1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set *bs; 152 struct bio_set *io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 static struct kmem_cache *_rq_tio_cache; 162 static struct kmem_cache *_rq_cache; 163 164 /* 165 * Bio-based DM's mempools' reserved IOs set by the user. 166 */ 167 #define RESERVED_BIO_BASED_IOS 16 168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 169 170 static int __dm_get_module_param_int(int *module_param, int min, int max) 171 { 172 int param = READ_ONCE(*module_param); 173 int modified_param = 0; 174 bool modified = true; 175 176 if (param < min) 177 modified_param = min; 178 else if (param > max) 179 modified_param = max; 180 else 181 modified = false; 182 183 if (modified) { 184 (void)cmpxchg(module_param, param, modified_param); 185 param = modified_param; 186 } 187 188 return param; 189 } 190 191 unsigned __dm_get_module_param(unsigned *module_param, 192 unsigned def, unsigned max) 193 { 194 unsigned param = READ_ONCE(*module_param); 195 unsigned modified_param = 0; 196 197 if (!param) 198 modified_param = def; 199 else if (param > max) 200 modified_param = max; 201 202 if (modified_param) { 203 (void)cmpxchg(module_param, param, modified_param); 204 param = modified_param; 205 } 206 207 return param; 208 } 209 210 unsigned dm_get_reserved_bio_based_ios(void) 211 { 212 return __dm_get_module_param(&reserved_bio_based_ios, 213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 214 } 215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 216 217 static unsigned dm_get_numa_node(void) 218 { 219 return __dm_get_module_param_int(&dm_numa_node, 220 DM_NUMA_NODE, num_online_nodes() - 1); 221 } 222 223 static int __init local_init(void) 224 { 225 int r = -ENOMEM; 226 227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 228 if (!_rq_tio_cache) 229 return r; 230 231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 232 __alignof__(struct request), 0, NULL); 233 if (!_rq_cache) 234 goto out_free_rq_tio_cache; 235 236 r = dm_uevent_init(); 237 if (r) 238 goto out_free_rq_cache; 239 240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 241 if (!deferred_remove_workqueue) { 242 r = -ENOMEM; 243 goto out_uevent_exit; 244 } 245 246 _major = major; 247 r = register_blkdev(_major, _name); 248 if (r < 0) 249 goto out_free_workqueue; 250 251 if (!_major) 252 _major = r; 253 254 return 0; 255 256 out_free_workqueue: 257 destroy_workqueue(deferred_remove_workqueue); 258 out_uevent_exit: 259 dm_uevent_exit(); 260 out_free_rq_cache: 261 kmem_cache_destroy(_rq_cache); 262 out_free_rq_tio_cache: 263 kmem_cache_destroy(_rq_tio_cache); 264 265 return r; 266 } 267 268 static void local_exit(void) 269 { 270 flush_scheduled_work(); 271 destroy_workqueue(deferred_remove_workqueue); 272 273 kmem_cache_destroy(_rq_cache); 274 kmem_cache_destroy(_rq_tio_cache); 275 unregister_blkdev(_major, _name); 276 dm_uevent_exit(); 277 278 _major = 0; 279 280 DMINFO("cleaned up"); 281 } 282 283 static int (*_inits[])(void) __initdata = { 284 local_init, 285 dm_target_init, 286 dm_linear_init, 287 dm_stripe_init, 288 dm_io_init, 289 dm_kcopyd_init, 290 dm_interface_init, 291 dm_statistics_init, 292 }; 293 294 static void (*_exits[])(void) = { 295 local_exit, 296 dm_target_exit, 297 dm_linear_exit, 298 dm_stripe_exit, 299 dm_io_exit, 300 dm_kcopyd_exit, 301 dm_interface_exit, 302 dm_statistics_exit, 303 }; 304 305 static int __init dm_init(void) 306 { 307 const int count = ARRAY_SIZE(_inits); 308 309 int r, i; 310 311 for (i = 0; i < count; i++) { 312 r = _inits[i](); 313 if (r) 314 goto bad; 315 } 316 317 return 0; 318 319 bad: 320 while (i--) 321 _exits[i](); 322 323 return r; 324 } 325 326 static void __exit dm_exit(void) 327 { 328 int i = ARRAY_SIZE(_exits); 329 330 while (i--) 331 _exits[i](); 332 333 /* 334 * Should be empty by this point. 335 */ 336 idr_destroy(&_minor_idr); 337 } 338 339 /* 340 * Block device functions 341 */ 342 int dm_deleting_md(struct mapped_device *md) 343 { 344 return test_bit(DMF_DELETING, &md->flags); 345 } 346 347 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 348 { 349 struct mapped_device *md; 350 351 spin_lock(&_minor_lock); 352 353 md = bdev->bd_disk->private_data; 354 if (!md) 355 goto out; 356 357 if (test_bit(DMF_FREEING, &md->flags) || 358 dm_deleting_md(md)) { 359 md = NULL; 360 goto out; 361 } 362 363 dm_get(md); 364 atomic_inc(&md->open_count); 365 out: 366 spin_unlock(&_minor_lock); 367 368 return md ? 0 : -ENXIO; 369 } 370 371 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 372 { 373 struct mapped_device *md; 374 375 spin_lock(&_minor_lock); 376 377 md = disk->private_data; 378 if (WARN_ON(!md)) 379 goto out; 380 381 if (atomic_dec_and_test(&md->open_count) && 382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 383 queue_work(deferred_remove_workqueue, &deferred_remove_work); 384 385 dm_put(md); 386 out: 387 spin_unlock(&_minor_lock); 388 } 389 390 int dm_open_count(struct mapped_device *md) 391 { 392 return atomic_read(&md->open_count); 393 } 394 395 /* 396 * Guarantees nothing is using the device before it's deleted. 397 */ 398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 399 { 400 int r = 0; 401 402 spin_lock(&_minor_lock); 403 404 if (dm_open_count(md)) { 405 r = -EBUSY; 406 if (mark_deferred) 407 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 409 r = -EEXIST; 410 else 411 set_bit(DMF_DELETING, &md->flags); 412 413 spin_unlock(&_minor_lock); 414 415 return r; 416 } 417 418 int dm_cancel_deferred_remove(struct mapped_device *md) 419 { 420 int r = 0; 421 422 spin_lock(&_minor_lock); 423 424 if (test_bit(DMF_DELETING, &md->flags)) 425 r = -EBUSY; 426 else 427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 428 429 spin_unlock(&_minor_lock); 430 431 return r; 432 } 433 434 static void do_deferred_remove(struct work_struct *w) 435 { 436 dm_deferred_remove(); 437 } 438 439 sector_t dm_get_size(struct mapped_device *md) 440 { 441 return get_capacity(md->disk); 442 } 443 444 struct request_queue *dm_get_md_queue(struct mapped_device *md) 445 { 446 return md->queue; 447 } 448 449 struct dm_stats *dm_get_stats(struct mapped_device *md) 450 { 451 return &md->stats; 452 } 453 454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 455 { 456 struct mapped_device *md = bdev->bd_disk->private_data; 457 458 return dm_get_geometry(md, geo); 459 } 460 461 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 462 struct block_device **bdev, 463 fmode_t *mode) 464 { 465 struct dm_target *tgt; 466 struct dm_table *map; 467 int srcu_idx, r; 468 469 retry: 470 r = -ENOTTY; 471 map = dm_get_live_table(md, &srcu_idx); 472 if (!map || !dm_table_get_size(map)) 473 goto out; 474 475 /* We only support devices that have a single target */ 476 if (dm_table_get_num_targets(map) != 1) 477 goto out; 478 479 tgt = dm_table_get_target(map, 0); 480 if (!tgt->type->prepare_ioctl) 481 goto out; 482 483 if (dm_suspended_md(md)) { 484 r = -EAGAIN; 485 goto out; 486 } 487 488 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 489 if (r < 0) 490 goto out; 491 492 bdgrab(*bdev); 493 dm_put_live_table(md, srcu_idx); 494 return r; 495 496 out: 497 dm_put_live_table(md, srcu_idx); 498 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 499 msleep(10); 500 goto retry; 501 } 502 return r; 503 } 504 505 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 506 unsigned int cmd, unsigned long arg) 507 { 508 struct mapped_device *md = bdev->bd_disk->private_data; 509 int r; 510 511 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 512 if (r < 0) 513 return r; 514 515 if (r > 0) { 516 /* 517 * Target determined this ioctl is being issued against a 518 * subset of the parent bdev; require extra privileges. 519 */ 520 if (!capable(CAP_SYS_RAWIO)) { 521 DMWARN_LIMIT( 522 "%s: sending ioctl %x to DM device without required privilege.", 523 current->comm, cmd); 524 r = -ENOIOCTLCMD; 525 goto out; 526 } 527 } 528 529 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 530 out: 531 bdput(bdev); 532 return r; 533 } 534 535 static void start_io_acct(struct dm_io *io); 536 537 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 538 { 539 struct dm_io *io; 540 struct dm_target_io *tio; 541 struct bio *clone; 542 543 clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs); 544 if (!clone) 545 return NULL; 546 547 tio = container_of(clone, struct dm_target_io, clone); 548 tio->inside_dm_io = true; 549 tio->io = NULL; 550 551 io = container_of(tio, struct dm_io, tio); 552 io->magic = DM_IO_MAGIC; 553 io->status = 0; 554 atomic_set(&io->io_count, 1); 555 io->orig_bio = bio; 556 io->md = md; 557 spin_lock_init(&io->endio_lock); 558 559 start_io_acct(io); 560 561 return io; 562 } 563 564 static void free_io(struct mapped_device *md, struct dm_io *io) 565 { 566 bio_put(&io->tio.clone); 567 } 568 569 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 570 unsigned target_bio_nr, gfp_t gfp_mask) 571 { 572 struct dm_target_io *tio; 573 574 if (!ci->io->tio.io) { 575 /* the dm_target_io embedded in ci->io is available */ 576 tio = &ci->io->tio; 577 } else { 578 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs); 579 if (!clone) 580 return NULL; 581 582 tio = container_of(clone, struct dm_target_io, clone); 583 tio->inside_dm_io = false; 584 } 585 586 tio->magic = DM_TIO_MAGIC; 587 tio->io = ci->io; 588 tio->ti = ti; 589 tio->target_bio_nr = target_bio_nr; 590 591 return tio; 592 } 593 594 static void free_tio(struct dm_target_io *tio) 595 { 596 if (tio->inside_dm_io) 597 return; 598 bio_put(&tio->clone); 599 } 600 601 int md_in_flight(struct mapped_device *md) 602 { 603 return atomic_read(&md->pending[READ]) + 604 atomic_read(&md->pending[WRITE]); 605 } 606 607 static void start_io_acct(struct dm_io *io) 608 { 609 struct mapped_device *md = io->md; 610 struct bio *bio = io->orig_bio; 611 int rw = bio_data_dir(bio); 612 613 io->start_time = jiffies; 614 615 generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0); 616 617 atomic_set(&dm_disk(md)->part0.in_flight[rw], 618 atomic_inc_return(&md->pending[rw])); 619 620 if (unlikely(dm_stats_used(&md->stats))) 621 dm_stats_account_io(&md->stats, bio_data_dir(bio), 622 bio->bi_iter.bi_sector, bio_sectors(bio), 623 false, 0, &io->stats_aux); 624 } 625 626 static void end_io_acct(struct dm_io *io) 627 { 628 struct mapped_device *md = io->md; 629 struct bio *bio = io->orig_bio; 630 unsigned long duration = jiffies - io->start_time; 631 int pending; 632 int rw = bio_data_dir(bio); 633 634 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time); 635 636 if (unlikely(dm_stats_used(&md->stats))) 637 dm_stats_account_io(&md->stats, bio_data_dir(bio), 638 bio->bi_iter.bi_sector, bio_sectors(bio), 639 true, duration, &io->stats_aux); 640 641 /* 642 * After this is decremented the bio must not be touched if it is 643 * a flush. 644 */ 645 pending = atomic_dec_return(&md->pending[rw]); 646 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 647 pending += atomic_read(&md->pending[rw^0x1]); 648 649 /* nudge anyone waiting on suspend queue */ 650 if (!pending) 651 wake_up(&md->wait); 652 } 653 654 /* 655 * Add the bio to the list of deferred io. 656 */ 657 static void queue_io(struct mapped_device *md, struct bio *bio) 658 { 659 unsigned long flags; 660 661 spin_lock_irqsave(&md->deferred_lock, flags); 662 bio_list_add(&md->deferred, bio); 663 spin_unlock_irqrestore(&md->deferred_lock, flags); 664 queue_work(md->wq, &md->work); 665 } 666 667 /* 668 * Everyone (including functions in this file), should use this 669 * function to access the md->map field, and make sure they call 670 * dm_put_live_table() when finished. 671 */ 672 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 673 { 674 *srcu_idx = srcu_read_lock(&md->io_barrier); 675 676 return srcu_dereference(md->map, &md->io_barrier); 677 } 678 679 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 680 { 681 srcu_read_unlock(&md->io_barrier, srcu_idx); 682 } 683 684 void dm_sync_table(struct mapped_device *md) 685 { 686 synchronize_srcu(&md->io_barrier); 687 synchronize_rcu_expedited(); 688 } 689 690 /* 691 * A fast alternative to dm_get_live_table/dm_put_live_table. 692 * The caller must not block between these two functions. 693 */ 694 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 695 { 696 rcu_read_lock(); 697 return rcu_dereference(md->map); 698 } 699 700 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 701 { 702 rcu_read_unlock(); 703 } 704 705 /* 706 * Open a table device so we can use it as a map destination. 707 */ 708 static int open_table_device(struct table_device *td, dev_t dev, 709 struct mapped_device *md) 710 { 711 static char *_claim_ptr = "I belong to device-mapper"; 712 struct block_device *bdev; 713 714 int r; 715 716 BUG_ON(td->dm_dev.bdev); 717 718 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 719 if (IS_ERR(bdev)) 720 return PTR_ERR(bdev); 721 722 r = bd_link_disk_holder(bdev, dm_disk(md)); 723 if (r) { 724 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 725 return r; 726 } 727 728 td->dm_dev.bdev = bdev; 729 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 730 return 0; 731 } 732 733 /* 734 * Close a table device that we've been using. 735 */ 736 static void close_table_device(struct table_device *td, struct mapped_device *md) 737 { 738 if (!td->dm_dev.bdev) 739 return; 740 741 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 742 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 743 put_dax(td->dm_dev.dax_dev); 744 td->dm_dev.bdev = NULL; 745 td->dm_dev.dax_dev = NULL; 746 } 747 748 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 749 fmode_t mode) { 750 struct table_device *td; 751 752 list_for_each_entry(td, l, list) 753 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 754 return td; 755 756 return NULL; 757 } 758 759 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 760 struct dm_dev **result) { 761 int r; 762 struct table_device *td; 763 764 mutex_lock(&md->table_devices_lock); 765 td = find_table_device(&md->table_devices, dev, mode); 766 if (!td) { 767 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 768 if (!td) { 769 mutex_unlock(&md->table_devices_lock); 770 return -ENOMEM; 771 } 772 773 td->dm_dev.mode = mode; 774 td->dm_dev.bdev = NULL; 775 776 if ((r = open_table_device(td, dev, md))) { 777 mutex_unlock(&md->table_devices_lock); 778 kfree(td); 779 return r; 780 } 781 782 format_dev_t(td->dm_dev.name, dev); 783 784 refcount_set(&td->count, 1); 785 list_add(&td->list, &md->table_devices); 786 } else { 787 refcount_inc(&td->count); 788 } 789 mutex_unlock(&md->table_devices_lock); 790 791 *result = &td->dm_dev; 792 return 0; 793 } 794 EXPORT_SYMBOL_GPL(dm_get_table_device); 795 796 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 797 { 798 struct table_device *td = container_of(d, struct table_device, dm_dev); 799 800 mutex_lock(&md->table_devices_lock); 801 if (refcount_dec_and_test(&td->count)) { 802 close_table_device(td, md); 803 list_del(&td->list); 804 kfree(td); 805 } 806 mutex_unlock(&md->table_devices_lock); 807 } 808 EXPORT_SYMBOL(dm_put_table_device); 809 810 static void free_table_devices(struct list_head *devices) 811 { 812 struct list_head *tmp, *next; 813 814 list_for_each_safe(tmp, next, devices) { 815 struct table_device *td = list_entry(tmp, struct table_device, list); 816 817 DMWARN("dm_destroy: %s still exists with %d references", 818 td->dm_dev.name, refcount_read(&td->count)); 819 kfree(td); 820 } 821 } 822 823 /* 824 * Get the geometry associated with a dm device 825 */ 826 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 827 { 828 *geo = md->geometry; 829 830 return 0; 831 } 832 833 /* 834 * Set the geometry of a device. 835 */ 836 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 837 { 838 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 839 840 if (geo->start > sz) { 841 DMWARN("Start sector is beyond the geometry limits."); 842 return -EINVAL; 843 } 844 845 md->geometry = *geo; 846 847 return 0; 848 } 849 850 static int __noflush_suspending(struct mapped_device *md) 851 { 852 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 853 } 854 855 /* 856 * Decrements the number of outstanding ios that a bio has been 857 * cloned into, completing the original io if necc. 858 */ 859 static void dec_pending(struct dm_io *io, blk_status_t error) 860 { 861 unsigned long flags; 862 blk_status_t io_error; 863 struct bio *bio; 864 struct mapped_device *md = io->md; 865 866 /* Push-back supersedes any I/O errors */ 867 if (unlikely(error)) { 868 spin_lock_irqsave(&io->endio_lock, flags); 869 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 870 io->status = error; 871 spin_unlock_irqrestore(&io->endio_lock, flags); 872 } 873 874 if (atomic_dec_and_test(&io->io_count)) { 875 if (io->status == BLK_STS_DM_REQUEUE) { 876 /* 877 * Target requested pushing back the I/O. 878 */ 879 spin_lock_irqsave(&md->deferred_lock, flags); 880 if (__noflush_suspending(md)) 881 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 882 bio_list_add_head(&md->deferred, io->orig_bio); 883 else 884 /* noflush suspend was interrupted. */ 885 io->status = BLK_STS_IOERR; 886 spin_unlock_irqrestore(&md->deferred_lock, flags); 887 } 888 889 io_error = io->status; 890 bio = io->orig_bio; 891 end_io_acct(io); 892 free_io(md, io); 893 894 if (io_error == BLK_STS_DM_REQUEUE) 895 return; 896 897 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 898 /* 899 * Preflush done for flush with data, reissue 900 * without REQ_PREFLUSH. 901 */ 902 bio->bi_opf &= ~REQ_PREFLUSH; 903 queue_io(md, bio); 904 } else { 905 /* done with normal IO or empty flush */ 906 if (io_error) 907 bio->bi_status = io_error; 908 bio_endio(bio); 909 } 910 } 911 } 912 913 void disable_write_same(struct mapped_device *md) 914 { 915 struct queue_limits *limits = dm_get_queue_limits(md); 916 917 /* device doesn't really support WRITE SAME, disable it */ 918 limits->max_write_same_sectors = 0; 919 } 920 921 void disable_write_zeroes(struct mapped_device *md) 922 { 923 struct queue_limits *limits = dm_get_queue_limits(md); 924 925 /* device doesn't really support WRITE ZEROES, disable it */ 926 limits->max_write_zeroes_sectors = 0; 927 } 928 929 static void clone_endio(struct bio *bio) 930 { 931 blk_status_t error = bio->bi_status; 932 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 933 struct dm_io *io = tio->io; 934 struct mapped_device *md = tio->io->md; 935 dm_endio_fn endio = tio->ti->type->end_io; 936 937 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 938 if (bio_op(bio) == REQ_OP_WRITE_SAME && 939 !bio->bi_disk->queue->limits.max_write_same_sectors) 940 disable_write_same(md); 941 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 942 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 943 disable_write_zeroes(md); 944 } 945 946 if (endio) { 947 int r = endio(tio->ti, bio, &error); 948 switch (r) { 949 case DM_ENDIO_REQUEUE: 950 error = BLK_STS_DM_REQUEUE; 951 /*FALLTHRU*/ 952 case DM_ENDIO_DONE: 953 break; 954 case DM_ENDIO_INCOMPLETE: 955 /* The target will handle the io */ 956 return; 957 default: 958 DMWARN("unimplemented target endio return value: %d", r); 959 BUG(); 960 } 961 } 962 963 free_tio(tio); 964 dec_pending(io, error); 965 } 966 967 /* 968 * Return maximum size of I/O possible at the supplied sector up to the current 969 * target boundary. 970 */ 971 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 972 { 973 sector_t target_offset = dm_target_offset(ti, sector); 974 975 return ti->len - target_offset; 976 } 977 978 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 979 { 980 sector_t len = max_io_len_target_boundary(sector, ti); 981 sector_t offset, max_len; 982 983 /* 984 * Does the target need to split even further? 985 */ 986 if (ti->max_io_len) { 987 offset = dm_target_offset(ti, sector); 988 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 989 max_len = sector_div(offset, ti->max_io_len); 990 else 991 max_len = offset & (ti->max_io_len - 1); 992 max_len = ti->max_io_len - max_len; 993 994 if (len > max_len) 995 len = max_len; 996 } 997 998 return len; 999 } 1000 1001 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1002 { 1003 if (len > UINT_MAX) { 1004 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1005 (unsigned long long)len, UINT_MAX); 1006 ti->error = "Maximum size of target IO is too large"; 1007 return -EINVAL; 1008 } 1009 1010 /* 1011 * BIO based queue uses its own splitting. When multipage bvecs 1012 * is switched on, size of the incoming bio may be too big to 1013 * be handled in some targets, such as crypt. 1014 * 1015 * When these targets are ready for the big bio, we can remove 1016 * the limit. 1017 */ 1018 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE); 1019 1020 return 0; 1021 } 1022 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1023 1024 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1025 sector_t sector, int *srcu_idx) 1026 { 1027 struct dm_table *map; 1028 struct dm_target *ti; 1029 1030 map = dm_get_live_table(md, srcu_idx); 1031 if (!map) 1032 return NULL; 1033 1034 ti = dm_table_find_target(map, sector); 1035 if (!dm_target_is_valid(ti)) 1036 return NULL; 1037 1038 return ti; 1039 } 1040 1041 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1042 long nr_pages, void **kaddr, pfn_t *pfn) 1043 { 1044 struct mapped_device *md = dax_get_private(dax_dev); 1045 sector_t sector = pgoff * PAGE_SECTORS; 1046 struct dm_target *ti; 1047 long len, ret = -EIO; 1048 int srcu_idx; 1049 1050 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1051 1052 if (!ti) 1053 goto out; 1054 if (!ti->type->direct_access) 1055 goto out; 1056 len = max_io_len(sector, ti) / PAGE_SECTORS; 1057 if (len < 1) 1058 goto out; 1059 nr_pages = min(len, nr_pages); 1060 if (ti->type->direct_access) 1061 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1062 1063 out: 1064 dm_put_live_table(md, srcu_idx); 1065 1066 return ret; 1067 } 1068 1069 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1070 void *addr, size_t bytes, struct iov_iter *i) 1071 { 1072 struct mapped_device *md = dax_get_private(dax_dev); 1073 sector_t sector = pgoff * PAGE_SECTORS; 1074 struct dm_target *ti; 1075 long ret = 0; 1076 int srcu_idx; 1077 1078 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1079 1080 if (!ti) 1081 goto out; 1082 if (!ti->type->dax_copy_from_iter) { 1083 ret = copy_from_iter(addr, bytes, i); 1084 goto out; 1085 } 1086 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1087 out: 1088 dm_put_live_table(md, srcu_idx); 1089 1090 return ret; 1091 } 1092 1093 /* 1094 * A target may call dm_accept_partial_bio only from the map routine. It is 1095 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1096 * 1097 * dm_accept_partial_bio informs the dm that the target only wants to process 1098 * additional n_sectors sectors of the bio and the rest of the data should be 1099 * sent in a next bio. 1100 * 1101 * A diagram that explains the arithmetics: 1102 * +--------------------+---------------+-------+ 1103 * | 1 | 2 | 3 | 1104 * +--------------------+---------------+-------+ 1105 * 1106 * <-------------- *tio->len_ptr ---------------> 1107 * <------- bi_size -------> 1108 * <-- n_sectors --> 1109 * 1110 * Region 1 was already iterated over with bio_advance or similar function. 1111 * (it may be empty if the target doesn't use bio_advance) 1112 * Region 2 is the remaining bio size that the target wants to process. 1113 * (it may be empty if region 1 is non-empty, although there is no reason 1114 * to make it empty) 1115 * The target requires that region 3 is to be sent in the next bio. 1116 * 1117 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1118 * the partially processed part (the sum of regions 1+2) must be the same for all 1119 * copies of the bio. 1120 */ 1121 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1122 { 1123 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1124 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1125 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1126 BUG_ON(bi_size > *tio->len_ptr); 1127 BUG_ON(n_sectors > bi_size); 1128 *tio->len_ptr -= bi_size - n_sectors; 1129 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1130 } 1131 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1132 1133 /* 1134 * The zone descriptors obtained with a zone report indicate 1135 * zone positions within the target device. The zone descriptors 1136 * must be remapped to match their position within the dm device. 1137 * A target may call dm_remap_zone_report after completion of a 1138 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained 1139 * from the target device mapping to the dm device. 1140 */ 1141 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start) 1142 { 1143 #ifdef CONFIG_BLK_DEV_ZONED 1144 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1145 struct bio *report_bio = tio->io->orig_bio; 1146 struct blk_zone_report_hdr *hdr = NULL; 1147 struct blk_zone *zone; 1148 unsigned int nr_rep = 0; 1149 unsigned int ofst; 1150 struct bio_vec bvec; 1151 struct bvec_iter iter; 1152 void *addr; 1153 1154 if (bio->bi_status) 1155 return; 1156 1157 /* 1158 * Remap the start sector of the reported zones. For sequential zones, 1159 * also remap the write pointer position. 1160 */ 1161 bio_for_each_segment(bvec, report_bio, iter) { 1162 addr = kmap_atomic(bvec.bv_page); 1163 1164 /* Remember the report header in the first page */ 1165 if (!hdr) { 1166 hdr = addr; 1167 ofst = sizeof(struct blk_zone_report_hdr); 1168 } else 1169 ofst = 0; 1170 1171 /* Set zones start sector */ 1172 while (hdr->nr_zones && ofst < bvec.bv_len) { 1173 zone = addr + ofst; 1174 if (zone->start >= start + ti->len) { 1175 hdr->nr_zones = 0; 1176 break; 1177 } 1178 zone->start = zone->start + ti->begin - start; 1179 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 1180 if (zone->cond == BLK_ZONE_COND_FULL) 1181 zone->wp = zone->start + zone->len; 1182 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1183 zone->wp = zone->start; 1184 else 1185 zone->wp = zone->wp + ti->begin - start; 1186 } 1187 ofst += sizeof(struct blk_zone); 1188 hdr->nr_zones--; 1189 nr_rep++; 1190 } 1191 1192 if (addr != hdr) 1193 kunmap_atomic(addr); 1194 1195 if (!hdr->nr_zones) 1196 break; 1197 } 1198 1199 if (hdr) { 1200 hdr->nr_zones = nr_rep; 1201 kunmap_atomic(hdr); 1202 } 1203 1204 bio_advance(report_bio, report_bio->bi_iter.bi_size); 1205 1206 #else /* !CONFIG_BLK_DEV_ZONED */ 1207 bio->bi_status = BLK_STS_NOTSUPP; 1208 #endif 1209 } 1210 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1211 1212 static blk_qc_t __map_bio(struct dm_target_io *tio) 1213 { 1214 int r; 1215 sector_t sector; 1216 struct bio *clone = &tio->clone; 1217 struct dm_io *io = tio->io; 1218 struct mapped_device *md = io->md; 1219 struct dm_target *ti = tio->ti; 1220 blk_qc_t ret = BLK_QC_T_NONE; 1221 1222 clone->bi_end_io = clone_endio; 1223 1224 /* 1225 * Map the clone. If r == 0 we don't need to do 1226 * anything, the target has assumed ownership of 1227 * this io. 1228 */ 1229 atomic_inc(&io->io_count); 1230 sector = clone->bi_iter.bi_sector; 1231 1232 r = ti->type->map(ti, clone); 1233 switch (r) { 1234 case DM_MAPIO_SUBMITTED: 1235 break; 1236 case DM_MAPIO_REMAPPED: 1237 /* the bio has been remapped so dispatch it */ 1238 trace_block_bio_remap(clone->bi_disk->queue, clone, 1239 bio_dev(io->orig_bio), sector); 1240 if (md->type == DM_TYPE_NVME_BIO_BASED) 1241 ret = direct_make_request(clone); 1242 else 1243 ret = generic_make_request(clone); 1244 break; 1245 case DM_MAPIO_KILL: 1246 free_tio(tio); 1247 dec_pending(io, BLK_STS_IOERR); 1248 break; 1249 case DM_MAPIO_REQUEUE: 1250 free_tio(tio); 1251 dec_pending(io, BLK_STS_DM_REQUEUE); 1252 break; 1253 default: 1254 DMWARN("unimplemented target map return value: %d", r); 1255 BUG(); 1256 } 1257 1258 return ret; 1259 } 1260 1261 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1262 { 1263 bio->bi_iter.bi_sector = sector; 1264 bio->bi_iter.bi_size = to_bytes(len); 1265 } 1266 1267 /* 1268 * Creates a bio that consists of range of complete bvecs. 1269 */ 1270 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1271 sector_t sector, unsigned len) 1272 { 1273 struct bio *clone = &tio->clone; 1274 1275 __bio_clone_fast(clone, bio); 1276 1277 if (unlikely(bio_integrity(bio) != NULL)) { 1278 int r; 1279 1280 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1281 !dm_target_passes_integrity(tio->ti->type))) { 1282 DMWARN("%s: the target %s doesn't support integrity data.", 1283 dm_device_name(tio->io->md), 1284 tio->ti->type->name); 1285 return -EIO; 1286 } 1287 1288 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1289 if (r < 0) 1290 return r; 1291 } 1292 1293 if (bio_op(bio) != REQ_OP_ZONE_REPORT) 1294 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1295 clone->bi_iter.bi_size = to_bytes(len); 1296 1297 if (unlikely(bio_integrity(bio) != NULL)) 1298 bio_integrity_trim(clone); 1299 1300 return 0; 1301 } 1302 1303 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1304 struct dm_target *ti, unsigned num_bios) 1305 { 1306 struct dm_target_io *tio; 1307 int try; 1308 1309 if (!num_bios) 1310 return; 1311 1312 if (num_bios == 1) { 1313 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1314 bio_list_add(blist, &tio->clone); 1315 return; 1316 } 1317 1318 for (try = 0; try < 2; try++) { 1319 int bio_nr; 1320 struct bio *bio; 1321 1322 if (try) 1323 mutex_lock(&ci->io->md->table_devices_lock); 1324 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1325 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1326 if (!tio) 1327 break; 1328 1329 bio_list_add(blist, &tio->clone); 1330 } 1331 if (try) 1332 mutex_unlock(&ci->io->md->table_devices_lock); 1333 if (bio_nr == num_bios) 1334 return; 1335 1336 while ((bio = bio_list_pop(blist))) { 1337 tio = container_of(bio, struct dm_target_io, clone); 1338 free_tio(tio); 1339 } 1340 } 1341 } 1342 1343 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1344 struct dm_target_io *tio, unsigned *len) 1345 { 1346 struct bio *clone = &tio->clone; 1347 1348 tio->len_ptr = len; 1349 1350 __bio_clone_fast(clone, ci->bio); 1351 if (len) 1352 bio_setup_sector(clone, ci->sector, *len); 1353 1354 return __map_bio(tio); 1355 } 1356 1357 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1358 unsigned num_bios, unsigned *len) 1359 { 1360 struct bio_list blist = BIO_EMPTY_LIST; 1361 struct bio *bio; 1362 struct dm_target_io *tio; 1363 1364 alloc_multiple_bios(&blist, ci, ti, num_bios); 1365 1366 while ((bio = bio_list_pop(&blist))) { 1367 tio = container_of(bio, struct dm_target_io, clone); 1368 (void) __clone_and_map_simple_bio(ci, tio, len); 1369 } 1370 } 1371 1372 static int __send_empty_flush(struct clone_info *ci) 1373 { 1374 unsigned target_nr = 0; 1375 struct dm_target *ti; 1376 1377 BUG_ON(bio_has_data(ci->bio)); 1378 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1379 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1380 1381 return 0; 1382 } 1383 1384 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1385 sector_t sector, unsigned *len) 1386 { 1387 struct bio *bio = ci->bio; 1388 struct dm_target_io *tio; 1389 int r; 1390 1391 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1392 tio->len_ptr = len; 1393 r = clone_bio(tio, bio, sector, *len); 1394 if (r < 0) { 1395 free_tio(tio); 1396 return r; 1397 } 1398 (void) __map_bio(tio); 1399 1400 return 0; 1401 } 1402 1403 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1404 1405 static unsigned get_num_discard_bios(struct dm_target *ti) 1406 { 1407 return ti->num_discard_bios; 1408 } 1409 1410 static unsigned get_num_write_same_bios(struct dm_target *ti) 1411 { 1412 return ti->num_write_same_bios; 1413 } 1414 1415 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1416 { 1417 return ti->num_write_zeroes_bios; 1418 } 1419 1420 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1421 1422 static bool is_split_required_for_discard(struct dm_target *ti) 1423 { 1424 return ti->split_discard_bios; 1425 } 1426 1427 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1428 get_num_bios_fn get_num_bios, 1429 is_split_required_fn is_split_required) 1430 { 1431 unsigned len; 1432 unsigned num_bios; 1433 1434 /* 1435 * Even though the device advertised support for this type of 1436 * request, that does not mean every target supports it, and 1437 * reconfiguration might also have changed that since the 1438 * check was performed. 1439 */ 1440 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1441 if (!num_bios) 1442 return -EOPNOTSUPP; 1443 1444 if (is_split_required && !is_split_required(ti)) 1445 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1446 else 1447 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1448 1449 __send_duplicate_bios(ci, ti, num_bios, &len); 1450 1451 ci->sector += len; 1452 ci->sector_count -= len; 1453 1454 return 0; 1455 } 1456 1457 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1458 { 1459 return __send_changing_extent_only(ci, ti, get_num_discard_bios, 1460 is_split_required_for_discard); 1461 } 1462 1463 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1464 { 1465 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL); 1466 } 1467 1468 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1469 { 1470 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL); 1471 } 1472 1473 /* 1474 * Select the correct strategy for processing a non-flush bio. 1475 */ 1476 static int __split_and_process_non_flush(struct clone_info *ci) 1477 { 1478 struct bio *bio = ci->bio; 1479 struct dm_target *ti; 1480 unsigned len; 1481 int r; 1482 1483 ti = dm_table_find_target(ci->map, ci->sector); 1484 if (!dm_target_is_valid(ti)) 1485 return -EIO; 1486 1487 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1488 return __send_discard(ci, ti); 1489 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1490 return __send_write_same(ci, ti); 1491 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES)) 1492 return __send_write_zeroes(ci, ti); 1493 1494 if (bio_op(bio) == REQ_OP_ZONE_REPORT) 1495 len = ci->sector_count; 1496 else 1497 len = min_t(sector_t, max_io_len(ci->sector, ti), 1498 ci->sector_count); 1499 1500 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1501 if (r < 0) 1502 return r; 1503 1504 ci->sector += len; 1505 ci->sector_count -= len; 1506 1507 return 0; 1508 } 1509 1510 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1511 struct dm_table *map, struct bio *bio) 1512 { 1513 ci->map = map; 1514 ci->io = alloc_io(md, bio); 1515 ci->sector = bio->bi_iter.bi_sector; 1516 } 1517 1518 /* 1519 * Entry point to split a bio into clones and submit them to the targets. 1520 */ 1521 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1522 struct dm_table *map, struct bio *bio) 1523 { 1524 struct clone_info ci; 1525 blk_qc_t ret = BLK_QC_T_NONE; 1526 int error = 0; 1527 1528 if (unlikely(!map)) { 1529 bio_io_error(bio); 1530 return ret; 1531 } 1532 1533 init_clone_info(&ci, md, map, bio); 1534 1535 if (bio->bi_opf & REQ_PREFLUSH) { 1536 ci.bio = &ci.io->md->flush_bio; 1537 ci.sector_count = 0; 1538 error = __send_empty_flush(&ci); 1539 /* dec_pending submits any data associated with flush */ 1540 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1541 ci.bio = bio; 1542 ci.sector_count = 0; 1543 error = __split_and_process_non_flush(&ci); 1544 } else { 1545 ci.bio = bio; 1546 ci.sector_count = bio_sectors(bio); 1547 while (ci.sector_count && !error) { 1548 error = __split_and_process_non_flush(&ci); 1549 if (current->bio_list && ci.sector_count && !error) { 1550 /* 1551 * Remainder must be passed to generic_make_request() 1552 * so that it gets handled *after* bios already submitted 1553 * have been completely processed. 1554 * We take a clone of the original to store in 1555 * ci.io->orig_bio to be used by end_io_acct() and 1556 * for dec_pending to use for completion handling. 1557 * As this path is not used for REQ_OP_ZONE_REPORT, 1558 * the usage of io->orig_bio in dm_remap_zone_report() 1559 * won't be affected by this reassignment. 1560 */ 1561 struct bio *b = bio_clone_bioset(bio, GFP_NOIO, 1562 md->queue->bio_split); 1563 ci.io->orig_bio = b; 1564 bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9); 1565 bio_chain(b, bio); 1566 ret = generic_make_request(bio); 1567 break; 1568 } 1569 } 1570 } 1571 1572 /* drop the extra reference count */ 1573 dec_pending(ci.io, errno_to_blk_status(error)); 1574 return ret; 1575 } 1576 1577 /* 1578 * Optimized variant of __split_and_process_bio that leverages the 1579 * fact that targets that use it do _not_ have a need to split bios. 1580 */ 1581 static blk_qc_t __process_bio(struct mapped_device *md, 1582 struct dm_table *map, struct bio *bio) 1583 { 1584 struct clone_info ci; 1585 blk_qc_t ret = BLK_QC_T_NONE; 1586 int error = 0; 1587 1588 if (unlikely(!map)) { 1589 bio_io_error(bio); 1590 return ret; 1591 } 1592 1593 init_clone_info(&ci, md, map, bio); 1594 1595 if (bio->bi_opf & REQ_PREFLUSH) { 1596 ci.bio = &ci.io->md->flush_bio; 1597 ci.sector_count = 0; 1598 error = __send_empty_flush(&ci); 1599 /* dec_pending submits any data associated with flush */ 1600 } else { 1601 struct dm_target *ti = md->immutable_target; 1602 struct dm_target_io *tio; 1603 1604 /* 1605 * Defend against IO still getting in during teardown 1606 * - as was seen for a time with nvme-fcloop 1607 */ 1608 if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) { 1609 error = -EIO; 1610 goto out; 1611 } 1612 1613 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1614 ci.bio = bio; 1615 ci.sector_count = bio_sectors(bio); 1616 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1617 } 1618 out: 1619 /* drop the extra reference count */ 1620 dec_pending(ci.io, errno_to_blk_status(error)); 1621 return ret; 1622 } 1623 1624 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *); 1625 1626 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio, 1627 process_bio_fn process_bio) 1628 { 1629 struct mapped_device *md = q->queuedata; 1630 blk_qc_t ret = BLK_QC_T_NONE; 1631 int srcu_idx; 1632 struct dm_table *map; 1633 1634 map = dm_get_live_table(md, &srcu_idx); 1635 1636 /* if we're suspended, we have to queue this io for later */ 1637 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1638 dm_put_live_table(md, srcu_idx); 1639 1640 if (!(bio->bi_opf & REQ_RAHEAD)) 1641 queue_io(md, bio); 1642 else 1643 bio_io_error(bio); 1644 return ret; 1645 } 1646 1647 ret = process_bio(md, map, bio); 1648 1649 dm_put_live_table(md, srcu_idx); 1650 return ret; 1651 } 1652 1653 /* 1654 * The request function that remaps the bio to one target and 1655 * splits off any remainder. 1656 */ 1657 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1658 { 1659 return __dm_make_request(q, bio, __split_and_process_bio); 1660 } 1661 1662 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio) 1663 { 1664 return __dm_make_request(q, bio, __process_bio); 1665 } 1666 1667 static int dm_any_congested(void *congested_data, int bdi_bits) 1668 { 1669 int r = bdi_bits; 1670 struct mapped_device *md = congested_data; 1671 struct dm_table *map; 1672 1673 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1674 if (dm_request_based(md)) { 1675 /* 1676 * With request-based DM we only need to check the 1677 * top-level queue for congestion. 1678 */ 1679 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1680 } else { 1681 map = dm_get_live_table_fast(md); 1682 if (map) 1683 r = dm_table_any_congested(map, bdi_bits); 1684 dm_put_live_table_fast(md); 1685 } 1686 } 1687 1688 return r; 1689 } 1690 1691 /*----------------------------------------------------------------- 1692 * An IDR is used to keep track of allocated minor numbers. 1693 *---------------------------------------------------------------*/ 1694 static void free_minor(int minor) 1695 { 1696 spin_lock(&_minor_lock); 1697 idr_remove(&_minor_idr, minor); 1698 spin_unlock(&_minor_lock); 1699 } 1700 1701 /* 1702 * See if the device with a specific minor # is free. 1703 */ 1704 static int specific_minor(int minor) 1705 { 1706 int r; 1707 1708 if (minor >= (1 << MINORBITS)) 1709 return -EINVAL; 1710 1711 idr_preload(GFP_KERNEL); 1712 spin_lock(&_minor_lock); 1713 1714 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1715 1716 spin_unlock(&_minor_lock); 1717 idr_preload_end(); 1718 if (r < 0) 1719 return r == -ENOSPC ? -EBUSY : r; 1720 return 0; 1721 } 1722 1723 static int next_free_minor(int *minor) 1724 { 1725 int r; 1726 1727 idr_preload(GFP_KERNEL); 1728 spin_lock(&_minor_lock); 1729 1730 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1731 1732 spin_unlock(&_minor_lock); 1733 idr_preload_end(); 1734 if (r < 0) 1735 return r; 1736 *minor = r; 1737 return 0; 1738 } 1739 1740 static const struct block_device_operations dm_blk_dops; 1741 static const struct dax_operations dm_dax_ops; 1742 1743 static void dm_wq_work(struct work_struct *work); 1744 1745 static void dm_init_normal_md_queue(struct mapped_device *md) 1746 { 1747 md->use_blk_mq = false; 1748 1749 /* 1750 * Initialize aspects of queue that aren't relevant for blk-mq 1751 */ 1752 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1753 } 1754 1755 static void cleanup_mapped_device(struct mapped_device *md) 1756 { 1757 if (md->wq) 1758 destroy_workqueue(md->wq); 1759 if (md->kworker_task) 1760 kthread_stop(md->kworker_task); 1761 if (md->bs) 1762 bioset_free(md->bs); 1763 if (md->io_bs) 1764 bioset_free(md->io_bs); 1765 1766 if (md->dax_dev) { 1767 kill_dax(md->dax_dev); 1768 put_dax(md->dax_dev); 1769 md->dax_dev = NULL; 1770 } 1771 1772 if (md->disk) { 1773 spin_lock(&_minor_lock); 1774 md->disk->private_data = NULL; 1775 spin_unlock(&_minor_lock); 1776 del_gendisk(md->disk); 1777 put_disk(md->disk); 1778 } 1779 1780 if (md->queue) 1781 blk_cleanup_queue(md->queue); 1782 1783 cleanup_srcu_struct(&md->io_barrier); 1784 1785 if (md->bdev) { 1786 bdput(md->bdev); 1787 md->bdev = NULL; 1788 } 1789 1790 mutex_destroy(&md->suspend_lock); 1791 mutex_destroy(&md->type_lock); 1792 mutex_destroy(&md->table_devices_lock); 1793 1794 dm_mq_cleanup_mapped_device(md); 1795 } 1796 1797 /* 1798 * Allocate and initialise a blank device with a given minor. 1799 */ 1800 static struct mapped_device *alloc_dev(int minor) 1801 { 1802 int r, numa_node_id = dm_get_numa_node(); 1803 struct dax_device *dax_dev; 1804 struct mapped_device *md; 1805 void *old_md; 1806 1807 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1808 if (!md) { 1809 DMWARN("unable to allocate device, out of memory."); 1810 return NULL; 1811 } 1812 1813 if (!try_module_get(THIS_MODULE)) 1814 goto bad_module_get; 1815 1816 /* get a minor number for the dev */ 1817 if (minor == DM_ANY_MINOR) 1818 r = next_free_minor(&minor); 1819 else 1820 r = specific_minor(minor); 1821 if (r < 0) 1822 goto bad_minor; 1823 1824 r = init_srcu_struct(&md->io_barrier); 1825 if (r < 0) 1826 goto bad_io_barrier; 1827 1828 md->numa_node_id = numa_node_id; 1829 md->use_blk_mq = dm_use_blk_mq_default(); 1830 md->init_tio_pdu = false; 1831 md->type = DM_TYPE_NONE; 1832 mutex_init(&md->suspend_lock); 1833 mutex_init(&md->type_lock); 1834 mutex_init(&md->table_devices_lock); 1835 spin_lock_init(&md->deferred_lock); 1836 atomic_set(&md->holders, 1); 1837 atomic_set(&md->open_count, 0); 1838 atomic_set(&md->event_nr, 0); 1839 atomic_set(&md->uevent_seq, 0); 1840 INIT_LIST_HEAD(&md->uevent_list); 1841 INIT_LIST_HEAD(&md->table_devices); 1842 spin_lock_init(&md->uevent_lock); 1843 1844 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1845 if (!md->queue) 1846 goto bad; 1847 md->queue->queuedata = md; 1848 md->queue->backing_dev_info->congested_data = md; 1849 1850 md->disk = alloc_disk_node(1, md->numa_node_id); 1851 if (!md->disk) 1852 goto bad; 1853 1854 atomic_set(&md->pending[0], 0); 1855 atomic_set(&md->pending[1], 0); 1856 init_waitqueue_head(&md->wait); 1857 INIT_WORK(&md->work, dm_wq_work); 1858 init_waitqueue_head(&md->eventq); 1859 init_completion(&md->kobj_holder.completion); 1860 md->kworker_task = NULL; 1861 1862 md->disk->major = _major; 1863 md->disk->first_minor = minor; 1864 md->disk->fops = &dm_blk_dops; 1865 md->disk->queue = md->queue; 1866 md->disk->private_data = md; 1867 sprintf(md->disk->disk_name, "dm-%d", minor); 1868 1869 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1870 if (!dax_dev) 1871 goto bad; 1872 md->dax_dev = dax_dev; 1873 1874 add_disk_no_queue_reg(md->disk); 1875 format_dev_t(md->name, MKDEV(_major, minor)); 1876 1877 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1878 if (!md->wq) 1879 goto bad; 1880 1881 md->bdev = bdget_disk(md->disk, 0); 1882 if (!md->bdev) 1883 goto bad; 1884 1885 bio_init(&md->flush_bio, NULL, 0); 1886 bio_set_dev(&md->flush_bio, md->bdev); 1887 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1888 1889 dm_stats_init(&md->stats); 1890 1891 /* Populate the mapping, nobody knows we exist yet */ 1892 spin_lock(&_minor_lock); 1893 old_md = idr_replace(&_minor_idr, md, minor); 1894 spin_unlock(&_minor_lock); 1895 1896 BUG_ON(old_md != MINOR_ALLOCED); 1897 1898 return md; 1899 1900 bad: 1901 cleanup_mapped_device(md); 1902 bad_io_barrier: 1903 free_minor(minor); 1904 bad_minor: 1905 module_put(THIS_MODULE); 1906 bad_module_get: 1907 kvfree(md); 1908 return NULL; 1909 } 1910 1911 static void unlock_fs(struct mapped_device *md); 1912 1913 static void free_dev(struct mapped_device *md) 1914 { 1915 int minor = MINOR(disk_devt(md->disk)); 1916 1917 unlock_fs(md); 1918 1919 cleanup_mapped_device(md); 1920 1921 free_table_devices(&md->table_devices); 1922 dm_stats_cleanup(&md->stats); 1923 free_minor(minor); 1924 1925 module_put(THIS_MODULE); 1926 kvfree(md); 1927 } 1928 1929 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1930 { 1931 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1932 1933 if (dm_table_bio_based(t)) { 1934 /* 1935 * The md may already have mempools that need changing. 1936 * If so, reload bioset because front_pad may have changed 1937 * because a different table was loaded. 1938 */ 1939 if (md->bs) { 1940 bioset_free(md->bs); 1941 md->bs = NULL; 1942 } 1943 if (md->io_bs) { 1944 bioset_free(md->io_bs); 1945 md->io_bs = NULL; 1946 } 1947 1948 } else if (md->bs) { 1949 /* 1950 * There's no need to reload with request-based dm 1951 * because the size of front_pad doesn't change. 1952 * Note for future: If you are to reload bioset, 1953 * prep-ed requests in the queue may refer 1954 * to bio from the old bioset, so you must walk 1955 * through the queue to unprep. 1956 */ 1957 goto out; 1958 } 1959 1960 BUG_ON(!p || md->bs || md->io_bs); 1961 1962 md->bs = p->bs; 1963 p->bs = NULL; 1964 md->io_bs = p->io_bs; 1965 p->io_bs = NULL; 1966 out: 1967 /* mempool bind completed, no longer need any mempools in the table */ 1968 dm_table_free_md_mempools(t); 1969 } 1970 1971 /* 1972 * Bind a table to the device. 1973 */ 1974 static void event_callback(void *context) 1975 { 1976 unsigned long flags; 1977 LIST_HEAD(uevents); 1978 struct mapped_device *md = (struct mapped_device *) context; 1979 1980 spin_lock_irqsave(&md->uevent_lock, flags); 1981 list_splice_init(&md->uevent_list, &uevents); 1982 spin_unlock_irqrestore(&md->uevent_lock, flags); 1983 1984 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1985 1986 atomic_inc(&md->event_nr); 1987 wake_up(&md->eventq); 1988 dm_issue_global_event(); 1989 } 1990 1991 /* 1992 * Protected by md->suspend_lock obtained by dm_swap_table(). 1993 */ 1994 static void __set_size(struct mapped_device *md, sector_t size) 1995 { 1996 lockdep_assert_held(&md->suspend_lock); 1997 1998 set_capacity(md->disk, size); 1999 2000 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2001 } 2002 2003 /* 2004 * Returns old map, which caller must destroy. 2005 */ 2006 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2007 struct queue_limits *limits) 2008 { 2009 struct dm_table *old_map; 2010 struct request_queue *q = md->queue; 2011 bool request_based = dm_table_request_based(t); 2012 sector_t size; 2013 2014 lockdep_assert_held(&md->suspend_lock); 2015 2016 size = dm_table_get_size(t); 2017 2018 /* 2019 * Wipe any geometry if the size of the table changed. 2020 */ 2021 if (size != dm_get_size(md)) 2022 memset(&md->geometry, 0, sizeof(md->geometry)); 2023 2024 __set_size(md, size); 2025 2026 dm_table_event_callback(t, event_callback, md); 2027 2028 /* 2029 * The queue hasn't been stopped yet, if the old table type wasn't 2030 * for request-based during suspension. So stop it to prevent 2031 * I/O mapping before resume. 2032 * This must be done before setting the queue restrictions, 2033 * because request-based dm may be run just after the setting. 2034 */ 2035 if (request_based) 2036 dm_stop_queue(q); 2037 2038 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2039 /* 2040 * Leverage the fact that request-based DM targets and 2041 * NVMe bio based targets are immutable singletons 2042 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2043 * and __process_bio. 2044 */ 2045 md->immutable_target = dm_table_get_immutable_target(t); 2046 } 2047 2048 __bind_mempools(md, t); 2049 2050 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2051 rcu_assign_pointer(md->map, (void *)t); 2052 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2053 2054 dm_table_set_restrictions(t, q, limits); 2055 if (old_map) 2056 dm_sync_table(md); 2057 2058 return old_map; 2059 } 2060 2061 /* 2062 * Returns unbound table for the caller to free. 2063 */ 2064 static struct dm_table *__unbind(struct mapped_device *md) 2065 { 2066 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2067 2068 if (!map) 2069 return NULL; 2070 2071 dm_table_event_callback(map, NULL, NULL); 2072 RCU_INIT_POINTER(md->map, NULL); 2073 dm_sync_table(md); 2074 2075 return map; 2076 } 2077 2078 /* 2079 * Constructor for a new device. 2080 */ 2081 int dm_create(int minor, struct mapped_device **result) 2082 { 2083 int r; 2084 struct mapped_device *md; 2085 2086 md = alloc_dev(minor); 2087 if (!md) 2088 return -ENXIO; 2089 2090 r = dm_sysfs_init(md); 2091 if (r) { 2092 free_dev(md); 2093 return r; 2094 } 2095 2096 *result = md; 2097 return 0; 2098 } 2099 2100 /* 2101 * Functions to manage md->type. 2102 * All are required to hold md->type_lock. 2103 */ 2104 void dm_lock_md_type(struct mapped_device *md) 2105 { 2106 mutex_lock(&md->type_lock); 2107 } 2108 2109 void dm_unlock_md_type(struct mapped_device *md) 2110 { 2111 mutex_unlock(&md->type_lock); 2112 } 2113 2114 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2115 { 2116 BUG_ON(!mutex_is_locked(&md->type_lock)); 2117 md->type = type; 2118 } 2119 2120 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2121 { 2122 return md->type; 2123 } 2124 2125 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2126 { 2127 return md->immutable_target_type; 2128 } 2129 2130 /* 2131 * The queue_limits are only valid as long as you have a reference 2132 * count on 'md'. 2133 */ 2134 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2135 { 2136 BUG_ON(!atomic_read(&md->holders)); 2137 return &md->queue->limits; 2138 } 2139 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2140 2141 /* 2142 * Setup the DM device's queue based on md's type 2143 */ 2144 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2145 { 2146 int r; 2147 struct queue_limits limits; 2148 enum dm_queue_mode type = dm_get_md_type(md); 2149 2150 switch (type) { 2151 case DM_TYPE_REQUEST_BASED: 2152 dm_init_normal_md_queue(md); 2153 r = dm_old_init_request_queue(md, t); 2154 if (r) { 2155 DMERR("Cannot initialize queue for request-based mapped device"); 2156 return r; 2157 } 2158 break; 2159 case DM_TYPE_MQ_REQUEST_BASED: 2160 r = dm_mq_init_request_queue(md, t); 2161 if (r) { 2162 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2163 return r; 2164 } 2165 break; 2166 case DM_TYPE_BIO_BASED: 2167 case DM_TYPE_DAX_BIO_BASED: 2168 dm_init_normal_md_queue(md); 2169 blk_queue_make_request(md->queue, dm_make_request); 2170 break; 2171 case DM_TYPE_NVME_BIO_BASED: 2172 dm_init_normal_md_queue(md); 2173 blk_queue_make_request(md->queue, dm_make_request_nvme); 2174 break; 2175 case DM_TYPE_NONE: 2176 WARN_ON_ONCE(true); 2177 break; 2178 } 2179 2180 r = dm_calculate_queue_limits(t, &limits); 2181 if (r) { 2182 DMERR("Cannot calculate initial queue limits"); 2183 return r; 2184 } 2185 dm_table_set_restrictions(t, md->queue, &limits); 2186 blk_register_queue(md->disk); 2187 2188 return 0; 2189 } 2190 2191 struct mapped_device *dm_get_md(dev_t dev) 2192 { 2193 struct mapped_device *md; 2194 unsigned minor = MINOR(dev); 2195 2196 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2197 return NULL; 2198 2199 spin_lock(&_minor_lock); 2200 2201 md = idr_find(&_minor_idr, minor); 2202 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2203 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2204 md = NULL; 2205 goto out; 2206 } 2207 dm_get(md); 2208 out: 2209 spin_unlock(&_minor_lock); 2210 2211 return md; 2212 } 2213 EXPORT_SYMBOL_GPL(dm_get_md); 2214 2215 void *dm_get_mdptr(struct mapped_device *md) 2216 { 2217 return md->interface_ptr; 2218 } 2219 2220 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2221 { 2222 md->interface_ptr = ptr; 2223 } 2224 2225 void dm_get(struct mapped_device *md) 2226 { 2227 atomic_inc(&md->holders); 2228 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2229 } 2230 2231 int dm_hold(struct mapped_device *md) 2232 { 2233 spin_lock(&_minor_lock); 2234 if (test_bit(DMF_FREEING, &md->flags)) { 2235 spin_unlock(&_minor_lock); 2236 return -EBUSY; 2237 } 2238 dm_get(md); 2239 spin_unlock(&_minor_lock); 2240 return 0; 2241 } 2242 EXPORT_SYMBOL_GPL(dm_hold); 2243 2244 const char *dm_device_name(struct mapped_device *md) 2245 { 2246 return md->name; 2247 } 2248 EXPORT_SYMBOL_GPL(dm_device_name); 2249 2250 static void __dm_destroy(struct mapped_device *md, bool wait) 2251 { 2252 struct dm_table *map; 2253 int srcu_idx; 2254 2255 might_sleep(); 2256 2257 spin_lock(&_minor_lock); 2258 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2259 set_bit(DMF_FREEING, &md->flags); 2260 spin_unlock(&_minor_lock); 2261 2262 blk_set_queue_dying(md->queue); 2263 2264 if (dm_request_based(md) && md->kworker_task) 2265 kthread_flush_worker(&md->kworker); 2266 2267 /* 2268 * Take suspend_lock so that presuspend and postsuspend methods 2269 * do not race with internal suspend. 2270 */ 2271 mutex_lock(&md->suspend_lock); 2272 map = dm_get_live_table(md, &srcu_idx); 2273 if (!dm_suspended_md(md)) { 2274 dm_table_presuspend_targets(map); 2275 dm_table_postsuspend_targets(map); 2276 } 2277 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2278 dm_put_live_table(md, srcu_idx); 2279 mutex_unlock(&md->suspend_lock); 2280 2281 /* 2282 * Rare, but there may be I/O requests still going to complete, 2283 * for example. Wait for all references to disappear. 2284 * No one should increment the reference count of the mapped_device, 2285 * after the mapped_device state becomes DMF_FREEING. 2286 */ 2287 if (wait) 2288 while (atomic_read(&md->holders)) 2289 msleep(1); 2290 else if (atomic_read(&md->holders)) 2291 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2292 dm_device_name(md), atomic_read(&md->holders)); 2293 2294 dm_sysfs_exit(md); 2295 dm_table_destroy(__unbind(md)); 2296 free_dev(md); 2297 } 2298 2299 void dm_destroy(struct mapped_device *md) 2300 { 2301 __dm_destroy(md, true); 2302 } 2303 2304 void dm_destroy_immediate(struct mapped_device *md) 2305 { 2306 __dm_destroy(md, false); 2307 } 2308 2309 void dm_put(struct mapped_device *md) 2310 { 2311 atomic_dec(&md->holders); 2312 } 2313 EXPORT_SYMBOL_GPL(dm_put); 2314 2315 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2316 { 2317 int r = 0; 2318 DEFINE_WAIT(wait); 2319 2320 while (1) { 2321 prepare_to_wait(&md->wait, &wait, task_state); 2322 2323 if (!md_in_flight(md)) 2324 break; 2325 2326 if (signal_pending_state(task_state, current)) { 2327 r = -EINTR; 2328 break; 2329 } 2330 2331 io_schedule(); 2332 } 2333 finish_wait(&md->wait, &wait); 2334 2335 return r; 2336 } 2337 2338 /* 2339 * Process the deferred bios 2340 */ 2341 static void dm_wq_work(struct work_struct *work) 2342 { 2343 struct mapped_device *md = container_of(work, struct mapped_device, 2344 work); 2345 struct bio *c; 2346 int srcu_idx; 2347 struct dm_table *map; 2348 2349 map = dm_get_live_table(md, &srcu_idx); 2350 2351 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2352 spin_lock_irq(&md->deferred_lock); 2353 c = bio_list_pop(&md->deferred); 2354 spin_unlock_irq(&md->deferred_lock); 2355 2356 if (!c) 2357 break; 2358 2359 if (dm_request_based(md)) 2360 generic_make_request(c); 2361 else 2362 __split_and_process_bio(md, map, c); 2363 } 2364 2365 dm_put_live_table(md, srcu_idx); 2366 } 2367 2368 static void dm_queue_flush(struct mapped_device *md) 2369 { 2370 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2371 smp_mb__after_atomic(); 2372 queue_work(md->wq, &md->work); 2373 } 2374 2375 /* 2376 * Swap in a new table, returning the old one for the caller to destroy. 2377 */ 2378 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2379 { 2380 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2381 struct queue_limits limits; 2382 int r; 2383 2384 mutex_lock(&md->suspend_lock); 2385 2386 /* device must be suspended */ 2387 if (!dm_suspended_md(md)) 2388 goto out; 2389 2390 /* 2391 * If the new table has no data devices, retain the existing limits. 2392 * This helps multipath with queue_if_no_path if all paths disappear, 2393 * then new I/O is queued based on these limits, and then some paths 2394 * reappear. 2395 */ 2396 if (dm_table_has_no_data_devices(table)) { 2397 live_map = dm_get_live_table_fast(md); 2398 if (live_map) 2399 limits = md->queue->limits; 2400 dm_put_live_table_fast(md); 2401 } 2402 2403 if (!live_map) { 2404 r = dm_calculate_queue_limits(table, &limits); 2405 if (r) { 2406 map = ERR_PTR(r); 2407 goto out; 2408 } 2409 } 2410 2411 map = __bind(md, table, &limits); 2412 dm_issue_global_event(); 2413 2414 out: 2415 mutex_unlock(&md->suspend_lock); 2416 return map; 2417 } 2418 2419 /* 2420 * Functions to lock and unlock any filesystem running on the 2421 * device. 2422 */ 2423 static int lock_fs(struct mapped_device *md) 2424 { 2425 int r; 2426 2427 WARN_ON(md->frozen_sb); 2428 2429 md->frozen_sb = freeze_bdev(md->bdev); 2430 if (IS_ERR(md->frozen_sb)) { 2431 r = PTR_ERR(md->frozen_sb); 2432 md->frozen_sb = NULL; 2433 return r; 2434 } 2435 2436 set_bit(DMF_FROZEN, &md->flags); 2437 2438 return 0; 2439 } 2440 2441 static void unlock_fs(struct mapped_device *md) 2442 { 2443 if (!test_bit(DMF_FROZEN, &md->flags)) 2444 return; 2445 2446 thaw_bdev(md->bdev, md->frozen_sb); 2447 md->frozen_sb = NULL; 2448 clear_bit(DMF_FROZEN, &md->flags); 2449 } 2450 2451 /* 2452 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2453 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2454 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2455 * 2456 * If __dm_suspend returns 0, the device is completely quiescent 2457 * now. There is no request-processing activity. All new requests 2458 * are being added to md->deferred list. 2459 */ 2460 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2461 unsigned suspend_flags, long task_state, 2462 int dmf_suspended_flag) 2463 { 2464 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2465 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2466 int r; 2467 2468 lockdep_assert_held(&md->suspend_lock); 2469 2470 /* 2471 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2472 * This flag is cleared before dm_suspend returns. 2473 */ 2474 if (noflush) 2475 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2476 else 2477 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2478 2479 /* 2480 * This gets reverted if there's an error later and the targets 2481 * provide the .presuspend_undo hook. 2482 */ 2483 dm_table_presuspend_targets(map); 2484 2485 /* 2486 * Flush I/O to the device. 2487 * Any I/O submitted after lock_fs() may not be flushed. 2488 * noflush takes precedence over do_lockfs. 2489 * (lock_fs() flushes I/Os and waits for them to complete.) 2490 */ 2491 if (!noflush && do_lockfs) { 2492 r = lock_fs(md); 2493 if (r) { 2494 dm_table_presuspend_undo_targets(map); 2495 return r; 2496 } 2497 } 2498 2499 /* 2500 * Here we must make sure that no processes are submitting requests 2501 * to target drivers i.e. no one may be executing 2502 * __split_and_process_bio. This is called from dm_request and 2503 * dm_wq_work. 2504 * 2505 * To get all processes out of __split_and_process_bio in dm_request, 2506 * we take the write lock. To prevent any process from reentering 2507 * __split_and_process_bio from dm_request and quiesce the thread 2508 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2509 * flush_workqueue(md->wq). 2510 */ 2511 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2512 if (map) 2513 synchronize_srcu(&md->io_barrier); 2514 2515 /* 2516 * Stop md->queue before flushing md->wq in case request-based 2517 * dm defers requests to md->wq from md->queue. 2518 */ 2519 if (dm_request_based(md)) { 2520 dm_stop_queue(md->queue); 2521 if (md->kworker_task) 2522 kthread_flush_worker(&md->kworker); 2523 } 2524 2525 flush_workqueue(md->wq); 2526 2527 /* 2528 * At this point no more requests are entering target request routines. 2529 * We call dm_wait_for_completion to wait for all existing requests 2530 * to finish. 2531 */ 2532 r = dm_wait_for_completion(md, task_state); 2533 if (!r) 2534 set_bit(dmf_suspended_flag, &md->flags); 2535 2536 if (noflush) 2537 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2538 if (map) 2539 synchronize_srcu(&md->io_barrier); 2540 2541 /* were we interrupted ? */ 2542 if (r < 0) { 2543 dm_queue_flush(md); 2544 2545 if (dm_request_based(md)) 2546 dm_start_queue(md->queue); 2547 2548 unlock_fs(md); 2549 dm_table_presuspend_undo_targets(map); 2550 /* pushback list is already flushed, so skip flush */ 2551 } 2552 2553 return r; 2554 } 2555 2556 /* 2557 * We need to be able to change a mapping table under a mounted 2558 * filesystem. For example we might want to move some data in 2559 * the background. Before the table can be swapped with 2560 * dm_bind_table, dm_suspend must be called to flush any in 2561 * flight bios and ensure that any further io gets deferred. 2562 */ 2563 /* 2564 * Suspend mechanism in request-based dm. 2565 * 2566 * 1. Flush all I/Os by lock_fs() if needed. 2567 * 2. Stop dispatching any I/O by stopping the request_queue. 2568 * 3. Wait for all in-flight I/Os to be completed or requeued. 2569 * 2570 * To abort suspend, start the request_queue. 2571 */ 2572 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2573 { 2574 struct dm_table *map = NULL; 2575 int r = 0; 2576 2577 retry: 2578 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2579 2580 if (dm_suspended_md(md)) { 2581 r = -EINVAL; 2582 goto out_unlock; 2583 } 2584 2585 if (dm_suspended_internally_md(md)) { 2586 /* already internally suspended, wait for internal resume */ 2587 mutex_unlock(&md->suspend_lock); 2588 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2589 if (r) 2590 return r; 2591 goto retry; 2592 } 2593 2594 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2595 2596 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2597 if (r) 2598 goto out_unlock; 2599 2600 dm_table_postsuspend_targets(map); 2601 2602 out_unlock: 2603 mutex_unlock(&md->suspend_lock); 2604 return r; 2605 } 2606 2607 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2608 { 2609 if (map) { 2610 int r = dm_table_resume_targets(map); 2611 if (r) 2612 return r; 2613 } 2614 2615 dm_queue_flush(md); 2616 2617 /* 2618 * Flushing deferred I/Os must be done after targets are resumed 2619 * so that mapping of targets can work correctly. 2620 * Request-based dm is queueing the deferred I/Os in its request_queue. 2621 */ 2622 if (dm_request_based(md)) 2623 dm_start_queue(md->queue); 2624 2625 unlock_fs(md); 2626 2627 return 0; 2628 } 2629 2630 int dm_resume(struct mapped_device *md) 2631 { 2632 int r; 2633 struct dm_table *map = NULL; 2634 2635 retry: 2636 r = -EINVAL; 2637 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2638 2639 if (!dm_suspended_md(md)) 2640 goto out; 2641 2642 if (dm_suspended_internally_md(md)) { 2643 /* already internally suspended, wait for internal resume */ 2644 mutex_unlock(&md->suspend_lock); 2645 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2646 if (r) 2647 return r; 2648 goto retry; 2649 } 2650 2651 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2652 if (!map || !dm_table_get_size(map)) 2653 goto out; 2654 2655 r = __dm_resume(md, map); 2656 if (r) 2657 goto out; 2658 2659 clear_bit(DMF_SUSPENDED, &md->flags); 2660 out: 2661 mutex_unlock(&md->suspend_lock); 2662 2663 return r; 2664 } 2665 2666 /* 2667 * Internal suspend/resume works like userspace-driven suspend. It waits 2668 * until all bios finish and prevents issuing new bios to the target drivers. 2669 * It may be used only from the kernel. 2670 */ 2671 2672 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2673 { 2674 struct dm_table *map = NULL; 2675 2676 lockdep_assert_held(&md->suspend_lock); 2677 2678 if (md->internal_suspend_count++) 2679 return; /* nested internal suspend */ 2680 2681 if (dm_suspended_md(md)) { 2682 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2683 return; /* nest suspend */ 2684 } 2685 2686 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2687 2688 /* 2689 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2690 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2691 * would require changing .presuspend to return an error -- avoid this 2692 * until there is a need for more elaborate variants of internal suspend. 2693 */ 2694 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2695 DMF_SUSPENDED_INTERNALLY); 2696 2697 dm_table_postsuspend_targets(map); 2698 } 2699 2700 static void __dm_internal_resume(struct mapped_device *md) 2701 { 2702 BUG_ON(!md->internal_suspend_count); 2703 2704 if (--md->internal_suspend_count) 2705 return; /* resume from nested internal suspend */ 2706 2707 if (dm_suspended_md(md)) 2708 goto done; /* resume from nested suspend */ 2709 2710 /* 2711 * NOTE: existing callers don't need to call dm_table_resume_targets 2712 * (which may fail -- so best to avoid it for now by passing NULL map) 2713 */ 2714 (void) __dm_resume(md, NULL); 2715 2716 done: 2717 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2718 smp_mb__after_atomic(); 2719 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2720 } 2721 2722 void dm_internal_suspend_noflush(struct mapped_device *md) 2723 { 2724 mutex_lock(&md->suspend_lock); 2725 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2726 mutex_unlock(&md->suspend_lock); 2727 } 2728 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2729 2730 void dm_internal_resume(struct mapped_device *md) 2731 { 2732 mutex_lock(&md->suspend_lock); 2733 __dm_internal_resume(md); 2734 mutex_unlock(&md->suspend_lock); 2735 } 2736 EXPORT_SYMBOL_GPL(dm_internal_resume); 2737 2738 /* 2739 * Fast variants of internal suspend/resume hold md->suspend_lock, 2740 * which prevents interaction with userspace-driven suspend. 2741 */ 2742 2743 void dm_internal_suspend_fast(struct mapped_device *md) 2744 { 2745 mutex_lock(&md->suspend_lock); 2746 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2747 return; 2748 2749 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2750 synchronize_srcu(&md->io_barrier); 2751 flush_workqueue(md->wq); 2752 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2753 } 2754 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2755 2756 void dm_internal_resume_fast(struct mapped_device *md) 2757 { 2758 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2759 goto done; 2760 2761 dm_queue_flush(md); 2762 2763 done: 2764 mutex_unlock(&md->suspend_lock); 2765 } 2766 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2767 2768 /*----------------------------------------------------------------- 2769 * Event notification. 2770 *---------------------------------------------------------------*/ 2771 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2772 unsigned cookie) 2773 { 2774 char udev_cookie[DM_COOKIE_LENGTH]; 2775 char *envp[] = { udev_cookie, NULL }; 2776 2777 if (!cookie) 2778 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2779 else { 2780 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2781 DM_COOKIE_ENV_VAR_NAME, cookie); 2782 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2783 action, envp); 2784 } 2785 } 2786 2787 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2788 { 2789 return atomic_add_return(1, &md->uevent_seq); 2790 } 2791 2792 uint32_t dm_get_event_nr(struct mapped_device *md) 2793 { 2794 return atomic_read(&md->event_nr); 2795 } 2796 2797 int dm_wait_event(struct mapped_device *md, int event_nr) 2798 { 2799 return wait_event_interruptible(md->eventq, 2800 (event_nr != atomic_read(&md->event_nr))); 2801 } 2802 2803 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2804 { 2805 unsigned long flags; 2806 2807 spin_lock_irqsave(&md->uevent_lock, flags); 2808 list_add(elist, &md->uevent_list); 2809 spin_unlock_irqrestore(&md->uevent_lock, flags); 2810 } 2811 2812 /* 2813 * The gendisk is only valid as long as you have a reference 2814 * count on 'md'. 2815 */ 2816 struct gendisk *dm_disk(struct mapped_device *md) 2817 { 2818 return md->disk; 2819 } 2820 EXPORT_SYMBOL_GPL(dm_disk); 2821 2822 struct kobject *dm_kobject(struct mapped_device *md) 2823 { 2824 return &md->kobj_holder.kobj; 2825 } 2826 2827 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2828 { 2829 struct mapped_device *md; 2830 2831 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2832 2833 spin_lock(&_minor_lock); 2834 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2835 md = NULL; 2836 goto out; 2837 } 2838 dm_get(md); 2839 out: 2840 spin_unlock(&_minor_lock); 2841 2842 return md; 2843 } 2844 2845 int dm_suspended_md(struct mapped_device *md) 2846 { 2847 return test_bit(DMF_SUSPENDED, &md->flags); 2848 } 2849 2850 int dm_suspended_internally_md(struct mapped_device *md) 2851 { 2852 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2853 } 2854 2855 int dm_test_deferred_remove_flag(struct mapped_device *md) 2856 { 2857 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2858 } 2859 2860 int dm_suspended(struct dm_target *ti) 2861 { 2862 return dm_suspended_md(dm_table_get_md(ti->table)); 2863 } 2864 EXPORT_SYMBOL_GPL(dm_suspended); 2865 2866 int dm_noflush_suspending(struct dm_target *ti) 2867 { 2868 return __noflush_suspending(dm_table_get_md(ti->table)); 2869 } 2870 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2871 2872 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2873 unsigned integrity, unsigned per_io_data_size, 2874 unsigned min_pool_size) 2875 { 2876 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2877 unsigned int pool_size = 0; 2878 unsigned int front_pad, io_front_pad; 2879 2880 if (!pools) 2881 return NULL; 2882 2883 switch (type) { 2884 case DM_TYPE_BIO_BASED: 2885 case DM_TYPE_DAX_BIO_BASED: 2886 case DM_TYPE_NVME_BIO_BASED: 2887 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2888 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2889 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2890 pools->io_bs = bioset_create(pool_size, io_front_pad, 0); 2891 if (!pools->io_bs) 2892 goto out; 2893 if (integrity && bioset_integrity_create(pools->io_bs, pool_size)) 2894 goto out; 2895 break; 2896 case DM_TYPE_REQUEST_BASED: 2897 case DM_TYPE_MQ_REQUEST_BASED: 2898 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2899 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2900 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2901 break; 2902 default: 2903 BUG(); 2904 } 2905 2906 pools->bs = bioset_create(pool_size, front_pad, 0); 2907 if (!pools->bs) 2908 goto out; 2909 2910 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2911 goto out; 2912 2913 return pools; 2914 2915 out: 2916 dm_free_md_mempools(pools); 2917 2918 return NULL; 2919 } 2920 2921 void dm_free_md_mempools(struct dm_md_mempools *pools) 2922 { 2923 if (!pools) 2924 return; 2925 2926 if (pools->bs) 2927 bioset_free(pools->bs); 2928 if (pools->io_bs) 2929 bioset_free(pools->io_bs); 2930 2931 kfree(pools); 2932 } 2933 2934 struct dm_pr { 2935 u64 old_key; 2936 u64 new_key; 2937 u32 flags; 2938 bool fail_early; 2939 }; 2940 2941 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2942 void *data) 2943 { 2944 struct mapped_device *md = bdev->bd_disk->private_data; 2945 struct dm_table *table; 2946 struct dm_target *ti; 2947 int ret = -ENOTTY, srcu_idx; 2948 2949 table = dm_get_live_table(md, &srcu_idx); 2950 if (!table || !dm_table_get_size(table)) 2951 goto out; 2952 2953 /* We only support devices that have a single target */ 2954 if (dm_table_get_num_targets(table) != 1) 2955 goto out; 2956 ti = dm_table_get_target(table, 0); 2957 2958 ret = -EINVAL; 2959 if (!ti->type->iterate_devices) 2960 goto out; 2961 2962 ret = ti->type->iterate_devices(ti, fn, data); 2963 out: 2964 dm_put_live_table(md, srcu_idx); 2965 return ret; 2966 } 2967 2968 /* 2969 * For register / unregister we need to manually call out to every path. 2970 */ 2971 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2972 sector_t start, sector_t len, void *data) 2973 { 2974 struct dm_pr *pr = data; 2975 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2976 2977 if (!ops || !ops->pr_register) 2978 return -EOPNOTSUPP; 2979 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2980 } 2981 2982 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2983 u32 flags) 2984 { 2985 struct dm_pr pr = { 2986 .old_key = old_key, 2987 .new_key = new_key, 2988 .flags = flags, 2989 .fail_early = true, 2990 }; 2991 int ret; 2992 2993 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2994 if (ret && new_key) { 2995 /* unregister all paths if we failed to register any path */ 2996 pr.old_key = new_key; 2997 pr.new_key = 0; 2998 pr.flags = 0; 2999 pr.fail_early = false; 3000 dm_call_pr(bdev, __dm_pr_register, &pr); 3001 } 3002 3003 return ret; 3004 } 3005 3006 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3007 u32 flags) 3008 { 3009 struct mapped_device *md = bdev->bd_disk->private_data; 3010 const struct pr_ops *ops; 3011 fmode_t mode; 3012 int r; 3013 3014 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3015 if (r < 0) 3016 return r; 3017 3018 ops = bdev->bd_disk->fops->pr_ops; 3019 if (ops && ops->pr_reserve) 3020 r = ops->pr_reserve(bdev, key, type, flags); 3021 else 3022 r = -EOPNOTSUPP; 3023 3024 bdput(bdev); 3025 return r; 3026 } 3027 3028 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3029 { 3030 struct mapped_device *md = bdev->bd_disk->private_data; 3031 const struct pr_ops *ops; 3032 fmode_t mode; 3033 int r; 3034 3035 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3036 if (r < 0) 3037 return r; 3038 3039 ops = bdev->bd_disk->fops->pr_ops; 3040 if (ops && ops->pr_release) 3041 r = ops->pr_release(bdev, key, type); 3042 else 3043 r = -EOPNOTSUPP; 3044 3045 bdput(bdev); 3046 return r; 3047 } 3048 3049 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3050 enum pr_type type, bool abort) 3051 { 3052 struct mapped_device *md = bdev->bd_disk->private_data; 3053 const struct pr_ops *ops; 3054 fmode_t mode; 3055 int r; 3056 3057 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3058 if (r < 0) 3059 return r; 3060 3061 ops = bdev->bd_disk->fops->pr_ops; 3062 if (ops && ops->pr_preempt) 3063 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3064 else 3065 r = -EOPNOTSUPP; 3066 3067 bdput(bdev); 3068 return r; 3069 } 3070 3071 static int dm_pr_clear(struct block_device *bdev, u64 key) 3072 { 3073 struct mapped_device *md = bdev->bd_disk->private_data; 3074 const struct pr_ops *ops; 3075 fmode_t mode; 3076 int r; 3077 3078 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3079 if (r < 0) 3080 return r; 3081 3082 ops = bdev->bd_disk->fops->pr_ops; 3083 if (ops && ops->pr_clear) 3084 r = ops->pr_clear(bdev, key); 3085 else 3086 r = -EOPNOTSUPP; 3087 3088 bdput(bdev); 3089 return r; 3090 } 3091 3092 static const struct pr_ops dm_pr_ops = { 3093 .pr_register = dm_pr_register, 3094 .pr_reserve = dm_pr_reserve, 3095 .pr_release = dm_pr_release, 3096 .pr_preempt = dm_pr_preempt, 3097 .pr_clear = dm_pr_clear, 3098 }; 3099 3100 static const struct block_device_operations dm_blk_dops = { 3101 .open = dm_blk_open, 3102 .release = dm_blk_close, 3103 .ioctl = dm_blk_ioctl, 3104 .getgeo = dm_blk_getgeo, 3105 .pr_ops = &dm_pr_ops, 3106 .owner = THIS_MODULE 3107 }; 3108 3109 static const struct dax_operations dm_dax_ops = { 3110 .direct_access = dm_dax_direct_access, 3111 .copy_from_iter = dm_dax_copy_from_iter, 3112 }; 3113 3114 /* 3115 * module hooks 3116 */ 3117 module_init(dm_init); 3118 module_exit(dm_exit); 3119 3120 module_param(major, uint, 0); 3121 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3122 3123 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3124 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3125 3126 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3127 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3128 3129 MODULE_DESCRIPTION(DM_NAME " driver"); 3130 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3131 MODULE_LICENSE("GPL"); 3132