xref: /openbmc/linux/drivers/md/dm.c (revision f7af616c)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/keyslot-manager.h>
32 
33 #define DM_MSG_PREFIX "core"
34 
35 /*
36  * Cookies are numeric values sent with CHANGE and REMOVE
37  * uevents while resuming, removing or renaming the device.
38  */
39 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
40 #define DM_COOKIE_LENGTH 24
41 
42 static const char *_name = DM_NAME;
43 
44 static unsigned int major = 0;
45 static unsigned int _major = 0;
46 
47 static DEFINE_IDR(_minor_idr);
48 
49 static DEFINE_SPINLOCK(_minor_lock);
50 
51 static void do_deferred_remove(struct work_struct *w);
52 
53 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
54 
55 static struct workqueue_struct *deferred_remove_workqueue;
56 
57 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
58 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
59 
60 void dm_issue_global_event(void)
61 {
62 	atomic_inc(&dm_global_event_nr);
63 	wake_up(&dm_global_eventq);
64 }
65 
66 /*
67  * One of these is allocated (on-stack) per original bio.
68  */
69 struct clone_info {
70 	struct dm_table *map;
71 	struct bio *bio;
72 	struct dm_io *io;
73 	sector_t sector;
74 	unsigned sector_count;
75 };
76 
77 /*
78  * One of these is allocated per clone bio.
79  */
80 #define DM_TIO_MAGIC 7282014
81 struct dm_target_io {
82 	unsigned magic;
83 	struct dm_io *io;
84 	struct dm_target *ti;
85 	unsigned target_bio_nr;
86 	unsigned *len_ptr;
87 	bool inside_dm_io;
88 	struct bio clone;
89 };
90 
91 /*
92  * One of these is allocated per original bio.
93  * It contains the first clone used for that original.
94  */
95 #define DM_IO_MAGIC 5191977
96 struct dm_io {
97 	unsigned magic;
98 	struct mapped_device *md;
99 	blk_status_t status;
100 	atomic_t io_count;
101 	struct bio *orig_bio;
102 	unsigned long start_time;
103 	spinlock_t endio_lock;
104 	struct dm_stats_aux stats_aux;
105 	/* last member of dm_target_io is 'struct bio' */
106 	struct dm_target_io tio;
107 };
108 
109 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
110 #define DM_IO_BIO_OFFSET \
111 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
112 
113 void *dm_per_bio_data(struct bio *bio, size_t data_size)
114 {
115 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
116 	if (!tio->inside_dm_io)
117 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
118 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
119 }
120 EXPORT_SYMBOL_GPL(dm_per_bio_data);
121 
122 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
123 {
124 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
125 	if (io->magic == DM_IO_MAGIC)
126 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
127 	BUG_ON(io->magic != DM_TIO_MAGIC);
128 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
129 }
130 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
131 
132 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
133 {
134 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
135 }
136 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
137 
138 #define MINOR_ALLOCED ((void *)-1)
139 
140 /*
141  * Bits for the md->flags field.
142  */
143 #define DMF_BLOCK_IO_FOR_SUSPEND 0
144 #define DMF_SUSPENDED 1
145 #define DMF_FROZEN 2
146 #define DMF_FREEING 3
147 #define DMF_DELETING 4
148 #define DMF_NOFLUSH_SUSPENDING 5
149 #define DMF_DEFERRED_REMOVE 6
150 #define DMF_SUSPENDED_INTERNALLY 7
151 #define DMF_POST_SUSPENDING 8
152 
153 #define DM_NUMA_NODE NUMA_NO_NODE
154 static int dm_numa_node = DM_NUMA_NODE;
155 
156 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
157 static int swap_bios = DEFAULT_SWAP_BIOS;
158 static int get_swap_bios(void)
159 {
160 	int latch = READ_ONCE(swap_bios);
161 	if (unlikely(latch <= 0))
162 		latch = DEFAULT_SWAP_BIOS;
163 	return latch;
164 }
165 
166 /*
167  * For mempools pre-allocation at the table loading time.
168  */
169 struct dm_md_mempools {
170 	struct bio_set bs;
171 	struct bio_set io_bs;
172 };
173 
174 struct table_device {
175 	struct list_head list;
176 	refcount_t count;
177 	struct dm_dev dm_dev;
178 };
179 
180 /*
181  * Bio-based DM's mempools' reserved IOs set by the user.
182  */
183 #define RESERVED_BIO_BASED_IOS		16
184 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
185 
186 static int __dm_get_module_param_int(int *module_param, int min, int max)
187 {
188 	int param = READ_ONCE(*module_param);
189 	int modified_param = 0;
190 	bool modified = true;
191 
192 	if (param < min)
193 		modified_param = min;
194 	else if (param > max)
195 		modified_param = max;
196 	else
197 		modified = false;
198 
199 	if (modified) {
200 		(void)cmpxchg(module_param, param, modified_param);
201 		param = modified_param;
202 	}
203 
204 	return param;
205 }
206 
207 unsigned __dm_get_module_param(unsigned *module_param,
208 			       unsigned def, unsigned max)
209 {
210 	unsigned param = READ_ONCE(*module_param);
211 	unsigned modified_param = 0;
212 
213 	if (!param)
214 		modified_param = def;
215 	else if (param > max)
216 		modified_param = max;
217 
218 	if (modified_param) {
219 		(void)cmpxchg(module_param, param, modified_param);
220 		param = modified_param;
221 	}
222 
223 	return param;
224 }
225 
226 unsigned dm_get_reserved_bio_based_ios(void)
227 {
228 	return __dm_get_module_param(&reserved_bio_based_ios,
229 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
230 }
231 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
232 
233 static unsigned dm_get_numa_node(void)
234 {
235 	return __dm_get_module_param_int(&dm_numa_node,
236 					 DM_NUMA_NODE, num_online_nodes() - 1);
237 }
238 
239 static int __init local_init(void)
240 {
241 	int r;
242 
243 	r = dm_uevent_init();
244 	if (r)
245 		return r;
246 
247 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
248 	if (!deferred_remove_workqueue) {
249 		r = -ENOMEM;
250 		goto out_uevent_exit;
251 	}
252 
253 	_major = major;
254 	r = register_blkdev(_major, _name);
255 	if (r < 0)
256 		goto out_free_workqueue;
257 
258 	if (!_major)
259 		_major = r;
260 
261 	return 0;
262 
263 out_free_workqueue:
264 	destroy_workqueue(deferred_remove_workqueue);
265 out_uevent_exit:
266 	dm_uevent_exit();
267 
268 	return r;
269 }
270 
271 static void local_exit(void)
272 {
273 	flush_scheduled_work();
274 	destroy_workqueue(deferred_remove_workqueue);
275 
276 	unregister_blkdev(_major, _name);
277 	dm_uevent_exit();
278 
279 	_major = 0;
280 
281 	DMINFO("cleaned up");
282 }
283 
284 static int (*_inits[])(void) __initdata = {
285 	local_init,
286 	dm_target_init,
287 	dm_linear_init,
288 	dm_stripe_init,
289 	dm_io_init,
290 	dm_kcopyd_init,
291 	dm_interface_init,
292 	dm_statistics_init,
293 };
294 
295 static void (*_exits[])(void) = {
296 	local_exit,
297 	dm_target_exit,
298 	dm_linear_exit,
299 	dm_stripe_exit,
300 	dm_io_exit,
301 	dm_kcopyd_exit,
302 	dm_interface_exit,
303 	dm_statistics_exit,
304 };
305 
306 static int __init dm_init(void)
307 {
308 	const int count = ARRAY_SIZE(_inits);
309 
310 	int r, i;
311 
312 	for (i = 0; i < count; i++) {
313 		r = _inits[i]();
314 		if (r)
315 			goto bad;
316 	}
317 
318 	return 0;
319 
320       bad:
321 	while (i--)
322 		_exits[i]();
323 
324 	return r;
325 }
326 
327 static void __exit dm_exit(void)
328 {
329 	int i = ARRAY_SIZE(_exits);
330 
331 	while (i--)
332 		_exits[i]();
333 
334 	/*
335 	 * Should be empty by this point.
336 	 */
337 	idr_destroy(&_minor_idr);
338 }
339 
340 /*
341  * Block device functions
342  */
343 int dm_deleting_md(struct mapped_device *md)
344 {
345 	return test_bit(DMF_DELETING, &md->flags);
346 }
347 
348 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
349 {
350 	struct mapped_device *md;
351 
352 	spin_lock(&_minor_lock);
353 
354 	md = bdev->bd_disk->private_data;
355 	if (!md)
356 		goto out;
357 
358 	if (test_bit(DMF_FREEING, &md->flags) ||
359 	    dm_deleting_md(md)) {
360 		md = NULL;
361 		goto out;
362 	}
363 
364 	dm_get(md);
365 	atomic_inc(&md->open_count);
366 out:
367 	spin_unlock(&_minor_lock);
368 
369 	return md ? 0 : -ENXIO;
370 }
371 
372 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
373 {
374 	struct mapped_device *md;
375 
376 	spin_lock(&_minor_lock);
377 
378 	md = disk->private_data;
379 	if (WARN_ON(!md))
380 		goto out;
381 
382 	if (atomic_dec_and_test(&md->open_count) &&
383 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
384 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
385 
386 	dm_put(md);
387 out:
388 	spin_unlock(&_minor_lock);
389 }
390 
391 int dm_open_count(struct mapped_device *md)
392 {
393 	return atomic_read(&md->open_count);
394 }
395 
396 /*
397  * Guarantees nothing is using the device before it's deleted.
398  */
399 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
400 {
401 	int r = 0;
402 
403 	spin_lock(&_minor_lock);
404 
405 	if (dm_open_count(md)) {
406 		r = -EBUSY;
407 		if (mark_deferred)
408 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
409 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
410 		r = -EEXIST;
411 	else
412 		set_bit(DMF_DELETING, &md->flags);
413 
414 	spin_unlock(&_minor_lock);
415 
416 	return r;
417 }
418 
419 int dm_cancel_deferred_remove(struct mapped_device *md)
420 {
421 	int r = 0;
422 
423 	spin_lock(&_minor_lock);
424 
425 	if (test_bit(DMF_DELETING, &md->flags))
426 		r = -EBUSY;
427 	else
428 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
429 
430 	spin_unlock(&_minor_lock);
431 
432 	return r;
433 }
434 
435 static void do_deferred_remove(struct work_struct *w)
436 {
437 	dm_deferred_remove();
438 }
439 
440 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
441 {
442 	struct mapped_device *md = bdev->bd_disk->private_data;
443 
444 	return dm_get_geometry(md, geo);
445 }
446 
447 #ifdef CONFIG_BLK_DEV_ZONED
448 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
449 {
450 	struct dm_report_zones_args *args = data;
451 	sector_t sector_diff = args->tgt->begin - args->start;
452 
453 	/*
454 	 * Ignore zones beyond the target range.
455 	 */
456 	if (zone->start >= args->start + args->tgt->len)
457 		return 0;
458 
459 	/*
460 	 * Remap the start sector and write pointer position of the zone
461 	 * to match its position in the target range.
462 	 */
463 	zone->start += sector_diff;
464 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
465 		if (zone->cond == BLK_ZONE_COND_FULL)
466 			zone->wp = zone->start + zone->len;
467 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
468 			zone->wp = zone->start;
469 		else
470 			zone->wp += sector_diff;
471 	}
472 
473 	args->next_sector = zone->start + zone->len;
474 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
475 }
476 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
477 
478 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
479 		unsigned int nr_zones, report_zones_cb cb, void *data)
480 {
481 	struct mapped_device *md = disk->private_data;
482 	struct dm_table *map;
483 	int srcu_idx, ret;
484 	struct dm_report_zones_args args = {
485 		.next_sector = sector,
486 		.orig_data = data,
487 		.orig_cb = cb,
488 	};
489 
490 	if (dm_suspended_md(md))
491 		return -EAGAIN;
492 
493 	map = dm_get_live_table(md, &srcu_idx);
494 	if (!map) {
495 		ret = -EIO;
496 		goto out;
497 	}
498 
499 	do {
500 		struct dm_target *tgt;
501 
502 		tgt = dm_table_find_target(map, args.next_sector);
503 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
504 			ret = -EIO;
505 			goto out;
506 		}
507 
508 		args.tgt = tgt;
509 		ret = tgt->type->report_zones(tgt, &args,
510 					      nr_zones - args.zone_idx);
511 		if (ret < 0)
512 			goto out;
513 	} while (args.zone_idx < nr_zones &&
514 		 args.next_sector < get_capacity(disk));
515 
516 	ret = args.zone_idx;
517 out:
518 	dm_put_live_table(md, srcu_idx);
519 	return ret;
520 }
521 #else
522 #define dm_blk_report_zones		NULL
523 #endif /* CONFIG_BLK_DEV_ZONED */
524 
525 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
526 			    struct block_device **bdev)
527 {
528 	struct dm_target *tgt;
529 	struct dm_table *map;
530 	int r;
531 
532 retry:
533 	r = -ENOTTY;
534 	map = dm_get_live_table(md, srcu_idx);
535 	if (!map || !dm_table_get_size(map))
536 		return r;
537 
538 	/* We only support devices that have a single target */
539 	if (dm_table_get_num_targets(map) != 1)
540 		return r;
541 
542 	tgt = dm_table_get_target(map, 0);
543 	if (!tgt->type->prepare_ioctl)
544 		return r;
545 
546 	if (dm_suspended_md(md))
547 		return -EAGAIN;
548 
549 	r = tgt->type->prepare_ioctl(tgt, bdev);
550 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
551 		dm_put_live_table(md, *srcu_idx);
552 		msleep(10);
553 		goto retry;
554 	}
555 
556 	return r;
557 }
558 
559 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
560 {
561 	dm_put_live_table(md, srcu_idx);
562 }
563 
564 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
565 			unsigned int cmd, unsigned long arg)
566 {
567 	struct mapped_device *md = bdev->bd_disk->private_data;
568 	int r, srcu_idx;
569 
570 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
571 	if (r < 0)
572 		goto out;
573 
574 	if (r > 0) {
575 		/*
576 		 * Target determined this ioctl is being issued against a
577 		 * subset of the parent bdev; require extra privileges.
578 		 */
579 		if (!capable(CAP_SYS_RAWIO)) {
580 			DMDEBUG_LIMIT(
581 	"%s: sending ioctl %x to DM device without required privilege.",
582 				current->comm, cmd);
583 			r = -ENOIOCTLCMD;
584 			goto out;
585 		}
586 	}
587 
588 	if (!bdev->bd_disk->fops->ioctl)
589 		r = -ENOTTY;
590 	else
591 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
592 out:
593 	dm_unprepare_ioctl(md, srcu_idx);
594 	return r;
595 }
596 
597 u64 dm_start_time_ns_from_clone(struct bio *bio)
598 {
599 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
600 	struct dm_io *io = tio->io;
601 
602 	return jiffies_to_nsecs(io->start_time);
603 }
604 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
605 
606 static void start_io_acct(struct dm_io *io)
607 {
608 	struct mapped_device *md = io->md;
609 	struct bio *bio = io->orig_bio;
610 
611 	io->start_time = bio_start_io_acct(bio);
612 	if (unlikely(dm_stats_used(&md->stats)))
613 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
614 				    bio->bi_iter.bi_sector, bio_sectors(bio),
615 				    false, 0, &io->stats_aux);
616 }
617 
618 static void end_io_acct(struct dm_io *io)
619 {
620 	struct mapped_device *md = io->md;
621 	struct bio *bio = io->orig_bio;
622 	unsigned long duration = jiffies - io->start_time;
623 
624 	bio_end_io_acct(bio, io->start_time);
625 
626 	if (unlikely(dm_stats_used(&md->stats)))
627 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
628 				    bio->bi_iter.bi_sector, bio_sectors(bio),
629 				    true, duration, &io->stats_aux);
630 
631 	/* nudge anyone waiting on suspend queue */
632 	if (unlikely(wq_has_sleeper(&md->wait)))
633 		wake_up(&md->wait);
634 }
635 
636 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
637 {
638 	struct dm_io *io;
639 	struct dm_target_io *tio;
640 	struct bio *clone;
641 
642 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
643 	if (!clone)
644 		return NULL;
645 
646 	tio = container_of(clone, struct dm_target_io, clone);
647 	tio->inside_dm_io = true;
648 	tio->io = NULL;
649 
650 	io = container_of(tio, struct dm_io, tio);
651 	io->magic = DM_IO_MAGIC;
652 	io->status = 0;
653 	atomic_set(&io->io_count, 1);
654 	io->orig_bio = bio;
655 	io->md = md;
656 	spin_lock_init(&io->endio_lock);
657 
658 	start_io_acct(io);
659 
660 	return io;
661 }
662 
663 static void free_io(struct mapped_device *md, struct dm_io *io)
664 {
665 	bio_put(&io->tio.clone);
666 }
667 
668 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
669 				      unsigned target_bio_nr, gfp_t gfp_mask)
670 {
671 	struct dm_target_io *tio;
672 
673 	if (!ci->io->tio.io) {
674 		/* the dm_target_io embedded in ci->io is available */
675 		tio = &ci->io->tio;
676 	} else {
677 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
678 		if (!clone)
679 			return NULL;
680 
681 		tio = container_of(clone, struct dm_target_io, clone);
682 		tio->inside_dm_io = false;
683 	}
684 
685 	tio->magic = DM_TIO_MAGIC;
686 	tio->io = ci->io;
687 	tio->ti = ti;
688 	tio->target_bio_nr = target_bio_nr;
689 
690 	return tio;
691 }
692 
693 static void free_tio(struct dm_target_io *tio)
694 {
695 	if (tio->inside_dm_io)
696 		return;
697 	bio_put(&tio->clone);
698 }
699 
700 /*
701  * Add the bio to the list of deferred io.
702  */
703 static void queue_io(struct mapped_device *md, struct bio *bio)
704 {
705 	unsigned long flags;
706 
707 	spin_lock_irqsave(&md->deferred_lock, flags);
708 	bio_list_add(&md->deferred, bio);
709 	spin_unlock_irqrestore(&md->deferred_lock, flags);
710 	queue_work(md->wq, &md->work);
711 }
712 
713 /*
714  * Everyone (including functions in this file), should use this
715  * function to access the md->map field, and make sure they call
716  * dm_put_live_table() when finished.
717  */
718 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
719 {
720 	*srcu_idx = srcu_read_lock(&md->io_barrier);
721 
722 	return srcu_dereference(md->map, &md->io_barrier);
723 }
724 
725 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
726 {
727 	srcu_read_unlock(&md->io_barrier, srcu_idx);
728 }
729 
730 void dm_sync_table(struct mapped_device *md)
731 {
732 	synchronize_srcu(&md->io_barrier);
733 	synchronize_rcu_expedited();
734 }
735 
736 /*
737  * A fast alternative to dm_get_live_table/dm_put_live_table.
738  * The caller must not block between these two functions.
739  */
740 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
741 {
742 	rcu_read_lock();
743 	return rcu_dereference(md->map);
744 }
745 
746 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
747 {
748 	rcu_read_unlock();
749 }
750 
751 static char *_dm_claim_ptr = "I belong to device-mapper";
752 
753 /*
754  * Open a table device so we can use it as a map destination.
755  */
756 static int open_table_device(struct table_device *td, dev_t dev,
757 			     struct mapped_device *md)
758 {
759 	struct block_device *bdev;
760 
761 	int r;
762 
763 	BUG_ON(td->dm_dev.bdev);
764 
765 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
766 	if (IS_ERR(bdev))
767 		return PTR_ERR(bdev);
768 
769 	r = bd_link_disk_holder(bdev, dm_disk(md));
770 	if (r) {
771 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
772 		return r;
773 	}
774 
775 	td->dm_dev.bdev = bdev;
776 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
777 	return 0;
778 }
779 
780 /*
781  * Close a table device that we've been using.
782  */
783 static void close_table_device(struct table_device *td, struct mapped_device *md)
784 {
785 	if (!td->dm_dev.bdev)
786 		return;
787 
788 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
789 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
790 	put_dax(td->dm_dev.dax_dev);
791 	td->dm_dev.bdev = NULL;
792 	td->dm_dev.dax_dev = NULL;
793 }
794 
795 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
796 					      fmode_t mode)
797 {
798 	struct table_device *td;
799 
800 	list_for_each_entry(td, l, list)
801 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
802 			return td;
803 
804 	return NULL;
805 }
806 
807 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
808 			struct dm_dev **result)
809 {
810 	int r;
811 	struct table_device *td;
812 
813 	mutex_lock(&md->table_devices_lock);
814 	td = find_table_device(&md->table_devices, dev, mode);
815 	if (!td) {
816 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
817 		if (!td) {
818 			mutex_unlock(&md->table_devices_lock);
819 			return -ENOMEM;
820 		}
821 
822 		td->dm_dev.mode = mode;
823 		td->dm_dev.bdev = NULL;
824 
825 		if ((r = open_table_device(td, dev, md))) {
826 			mutex_unlock(&md->table_devices_lock);
827 			kfree(td);
828 			return r;
829 		}
830 
831 		format_dev_t(td->dm_dev.name, dev);
832 
833 		refcount_set(&td->count, 1);
834 		list_add(&td->list, &md->table_devices);
835 	} else {
836 		refcount_inc(&td->count);
837 	}
838 	mutex_unlock(&md->table_devices_lock);
839 
840 	*result = &td->dm_dev;
841 	return 0;
842 }
843 
844 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
845 {
846 	struct table_device *td = container_of(d, struct table_device, dm_dev);
847 
848 	mutex_lock(&md->table_devices_lock);
849 	if (refcount_dec_and_test(&td->count)) {
850 		close_table_device(td, md);
851 		list_del(&td->list);
852 		kfree(td);
853 	}
854 	mutex_unlock(&md->table_devices_lock);
855 }
856 
857 static void free_table_devices(struct list_head *devices)
858 {
859 	struct list_head *tmp, *next;
860 
861 	list_for_each_safe(tmp, next, devices) {
862 		struct table_device *td = list_entry(tmp, struct table_device, list);
863 
864 		DMWARN("dm_destroy: %s still exists with %d references",
865 		       td->dm_dev.name, refcount_read(&td->count));
866 		kfree(td);
867 	}
868 }
869 
870 /*
871  * Get the geometry associated with a dm device
872  */
873 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
874 {
875 	*geo = md->geometry;
876 
877 	return 0;
878 }
879 
880 /*
881  * Set the geometry of a device.
882  */
883 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
884 {
885 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
886 
887 	if (geo->start > sz) {
888 		DMWARN("Start sector is beyond the geometry limits.");
889 		return -EINVAL;
890 	}
891 
892 	md->geometry = *geo;
893 
894 	return 0;
895 }
896 
897 static int __noflush_suspending(struct mapped_device *md)
898 {
899 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
900 }
901 
902 /*
903  * Decrements the number of outstanding ios that a bio has been
904  * cloned into, completing the original io if necc.
905  */
906 static void dec_pending(struct dm_io *io, blk_status_t error)
907 {
908 	unsigned long flags;
909 	blk_status_t io_error;
910 	struct bio *bio;
911 	struct mapped_device *md = io->md;
912 
913 	/* Push-back supersedes any I/O errors */
914 	if (unlikely(error)) {
915 		spin_lock_irqsave(&io->endio_lock, flags);
916 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
917 			io->status = error;
918 		spin_unlock_irqrestore(&io->endio_lock, flags);
919 	}
920 
921 	if (atomic_dec_and_test(&io->io_count)) {
922 		if (io->status == BLK_STS_DM_REQUEUE) {
923 			/*
924 			 * Target requested pushing back the I/O.
925 			 */
926 			spin_lock_irqsave(&md->deferred_lock, flags);
927 			if (__noflush_suspending(md))
928 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
929 				bio_list_add_head(&md->deferred, io->orig_bio);
930 			else
931 				/* noflush suspend was interrupted. */
932 				io->status = BLK_STS_IOERR;
933 			spin_unlock_irqrestore(&md->deferred_lock, flags);
934 		}
935 
936 		io_error = io->status;
937 		bio = io->orig_bio;
938 		end_io_acct(io);
939 		free_io(md, io);
940 
941 		if (io_error == BLK_STS_DM_REQUEUE)
942 			return;
943 
944 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
945 			/*
946 			 * Preflush done for flush with data, reissue
947 			 * without REQ_PREFLUSH.
948 			 */
949 			bio->bi_opf &= ~REQ_PREFLUSH;
950 			queue_io(md, bio);
951 		} else {
952 			/* done with normal IO or empty flush */
953 			if (io_error)
954 				bio->bi_status = io_error;
955 			bio_endio(bio);
956 		}
957 	}
958 }
959 
960 void disable_discard(struct mapped_device *md)
961 {
962 	struct queue_limits *limits = dm_get_queue_limits(md);
963 
964 	/* device doesn't really support DISCARD, disable it */
965 	limits->max_discard_sectors = 0;
966 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
967 }
968 
969 void disable_write_same(struct mapped_device *md)
970 {
971 	struct queue_limits *limits = dm_get_queue_limits(md);
972 
973 	/* device doesn't really support WRITE SAME, disable it */
974 	limits->max_write_same_sectors = 0;
975 }
976 
977 void disable_write_zeroes(struct mapped_device *md)
978 {
979 	struct queue_limits *limits = dm_get_queue_limits(md);
980 
981 	/* device doesn't really support WRITE ZEROES, disable it */
982 	limits->max_write_zeroes_sectors = 0;
983 }
984 
985 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
986 {
987 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
988 }
989 
990 static void clone_endio(struct bio *bio)
991 {
992 	blk_status_t error = bio->bi_status;
993 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
994 	struct dm_io *io = tio->io;
995 	struct mapped_device *md = tio->io->md;
996 	dm_endio_fn endio = tio->ti->type->end_io;
997 	struct bio *orig_bio = io->orig_bio;
998 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
999 
1000 	if (unlikely(error == BLK_STS_TARGET)) {
1001 		if (bio_op(bio) == REQ_OP_DISCARD &&
1002 		    !q->limits.max_discard_sectors)
1003 			disable_discard(md);
1004 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1005 			 !q->limits.max_write_same_sectors)
1006 			disable_write_same(md);
1007 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1008 			 !q->limits.max_write_zeroes_sectors)
1009 			disable_write_zeroes(md);
1010 	}
1011 
1012 	/*
1013 	 * For zone-append bios get offset in zone of the written
1014 	 * sector and add that to the original bio sector pos.
1015 	 */
1016 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1017 		sector_t written_sector = bio->bi_iter.bi_sector;
1018 		struct request_queue *q = orig_bio->bi_bdev->bd_disk->queue;
1019 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1020 
1021 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1022 	}
1023 
1024 	if (endio) {
1025 		int r = endio(tio->ti, bio, &error);
1026 		switch (r) {
1027 		case DM_ENDIO_REQUEUE:
1028 			error = BLK_STS_DM_REQUEUE;
1029 			fallthrough;
1030 		case DM_ENDIO_DONE:
1031 			break;
1032 		case DM_ENDIO_INCOMPLETE:
1033 			/* The target will handle the io */
1034 			return;
1035 		default:
1036 			DMWARN("unimplemented target endio return value: %d", r);
1037 			BUG();
1038 		}
1039 	}
1040 
1041 	if (unlikely(swap_bios_limit(tio->ti, bio))) {
1042 		struct mapped_device *md = io->md;
1043 		up(&md->swap_bios_semaphore);
1044 	}
1045 
1046 	free_tio(tio);
1047 	dec_pending(io, error);
1048 }
1049 
1050 /*
1051  * Return maximum size of I/O possible at the supplied sector up to the current
1052  * target boundary.
1053  */
1054 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1055 						  sector_t target_offset)
1056 {
1057 	return ti->len - target_offset;
1058 }
1059 
1060 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1061 {
1062 	sector_t target_offset = dm_target_offset(ti, sector);
1063 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1064 	sector_t max_len;
1065 
1066 	/*
1067 	 * Does the target need to split IO even further?
1068 	 * - varied (per target) IO splitting is a tenet of DM; this
1069 	 *   explains why stacked chunk_sectors based splitting via
1070 	 *   blk_max_size_offset() isn't possible here. So pass in
1071 	 *   ti->max_io_len to override stacked chunk_sectors.
1072 	 */
1073 	if (ti->max_io_len) {
1074 		max_len = blk_max_size_offset(ti->table->md->queue,
1075 					      target_offset, ti->max_io_len);
1076 		if (len > max_len)
1077 			len = max_len;
1078 	}
1079 
1080 	return len;
1081 }
1082 
1083 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1084 {
1085 	if (len > UINT_MAX) {
1086 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1087 		      (unsigned long long)len, UINT_MAX);
1088 		ti->error = "Maximum size of target IO is too large";
1089 		return -EINVAL;
1090 	}
1091 
1092 	ti->max_io_len = (uint32_t) len;
1093 
1094 	return 0;
1095 }
1096 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1097 
1098 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1099 						sector_t sector, int *srcu_idx)
1100 	__acquires(md->io_barrier)
1101 {
1102 	struct dm_table *map;
1103 	struct dm_target *ti;
1104 
1105 	map = dm_get_live_table(md, srcu_idx);
1106 	if (!map)
1107 		return NULL;
1108 
1109 	ti = dm_table_find_target(map, sector);
1110 	if (!ti)
1111 		return NULL;
1112 
1113 	return ti;
1114 }
1115 
1116 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1117 				 long nr_pages, void **kaddr, pfn_t *pfn)
1118 {
1119 	struct mapped_device *md = dax_get_private(dax_dev);
1120 	sector_t sector = pgoff * PAGE_SECTORS;
1121 	struct dm_target *ti;
1122 	long len, ret = -EIO;
1123 	int srcu_idx;
1124 
1125 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1126 
1127 	if (!ti)
1128 		goto out;
1129 	if (!ti->type->direct_access)
1130 		goto out;
1131 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1132 	if (len < 1)
1133 		goto out;
1134 	nr_pages = min(len, nr_pages);
1135 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1136 
1137  out:
1138 	dm_put_live_table(md, srcu_idx);
1139 
1140 	return ret;
1141 }
1142 
1143 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1144 		int blocksize, sector_t start, sector_t len)
1145 {
1146 	struct mapped_device *md = dax_get_private(dax_dev);
1147 	struct dm_table *map;
1148 	bool ret = false;
1149 	int srcu_idx;
1150 
1151 	map = dm_get_live_table(md, &srcu_idx);
1152 	if (!map)
1153 		goto out;
1154 
1155 	ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1156 
1157 out:
1158 	dm_put_live_table(md, srcu_idx);
1159 
1160 	return ret;
1161 }
1162 
1163 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1164 				    void *addr, size_t bytes, struct iov_iter *i)
1165 {
1166 	struct mapped_device *md = dax_get_private(dax_dev);
1167 	sector_t sector = pgoff * PAGE_SECTORS;
1168 	struct dm_target *ti;
1169 	long ret = 0;
1170 	int srcu_idx;
1171 
1172 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1173 
1174 	if (!ti)
1175 		goto out;
1176 	if (!ti->type->dax_copy_from_iter) {
1177 		ret = copy_from_iter(addr, bytes, i);
1178 		goto out;
1179 	}
1180 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1181  out:
1182 	dm_put_live_table(md, srcu_idx);
1183 
1184 	return ret;
1185 }
1186 
1187 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1188 		void *addr, size_t bytes, struct iov_iter *i)
1189 {
1190 	struct mapped_device *md = dax_get_private(dax_dev);
1191 	sector_t sector = pgoff * PAGE_SECTORS;
1192 	struct dm_target *ti;
1193 	long ret = 0;
1194 	int srcu_idx;
1195 
1196 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1197 
1198 	if (!ti)
1199 		goto out;
1200 	if (!ti->type->dax_copy_to_iter) {
1201 		ret = copy_to_iter(addr, bytes, i);
1202 		goto out;
1203 	}
1204 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1205  out:
1206 	dm_put_live_table(md, srcu_idx);
1207 
1208 	return ret;
1209 }
1210 
1211 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1212 				  size_t nr_pages)
1213 {
1214 	struct mapped_device *md = dax_get_private(dax_dev);
1215 	sector_t sector = pgoff * PAGE_SECTORS;
1216 	struct dm_target *ti;
1217 	int ret = -EIO;
1218 	int srcu_idx;
1219 
1220 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1221 
1222 	if (!ti)
1223 		goto out;
1224 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1225 		/*
1226 		 * ->zero_page_range() is mandatory dax operation. If we are
1227 		 *  here, something is wrong.
1228 		 */
1229 		goto out;
1230 	}
1231 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1232  out:
1233 	dm_put_live_table(md, srcu_idx);
1234 
1235 	return ret;
1236 }
1237 
1238 /*
1239  * A target may call dm_accept_partial_bio only from the map routine.  It is
1240  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1241  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1242  *
1243  * dm_accept_partial_bio informs the dm that the target only wants to process
1244  * additional n_sectors sectors of the bio and the rest of the data should be
1245  * sent in a next bio.
1246  *
1247  * A diagram that explains the arithmetics:
1248  * +--------------------+---------------+-------+
1249  * |         1          |       2       |   3   |
1250  * +--------------------+---------------+-------+
1251  *
1252  * <-------------- *tio->len_ptr --------------->
1253  *                      <------- bi_size ------->
1254  *                      <-- n_sectors -->
1255  *
1256  * Region 1 was already iterated over with bio_advance or similar function.
1257  *	(it may be empty if the target doesn't use bio_advance)
1258  * Region 2 is the remaining bio size that the target wants to process.
1259  *	(it may be empty if region 1 is non-empty, although there is no reason
1260  *	 to make it empty)
1261  * The target requires that region 3 is to be sent in the next bio.
1262  *
1263  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1264  * the partially processed part (the sum of regions 1+2) must be the same for all
1265  * copies of the bio.
1266  */
1267 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1268 {
1269 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1270 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1271 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1272 	BUG_ON(bi_size > *tio->len_ptr);
1273 	BUG_ON(n_sectors > bi_size);
1274 	*tio->len_ptr -= bi_size - n_sectors;
1275 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1276 }
1277 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1278 
1279 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1280 {
1281 	mutex_lock(&md->swap_bios_lock);
1282 	while (latch < md->swap_bios) {
1283 		cond_resched();
1284 		down(&md->swap_bios_semaphore);
1285 		md->swap_bios--;
1286 	}
1287 	while (latch > md->swap_bios) {
1288 		cond_resched();
1289 		up(&md->swap_bios_semaphore);
1290 		md->swap_bios++;
1291 	}
1292 	mutex_unlock(&md->swap_bios_lock);
1293 }
1294 
1295 static blk_qc_t __map_bio(struct dm_target_io *tio)
1296 {
1297 	int r;
1298 	sector_t sector;
1299 	struct bio *clone = &tio->clone;
1300 	struct dm_io *io = tio->io;
1301 	struct dm_target *ti = tio->ti;
1302 	blk_qc_t ret = BLK_QC_T_NONE;
1303 
1304 	clone->bi_end_io = clone_endio;
1305 
1306 	/*
1307 	 * Map the clone.  If r == 0 we don't need to do
1308 	 * anything, the target has assumed ownership of
1309 	 * this io.
1310 	 */
1311 	atomic_inc(&io->io_count);
1312 	sector = clone->bi_iter.bi_sector;
1313 
1314 	if (unlikely(swap_bios_limit(ti, clone))) {
1315 		struct mapped_device *md = io->md;
1316 		int latch = get_swap_bios();
1317 		if (unlikely(latch != md->swap_bios))
1318 			__set_swap_bios_limit(md, latch);
1319 		down(&md->swap_bios_semaphore);
1320 	}
1321 
1322 	r = ti->type->map(ti, clone);
1323 	switch (r) {
1324 	case DM_MAPIO_SUBMITTED:
1325 		break;
1326 	case DM_MAPIO_REMAPPED:
1327 		/* the bio has been remapped so dispatch it */
1328 		trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1329 		ret = submit_bio_noacct(clone);
1330 		break;
1331 	case DM_MAPIO_KILL:
1332 		if (unlikely(swap_bios_limit(ti, clone))) {
1333 			struct mapped_device *md = io->md;
1334 			up(&md->swap_bios_semaphore);
1335 		}
1336 		free_tio(tio);
1337 		dec_pending(io, BLK_STS_IOERR);
1338 		break;
1339 	case DM_MAPIO_REQUEUE:
1340 		if (unlikely(swap_bios_limit(ti, clone))) {
1341 			struct mapped_device *md = io->md;
1342 			up(&md->swap_bios_semaphore);
1343 		}
1344 		free_tio(tio);
1345 		dec_pending(io, BLK_STS_DM_REQUEUE);
1346 		break;
1347 	default:
1348 		DMWARN("unimplemented target map return value: %d", r);
1349 		BUG();
1350 	}
1351 
1352 	return ret;
1353 }
1354 
1355 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1356 {
1357 	bio->bi_iter.bi_sector = sector;
1358 	bio->bi_iter.bi_size = to_bytes(len);
1359 }
1360 
1361 /*
1362  * Creates a bio that consists of range of complete bvecs.
1363  */
1364 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1365 		     sector_t sector, unsigned len)
1366 {
1367 	struct bio *clone = &tio->clone;
1368 	int r;
1369 
1370 	__bio_clone_fast(clone, bio);
1371 
1372 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1373 	if (r < 0)
1374 		return r;
1375 
1376 	if (bio_integrity(bio)) {
1377 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1378 			     !dm_target_passes_integrity(tio->ti->type))) {
1379 			DMWARN("%s: the target %s doesn't support integrity data.",
1380 				dm_device_name(tio->io->md),
1381 				tio->ti->type->name);
1382 			return -EIO;
1383 		}
1384 
1385 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1386 		if (r < 0)
1387 			return r;
1388 	}
1389 
1390 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1391 	clone->bi_iter.bi_size = to_bytes(len);
1392 
1393 	if (bio_integrity(bio))
1394 		bio_integrity_trim(clone);
1395 
1396 	return 0;
1397 }
1398 
1399 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1400 				struct dm_target *ti, unsigned num_bios)
1401 {
1402 	struct dm_target_io *tio;
1403 	int try;
1404 
1405 	if (!num_bios)
1406 		return;
1407 
1408 	if (num_bios == 1) {
1409 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1410 		bio_list_add(blist, &tio->clone);
1411 		return;
1412 	}
1413 
1414 	for (try = 0; try < 2; try++) {
1415 		int bio_nr;
1416 		struct bio *bio;
1417 
1418 		if (try)
1419 			mutex_lock(&ci->io->md->table_devices_lock);
1420 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1421 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1422 			if (!tio)
1423 				break;
1424 
1425 			bio_list_add(blist, &tio->clone);
1426 		}
1427 		if (try)
1428 			mutex_unlock(&ci->io->md->table_devices_lock);
1429 		if (bio_nr == num_bios)
1430 			return;
1431 
1432 		while ((bio = bio_list_pop(blist))) {
1433 			tio = container_of(bio, struct dm_target_io, clone);
1434 			free_tio(tio);
1435 		}
1436 	}
1437 }
1438 
1439 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1440 					   struct dm_target_io *tio, unsigned *len)
1441 {
1442 	struct bio *clone = &tio->clone;
1443 
1444 	tio->len_ptr = len;
1445 
1446 	__bio_clone_fast(clone, ci->bio);
1447 	if (len)
1448 		bio_setup_sector(clone, ci->sector, *len);
1449 
1450 	return __map_bio(tio);
1451 }
1452 
1453 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1454 				  unsigned num_bios, unsigned *len)
1455 {
1456 	struct bio_list blist = BIO_EMPTY_LIST;
1457 	struct bio *bio;
1458 	struct dm_target_io *tio;
1459 
1460 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1461 
1462 	while ((bio = bio_list_pop(&blist))) {
1463 		tio = container_of(bio, struct dm_target_io, clone);
1464 		(void) __clone_and_map_simple_bio(ci, tio, len);
1465 	}
1466 }
1467 
1468 static int __send_empty_flush(struct clone_info *ci)
1469 {
1470 	unsigned target_nr = 0;
1471 	struct dm_target *ti;
1472 	struct bio flush_bio;
1473 
1474 	/*
1475 	 * Use an on-stack bio for this, it's safe since we don't
1476 	 * need to reference it after submit. It's just used as
1477 	 * the basis for the clone(s).
1478 	 */
1479 	bio_init(&flush_bio, NULL, 0);
1480 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1481 	bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1482 
1483 	ci->bio = &flush_bio;
1484 	ci->sector_count = 0;
1485 
1486 	BUG_ON(bio_has_data(ci->bio));
1487 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1488 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1489 
1490 	bio_uninit(ci->bio);
1491 	return 0;
1492 }
1493 
1494 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1495 				    sector_t sector, unsigned *len)
1496 {
1497 	struct bio *bio = ci->bio;
1498 	struct dm_target_io *tio;
1499 	int r;
1500 
1501 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1502 	tio->len_ptr = len;
1503 	r = clone_bio(tio, bio, sector, *len);
1504 	if (r < 0) {
1505 		free_tio(tio);
1506 		return r;
1507 	}
1508 	(void) __map_bio(tio);
1509 
1510 	return 0;
1511 }
1512 
1513 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1514 				       unsigned num_bios)
1515 {
1516 	unsigned len;
1517 
1518 	/*
1519 	 * Even though the device advertised support for this type of
1520 	 * request, that does not mean every target supports it, and
1521 	 * reconfiguration might also have changed that since the
1522 	 * check was performed.
1523 	 */
1524 	if (!num_bios)
1525 		return -EOPNOTSUPP;
1526 
1527 	len = min_t(sector_t, ci->sector_count,
1528 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1529 
1530 	__send_duplicate_bios(ci, ti, num_bios, &len);
1531 
1532 	ci->sector += len;
1533 	ci->sector_count -= len;
1534 
1535 	return 0;
1536 }
1537 
1538 static bool is_abnormal_io(struct bio *bio)
1539 {
1540 	bool r = false;
1541 
1542 	switch (bio_op(bio)) {
1543 	case REQ_OP_DISCARD:
1544 	case REQ_OP_SECURE_ERASE:
1545 	case REQ_OP_WRITE_SAME:
1546 	case REQ_OP_WRITE_ZEROES:
1547 		r = true;
1548 		break;
1549 	}
1550 
1551 	return r;
1552 }
1553 
1554 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1555 				  int *result)
1556 {
1557 	struct bio *bio = ci->bio;
1558 	unsigned num_bios = 0;
1559 
1560 	switch (bio_op(bio)) {
1561 	case REQ_OP_DISCARD:
1562 		num_bios = ti->num_discard_bios;
1563 		break;
1564 	case REQ_OP_SECURE_ERASE:
1565 		num_bios = ti->num_secure_erase_bios;
1566 		break;
1567 	case REQ_OP_WRITE_SAME:
1568 		num_bios = ti->num_write_same_bios;
1569 		break;
1570 	case REQ_OP_WRITE_ZEROES:
1571 		num_bios = ti->num_write_zeroes_bios;
1572 		break;
1573 	default:
1574 		return false;
1575 	}
1576 
1577 	*result = __send_changing_extent_only(ci, ti, num_bios);
1578 	return true;
1579 }
1580 
1581 /*
1582  * Select the correct strategy for processing a non-flush bio.
1583  */
1584 static int __split_and_process_non_flush(struct clone_info *ci)
1585 {
1586 	struct dm_target *ti;
1587 	unsigned len;
1588 	int r;
1589 
1590 	ti = dm_table_find_target(ci->map, ci->sector);
1591 	if (!ti)
1592 		return -EIO;
1593 
1594 	if (__process_abnormal_io(ci, ti, &r))
1595 		return r;
1596 
1597 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1598 
1599 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1600 	if (r < 0)
1601 		return r;
1602 
1603 	ci->sector += len;
1604 	ci->sector_count -= len;
1605 
1606 	return 0;
1607 }
1608 
1609 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1610 			    struct dm_table *map, struct bio *bio)
1611 {
1612 	ci->map = map;
1613 	ci->io = alloc_io(md, bio);
1614 	ci->sector = bio->bi_iter.bi_sector;
1615 }
1616 
1617 #define __dm_part_stat_sub(part, field, subnd)	\
1618 	(part_stat_get(part, field) -= (subnd))
1619 
1620 /*
1621  * Entry point to split a bio into clones and submit them to the targets.
1622  */
1623 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1624 					struct dm_table *map, struct bio *bio)
1625 {
1626 	struct clone_info ci;
1627 	blk_qc_t ret = BLK_QC_T_NONE;
1628 	int error = 0;
1629 
1630 	init_clone_info(&ci, md, map, bio);
1631 
1632 	if (bio->bi_opf & REQ_PREFLUSH) {
1633 		error = __send_empty_flush(&ci);
1634 		/* dec_pending submits any data associated with flush */
1635 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1636 		ci.bio = bio;
1637 		ci.sector_count = 0;
1638 		error = __split_and_process_non_flush(&ci);
1639 	} else {
1640 		ci.bio = bio;
1641 		ci.sector_count = bio_sectors(bio);
1642 		error = __split_and_process_non_flush(&ci);
1643 		if (ci.sector_count && !error) {
1644 			/*
1645 			 * Remainder must be passed to submit_bio_noacct()
1646 			 * so that it gets handled *after* bios already submitted
1647 			 * have been completely processed.
1648 			 * We take a clone of the original to store in
1649 			 * ci.io->orig_bio to be used by end_io_acct() and
1650 			 * for dec_pending to use for completion handling.
1651 			 */
1652 			struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1653 						  GFP_NOIO, &md->queue->bio_split);
1654 			ci.io->orig_bio = b;
1655 
1656 			/*
1657 			 * Adjust IO stats for each split, otherwise upon queue
1658 			 * reentry there will be redundant IO accounting.
1659 			 * NOTE: this is a stop-gap fix, a proper fix involves
1660 			 * significant refactoring of DM core's bio splitting
1661 			 * (by eliminating DM's splitting and just using bio_split)
1662 			 */
1663 			part_stat_lock();
1664 			__dm_part_stat_sub(dm_disk(md)->part0,
1665 					   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1666 			part_stat_unlock();
1667 
1668 			bio_chain(b, bio);
1669 			trace_block_split(b, bio->bi_iter.bi_sector);
1670 			ret = submit_bio_noacct(bio);
1671 		}
1672 	}
1673 
1674 	/* drop the extra reference count */
1675 	dec_pending(ci.io, errno_to_blk_status(error));
1676 	return ret;
1677 }
1678 
1679 static blk_qc_t dm_submit_bio(struct bio *bio)
1680 {
1681 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1682 	blk_qc_t ret = BLK_QC_T_NONE;
1683 	int srcu_idx;
1684 	struct dm_table *map;
1685 
1686 	map = dm_get_live_table(md, &srcu_idx);
1687 	if (unlikely(!map)) {
1688 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1689 			    dm_device_name(md));
1690 		bio_io_error(bio);
1691 		goto out;
1692 	}
1693 
1694 	/* If suspended, queue this IO for later */
1695 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1696 		if (bio->bi_opf & REQ_NOWAIT)
1697 			bio_wouldblock_error(bio);
1698 		else if (bio->bi_opf & REQ_RAHEAD)
1699 			bio_io_error(bio);
1700 		else
1701 			queue_io(md, bio);
1702 		goto out;
1703 	}
1704 
1705 	/*
1706 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1707 	 * otherwise associated queue_limits won't be imposed.
1708 	 */
1709 	if (is_abnormal_io(bio))
1710 		blk_queue_split(&bio);
1711 
1712 	ret = __split_and_process_bio(md, map, bio);
1713 out:
1714 	dm_put_live_table(md, srcu_idx);
1715 	return ret;
1716 }
1717 
1718 /*-----------------------------------------------------------------
1719  * An IDR is used to keep track of allocated minor numbers.
1720  *---------------------------------------------------------------*/
1721 static void free_minor(int minor)
1722 {
1723 	spin_lock(&_minor_lock);
1724 	idr_remove(&_minor_idr, minor);
1725 	spin_unlock(&_minor_lock);
1726 }
1727 
1728 /*
1729  * See if the device with a specific minor # is free.
1730  */
1731 static int specific_minor(int minor)
1732 {
1733 	int r;
1734 
1735 	if (minor >= (1 << MINORBITS))
1736 		return -EINVAL;
1737 
1738 	idr_preload(GFP_KERNEL);
1739 	spin_lock(&_minor_lock);
1740 
1741 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1742 
1743 	spin_unlock(&_minor_lock);
1744 	idr_preload_end();
1745 	if (r < 0)
1746 		return r == -ENOSPC ? -EBUSY : r;
1747 	return 0;
1748 }
1749 
1750 static int next_free_minor(int *minor)
1751 {
1752 	int r;
1753 
1754 	idr_preload(GFP_KERNEL);
1755 	spin_lock(&_minor_lock);
1756 
1757 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1758 
1759 	spin_unlock(&_minor_lock);
1760 	idr_preload_end();
1761 	if (r < 0)
1762 		return r;
1763 	*minor = r;
1764 	return 0;
1765 }
1766 
1767 static const struct block_device_operations dm_blk_dops;
1768 static const struct block_device_operations dm_rq_blk_dops;
1769 static const struct dax_operations dm_dax_ops;
1770 
1771 static void dm_wq_work(struct work_struct *work);
1772 
1773 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1774 static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1775 {
1776 	dm_destroy_keyslot_manager(q->ksm);
1777 }
1778 
1779 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1780 
1781 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1782 {
1783 }
1784 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1785 
1786 static void cleanup_mapped_device(struct mapped_device *md)
1787 {
1788 	if (md->wq)
1789 		destroy_workqueue(md->wq);
1790 	bioset_exit(&md->bs);
1791 	bioset_exit(&md->io_bs);
1792 
1793 	if (md->dax_dev) {
1794 		kill_dax(md->dax_dev);
1795 		put_dax(md->dax_dev);
1796 		md->dax_dev = NULL;
1797 	}
1798 
1799 	if (md->disk) {
1800 		spin_lock(&_minor_lock);
1801 		md->disk->private_data = NULL;
1802 		spin_unlock(&_minor_lock);
1803 		del_gendisk(md->disk);
1804 		put_disk(md->disk);
1805 	}
1806 
1807 	if (md->queue) {
1808 		dm_queue_destroy_keyslot_manager(md->queue);
1809 		blk_cleanup_queue(md->queue);
1810 	}
1811 
1812 	cleanup_srcu_struct(&md->io_barrier);
1813 
1814 	mutex_destroy(&md->suspend_lock);
1815 	mutex_destroy(&md->type_lock);
1816 	mutex_destroy(&md->table_devices_lock);
1817 	mutex_destroy(&md->swap_bios_lock);
1818 
1819 	dm_mq_cleanup_mapped_device(md);
1820 }
1821 
1822 /*
1823  * Allocate and initialise a blank device with a given minor.
1824  */
1825 static struct mapped_device *alloc_dev(int minor)
1826 {
1827 	int r, numa_node_id = dm_get_numa_node();
1828 	struct mapped_device *md;
1829 	void *old_md;
1830 
1831 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1832 	if (!md) {
1833 		DMWARN("unable to allocate device, out of memory.");
1834 		return NULL;
1835 	}
1836 
1837 	if (!try_module_get(THIS_MODULE))
1838 		goto bad_module_get;
1839 
1840 	/* get a minor number for the dev */
1841 	if (minor == DM_ANY_MINOR)
1842 		r = next_free_minor(&minor);
1843 	else
1844 		r = specific_minor(minor);
1845 	if (r < 0)
1846 		goto bad_minor;
1847 
1848 	r = init_srcu_struct(&md->io_barrier);
1849 	if (r < 0)
1850 		goto bad_io_barrier;
1851 
1852 	md->numa_node_id = numa_node_id;
1853 	md->init_tio_pdu = false;
1854 	md->type = DM_TYPE_NONE;
1855 	mutex_init(&md->suspend_lock);
1856 	mutex_init(&md->type_lock);
1857 	mutex_init(&md->table_devices_lock);
1858 	spin_lock_init(&md->deferred_lock);
1859 	atomic_set(&md->holders, 1);
1860 	atomic_set(&md->open_count, 0);
1861 	atomic_set(&md->event_nr, 0);
1862 	atomic_set(&md->uevent_seq, 0);
1863 	INIT_LIST_HEAD(&md->uevent_list);
1864 	INIT_LIST_HEAD(&md->table_devices);
1865 	spin_lock_init(&md->uevent_lock);
1866 
1867 	/*
1868 	 * default to bio-based until DM table is loaded and md->type
1869 	 * established. If request-based table is loaded: blk-mq will
1870 	 * override accordingly.
1871 	 */
1872 	md->queue = blk_alloc_queue(numa_node_id);
1873 	if (!md->queue)
1874 		goto bad;
1875 
1876 	md->disk = alloc_disk_node(1, md->numa_node_id);
1877 	if (!md->disk)
1878 		goto bad;
1879 
1880 	init_waitqueue_head(&md->wait);
1881 	INIT_WORK(&md->work, dm_wq_work);
1882 	init_waitqueue_head(&md->eventq);
1883 	init_completion(&md->kobj_holder.completion);
1884 
1885 	md->swap_bios = get_swap_bios();
1886 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1887 	mutex_init(&md->swap_bios_lock);
1888 
1889 	md->disk->major = _major;
1890 	md->disk->first_minor = minor;
1891 	md->disk->fops = &dm_blk_dops;
1892 	md->disk->queue = md->queue;
1893 	md->disk->private_data = md;
1894 	sprintf(md->disk->disk_name, "dm-%d", minor);
1895 
1896 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1897 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1898 					&dm_dax_ops, 0);
1899 		if (IS_ERR(md->dax_dev))
1900 			goto bad;
1901 	}
1902 
1903 	add_disk_no_queue_reg(md->disk);
1904 	format_dev_t(md->name, MKDEV(_major, minor));
1905 
1906 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1907 	if (!md->wq)
1908 		goto bad;
1909 
1910 	dm_stats_init(&md->stats);
1911 
1912 	/* Populate the mapping, nobody knows we exist yet */
1913 	spin_lock(&_minor_lock);
1914 	old_md = idr_replace(&_minor_idr, md, minor);
1915 	spin_unlock(&_minor_lock);
1916 
1917 	BUG_ON(old_md != MINOR_ALLOCED);
1918 
1919 	return md;
1920 
1921 bad:
1922 	cleanup_mapped_device(md);
1923 bad_io_barrier:
1924 	free_minor(minor);
1925 bad_minor:
1926 	module_put(THIS_MODULE);
1927 bad_module_get:
1928 	kvfree(md);
1929 	return NULL;
1930 }
1931 
1932 static void unlock_fs(struct mapped_device *md);
1933 
1934 static void free_dev(struct mapped_device *md)
1935 {
1936 	int minor = MINOR(disk_devt(md->disk));
1937 
1938 	unlock_fs(md);
1939 
1940 	cleanup_mapped_device(md);
1941 
1942 	free_table_devices(&md->table_devices);
1943 	dm_stats_cleanup(&md->stats);
1944 	free_minor(minor);
1945 
1946 	module_put(THIS_MODULE);
1947 	kvfree(md);
1948 }
1949 
1950 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1951 {
1952 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1953 	int ret = 0;
1954 
1955 	if (dm_table_bio_based(t)) {
1956 		/*
1957 		 * The md may already have mempools that need changing.
1958 		 * If so, reload bioset because front_pad may have changed
1959 		 * because a different table was loaded.
1960 		 */
1961 		bioset_exit(&md->bs);
1962 		bioset_exit(&md->io_bs);
1963 
1964 	} else if (bioset_initialized(&md->bs)) {
1965 		/*
1966 		 * There's no need to reload with request-based dm
1967 		 * because the size of front_pad doesn't change.
1968 		 * Note for future: If you are to reload bioset,
1969 		 * prep-ed requests in the queue may refer
1970 		 * to bio from the old bioset, so you must walk
1971 		 * through the queue to unprep.
1972 		 */
1973 		goto out;
1974 	}
1975 
1976 	BUG_ON(!p ||
1977 	       bioset_initialized(&md->bs) ||
1978 	       bioset_initialized(&md->io_bs));
1979 
1980 	ret = bioset_init_from_src(&md->bs, &p->bs);
1981 	if (ret)
1982 		goto out;
1983 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1984 	if (ret)
1985 		bioset_exit(&md->bs);
1986 out:
1987 	/* mempool bind completed, no longer need any mempools in the table */
1988 	dm_table_free_md_mempools(t);
1989 	return ret;
1990 }
1991 
1992 /*
1993  * Bind a table to the device.
1994  */
1995 static void event_callback(void *context)
1996 {
1997 	unsigned long flags;
1998 	LIST_HEAD(uevents);
1999 	struct mapped_device *md = (struct mapped_device *) context;
2000 
2001 	spin_lock_irqsave(&md->uevent_lock, flags);
2002 	list_splice_init(&md->uevent_list, &uevents);
2003 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2004 
2005 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2006 
2007 	atomic_inc(&md->event_nr);
2008 	wake_up(&md->eventq);
2009 	dm_issue_global_event();
2010 }
2011 
2012 /*
2013  * Returns old map, which caller must destroy.
2014  */
2015 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2016 			       struct queue_limits *limits)
2017 {
2018 	struct dm_table *old_map;
2019 	struct request_queue *q = md->queue;
2020 	bool request_based = dm_table_request_based(t);
2021 	sector_t size;
2022 	int ret;
2023 
2024 	lockdep_assert_held(&md->suspend_lock);
2025 
2026 	size = dm_table_get_size(t);
2027 
2028 	/*
2029 	 * Wipe any geometry if the size of the table changed.
2030 	 */
2031 	if (size != dm_get_size(md))
2032 		memset(&md->geometry, 0, sizeof(md->geometry));
2033 
2034 	if (!get_capacity(md->disk))
2035 		set_capacity(md->disk, size);
2036 	else
2037 		set_capacity_and_notify(md->disk, size);
2038 
2039 	dm_table_event_callback(t, event_callback, md);
2040 
2041 	/*
2042 	 * The queue hasn't been stopped yet, if the old table type wasn't
2043 	 * for request-based during suspension.  So stop it to prevent
2044 	 * I/O mapping before resume.
2045 	 * This must be done before setting the queue restrictions,
2046 	 * because request-based dm may be run just after the setting.
2047 	 */
2048 	if (request_based)
2049 		dm_stop_queue(q);
2050 
2051 	if (request_based) {
2052 		/*
2053 		 * Leverage the fact that request-based DM targets are
2054 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2055 		 */
2056 		md->immutable_target = dm_table_get_immutable_target(t);
2057 	}
2058 
2059 	ret = __bind_mempools(md, t);
2060 	if (ret) {
2061 		old_map = ERR_PTR(ret);
2062 		goto out;
2063 	}
2064 
2065 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2066 	rcu_assign_pointer(md->map, (void *)t);
2067 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2068 
2069 	dm_table_set_restrictions(t, q, limits);
2070 	if (old_map)
2071 		dm_sync_table(md);
2072 
2073 out:
2074 	return old_map;
2075 }
2076 
2077 /*
2078  * Returns unbound table for the caller to free.
2079  */
2080 static struct dm_table *__unbind(struct mapped_device *md)
2081 {
2082 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2083 
2084 	if (!map)
2085 		return NULL;
2086 
2087 	dm_table_event_callback(map, NULL, NULL);
2088 	RCU_INIT_POINTER(md->map, NULL);
2089 	dm_sync_table(md);
2090 
2091 	return map;
2092 }
2093 
2094 /*
2095  * Constructor for a new device.
2096  */
2097 int dm_create(int minor, struct mapped_device **result)
2098 {
2099 	int r;
2100 	struct mapped_device *md;
2101 
2102 	md = alloc_dev(minor);
2103 	if (!md)
2104 		return -ENXIO;
2105 
2106 	r = dm_sysfs_init(md);
2107 	if (r) {
2108 		free_dev(md);
2109 		return r;
2110 	}
2111 
2112 	*result = md;
2113 	return 0;
2114 }
2115 
2116 /*
2117  * Functions to manage md->type.
2118  * All are required to hold md->type_lock.
2119  */
2120 void dm_lock_md_type(struct mapped_device *md)
2121 {
2122 	mutex_lock(&md->type_lock);
2123 }
2124 
2125 void dm_unlock_md_type(struct mapped_device *md)
2126 {
2127 	mutex_unlock(&md->type_lock);
2128 }
2129 
2130 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2131 {
2132 	BUG_ON(!mutex_is_locked(&md->type_lock));
2133 	md->type = type;
2134 }
2135 
2136 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2137 {
2138 	return md->type;
2139 }
2140 
2141 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2142 {
2143 	return md->immutable_target_type;
2144 }
2145 
2146 /*
2147  * The queue_limits are only valid as long as you have a reference
2148  * count on 'md'.
2149  */
2150 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2151 {
2152 	BUG_ON(!atomic_read(&md->holders));
2153 	return &md->queue->limits;
2154 }
2155 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2156 
2157 /*
2158  * Setup the DM device's queue based on md's type
2159  */
2160 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2161 {
2162 	int r;
2163 	struct queue_limits limits;
2164 	enum dm_queue_mode type = dm_get_md_type(md);
2165 
2166 	switch (type) {
2167 	case DM_TYPE_REQUEST_BASED:
2168 		md->disk->fops = &dm_rq_blk_dops;
2169 		r = dm_mq_init_request_queue(md, t);
2170 		if (r) {
2171 			DMERR("Cannot initialize queue for request-based dm mapped device");
2172 			return r;
2173 		}
2174 		break;
2175 	case DM_TYPE_BIO_BASED:
2176 	case DM_TYPE_DAX_BIO_BASED:
2177 		break;
2178 	case DM_TYPE_NONE:
2179 		WARN_ON_ONCE(true);
2180 		break;
2181 	}
2182 
2183 	r = dm_calculate_queue_limits(t, &limits);
2184 	if (r) {
2185 		DMERR("Cannot calculate initial queue limits");
2186 		return r;
2187 	}
2188 	dm_table_set_restrictions(t, md->queue, &limits);
2189 	blk_register_queue(md->disk);
2190 
2191 	return 0;
2192 }
2193 
2194 struct mapped_device *dm_get_md(dev_t dev)
2195 {
2196 	struct mapped_device *md;
2197 	unsigned minor = MINOR(dev);
2198 
2199 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2200 		return NULL;
2201 
2202 	spin_lock(&_minor_lock);
2203 
2204 	md = idr_find(&_minor_idr, minor);
2205 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2206 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2207 		md = NULL;
2208 		goto out;
2209 	}
2210 	dm_get(md);
2211 out:
2212 	spin_unlock(&_minor_lock);
2213 
2214 	return md;
2215 }
2216 EXPORT_SYMBOL_GPL(dm_get_md);
2217 
2218 void *dm_get_mdptr(struct mapped_device *md)
2219 {
2220 	return md->interface_ptr;
2221 }
2222 
2223 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2224 {
2225 	md->interface_ptr = ptr;
2226 }
2227 
2228 void dm_get(struct mapped_device *md)
2229 {
2230 	atomic_inc(&md->holders);
2231 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2232 }
2233 
2234 int dm_hold(struct mapped_device *md)
2235 {
2236 	spin_lock(&_minor_lock);
2237 	if (test_bit(DMF_FREEING, &md->flags)) {
2238 		spin_unlock(&_minor_lock);
2239 		return -EBUSY;
2240 	}
2241 	dm_get(md);
2242 	spin_unlock(&_minor_lock);
2243 	return 0;
2244 }
2245 EXPORT_SYMBOL_GPL(dm_hold);
2246 
2247 const char *dm_device_name(struct mapped_device *md)
2248 {
2249 	return md->name;
2250 }
2251 EXPORT_SYMBOL_GPL(dm_device_name);
2252 
2253 static void __dm_destroy(struct mapped_device *md, bool wait)
2254 {
2255 	struct dm_table *map;
2256 	int srcu_idx;
2257 
2258 	might_sleep();
2259 
2260 	spin_lock(&_minor_lock);
2261 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2262 	set_bit(DMF_FREEING, &md->flags);
2263 	spin_unlock(&_minor_lock);
2264 
2265 	blk_set_queue_dying(md->queue);
2266 
2267 	/*
2268 	 * Take suspend_lock so that presuspend and postsuspend methods
2269 	 * do not race with internal suspend.
2270 	 */
2271 	mutex_lock(&md->suspend_lock);
2272 	map = dm_get_live_table(md, &srcu_idx);
2273 	if (!dm_suspended_md(md)) {
2274 		dm_table_presuspend_targets(map);
2275 		set_bit(DMF_SUSPENDED, &md->flags);
2276 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2277 		dm_table_postsuspend_targets(map);
2278 	}
2279 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2280 	dm_put_live_table(md, srcu_idx);
2281 	mutex_unlock(&md->suspend_lock);
2282 
2283 	/*
2284 	 * Rare, but there may be I/O requests still going to complete,
2285 	 * for example.  Wait for all references to disappear.
2286 	 * No one should increment the reference count of the mapped_device,
2287 	 * after the mapped_device state becomes DMF_FREEING.
2288 	 */
2289 	if (wait)
2290 		while (atomic_read(&md->holders))
2291 			msleep(1);
2292 	else if (atomic_read(&md->holders))
2293 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2294 		       dm_device_name(md), atomic_read(&md->holders));
2295 
2296 	dm_sysfs_exit(md);
2297 	dm_table_destroy(__unbind(md));
2298 	free_dev(md);
2299 }
2300 
2301 void dm_destroy(struct mapped_device *md)
2302 {
2303 	__dm_destroy(md, true);
2304 }
2305 
2306 void dm_destroy_immediate(struct mapped_device *md)
2307 {
2308 	__dm_destroy(md, false);
2309 }
2310 
2311 void dm_put(struct mapped_device *md)
2312 {
2313 	atomic_dec(&md->holders);
2314 }
2315 EXPORT_SYMBOL_GPL(dm_put);
2316 
2317 static bool md_in_flight_bios(struct mapped_device *md)
2318 {
2319 	int cpu;
2320 	struct block_device *part = dm_disk(md)->part0;
2321 	long sum = 0;
2322 
2323 	for_each_possible_cpu(cpu) {
2324 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2325 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2326 	}
2327 
2328 	return sum != 0;
2329 }
2330 
2331 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2332 {
2333 	int r = 0;
2334 	DEFINE_WAIT(wait);
2335 
2336 	while (true) {
2337 		prepare_to_wait(&md->wait, &wait, task_state);
2338 
2339 		if (!md_in_flight_bios(md))
2340 			break;
2341 
2342 		if (signal_pending_state(task_state, current)) {
2343 			r = -EINTR;
2344 			break;
2345 		}
2346 
2347 		io_schedule();
2348 	}
2349 	finish_wait(&md->wait, &wait);
2350 
2351 	return r;
2352 }
2353 
2354 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2355 {
2356 	int r = 0;
2357 
2358 	if (!queue_is_mq(md->queue))
2359 		return dm_wait_for_bios_completion(md, task_state);
2360 
2361 	while (true) {
2362 		if (!blk_mq_queue_inflight(md->queue))
2363 			break;
2364 
2365 		if (signal_pending_state(task_state, current)) {
2366 			r = -EINTR;
2367 			break;
2368 		}
2369 
2370 		msleep(5);
2371 	}
2372 
2373 	return r;
2374 }
2375 
2376 /*
2377  * Process the deferred bios
2378  */
2379 static void dm_wq_work(struct work_struct *work)
2380 {
2381 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2382 	struct bio *bio;
2383 
2384 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2385 		spin_lock_irq(&md->deferred_lock);
2386 		bio = bio_list_pop(&md->deferred);
2387 		spin_unlock_irq(&md->deferred_lock);
2388 
2389 		if (!bio)
2390 			break;
2391 
2392 		submit_bio_noacct(bio);
2393 	}
2394 }
2395 
2396 static void dm_queue_flush(struct mapped_device *md)
2397 {
2398 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2399 	smp_mb__after_atomic();
2400 	queue_work(md->wq, &md->work);
2401 }
2402 
2403 /*
2404  * Swap in a new table, returning the old one for the caller to destroy.
2405  */
2406 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2407 {
2408 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2409 	struct queue_limits limits;
2410 	int r;
2411 
2412 	mutex_lock(&md->suspend_lock);
2413 
2414 	/* device must be suspended */
2415 	if (!dm_suspended_md(md))
2416 		goto out;
2417 
2418 	/*
2419 	 * If the new table has no data devices, retain the existing limits.
2420 	 * This helps multipath with queue_if_no_path if all paths disappear,
2421 	 * then new I/O is queued based on these limits, and then some paths
2422 	 * reappear.
2423 	 */
2424 	if (dm_table_has_no_data_devices(table)) {
2425 		live_map = dm_get_live_table_fast(md);
2426 		if (live_map)
2427 			limits = md->queue->limits;
2428 		dm_put_live_table_fast(md);
2429 	}
2430 
2431 	if (!live_map) {
2432 		r = dm_calculate_queue_limits(table, &limits);
2433 		if (r) {
2434 			map = ERR_PTR(r);
2435 			goto out;
2436 		}
2437 	}
2438 
2439 	map = __bind(md, table, &limits);
2440 	dm_issue_global_event();
2441 
2442 out:
2443 	mutex_unlock(&md->suspend_lock);
2444 	return map;
2445 }
2446 
2447 /*
2448  * Functions to lock and unlock any filesystem running on the
2449  * device.
2450  */
2451 static int lock_fs(struct mapped_device *md)
2452 {
2453 	int r;
2454 
2455 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2456 
2457 	r = freeze_bdev(md->disk->part0);
2458 	if (!r)
2459 		set_bit(DMF_FROZEN, &md->flags);
2460 	return r;
2461 }
2462 
2463 static void unlock_fs(struct mapped_device *md)
2464 {
2465 	if (!test_bit(DMF_FROZEN, &md->flags))
2466 		return;
2467 	thaw_bdev(md->disk->part0);
2468 	clear_bit(DMF_FROZEN, &md->flags);
2469 }
2470 
2471 /*
2472  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2473  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2474  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2475  *
2476  * If __dm_suspend returns 0, the device is completely quiescent
2477  * now. There is no request-processing activity. All new requests
2478  * are being added to md->deferred list.
2479  */
2480 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2481 			unsigned suspend_flags, long task_state,
2482 			int dmf_suspended_flag)
2483 {
2484 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2485 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2486 	int r;
2487 
2488 	lockdep_assert_held(&md->suspend_lock);
2489 
2490 	/*
2491 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2492 	 * This flag is cleared before dm_suspend returns.
2493 	 */
2494 	if (noflush)
2495 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2496 	else
2497 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2498 
2499 	/*
2500 	 * This gets reverted if there's an error later and the targets
2501 	 * provide the .presuspend_undo hook.
2502 	 */
2503 	dm_table_presuspend_targets(map);
2504 
2505 	/*
2506 	 * Flush I/O to the device.
2507 	 * Any I/O submitted after lock_fs() may not be flushed.
2508 	 * noflush takes precedence over do_lockfs.
2509 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2510 	 */
2511 	if (!noflush && do_lockfs) {
2512 		r = lock_fs(md);
2513 		if (r) {
2514 			dm_table_presuspend_undo_targets(map);
2515 			return r;
2516 		}
2517 	}
2518 
2519 	/*
2520 	 * Here we must make sure that no processes are submitting requests
2521 	 * to target drivers i.e. no one may be executing
2522 	 * __split_and_process_bio from dm_submit_bio.
2523 	 *
2524 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2525 	 * we take the write lock. To prevent any process from reentering
2526 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2527 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2528 	 * flush_workqueue(md->wq).
2529 	 */
2530 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2531 	if (map)
2532 		synchronize_srcu(&md->io_barrier);
2533 
2534 	/*
2535 	 * Stop md->queue before flushing md->wq in case request-based
2536 	 * dm defers requests to md->wq from md->queue.
2537 	 */
2538 	if (dm_request_based(md))
2539 		dm_stop_queue(md->queue);
2540 
2541 	flush_workqueue(md->wq);
2542 
2543 	/*
2544 	 * At this point no more requests are entering target request routines.
2545 	 * We call dm_wait_for_completion to wait for all existing requests
2546 	 * to finish.
2547 	 */
2548 	r = dm_wait_for_completion(md, task_state);
2549 	if (!r)
2550 		set_bit(dmf_suspended_flag, &md->flags);
2551 
2552 	if (noflush)
2553 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2554 	if (map)
2555 		synchronize_srcu(&md->io_barrier);
2556 
2557 	/* were we interrupted ? */
2558 	if (r < 0) {
2559 		dm_queue_flush(md);
2560 
2561 		if (dm_request_based(md))
2562 			dm_start_queue(md->queue);
2563 
2564 		unlock_fs(md);
2565 		dm_table_presuspend_undo_targets(map);
2566 		/* pushback list is already flushed, so skip flush */
2567 	}
2568 
2569 	return r;
2570 }
2571 
2572 /*
2573  * We need to be able to change a mapping table under a mounted
2574  * filesystem.  For example we might want to move some data in
2575  * the background.  Before the table can be swapped with
2576  * dm_bind_table, dm_suspend must be called to flush any in
2577  * flight bios and ensure that any further io gets deferred.
2578  */
2579 /*
2580  * Suspend mechanism in request-based dm.
2581  *
2582  * 1. Flush all I/Os by lock_fs() if needed.
2583  * 2. Stop dispatching any I/O by stopping the request_queue.
2584  * 3. Wait for all in-flight I/Os to be completed or requeued.
2585  *
2586  * To abort suspend, start the request_queue.
2587  */
2588 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2589 {
2590 	struct dm_table *map = NULL;
2591 	int r = 0;
2592 
2593 retry:
2594 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2595 
2596 	if (dm_suspended_md(md)) {
2597 		r = -EINVAL;
2598 		goto out_unlock;
2599 	}
2600 
2601 	if (dm_suspended_internally_md(md)) {
2602 		/* already internally suspended, wait for internal resume */
2603 		mutex_unlock(&md->suspend_lock);
2604 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2605 		if (r)
2606 			return r;
2607 		goto retry;
2608 	}
2609 
2610 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2611 
2612 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2613 	if (r)
2614 		goto out_unlock;
2615 
2616 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2617 	dm_table_postsuspend_targets(map);
2618 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2619 
2620 out_unlock:
2621 	mutex_unlock(&md->suspend_lock);
2622 	return r;
2623 }
2624 
2625 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2626 {
2627 	if (map) {
2628 		int r = dm_table_resume_targets(map);
2629 		if (r)
2630 			return r;
2631 	}
2632 
2633 	dm_queue_flush(md);
2634 
2635 	/*
2636 	 * Flushing deferred I/Os must be done after targets are resumed
2637 	 * so that mapping of targets can work correctly.
2638 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2639 	 */
2640 	if (dm_request_based(md))
2641 		dm_start_queue(md->queue);
2642 
2643 	unlock_fs(md);
2644 
2645 	return 0;
2646 }
2647 
2648 int dm_resume(struct mapped_device *md)
2649 {
2650 	int r;
2651 	struct dm_table *map = NULL;
2652 
2653 retry:
2654 	r = -EINVAL;
2655 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2656 
2657 	if (!dm_suspended_md(md))
2658 		goto out;
2659 
2660 	if (dm_suspended_internally_md(md)) {
2661 		/* already internally suspended, wait for internal resume */
2662 		mutex_unlock(&md->suspend_lock);
2663 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2664 		if (r)
2665 			return r;
2666 		goto retry;
2667 	}
2668 
2669 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2670 	if (!map || !dm_table_get_size(map))
2671 		goto out;
2672 
2673 	r = __dm_resume(md, map);
2674 	if (r)
2675 		goto out;
2676 
2677 	clear_bit(DMF_SUSPENDED, &md->flags);
2678 out:
2679 	mutex_unlock(&md->suspend_lock);
2680 
2681 	return r;
2682 }
2683 
2684 /*
2685  * Internal suspend/resume works like userspace-driven suspend. It waits
2686  * until all bios finish and prevents issuing new bios to the target drivers.
2687  * It may be used only from the kernel.
2688  */
2689 
2690 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2691 {
2692 	struct dm_table *map = NULL;
2693 
2694 	lockdep_assert_held(&md->suspend_lock);
2695 
2696 	if (md->internal_suspend_count++)
2697 		return; /* nested internal suspend */
2698 
2699 	if (dm_suspended_md(md)) {
2700 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2701 		return; /* nest suspend */
2702 	}
2703 
2704 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2705 
2706 	/*
2707 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2708 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2709 	 * would require changing .presuspend to return an error -- avoid this
2710 	 * until there is a need for more elaborate variants of internal suspend.
2711 	 */
2712 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2713 			    DMF_SUSPENDED_INTERNALLY);
2714 
2715 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2716 	dm_table_postsuspend_targets(map);
2717 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2718 }
2719 
2720 static void __dm_internal_resume(struct mapped_device *md)
2721 {
2722 	BUG_ON(!md->internal_suspend_count);
2723 
2724 	if (--md->internal_suspend_count)
2725 		return; /* resume from nested internal suspend */
2726 
2727 	if (dm_suspended_md(md))
2728 		goto done; /* resume from nested suspend */
2729 
2730 	/*
2731 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2732 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2733 	 */
2734 	(void) __dm_resume(md, NULL);
2735 
2736 done:
2737 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2738 	smp_mb__after_atomic();
2739 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2740 }
2741 
2742 void dm_internal_suspend_noflush(struct mapped_device *md)
2743 {
2744 	mutex_lock(&md->suspend_lock);
2745 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2746 	mutex_unlock(&md->suspend_lock);
2747 }
2748 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2749 
2750 void dm_internal_resume(struct mapped_device *md)
2751 {
2752 	mutex_lock(&md->suspend_lock);
2753 	__dm_internal_resume(md);
2754 	mutex_unlock(&md->suspend_lock);
2755 }
2756 EXPORT_SYMBOL_GPL(dm_internal_resume);
2757 
2758 /*
2759  * Fast variants of internal suspend/resume hold md->suspend_lock,
2760  * which prevents interaction with userspace-driven suspend.
2761  */
2762 
2763 void dm_internal_suspend_fast(struct mapped_device *md)
2764 {
2765 	mutex_lock(&md->suspend_lock);
2766 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2767 		return;
2768 
2769 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2770 	synchronize_srcu(&md->io_barrier);
2771 	flush_workqueue(md->wq);
2772 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2773 }
2774 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2775 
2776 void dm_internal_resume_fast(struct mapped_device *md)
2777 {
2778 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2779 		goto done;
2780 
2781 	dm_queue_flush(md);
2782 
2783 done:
2784 	mutex_unlock(&md->suspend_lock);
2785 }
2786 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2787 
2788 /*-----------------------------------------------------------------
2789  * Event notification.
2790  *---------------------------------------------------------------*/
2791 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2792 		       unsigned cookie)
2793 {
2794 	int r;
2795 	unsigned noio_flag;
2796 	char udev_cookie[DM_COOKIE_LENGTH];
2797 	char *envp[] = { udev_cookie, NULL };
2798 
2799 	noio_flag = memalloc_noio_save();
2800 
2801 	if (!cookie)
2802 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2803 	else {
2804 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2805 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2806 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2807 				       action, envp);
2808 	}
2809 
2810 	memalloc_noio_restore(noio_flag);
2811 
2812 	return r;
2813 }
2814 
2815 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2816 {
2817 	return atomic_add_return(1, &md->uevent_seq);
2818 }
2819 
2820 uint32_t dm_get_event_nr(struct mapped_device *md)
2821 {
2822 	return atomic_read(&md->event_nr);
2823 }
2824 
2825 int dm_wait_event(struct mapped_device *md, int event_nr)
2826 {
2827 	return wait_event_interruptible(md->eventq,
2828 			(event_nr != atomic_read(&md->event_nr)));
2829 }
2830 
2831 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2832 {
2833 	unsigned long flags;
2834 
2835 	spin_lock_irqsave(&md->uevent_lock, flags);
2836 	list_add(elist, &md->uevent_list);
2837 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2838 }
2839 
2840 /*
2841  * The gendisk is only valid as long as you have a reference
2842  * count on 'md'.
2843  */
2844 struct gendisk *dm_disk(struct mapped_device *md)
2845 {
2846 	return md->disk;
2847 }
2848 EXPORT_SYMBOL_GPL(dm_disk);
2849 
2850 struct kobject *dm_kobject(struct mapped_device *md)
2851 {
2852 	return &md->kobj_holder.kobj;
2853 }
2854 
2855 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2856 {
2857 	struct mapped_device *md;
2858 
2859 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2860 
2861 	spin_lock(&_minor_lock);
2862 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2863 		md = NULL;
2864 		goto out;
2865 	}
2866 	dm_get(md);
2867 out:
2868 	spin_unlock(&_minor_lock);
2869 
2870 	return md;
2871 }
2872 
2873 int dm_suspended_md(struct mapped_device *md)
2874 {
2875 	return test_bit(DMF_SUSPENDED, &md->flags);
2876 }
2877 
2878 static int dm_post_suspending_md(struct mapped_device *md)
2879 {
2880 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2881 }
2882 
2883 int dm_suspended_internally_md(struct mapped_device *md)
2884 {
2885 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2886 }
2887 
2888 int dm_test_deferred_remove_flag(struct mapped_device *md)
2889 {
2890 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2891 }
2892 
2893 int dm_suspended(struct dm_target *ti)
2894 {
2895 	return dm_suspended_md(ti->table->md);
2896 }
2897 EXPORT_SYMBOL_GPL(dm_suspended);
2898 
2899 int dm_post_suspending(struct dm_target *ti)
2900 {
2901 	return dm_post_suspending_md(ti->table->md);
2902 }
2903 EXPORT_SYMBOL_GPL(dm_post_suspending);
2904 
2905 int dm_noflush_suspending(struct dm_target *ti)
2906 {
2907 	return __noflush_suspending(ti->table->md);
2908 }
2909 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2910 
2911 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2912 					    unsigned integrity, unsigned per_io_data_size,
2913 					    unsigned min_pool_size)
2914 {
2915 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2916 	unsigned int pool_size = 0;
2917 	unsigned int front_pad, io_front_pad;
2918 	int ret;
2919 
2920 	if (!pools)
2921 		return NULL;
2922 
2923 	switch (type) {
2924 	case DM_TYPE_BIO_BASED:
2925 	case DM_TYPE_DAX_BIO_BASED:
2926 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2927 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2928 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2929 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2930 		if (ret)
2931 			goto out;
2932 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2933 			goto out;
2934 		break;
2935 	case DM_TYPE_REQUEST_BASED:
2936 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2937 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2938 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2939 		break;
2940 	default:
2941 		BUG();
2942 	}
2943 
2944 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2945 	if (ret)
2946 		goto out;
2947 
2948 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2949 		goto out;
2950 
2951 	return pools;
2952 
2953 out:
2954 	dm_free_md_mempools(pools);
2955 
2956 	return NULL;
2957 }
2958 
2959 void dm_free_md_mempools(struct dm_md_mempools *pools)
2960 {
2961 	if (!pools)
2962 		return;
2963 
2964 	bioset_exit(&pools->bs);
2965 	bioset_exit(&pools->io_bs);
2966 
2967 	kfree(pools);
2968 }
2969 
2970 struct dm_pr {
2971 	u64	old_key;
2972 	u64	new_key;
2973 	u32	flags;
2974 	bool	fail_early;
2975 };
2976 
2977 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2978 		      void *data)
2979 {
2980 	struct mapped_device *md = bdev->bd_disk->private_data;
2981 	struct dm_table *table;
2982 	struct dm_target *ti;
2983 	int ret = -ENOTTY, srcu_idx;
2984 
2985 	table = dm_get_live_table(md, &srcu_idx);
2986 	if (!table || !dm_table_get_size(table))
2987 		goto out;
2988 
2989 	/* We only support devices that have a single target */
2990 	if (dm_table_get_num_targets(table) != 1)
2991 		goto out;
2992 	ti = dm_table_get_target(table, 0);
2993 
2994 	ret = -EINVAL;
2995 	if (!ti->type->iterate_devices)
2996 		goto out;
2997 
2998 	ret = ti->type->iterate_devices(ti, fn, data);
2999 out:
3000 	dm_put_live_table(md, srcu_idx);
3001 	return ret;
3002 }
3003 
3004 /*
3005  * For register / unregister we need to manually call out to every path.
3006  */
3007 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3008 			    sector_t start, sector_t len, void *data)
3009 {
3010 	struct dm_pr *pr = data;
3011 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3012 
3013 	if (!ops || !ops->pr_register)
3014 		return -EOPNOTSUPP;
3015 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3016 }
3017 
3018 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3019 			  u32 flags)
3020 {
3021 	struct dm_pr pr = {
3022 		.old_key	= old_key,
3023 		.new_key	= new_key,
3024 		.flags		= flags,
3025 		.fail_early	= true,
3026 	};
3027 	int ret;
3028 
3029 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3030 	if (ret && new_key) {
3031 		/* unregister all paths if we failed to register any path */
3032 		pr.old_key = new_key;
3033 		pr.new_key = 0;
3034 		pr.flags = 0;
3035 		pr.fail_early = false;
3036 		dm_call_pr(bdev, __dm_pr_register, &pr);
3037 	}
3038 
3039 	return ret;
3040 }
3041 
3042 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3043 			 u32 flags)
3044 {
3045 	struct mapped_device *md = bdev->bd_disk->private_data;
3046 	const struct pr_ops *ops;
3047 	int r, srcu_idx;
3048 
3049 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3050 	if (r < 0)
3051 		goto out;
3052 
3053 	ops = bdev->bd_disk->fops->pr_ops;
3054 	if (ops && ops->pr_reserve)
3055 		r = ops->pr_reserve(bdev, key, type, flags);
3056 	else
3057 		r = -EOPNOTSUPP;
3058 out:
3059 	dm_unprepare_ioctl(md, srcu_idx);
3060 	return r;
3061 }
3062 
3063 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3064 {
3065 	struct mapped_device *md = bdev->bd_disk->private_data;
3066 	const struct pr_ops *ops;
3067 	int r, srcu_idx;
3068 
3069 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3070 	if (r < 0)
3071 		goto out;
3072 
3073 	ops = bdev->bd_disk->fops->pr_ops;
3074 	if (ops && ops->pr_release)
3075 		r = ops->pr_release(bdev, key, type);
3076 	else
3077 		r = -EOPNOTSUPP;
3078 out:
3079 	dm_unprepare_ioctl(md, srcu_idx);
3080 	return r;
3081 }
3082 
3083 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3084 			 enum pr_type type, bool abort)
3085 {
3086 	struct mapped_device *md = bdev->bd_disk->private_data;
3087 	const struct pr_ops *ops;
3088 	int r, srcu_idx;
3089 
3090 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3091 	if (r < 0)
3092 		goto out;
3093 
3094 	ops = bdev->bd_disk->fops->pr_ops;
3095 	if (ops && ops->pr_preempt)
3096 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3097 	else
3098 		r = -EOPNOTSUPP;
3099 out:
3100 	dm_unprepare_ioctl(md, srcu_idx);
3101 	return r;
3102 }
3103 
3104 static int dm_pr_clear(struct block_device *bdev, u64 key)
3105 {
3106 	struct mapped_device *md = bdev->bd_disk->private_data;
3107 	const struct pr_ops *ops;
3108 	int r, srcu_idx;
3109 
3110 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3111 	if (r < 0)
3112 		goto out;
3113 
3114 	ops = bdev->bd_disk->fops->pr_ops;
3115 	if (ops && ops->pr_clear)
3116 		r = ops->pr_clear(bdev, key);
3117 	else
3118 		r = -EOPNOTSUPP;
3119 out:
3120 	dm_unprepare_ioctl(md, srcu_idx);
3121 	return r;
3122 }
3123 
3124 static const struct pr_ops dm_pr_ops = {
3125 	.pr_register	= dm_pr_register,
3126 	.pr_reserve	= dm_pr_reserve,
3127 	.pr_release	= dm_pr_release,
3128 	.pr_preempt	= dm_pr_preempt,
3129 	.pr_clear	= dm_pr_clear,
3130 };
3131 
3132 static const struct block_device_operations dm_blk_dops = {
3133 	.submit_bio = dm_submit_bio,
3134 	.open = dm_blk_open,
3135 	.release = dm_blk_close,
3136 	.ioctl = dm_blk_ioctl,
3137 	.getgeo = dm_blk_getgeo,
3138 	.report_zones = dm_blk_report_zones,
3139 	.pr_ops = &dm_pr_ops,
3140 	.owner = THIS_MODULE
3141 };
3142 
3143 static const struct block_device_operations dm_rq_blk_dops = {
3144 	.open = dm_blk_open,
3145 	.release = dm_blk_close,
3146 	.ioctl = dm_blk_ioctl,
3147 	.getgeo = dm_blk_getgeo,
3148 	.pr_ops = &dm_pr_ops,
3149 	.owner = THIS_MODULE
3150 };
3151 
3152 static const struct dax_operations dm_dax_ops = {
3153 	.direct_access = dm_dax_direct_access,
3154 	.dax_supported = dm_dax_supported,
3155 	.copy_from_iter = dm_dax_copy_from_iter,
3156 	.copy_to_iter = dm_dax_copy_to_iter,
3157 	.zero_page_range = dm_dax_zero_page_range,
3158 };
3159 
3160 /*
3161  * module hooks
3162  */
3163 module_init(dm_init);
3164 module_exit(dm_exit);
3165 
3166 module_param(major, uint, 0);
3167 MODULE_PARM_DESC(major, "The major number of the device mapper");
3168 
3169 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3170 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3171 
3172 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3173 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3174 
3175 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3176 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3177 
3178 MODULE_DESCRIPTION(DM_NAME " driver");
3179 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3180 MODULE_LICENSE("GPL");
3181