting_md(struct mapped_device *md)
343 {
344 	return test_bit(DMF_DELETING, &md->flags);
345 }
346 
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348 {
349 	struct mapped_device *md;
350 
351 	spin_lock(&_minor_lock);
352 
353 	md = bdev->bd_disk->private_data;
354 	if (!md)
355 		goto out;
356 
357 	if (test_bit(DMF_FREEING, &md->flags) ||
358 	    dm_deleting_md(md)) {
359 		md = NULL;
360 		goto out;
361 	}
362 
363 	dm_get(md);
364 	atomic_inc(&md->open_count);
365 out:
366 	spin_unlock(&_minor_lock);
367 
368 	return md ? 0 : -ENXIO;
369 }
370 
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372 {
373 	struct mapped_device *md;
374 
375 	spin_lock(&_minor_lock);
376 
377 	md = disk->private_data;
378 	if (WARN_ON(!md))
379 		goto out;
380 
381 	if (atomic_dec_and_test(&md->open_count) &&
382 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
384 
385 	dm_put(md);
386 out:
387 	spin_unlock(&_minor_lock);
388 }
389 
390 int dm_open_count(struct mapped_device *md)
391 {
392 	return atomic_read(&md->open_count);
393 }
394 
395 /*
396  * Guarantees nothing is using the device before it's deleted.
397  */
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399 {
400 	int r = 0;
401 
402 	spin_lock(&_minor_lock);
403 
404 	if (dm_open_count(md)) {
405 		r = -EBUSY;
406 		if (mark_deferred)
407 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 		r = -EEXIST;
410 	else
411 		set_bit(DMF_DELETING, &md->flags);
412 
413 	spin_unlock(&_minor_lock);
414 
415 	return r;
416 }
417 
418 int dm_cancel_deferred_remove(struct mapped_device *md)
419 {
420 	int r = 0;
421 
422 	spin_lock(&_minor_lock);
423 
424 	if (test_bit(DMF_DELETING, &md->flags))
425 		r = -EBUSY;
426 	else
427 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428 
429 	spin_unlock(&_minor_lock);
430 
431 	return r;
432 }
433 
434 static void do_deferred_remove(struct work_struct *w)
435 {
436 	dm_deferred_remove();
437 }
438 
439 sector_t dm_get_size(struct mapped_device *md)
440 {
441 	return get_capacity(md->disk);
442 }
443 
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
445 {
446 	return md->queue;
447 }
448 
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
450 {
451 	return &md->stats;
452 }
453 
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455 {
456 	struct mapped_device *md = bdev->bd_disk->private_data;
457 
458 	return dm_get_geometry(md, geo);
459 }
460 
461 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
462 				  struct block_device **bdev,
463 				  fmode_t *mode)
464 {
465 	struct dm_target *tgt;
466 	struct dm_table *map;
467 	int srcu_idx, r;
468 
469 retry:
470 	r = -ENOTTY;
471 	map = dm_get_live_table(md, &srcu_idx);
472 	if (!map || !dm_table_get_size(map))
473 		goto out;
474 
475 	/* We only support devices that have a single target */
476 	if (dm_table_get_num_targets(map) != 1)
477 		goto out;
478 
479 	tgt = dm_table_get_target(map, 0);
480 	if (!tgt->type->prepare_ioctl)
481 		goto out;
482 
483 	if (dm_suspended_md(md)) {
484 		r = -EAGAIN;
485 		goto out;
486 	}
487 
488 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
489 	if (r < 0)
490 		goto out;
491 
492 	bdgrab(*bdev);
493 	dm_put_live_table(md, srcu_idx);
494 	return r;
495 
496 out:
497 	dm_put_live_table(md, srcu_idx);
498 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
499 		msleep(10);
500 		goto retry;
501 	}
502 	return r;
503 }
504 
505 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
506 			unsigned int cmd, unsigned long arg)
507 {
508 	struct mapped_device *md = bdev->bd_disk->private_data;
509 	int r;
510 
511 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
512 	if (r < 0)
513 		return r;
514 
515 	if (r > 0) {
516 		/*
517 		 * Target determined this ioctl is being issued against a
518 		 * subset of the parent bdev; require extra privileges.
519 		 */
520 		if (!capable(CAP_SYS_RAWIO)) {
521 			DMWARN_LIMIT(
522 	"%s: sending ioctl %x to DM device without required privilege.",
523 				current->comm, cmd);
524 			r = -ENOIOCTLCMD;
525 			goto out;
526 		}
527 	}
528 
529 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
530 out:
531 	bdput(bdev);
532 	return r;
533 }
534 
535 static void start_io_acct(struct dm_io *io);
536 
537 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
538 {
539 	struct dm_io *io;
540 	struct dm_target_io *tio;
541 	struct bio *clone;
542 
543 	clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
544 	if (!clone)
545 		return NULL;
546 
547 	tio = container_of(clone, struct dm_target_io, clone);
548 	tio->inside_dm_io = true;
549 	tio->io = NULL;
550 
551 	io = container_of(tio, struct dm_io, tio);
552 	io->magic = DM_IO_MAGIC;
553 	io->status = 0;
554 	atomic_set(&io->io_count, 1);
555 	io->orig_bio = bio;
556 	io->md = md;
557 	spin_lock_init(&io->endio_lock);
558 
559 	start_io_acct(io);
560 
561 	return io;
562 }
563 
564 static void free_io(struct mapped_device *md, struct dm_io *io)
565 {
566 	bio_put(&io->tio.clone);
567 }
568 
569 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
570 				      unsigned target_bio_nr, gfp_t gfp_mask)
571 {
572 	struct dm_target_io *tio;
573 
574 	if (!ci->io->tio.io) {
575 		/* the dm_target_io embedded in ci->io is available */
576 		tio = &ci->io->tio;
577 	} else {
578 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
579 		if (!clone)
580 			return NULL;
581 
582 		tio = container_of(clone, struct dm_target_io, clone);
583 		tio->inside_dm_io = false;
584 	}
585 
586 	tio->magic = DM_TIO_MAGIC;
587 	tio->io = ci->io;
588 	tio->ti = ti;
589 	tio->target_bio_nr = target_bio_nr;
590 
591 	return tio;
592 }
593 
594 static void free_tio(struct dm_target_io *tio)
595 {
596 	if (tio->inside_dm_io)
597 		return;
598 	bio_put(&tio->clone);
599 }
600 
601 int md_in_flight(struct mapped_device *md)
602 {
603 	return atomic_read(&md->pending[READ]) +
604 	       atomic_read(&md->pending[WRITE]);
605 }
606 
607 static void start_io_acct(struct dm_io *io)
608 {
609 	struct mapped_device *md = io->md;
610 	struct bio *bio = io->orig_bio;
611 	int rw = bio_data_dir(bio);
612 
613 	io->start_time = jiffies;
614 
615 	generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
616 
617 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
618 		   atomic_inc_return(&md->pending[rw]));
619 
620 	if (unlikely(dm_stats_used(&md->stats)))
621 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
622 				    bio->bi_iter.bi_sector, bio_sectors(bio),
623 				    false, 0, &io->stats_aux);
624 }
625 
626 static void end_io_acct(struct dm_io *io)
627 {
628 	struct mapped_device *md = io->md;
629 	struct bio *bio = io->orig_bio;
630 	unsigned long duration = jiffies - io->start_time;
631 	int pending;
632 	int rw = bio_data_dir(bio);
633 
634 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
635 
636 	if (unlikely(dm_stats_used(&md->stats)))
637 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
638 				    bio->bi_iter.bi_sector, bio_sectors(bio),
639 				    true, duration, &io->stats_aux);
640 
641 	/*
642 	 * After this is decremented the bio must not be touched if it is
643 	 * a flush.
644 	 */
645 	pending = atomic_dec_return(&md->pending[rw]);
646 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
647 	pending += atomic_read(&md->pending[rw^0x1]);
648 
649 	/* nudge anyone waiting on suspend queue */
650 	if (!pending)
651 		wake_up(&md->wait);
652 }
653 
654 /*
655  * Add the bio to the list of deferred io.
656  */
657 static void queue_io(struct mapped_device *md, struct bio *bio)
658 {
659 	unsigned long flags;
660 
661 	spin_lock_irqsave(&md->deferred_lock, flags);
662 	bio_list_add(&md->deferred, bio);
663 	spin_unlock_irqrestore(&md->deferred_lock, flags);
664 	queue_work(md->wq, &md->work);
665 }
666 
667 /*
668  * Everyone (including functions in this file), should use this
669  * function to access the md->map field, and make sure they call
670  * dm_put_live_table() when finished.
671  */
672 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
673 {
674 	*srcu_idx = srcu_read_lock(&md->io_barrier);
675 
676 	return srcu_dereference(md->map, &md->io_barrier);
677 }
678 
679 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
680 {
681 	srcu_read_unlock(&md->io_barrier, srcu_idx);
682 }
683 
684 void dm_sync_table(struct mapped_device *md)
685 {
686 	synchronize_srcu(&md->io_barrier);
687 	synchronize_rcu_expedited();
688 }
689 
690 /*
691  * A fast alternative to dm_get_live_table/dm_put_live_table.
692  * The caller must not block between these two functions.
693  */
694 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
695 {
696 	rcu_read_lock();
697 	return rcu_dereference(md->map);
698 }
699 
700 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
701 {
702 	rcu_read_unlock();
703 }
704 
705 /*
706  * Open a table device so we can use it as a map destination.
707  */
708 static int open_table_device(struct table_device *td, dev_t dev,
709 			     struct mapped_device *md)
710 {
711 	static char *_claim_ptr = "I belong to device-mapper";
712 	struct block_device *bdev;
713 
714 	int r;
715 
716 	BUG_ON(td->dm_dev.bdev);
717 
718 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
719 	if (IS_ERR(bdev))
720 		return PTR_ERR(bdev);
721 
722 	r = bd_link_disk_holder(bdev, dm_disk(md));
723 	if (r) {
724 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
725 		return r;
726 	}
727 
728 	td->dm_dev.bdev = bdev;
729 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
730 	return 0;
731 }
732 
733 /*
734  * Close a table device that we've been using.
735  */
736 static void close_table_device(struct table_device *td, struct mapped_device *md)
737 {
738 	if (!td->dm_dev.bdev)
739 		return;
740 
741 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
742 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
743 	put_dax(td->dm_dev.dax_dev);
744 	td->dm_dev.bdev = NULL;
745 	td->dm_dev.dax_dev = NULL;
746 }
747 
748 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
749 					      fmode_t mode) {
750 	struct table_device *td;
751 
752 	list_for_each_entry(td, l, list)
753 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
754 			return td;
755 
756 	return NULL;
757 }
758 
759 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
760 			struct dm_dev **result) {
761 	int r;
762 	struct table_device *td;
763 
764 	mutex_lock(&md->table_devices_lock);
765 	td = find_table_device(&md->table_devices, dev, mode);
766 	if (!td) {
767 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
768 		if (!td) {
769 			mutex_unlock(&md->table_devices_lock);
770 			return -ENOMEM;
771 		}
772 
773 		td->dm_dev.mode = mode;
774 		td->dm_dev.bdev = NULL;
775 
776 		if ((r = open_table_device(td, dev, md))) {
777 			mutex_unlock(&md->table_devices_lock);
778 			kfree(td);
779 			return r;
780 		}
781 
782 		format_dev_t(td->dm_dev.name, dev);
783 
784 		refcount_set(&td->count, 1);
785 		list_add(&td->list, &md->table_devices);
786 	} else {
787 		refcount_inc(&td->count);
788 	}
789 	mutex_unlock(&md->table_devices_lock);
790 
791 	*result = &td->dm_dev;
792 	return 0;
793 }
794 EXPORT_SYMBOL_GPL(dm_get_table_device);
795 
796 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
797 {
798 	struct table_device *td = container_of(d, struct table_device, dm_dev);
799 
800 	mutex_lock(&md->table_devices_lock);
801 	if (refcount_dec_and_test(&td->count)) {
802 		close_table_device(td, md);
803 		list_del(&td->list);
804 		kfree(td);
805 	}
806 	mutex_unlock(&md->table_devices_lock);
807 }
808 EXPORT_SYMBOL(dm_put_table_device);
809 
810 static void free_table_devices(struct list_head *devices)
811 {
812 	struct list_head *tmp, *next;
813 
814 	list_for_each_safe(tmp, next, devices) {
815 		struct table_device *td = list_entry(tmp, struct table_device, list);
816 
817 		DMWARN("dm_destroy: %s still exists with %d references",
818 		       td->dm_dev.name, refcount_read(&td->count));
819 		kfree(td);
820 	}
821 }
822 
823 /*
824  * Get the geometry associated with a dm device
825  */
826 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
827 {
828 	*geo = md->geometry;
829 
830 	return 0;
831 }
832 
833 /*
834  * Set the geometry of a device.
835  */
836 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
837 {
838 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
839 
840 	if (geo->start > sz) {
841 		DMWARN("Start sector is beyond the geometry limits.");
842 		return -EINVAL;
843 	}
844 
845 	md->geometry = *geo;
846 
847 	return 0;
848 }
849 
850 static int __noflush_suspending(struct mapped_device *md)
851 {
852 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
853 }
854 
855 /*
856  * Decrements the number of outstanding ios that a bio has been
857  * cloned into, completing the original io if necc.
858  */
859 static void dec_pending(struct dm_io *io, blk_status_t error)
860 {
861 	unsigned long flags;
862 	blk_status_t io_error;
863 	struct bio *bio;
864 	struct mapped_device *md = io->md;
865 
866 	/* Push-back supersedes any I/O errors */
867 	if (unlikely(error)) {
868 		spin_lock_irqsave(&io->endio_lock, flags);
869 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
870 			io->status = error;
871 		spin_unlock_irqrestore(&io->endio_lock, flags);
872 	}
873 
874 	if (atomic_dec_and_test(&io->io_count)) {
875 		if (io->status == BLK_STS_DM_REQUEUE) {
876 			/*
877 			 * Target requested pushing back the I/O.
878 			 */
879 			spin_lock_irqsave(&md->deferred_lock, flags);
880 			if (__noflush_suspending(md))
881 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
882 				bio_list_add_head(&md->deferred, io->orig_bio);
883 			else
884 				/* noflush suspend was interrupted. */
885 				io->status = BLK_STS_IOERR;
886 			spin_unlock_irqrestore(&md->deferred_lock, flags);
887 		}
888 
889 		io_error = io->status;
890 		bio = io->orig_bio;
891 		end_io_acct(io);
892 		free_io(md, io);
893 
894 		if (io_error == BLK_STS_DM_REQUEUE)
895 			return;
896 
897 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
898 			/*
899 			 * Preflush done for flush with data, reissue
900 			 * without REQ_PREFLUSH.
901 			 */
902 			bio->bi_opf &= ~REQ_PREFLUSH;
903 			queue_io(md, bio);
904 		} else {
905 			/* done with normal IO or empty flush */
906 			if (io_error)
907 				bio->bi_status = io_error;
908 			bio_endio(bio);
909 		}
910 	}
911 }
912 
913 void disable_write_same(struct mapped_device *md)
914 {
915 	struct queue_limits *limits = dm_get_queue_limits(md);
916 
917 	/* device doesn't really support WRITE SAME, disable it */
918 	limits->max_write_same_sectors = 0;
919 }
920 
921 void disable_write_zeroes(struct mapped_device *md)
922 {
923 	struct queue_limits *limits = dm_get_queue_limits(md);
924 
925 	/* device doesn't really support WRITE ZEROES, disable it */
926 	limits->max_write_zeroes_sectors = 0;
927 }
928 
929 static void clone_endio(struct bio *bio)
930 {
931 	blk_status_t error = bio->bi_status;
932 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
933 	struct dm_io *io = tio->io;
934 	struct mapped_device *md = tio->io->md;
935 	dm_endio_fn endio = tio->ti->type->end_io;
936 
937 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
938 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
939 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
940 			disable_write_same(md);
941 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
942 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
943 			disable_write_zeroes(md);
944 	}
945 
946 	if (endio) {
947 		int r = endio(tio->ti, bio, &error);
948 		switch (r) {
949 		case DM_ENDIO_REQUEUE:
950 			error = BLK_STS_DM_REQUEUE;
951 			/*FALLTHRU*/
952 		case DM_ENDIO_DONE:
953 			break;
954 		case DM_ENDIO_INCOMPLETE:
955 			/* The target will handle the io */
956 			return;
957 		default:
958 			DMWARN("unimplemented target endio return value: %d", r);
959 			BUG();
960 		}
961 	}
962 
963 	free_tio(tio);
964 	dec_pending(io, error);
965 }
966 
967 /*
968  * Return maximum size of I/O possible at the supplied sector up to the current
969  * target boundary.
970  */
971 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
972 {
973 	sector_t target_offset = dm_target_offset(ti, sector);
974 
975 	return ti->len - target_offset;
976 }
977 
978 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
979 {
980 	sector_t len = max_io_len_target_boundary(sector, ti);
981 	sector_t offset, max_len;
982 
983 	/*
984 	 * Does the target need to split even further?
985 	 */
986 	if (ti->max_io_len) {
987 		offset = dm_target_offset(ti, sector);
988 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
989 			max_len = sector_div(offset, ti->max_io_len);
990 		else
991 			max_len = offset & (ti->max_io_len - 1);
992 		max_len = ti->max_io_len - max_len;
993 
994 		if (len > max_len)
995 			len = max_len;
996 	}
997 
998 	return len;
999 }
1000 
1001 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1002 {
1003 	if (len > UINT_MAX) {
1004 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1005 		      (unsigned long long)len, UINT_MAX);
1006 		ti->error = "Maximum size of target IO is too large";
1007 		return -EINVAL;
1008 	}
1009 
1010 	/*
1011 	 * BIO based queue uses its own splitting. When multipage bvecs
1012 	 * is switched on, size of the incoming bio may be too big to
1013 	 * be handled in some targets, such as crypt.
1014 	 *
1015 	 * When these targets are ready for the big bio, we can remove
1016 	 * the limit.
1017 	 */
1018 	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1019 
1020 	return 0;
1021 }
1022 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1023 
1024 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1025 		sector_t sector, int *srcu_idx)
1026 {
1027 	struct dm_table *map;
1028 	struct dm_target *ti;
1029 
1030 	map = dm_get_live_table(md, srcu_idx);
1031 	if (!map)
1032 		return NULL;
1033 
1034 	ti = dm_table_find_target(map, sector);
1035 	if (!dm_target_is_valid(ti))
1036 		return NULL;
1037 
1038 	return ti;
1039 }
1040 
1041 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1042 		long nr_pages, void **kaddr, pfn_t *pfn)
1043 {
1044 	struct mapped_device *md = dax_get_private(dax_dev);
1045 	sector_t sector = pgoff * PAGE_SECTORS;
1046 	struct dm_target *ti;
1047 	long len, ret = -EIO;
1048 	int srcu_idx;
1049 
1050 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1051 
1052 	if (!ti)
1053 		goto out;
1054 	if (!ti->type->direct_access)
1055 		goto out;
1056 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1057 	if (len < 1)
1058 		goto out;
1059 	nr_pages = min(len, nr_pages);
1060 	if (ti->type->direct_access)
1061 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1062 
1063  out:
1064 	dm_put_live_table(md, srcu_idx);
1065 
1066 	return ret;
1067 }
1068 
1069 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1070 		void *addr, size_t bytes, struct iov_iter *i)
1071 {
1072 	struct mapped_device *md = dax_get_private(dax_dev);
1073 	sector_t sector = pgoff * PAGE_SECTORS;
1074 	struct dm_target *ti;
1075 	long ret = 0;
1076 	int srcu_idx;
1077 
1078 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1079 
1080 	if (!ti)
1081 		goto out;
1082 	if (!ti->type->dax_copy_from_iter) {
1083 		ret = copy_from_iter(addr, bytes, i);
1084 		goto out;
1085 	}
1086 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1087  out:
1088 	dm_put_live_table(md, srcu_idx);
1089 
1090 	return ret;
1091 }
1092 
1093 /*
1094  * A target may call dm_accept_partial_bio only from the map routine.  It is
1095  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1096  *
1097  * dm_accept_partial_bio informs the dm that the target only wants to process
1098  * additional n_sectors sectors of the bio and the rest of the data should be
1099  * sent in a next bio.
1100  *
1101  * A diagram that explains the arithmetics:
1102  * +--------------------+---------------+-------+
1103  * |         1          |       2       |   3   |
1104  * +--------------------+---------------+-------+
1105  *
1106  * <-------------- *tio->len_ptr --------------->
1107  *                      <------- bi_size ------->
1108  *                      <-- n_sectors -->
1109  *
1110  * Region 1 was already iterated over with bio_advance or similar function.
1111  *	(it may be empty if the target doesn't use bio_advance)
1112  * Region 2 is the remaining bio size that the target wants to process.
1113  *	(it may be empty if region 1 is non-empty, although there is no reason
1114  *	 to make it empty)
1115  * The target requires that region 3 is to be sent in the next bio.
1116  *
1117  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1118  * the partially processed part (the sum of regions 1+2) must be the same for all
1119  * copies of the bio.
1120  */
1121 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1122 {
1123 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1124 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1125 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1126 	BUG_ON(bi_size > *tio->len_ptr);
1127 	BUG_ON(n_sectors > bi_size);
1128 	*tio->len_ptr -= bi_size - n_sectors;
1129 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1130 }
1131 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1132 
1133 /*
1134  * The zone descriptors obtained with a zone report indicate
1135  * zone positions within the target device. The zone descriptors
1136  * must be remapped to match their position within the dm device.
1137  * A target may call dm_remap_zone_report after completion of a
1138  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1139  * from the target device mapping to the dm device.
1140  */
1141 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1142 {
1143 #ifdef CONFIG_BLK_DEV_ZONED
1144 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1145 	struct bio *report_bio = tio->io->orig_bio;
1146 	struct blk_zone_report_hdr *hdr = NULL;
1147 	struct blk_zone *zone;
1148 	unsigned int nr_rep = 0;
1149 	unsigned int ofst;
1150 	struct bio_vec bvec;
1151 	struct bvec_iter iter;
1152 	void *addr;
1153 
1154 	if (bio->bi_status)
1155 		return;
1156 
1157 	/*
1158 	 * Remap the start sector of the reported zones. For sequential zones,
1159 	 * also remap the write pointer position.
1160 	 */
1161 	bio_for_each_segment(bvec, report_bio, iter) {
1162 		addr = kmap_atomic(bvec.bv_page);
1163 
1164 		/* Remember the report header in the first page */
1165 		if (!hdr) {
1166 			hdr = addr;
1167 			ofst = sizeof(struct blk_zone_report_hdr);
1168 		} else
1169 			ofst = 0;
1170 
1171 		/* Set zones start sector */
1172 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1173 			zone = addr + ofst;
1174 			if (zone->start >= start + ti->len) {
1175 				hdr->nr_zones = 0;
1176 				break;
1177 			}
1178 			zone->start = zone->start + ti->begin - start;
1179 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1180 				if (zone->cond == BLK_ZONE_COND_FULL)
1181 					zone->wp = zone->start + zone->len;
1182 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1183 					zone->wp = zone->start;
1184 				else
1185 					zone->wp = zone->wp + ti->begin - start;
1186 			}
1187 			ofst += sizeof(struct blk_zone);
1188 			hdr->nr_zones--;
1189 			nr_rep++;
1190 		}
1191 
1192 		if (addr != hdr)
1193 			kunmap_atomic(addr);
1194 
1195 		if (!hdr->nr_zones)
1196 			break;
1197 	}
1198 
1199 	if (hdr) {
1200 		hdr->nr_zones = nr_rep;
1201 		kunmap_atomic(hdr);
1202 	}
1203 
1204 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1205 
1206 #else /* !CONFIG_BLK_DEV_ZONED */
1207 	bio->bi_status = BLK_STS_NOTSUPP;
1208 #endif
1209 }
1210 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1211 
1212 static blk_qc_t __map_bio(struct dm_target_io *tio)
1213 {
1214 	int r;
1215 	sector_t sector;
1216 	struct bio *clone = &tio->clone;
1217 	struct dm_io *io = tio->io;
1218 	struct mapped_device *md = io->md;
1219 	struct dm_target *ti = tio->ti;
1220 	blk_qc_t ret = BLK_QC_T_NONE;
1221 
1222 	clone->bi_end_io = clone_endio;
1223 
1224 	/*
1225 	 * Map the clone.  If r == 0 we don't need to do
1226 	 * anything, the target has assumed ownership of
1227 	 * this io.
1228 	 */
1229 	atomic_inc(&io->io_count);
1230 	sector = clone->bi_iter.bi_sector;
1231 
1232 	r = ti->type->map(ti, clone);
1233 	switch (r) {
1234 	case DM_MAPIO_SUBMITTED:
1235 		break;
1236 	case DM_MAPIO_REMAPPED:
1237 		/* the bio has been remapped so dispatch it */
1238 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1239 				      bio_dev(io->orig_bio), sector);
1240 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1241 			ret = direct_make_request(clone);
1242 		else
1243 			ret = generic_make_request(clone);
1244 		break;
1245 	case DM_MAPIO_KILL:
1246 		free_tio(tio);
1247 		dec_pending(io, BLK_STS_IOERR);
1248 		break;
1249 	case DM_MAPIO_REQUEUE:
1250 		free_tio(tio);
1251 		dec_pending(io, BLK_STS_DM_REQUEUE);
1252 		break;
1253 	default:
1254 		DMWARN("unimplemented target map return value: %d", r);
1255 		BUG();
1256 	}
1257 
1258 	return ret;
1259 }
1260 
1261 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1262 {
1263 	bio->bi_iter.bi_sector = sector;
1264 	bio->bi_iter.bi_size = to_bytes(len);
1265 }
1266 
1267 /*
1268  * Creates a bio that consists of range of complete bvecs.
1269  */
1270 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1271 		     sector_t sector, unsigned len)
1272 {
1273 	struct bio *clone = &tio->clone;
1274 
1275 	__bio_clone_fast(clone, bio);
1276 
1277 	if (unlikely(bio_integrity(bio) != NULL)) {
1278 		int r;
1279 
1280 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1281 			     !dm_target_passes_integrity(tio->ti->type))) {
1282 			DMWARN("%s: the target %s doesn't support integrity data.",
1283 				dm_device_name(tio->io->md),
1284 				tio->ti->type->name);
1285 			return -EIO;
1286 		}
1287 
1288 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1289 		if (r < 0)
1290 			return r;
1291 	}
1292 
1293 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1294 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1295 	clone->bi_iter.bi_size = to_bytes(len);
1296 
1297 	if (unlikely(bio_integrity(bio) != NULL))
1298 		bio_integrity_trim(clone);
1299 
1300 	return 0;
1301 }
1302 
1303 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1304 				struct dm_target *ti, unsigned num_bios)
1305 {
1306 	struct dm_target_io *tio;
1307 	int try;
1308 
1309 	if (!num_bios)
1310 		return;
1311 
1312 	if (num_bios == 1) {
1313 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1314 		bio_list_add(blist, &tio->clone);
1315 		return;
1316 	}
1317 
1318 	for (try = 0; try < 2; try++) {
1319 		int bio_nr;
1320 		struct bio *bio;
1321 
1322 		if (try)
1323 			mutex_lock(&ci->io->md->table_devices_lock);
1324 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1325 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1326 			if (!tio)
1327 				break;
1328 
1329 			bio_list_add(blist, &tio->clone);
1330 		}
1331 		if (try)
1332 			mutex_unlock(&ci->io->md->table_devices_lock);
1333 		if (bio_nr == num_bios)
1334 			return;
1335 
1336 		while ((bio = bio_list_pop(blist))) {
1337 			tio = container_of(bio, struct dm_target_io, clone);
1338 			free_tio(tio);
1339 		}
1340 	}
1341 }
1342 
1343 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1344 					   struct dm_target_io *tio, unsigned *len)
1345 {
1346 	struct bio *clone = &tio->clone;
1347 
1348 	tio->len_ptr = len;
1349 
1350 	__bio_clone_fast(clone, ci->bio);
1351 	if (len)
1352 		bio_setup_sector(clone, ci->sector, *len);
1353 
1354 	return __map_bio(tio);
1355 }
1356 
1357 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1358 				  unsigned num_bios, unsigned *len)
1359 {
1360 	struct bio_list blist = BIO_EMPTY_LIST;
1361 	struct bio *bio;
1362 	struct dm_target_io *tio;
1363 
1364 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1365 
1366 	while ((bio = bio_list_pop(&blist))) {
1367 		tio = container_of(bio, struct dm_target_io, clone);
1368 		(void) __clone_and_map_simple_bio(ci, tio, len);
1369 	}
1370 }
1371 
1372 static int __send_empty_flush(struct clone_info *ci)
1373 {
1374 	unsigned target_nr = 0;
1375 	struct dm_target *ti;
1376 
1377 	BUG_ON(bio_has_data(ci->bio));
1378 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1379 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1380 
1381 	return 0;
1382 }
1383 
1384 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1385 				    sector_t sector, unsigned *len)
1386 {
1387 	struct bio *bio = ci->bio;
1388 	struct dm_target_io *tio;
1389 	int r;
1390 
1391 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1392 	tio->len_ptr = len;
1393 	r = clone_bio(tio, bio, sector, *len);
1394 	if (r < 0) {
1395 		free_tio(tio);
1396 		return r;
1397 	}
1398 	(void) __map_bio(tio);
1399 
1400 	return 0;
1401 }
1402 
1403 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1404 
1405 static unsigned get_num_discard_bios(struct dm_target *ti)
1406 {
1407 	return ti->num_discard_bios;
1408 }
1409 
1410 static unsigned get_num_write_same_bios(struct dm_target *ti)
1411 {
1412 	return ti->num_write_same_bios;
1413 }
1414 
1415 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1416 {
1417 	return ti->num_write_zeroes_bios;
1418 }
1419 
1420 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1421 
1422 static bool is_split_required_for_discard(struct dm_target *ti)
1423 {
1424 	return ti->split_discard_bios;
1425 }
1426 
1427 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1428 				       get_num_bios_fn get_num_bios,
1429 				       is_split_required_fn is_split_required)
1430 {
1431 	unsigned len;
1432 	unsigned num_bios;
1433 
1434 	/*
1435 	 * Even though the device advertised support for this type of
1436 	 * request, that does not mean every target supports it, and
1437 	 * reconfiguration might also have changed that since the
1438 	 * check was performed.
1439 	 */
1440 	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1441 	if (!num_bios)
1442 		return -EOPNOTSUPP;
1443 
1444 	if (is_split_required && !is_split_required(ti))
1445 		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1446 	else
1447 		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1448 
1449 	__send_duplicate_bios(ci, ti, num_bios, &len);
1450 
1451 	ci->sector += len;
1452 	ci->sector_count -= len;
1453 
1454 	return 0;
1455 }
1456 
1457 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1458 {
1459 	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1460 					   is_split_required_for_discard);
1461 }
1462 
1463 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1464 {
1465 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1466 }
1467 
1468 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1469 {
1470 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1471 }
1472 
1473 /*
1474  * Select the correct strategy for processing a non-flush bio.
1475  */
1476 static int __split_and_process_non_flush(struct clone_info *ci)
1477 {
1478 	struct bio *bio = ci->bio;
1479 	struct dm_target *ti;
1480 	unsigned len;
1481 	int r;
1482 
1483 	ti = dm_table_find_target(ci->map, ci->sector);
1484 	if (!dm_target_is_valid(ti))
1485 		return -EIO;
1486 
1487 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1488 		return __send_discard(ci, ti);
1489 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1490 		return __send_write_same(ci, ti);
1491 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1492 		return __send_write_zeroes(ci, ti);
1493 
1494 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1495 		len = ci->sector_count;
1496 	else
1497 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1498 			    ci->sector_count);
1499 
1500 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1501 	if (r < 0)
1502 		return r;
1503 
1504 	ci->sector += len;
1505 	ci->sector_count -= len;
1506 
1507 	return 0;
1508 }
1509 
1510 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1511 			    struct dm_table *map, struct bio *bio)
1512 {
1513 	ci->map = map;
1514 	ci->io = alloc_io(md, bio);
1515 	ci->sector = bio->bi_iter.bi_sector;
1516 }
1517 
1518 /*
1519  * Entry point to split a bio into clones and submit them to the targets.
1520  */
1521 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1522 					struct dm_table *map, struct bio *bio)
1523 {
1524 	struct clone_info ci;
1525 	blk_qc_t ret = BLK_QC_T_NONE;
1526 	int error = 0;
1527 
1528 	if (unlikely(!map)) {
1529 		bio_io_error(bio);
1530 		return ret;
1531 	}
1532 
1533 	init_clone_info(&ci, md, map, bio);
1534 
1535 	if (bio->bi_opf & REQ_PREFLUSH) {
1536 		ci.bio = &ci.io->md->flush_bio;
1537 		ci.sector_count = 0;
1538 		error = __send_empty_flush(&ci);
1539 		/* dec_pending submits any data associated with flush */
1540 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1541 		ci.bio = bio;
1542 		ci.sector_count = 0;
1543 		error = __split_and_process_non_flush(&ci);
1544 	} else {
1545 		ci.bio = bio;
1546 		ci.sector_count = bio_sectors(bio);
1547 		while (ci.sector_count && !error) {
1548 			error = __split_and_process_non_flush(&ci);
1549 			if (current->bio_list && ci.sector_count && !error) {
1550 				/*
1551 				 * Remainder must be passed to generic_make_request()
1552 				 * so that it gets handled *after* bios already submitted
1553 				 * have been completely processed.
1554 				 * We take a clone of the original to store in
1555 				 * ci.io->orig_bio to be used by end_io_acct() and
1556 				 * for dec_pending to use for completion handling.
1557 				 * As this path is not used for REQ_OP_ZONE_REPORT,
1558 				 * the usage of io->orig_bio in dm_remap_zone_report()
1559 				 * won't be affected by this reassignment.
1560 				 */
1561 				struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1562 								 md->queue->bio_split);
1563 				ci.io->orig_bio = b;
1564 				bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1565 				bio_chain(b, bio);
1566 				ret = generic_make_request(bio);
1567 				break;
1568 			}
1569 		}
1570 	}
1571 
1572 	/* drop the extra reference count */
1573 	dec_pending(ci.io, errno_to_blk_status(error));
1574 	return ret;
1575 }
1576 
1577 /*
1578  * Optimized variant of __split_and_process_bio that leverages the
1579  * fact that targets that use it do _not_ have a need to split bios.
1580  */
1581 static blk_qc_t __process_bio(struct mapped_device *md,
1582 			      struct dm_table *map, struct bio *bio)
1583 {
1584 	struct clone_info ci;
1585 	blk_qc_t ret = BLK_QC_T_NONE;
1586 	int error = 0;
1587 
1588 	if (unlikely(!map)) {
1589 		bio_io_error(bio);
1590 		return ret;
1591 	}
1592 
1593 	init_clone_info(&ci, md, map, bio);
1594 
1595 	if (bio->bi_opf & REQ_PREFLUSH) {
1596 		ci.bio = &ci.io->md->flush_bio;
1597 		ci.sector_count = 0;
1598 		error = __send_empty_flush(&ci);
1599 		/* dec_pending submits any data associated with flush */
1600 	} else {
1601 		struct dm_target *ti = md->immutable_target;
1602 		struct dm_target_io *tio;
1603 
1604 		/*
1605 		 * Defend against IO still getting in during teardown
1606 		 * - as was seen for a time with nvme-fcloop
1607 		 */
1608 		if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1609 			error = -EIO;
1610 			goto out;
1611 		}
1612 
1613 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1614 		ci.bio = bio;
1615 		ci.sector_count = bio_sectors(bio);
1616 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1617 	}
1618 out:
1619 	/* drop the extra reference count */
1620 	dec_pending(ci.io, errno_to_blk_status(error));
1621 	return ret;
1622 }
1623 
1624 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1625 
1626 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1627 				  process_bio_fn process_bio)
1628 {
1629 	struct mapped_device *md = q->queuedata;
1630 	blk_qc_t ret = BLK_QC_T_NONE;
1631 	int srcu_idx;
1632 	struct dm_table *map;
1633 
1634 	map = dm_get_live_table(md, &srcu_idx);
1635 
1636 	/* if we're suspended, we have to queue this io for later */
1637 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1638 		dm_put_live_table(md, srcu_idx);
1639 
1640 		if (!(bio->bi_opf & REQ_RAHEAD))
1641 			queue_io(md, bio);
1642 		else
1643 			bio_io_error(bio);
1644 		return ret;
1645 	}
1646 
1647 	ret = process_bio(md, map, bio);
1648 
1649 	dm_put_live_table(md, srcu_idx);
1650 	return ret;
1651 }
1652 
1653 /*
1654  * The request function that remaps the bio to one target and
1655  * splits off any remainder.
1656  */
1657 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1658 {
1659 	return __dm_make_request(q, bio, __split_and_process_bio);
1660 }
1661 
1662 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1663 {
1664 	return __dm_make_request(q, bio, __process_bio);
1665 }
1666 
1667 static int dm_any_congested(void *congested_data, int bdi_bits)
1668 {
1669 	int r = bdi_bits;
1670 	struct mapped_device *md = congested_data;
1671 	struct dm_table *map;
1672 
1673 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1674 		if (dm_request_based(md)) {
1675 			/*
1676 			 * With request-based DM we only need to check the
1677 			 * top-level queue for congestion.
1678 			 */
1679 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1680 		} else {
1681 			map = dm_get_live_table_fast(md);
1682 			if (map)
1683 				r = dm_table_any_congested(map, bdi_bits);
1684 			dm_put_live_table_fast(md);
1685 		}
1686 	}
1687 
1688 	return r;
1689 }
1690 
1691 /*-----------------------------------------------------------------
1692  * An IDR is used to keep track of allocated minor numbers.
1693  *---------------------------------------------------------------*/
1694 static void free_minor(int minor)
1695 {
1696 	spin_lock(&_minor_lock);
1697 	idr_remove(&_minor_idr, minor);
1698 	spin_unlock(&_minor_lock);
1699 }
1700 
1701 /*
1702  * See if the device with a specific minor # is free.
1703  */
1704 static int specific_minor(int minor)
1705 {
1706 	int r;
1707 
1708 	if (minor >= (1 << MINORBITS))
1709 		return -EINVAL;
1710 
1711 	idr_preload(GFP_KERNEL);
1712 	spin_lock(&_minor_lock);
1713 
1714 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1715 
1716 	spin_unlock(&_minor_lock);
1717 	idr_preload_end();
1718 	if (r < 0)
1719 		return r == -ENOSPC ? -EBUSY : r;
1720 	return 0;
1721 }
1722 
1723 static int next_free_minor(int *minor)
1724 {
1725 	int r;
1726 
1727 	idr_preload(GFP_KERNEL);
1728 	spin_lock(&_minor_lock);
1729 
1730 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1731 
1732 	spin_unlock(&_minor_lock);
1733 	idr_preload_end();
1734 	if (r < 0)
1735 		return r;
1736 	*minor = r;
1737 	return 0;
1738 }
1739 
1740 static const struct block_device_operations dm_blk_dops;
1741 static const struct dax_operations dm_dax_ops;
1742 
1743 static void dm_wq_work(struct work_struct *work);
1744 
1745 static void dm_init_normal_md_queue(struct mapped_device *md)
1746 {
1747 	md->use_blk_mq = false;
1748 
1749 	/*
1750 	 * Initialize aspects of queue that aren't relevant for blk-mq
1751 	 */
1752 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1753 }
1754 
1755 static void cleanup_mapped_device(struct mapped_device *md)
1756 {
1757 	if (md->wq)
1758 		destroy_workqueue(md->wq);
1759 	if (md->kworker_task)
1760 		kthread_stop(md->kworker_task);
1761 	if (md->bs)
1762 		bioset_free(md->bs);
1763 	if (md->io_bs)
1764 		bioset_free(md->io_bs);
1765 
1766 	if (md->dax_dev) {
1767 		kill_dax(md->dax_dev);
1768 		put_dax(md->dax_dev);
1769 		md->dax_dev = NULL;
1770 	}
1771 
1772 	if (md->disk) {
1773 		spin_lock(&_minor_lock);
1774 		md->disk->private_data = NULL;
1775 		spin_unlock(&_minor_lock);
1776 		del_gendisk(md->disk);
1777 		put_disk(md->disk);
1778 	}
1779 
1780 	if (md->queue)
1781 		blk_cleanup_queue(md->queue);
1782 
1783 	cleanup_srcu_struct(&md->io_barrier);
1784 
1785 	if (md->bdev) {
1786 		bdput(md->bdev);
1787 		md->bdev = NULL;
1788 	}
1789 
1790 	mutex_destroy(&md->suspend_lock);
1791 	mutex_destroy(&md->type_lock);
1792 	mutex_destroy(&md->table_devices_lock);
1793 
1794 	dm_mq_cleanup_mapped_device(md);
1795 }
1796 
1797 /*
1798  * Allocate and initialise a blank device with a given minor.
1799  */
1800 static struct mapped_device *alloc_dev(int minor)
1801 {
1802 	int r, numa_node_id = dm_get_numa_node();
1803 	struct dax_device *dax_dev;
1804 	struct mapped_device *md;
1805 	void *old_md;
1806 
1807 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1808 	if (!md) {
1809 		DMWARN("unable to allocate device, out of memory.");
1810 		return NULL;
1811 	}
1812 
1813 	if (!try_module_get(THIS_MODULE))
1814 		goto bad_module_get;
1815 
1816 	/* get a minor number for the dev */
1817 	if (minor == DM_ANY_MINOR)
1818 		r = next_free_minor(&minor);
1819 	else
1820 		r = specific_minor(minor);
1821 	if (r < 0)
1822 		goto bad_minor;
1823 
1824 	r = init_srcu_struct(&md->io_barrier);
1825 	if (r < 0)
1826 		goto bad_io_barrier;
1827 
1828 	md->numa_node_id = numa_node_id;
1829 	md->use_blk_mq = dm_use_blk_mq_default();
1830 	md->init_tio_pdu = false;
1831 	md->type = DM_TYPE_NONE;
1832 	mutex_init(&md->suspend_lock);
1833 	mutex_init(&md->type_lock);
1834 	mutex_init(&md->table_devices_lock);
1835 	spin_lock_init(&md->deferred_lock);
1836 	atomic_set(&md->holders, 1);
1837 	atomic_set(&md->open_count, 0);
1838 	atomic_set(&md->event_nr, 0);
1839 	atomic_set(&md->uevent_seq, 0);
1840 	INIT_LIST_HEAD(&md->uevent_list);
1841 	INIT_LIST_HEAD(&md->table_devices);
1842 	spin_lock_init(&md->uevent_lock);
1843 
1844 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1845 	if (!md->queue)
1846 		goto bad;
1847 	md->queue->queuedata = md;
1848 	md->queue->backing_dev_info->congested_data = md;
1849 
1850 	md->disk = alloc_disk_node(1, md->numa_node_id);
1851 	if (!md->disk)
1852 		goto bad;
1853 
1854 	atomic_set(&md->pending[0], 0);
1855 	atomic_set(&md->pending[1], 0);
1856 	init_waitqueue_head(&md->wait);
1857 	INIT_WORK(&md->work, dm_wq_work);
1858 	init_waitqueue_head(&md->eventq);
1859 	init_completion(&md->kobj_holder.completion);
1860 	md->kworker_task = NULL;
1861 
1862 	md->disk->major = _major;
1863 	md->disk->first_minor = minor;
1864 	md->disk->fops = &dm_blk_dops;
1865 	md->disk->queue = md->queue;
1866 	md->disk->private_data = md;
1867 	sprintf(md->disk->disk_name, "dm-%d", minor);
1868 
1869 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1870 	if (!dax_dev)
1871 		goto bad;
1872 	md->dax_dev = dax_dev;
1873 
1874 	add_disk_no_queue_reg(md->disk);
1875 	format_dev_t(md->name, MKDEV(_major, minor));
1876 
1877 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1878 	if (!md->wq)
1879 		goto bad;
1880 
1881 	md->bdev = bdget_disk(md->disk, 0);
1882 	if (!md->bdev)
1883 		goto bad;
1884 
1885 	bio_init(&md->flush_bio, NULL, 0);
1886 	bio_set_dev(&md->flush_bio, md->bdev);
1887 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1888 
1889 	dm_stats_init(&md->stats);
1890 
1891 	/* Populate the mapping, nobody knows we exist yet */
1892 	spin_lock(&_minor_lock);
1893 	old_md = idr_replace(&_minor_idr, md, minor);
1894 	spin_unlock(&_minor_lock);
1895 
1896 	BUG_ON(old_md != MINOR_ALLOCED);
1897 
1898 	return md;
1899 
1900 bad:
1901 	cleanup_mapped_device(md);
1902 bad_io_barrier:
1903 	free_minor(minor);
1904 bad_minor:
1905 	module_put(THIS_MODULE);
1906 bad_module_get:
1907 	kvfree(md);
1908 	return NULL;
1909 }
1910 
1911 static void unlock_fs(struct mapped_device *md);
1912 
1913 static void free_dev(struct mapped_device *md)
1914 {
1915 	int minor = MINOR(disk_devt(md->disk));
1916 
1917 	unlock_fs(md);
1918 
1919 	cleanup_mapped_device(md);
1920 
1921 	free_table_devices(&md->table_devices);
1922 	dm_stats_cleanup(&md->stats);
1923 	free_minor(minor);
1924 
1925 	module_put(THIS_MODULE);
1926 	kvfree(md);
1927 }
1928 
1929 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1930 {
1931 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1932 
1933 	if (dm_table_bio_based(t)) {
1934 		/*
1935 		 * The md may already have mempools that need changing.
1936 		 * If so, reload bioset because front_pad may have changed
1937 		 * because a different table was loaded.
1938 		 */
1939 		if (md->bs) {
1940 			bioset_free(md->bs);
1941 			md->bs = NULL;
1942 		}
1943 		if (md->io_bs) {
1944 			bioset_free(md->io_bs);
1945 			md->io_bs = NULL;
1946 		}
1947 
1948 	} else if (md->bs) {
1949 		/*
1950 		 * There's no need to reload with request-based dm
1951 		 * because the size of front_pad doesn't change.
1952 		 * Note for future: If you are to reload bioset,
1953 		 * prep-ed requests in the queue may refer
1954 		 * to bio from the old bioset, so you must walk
1955 		 * through the queue to unprep.
1956 		 */
1957 		goto out;
1958 	}
1959 
1960 	BUG_ON(!p || md->bs || md->io_bs);
1961 
1962 	md->bs = p->bs;
1963 	p->bs = NULL;
1964 	md->io_bs = p->io_bs;
1965 	p->io_bs = NULL;
1966 out:
1967 	/* mempool bind completed, no longer need any mempools in the table */
1968 	dm_table_free_md_mempools(t);
1969 }
1970 
1971 /*
1972  * Bind a table to the device.
1973  */
1974 static void event_callback(void *context)
1975 {
1976 	unsigned long flags;
1977 	LIST_HEAD(uevents);
1978 	struct mapped_device *md = (struct mapped_device *) context;
1979 
1980 	spin_lock_irqsave(&md->uevent_lock, flags);
1981 	list_splice_init(&md->uevent_list, &uevents);
1982 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1983 
1984 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1985 
1986 	atomic_inc(&md->event_nr);
1987 	wake_up(&md->eventq);
1988 	dm_issue_global_event();
1989 }
1990 
1991 /*
1992  * Protected by md->suspend_lock obtained by dm_swap_table().
1993  */
1994 static void __set_size(struct mapped_device *md, sector_t size)
1995 {
1996 	lockdep_assert_held(&md->suspend_lock);
1997 
1998 	set_capacity(md->disk, size);
1999 
2000 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2001 }
2002 
2003 /*
2004  * Returns old map, which caller must destroy.
2005  */
2006 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2007 			       struct queue_limits *limits)
2008 {
2009 	struct dm_table *old_map;
2010 	struct request_queue *q = md->queue;
2011 	bool request_based = dm_table_request_based(t);
2012 	sector_t size;
2013 
2014 	lockdep_assert_held(&md->suspend_lock);
2015 
2016 	size = dm_table_get_size(t);
2017 
2018 	/*
2019 	 * Wipe any geometry if the size of the table changed.
2020 	 */
2021 	if (size != dm_get_size(md))
2022 		memset(&md->geometry, 0, sizeof(md->geometry));
2023 
2024 	__set_size(md, size);
2025 
2026 	dm_table_event_callback(t, event_callback, md);
2027 
2028 	/*
2029 	 * The queue hasn't been stopped yet, if the old table type wasn't
2030 	 * for request-based during suspension.  So stop it to prevent
2031 	 * I/O mapping before resume.
2032 	 * This must be done before setting the queue restrictions,
2033 	 * because request-based dm may be run just after the setting.
2034 	 */
2035 	if (request_based)
2036 		dm_stop_queue(q);
2037 
2038 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2039 		/*
2040 		 * Leverage the fact that request-based DM targets and
2041 		 * NVMe bio based targets are immutable singletons
2042 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2043 		 *   and __process_bio.
2044 		 */
2045 		md->immutable_target = dm_table_get_immutable_target(t);
2046 	}
2047 
2048 	__bind_mempools(md, t);
2049 
2050 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2051 	rcu_assign_pointer(md->map, (void *)t);
2052 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2053 
2054 	dm_table_set_restrictions(t, q, limits);
2055 	if (old_map)
2056 		dm_sync_table(md);
2057 
2058 	return old_map;
2059 }
2060 
2061 /*
2062  * Returns unbound table for the caller to free.
2063  */
2064 static struct dm_table *__unbind(struct mapped_device *md)
2065 {
2066 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2067 
2068 	if (!map)
2069 		return NULL;
2070 
2071 	dm_table_event_callback(map, NULL, NULL);
2072 	RCU_INIT_POINTER(md->map, NULL);
2073 	dm_sync_table(md);
2074 
2075 	return map;
2076 }
2077 
2078 /*
2079  * Constructor for a new device.
2080  */
2081 int dm_create(int minor, struct mapped_device **result)
2082 {
2083 	int r;
2084 	struct mapped_device *md;
2085 
2086 	md = alloc_dev(minor);
2087 	if (!md)
2088 		return -ENXIO;
2089 
2090 	r = dm_sysfs_init(md);
2091 	if (r) {
2092 		free_dev(md);
2093 		return r;
2094 	}
2095 
2096 	*result = md;
2097 	return 0;
2098 }
2099 
2100 /*
2101  * Functions to manage md->type.
2102  * All are required to hold md->type_lock.
2103  */
2104 void dm_lock_md_type(struct mapped_device *md)
2105 {
2106 	mutex_lock(&md->type_lock);
2107 }
2108 
2109 void dm_unlock_md_type(struct mapped_device *md)
2110 {
2111 	mutex_unlock(&md->type_lock);
2112 }
2113 
2114 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2115 {
2116 	BUG_ON(!mutex_is_locked(&md->type_lock));
2117 	md->type = type;
2118 }
2119 
2120 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2121 {
2122 	return md->type;
2123 }
2124 
2125 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2126 {
2127 	return md->immutable_target_type;
2128 }
2129 
2130 /*
2131  * The queue_limits are only valid as long as you have a reference
2132  * count on 'md'.
2133  */
2134 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2135 {
2136 	BUG_ON(!atomic_read(&md->holders));
2137 	return &md->queue->limits;
2138 }
2139 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2140 
2141 /*
2142  * Setup the DM device's queue based on md's type
2143  */
2144 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2145 {
2146 	int r;
2147 	struct queue_limits limits;
2148 	enum dm_queue_mode type = dm_get_md_type(md);
2149 
2150 	switch (type) {
2151 	case DM_TYPE_REQUEST_BASED:
2152 		dm_init_normal_md_queue(md);
2153 		r = dm_old_init_request_queue(md, t);
2154 		if (r) {
2155 			DMERR("Cannot initialize queue for request-based mapped device");
2156 			return r;
2157 		}
2158 		break;
2159 	case DM_TYPE_MQ_REQUEST_BASED:
2160 		r = dm_mq_init_request_queue(md, t);
2161 		if (r) {
2162 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2163 			return r;
2164 		}
2165 		break;
2166 	case DM_TYPE_BIO_BASED:
2167 	case DM_TYPE_DAX_BIO_BASED:
2168 		dm_init_normal_md_queue(md);
2169 		blk_queue_make_request(md->queue, dm_make_request);
2170 		break;
2171 	case DM_TYPE_NVME_BIO_BASED:
2172 		dm_init_normal_md_queue(md);
2173 		blk_queue_make_request(md->queue, dm_make_request_nvme);
2174 		break;
2175 	case DM_TYPE_NONE:
2176 		WARN_ON_ONCE(true);
2177 		break;
2178 	}
2179 
2180 	r = dm_calculate_queue_limits(t, &limits);
2181 	if (r) {
2182 		DMERR("Cannot calculate initial queue limits");
2183 		return r;
2184 	}
2185 	dm_table_set_restrictions(t, md->queue, &limits);
2186 	blk_register_queue(md->disk);
2187 
2188 	return 0;
2189 }
2190 
2191 struct mapped_device *dm_get_md(dev_t dev)
2192 {
2193 	struct mapped_device *md;
2194 	unsigned minor = MINOR(dev);
2195 
2196 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2197 		return NULL;
2198 
2199 	spin_lock(&_minor_lock);
2200 
2201 	md = idr_find(&_minor_idr, minor);
2202 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2203 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2204 		md = NULL;
2205 		goto out;
2206 	}
2207 	dm_get(md);
2208 out:
2209 	spin_unlock(&_minor_lock);
2210 
2211 	return md;
2212 }
2213 EXPORT_SYMBOL_GPL(dm_get_md);
2214 
2215 void *dm_get_mdptr(struct mapped_device *md)
2216 {
2217 	return md->interface_ptr;
2218 }
2219 
2220 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2221 {
2222 	md->interface_ptr = ptr;
2223 }
2224 
2225 void dm_get(struct mapped_device *md)
2226 {
2227 	atomic_inc(&md->holders);
2228 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2229 }
2230 
2231 int dm_hold(struct mapped_device *md)
2232 {
2233 	spin_lock(&_minor_lock);
2234 	if (test_bit(DMF_FREEING, &md->flags)) {
2235 		spin_unlock(&_minor_lock);
2236 		return -EBUSY;
2237 	}
2238 	dm_get(md);
2239 	spin_unlock(&_minor_lock);
2240 	return 0;
2241 }
2242 EXPORT_SYMBOL_GPL(dm_hold);
2243 
2244 const char *dm_device_name(struct mapped_device *md)
2245 {
2246 	return md->name;
2247 }
2248 EXPORT_SYMBOL_GPL(dm_device_name);
2249 
2250 static void __dm_destroy(struct mapped_device *md, bool wait)
2251 {
2252 	struct dm_table *map;
2253 	int srcu_idx;
2254 
2255 	might_sleep();
2256 
2257 	spin_lock(&_minor_lock);
2258 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2259 	set_bit(DMF_FREEING, &md->flags);
2260 	spin_unlock(&_minor_lock);
2261 
2262 	blk_set_queue_dying(md->queue);
2263 
2264 	if (dm_request_based(md) && md->kworker_task)
2265 		kthread_flush_worker(&md->kworker);
2266 
2267 	/*
2268 	 * Take suspend_lock so that presuspend and postsuspend methods
2269 	 * do not race with internal suspend.
2270 	 */
2271 	mutex_lock(&md->suspend_lock);
2272 	map = dm_get_live_table(md, &srcu_idx);
2273 	if (!dm_suspended_md(md)) {
2274 		dm_table_presuspend_targets(map);
2275 		dm_table_postsuspend_targets(map);
2276 	}
2277 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2278 	dm_put_live_table(md, srcu_idx);
2279 	mutex_unlock(&md->suspend_lock);
2280 
2281 	/*
2282 	 * Rare, but there may be I/O requests still going to complete,
2283 	 * for example.  Wait for all references to disappear.
2284 	 * No one should increment the reference count of the mapped_device,
2285 	 * after the mapped_device state becomes DMF_FREEING.
2286 	 */
2287 	if (wait)
2288 		while (atomic_read(&md->holders))
2289 			msleep(1);
2290 	else if (atomic_read(&md->holders))
2291 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2292 		       dm_device_name(md), atomic_read(&md->holders));
2293 
2294 	dm_sysfs_exit(md);
2295 	dm_table_destroy(__unbind(md));
2296 	free_dev(md);
2297 }
2298 
2299 void dm_destroy(struct mapped_device *md)
2300 {
2301 	__dm_destroy(md, true);
2302 }
2303 
2304 void dm_destroy_immediate(struct mapped_device *md)
2305 {
2306 	__dm_destroy(md, false);
2307 }
2308 
2309 void dm_put(struct mapped_device *md)
2310 {
2311 	atomic_dec(&md->holders);
2312 }
2313 EXPORT_SYMBOL_GPL(dm_put);
2314 
2315 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2316 {
2317 	int r = 0;
2318 	DEFINE_WAIT(wait);
2319 
2320 	while (1) {
2321 		prepare_to_wait(&md->wait, &wait, task_state);
2322 
2323 		if (!md_in_flight(md))
2324 			break;
2325 
2326 		if (signal_pending_state(task_state, current)) {
2327 			r = -EINTR;
2328 			break;
2329 		}
2330 
2331 		io_schedule();
2332 	}
2333 	finish_wait(&md->wait, &wait);
2334 
2335 	return r;
2336 }
2337 
2338 /*
2339  * Process the deferred bios
2340  */
2341 static void dm_wq_work(struct work_struct *work)
2342 {
2343 	struct mapped_device *md = container_of(work, struct mapped_device,
2344 						work);
2345 	struct bio *c;
2346 	int srcu_idx;
2347 	struct dm_table *map;
2348 
2349 	map = dm_get_live_table(md, &srcu_idx);
2350 
2351 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2352 		spin_lock_irq(&md->deferred_lock);
2353 		c = bio_list_pop(&md->deferred);
2354 		spin_unlock_irq(&md->deferred_lock);
2355 
2356 		if (!c)
2357 			break;
2358 
2359 		if (dm_request_based(md))
2360 			generic_make_request(c);
2361 		else
2362 			__split_and_process_bio(md, map, c);
2363 	}
2364 
2365 	dm_put_live_table(md, srcu_idx);
2366 }
2367 
2368 static void dm_queue_flush(struct mapped_device *md)
2369 {
2370 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2371 	smp_mb__after_atomic();
2372 	queue_work(md->wq, &md->work);
2373 }
2374 
2375 /*
2376  * Swap in a new table, returning the old one for the caller to destroy.
2377  */
2378 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2379 {
2380 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2381 	struct queue_limits limits;
2382 	int r;
2383 
2384 	mutex_lock(&md->suspend_lock);
2385 
2386 	/* device must be suspended */
2387 	if (!dm_suspended_md(md))
2388 		goto out;
2389 
2390 	/*
2391 	 * If the new table has no data devices, retain the existing limits.
2392 	 * This helps multipath with queue_if_no_path if all paths disappear,
2393 	 * then new I/O is queued based on these limits, and then some paths
2394 	 * reappear.
2395 	 */
2396 	if (dm_table_has_no_data_devices(table)) {
2397 		live_map = dm_get_live_table_fast(md);
2398 		if (live_map)
2399 			limits = md->queue->limits;
2400 		dm_put_live_table_fast(md);
2401 	}
2402 
2403 	if (!live_map) {
2404 		r = dm_calculate_queue_limits(table, &limits);
2405 		if (r) {
2406 			map = ERR_PTR(r);
2407 			goto out;
2408 		}
2409 	}
2410 
2411 	map = __bind(md, table, &limits);
2412 	dm_issue_global_event();
2413 
2414 out:
2415 	mutex_unlock(&md->suspend_lock);
2416 	return map;
2417 }
2418 
2419 /*
2420  * Functions to lock and unlock any filesystem running on the
2421  * device.
2422  */
2423 static int lock_fs(struct mapped_device *md)
2424 {
2425 	int r;
2426 
2427 	WARN_ON(md->frozen_sb);
2428 
2429 	md->frozen_sb = freeze_bdev(md->bdev);
2430 	if (IS_ERR(md->frozen_sb)) {
2431 		r = PTR_ERR(md->frozen_sb);
2432 		md->frozen_sb = NULL;
2433 		return r;
2434 	}
2435 
2436 	set_bit(DMF_FROZEN, &md->flags);
2437 
2438 	return 0;
2439 }
2440 
2441 static void unlock_fs(struct mapped_device *md)
2442 {
2443 	if (!test_bit(DMF_FROZEN, &md->flags))
2444 		return;
2445 
2446 	thaw_bdev(md->bdev, md->frozen_sb);
2447 	md->frozen_sb = NULL;
2448 	clear_bit(DMF_FROZEN, &md->flags);
2449 }
2450 
2451 /*
2452  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2453  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2454  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2455  *
2456  * If __dm_suspend returns 0, the device is completely quiescent
2457  * now. There is no request-processing activity. All new requests
2458  * are being added to md->deferred list.
2459  */
2460 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2461 			unsigned suspend_flags, long task_state,
2462 			int dmf_suspended_flag)
2463 {
2464 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2465 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2466 	int r;
2467 
2468 	lockdep_assert_held(&md->suspend_lock);
2469 
2470 	/*
2471 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2472 	 * This flag is cleared before dm_suspend returns.
2473 	 */
2474 	if (noflush)
2475 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2476 	else
2477 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2478 
2479 	/*
2480 	 * This gets reverted if there's an error later and the targets
2481 	 * provide the .presuspend_undo hook.
2482 	 */
2483 	dm_table_presuspend_targets(map);
2484 
2485 	/*
2486 	 * Flush I/O to the device.
2487 	 * Any I/O submitted after lock_fs() may not be flushed.
2488 	 * noflush takes precedence over do_lockfs.
2489 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2490 	 */
2491 	if (!noflush && do_lockfs) {
2492 		r = lock_fs(md);
2493 		if (r) {
2494 			dm_table_presuspend_undo_targets(map);
2495 			return r;
2496 		}
2497 	}
2498 
2499 	/*
2500 	 * Here we must make sure that no processes are submitting requests
2501 	 * to target drivers i.e. no one may be executing
2502 	 * __split_and_process_bio. This is called from dm_request and
2503 	 * dm_wq_work.
2504 	 *
2505 	 * To get all processes out of __split_and_process_bio in dm_request,
2506 	 * we take the write lock. To prevent any process from reentering
2507 	 * __split_and_process_bio from dm_request and quiesce the thread
2508 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2509 	 * flush_workqueue(md->wq).
2510 	 */
2511 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2512 	if (map)
2513 		synchronize_srcu(&md->io_barrier);
2514 
2515 	/*
2516 	 * Stop md->queue before flushing md->wq in case request-based
2517 	 * dm defers requests to md->wq from md->queue.
2518 	 */
2519 	if (dm_request_based(md)) {
2520 		dm_stop_queue(md->queue);
2521 		if (md->kworker_task)
2522 			kthread_flush_worker(&md->kworker);
2523 	}
2524 
2525 	flush_workqueue(md->wq);
2526 
2527 	/*
2528 	 * At this point no more requests are entering target request routines.
2529 	 * We call dm_wait_for_completion to wait for all existing requests
2530 	 * to finish.
2531 	 */
2532 	r = dm_wait_for_completion(md, task_state);
2533 	if (!r)
2534 		set_bit(dmf_suspended_flag, &md->flags);
2535 
2536 	if (noflush)
2537 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2538 	if (map)
2539 		synchronize_srcu(&md->io_barrier);
2540 
2541 	/* were we interrupted ? */
2542 	if (r < 0) {
2543 		dm_queue_flush(md);
2544 
2545 		if (dm_request_based(md))
2546 			dm_start_queue(md->queue);
2547 
2548 		unlock_fs(md);
2549 		dm_table_presuspend_undo_targets(map);
2550 		/* pushback list is already flushed, so skip flush */
2551 	}
2552 
2553 	return r;
2554 }
2555 
2556 /*
2557  * We need to be able to change a mapping table under a mounted
2558  * filesystem.  For example we might want to move some data in
2559  * the background.  Before the table can be swapped with
2560  * dm_bind_table, dm_suspend must be called to flush any in
2561  * flight bios and ensure that any further io gets deferred.
2562  */
2563 /*
2564  * Suspend mechanism in request-based dm.
2565  *
2566  * 1. Flush all I/Os by lock_fs() if needed.
2567  * 2. Stop dispatching any I/O by stopping the request_queue.
2568  * 3. Wait for all in-flight I/Os to be completed or requeued.
2569  *
2570  * To abort suspend, start the request_queue.
2571  */
2572 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2573 {
2574 	struct dm_table *map = NULL;
2575 	int r = 0;
2576 
2577 retry:
2578 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2579 
2580 	if (dm_suspended_md(md)) {
2581 		r = -EINVAL;
2582 		goto out_unlock;
2583 	}
2584 
2585 	if (dm_suspended_internally_md(md)) {
2586 		/* already internally suspended, wait for internal resume */
2587 		mutex_unlock(&md->suspend_lock);
2588 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2589 		if (r)
2590 			return r;
2591 		goto retry;
2592 	}
2593 
2594 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2595 
2596 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2597 	if (r)
2598 		goto out_unlock;
2599 
2600 	dm_table_postsuspend_targets(map);
2601 
2602 out_unlock:
2603 	mutex_unlock(&md->suspend_lock);
2604 	return r;
2605 }
2606 
2607 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2608 {
2609 	if (map) {
2610 		int r = dm_table_resume_targets(map);
2611 		if (r)
2612 			return r;
2613 	}
2614 
2615 	dm_queue_flush(md);
2616 
2617 	/*
2618 	 * Flushing deferred I/Os must be done after targets are resumed
2619 	 * so that mapping of targets can work correctly.
2620 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2621 	 */
2622 	if (dm_request_based(md))
2623 		dm_start_queue(md->queue);
2624 
2625 	unlock_fs(md);
2626 
2627 	return 0;
2628 }
2629 
2630 int dm_resume(struct mapped_device *md)
2631 {
2632 	int r;
2633 	struct dm_table *map = NULL;
2634 
2635 retry:
2636 	r = -EINVAL;
2637 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2638 
2639 	if (!dm_suspended_md(md))
2640 		goto out;
2641 
2642 	if (dm_suspended_internally_md(md)) {
2643 		/* already internally suspended, wait for internal resume */
2644 		mutex_unlock(&md->suspend_lock);
2645 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2646 		if (r)
2647 			return r;
2648 		goto retry;
2649 	}
2650 
2651 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2652 	if (!map || !dm_table_get_size(map))
2653 		goto out;
2654 
2655 	r = __dm_resume(md, map);
2656 	if (r)
2657 		goto out;
2658 
2659 	clear_bit(DMF_SUSPENDED, &md->flags);
2660 out:
2661 	mutex_unlock(&md->suspend_lock);
2662 
2663 	return r;
2664 }
2665 
2666 /*
2667  * Internal suspend/resume works like userspace-driven suspend. It waits
2668  * until all bios finish and prevents issuing new bios to the target drivers.
2669  * It may be used only from the kernel.
2670  */
2671 
2672 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2673 {
2674 	struct dm_table *map = NULL;
2675 
2676 	lockdep_assert_held(&md->suspend_lock);
2677 
2678 	if (md->internal_suspend_count++)
2679 		return; /* nested internal suspend */
2680 
2681 	if (dm_suspended_md(md)) {
2682 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2683 		return; /* nest suspend */
2684 	}
2685 
2686 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2687 
2688 	/*
2689 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2690 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2691 	 * would require changing .presuspend to return an error -- avoid this
2692 	 * until there is a need for more elaborate variants of internal suspend.
2693 	 */
2694 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2695 			    DMF_SUSPENDED_INTERNALLY);
2696 
2697 	dm_table_postsuspend_targets(map);
2698 }
2699 
2700 static void __dm_internal_resume(struct mapped_device *md)
2701 {
2702 	BUG_ON(!md->internal_suspend_count);
2703 
2704 	if (--md->internal_suspend_count)
2705 		return; /* resume from nested internal suspend */
2706 
2707 	if (dm_suspended_md(md))
2708 		goto done; /* resume from nested suspend */
2709 
2710 	/*
2711 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2712 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2713 	 */
2714 	(void) __dm_resume(md, NULL);
2715 
2716 done:
2717 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2718 	smp_mb__after_atomic();
2719 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2720 }
2721 
2722 void dm_internal_suspend_noflush(struct mapped_device *md)
2723 {
2724 	mutex_lock(&md->suspend_lock);
2725 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2726 	mutex_unlock(&md->suspend_lock);
2727 }
2728 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2729 
2730 void dm_internal_resume(struct mapped_device *md)
2731 {
2732 	mutex_lock(&md->suspend_lock);
2733 	__dm_internal_resume(md);
2734 	mutex_unlock(&md->suspend_lock);
2735 }
2736 EXPORT_SYMBOL_GPL(dm_internal_resume);
2737 
2738 /*
2739  * Fast variants of internal suspend/resume hold md->suspend_lock,
2740  * which prevents interaction with userspace-driven suspend.
2741  */
2742 
2743 void dm_internal_suspend_fast(struct mapped_device *md)
2744 {
2745 	mutex_lock(&md->suspend_lock);
2746 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2747 		return;
2748 
2749 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2750 	synchronize_srcu(&md->io_barrier);
2751 	flush_workqueue(md->wq);
2752 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2753 }
2754 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2755 
2756 void dm_internal_resume_fast(struct mapped_device *md)
2757 {
2758 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2759 		goto done;
2760 
2761 	dm_queue_flush(md);
2762 
2763 done:
2764 	mutex_unlock(&md->suspend_lock);
2765 }
2766 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2767 
2768 /*-----------------------------------------------------------------
2769  * Event notification.
2770  *---------------------------------------------------------------*/
2771 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2772 		       unsigned cookie)
2773 {
2774 	char udev_cookie[DM_COOKIE_LENGTH];
2775 	char *envp[] = { udev_cookie, NULL };
2776 
2777 	if (!cookie)
2778 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2779 	else {
2780 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2781 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2782 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2783 					  action, envp);
2784 	}
2785 }
2786 
2787 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2788 {
2789 	return atomic_add_return(1, &md->uevent_seq);
2790 }
2791 
2792 uint32_t dm_get_event_nr(struct mapped_device *md)
2793 {
2794 	return atomic_read(&md->event_nr);
2795 }
2796 
2797 int dm_wait_event(struct mapped_device *md, int event_nr)
2798 {
2799 	return wait_event_interruptible(md->eventq,
2800 			(event_nr != atomic_read(&md->event_nr)));
2801 }
2802 
2803 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2804 {
2805 	unsigned long flags;
2806 
2807 	spin_lock_irqsave(&md->uevent_lock, flags);
2808 	list_add(elist, &md->uevent_list);
2809 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2810 }
2811 
2812 /*
2813  * The gendisk is only valid as long as you have a reference
2814  * count on 'md'.
2815  */
2816 struct gendisk *dm_disk(struct mapped_device *md)
2817 {
2818 	return md->disk;
2819 }
2820 EXPORT_SYMBOL_GPL(dm_disk);
2821 
2822 struct kobject *dm_kobject(struct mapped_device *md)
2823 {
2824 	return &md->kobj_holder.kobj;
2825 }
2826 
2827 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2828 {
2829 	struct mapped_device *md;
2830 
2831 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2832 
2833 	spin_lock(&_minor_lock);
2834 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2835 		md = NULL;
2836 		goto out;
2837 	}
2838 	dm_get(md);
2839 out:
2840 	spin_unlock(&_minor_lock);
2841 
2842 	return md;
2843 }
2844 
2845 int dm_suspended_md(struct mapped_device *md)
2846 {
2847 	return test_bit(DMF_SUSPENDED, &md->flags);
2848 }
2849 
2850 int dm_suspended_internally_md(struct mapped_device *md)
2851 {
2852 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2853 }
2854 
2855 int dm_test_deferred_remove_flag(struct mapped_device *md)
2856 {
2857 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2858 }
2859 
2860 int dm_suspended(struct dm_target *ti)
2861 {
2862 	return dm_suspended_md(dm_table_get_md(ti->table));
2863 }
2864 EXPORT_SYMBOL_GPL(dm_suspended);
2865 
2866 int dm_noflush_suspending(struct dm_target *ti)
2867 {
2868 	return __noflush_suspending(dm_table_get_md(ti->table));
2869 }
2870 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2871 
2872 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2873 					    unsigned integrity, unsigned per_io_data_size,
2874 					    unsigned min_pool_size)
2875 {
2876 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2877 	unsigned int pool_size = 0;
2878 	unsigned int front_pad, io_front_pad;
2879 
2880 	if (!pools)
2881 		return NULL;
2882 
2883 	switch (type) {
2884 	case DM_TYPE_BIO_BASED:
2885 	case DM_TYPE_DAX_BIO_BASED:
2886 	case DM_TYPE_NVME_BIO_BASED:
2887 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2888 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2889 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2890 		pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2891 		if (!pools->io_bs)
2892 			goto out;
2893 		if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2894 			goto out;
2895 		break;
2896 	case DM_TYPE_REQUEST_BASED:
2897 	case DM_TYPE_MQ_REQUEST_BASED:
2898 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2899 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2900 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2901 		break;
2902 	default:
2903 		BUG();
2904 	}
2905 
2906 	pools->bs = bioset_create(pool_size, front_pad, 0);
2907 	if (!pools->bs)
2908 		goto out;
2909 
2910 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2911 		goto out;
2912 
2913 	return pools;
2914 
2915 out:
2916 	dm_free_md_mempools(pools);
2917 
2918 	return NULL;
2919 }
2920 
2921 void dm_free_md_mempools(struct dm_md_mempools *pools)
2922 {
2923 	if (!pools)
2924 		return;
2925 
2926 	if (pools->bs)
2927 		bioset_free(pools->bs);
2928 	if (pools->io_bs)
2929 		bioset_free(pools->io_bs);
2930 
2931 	kfree(pools);
2932 }
2933 
2934 struct dm_pr {
2935 	u64	old_key;
2936 	u64	new_key;
2937 	u32	flags;
2938 	bool	fail_early;
2939 };
2940 
2941 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2942 		      void *data)
2943 {
2944 	struct mapped_device *md = bdev->bd_disk->private_data;
2945 	struct dm_table *table;
2946 	struct dm_target *ti;
2947 	int ret = -ENOTTY, srcu_idx;
2948 
2949 	table = dm_get_live_table(md, &srcu_idx);
2950 	if (!table || !dm_table_get_size(table))
2951 		goto out;
2952 
2953 	/* We only support devices that have a single target */
2954 	if (dm_table_get_num_targets(table) != 1)
2955 		goto out;
2956 	ti = dm_table_get_target(table, 0);
2957 
2958 	ret = -EINVAL;
2959 	if (!ti->type->iterate_devices)
2960 		goto out;
2961 
2962 	ret = ti->type->iterate_devices(ti, fn, data);
2963 out:
2964 	dm_put_live_table(md, srcu_idx);
2965 	return ret;
2966 }
2967 
2968 /*
2969  * For register / unregister we need to manually call out to every path.
2970  */
2971 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2972 			    sector_t start, sector_t len, void *data)
2973 {
2974 	struct dm_pr *pr = data;
2975 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2976 
2977 	if (!ops || !ops->pr_register)
2978 		return -EOPNOTSUPP;
2979 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2980 }
2981 
2982 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2983 			  u32 flags)
2984 {
2985 	struct dm_pr pr = {
2986 		.old_key	= old_key,
2987 		.new_key	= new_key,
2988 		.flags		= flags,
2989 		.fail_early	= true,
2990 	};
2991 	int ret;
2992 
2993 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2994 	if (ret && new_key) {
2995 		/* unregister all paths if we failed to register any path */
2996 		pr.old_key = new_key;
2997 		pr.new_key = 0;
2998 		pr.flags = 0;
2999 		pr.fail_early = false;
3000 		dm_call_pr(bdev, __dm_pr_register, &pr);
3001 	}
3002 
3003 	return ret;
3004 }
3005 
3006 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3007 			 u32 flags)
3008 {
3009 	struct mapped_device *md = bdev->bd_disk->private_data;
3010 	const struct pr_ops *ops;
3011 	fmode_t mode;
3012 	int r;
3013 
3014 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3015 	if (r < 0)
3016 		return r;
3017 
3018 	ops = bdev->bd_disk->fops->pr_ops;
3019 	if (ops && ops->pr_reserve)
3020 		r = ops->pr_reserve(bdev, key, type, flags);
3021 	else
3022 		r = -EOPNOTSUPP;
3023 
3024 	bdput(bdev);
3025 	return r;
3026 }
3027 
3028 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3029 {
3030 	struct mapped_device *md = bdev->bd_disk->private_data;
3031 	const struct pr_ops *ops;
3032 	fmode_t mode;
3033 	int r;
3034 
3035 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3036 	if (r < 0)
3037 		return r;
3038 
3039 	ops = bdev->bd_disk->fops->pr_ops;
3040 	if (ops && ops->pr_release)
3041 		r = ops->pr_release(bdev, key, type);
3042 	else
3043 		r = -EOPNOTSUPP;
3044 
3045 	bdput(bdev);
3046 	return r;
3047 }
3048 
3049 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3050 			 enum pr_type type, bool abort)
3051 {
3052 	struct mapped_device *md = bdev->bd_disk->private_data;
3053 	const struct pr_ops *ops;
3054 	fmode_t mode;
3055 	int r;
3056 
3057 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3058 	if (r < 0)
3059 		return r;
3060 
3061 	ops = bdev->bd_disk->fops->pr_ops;
3062 	if (ops && ops->pr_preempt)
3063 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3064 	else
3065 		r = -EOPNOTSUPP;
3066 
3067 	bdput(bdev);
3068 	return r;
3069 }
3070 
3071 static int dm_pr_clear(struct block_device *bdev, u64 key)
3072 {
3073 	struct mapped_device *md = bdev->bd_disk->private_data;
3074 	const struct pr_ops *ops;
3075 	fmode_t mode;
3076 	int r;
3077 
3078 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3079 	if (r < 0)
3080 		return r;
3081 
3082 	ops = bdev->bd_disk->fops->pr_ops;
3083 	if (ops && ops->pr_clear)
3084 		r = ops->pr_clear(bdev, key);
3085 	else
3086 		r = -EOPNOTSUPP;
3087 
3088 	bdput(bdev);
3089 	return r;
3090 }
3091 
3092 static const struct pr_ops dm_pr_ops = {
3093 	.pr_register	= dm_pr_register,
3094 	.pr_reserve	= dm_pr_reserve,
3095 	.pr_release	= dm_pr_release,
3096 	.pr_preempt	= dm_pr_preempt,
3097 	.pr_clear	= dm_pr_clear,
3098 };
3099 
3100 static const struct block_device_operations dm_blk_dops = {
3101 	.open = dm_blk_open,
3102 	.release = dm_blk_close,
3103 	.ioctl = dm_blk_ioctl,
3104 	.getgeo = dm_blk_getgeo,
3105 	.pr_ops = &dm_pr_ops,
3106 	.owner = THIS_MODULE
3107 };
3108 
3109 static const struct dax_operations dm_dax_ops = {
3110 	.direct_access = dm_dax_direct_access,
3111 	.copy_from_iter = dm_dax_copy_from_iter,
3112 };
3113 
3114 /*
3115  * module hooks
3116  */
3117 module_init(dm_init);
3118 module_exit(dm_exit);
3119 
3120 module_param(major, uint, 0);
3121 MODULE_PARM_DESC(major, "The major number of the device mapper");
3122 
3123 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3124 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3125 
3126 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3127 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3128 
3129 MODULE_DESCRIPTION(DM_NAME " driver");
3130 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3131 MODULE_LICENSE("GPL");
3132