xref: /openbmc/linux/drivers/md/dm.c (revision fadbafc1)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 /*
44  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45  * dm_io into one list, and reuse bio->bi_private as the list head. Before
46  * ending this fs bio, we will recover its ->bi_private.
47  */
48 #define REQ_DM_POLL_LIST	REQ_DRV
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67 
68 void dm_issue_global_event(void)
69 {
70 	atomic_inc(&dm_global_event_nr);
71 	wake_up(&dm_global_eventq);
72 }
73 
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
77 
78 /*
79  * One of these is allocated (on-stack) per original bio.
80  */
81 struct clone_info {
82 	struct dm_table *map;
83 	struct bio *bio;
84 	struct dm_io *io;
85 	sector_t sector;
86 	unsigned sector_count;
87 	bool is_abnormal_io:1;
88 	bool submit_as_polled:1;
89 };
90 
91 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
92 {
93 	return container_of(clone, struct dm_target_io, clone);
94 }
95 
96 void *dm_per_bio_data(struct bio *bio, size_t data_size)
97 {
98 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
99 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
100 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
101 }
102 EXPORT_SYMBOL_GPL(dm_per_bio_data);
103 
104 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
105 {
106 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
107 	if (io->magic == DM_IO_MAGIC)
108 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
109 	BUG_ON(io->magic != DM_TIO_MAGIC);
110 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
111 }
112 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
113 
114 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
115 {
116 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
117 }
118 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
119 
120 #define MINOR_ALLOCED ((void *)-1)
121 
122 #define DM_NUMA_NODE NUMA_NO_NODE
123 static int dm_numa_node = DM_NUMA_NODE;
124 
125 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
126 static int swap_bios = DEFAULT_SWAP_BIOS;
127 static int get_swap_bios(void)
128 {
129 	int latch = READ_ONCE(swap_bios);
130 	if (unlikely(latch <= 0))
131 		latch = DEFAULT_SWAP_BIOS;
132 	return latch;
133 }
134 
135 struct table_device {
136 	struct list_head list;
137 	refcount_t count;
138 	struct dm_dev dm_dev;
139 };
140 
141 /*
142  * Bio-based DM's mempools' reserved IOs set by the user.
143  */
144 #define RESERVED_BIO_BASED_IOS		16
145 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
146 
147 static int __dm_get_module_param_int(int *module_param, int min, int max)
148 {
149 	int param = READ_ONCE(*module_param);
150 	int modified_param = 0;
151 	bool modified = true;
152 
153 	if (param < min)
154 		modified_param = min;
155 	else if (param > max)
156 		modified_param = max;
157 	else
158 		modified = false;
159 
160 	if (modified) {
161 		(void)cmpxchg(module_param, param, modified_param);
162 		param = modified_param;
163 	}
164 
165 	return param;
166 }
167 
168 unsigned __dm_get_module_param(unsigned *module_param,
169 			       unsigned def, unsigned max)
170 {
171 	unsigned param = READ_ONCE(*module_param);
172 	unsigned modified_param = 0;
173 
174 	if (!param)
175 		modified_param = def;
176 	else if (param > max)
177 		modified_param = max;
178 
179 	if (modified_param) {
180 		(void)cmpxchg(module_param, param, modified_param);
181 		param = modified_param;
182 	}
183 
184 	return param;
185 }
186 
187 unsigned dm_get_reserved_bio_based_ios(void)
188 {
189 	return __dm_get_module_param(&reserved_bio_based_ios,
190 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
191 }
192 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
193 
194 static unsigned dm_get_numa_node(void)
195 {
196 	return __dm_get_module_param_int(&dm_numa_node,
197 					 DM_NUMA_NODE, num_online_nodes() - 1);
198 }
199 
200 static int __init local_init(void)
201 {
202 	int r;
203 
204 	r = dm_uevent_init();
205 	if (r)
206 		return r;
207 
208 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
209 	if (!deferred_remove_workqueue) {
210 		r = -ENOMEM;
211 		goto out_uevent_exit;
212 	}
213 
214 	_major = major;
215 	r = register_blkdev(_major, _name);
216 	if (r < 0)
217 		goto out_free_workqueue;
218 
219 	if (!_major)
220 		_major = r;
221 
222 	return 0;
223 
224 out_free_workqueue:
225 	destroy_workqueue(deferred_remove_workqueue);
226 out_uevent_exit:
227 	dm_uevent_exit();
228 
229 	return r;
230 }
231 
232 static void local_exit(void)
233 {
234 	flush_scheduled_work();
235 	destroy_workqueue(deferred_remove_workqueue);
236 
237 	unregister_blkdev(_major, _name);
238 	dm_uevent_exit();
239 
240 	_major = 0;
241 
242 	DMINFO("cleaned up");
243 }
244 
245 static int (*_inits[])(void) __initdata = {
246 	local_init,
247 	dm_target_init,
248 	dm_linear_init,
249 	dm_stripe_init,
250 	dm_io_init,
251 	dm_kcopyd_init,
252 	dm_interface_init,
253 	dm_statistics_init,
254 };
255 
256 static void (*_exits[])(void) = {
257 	local_exit,
258 	dm_target_exit,
259 	dm_linear_exit,
260 	dm_stripe_exit,
261 	dm_io_exit,
262 	dm_kcopyd_exit,
263 	dm_interface_exit,
264 	dm_statistics_exit,
265 };
266 
267 static int __init dm_init(void)
268 {
269 	const int count = ARRAY_SIZE(_inits);
270 	int r, i;
271 
272 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
273 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
274 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
275 #endif
276 
277 	for (i = 0; i < count; i++) {
278 		r = _inits[i]();
279 		if (r)
280 			goto bad;
281 	}
282 
283 	return 0;
284 bad:
285 	while (i--)
286 		_exits[i]();
287 
288 	return r;
289 }
290 
291 static void __exit dm_exit(void)
292 {
293 	int i = ARRAY_SIZE(_exits);
294 
295 	while (i--)
296 		_exits[i]();
297 
298 	/*
299 	 * Should be empty by this point.
300 	 */
301 	idr_destroy(&_minor_idr);
302 }
303 
304 /*
305  * Block device functions
306  */
307 int dm_deleting_md(struct mapped_device *md)
308 {
309 	return test_bit(DMF_DELETING, &md->flags);
310 }
311 
312 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
313 {
314 	struct mapped_device *md;
315 
316 	spin_lock(&_minor_lock);
317 
318 	md = bdev->bd_disk->private_data;
319 	if (!md)
320 		goto out;
321 
322 	if (test_bit(DMF_FREEING, &md->flags) ||
323 	    dm_deleting_md(md)) {
324 		md = NULL;
325 		goto out;
326 	}
327 
328 	dm_get(md);
329 	atomic_inc(&md->open_count);
330 out:
331 	spin_unlock(&_minor_lock);
332 
333 	return md ? 0 : -ENXIO;
334 }
335 
336 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
337 {
338 	struct mapped_device *md;
339 
340 	spin_lock(&_minor_lock);
341 
342 	md = disk->private_data;
343 	if (WARN_ON(!md))
344 		goto out;
345 
346 	if (atomic_dec_and_test(&md->open_count) &&
347 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
348 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
349 
350 	dm_put(md);
351 out:
352 	spin_unlock(&_minor_lock);
353 }
354 
355 int dm_open_count(struct mapped_device *md)
356 {
357 	return atomic_read(&md->open_count);
358 }
359 
360 /*
361  * Guarantees nothing is using the device before it's deleted.
362  */
363 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
364 {
365 	int r = 0;
366 
367 	spin_lock(&_minor_lock);
368 
369 	if (dm_open_count(md)) {
370 		r = -EBUSY;
371 		if (mark_deferred)
372 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
373 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
374 		r = -EEXIST;
375 	else
376 		set_bit(DMF_DELETING, &md->flags);
377 
378 	spin_unlock(&_minor_lock);
379 
380 	return r;
381 }
382 
383 int dm_cancel_deferred_remove(struct mapped_device *md)
384 {
385 	int r = 0;
386 
387 	spin_lock(&_minor_lock);
388 
389 	if (test_bit(DMF_DELETING, &md->flags))
390 		r = -EBUSY;
391 	else
392 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
393 
394 	spin_unlock(&_minor_lock);
395 
396 	return r;
397 }
398 
399 static void do_deferred_remove(struct work_struct *w)
400 {
401 	dm_deferred_remove();
402 }
403 
404 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
405 {
406 	struct mapped_device *md = bdev->bd_disk->private_data;
407 
408 	return dm_get_geometry(md, geo);
409 }
410 
411 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
412 			    struct block_device **bdev)
413 {
414 	struct dm_target *ti;
415 	struct dm_table *map;
416 	int r;
417 
418 retry:
419 	r = -ENOTTY;
420 	map = dm_get_live_table(md, srcu_idx);
421 	if (!map || !dm_table_get_size(map))
422 		return r;
423 
424 	/* We only support devices that have a single target */
425 	if (map->num_targets != 1)
426 		return r;
427 
428 	ti = dm_table_get_target(map, 0);
429 	if (!ti->type->prepare_ioctl)
430 		return r;
431 
432 	if (dm_suspended_md(md))
433 		return -EAGAIN;
434 
435 	r = ti->type->prepare_ioctl(ti, bdev);
436 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
437 		dm_put_live_table(md, *srcu_idx);
438 		msleep(10);
439 		goto retry;
440 	}
441 
442 	return r;
443 }
444 
445 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
446 {
447 	dm_put_live_table(md, srcu_idx);
448 }
449 
450 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
451 			unsigned int cmd, unsigned long arg)
452 {
453 	struct mapped_device *md = bdev->bd_disk->private_data;
454 	int r, srcu_idx;
455 
456 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
457 	if (r < 0)
458 		goto out;
459 
460 	if (r > 0) {
461 		/*
462 		 * Target determined this ioctl is being issued against a
463 		 * subset of the parent bdev; require extra privileges.
464 		 */
465 		if (!capable(CAP_SYS_RAWIO)) {
466 			DMDEBUG_LIMIT(
467 	"%s: sending ioctl %x to DM device without required privilege.",
468 				current->comm, cmd);
469 			r = -ENOIOCTLCMD;
470 			goto out;
471 		}
472 	}
473 
474 	if (!bdev->bd_disk->fops->ioctl)
475 		r = -ENOTTY;
476 	else
477 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
478 out:
479 	dm_unprepare_ioctl(md, srcu_idx);
480 	return r;
481 }
482 
483 u64 dm_start_time_ns_from_clone(struct bio *bio)
484 {
485 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
486 }
487 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
488 
489 static bool bio_is_flush_with_data(struct bio *bio)
490 {
491 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
492 }
493 
494 static void dm_io_acct(struct dm_io *io, bool end)
495 {
496 	struct dm_stats_aux *stats_aux = &io->stats_aux;
497 	unsigned long start_time = io->start_time;
498 	struct mapped_device *md = io->md;
499 	struct bio *bio = io->orig_bio;
500 	unsigned int sectors;
501 
502 	/*
503 	 * If REQ_PREFLUSH set, don't account payload, it will be
504 	 * submitted (and accounted) after this flush completes.
505 	 */
506 	if (bio_is_flush_with_data(bio))
507 		sectors = 0;
508 	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
509 		sectors = bio_sectors(bio);
510 	else
511 		sectors = io->sectors;
512 
513 	if (!end)
514 		bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
515 				   start_time);
516 	else
517 		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
518 
519 	if (static_branch_unlikely(&stats_enabled) &&
520 	    unlikely(dm_stats_used(&md->stats))) {
521 		sector_t sector;
522 
523 		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
524 			sector = bio->bi_iter.bi_sector;
525 		else
526 			sector = bio_end_sector(bio) - io->sector_offset;
527 
528 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
529 				    sector, sectors,
530 				    end, start_time, stats_aux);
531 	}
532 }
533 
534 static void __dm_start_io_acct(struct dm_io *io)
535 {
536 	dm_io_acct(io, false);
537 }
538 
539 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
540 {
541 	/*
542 	 * Ensure IO accounting is only ever started once.
543 	 */
544 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
545 		return;
546 
547 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
548 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
549 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
550 	} else {
551 		unsigned long flags;
552 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
553 		spin_lock_irqsave(&io->lock, flags);
554 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
555 			spin_unlock_irqrestore(&io->lock, flags);
556 			return;
557 		}
558 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
559 		spin_unlock_irqrestore(&io->lock, flags);
560 	}
561 
562 	__dm_start_io_acct(io);
563 }
564 
565 static void dm_end_io_acct(struct dm_io *io)
566 {
567 	dm_io_acct(io, true);
568 }
569 
570 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
571 {
572 	struct dm_io *io;
573 	struct dm_target_io *tio;
574 	struct bio *clone;
575 
576 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
577 	tio = clone_to_tio(clone);
578 	tio->flags = 0;
579 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
580 	tio->io = NULL;
581 
582 	io = container_of(tio, struct dm_io, tio);
583 	io->magic = DM_IO_MAGIC;
584 	io->status = BLK_STS_OK;
585 
586 	/* one ref is for submission, the other is for completion */
587 	atomic_set(&io->io_count, 2);
588 	this_cpu_inc(*md->pending_io);
589 	io->orig_bio = bio;
590 	io->md = md;
591 	spin_lock_init(&io->lock);
592 	io->start_time = jiffies;
593 	io->flags = 0;
594 
595 	if (static_branch_unlikely(&stats_enabled))
596 		dm_stats_record_start(&md->stats, &io->stats_aux);
597 
598 	return io;
599 }
600 
601 static void free_io(struct dm_io *io)
602 {
603 	bio_put(&io->tio.clone);
604 }
605 
606 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
607 			     unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
608 {
609 	struct mapped_device *md = ci->io->md;
610 	struct dm_target_io *tio;
611 	struct bio *clone;
612 
613 	if (!ci->io->tio.io) {
614 		/* the dm_target_io embedded in ci->io is available */
615 		tio = &ci->io->tio;
616 		/* alloc_io() already initialized embedded clone */
617 		clone = &tio->clone;
618 	} else {
619 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
620 					&md->mempools->bs);
621 		if (!clone)
622 			return NULL;
623 
624 		/* REQ_DM_POLL_LIST shouldn't be inherited */
625 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
626 
627 		tio = clone_to_tio(clone);
628 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
629 	}
630 
631 	tio->magic = DM_TIO_MAGIC;
632 	tio->io = ci->io;
633 	tio->ti = ti;
634 	tio->target_bio_nr = target_bio_nr;
635 	tio->len_ptr = len;
636 	tio->old_sector = 0;
637 
638 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
639 	clone->bi_bdev = md->disk->part0;
640 	if (unlikely(ti->needs_bio_set_dev))
641 		bio_set_dev(clone, md->disk->part0);
642 
643 	if (len) {
644 		clone->bi_iter.bi_size = to_bytes(*len);
645 		if (bio_integrity(clone))
646 			bio_integrity_trim(clone);
647 	}
648 
649 	return clone;
650 }
651 
652 static void free_tio(struct bio *clone)
653 {
654 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
655 		return;
656 	bio_put(clone);
657 }
658 
659 /*
660  * Add the bio to the list of deferred io.
661  */
662 static void queue_io(struct mapped_device *md, struct bio *bio)
663 {
664 	unsigned long flags;
665 
666 	spin_lock_irqsave(&md->deferred_lock, flags);
667 	bio_list_add(&md->deferred, bio);
668 	spin_unlock_irqrestore(&md->deferred_lock, flags);
669 	queue_work(md->wq, &md->work);
670 }
671 
672 /*
673  * Everyone (including functions in this file), should use this
674  * function to access the md->map field, and make sure they call
675  * dm_put_live_table() when finished.
676  */
677 struct dm_table *dm_get_live_table(struct mapped_device *md,
678 				   int *srcu_idx) __acquires(md->io_barrier)
679 {
680 	*srcu_idx = srcu_read_lock(&md->io_barrier);
681 
682 	return srcu_dereference(md->map, &md->io_barrier);
683 }
684 
685 void dm_put_live_table(struct mapped_device *md,
686 		       int srcu_idx) __releases(md->io_barrier)
687 {
688 	srcu_read_unlock(&md->io_barrier, srcu_idx);
689 }
690 
691 void dm_sync_table(struct mapped_device *md)
692 {
693 	synchronize_srcu(&md->io_barrier);
694 	synchronize_rcu_expedited();
695 }
696 
697 /*
698  * A fast alternative to dm_get_live_table/dm_put_live_table.
699  * The caller must not block between these two functions.
700  */
701 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
702 {
703 	rcu_read_lock();
704 	return rcu_dereference(md->map);
705 }
706 
707 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
708 {
709 	rcu_read_unlock();
710 }
711 
712 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
713 					int *srcu_idx, blk_opf_t bio_opf)
714 {
715 	if (bio_opf & REQ_NOWAIT)
716 		return dm_get_live_table_fast(md);
717 	else
718 		return dm_get_live_table(md, srcu_idx);
719 }
720 
721 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
722 					 blk_opf_t bio_opf)
723 {
724 	if (bio_opf & REQ_NOWAIT)
725 		dm_put_live_table_fast(md);
726 	else
727 		dm_put_live_table(md, srcu_idx);
728 }
729 
730 static char *_dm_claim_ptr = "I belong to device-mapper";
731 
732 /*
733  * Open a table device so we can use it as a map destination.
734  */
735 static int open_table_device(struct table_device *td, dev_t dev,
736 			     struct mapped_device *md)
737 {
738 	struct block_device *bdev;
739 	u64 part_off;
740 	int r;
741 
742 	BUG_ON(td->dm_dev.bdev);
743 
744 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
745 	if (IS_ERR(bdev))
746 		return PTR_ERR(bdev);
747 
748 	r = bd_link_disk_holder(bdev, dm_disk(md));
749 	if (r) {
750 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
751 		return r;
752 	}
753 
754 	td->dm_dev.bdev = bdev;
755 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
756 	return 0;
757 }
758 
759 /*
760  * Close a table device that we've been using.
761  */
762 static void close_table_device(struct table_device *td, struct mapped_device *md)
763 {
764 	if (!td->dm_dev.bdev)
765 		return;
766 
767 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
768 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
769 	put_dax(td->dm_dev.dax_dev);
770 	td->dm_dev.bdev = NULL;
771 	td->dm_dev.dax_dev = NULL;
772 }
773 
774 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
775 					      fmode_t mode)
776 {
777 	struct table_device *td;
778 
779 	list_for_each_entry(td, l, list)
780 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
781 			return td;
782 
783 	return NULL;
784 }
785 
786 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
787 			struct dm_dev **result)
788 {
789 	int r;
790 	struct table_device *td;
791 
792 	mutex_lock(&md->table_devices_lock);
793 	td = find_table_device(&md->table_devices, dev, mode);
794 	if (!td) {
795 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
796 		if (!td) {
797 			mutex_unlock(&md->table_devices_lock);
798 			return -ENOMEM;
799 		}
800 
801 		td->dm_dev.mode = mode;
802 		td->dm_dev.bdev = NULL;
803 
804 		if ((r = open_table_device(td, dev, md))) {
805 			mutex_unlock(&md->table_devices_lock);
806 			kfree(td);
807 			return r;
808 		}
809 
810 		format_dev_t(td->dm_dev.name, dev);
811 
812 		refcount_set(&td->count, 1);
813 		list_add(&td->list, &md->table_devices);
814 	} else {
815 		refcount_inc(&td->count);
816 	}
817 	mutex_unlock(&md->table_devices_lock);
818 
819 	*result = &td->dm_dev;
820 	return 0;
821 }
822 
823 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
824 {
825 	struct table_device *td = container_of(d, struct table_device, dm_dev);
826 
827 	mutex_lock(&md->table_devices_lock);
828 	if (refcount_dec_and_test(&td->count)) {
829 		close_table_device(td, md);
830 		list_del(&td->list);
831 		kfree(td);
832 	}
833 	mutex_unlock(&md->table_devices_lock);
834 }
835 
836 static void free_table_devices(struct list_head *devices)
837 {
838 	struct list_head *tmp, *next;
839 
840 	list_for_each_safe(tmp, next, devices) {
841 		struct table_device *td = list_entry(tmp, struct table_device, list);
842 
843 		DMWARN("dm_destroy: %s still exists with %d references",
844 		       td->dm_dev.name, refcount_read(&td->count));
845 		kfree(td);
846 	}
847 }
848 
849 /*
850  * Get the geometry associated with a dm device
851  */
852 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
853 {
854 	*geo = md->geometry;
855 
856 	return 0;
857 }
858 
859 /*
860  * Set the geometry of a device.
861  */
862 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
863 {
864 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
865 
866 	if (geo->start > sz) {
867 		DMWARN("Start sector is beyond the geometry limits.");
868 		return -EINVAL;
869 	}
870 
871 	md->geometry = *geo;
872 
873 	return 0;
874 }
875 
876 static int __noflush_suspending(struct mapped_device *md)
877 {
878 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
879 }
880 
881 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
882 {
883 	struct mapped_device *md = io->md;
884 
885 	if (first_stage) {
886 		struct dm_io *next = md->requeue_list;
887 
888 		md->requeue_list = io;
889 		io->next = next;
890 	} else {
891 		bio_list_add_head(&md->deferred, io->orig_bio);
892 	}
893 }
894 
895 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
896 {
897 	if (first_stage)
898 		queue_work(md->wq, &md->requeue_work);
899 	else
900 		queue_work(md->wq, &md->work);
901 }
902 
903 /*
904  * Return true if the dm_io's original bio is requeued.
905  * io->status is updated with error if requeue disallowed.
906  */
907 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
908 {
909 	struct bio *bio = io->orig_bio;
910 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
911 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
912 				     (bio->bi_opf & REQ_POLLED));
913 	struct mapped_device *md = io->md;
914 	bool requeued = false;
915 
916 	if (handle_requeue || handle_polled_eagain) {
917 		unsigned long flags;
918 
919 		if (bio->bi_opf & REQ_POLLED) {
920 			/*
921 			 * Upper layer won't help us poll split bio
922 			 * (io->orig_bio may only reflect a subset of the
923 			 * pre-split original) so clear REQ_POLLED.
924 			 */
925 			bio_clear_polled(bio);
926 		}
927 
928 		/*
929 		 * Target requested pushing back the I/O or
930 		 * polled IO hit BLK_STS_AGAIN.
931 		 */
932 		spin_lock_irqsave(&md->deferred_lock, flags);
933 		if ((__noflush_suspending(md) &&
934 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
935 		    handle_polled_eagain || first_stage) {
936 			dm_requeue_add_io(io, first_stage);
937 			requeued = true;
938 		} else {
939 			/*
940 			 * noflush suspend was interrupted or this is
941 			 * a write to a zoned target.
942 			 */
943 			io->status = BLK_STS_IOERR;
944 		}
945 		spin_unlock_irqrestore(&md->deferred_lock, flags);
946 	}
947 
948 	if (requeued)
949 		dm_kick_requeue(md, first_stage);
950 
951 	return requeued;
952 }
953 
954 static void __dm_io_complete(struct dm_io *io, bool first_stage)
955 {
956 	struct bio *bio = io->orig_bio;
957 	struct mapped_device *md = io->md;
958 	blk_status_t io_error;
959 	bool requeued;
960 
961 	requeued = dm_handle_requeue(io, first_stage);
962 	if (requeued && first_stage)
963 		return;
964 
965 	io_error = io->status;
966 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
967 		dm_end_io_acct(io);
968 	else if (!io_error) {
969 		/*
970 		 * Must handle target that DM_MAPIO_SUBMITTED only to
971 		 * then bio_endio() rather than dm_submit_bio_remap()
972 		 */
973 		__dm_start_io_acct(io);
974 		dm_end_io_acct(io);
975 	}
976 	free_io(io);
977 	smp_wmb();
978 	this_cpu_dec(*md->pending_io);
979 
980 	/* nudge anyone waiting on suspend queue */
981 	if (unlikely(wq_has_sleeper(&md->wait)))
982 		wake_up(&md->wait);
983 
984 	/* Return early if the original bio was requeued */
985 	if (requeued)
986 		return;
987 
988 	if (bio_is_flush_with_data(bio)) {
989 		/*
990 		 * Preflush done for flush with data, reissue
991 		 * without REQ_PREFLUSH.
992 		 */
993 		bio->bi_opf &= ~REQ_PREFLUSH;
994 		queue_io(md, bio);
995 	} else {
996 		/* done with normal IO or empty flush */
997 		if (io_error)
998 			bio->bi_status = io_error;
999 		bio_endio(bio);
1000 	}
1001 }
1002 
1003 static void dm_wq_requeue_work(struct work_struct *work)
1004 {
1005 	struct mapped_device *md = container_of(work, struct mapped_device,
1006 						requeue_work);
1007 	unsigned long flags;
1008 	struct dm_io *io;
1009 
1010 	/* reuse deferred lock to simplify dm_handle_requeue */
1011 	spin_lock_irqsave(&md->deferred_lock, flags);
1012 	io = md->requeue_list;
1013 	md->requeue_list = NULL;
1014 	spin_unlock_irqrestore(&md->deferred_lock, flags);
1015 
1016 	while (io) {
1017 		struct dm_io *next = io->next;
1018 
1019 		dm_io_rewind(io, &md->disk->bio_split);
1020 
1021 		io->next = NULL;
1022 		__dm_io_complete(io, false);
1023 		io = next;
1024 	}
1025 }
1026 
1027 /*
1028  * Two staged requeue:
1029  *
1030  * 1) io->orig_bio points to the real original bio, and the part mapped to
1031  *    this io must be requeued, instead of other parts of the original bio.
1032  *
1033  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1034  */
1035 static void dm_io_complete(struct dm_io *io)
1036 {
1037 	bool first_requeue;
1038 
1039 	/*
1040 	 * Only dm_io that has been split needs two stage requeue, otherwise
1041 	 * we may run into long bio clone chain during suspend and OOM could
1042 	 * be triggered.
1043 	 *
1044 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1045 	 * also aren't handled via the first stage requeue.
1046 	 */
1047 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1048 		first_requeue = true;
1049 	else
1050 		first_requeue = false;
1051 
1052 	__dm_io_complete(io, first_requeue);
1053 }
1054 
1055 /*
1056  * Decrements the number of outstanding ios that a bio has been
1057  * cloned into, completing the original io if necc.
1058  */
1059 static inline void __dm_io_dec_pending(struct dm_io *io)
1060 {
1061 	if (atomic_dec_and_test(&io->io_count))
1062 		dm_io_complete(io);
1063 }
1064 
1065 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1066 {
1067 	unsigned long flags;
1068 
1069 	/* Push-back supersedes any I/O errors */
1070 	spin_lock_irqsave(&io->lock, flags);
1071 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1072 	      __noflush_suspending(io->md))) {
1073 		io->status = error;
1074 	}
1075 	spin_unlock_irqrestore(&io->lock, flags);
1076 }
1077 
1078 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1079 {
1080 	if (unlikely(error))
1081 		dm_io_set_error(io, error);
1082 
1083 	__dm_io_dec_pending(io);
1084 }
1085 
1086 void disable_discard(struct mapped_device *md)
1087 {
1088 	struct queue_limits *limits = dm_get_queue_limits(md);
1089 
1090 	/* device doesn't really support DISCARD, disable it */
1091 	limits->max_discard_sectors = 0;
1092 }
1093 
1094 void disable_write_zeroes(struct mapped_device *md)
1095 {
1096 	struct queue_limits *limits = dm_get_queue_limits(md);
1097 
1098 	/* device doesn't really support WRITE ZEROES, disable it */
1099 	limits->max_write_zeroes_sectors = 0;
1100 }
1101 
1102 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1103 {
1104 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1105 }
1106 
1107 static void clone_endio(struct bio *bio)
1108 {
1109 	blk_status_t error = bio->bi_status;
1110 	struct dm_target_io *tio = clone_to_tio(bio);
1111 	struct dm_target *ti = tio->ti;
1112 	dm_endio_fn endio = ti->type->end_io;
1113 	struct dm_io *io = tio->io;
1114 	struct mapped_device *md = io->md;
1115 
1116 	if (unlikely(error == BLK_STS_TARGET)) {
1117 		if (bio_op(bio) == REQ_OP_DISCARD &&
1118 		    !bdev_max_discard_sectors(bio->bi_bdev))
1119 			disable_discard(md);
1120 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1121 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1122 			disable_write_zeroes(md);
1123 	}
1124 
1125 	if (static_branch_unlikely(&zoned_enabled) &&
1126 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1127 		dm_zone_endio(io, bio);
1128 
1129 	if (endio) {
1130 		int r = endio(ti, bio, &error);
1131 		switch (r) {
1132 		case DM_ENDIO_REQUEUE:
1133 			if (static_branch_unlikely(&zoned_enabled)) {
1134 				/*
1135 				 * Requeuing writes to a sequential zone of a zoned
1136 				 * target will break the sequential write pattern:
1137 				 * fail such IO.
1138 				 */
1139 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1140 					error = BLK_STS_IOERR;
1141 				else
1142 					error = BLK_STS_DM_REQUEUE;
1143 			} else
1144 				error = BLK_STS_DM_REQUEUE;
1145 			fallthrough;
1146 		case DM_ENDIO_DONE:
1147 			break;
1148 		case DM_ENDIO_INCOMPLETE:
1149 			/* The target will handle the io */
1150 			return;
1151 		default:
1152 			DMWARN("unimplemented target endio return value: %d", r);
1153 			BUG();
1154 		}
1155 	}
1156 
1157 	if (static_branch_unlikely(&swap_bios_enabled) &&
1158 	    unlikely(swap_bios_limit(ti, bio)))
1159 		up(&md->swap_bios_semaphore);
1160 
1161 	free_tio(bio);
1162 	dm_io_dec_pending(io, error);
1163 }
1164 
1165 /*
1166  * Return maximum size of I/O possible at the supplied sector up to the current
1167  * target boundary.
1168  */
1169 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1170 						  sector_t target_offset)
1171 {
1172 	return ti->len - target_offset;
1173 }
1174 
1175 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1176 {
1177 	sector_t target_offset = dm_target_offset(ti, sector);
1178 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1179 
1180 	/*
1181 	 * Does the target need to split IO even further?
1182 	 * - varied (per target) IO splitting is a tenet of DM; this
1183 	 *   explains why stacked chunk_sectors based splitting via
1184 	 *   bio_split_to_limits() isn't possible here.
1185 	 */
1186 	if (!ti->max_io_len)
1187 		return len;
1188 	return min_t(sector_t, len,
1189 		min(queue_max_sectors(ti->table->md->queue),
1190 		    blk_chunk_sectors_left(target_offset, ti->max_io_len)));
1191 }
1192 
1193 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1194 {
1195 	if (len > UINT_MAX) {
1196 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1197 		      (unsigned long long)len, UINT_MAX);
1198 		ti->error = "Maximum size of target IO is too large";
1199 		return -EINVAL;
1200 	}
1201 
1202 	ti->max_io_len = (uint32_t) len;
1203 
1204 	return 0;
1205 }
1206 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1207 
1208 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1209 						sector_t sector, int *srcu_idx)
1210 	__acquires(md->io_barrier)
1211 {
1212 	struct dm_table *map;
1213 	struct dm_target *ti;
1214 
1215 	map = dm_get_live_table(md, srcu_idx);
1216 	if (!map)
1217 		return NULL;
1218 
1219 	ti = dm_table_find_target(map, sector);
1220 	if (!ti)
1221 		return NULL;
1222 
1223 	return ti;
1224 }
1225 
1226 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1227 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1228 		pfn_t *pfn)
1229 {
1230 	struct mapped_device *md = dax_get_private(dax_dev);
1231 	sector_t sector = pgoff * PAGE_SECTORS;
1232 	struct dm_target *ti;
1233 	long len, ret = -EIO;
1234 	int srcu_idx;
1235 
1236 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1237 
1238 	if (!ti)
1239 		goto out;
1240 	if (!ti->type->direct_access)
1241 		goto out;
1242 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1243 	if (len < 1)
1244 		goto out;
1245 	nr_pages = min(len, nr_pages);
1246 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1247 
1248  out:
1249 	dm_put_live_table(md, srcu_idx);
1250 
1251 	return ret;
1252 }
1253 
1254 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1255 				  size_t nr_pages)
1256 {
1257 	struct mapped_device *md = dax_get_private(dax_dev);
1258 	sector_t sector = pgoff * PAGE_SECTORS;
1259 	struct dm_target *ti;
1260 	int ret = -EIO;
1261 	int srcu_idx;
1262 
1263 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1264 
1265 	if (!ti)
1266 		goto out;
1267 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1268 		/*
1269 		 * ->zero_page_range() is mandatory dax operation. If we are
1270 		 *  here, something is wrong.
1271 		 */
1272 		goto out;
1273 	}
1274 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1275  out:
1276 	dm_put_live_table(md, srcu_idx);
1277 
1278 	return ret;
1279 }
1280 
1281 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1282 		void *addr, size_t bytes, struct iov_iter *i)
1283 {
1284 	struct mapped_device *md = dax_get_private(dax_dev);
1285 	sector_t sector = pgoff * PAGE_SECTORS;
1286 	struct dm_target *ti;
1287 	int srcu_idx;
1288 	long ret = 0;
1289 
1290 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1291 	if (!ti || !ti->type->dax_recovery_write)
1292 		goto out;
1293 
1294 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1295 out:
1296 	dm_put_live_table(md, srcu_idx);
1297 	return ret;
1298 }
1299 
1300 /*
1301  * A target may call dm_accept_partial_bio only from the map routine.  It is
1302  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1303  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1304  * __send_duplicate_bios().
1305  *
1306  * dm_accept_partial_bio informs the dm that the target only wants to process
1307  * additional n_sectors sectors of the bio and the rest of the data should be
1308  * sent in a next bio.
1309  *
1310  * A diagram that explains the arithmetics:
1311  * +--------------------+---------------+-------+
1312  * |         1          |       2       |   3   |
1313  * +--------------------+---------------+-------+
1314  *
1315  * <-------------- *tio->len_ptr --------------->
1316  *                      <----- bio_sectors ----->
1317  *                      <-- n_sectors -->
1318  *
1319  * Region 1 was already iterated over with bio_advance or similar function.
1320  *	(it may be empty if the target doesn't use bio_advance)
1321  * Region 2 is the remaining bio size that the target wants to process.
1322  *	(it may be empty if region 1 is non-empty, although there is no reason
1323  *	 to make it empty)
1324  * The target requires that region 3 is to be sent in the next bio.
1325  *
1326  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1327  * the partially processed part (the sum of regions 1+2) must be the same for all
1328  * copies of the bio.
1329  */
1330 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1331 {
1332 	struct dm_target_io *tio = clone_to_tio(bio);
1333 	struct dm_io *io = tio->io;
1334 	unsigned bio_sectors = bio_sectors(bio);
1335 
1336 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1337 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1338 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1339 	BUG_ON(bio_sectors > *tio->len_ptr);
1340 	BUG_ON(n_sectors > bio_sectors);
1341 
1342 	*tio->len_ptr -= bio_sectors - n_sectors;
1343 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1344 
1345 	/*
1346 	 * __split_and_process_bio() may have already saved mapped part
1347 	 * for accounting but it is being reduced so update accordingly.
1348 	 */
1349 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1350 	io->sectors = n_sectors;
1351 	io->sector_offset = bio_sectors(io->orig_bio);
1352 }
1353 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1354 
1355 /*
1356  * @clone: clone bio that DM core passed to target's .map function
1357  * @tgt_clone: clone of @clone bio that target needs submitted
1358  *
1359  * Targets should use this interface to submit bios they take
1360  * ownership of when returning DM_MAPIO_SUBMITTED.
1361  *
1362  * Target should also enable ti->accounts_remapped_io
1363  */
1364 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1365 {
1366 	struct dm_target_io *tio = clone_to_tio(clone);
1367 	struct dm_io *io = tio->io;
1368 
1369 	/* establish bio that will get submitted */
1370 	if (!tgt_clone)
1371 		tgt_clone = clone;
1372 
1373 	/*
1374 	 * Account io->origin_bio to DM dev on behalf of target
1375 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1376 	 */
1377 	dm_start_io_acct(io, clone);
1378 
1379 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1380 			      tio->old_sector);
1381 	submit_bio_noacct(tgt_clone);
1382 }
1383 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1384 
1385 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1386 {
1387 	mutex_lock(&md->swap_bios_lock);
1388 	while (latch < md->swap_bios) {
1389 		cond_resched();
1390 		down(&md->swap_bios_semaphore);
1391 		md->swap_bios--;
1392 	}
1393 	while (latch > md->swap_bios) {
1394 		cond_resched();
1395 		up(&md->swap_bios_semaphore);
1396 		md->swap_bios++;
1397 	}
1398 	mutex_unlock(&md->swap_bios_lock);
1399 }
1400 
1401 static void __map_bio(struct bio *clone)
1402 {
1403 	struct dm_target_io *tio = clone_to_tio(clone);
1404 	struct dm_target *ti = tio->ti;
1405 	struct dm_io *io = tio->io;
1406 	struct mapped_device *md = io->md;
1407 	int r;
1408 
1409 	clone->bi_end_io = clone_endio;
1410 
1411 	/*
1412 	 * Map the clone.
1413 	 */
1414 	tio->old_sector = clone->bi_iter.bi_sector;
1415 
1416 	if (static_branch_unlikely(&swap_bios_enabled) &&
1417 	    unlikely(swap_bios_limit(ti, clone))) {
1418 		int latch = get_swap_bios();
1419 		if (unlikely(latch != md->swap_bios))
1420 			__set_swap_bios_limit(md, latch);
1421 		down(&md->swap_bios_semaphore);
1422 	}
1423 
1424 	if (static_branch_unlikely(&zoned_enabled)) {
1425 		/*
1426 		 * Check if the IO needs a special mapping due to zone append
1427 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1428 		 * calls the target map operation.
1429 		 */
1430 		if (unlikely(dm_emulate_zone_append(md)))
1431 			r = dm_zone_map_bio(tio);
1432 		else
1433 			r = ti->type->map(ti, clone);
1434 	} else
1435 		r = ti->type->map(ti, clone);
1436 
1437 	switch (r) {
1438 	case DM_MAPIO_SUBMITTED:
1439 		/* target has assumed ownership of this io */
1440 		if (!ti->accounts_remapped_io)
1441 			dm_start_io_acct(io, clone);
1442 		break;
1443 	case DM_MAPIO_REMAPPED:
1444 		dm_submit_bio_remap(clone, NULL);
1445 		break;
1446 	case DM_MAPIO_KILL:
1447 	case DM_MAPIO_REQUEUE:
1448 		if (static_branch_unlikely(&swap_bios_enabled) &&
1449 		    unlikely(swap_bios_limit(ti, clone)))
1450 			up(&md->swap_bios_semaphore);
1451 		free_tio(clone);
1452 		if (r == DM_MAPIO_KILL)
1453 			dm_io_dec_pending(io, BLK_STS_IOERR);
1454 		else
1455 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1456 		break;
1457 	default:
1458 		DMWARN("unimplemented target map return value: %d", r);
1459 		BUG();
1460 	}
1461 }
1462 
1463 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1464 {
1465 	struct dm_io *io = ci->io;
1466 
1467 	if (ci->sector_count > len) {
1468 		/*
1469 		 * Split needed, save the mapped part for accounting.
1470 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1471 		 */
1472 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1473 		io->sectors = len;
1474 		io->sector_offset = bio_sectors(ci->bio);
1475 	}
1476 }
1477 
1478 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1479 				struct dm_target *ti, unsigned num_bios)
1480 {
1481 	struct bio *bio;
1482 	int try;
1483 
1484 	for (try = 0; try < 2; try++) {
1485 		int bio_nr;
1486 
1487 		if (try)
1488 			mutex_lock(&ci->io->md->table_devices_lock);
1489 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1490 			bio = alloc_tio(ci, ti, bio_nr, NULL,
1491 					try ? GFP_NOIO : GFP_NOWAIT);
1492 			if (!bio)
1493 				break;
1494 
1495 			bio_list_add(blist, bio);
1496 		}
1497 		if (try)
1498 			mutex_unlock(&ci->io->md->table_devices_lock);
1499 		if (bio_nr == num_bios)
1500 			return;
1501 
1502 		while ((bio = bio_list_pop(blist)))
1503 			free_tio(bio);
1504 	}
1505 }
1506 
1507 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1508 				 unsigned int num_bios, unsigned *len)
1509 {
1510 	struct bio_list blist = BIO_EMPTY_LIST;
1511 	struct bio *clone;
1512 	unsigned int ret = 0;
1513 
1514 	switch (num_bios) {
1515 	case 0:
1516 		break;
1517 	case 1:
1518 		if (len)
1519 			setup_split_accounting(ci, *len);
1520 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1521 		__map_bio(clone);
1522 		ret = 1;
1523 		break;
1524 	default:
1525 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1526 		alloc_multiple_bios(&blist, ci, ti, num_bios);
1527 		while ((clone = bio_list_pop(&blist))) {
1528 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1529 			__map_bio(clone);
1530 			ret += 1;
1531 		}
1532 		break;
1533 	}
1534 
1535 	return ret;
1536 }
1537 
1538 static void __send_empty_flush(struct clone_info *ci)
1539 {
1540 	struct dm_table *t = ci->map;
1541 	struct bio flush_bio;
1542 
1543 	/*
1544 	 * Use an on-stack bio for this, it's safe since we don't
1545 	 * need to reference it after submit. It's just used as
1546 	 * the basis for the clone(s).
1547 	 */
1548 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1549 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1550 
1551 	ci->bio = &flush_bio;
1552 	ci->sector_count = 0;
1553 	ci->io->tio.clone.bi_iter.bi_size = 0;
1554 
1555 	for (unsigned int i = 0; i < t->num_targets; i++) {
1556 		unsigned int bios;
1557 		struct dm_target *ti = dm_table_get_target(t, i);
1558 
1559 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1560 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1561 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1562 	}
1563 
1564 	/*
1565 	 * alloc_io() takes one extra reference for submission, so the
1566 	 * reference won't reach 0 without the following subtraction
1567 	 */
1568 	atomic_sub(1, &ci->io->io_count);
1569 
1570 	bio_uninit(ci->bio);
1571 }
1572 
1573 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1574 					unsigned num_bios)
1575 {
1576 	unsigned len;
1577 	unsigned int bios;
1578 
1579 	len = min_t(sector_t, ci->sector_count,
1580 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1581 
1582 	atomic_add(num_bios, &ci->io->io_count);
1583 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1584 	/*
1585 	 * alloc_io() takes one extra reference for submission, so the
1586 	 * reference won't reach 0 without the following (+1) subtraction
1587 	 */
1588 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1589 
1590 	ci->sector += len;
1591 	ci->sector_count -= len;
1592 }
1593 
1594 static bool is_abnormal_io(struct bio *bio)
1595 {
1596 	enum req_op op = bio_op(bio);
1597 
1598 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1599 		switch (op) {
1600 		case REQ_OP_DISCARD:
1601 		case REQ_OP_SECURE_ERASE:
1602 		case REQ_OP_WRITE_ZEROES:
1603 			return true;
1604 		default:
1605 			break;
1606 		}
1607 	}
1608 
1609 	return false;
1610 }
1611 
1612 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1613 					  struct dm_target *ti)
1614 {
1615 	unsigned num_bios = 0;
1616 
1617 	switch (bio_op(ci->bio)) {
1618 	case REQ_OP_DISCARD:
1619 		num_bios = ti->num_discard_bios;
1620 		break;
1621 	case REQ_OP_SECURE_ERASE:
1622 		num_bios = ti->num_secure_erase_bios;
1623 		break;
1624 	case REQ_OP_WRITE_ZEROES:
1625 		num_bios = ti->num_write_zeroes_bios;
1626 		break;
1627 	default:
1628 		break;
1629 	}
1630 
1631 	/*
1632 	 * Even though the device advertised support for this type of
1633 	 * request, that does not mean every target supports it, and
1634 	 * reconfiguration might also have changed that since the
1635 	 * check was performed.
1636 	 */
1637 	if (unlikely(!num_bios))
1638 		return BLK_STS_NOTSUPP;
1639 
1640 	__send_changing_extent_only(ci, ti, num_bios);
1641 	return BLK_STS_OK;
1642 }
1643 
1644 /*
1645  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1646  * associated with this bio, and this bio's bi_private needs to be
1647  * stored in dm_io->data before the reuse.
1648  *
1649  * bio->bi_private is owned by fs or upper layer, so block layer won't
1650  * touch it after splitting. Meantime it won't be changed by anyone after
1651  * bio is submitted. So this reuse is safe.
1652  */
1653 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1654 {
1655 	return (struct dm_io **)&bio->bi_private;
1656 }
1657 
1658 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1659 {
1660 	struct dm_io **head = dm_poll_list_head(bio);
1661 
1662 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1663 		bio->bi_opf |= REQ_DM_POLL_LIST;
1664 		/*
1665 		 * Save .bi_private into dm_io, so that we can reuse
1666 		 * .bi_private as dm_io list head for storing dm_io list
1667 		 */
1668 		io->data = bio->bi_private;
1669 
1670 		/* tell block layer to poll for completion */
1671 		bio->bi_cookie = ~BLK_QC_T_NONE;
1672 
1673 		io->next = NULL;
1674 	} else {
1675 		/*
1676 		 * bio recursed due to split, reuse original poll list,
1677 		 * and save bio->bi_private too.
1678 		 */
1679 		io->data = (*head)->data;
1680 		io->next = *head;
1681 	}
1682 
1683 	*head = io;
1684 }
1685 
1686 /*
1687  * Select the correct strategy for processing a non-flush bio.
1688  */
1689 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1690 {
1691 	struct bio *clone;
1692 	struct dm_target *ti;
1693 	unsigned len;
1694 
1695 	ti = dm_table_find_target(ci->map, ci->sector);
1696 	if (unlikely(!ti))
1697 		return BLK_STS_IOERR;
1698 
1699 	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1700 	    unlikely(!dm_target_supports_nowait(ti->type)))
1701 		return BLK_STS_NOTSUPP;
1702 
1703 	if (unlikely(ci->is_abnormal_io))
1704 		return __process_abnormal_io(ci, ti);
1705 
1706 	/*
1707 	 * Only support bio polling for normal IO, and the target io is
1708 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1709 	 */
1710 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1711 
1712 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1713 	setup_split_accounting(ci, len);
1714 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1715 	__map_bio(clone);
1716 
1717 	ci->sector += len;
1718 	ci->sector_count -= len;
1719 
1720 	return BLK_STS_OK;
1721 }
1722 
1723 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1724 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1725 {
1726 	ci->map = map;
1727 	ci->io = alloc_io(md, bio);
1728 	ci->bio = bio;
1729 	ci->is_abnormal_io = is_abnormal;
1730 	ci->submit_as_polled = false;
1731 	ci->sector = bio->bi_iter.bi_sector;
1732 	ci->sector_count = bio_sectors(bio);
1733 
1734 	/* Shouldn't happen but sector_count was being set to 0 so... */
1735 	if (static_branch_unlikely(&zoned_enabled) &&
1736 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1737 		ci->sector_count = 0;
1738 }
1739 
1740 /*
1741  * Entry point to split a bio into clones and submit them to the targets.
1742  */
1743 static void dm_split_and_process_bio(struct mapped_device *md,
1744 				     struct dm_table *map, struct bio *bio)
1745 {
1746 	struct clone_info ci;
1747 	struct dm_io *io;
1748 	blk_status_t error = BLK_STS_OK;
1749 	bool is_abnormal;
1750 
1751 	is_abnormal = is_abnormal_io(bio);
1752 	if (unlikely(is_abnormal)) {
1753 		/*
1754 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1755 		 * otherwise associated queue_limits won't be imposed.
1756 		 */
1757 		bio = bio_split_to_limits(bio);
1758 	}
1759 
1760 	init_clone_info(&ci, md, map, bio, is_abnormal);
1761 	io = ci.io;
1762 
1763 	if (bio->bi_opf & REQ_PREFLUSH) {
1764 		__send_empty_flush(&ci);
1765 		/* dm_io_complete submits any data associated with flush */
1766 		goto out;
1767 	}
1768 
1769 	error = __split_and_process_bio(&ci);
1770 	if (error || !ci.sector_count)
1771 		goto out;
1772 	/*
1773 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1774 	 * *after* bios already submitted have been completely processed.
1775 	 */
1776 	bio_trim(bio, io->sectors, ci.sector_count);
1777 	trace_block_split(bio, bio->bi_iter.bi_sector);
1778 	bio_inc_remaining(bio);
1779 	submit_bio_noacct(bio);
1780 out:
1781 	/*
1782 	 * Drop the extra reference count for non-POLLED bio, and hold one
1783 	 * reference for POLLED bio, which will be released in dm_poll_bio
1784 	 *
1785 	 * Add every dm_io instance into the dm_io list head which is stored
1786 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1787 	 */
1788 	if (error || !ci.submit_as_polled) {
1789 		/*
1790 		 * In case of submission failure, the extra reference for
1791 		 * submitting io isn't consumed yet
1792 		 */
1793 		if (error)
1794 			atomic_dec(&io->io_count);
1795 		dm_io_dec_pending(io, error);
1796 	} else
1797 		dm_queue_poll_io(bio, io);
1798 }
1799 
1800 static void dm_submit_bio(struct bio *bio)
1801 {
1802 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1803 	int srcu_idx;
1804 	struct dm_table *map;
1805 	blk_opf_t bio_opf = bio->bi_opf;
1806 
1807 	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1808 
1809 	/* If suspended, or map not yet available, queue this IO for later */
1810 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1811 	    unlikely(!map)) {
1812 		if (bio->bi_opf & REQ_NOWAIT)
1813 			bio_wouldblock_error(bio);
1814 		else if (bio->bi_opf & REQ_RAHEAD)
1815 			bio_io_error(bio);
1816 		else
1817 			queue_io(md, bio);
1818 		goto out;
1819 	}
1820 
1821 	dm_split_and_process_bio(md, map, bio);
1822 out:
1823 	dm_put_live_table_bio(md, srcu_idx, bio_opf);
1824 }
1825 
1826 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1827 			  unsigned int flags)
1828 {
1829 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1830 
1831 	/* don't poll if the mapped io is done */
1832 	if (atomic_read(&io->io_count) > 1)
1833 		bio_poll(&io->tio.clone, iob, flags);
1834 
1835 	/* bio_poll holds the last reference */
1836 	return atomic_read(&io->io_count) == 1;
1837 }
1838 
1839 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1840 		       unsigned int flags)
1841 {
1842 	struct dm_io **head = dm_poll_list_head(bio);
1843 	struct dm_io *list = *head;
1844 	struct dm_io *tmp = NULL;
1845 	struct dm_io *curr, *next;
1846 
1847 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1848 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1849 		return 0;
1850 
1851 	WARN_ON_ONCE(!list);
1852 
1853 	/*
1854 	 * Restore .bi_private before possibly completing dm_io.
1855 	 *
1856 	 * bio_poll() is only possible once @bio has been completely
1857 	 * submitted via submit_bio_noacct()'s depth-first submission.
1858 	 * So there is no dm_queue_poll_io() race associated with
1859 	 * clearing REQ_DM_POLL_LIST here.
1860 	 */
1861 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1862 	bio->bi_private = list->data;
1863 
1864 	for (curr = list, next = curr->next; curr; curr = next, next =
1865 			curr ? curr->next : NULL) {
1866 		if (dm_poll_dm_io(curr, iob, flags)) {
1867 			/*
1868 			 * clone_endio() has already occurred, so no
1869 			 * error handling is needed here.
1870 			 */
1871 			__dm_io_dec_pending(curr);
1872 		} else {
1873 			curr->next = tmp;
1874 			tmp = curr;
1875 		}
1876 	}
1877 
1878 	/* Not done? */
1879 	if (tmp) {
1880 		bio->bi_opf |= REQ_DM_POLL_LIST;
1881 		/* Reset bio->bi_private to dm_io list head */
1882 		*head = tmp;
1883 		return 0;
1884 	}
1885 	return 1;
1886 }
1887 
1888 /*-----------------------------------------------------------------
1889  * An IDR is used to keep track of allocated minor numbers.
1890  *---------------------------------------------------------------*/
1891 static void free_minor(int minor)
1892 {
1893 	spin_lock(&_minor_lock);
1894 	idr_remove(&_minor_idr, minor);
1895 	spin_unlock(&_minor_lock);
1896 }
1897 
1898 /*
1899  * See if the device with a specific minor # is free.
1900  */
1901 static int specific_minor(int minor)
1902 {
1903 	int r;
1904 
1905 	if (minor >= (1 << MINORBITS))
1906 		return -EINVAL;
1907 
1908 	idr_preload(GFP_KERNEL);
1909 	spin_lock(&_minor_lock);
1910 
1911 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1912 
1913 	spin_unlock(&_minor_lock);
1914 	idr_preload_end();
1915 	if (r < 0)
1916 		return r == -ENOSPC ? -EBUSY : r;
1917 	return 0;
1918 }
1919 
1920 static int next_free_minor(int *minor)
1921 {
1922 	int r;
1923 
1924 	idr_preload(GFP_KERNEL);
1925 	spin_lock(&_minor_lock);
1926 
1927 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1928 
1929 	spin_unlock(&_minor_lock);
1930 	idr_preload_end();
1931 	if (r < 0)
1932 		return r;
1933 	*minor = r;
1934 	return 0;
1935 }
1936 
1937 static const struct block_device_operations dm_blk_dops;
1938 static const struct block_device_operations dm_rq_blk_dops;
1939 static const struct dax_operations dm_dax_ops;
1940 
1941 static void dm_wq_work(struct work_struct *work);
1942 
1943 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1944 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1945 {
1946 	dm_destroy_crypto_profile(q->crypto_profile);
1947 }
1948 
1949 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1950 
1951 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1952 {
1953 }
1954 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1955 
1956 static void cleanup_mapped_device(struct mapped_device *md)
1957 {
1958 	if (md->wq)
1959 		destroy_workqueue(md->wq);
1960 	dm_free_md_mempools(md->mempools);
1961 
1962 	if (md->dax_dev) {
1963 		dax_remove_host(md->disk);
1964 		kill_dax(md->dax_dev);
1965 		put_dax(md->dax_dev);
1966 		md->dax_dev = NULL;
1967 	}
1968 
1969 	dm_cleanup_zoned_dev(md);
1970 	if (md->disk) {
1971 		spin_lock(&_minor_lock);
1972 		md->disk->private_data = NULL;
1973 		spin_unlock(&_minor_lock);
1974 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1975 			dm_sysfs_exit(md);
1976 			del_gendisk(md->disk);
1977 		}
1978 		dm_queue_destroy_crypto_profile(md->queue);
1979 		put_disk(md->disk);
1980 	}
1981 
1982 	if (md->pending_io) {
1983 		free_percpu(md->pending_io);
1984 		md->pending_io = NULL;
1985 	}
1986 
1987 	cleanup_srcu_struct(&md->io_barrier);
1988 
1989 	mutex_destroy(&md->suspend_lock);
1990 	mutex_destroy(&md->type_lock);
1991 	mutex_destroy(&md->table_devices_lock);
1992 	mutex_destroy(&md->swap_bios_lock);
1993 
1994 	dm_mq_cleanup_mapped_device(md);
1995 }
1996 
1997 /*
1998  * Allocate and initialise a blank device with a given minor.
1999  */
2000 static struct mapped_device *alloc_dev(int minor)
2001 {
2002 	int r, numa_node_id = dm_get_numa_node();
2003 	struct mapped_device *md;
2004 	void *old_md;
2005 
2006 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2007 	if (!md) {
2008 		DMWARN("unable to allocate device, out of memory.");
2009 		return NULL;
2010 	}
2011 
2012 	if (!try_module_get(THIS_MODULE))
2013 		goto bad_module_get;
2014 
2015 	/* get a minor number for the dev */
2016 	if (minor == DM_ANY_MINOR)
2017 		r = next_free_minor(&minor);
2018 	else
2019 		r = specific_minor(minor);
2020 	if (r < 0)
2021 		goto bad_minor;
2022 
2023 	r = init_srcu_struct(&md->io_barrier);
2024 	if (r < 0)
2025 		goto bad_io_barrier;
2026 
2027 	md->numa_node_id = numa_node_id;
2028 	md->init_tio_pdu = false;
2029 	md->type = DM_TYPE_NONE;
2030 	mutex_init(&md->suspend_lock);
2031 	mutex_init(&md->type_lock);
2032 	mutex_init(&md->table_devices_lock);
2033 	spin_lock_init(&md->deferred_lock);
2034 	atomic_set(&md->holders, 1);
2035 	atomic_set(&md->open_count, 0);
2036 	atomic_set(&md->event_nr, 0);
2037 	atomic_set(&md->uevent_seq, 0);
2038 	INIT_LIST_HEAD(&md->uevent_list);
2039 	INIT_LIST_HEAD(&md->table_devices);
2040 	spin_lock_init(&md->uevent_lock);
2041 
2042 	/*
2043 	 * default to bio-based until DM table is loaded and md->type
2044 	 * established. If request-based table is loaded: blk-mq will
2045 	 * override accordingly.
2046 	 */
2047 	md->disk = blk_alloc_disk(md->numa_node_id);
2048 	if (!md->disk)
2049 		goto bad;
2050 	md->queue = md->disk->queue;
2051 
2052 	init_waitqueue_head(&md->wait);
2053 	INIT_WORK(&md->work, dm_wq_work);
2054 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2055 	init_waitqueue_head(&md->eventq);
2056 	init_completion(&md->kobj_holder.completion);
2057 
2058 	md->requeue_list = NULL;
2059 	md->swap_bios = get_swap_bios();
2060 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2061 	mutex_init(&md->swap_bios_lock);
2062 
2063 	md->disk->major = _major;
2064 	md->disk->first_minor = minor;
2065 	md->disk->minors = 1;
2066 	md->disk->flags |= GENHD_FL_NO_PART;
2067 	md->disk->fops = &dm_blk_dops;
2068 	md->disk->queue = md->queue;
2069 	md->disk->private_data = md;
2070 	sprintf(md->disk->disk_name, "dm-%d", minor);
2071 
2072 	if (IS_ENABLED(CONFIG_FS_DAX)) {
2073 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2074 		if (IS_ERR(md->dax_dev)) {
2075 			md->dax_dev = NULL;
2076 			goto bad;
2077 		}
2078 		set_dax_nocache(md->dax_dev);
2079 		set_dax_nomc(md->dax_dev);
2080 		if (dax_add_host(md->dax_dev, md->disk))
2081 			goto bad;
2082 	}
2083 
2084 	format_dev_t(md->name, MKDEV(_major, minor));
2085 
2086 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2087 	if (!md->wq)
2088 		goto bad;
2089 
2090 	md->pending_io = alloc_percpu(unsigned long);
2091 	if (!md->pending_io)
2092 		goto bad;
2093 
2094 	dm_stats_init(&md->stats);
2095 
2096 	/* Populate the mapping, nobody knows we exist yet */
2097 	spin_lock(&_minor_lock);
2098 	old_md = idr_replace(&_minor_idr, md, minor);
2099 	spin_unlock(&_minor_lock);
2100 
2101 	BUG_ON(old_md != MINOR_ALLOCED);
2102 
2103 	return md;
2104 
2105 bad:
2106 	cleanup_mapped_device(md);
2107 bad_io_barrier:
2108 	free_minor(minor);
2109 bad_minor:
2110 	module_put(THIS_MODULE);
2111 bad_module_get:
2112 	kvfree(md);
2113 	return NULL;
2114 }
2115 
2116 static void unlock_fs(struct mapped_device *md);
2117 
2118 static void free_dev(struct mapped_device *md)
2119 {
2120 	int minor = MINOR(disk_devt(md->disk));
2121 
2122 	unlock_fs(md);
2123 
2124 	cleanup_mapped_device(md);
2125 
2126 	free_table_devices(&md->table_devices);
2127 	dm_stats_cleanup(&md->stats);
2128 	free_minor(minor);
2129 
2130 	module_put(THIS_MODULE);
2131 	kvfree(md);
2132 }
2133 
2134 /*
2135  * Bind a table to the device.
2136  */
2137 static void event_callback(void *context)
2138 {
2139 	unsigned long flags;
2140 	LIST_HEAD(uevents);
2141 	struct mapped_device *md = (struct mapped_device *) context;
2142 
2143 	spin_lock_irqsave(&md->uevent_lock, flags);
2144 	list_splice_init(&md->uevent_list, &uevents);
2145 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2146 
2147 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2148 
2149 	atomic_inc(&md->event_nr);
2150 	wake_up(&md->eventq);
2151 	dm_issue_global_event();
2152 }
2153 
2154 /*
2155  * Returns old map, which caller must destroy.
2156  */
2157 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2158 			       struct queue_limits *limits)
2159 {
2160 	struct dm_table *old_map;
2161 	sector_t size;
2162 	int ret;
2163 
2164 	lockdep_assert_held(&md->suspend_lock);
2165 
2166 	size = dm_table_get_size(t);
2167 
2168 	/*
2169 	 * Wipe any geometry if the size of the table changed.
2170 	 */
2171 	if (size != dm_get_size(md))
2172 		memset(&md->geometry, 0, sizeof(md->geometry));
2173 
2174 	if (!get_capacity(md->disk))
2175 		set_capacity(md->disk, size);
2176 	else
2177 		set_capacity_and_notify(md->disk, size);
2178 
2179 	dm_table_event_callback(t, event_callback, md);
2180 
2181 	if (dm_table_request_based(t)) {
2182 		/*
2183 		 * Leverage the fact that request-based DM targets are
2184 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2185 		 */
2186 		md->immutable_target = dm_table_get_immutable_target(t);
2187 
2188 		/*
2189 		 * There is no need to reload with request-based dm because the
2190 		 * size of front_pad doesn't change.
2191 		 *
2192 		 * Note for future: If you are to reload bioset, prep-ed
2193 		 * requests in the queue may refer to bio from the old bioset,
2194 		 * so you must walk through the queue to unprep.
2195 		 */
2196 		if (!md->mempools) {
2197 			md->mempools = t->mempools;
2198 			t->mempools = NULL;
2199 		}
2200 	} else {
2201 		/*
2202 		 * The md may already have mempools that need changing.
2203 		 * If so, reload bioset because front_pad may have changed
2204 		 * because a different table was loaded.
2205 		 */
2206 		dm_free_md_mempools(md->mempools);
2207 		md->mempools = t->mempools;
2208 		t->mempools = NULL;
2209 	}
2210 
2211 	ret = dm_table_set_restrictions(t, md->queue, limits);
2212 	if (ret) {
2213 		old_map = ERR_PTR(ret);
2214 		goto out;
2215 	}
2216 
2217 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2218 	rcu_assign_pointer(md->map, (void *)t);
2219 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2220 
2221 	if (old_map)
2222 		dm_sync_table(md);
2223 out:
2224 	return old_map;
2225 }
2226 
2227 /*
2228  * Returns unbound table for the caller to free.
2229  */
2230 static struct dm_table *__unbind(struct mapped_device *md)
2231 {
2232 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2233 
2234 	if (!map)
2235 		return NULL;
2236 
2237 	dm_table_event_callback(map, NULL, NULL);
2238 	RCU_INIT_POINTER(md->map, NULL);
2239 	dm_sync_table(md);
2240 
2241 	return map;
2242 }
2243 
2244 /*
2245  * Constructor for a new device.
2246  */
2247 int dm_create(int minor, struct mapped_device **result)
2248 {
2249 	struct mapped_device *md;
2250 
2251 	md = alloc_dev(minor);
2252 	if (!md)
2253 		return -ENXIO;
2254 
2255 	dm_ima_reset_data(md);
2256 
2257 	*result = md;
2258 	return 0;
2259 }
2260 
2261 /*
2262  * Functions to manage md->type.
2263  * All are required to hold md->type_lock.
2264  */
2265 void dm_lock_md_type(struct mapped_device *md)
2266 {
2267 	mutex_lock(&md->type_lock);
2268 }
2269 
2270 void dm_unlock_md_type(struct mapped_device *md)
2271 {
2272 	mutex_unlock(&md->type_lock);
2273 }
2274 
2275 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2276 {
2277 	BUG_ON(!mutex_is_locked(&md->type_lock));
2278 	md->type = type;
2279 }
2280 
2281 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2282 {
2283 	return md->type;
2284 }
2285 
2286 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2287 {
2288 	return md->immutable_target_type;
2289 }
2290 
2291 /*
2292  * The queue_limits are only valid as long as you have a reference
2293  * count on 'md'.
2294  */
2295 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2296 {
2297 	BUG_ON(!atomic_read(&md->holders));
2298 	return &md->queue->limits;
2299 }
2300 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2301 
2302 /*
2303  * Setup the DM device's queue based on md's type
2304  */
2305 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2306 {
2307 	enum dm_queue_mode type = dm_table_get_type(t);
2308 	struct queue_limits limits;
2309 	int r;
2310 
2311 	switch (type) {
2312 	case DM_TYPE_REQUEST_BASED:
2313 		md->disk->fops = &dm_rq_blk_dops;
2314 		r = dm_mq_init_request_queue(md, t);
2315 		if (r) {
2316 			DMERR("Cannot initialize queue for request-based dm mapped device");
2317 			return r;
2318 		}
2319 		break;
2320 	case DM_TYPE_BIO_BASED:
2321 	case DM_TYPE_DAX_BIO_BASED:
2322 		break;
2323 	case DM_TYPE_NONE:
2324 		WARN_ON_ONCE(true);
2325 		break;
2326 	}
2327 
2328 	r = dm_calculate_queue_limits(t, &limits);
2329 	if (r) {
2330 		DMERR("Cannot calculate initial queue limits");
2331 		return r;
2332 	}
2333 	r = dm_table_set_restrictions(t, md->queue, &limits);
2334 	if (r)
2335 		return r;
2336 
2337 	r = add_disk(md->disk);
2338 	if (r)
2339 		return r;
2340 
2341 	r = dm_sysfs_init(md);
2342 	if (r) {
2343 		del_gendisk(md->disk);
2344 		return r;
2345 	}
2346 	md->type = type;
2347 	return 0;
2348 }
2349 
2350 struct mapped_device *dm_get_md(dev_t dev)
2351 {
2352 	struct mapped_device *md;
2353 	unsigned minor = MINOR(dev);
2354 
2355 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2356 		return NULL;
2357 
2358 	spin_lock(&_minor_lock);
2359 
2360 	md = idr_find(&_minor_idr, minor);
2361 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2362 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2363 		md = NULL;
2364 		goto out;
2365 	}
2366 	dm_get(md);
2367 out:
2368 	spin_unlock(&_minor_lock);
2369 
2370 	return md;
2371 }
2372 EXPORT_SYMBOL_GPL(dm_get_md);
2373 
2374 void *dm_get_mdptr(struct mapped_device *md)
2375 {
2376 	return md->interface_ptr;
2377 }
2378 
2379 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2380 {
2381 	md->interface_ptr = ptr;
2382 }
2383 
2384 void dm_get(struct mapped_device *md)
2385 {
2386 	atomic_inc(&md->holders);
2387 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2388 }
2389 
2390 int dm_hold(struct mapped_device *md)
2391 {
2392 	spin_lock(&_minor_lock);
2393 	if (test_bit(DMF_FREEING, &md->flags)) {
2394 		spin_unlock(&_minor_lock);
2395 		return -EBUSY;
2396 	}
2397 	dm_get(md);
2398 	spin_unlock(&_minor_lock);
2399 	return 0;
2400 }
2401 EXPORT_SYMBOL_GPL(dm_hold);
2402 
2403 const char *dm_device_name(struct mapped_device *md)
2404 {
2405 	return md->name;
2406 }
2407 EXPORT_SYMBOL_GPL(dm_device_name);
2408 
2409 static void __dm_destroy(struct mapped_device *md, bool wait)
2410 {
2411 	struct dm_table *map;
2412 	int srcu_idx;
2413 
2414 	might_sleep();
2415 
2416 	spin_lock(&_minor_lock);
2417 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2418 	set_bit(DMF_FREEING, &md->flags);
2419 	spin_unlock(&_minor_lock);
2420 
2421 	blk_mark_disk_dead(md->disk);
2422 
2423 	/*
2424 	 * Take suspend_lock so that presuspend and postsuspend methods
2425 	 * do not race with internal suspend.
2426 	 */
2427 	mutex_lock(&md->suspend_lock);
2428 	map = dm_get_live_table(md, &srcu_idx);
2429 	if (!dm_suspended_md(md)) {
2430 		dm_table_presuspend_targets(map);
2431 		set_bit(DMF_SUSPENDED, &md->flags);
2432 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2433 		dm_table_postsuspend_targets(map);
2434 	}
2435 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2436 	dm_put_live_table(md, srcu_idx);
2437 	mutex_unlock(&md->suspend_lock);
2438 
2439 	/*
2440 	 * Rare, but there may be I/O requests still going to complete,
2441 	 * for example.  Wait for all references to disappear.
2442 	 * No one should increment the reference count of the mapped_device,
2443 	 * after the mapped_device state becomes DMF_FREEING.
2444 	 */
2445 	if (wait)
2446 		while (atomic_read(&md->holders))
2447 			msleep(1);
2448 	else if (atomic_read(&md->holders))
2449 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2450 		       dm_device_name(md), atomic_read(&md->holders));
2451 
2452 	dm_table_destroy(__unbind(md));
2453 	free_dev(md);
2454 }
2455 
2456 void dm_destroy(struct mapped_device *md)
2457 {
2458 	__dm_destroy(md, true);
2459 }
2460 
2461 void dm_destroy_immediate(struct mapped_device *md)
2462 {
2463 	__dm_destroy(md, false);
2464 }
2465 
2466 void dm_put(struct mapped_device *md)
2467 {
2468 	atomic_dec(&md->holders);
2469 }
2470 EXPORT_SYMBOL_GPL(dm_put);
2471 
2472 static bool dm_in_flight_bios(struct mapped_device *md)
2473 {
2474 	int cpu;
2475 	unsigned long sum = 0;
2476 
2477 	for_each_possible_cpu(cpu)
2478 		sum += *per_cpu_ptr(md->pending_io, cpu);
2479 
2480 	return sum != 0;
2481 }
2482 
2483 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2484 {
2485 	int r = 0;
2486 	DEFINE_WAIT(wait);
2487 
2488 	while (true) {
2489 		prepare_to_wait(&md->wait, &wait, task_state);
2490 
2491 		if (!dm_in_flight_bios(md))
2492 			break;
2493 
2494 		if (signal_pending_state(task_state, current)) {
2495 			r = -EINTR;
2496 			break;
2497 		}
2498 
2499 		io_schedule();
2500 	}
2501 	finish_wait(&md->wait, &wait);
2502 
2503 	smp_rmb();
2504 
2505 	return r;
2506 }
2507 
2508 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2509 {
2510 	int r = 0;
2511 
2512 	if (!queue_is_mq(md->queue))
2513 		return dm_wait_for_bios_completion(md, task_state);
2514 
2515 	while (true) {
2516 		if (!blk_mq_queue_inflight(md->queue))
2517 			break;
2518 
2519 		if (signal_pending_state(task_state, current)) {
2520 			r = -EINTR;
2521 			break;
2522 		}
2523 
2524 		msleep(5);
2525 	}
2526 
2527 	return r;
2528 }
2529 
2530 /*
2531  * Process the deferred bios
2532  */
2533 static void dm_wq_work(struct work_struct *work)
2534 {
2535 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2536 	struct bio *bio;
2537 
2538 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2539 		spin_lock_irq(&md->deferred_lock);
2540 		bio = bio_list_pop(&md->deferred);
2541 		spin_unlock_irq(&md->deferred_lock);
2542 
2543 		if (!bio)
2544 			break;
2545 
2546 		submit_bio_noacct(bio);
2547 	}
2548 }
2549 
2550 static void dm_queue_flush(struct mapped_device *md)
2551 {
2552 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2553 	smp_mb__after_atomic();
2554 	queue_work(md->wq, &md->work);
2555 }
2556 
2557 /*
2558  * Swap in a new table, returning the old one for the caller to destroy.
2559  */
2560 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2561 {
2562 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2563 	struct queue_limits limits;
2564 	int r;
2565 
2566 	mutex_lock(&md->suspend_lock);
2567 
2568 	/* device must be suspended */
2569 	if (!dm_suspended_md(md))
2570 		goto out;
2571 
2572 	/*
2573 	 * If the new table has no data devices, retain the existing limits.
2574 	 * This helps multipath with queue_if_no_path if all paths disappear,
2575 	 * then new I/O is queued based on these limits, and then some paths
2576 	 * reappear.
2577 	 */
2578 	if (dm_table_has_no_data_devices(table)) {
2579 		live_map = dm_get_live_table_fast(md);
2580 		if (live_map)
2581 			limits = md->queue->limits;
2582 		dm_put_live_table_fast(md);
2583 	}
2584 
2585 	if (!live_map) {
2586 		r = dm_calculate_queue_limits(table, &limits);
2587 		if (r) {
2588 			map = ERR_PTR(r);
2589 			goto out;
2590 		}
2591 	}
2592 
2593 	map = __bind(md, table, &limits);
2594 	dm_issue_global_event();
2595 
2596 out:
2597 	mutex_unlock(&md->suspend_lock);
2598 	return map;
2599 }
2600 
2601 /*
2602  * Functions to lock and unlock any filesystem running on the
2603  * device.
2604  */
2605 static int lock_fs(struct mapped_device *md)
2606 {
2607 	int r;
2608 
2609 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2610 
2611 	r = freeze_bdev(md->disk->part0);
2612 	if (!r)
2613 		set_bit(DMF_FROZEN, &md->flags);
2614 	return r;
2615 }
2616 
2617 static void unlock_fs(struct mapped_device *md)
2618 {
2619 	if (!test_bit(DMF_FROZEN, &md->flags))
2620 		return;
2621 	thaw_bdev(md->disk->part0);
2622 	clear_bit(DMF_FROZEN, &md->flags);
2623 }
2624 
2625 /*
2626  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2627  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2628  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2629  *
2630  * If __dm_suspend returns 0, the device is completely quiescent
2631  * now. There is no request-processing activity. All new requests
2632  * are being added to md->deferred list.
2633  */
2634 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2635 			unsigned suspend_flags, unsigned int task_state,
2636 			int dmf_suspended_flag)
2637 {
2638 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2639 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2640 	int r;
2641 
2642 	lockdep_assert_held(&md->suspend_lock);
2643 
2644 	/*
2645 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2646 	 * This flag is cleared before dm_suspend returns.
2647 	 */
2648 	if (noflush)
2649 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2650 	else
2651 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2652 
2653 	/*
2654 	 * This gets reverted if there's an error later and the targets
2655 	 * provide the .presuspend_undo hook.
2656 	 */
2657 	dm_table_presuspend_targets(map);
2658 
2659 	/*
2660 	 * Flush I/O to the device.
2661 	 * Any I/O submitted after lock_fs() may not be flushed.
2662 	 * noflush takes precedence over do_lockfs.
2663 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2664 	 */
2665 	if (!noflush && do_lockfs) {
2666 		r = lock_fs(md);
2667 		if (r) {
2668 			dm_table_presuspend_undo_targets(map);
2669 			return r;
2670 		}
2671 	}
2672 
2673 	/*
2674 	 * Here we must make sure that no processes are submitting requests
2675 	 * to target drivers i.e. no one may be executing
2676 	 * dm_split_and_process_bio from dm_submit_bio.
2677 	 *
2678 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2679 	 * we take the write lock. To prevent any process from reentering
2680 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2681 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2682 	 * flush_workqueue(md->wq).
2683 	 */
2684 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2685 	if (map)
2686 		synchronize_srcu(&md->io_barrier);
2687 
2688 	/*
2689 	 * Stop md->queue before flushing md->wq in case request-based
2690 	 * dm defers requests to md->wq from md->queue.
2691 	 */
2692 	if (dm_request_based(md))
2693 		dm_stop_queue(md->queue);
2694 
2695 	flush_workqueue(md->wq);
2696 
2697 	/*
2698 	 * At this point no more requests are entering target request routines.
2699 	 * We call dm_wait_for_completion to wait for all existing requests
2700 	 * to finish.
2701 	 */
2702 	r = dm_wait_for_completion(md, task_state);
2703 	if (!r)
2704 		set_bit(dmf_suspended_flag, &md->flags);
2705 
2706 	if (noflush)
2707 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2708 	if (map)
2709 		synchronize_srcu(&md->io_barrier);
2710 
2711 	/* were we interrupted ? */
2712 	if (r < 0) {
2713 		dm_queue_flush(md);
2714 
2715 		if (dm_request_based(md))
2716 			dm_start_queue(md->queue);
2717 
2718 		unlock_fs(md);
2719 		dm_table_presuspend_undo_targets(map);
2720 		/* pushback list is already flushed, so skip flush */
2721 	}
2722 
2723 	return r;
2724 }
2725 
2726 /*
2727  * We need to be able to change a mapping table under a mounted
2728  * filesystem.  For example we might want to move some data in
2729  * the background.  Before the table can be swapped with
2730  * dm_bind_table, dm_suspend must be called to flush any in
2731  * flight bios and ensure that any further io gets deferred.
2732  */
2733 /*
2734  * Suspend mechanism in request-based dm.
2735  *
2736  * 1. Flush all I/Os by lock_fs() if needed.
2737  * 2. Stop dispatching any I/O by stopping the request_queue.
2738  * 3. Wait for all in-flight I/Os to be completed or requeued.
2739  *
2740  * To abort suspend, start the request_queue.
2741  */
2742 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2743 {
2744 	struct dm_table *map = NULL;
2745 	int r = 0;
2746 
2747 retry:
2748 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2749 
2750 	if (dm_suspended_md(md)) {
2751 		r = -EINVAL;
2752 		goto out_unlock;
2753 	}
2754 
2755 	if (dm_suspended_internally_md(md)) {
2756 		/* already internally suspended, wait for internal resume */
2757 		mutex_unlock(&md->suspend_lock);
2758 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2759 		if (r)
2760 			return r;
2761 		goto retry;
2762 	}
2763 
2764 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2765 
2766 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2767 	if (r)
2768 		goto out_unlock;
2769 
2770 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2771 	dm_table_postsuspend_targets(map);
2772 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2773 
2774 out_unlock:
2775 	mutex_unlock(&md->suspend_lock);
2776 	return r;
2777 }
2778 
2779 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2780 {
2781 	if (map) {
2782 		int r = dm_table_resume_targets(map);
2783 		if (r)
2784 			return r;
2785 	}
2786 
2787 	dm_queue_flush(md);
2788 
2789 	/*
2790 	 * Flushing deferred I/Os must be done after targets are resumed
2791 	 * so that mapping of targets can work correctly.
2792 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2793 	 */
2794 	if (dm_request_based(md))
2795 		dm_start_queue(md->queue);
2796 
2797 	unlock_fs(md);
2798 
2799 	return 0;
2800 }
2801 
2802 int dm_resume(struct mapped_device *md)
2803 {
2804 	int r;
2805 	struct dm_table *map = NULL;
2806 
2807 retry:
2808 	r = -EINVAL;
2809 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2810 
2811 	if (!dm_suspended_md(md))
2812 		goto out;
2813 
2814 	if (dm_suspended_internally_md(md)) {
2815 		/* already internally suspended, wait for internal resume */
2816 		mutex_unlock(&md->suspend_lock);
2817 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2818 		if (r)
2819 			return r;
2820 		goto retry;
2821 	}
2822 
2823 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2824 	if (!map || !dm_table_get_size(map))
2825 		goto out;
2826 
2827 	r = __dm_resume(md, map);
2828 	if (r)
2829 		goto out;
2830 
2831 	clear_bit(DMF_SUSPENDED, &md->flags);
2832 out:
2833 	mutex_unlock(&md->suspend_lock);
2834 
2835 	return r;
2836 }
2837 
2838 /*
2839  * Internal suspend/resume works like userspace-driven suspend. It waits
2840  * until all bios finish and prevents issuing new bios to the target drivers.
2841  * It may be used only from the kernel.
2842  */
2843 
2844 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2845 {
2846 	struct dm_table *map = NULL;
2847 
2848 	lockdep_assert_held(&md->suspend_lock);
2849 
2850 	if (md->internal_suspend_count++)
2851 		return; /* nested internal suspend */
2852 
2853 	if (dm_suspended_md(md)) {
2854 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2855 		return; /* nest suspend */
2856 	}
2857 
2858 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2859 
2860 	/*
2861 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2862 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2863 	 * would require changing .presuspend to return an error -- avoid this
2864 	 * until there is a need for more elaborate variants of internal suspend.
2865 	 */
2866 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2867 			    DMF_SUSPENDED_INTERNALLY);
2868 
2869 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2870 	dm_table_postsuspend_targets(map);
2871 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2872 }
2873 
2874 static void __dm_internal_resume(struct mapped_device *md)
2875 {
2876 	BUG_ON(!md->internal_suspend_count);
2877 
2878 	if (--md->internal_suspend_count)
2879 		return; /* resume from nested internal suspend */
2880 
2881 	if (dm_suspended_md(md))
2882 		goto done; /* resume from nested suspend */
2883 
2884 	/*
2885 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2886 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2887 	 */
2888 	(void) __dm_resume(md, NULL);
2889 
2890 done:
2891 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2892 	smp_mb__after_atomic();
2893 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2894 }
2895 
2896 void dm_internal_suspend_noflush(struct mapped_device *md)
2897 {
2898 	mutex_lock(&md->suspend_lock);
2899 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2900 	mutex_unlock(&md->suspend_lock);
2901 }
2902 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2903 
2904 void dm_internal_resume(struct mapped_device *md)
2905 {
2906 	mutex_lock(&md->suspend_lock);
2907 	__dm_internal_resume(md);
2908 	mutex_unlock(&md->suspend_lock);
2909 }
2910 EXPORT_SYMBOL_GPL(dm_internal_resume);
2911 
2912 /*
2913  * Fast variants of internal suspend/resume hold md->suspend_lock,
2914  * which prevents interaction with userspace-driven suspend.
2915  */
2916 
2917 void dm_internal_suspend_fast(struct mapped_device *md)
2918 {
2919 	mutex_lock(&md->suspend_lock);
2920 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2921 		return;
2922 
2923 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2924 	synchronize_srcu(&md->io_barrier);
2925 	flush_workqueue(md->wq);
2926 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2927 }
2928 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2929 
2930 void dm_internal_resume_fast(struct mapped_device *md)
2931 {
2932 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2933 		goto done;
2934 
2935 	dm_queue_flush(md);
2936 
2937 done:
2938 	mutex_unlock(&md->suspend_lock);
2939 }
2940 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2941 
2942 /*-----------------------------------------------------------------
2943  * Event notification.
2944  *---------------------------------------------------------------*/
2945 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2946 		       unsigned cookie)
2947 {
2948 	int r;
2949 	unsigned noio_flag;
2950 	char udev_cookie[DM_COOKIE_LENGTH];
2951 	char *envp[] = { udev_cookie, NULL };
2952 
2953 	noio_flag = memalloc_noio_save();
2954 
2955 	if (!cookie)
2956 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2957 	else {
2958 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2959 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2960 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2961 				       action, envp);
2962 	}
2963 
2964 	memalloc_noio_restore(noio_flag);
2965 
2966 	return r;
2967 }
2968 
2969 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2970 {
2971 	return atomic_add_return(1, &md->uevent_seq);
2972 }
2973 
2974 uint32_t dm_get_event_nr(struct mapped_device *md)
2975 {
2976 	return atomic_read(&md->event_nr);
2977 }
2978 
2979 int dm_wait_event(struct mapped_device *md, int event_nr)
2980 {
2981 	return wait_event_interruptible(md->eventq,
2982 			(event_nr != atomic_read(&md->event_nr)));
2983 }
2984 
2985 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2986 {
2987 	unsigned long flags;
2988 
2989 	spin_lock_irqsave(&md->uevent_lock, flags);
2990 	list_add(elist, &md->uevent_list);
2991 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2992 }
2993 
2994 /*
2995  * The gendisk is only valid as long as you have a reference
2996  * count on 'md'.
2997  */
2998 struct gendisk *dm_disk(struct mapped_device *md)
2999 {
3000 	return md->disk;
3001 }
3002 EXPORT_SYMBOL_GPL(dm_disk);
3003 
3004 struct kobject *dm_kobject(struct mapped_device *md)
3005 {
3006 	return &md->kobj_holder.kobj;
3007 }
3008 
3009 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3010 {
3011 	struct mapped_device *md;
3012 
3013 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3014 
3015 	spin_lock(&_minor_lock);
3016 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3017 		md = NULL;
3018 		goto out;
3019 	}
3020 	dm_get(md);
3021 out:
3022 	spin_unlock(&_minor_lock);
3023 
3024 	return md;
3025 }
3026 
3027 int dm_suspended_md(struct mapped_device *md)
3028 {
3029 	return test_bit(DMF_SUSPENDED, &md->flags);
3030 }
3031 
3032 static int dm_post_suspending_md(struct mapped_device *md)
3033 {
3034 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3035 }
3036 
3037 int dm_suspended_internally_md(struct mapped_device *md)
3038 {
3039 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3040 }
3041 
3042 int dm_test_deferred_remove_flag(struct mapped_device *md)
3043 {
3044 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3045 }
3046 
3047 int dm_suspended(struct dm_target *ti)
3048 {
3049 	return dm_suspended_md(ti->table->md);
3050 }
3051 EXPORT_SYMBOL_GPL(dm_suspended);
3052 
3053 int dm_post_suspending(struct dm_target *ti)
3054 {
3055 	return dm_post_suspending_md(ti->table->md);
3056 }
3057 EXPORT_SYMBOL_GPL(dm_post_suspending);
3058 
3059 int dm_noflush_suspending(struct dm_target *ti)
3060 {
3061 	return __noflush_suspending(ti->table->md);
3062 }
3063 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3064 
3065 void dm_free_md_mempools(struct dm_md_mempools *pools)
3066 {
3067 	if (!pools)
3068 		return;
3069 
3070 	bioset_exit(&pools->bs);
3071 	bioset_exit(&pools->io_bs);
3072 
3073 	kfree(pools);
3074 }
3075 
3076 struct dm_pr {
3077 	u64	old_key;
3078 	u64	new_key;
3079 	u32	flags;
3080 	bool	abort;
3081 	bool	fail_early;
3082 	int	ret;
3083 	enum pr_type type;
3084 };
3085 
3086 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3087 		      struct dm_pr *pr)
3088 {
3089 	struct mapped_device *md = bdev->bd_disk->private_data;
3090 	struct dm_table *table;
3091 	struct dm_target *ti;
3092 	int ret = -ENOTTY, srcu_idx;
3093 
3094 	table = dm_get_live_table(md, &srcu_idx);
3095 	if (!table || !dm_table_get_size(table))
3096 		goto out;
3097 
3098 	/* We only support devices that have a single target */
3099 	if (table->num_targets != 1)
3100 		goto out;
3101 	ti = dm_table_get_target(table, 0);
3102 
3103 	if (dm_suspended_md(md)) {
3104 		ret = -EAGAIN;
3105 		goto out;
3106 	}
3107 
3108 	ret = -EINVAL;
3109 	if (!ti->type->iterate_devices)
3110 		goto out;
3111 
3112 	ti->type->iterate_devices(ti, fn, pr);
3113 	ret = 0;
3114 out:
3115 	dm_put_live_table(md, srcu_idx);
3116 	return ret;
3117 }
3118 
3119 /*
3120  * For register / unregister we need to manually call out to every path.
3121  */
3122 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3123 			    sector_t start, sector_t len, void *data)
3124 {
3125 	struct dm_pr *pr = data;
3126 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3127 	int ret;
3128 
3129 	if (!ops || !ops->pr_register) {
3130 		pr->ret = -EOPNOTSUPP;
3131 		return -1;
3132 	}
3133 
3134 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3135 	if (!ret)
3136 		return 0;
3137 
3138 	if (!pr->ret)
3139 		pr->ret = ret;
3140 
3141 	if (pr->fail_early)
3142 		return -1;
3143 
3144 	return 0;
3145 }
3146 
3147 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3148 			  u32 flags)
3149 {
3150 	struct dm_pr pr = {
3151 		.old_key	= old_key,
3152 		.new_key	= new_key,
3153 		.flags		= flags,
3154 		.fail_early	= true,
3155 		.ret		= 0,
3156 	};
3157 	int ret;
3158 
3159 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3160 	if (ret) {
3161 		/* Didn't even get to register a path */
3162 		return ret;
3163 	}
3164 
3165 	if (!pr.ret)
3166 		return 0;
3167 	ret = pr.ret;
3168 
3169 	if (!new_key)
3170 		return ret;
3171 
3172 	/* unregister all paths if we failed to register any path */
3173 	pr.old_key = new_key;
3174 	pr.new_key = 0;
3175 	pr.flags = 0;
3176 	pr.fail_early = false;
3177 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3178 	return ret;
3179 }
3180 
3181 
3182 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3183 			   sector_t start, sector_t len, void *data)
3184 {
3185 	struct dm_pr *pr = data;
3186 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3187 
3188 	if (!ops || !ops->pr_reserve) {
3189 		pr->ret = -EOPNOTSUPP;
3190 		return -1;
3191 	}
3192 
3193 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3194 	if (!pr->ret)
3195 		return -1;
3196 
3197 	return 0;
3198 }
3199 
3200 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3201 			 u32 flags)
3202 {
3203 	struct dm_pr pr = {
3204 		.old_key	= key,
3205 		.flags		= flags,
3206 		.type		= type,
3207 		.fail_early	= false,
3208 		.ret		= 0,
3209 	};
3210 	int ret;
3211 
3212 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3213 	if (ret)
3214 		return ret;
3215 
3216 	return pr.ret;
3217 }
3218 
3219 /*
3220  * If there is a non-All Registrants type of reservation, the release must be
3221  * sent down the holding path. For the cases where there is no reservation or
3222  * the path is not the holder the device will also return success, so we must
3223  * try each path to make sure we got the correct path.
3224  */
3225 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3226 			   sector_t start, sector_t len, void *data)
3227 {
3228 	struct dm_pr *pr = data;
3229 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3230 
3231 	if (!ops || !ops->pr_release) {
3232 		pr->ret = -EOPNOTSUPP;
3233 		return -1;
3234 	}
3235 
3236 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3237 	if (pr->ret)
3238 		return -1;
3239 
3240 	return 0;
3241 }
3242 
3243 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3244 {
3245 	struct dm_pr pr = {
3246 		.old_key	= key,
3247 		.type		= type,
3248 		.fail_early	= false,
3249 	};
3250 	int ret;
3251 
3252 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3253 	if (ret)
3254 		return ret;
3255 
3256 	return pr.ret;
3257 }
3258 
3259 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3260 			   sector_t start, sector_t len, void *data)
3261 {
3262 	struct dm_pr *pr = data;
3263 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3264 
3265 	if (!ops || !ops->pr_preempt) {
3266 		pr->ret = -EOPNOTSUPP;
3267 		return -1;
3268 	}
3269 
3270 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3271 				  pr->abort);
3272 	if (!pr->ret)
3273 		return -1;
3274 
3275 	return 0;
3276 }
3277 
3278 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3279 			 enum pr_type type, bool abort)
3280 {
3281 	struct dm_pr pr = {
3282 		.new_key	= new_key,
3283 		.old_key	= old_key,
3284 		.type		= type,
3285 		.fail_early	= false,
3286 	};
3287 	int ret;
3288 
3289 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3290 	if (ret)
3291 		return ret;
3292 
3293 	return pr.ret;
3294 }
3295 
3296 static int dm_pr_clear(struct block_device *bdev, u64 key)
3297 {
3298 	struct mapped_device *md = bdev->bd_disk->private_data;
3299 	const struct pr_ops *ops;
3300 	int r, srcu_idx;
3301 
3302 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3303 	if (r < 0)
3304 		goto out;
3305 
3306 	ops = bdev->bd_disk->fops->pr_ops;
3307 	if (ops && ops->pr_clear)
3308 		r = ops->pr_clear(bdev, key);
3309 	else
3310 		r = -EOPNOTSUPP;
3311 out:
3312 	dm_unprepare_ioctl(md, srcu_idx);
3313 	return r;
3314 }
3315 
3316 static const struct pr_ops dm_pr_ops = {
3317 	.pr_register	= dm_pr_register,
3318 	.pr_reserve	= dm_pr_reserve,
3319 	.pr_release	= dm_pr_release,
3320 	.pr_preempt	= dm_pr_preempt,
3321 	.pr_clear	= dm_pr_clear,
3322 };
3323 
3324 static const struct block_device_operations dm_blk_dops = {
3325 	.submit_bio = dm_submit_bio,
3326 	.poll_bio = dm_poll_bio,
3327 	.open = dm_blk_open,
3328 	.release = dm_blk_close,
3329 	.ioctl = dm_blk_ioctl,
3330 	.getgeo = dm_blk_getgeo,
3331 	.report_zones = dm_blk_report_zones,
3332 	.pr_ops = &dm_pr_ops,
3333 	.owner = THIS_MODULE
3334 };
3335 
3336 static const struct block_device_operations dm_rq_blk_dops = {
3337 	.open = dm_blk_open,
3338 	.release = dm_blk_close,
3339 	.ioctl = dm_blk_ioctl,
3340 	.getgeo = dm_blk_getgeo,
3341 	.pr_ops = &dm_pr_ops,
3342 	.owner = THIS_MODULE
3343 };
3344 
3345 static const struct dax_operations dm_dax_ops = {
3346 	.direct_access = dm_dax_direct_access,
3347 	.zero_page_range = dm_dax_zero_page_range,
3348 	.recovery_write = dm_dax_recovery_write,
3349 };
3350 
3351 /*
3352  * module hooks
3353  */
3354 module_init(dm_init);
3355 module_exit(dm_exit);
3356 
3357 module_param(major, uint, 0);
3358 MODULE_PARM_DESC(major, "The major number of the device mapper");
3359 
3360 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3361 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3362 
3363 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3364 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3365 
3366 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3367 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3368 
3369 MODULE_DESCRIPTION(DM_NAME " driver");
3370 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3371 MODULE_LICENSE("GPL");
3372