xref: /openbmc/linux/drivers/md/dm.c (revision f05643a0)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 /*
44  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45  * dm_io into one list, and reuse bio->bi_private as the list head. Before
46  * ending this fs bio, we will recover its ->bi_private.
47  */
48 #define REQ_DM_POLL_LIST	REQ_DRV
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67 
68 void dm_issue_global_event(void)
69 {
70 	atomic_inc(&dm_global_event_nr);
71 	wake_up(&dm_global_eventq);
72 }
73 
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
77 
78 /*
79  * One of these is allocated (on-stack) per original bio.
80  */
81 struct clone_info {
82 	struct dm_table *map;
83 	struct bio *bio;
84 	struct dm_io *io;
85 	sector_t sector;
86 	unsigned sector_count;
87 	bool is_abnormal_io:1;
88 	bool submit_as_polled:1;
89 };
90 
91 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
92 #define DM_IO_BIO_OFFSET \
93 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
94 
95 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
96 {
97 	return container_of(clone, struct dm_target_io, clone);
98 }
99 
100 void *dm_per_bio_data(struct bio *bio, size_t data_size)
101 {
102 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
103 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
104 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
105 }
106 EXPORT_SYMBOL_GPL(dm_per_bio_data);
107 
108 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
109 {
110 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
111 	if (io->magic == DM_IO_MAGIC)
112 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
113 	BUG_ON(io->magic != DM_TIO_MAGIC);
114 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
115 }
116 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
117 
118 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
119 {
120 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
123 
124 #define MINOR_ALLOCED ((void *)-1)
125 
126 #define DM_NUMA_NODE NUMA_NO_NODE
127 static int dm_numa_node = DM_NUMA_NODE;
128 
129 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
130 static int swap_bios = DEFAULT_SWAP_BIOS;
131 static int get_swap_bios(void)
132 {
133 	int latch = READ_ONCE(swap_bios);
134 	if (unlikely(latch <= 0))
135 		latch = DEFAULT_SWAP_BIOS;
136 	return latch;
137 }
138 
139 struct table_device {
140 	struct list_head list;
141 	refcount_t count;
142 	struct dm_dev dm_dev;
143 };
144 
145 /*
146  * Bio-based DM's mempools' reserved IOs set by the user.
147  */
148 #define RESERVED_BIO_BASED_IOS		16
149 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150 
151 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 {
153 	int param = READ_ONCE(*module_param);
154 	int modified_param = 0;
155 	bool modified = true;
156 
157 	if (param < min)
158 		modified_param = min;
159 	else if (param > max)
160 		modified_param = max;
161 	else
162 		modified = false;
163 
164 	if (modified) {
165 		(void)cmpxchg(module_param, param, modified_param);
166 		param = modified_param;
167 	}
168 
169 	return param;
170 }
171 
172 unsigned __dm_get_module_param(unsigned *module_param,
173 			       unsigned def, unsigned max)
174 {
175 	unsigned param = READ_ONCE(*module_param);
176 	unsigned modified_param = 0;
177 
178 	if (!param)
179 		modified_param = def;
180 	else if (param > max)
181 		modified_param = max;
182 
183 	if (modified_param) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned dm_get_reserved_bio_based_ios(void)
192 {
193 	return __dm_get_module_param(&reserved_bio_based_ios,
194 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
195 }
196 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
197 
198 static unsigned dm_get_numa_node(void)
199 {
200 	return __dm_get_module_param_int(&dm_numa_node,
201 					 DM_NUMA_NODE, num_online_nodes() - 1);
202 }
203 
204 static int __init local_init(void)
205 {
206 	int r;
207 
208 	r = dm_uevent_init();
209 	if (r)
210 		return r;
211 
212 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
213 	if (!deferred_remove_workqueue) {
214 		r = -ENOMEM;
215 		goto out_uevent_exit;
216 	}
217 
218 	_major = major;
219 	r = register_blkdev(_major, _name);
220 	if (r < 0)
221 		goto out_free_workqueue;
222 
223 	if (!_major)
224 		_major = r;
225 
226 	return 0;
227 
228 out_free_workqueue:
229 	destroy_workqueue(deferred_remove_workqueue);
230 out_uevent_exit:
231 	dm_uevent_exit();
232 
233 	return r;
234 }
235 
236 static void local_exit(void)
237 {
238 	flush_scheduled_work();
239 	destroy_workqueue(deferred_remove_workqueue);
240 
241 	unregister_blkdev(_major, _name);
242 	dm_uevent_exit();
243 
244 	_major = 0;
245 
246 	DMINFO("cleaned up");
247 }
248 
249 static int (*_inits[])(void) __initdata = {
250 	local_init,
251 	dm_target_init,
252 	dm_linear_init,
253 	dm_stripe_init,
254 	dm_io_init,
255 	dm_kcopyd_init,
256 	dm_interface_init,
257 	dm_statistics_init,
258 };
259 
260 static void (*_exits[])(void) = {
261 	local_exit,
262 	dm_target_exit,
263 	dm_linear_exit,
264 	dm_stripe_exit,
265 	dm_io_exit,
266 	dm_kcopyd_exit,
267 	dm_interface_exit,
268 	dm_statistics_exit,
269 };
270 
271 static int __init dm_init(void)
272 {
273 	const int count = ARRAY_SIZE(_inits);
274 	int r, i;
275 
276 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
277 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
278 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
279 #endif
280 
281 	for (i = 0; i < count; i++) {
282 		r = _inits[i]();
283 		if (r)
284 			goto bad;
285 	}
286 
287 	return 0;
288 bad:
289 	while (i--)
290 		_exits[i]();
291 
292 	return r;
293 }
294 
295 static void __exit dm_exit(void)
296 {
297 	int i = ARRAY_SIZE(_exits);
298 
299 	while (i--)
300 		_exits[i]();
301 
302 	/*
303 	 * Should be empty by this point.
304 	 */
305 	idr_destroy(&_minor_idr);
306 }
307 
308 /*
309  * Block device functions
310  */
311 int dm_deleting_md(struct mapped_device *md)
312 {
313 	return test_bit(DMF_DELETING, &md->flags);
314 }
315 
316 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
317 {
318 	struct mapped_device *md;
319 
320 	spin_lock(&_minor_lock);
321 
322 	md = bdev->bd_disk->private_data;
323 	if (!md)
324 		goto out;
325 
326 	if (test_bit(DMF_FREEING, &md->flags) ||
327 	    dm_deleting_md(md)) {
328 		md = NULL;
329 		goto out;
330 	}
331 
332 	dm_get(md);
333 	atomic_inc(&md->open_count);
334 out:
335 	spin_unlock(&_minor_lock);
336 
337 	return md ? 0 : -ENXIO;
338 }
339 
340 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
341 {
342 	struct mapped_device *md;
343 
344 	spin_lock(&_minor_lock);
345 
346 	md = disk->private_data;
347 	if (WARN_ON(!md))
348 		goto out;
349 
350 	if (atomic_dec_and_test(&md->open_count) &&
351 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
352 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
353 
354 	dm_put(md);
355 out:
356 	spin_unlock(&_minor_lock);
357 }
358 
359 int dm_open_count(struct mapped_device *md)
360 {
361 	return atomic_read(&md->open_count);
362 }
363 
364 /*
365  * Guarantees nothing is using the device before it's deleted.
366  */
367 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
368 {
369 	int r = 0;
370 
371 	spin_lock(&_minor_lock);
372 
373 	if (dm_open_count(md)) {
374 		r = -EBUSY;
375 		if (mark_deferred)
376 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
377 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
378 		r = -EEXIST;
379 	else
380 		set_bit(DMF_DELETING, &md->flags);
381 
382 	spin_unlock(&_minor_lock);
383 
384 	return r;
385 }
386 
387 int dm_cancel_deferred_remove(struct mapped_device *md)
388 {
389 	int r = 0;
390 
391 	spin_lock(&_minor_lock);
392 
393 	if (test_bit(DMF_DELETING, &md->flags))
394 		r = -EBUSY;
395 	else
396 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
397 
398 	spin_unlock(&_minor_lock);
399 
400 	return r;
401 }
402 
403 static void do_deferred_remove(struct work_struct *w)
404 {
405 	dm_deferred_remove();
406 }
407 
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 	struct mapped_device *md = bdev->bd_disk->private_data;
411 
412 	return dm_get_geometry(md, geo);
413 }
414 
415 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
416 			    struct block_device **bdev)
417 {
418 	struct dm_target *tgt;
419 	struct dm_table *map;
420 	int r;
421 
422 retry:
423 	r = -ENOTTY;
424 	map = dm_get_live_table(md, srcu_idx);
425 	if (!map || !dm_table_get_size(map))
426 		return r;
427 
428 	/* We only support devices that have a single target */
429 	if (dm_table_get_num_targets(map) != 1)
430 		return r;
431 
432 	tgt = dm_table_get_target(map, 0);
433 	if (!tgt->type->prepare_ioctl)
434 		return r;
435 
436 	if (dm_suspended_md(md))
437 		return -EAGAIN;
438 
439 	r = tgt->type->prepare_ioctl(tgt, bdev);
440 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
441 		dm_put_live_table(md, *srcu_idx);
442 		msleep(10);
443 		goto retry;
444 	}
445 
446 	return r;
447 }
448 
449 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
450 {
451 	dm_put_live_table(md, srcu_idx);
452 }
453 
454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
455 			unsigned int cmd, unsigned long arg)
456 {
457 	struct mapped_device *md = bdev->bd_disk->private_data;
458 	int r, srcu_idx;
459 
460 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
461 	if (r < 0)
462 		goto out;
463 
464 	if (r > 0) {
465 		/*
466 		 * Target determined this ioctl is being issued against a
467 		 * subset of the parent bdev; require extra privileges.
468 		 */
469 		if (!capable(CAP_SYS_RAWIO)) {
470 			DMDEBUG_LIMIT(
471 	"%s: sending ioctl %x to DM device without required privilege.",
472 				current->comm, cmd);
473 			r = -ENOIOCTLCMD;
474 			goto out;
475 		}
476 	}
477 
478 	if (!bdev->bd_disk->fops->ioctl)
479 		r = -ENOTTY;
480 	else
481 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
482 out:
483 	dm_unprepare_ioctl(md, srcu_idx);
484 	return r;
485 }
486 
487 u64 dm_start_time_ns_from_clone(struct bio *bio)
488 {
489 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
490 }
491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
492 
493 static bool bio_is_flush_with_data(struct bio *bio)
494 {
495 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
496 }
497 
498 static void dm_io_acct(struct dm_io *io, bool end)
499 {
500 	struct dm_stats_aux *stats_aux = &io->stats_aux;
501 	unsigned long start_time = io->start_time;
502 	struct mapped_device *md = io->md;
503 	struct bio *bio = io->orig_bio;
504 	unsigned int sectors;
505 
506 	/*
507 	 * If REQ_PREFLUSH set, don't account payload, it will be
508 	 * submitted (and accounted) after this flush completes.
509 	 */
510 	if (bio_is_flush_with_data(bio))
511 		sectors = 0;
512 	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
513 		sectors = bio_sectors(bio);
514 	else
515 		sectors = io->sectors;
516 
517 	if (!end)
518 		bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
519 				   start_time);
520 	else
521 		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
522 
523 	if (static_branch_unlikely(&stats_enabled) &&
524 	    unlikely(dm_stats_used(&md->stats))) {
525 		sector_t sector;
526 
527 		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
528 			sector = bio->bi_iter.bi_sector;
529 		else
530 			sector = bio_end_sector(bio) - io->sector_offset;
531 
532 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
533 				    sector, sectors,
534 				    end, start_time, stats_aux);
535 	}
536 }
537 
538 static void __dm_start_io_acct(struct dm_io *io)
539 {
540 	dm_io_acct(io, false);
541 }
542 
543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
544 {
545 	/*
546 	 * Ensure IO accounting is only ever started once.
547 	 */
548 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
549 		return;
550 
551 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
552 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
553 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
554 	} else {
555 		unsigned long flags;
556 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
557 		spin_lock_irqsave(&io->lock, flags);
558 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
559 			spin_unlock_irqrestore(&io->lock, flags);
560 			return;
561 		}
562 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
563 		spin_unlock_irqrestore(&io->lock, flags);
564 	}
565 
566 	__dm_start_io_acct(io);
567 }
568 
569 static void dm_end_io_acct(struct dm_io *io)
570 {
571 	dm_io_acct(io, true);
572 }
573 
574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
575 {
576 	struct dm_io *io;
577 	struct dm_target_io *tio;
578 	struct bio *clone;
579 
580 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
581 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
582 	clone->bi_bdev = md->disk->part0;
583 
584 	tio = clone_to_tio(clone);
585 	tio->flags = 0;
586 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
587 	tio->io = NULL;
588 
589 	io = container_of(tio, struct dm_io, tio);
590 	io->magic = DM_IO_MAGIC;
591 	io->status = BLK_STS_OK;
592 
593 	/* one ref is for submission, the other is for completion */
594 	atomic_set(&io->io_count, 2);
595 	this_cpu_inc(*md->pending_io);
596 	io->orig_bio = bio;
597 	io->split_bio = NULL;
598 	io->md = md;
599 	spin_lock_init(&io->lock);
600 	io->start_time = jiffies;
601 	io->flags = 0;
602 
603 	if (static_branch_unlikely(&stats_enabled))
604 		dm_stats_record_start(&md->stats, &io->stats_aux);
605 
606 	return io;
607 }
608 
609 static void free_io(struct dm_io *io)
610 {
611 	bio_put(&io->tio.clone);
612 }
613 
614 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
615 			     unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
616 {
617 	struct dm_target_io *tio;
618 	struct bio *clone;
619 
620 	if (!ci->io->tio.io) {
621 		/* the dm_target_io embedded in ci->io is available */
622 		tio = &ci->io->tio;
623 		/* alloc_io() already initialized embedded clone */
624 		clone = &tio->clone;
625 	} else {
626 		struct mapped_device *md = ci->io->md;
627 
628 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
629 					&md->mempools->bs);
630 		if (!clone)
631 			return NULL;
632 		/* Set default bdev, but target must bio_set_dev() before issuing IO */
633 		clone->bi_bdev = md->disk->part0;
634 
635 		/* REQ_DM_POLL_LIST shouldn't be inherited */
636 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
637 
638 		tio = clone_to_tio(clone);
639 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
640 	}
641 
642 	tio->magic = DM_TIO_MAGIC;
643 	tio->io = ci->io;
644 	tio->ti = ti;
645 	tio->target_bio_nr = target_bio_nr;
646 	tio->len_ptr = len;
647 	tio->old_sector = 0;
648 
649 	if (len) {
650 		clone->bi_iter.bi_size = to_bytes(*len);
651 		if (bio_integrity(clone))
652 			bio_integrity_trim(clone);
653 	}
654 
655 	return clone;
656 }
657 
658 static void free_tio(struct bio *clone)
659 {
660 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
661 		return;
662 	bio_put(clone);
663 }
664 
665 /*
666  * Add the bio to the list of deferred io.
667  */
668 static void queue_io(struct mapped_device *md, struct bio *bio)
669 {
670 	unsigned long flags;
671 
672 	spin_lock_irqsave(&md->deferred_lock, flags);
673 	bio_list_add(&md->deferred, bio);
674 	spin_unlock_irqrestore(&md->deferred_lock, flags);
675 	queue_work(md->wq, &md->work);
676 }
677 
678 /*
679  * Everyone (including functions in this file), should use this
680  * function to access the md->map field, and make sure they call
681  * dm_put_live_table() when finished.
682  */
683 struct dm_table *dm_get_live_table(struct mapped_device *md,
684 				   int *srcu_idx) __acquires(md->io_barrier)
685 {
686 	*srcu_idx = srcu_read_lock(&md->io_barrier);
687 
688 	return srcu_dereference(md->map, &md->io_barrier);
689 }
690 
691 void dm_put_live_table(struct mapped_device *md,
692 		       int srcu_idx) __releases(md->io_barrier)
693 {
694 	srcu_read_unlock(&md->io_barrier, srcu_idx);
695 }
696 
697 void dm_sync_table(struct mapped_device *md)
698 {
699 	synchronize_srcu(&md->io_barrier);
700 	synchronize_rcu_expedited();
701 }
702 
703 /*
704  * A fast alternative to dm_get_live_table/dm_put_live_table.
705  * The caller must not block between these two functions.
706  */
707 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
708 {
709 	rcu_read_lock();
710 	return rcu_dereference(md->map);
711 }
712 
713 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
714 {
715 	rcu_read_unlock();
716 }
717 
718 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
719 						     int *srcu_idx, unsigned bio_opf)
720 {
721 	if (bio_opf & REQ_NOWAIT)
722 		return dm_get_live_table_fast(md);
723 	else
724 		return dm_get_live_table(md, srcu_idx);
725 }
726 
727 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
728 					 unsigned bio_opf)
729 {
730 	if (bio_opf & REQ_NOWAIT)
731 		dm_put_live_table_fast(md);
732 	else
733 		dm_put_live_table(md, srcu_idx);
734 }
735 
736 static char *_dm_claim_ptr = "I belong to device-mapper";
737 
738 /*
739  * Open a table device so we can use it as a map destination.
740  */
741 static int open_table_device(struct table_device *td, dev_t dev,
742 			     struct mapped_device *md)
743 {
744 	struct block_device *bdev;
745 	u64 part_off;
746 	int r;
747 
748 	BUG_ON(td->dm_dev.bdev);
749 
750 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
751 	if (IS_ERR(bdev))
752 		return PTR_ERR(bdev);
753 
754 	r = bd_link_disk_holder(bdev, dm_disk(md));
755 	if (r) {
756 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
757 		return r;
758 	}
759 
760 	td->dm_dev.bdev = bdev;
761 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
762 	return 0;
763 }
764 
765 /*
766  * Close a table device that we've been using.
767  */
768 static void close_table_device(struct table_device *td, struct mapped_device *md)
769 {
770 	if (!td->dm_dev.bdev)
771 		return;
772 
773 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
774 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
775 	put_dax(td->dm_dev.dax_dev);
776 	td->dm_dev.bdev = NULL;
777 	td->dm_dev.dax_dev = NULL;
778 }
779 
780 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
781 					      fmode_t mode)
782 {
783 	struct table_device *td;
784 
785 	list_for_each_entry(td, l, list)
786 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
787 			return td;
788 
789 	return NULL;
790 }
791 
792 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
793 			struct dm_dev **result)
794 {
795 	int r;
796 	struct table_device *td;
797 
798 	mutex_lock(&md->table_devices_lock);
799 	td = find_table_device(&md->table_devices, dev, mode);
800 	if (!td) {
801 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
802 		if (!td) {
803 			mutex_unlock(&md->table_devices_lock);
804 			return -ENOMEM;
805 		}
806 
807 		td->dm_dev.mode = mode;
808 		td->dm_dev.bdev = NULL;
809 
810 		if ((r = open_table_device(td, dev, md))) {
811 			mutex_unlock(&md->table_devices_lock);
812 			kfree(td);
813 			return r;
814 		}
815 
816 		format_dev_t(td->dm_dev.name, dev);
817 
818 		refcount_set(&td->count, 1);
819 		list_add(&td->list, &md->table_devices);
820 	} else {
821 		refcount_inc(&td->count);
822 	}
823 	mutex_unlock(&md->table_devices_lock);
824 
825 	*result = &td->dm_dev;
826 	return 0;
827 }
828 
829 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
830 {
831 	struct table_device *td = container_of(d, struct table_device, dm_dev);
832 
833 	mutex_lock(&md->table_devices_lock);
834 	if (refcount_dec_and_test(&td->count)) {
835 		close_table_device(td, md);
836 		list_del(&td->list);
837 		kfree(td);
838 	}
839 	mutex_unlock(&md->table_devices_lock);
840 }
841 
842 static void free_table_devices(struct list_head *devices)
843 {
844 	struct list_head *tmp, *next;
845 
846 	list_for_each_safe(tmp, next, devices) {
847 		struct table_device *td = list_entry(tmp, struct table_device, list);
848 
849 		DMWARN("dm_destroy: %s still exists with %d references",
850 		       td->dm_dev.name, refcount_read(&td->count));
851 		kfree(td);
852 	}
853 }
854 
855 /*
856  * Get the geometry associated with a dm device
857  */
858 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
859 {
860 	*geo = md->geometry;
861 
862 	return 0;
863 }
864 
865 /*
866  * Set the geometry of a device.
867  */
868 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
869 {
870 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
871 
872 	if (geo->start > sz) {
873 		DMWARN("Start sector is beyond the geometry limits.");
874 		return -EINVAL;
875 	}
876 
877 	md->geometry = *geo;
878 
879 	return 0;
880 }
881 
882 static int __noflush_suspending(struct mapped_device *md)
883 {
884 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
885 }
886 
887 static void dm_io_complete(struct dm_io *io)
888 {
889 	blk_status_t io_error;
890 	struct mapped_device *md = io->md;
891 	struct bio *bio = io->split_bio ? io->split_bio : io->orig_bio;
892 
893 	if (io->status == BLK_STS_DM_REQUEUE) {
894 		unsigned long flags;
895 		/*
896 		 * Target requested pushing back the I/O.
897 		 */
898 		spin_lock_irqsave(&md->deferred_lock, flags);
899 		if (__noflush_suspending(md) &&
900 		    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
901 			/* NOTE early return due to BLK_STS_DM_REQUEUE below */
902 			bio_list_add_head(&md->deferred, bio);
903 		} else {
904 			/*
905 			 * noflush suspend was interrupted or this is
906 			 * a write to a zoned target.
907 			 */
908 			io->status = BLK_STS_IOERR;
909 		}
910 		spin_unlock_irqrestore(&md->deferred_lock, flags);
911 	}
912 
913 	io_error = io->status;
914 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
915 		dm_end_io_acct(io);
916 	else if (!io_error) {
917 		/*
918 		 * Must handle target that DM_MAPIO_SUBMITTED only to
919 		 * then bio_endio() rather than dm_submit_bio_remap()
920 		 */
921 		__dm_start_io_acct(io);
922 		dm_end_io_acct(io);
923 	}
924 	free_io(io);
925 	smp_wmb();
926 	this_cpu_dec(*md->pending_io);
927 
928 	/* nudge anyone waiting on suspend queue */
929 	if (unlikely(wq_has_sleeper(&md->wait)))
930 		wake_up(&md->wait);
931 
932 	if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) {
933 		if (bio->bi_opf & REQ_POLLED) {
934 			/*
935 			 * Upper layer won't help us poll split bio (io->orig_bio
936 			 * may only reflect a subset of the pre-split original)
937 			 * so clear REQ_POLLED in case of requeue.
938 			 */
939 			bio_clear_polled(bio);
940 			if (io_error == BLK_STS_AGAIN) {
941 				/* io_uring doesn't handle BLK_STS_AGAIN (yet) */
942 				queue_io(md, bio);
943 				return;
944 			}
945 		}
946 		if (io_error == BLK_STS_DM_REQUEUE)
947 			return;
948 	}
949 
950 	if (bio_is_flush_with_data(bio)) {
951 		/*
952 		 * Preflush done for flush with data, reissue
953 		 * without REQ_PREFLUSH.
954 		 */
955 		bio->bi_opf &= ~REQ_PREFLUSH;
956 		queue_io(md, bio);
957 	} else {
958 		/* done with normal IO or empty flush */
959 		if (io_error)
960 			bio->bi_status = io_error;
961 		bio_endio(bio);
962 	}
963 }
964 
965 /*
966  * Decrements the number of outstanding ios that a bio has been
967  * cloned into, completing the original io if necc.
968  */
969 static inline void __dm_io_dec_pending(struct dm_io *io)
970 {
971 	if (atomic_dec_and_test(&io->io_count))
972 		dm_io_complete(io);
973 }
974 
975 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
976 {
977 	unsigned long flags;
978 
979 	/* Push-back supersedes any I/O errors */
980 	spin_lock_irqsave(&io->lock, flags);
981 	if (!(io->status == BLK_STS_DM_REQUEUE &&
982 	      __noflush_suspending(io->md))) {
983 		io->status = error;
984 	}
985 	spin_unlock_irqrestore(&io->lock, flags);
986 }
987 
988 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
989 {
990 	if (unlikely(error))
991 		dm_io_set_error(io, error);
992 
993 	__dm_io_dec_pending(io);
994 }
995 
996 void disable_discard(struct mapped_device *md)
997 {
998 	struct queue_limits *limits = dm_get_queue_limits(md);
999 
1000 	/* device doesn't really support DISCARD, disable it */
1001 	limits->max_discard_sectors = 0;
1002 }
1003 
1004 void disable_write_zeroes(struct mapped_device *md)
1005 {
1006 	struct queue_limits *limits = dm_get_queue_limits(md);
1007 
1008 	/* device doesn't really support WRITE ZEROES, disable it */
1009 	limits->max_write_zeroes_sectors = 0;
1010 }
1011 
1012 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1013 {
1014 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1015 }
1016 
1017 static void clone_endio(struct bio *bio)
1018 {
1019 	blk_status_t error = bio->bi_status;
1020 	struct dm_target_io *tio = clone_to_tio(bio);
1021 	struct dm_target *ti = tio->ti;
1022 	dm_endio_fn endio = ti->type->end_io;
1023 	struct dm_io *io = tio->io;
1024 	struct mapped_device *md = io->md;
1025 
1026 	if (unlikely(error == BLK_STS_TARGET)) {
1027 		if (bio_op(bio) == REQ_OP_DISCARD &&
1028 		    !bdev_max_discard_sectors(bio->bi_bdev))
1029 			disable_discard(md);
1030 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1031 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1032 			disable_write_zeroes(md);
1033 	}
1034 
1035 	if (static_branch_unlikely(&zoned_enabled) &&
1036 	    unlikely(blk_queue_is_zoned(bdev_get_queue(bio->bi_bdev))))
1037 		dm_zone_endio(io, bio);
1038 
1039 	if (endio) {
1040 		int r = endio(ti, bio, &error);
1041 		switch (r) {
1042 		case DM_ENDIO_REQUEUE:
1043 			if (static_branch_unlikely(&zoned_enabled)) {
1044 				/*
1045 				 * Requeuing writes to a sequential zone of a zoned
1046 				 * target will break the sequential write pattern:
1047 				 * fail such IO.
1048 				 */
1049 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1050 					error = BLK_STS_IOERR;
1051 				else
1052 					error = BLK_STS_DM_REQUEUE;
1053 			} else
1054 				error = BLK_STS_DM_REQUEUE;
1055 			fallthrough;
1056 		case DM_ENDIO_DONE:
1057 			break;
1058 		case DM_ENDIO_INCOMPLETE:
1059 			/* The target will handle the io */
1060 			return;
1061 		default:
1062 			DMWARN("unimplemented target endio return value: %d", r);
1063 			BUG();
1064 		}
1065 	}
1066 
1067 	if (static_branch_unlikely(&swap_bios_enabled) &&
1068 	    unlikely(swap_bios_limit(ti, bio)))
1069 		up(&md->swap_bios_semaphore);
1070 
1071 	free_tio(bio);
1072 	dm_io_dec_pending(io, error);
1073 }
1074 
1075 /*
1076  * Return maximum size of I/O possible at the supplied sector up to the current
1077  * target boundary.
1078  */
1079 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1080 						  sector_t target_offset)
1081 {
1082 	return ti->len - target_offset;
1083 }
1084 
1085 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1086 {
1087 	sector_t target_offset = dm_target_offset(ti, sector);
1088 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1089 	sector_t max_len;
1090 
1091 	/*
1092 	 * Does the target need to split IO even further?
1093 	 * - varied (per target) IO splitting is a tenet of DM; this
1094 	 *   explains why stacked chunk_sectors based splitting via
1095 	 *   blk_max_size_offset() isn't possible here. So pass in
1096 	 *   ti->max_io_len to override stacked chunk_sectors.
1097 	 */
1098 	if (ti->max_io_len) {
1099 		max_len = blk_max_size_offset(ti->table->md->queue,
1100 					      target_offset, ti->max_io_len);
1101 		if (len > max_len)
1102 			len = max_len;
1103 	}
1104 
1105 	return len;
1106 }
1107 
1108 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1109 {
1110 	if (len > UINT_MAX) {
1111 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1112 		      (unsigned long long)len, UINT_MAX);
1113 		ti->error = "Maximum size of target IO is too large";
1114 		return -EINVAL;
1115 	}
1116 
1117 	ti->max_io_len = (uint32_t) len;
1118 
1119 	return 0;
1120 }
1121 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1122 
1123 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1124 						sector_t sector, int *srcu_idx)
1125 	__acquires(md->io_barrier)
1126 {
1127 	struct dm_table *map;
1128 	struct dm_target *ti;
1129 
1130 	map = dm_get_live_table(md, srcu_idx);
1131 	if (!map)
1132 		return NULL;
1133 
1134 	ti = dm_table_find_target(map, sector);
1135 	if (!ti)
1136 		return NULL;
1137 
1138 	return ti;
1139 }
1140 
1141 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1142 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1143 		pfn_t *pfn)
1144 {
1145 	struct mapped_device *md = dax_get_private(dax_dev);
1146 	sector_t sector = pgoff * PAGE_SECTORS;
1147 	struct dm_target *ti;
1148 	long len, ret = -EIO;
1149 	int srcu_idx;
1150 
1151 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1152 
1153 	if (!ti)
1154 		goto out;
1155 	if (!ti->type->direct_access)
1156 		goto out;
1157 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1158 	if (len < 1)
1159 		goto out;
1160 	nr_pages = min(len, nr_pages);
1161 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1162 
1163  out:
1164 	dm_put_live_table(md, srcu_idx);
1165 
1166 	return ret;
1167 }
1168 
1169 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1170 				  size_t nr_pages)
1171 {
1172 	struct mapped_device *md = dax_get_private(dax_dev);
1173 	sector_t sector = pgoff * PAGE_SECTORS;
1174 	struct dm_target *ti;
1175 	int ret = -EIO;
1176 	int srcu_idx;
1177 
1178 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1179 
1180 	if (!ti)
1181 		goto out;
1182 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1183 		/*
1184 		 * ->zero_page_range() is mandatory dax operation. If we are
1185 		 *  here, something is wrong.
1186 		 */
1187 		goto out;
1188 	}
1189 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1190  out:
1191 	dm_put_live_table(md, srcu_idx);
1192 
1193 	return ret;
1194 }
1195 
1196 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1197 		void *addr, size_t bytes, struct iov_iter *i)
1198 {
1199 	struct mapped_device *md = dax_get_private(dax_dev);
1200 	sector_t sector = pgoff * PAGE_SECTORS;
1201 	struct dm_target *ti;
1202 	int srcu_idx;
1203 	long ret = 0;
1204 
1205 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1206 	if (!ti || !ti->type->dax_recovery_write)
1207 		goto out;
1208 
1209 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1210 out:
1211 	dm_put_live_table(md, srcu_idx);
1212 	return ret;
1213 }
1214 
1215 /*
1216  * A target may call dm_accept_partial_bio only from the map routine.  It is
1217  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1218  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1219  * __send_duplicate_bios().
1220  *
1221  * dm_accept_partial_bio informs the dm that the target only wants to process
1222  * additional n_sectors sectors of the bio and the rest of the data should be
1223  * sent in a next bio.
1224  *
1225  * A diagram that explains the arithmetics:
1226  * +--------------------+---------------+-------+
1227  * |         1          |       2       |   3   |
1228  * +--------------------+---------------+-------+
1229  *
1230  * <-------------- *tio->len_ptr --------------->
1231  *                      <----- bio_sectors ----->
1232  *                      <-- n_sectors -->
1233  *
1234  * Region 1 was already iterated over with bio_advance or similar function.
1235  *	(it may be empty if the target doesn't use bio_advance)
1236  * Region 2 is the remaining bio size that the target wants to process.
1237  *	(it may be empty if region 1 is non-empty, although there is no reason
1238  *	 to make it empty)
1239  * The target requires that region 3 is to be sent in the next bio.
1240  *
1241  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1242  * the partially processed part (the sum of regions 1+2) must be the same for all
1243  * copies of the bio.
1244  */
1245 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1246 {
1247 	struct dm_target_io *tio = clone_to_tio(bio);
1248 	unsigned bio_sectors = bio_sectors(bio);
1249 
1250 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1251 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1252 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1253 	BUG_ON(bio_sectors > *tio->len_ptr);
1254 	BUG_ON(n_sectors > bio_sectors);
1255 
1256 	*tio->len_ptr -= bio_sectors - n_sectors;
1257 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1258 
1259 	/*
1260 	 * __split_and_process_bio() may have already saved mapped part
1261 	 * for accounting but it is being reduced so update accordingly.
1262 	 */
1263 	dm_io_set_flag(tio->io, DM_IO_WAS_SPLIT);
1264 	tio->io->sectors = n_sectors;
1265 }
1266 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1267 
1268 /*
1269  * @clone: clone bio that DM core passed to target's .map function
1270  * @tgt_clone: clone of @clone bio that target needs submitted
1271  *
1272  * Targets should use this interface to submit bios they take
1273  * ownership of when returning DM_MAPIO_SUBMITTED.
1274  *
1275  * Target should also enable ti->accounts_remapped_io
1276  */
1277 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1278 {
1279 	struct dm_target_io *tio = clone_to_tio(clone);
1280 	struct dm_io *io = tio->io;
1281 
1282 	/* establish bio that will get submitted */
1283 	if (!tgt_clone)
1284 		tgt_clone = clone;
1285 
1286 	/*
1287 	 * Account io->origin_bio to DM dev on behalf of target
1288 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1289 	 */
1290 	dm_start_io_acct(io, clone);
1291 
1292 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1293 			      tio->old_sector);
1294 	submit_bio_noacct(tgt_clone);
1295 }
1296 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1297 
1298 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1299 {
1300 	mutex_lock(&md->swap_bios_lock);
1301 	while (latch < md->swap_bios) {
1302 		cond_resched();
1303 		down(&md->swap_bios_semaphore);
1304 		md->swap_bios--;
1305 	}
1306 	while (latch > md->swap_bios) {
1307 		cond_resched();
1308 		up(&md->swap_bios_semaphore);
1309 		md->swap_bios++;
1310 	}
1311 	mutex_unlock(&md->swap_bios_lock);
1312 }
1313 
1314 static void __map_bio(struct bio *clone)
1315 {
1316 	struct dm_target_io *tio = clone_to_tio(clone);
1317 	struct dm_target *ti = tio->ti;
1318 	struct dm_io *io = tio->io;
1319 	struct mapped_device *md = io->md;
1320 	int r;
1321 
1322 	clone->bi_end_io = clone_endio;
1323 
1324 	/*
1325 	 * Map the clone.
1326 	 */
1327 	tio->old_sector = clone->bi_iter.bi_sector;
1328 
1329 	if (static_branch_unlikely(&swap_bios_enabled) &&
1330 	    unlikely(swap_bios_limit(ti, clone))) {
1331 		int latch = get_swap_bios();
1332 		if (unlikely(latch != md->swap_bios))
1333 			__set_swap_bios_limit(md, latch);
1334 		down(&md->swap_bios_semaphore);
1335 	}
1336 
1337 	if (static_branch_unlikely(&zoned_enabled)) {
1338 		/*
1339 		 * Check if the IO needs a special mapping due to zone append
1340 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1341 		 * calls the target map operation.
1342 		 */
1343 		if (unlikely(dm_emulate_zone_append(md)))
1344 			r = dm_zone_map_bio(tio);
1345 		else
1346 			r = ti->type->map(ti, clone);
1347 	} else
1348 		r = ti->type->map(ti, clone);
1349 
1350 	switch (r) {
1351 	case DM_MAPIO_SUBMITTED:
1352 		/* target has assumed ownership of this io */
1353 		if (!ti->accounts_remapped_io)
1354 			dm_start_io_acct(io, clone);
1355 		break;
1356 	case DM_MAPIO_REMAPPED:
1357 		dm_submit_bio_remap(clone, NULL);
1358 		break;
1359 	case DM_MAPIO_KILL:
1360 	case DM_MAPIO_REQUEUE:
1361 		if (static_branch_unlikely(&swap_bios_enabled) &&
1362 		    unlikely(swap_bios_limit(ti, clone)))
1363 			up(&md->swap_bios_semaphore);
1364 		free_tio(clone);
1365 		if (r == DM_MAPIO_KILL)
1366 			dm_io_dec_pending(io, BLK_STS_IOERR);
1367 		else
1368 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1369 		break;
1370 	default:
1371 		DMWARN("unimplemented target map return value: %d", r);
1372 		BUG();
1373 	}
1374 }
1375 
1376 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1377 {
1378 	struct dm_io *io = ci->io;
1379 
1380 	if (ci->sector_count > len) {
1381 		/*
1382 		 * Split needed, save the mapped part for accounting.
1383 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1384 		 */
1385 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1386 		io->sectors = len;
1387 	}
1388 
1389 	if (static_branch_unlikely(&stats_enabled) &&
1390 	    unlikely(dm_stats_used(&io->md->stats))) {
1391 		/*
1392 		 * Save bi_sector in terms of its offset from end of
1393 		 * original bio, only needed for DM-stats' benefit.
1394 		 * - saved regardless of whether split needed so that
1395 		 *   dm_accept_partial_bio() doesn't need to.
1396 		 */
1397 		io->sector_offset = bio_end_sector(ci->bio) - ci->sector;
1398 	}
1399 }
1400 
1401 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1402 				struct dm_target *ti, unsigned num_bios)
1403 {
1404 	struct bio *bio;
1405 	int try;
1406 
1407 	for (try = 0; try < 2; try++) {
1408 		int bio_nr;
1409 
1410 		if (try)
1411 			mutex_lock(&ci->io->md->table_devices_lock);
1412 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1413 			bio = alloc_tio(ci, ti, bio_nr, NULL,
1414 					try ? GFP_NOIO : GFP_NOWAIT);
1415 			if (!bio)
1416 				break;
1417 
1418 			bio_list_add(blist, bio);
1419 		}
1420 		if (try)
1421 			mutex_unlock(&ci->io->md->table_devices_lock);
1422 		if (bio_nr == num_bios)
1423 			return;
1424 
1425 		while ((bio = bio_list_pop(blist)))
1426 			free_tio(bio);
1427 	}
1428 }
1429 
1430 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1431 				  unsigned num_bios, unsigned *len)
1432 {
1433 	struct bio_list blist = BIO_EMPTY_LIST;
1434 	struct bio *clone;
1435 	int ret = 0;
1436 
1437 	switch (num_bios) {
1438 	case 0:
1439 		break;
1440 	case 1:
1441 		if (len)
1442 			setup_split_accounting(ci, *len);
1443 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1444 		__map_bio(clone);
1445 		ret = 1;
1446 		break;
1447 	default:
1448 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1449 		alloc_multiple_bios(&blist, ci, ti, num_bios);
1450 		while ((clone = bio_list_pop(&blist))) {
1451 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1452 			__map_bio(clone);
1453 			ret += 1;
1454 		}
1455 		break;
1456 	}
1457 
1458 	return ret;
1459 }
1460 
1461 static void __send_empty_flush(struct clone_info *ci)
1462 {
1463 	unsigned target_nr = 0;
1464 	struct dm_target *ti;
1465 	struct bio flush_bio;
1466 
1467 	/*
1468 	 * Use an on-stack bio for this, it's safe since we don't
1469 	 * need to reference it after submit. It's just used as
1470 	 * the basis for the clone(s).
1471 	 */
1472 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1473 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1474 
1475 	ci->bio = &flush_bio;
1476 	ci->sector_count = 0;
1477 	ci->io->tio.clone.bi_iter.bi_size = 0;
1478 
1479 	while ((ti = dm_table_get_target(ci->map, target_nr++))) {
1480 		int bios;
1481 
1482 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1483 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1484 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1485 	}
1486 
1487 	/*
1488 	 * alloc_io() takes one extra reference for submission, so the
1489 	 * reference won't reach 0 without the following subtraction
1490 	 */
1491 	atomic_sub(1, &ci->io->io_count);
1492 
1493 	bio_uninit(ci->bio);
1494 }
1495 
1496 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1497 					unsigned num_bios)
1498 {
1499 	unsigned len;
1500 	int bios;
1501 
1502 	len = min_t(sector_t, ci->sector_count,
1503 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1504 
1505 	atomic_add(num_bios, &ci->io->io_count);
1506 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1507 	/*
1508 	 * alloc_io() takes one extra reference for submission, so the
1509 	 * reference won't reach 0 without the following (+1) subtraction
1510 	 */
1511 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1512 
1513 	ci->sector += len;
1514 	ci->sector_count -= len;
1515 }
1516 
1517 static bool is_abnormal_io(struct bio *bio)
1518 {
1519 	unsigned int op = bio_op(bio);
1520 
1521 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1522 		switch (op) {
1523 		case REQ_OP_DISCARD:
1524 		case REQ_OP_SECURE_ERASE:
1525 		case REQ_OP_WRITE_ZEROES:
1526 			return true;
1527 		default:
1528 			break;
1529 		}
1530 	}
1531 
1532 	return false;
1533 }
1534 
1535 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1536 					  struct dm_target *ti)
1537 {
1538 	unsigned num_bios = 0;
1539 
1540 	switch (bio_op(ci->bio)) {
1541 	case REQ_OP_DISCARD:
1542 		num_bios = ti->num_discard_bios;
1543 		break;
1544 	case REQ_OP_SECURE_ERASE:
1545 		num_bios = ti->num_secure_erase_bios;
1546 		break;
1547 	case REQ_OP_WRITE_ZEROES:
1548 		num_bios = ti->num_write_zeroes_bios;
1549 		break;
1550 	}
1551 
1552 	/*
1553 	 * Even though the device advertised support for this type of
1554 	 * request, that does not mean every target supports it, and
1555 	 * reconfiguration might also have changed that since the
1556 	 * check was performed.
1557 	 */
1558 	if (unlikely(!num_bios))
1559 		return BLK_STS_NOTSUPP;
1560 
1561 	__send_changing_extent_only(ci, ti, num_bios);
1562 	return BLK_STS_OK;
1563 }
1564 
1565 /*
1566  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1567  * associated with this bio, and this bio's bi_private needs to be
1568  * stored in dm_io->data before the reuse.
1569  *
1570  * bio->bi_private is owned by fs or upper layer, so block layer won't
1571  * touch it after splitting. Meantime it won't be changed by anyone after
1572  * bio is submitted. So this reuse is safe.
1573  */
1574 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1575 {
1576 	return (struct dm_io **)&bio->bi_private;
1577 }
1578 
1579 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1580 {
1581 	struct dm_io **head = dm_poll_list_head(bio);
1582 
1583 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1584 		bio->bi_opf |= REQ_DM_POLL_LIST;
1585 		/*
1586 		 * Save .bi_private into dm_io, so that we can reuse
1587 		 * .bi_private as dm_io list head for storing dm_io list
1588 		 */
1589 		io->data = bio->bi_private;
1590 
1591 		/* tell block layer to poll for completion */
1592 		bio->bi_cookie = ~BLK_QC_T_NONE;
1593 
1594 		io->next = NULL;
1595 	} else {
1596 		/*
1597 		 * bio recursed due to split, reuse original poll list,
1598 		 * and save bio->bi_private too.
1599 		 */
1600 		io->data = (*head)->data;
1601 		io->next = *head;
1602 	}
1603 
1604 	*head = io;
1605 }
1606 
1607 /*
1608  * Select the correct strategy for processing a non-flush bio.
1609  */
1610 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1611 {
1612 	struct bio *clone;
1613 	struct dm_target *ti;
1614 	unsigned len;
1615 
1616 	ti = dm_table_find_target(ci->map, ci->sector);
1617 	if (unlikely(!ti))
1618 		return BLK_STS_IOERR;
1619 
1620 	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1621 	    unlikely(!dm_target_supports_nowait(ti->type)))
1622 		return BLK_STS_NOTSUPP;
1623 
1624 	if (unlikely(ci->is_abnormal_io))
1625 		return __process_abnormal_io(ci, ti);
1626 
1627 	/*
1628 	 * Only support bio polling for normal IO, and the target io is
1629 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1630 	 */
1631 	ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1632 
1633 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1634 	setup_split_accounting(ci, len);
1635 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1636 	__map_bio(clone);
1637 
1638 	ci->sector += len;
1639 	ci->sector_count -= len;
1640 
1641 	return BLK_STS_OK;
1642 }
1643 
1644 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1645 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1646 {
1647 	ci->map = map;
1648 	ci->io = alloc_io(md, bio);
1649 	ci->bio = bio;
1650 	ci->is_abnormal_io = is_abnormal;
1651 	ci->submit_as_polled = false;
1652 	ci->sector = bio->bi_iter.bi_sector;
1653 	ci->sector_count = bio_sectors(bio);
1654 
1655 	/* Shouldn't happen but sector_count was being set to 0 so... */
1656 	if (static_branch_unlikely(&zoned_enabled) &&
1657 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1658 		ci->sector_count = 0;
1659 }
1660 
1661 /*
1662  * Entry point to split a bio into clones and submit them to the targets.
1663  */
1664 static void dm_split_and_process_bio(struct mapped_device *md,
1665 				     struct dm_table *map, struct bio *bio)
1666 {
1667 	struct clone_info ci;
1668 	struct dm_io *io;
1669 	blk_status_t error = BLK_STS_OK;
1670 	bool is_abnormal;
1671 
1672 	is_abnormal = is_abnormal_io(bio);
1673 	if (unlikely(is_abnormal)) {
1674 		/*
1675 		 * Use blk_queue_split() for abnormal IO (e.g. discard, etc)
1676 		 * otherwise associated queue_limits won't be imposed.
1677 		 */
1678 		blk_queue_split(&bio);
1679 	}
1680 
1681 	init_clone_info(&ci, md, map, bio, is_abnormal);
1682 	io = ci.io;
1683 
1684 	if (bio->bi_opf & REQ_PREFLUSH) {
1685 		__send_empty_flush(&ci);
1686 		/* dm_io_complete submits any data associated with flush */
1687 		goto out;
1688 	}
1689 
1690 	error = __split_and_process_bio(&ci);
1691 	if (error || !ci.sector_count)
1692 		goto out;
1693 	/*
1694 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1695 	 * *after* bios already submitted have been completely processed.
1696 	 */
1697 	WARN_ON_ONCE(!dm_io_flagged(io, DM_IO_WAS_SPLIT));
1698 	io->split_bio = bio_split(bio, io->sectors, GFP_NOIO,
1699 				  &md->queue->bio_split);
1700 	bio_chain(io->split_bio, bio);
1701 	trace_block_split(io->split_bio, bio->bi_iter.bi_sector);
1702 	submit_bio_noacct(bio);
1703 out:
1704 	/*
1705 	 * Drop the extra reference count for non-POLLED bio, and hold one
1706 	 * reference for POLLED bio, which will be released in dm_poll_bio
1707 	 *
1708 	 * Add every dm_io instance into the dm_io list head which is stored
1709 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1710 	 */
1711 	if (error || !ci.submit_as_polled) {
1712 		/*
1713 		 * In case of submission failure, the extra reference for
1714 		 * submitting io isn't consumed yet
1715 		 */
1716 		if (error)
1717 			atomic_dec(&io->io_count);
1718 		dm_io_dec_pending(io, error);
1719 	} else
1720 		dm_queue_poll_io(bio, io);
1721 }
1722 
1723 static void dm_submit_bio(struct bio *bio)
1724 {
1725 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1726 	int srcu_idx;
1727 	struct dm_table *map;
1728 	unsigned bio_opf = bio->bi_opf;
1729 
1730 	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1731 
1732 	/* If suspended, or map not yet available, queue this IO for later */
1733 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1734 	    unlikely(!map)) {
1735 		if (bio->bi_opf & REQ_NOWAIT)
1736 			bio_wouldblock_error(bio);
1737 		else if (bio->bi_opf & REQ_RAHEAD)
1738 			bio_io_error(bio);
1739 		else
1740 			queue_io(md, bio);
1741 		goto out;
1742 	}
1743 
1744 	dm_split_and_process_bio(md, map, bio);
1745 out:
1746 	dm_put_live_table_bio(md, srcu_idx, bio_opf);
1747 }
1748 
1749 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1750 			  unsigned int flags)
1751 {
1752 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1753 
1754 	/* don't poll if the mapped io is done */
1755 	if (atomic_read(&io->io_count) > 1)
1756 		bio_poll(&io->tio.clone, iob, flags);
1757 
1758 	/* bio_poll holds the last reference */
1759 	return atomic_read(&io->io_count) == 1;
1760 }
1761 
1762 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1763 		       unsigned int flags)
1764 {
1765 	struct dm_io **head = dm_poll_list_head(bio);
1766 	struct dm_io *list = *head;
1767 	struct dm_io *tmp = NULL;
1768 	struct dm_io *curr, *next;
1769 
1770 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1771 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1772 		return 0;
1773 
1774 	WARN_ON_ONCE(!list);
1775 
1776 	/*
1777 	 * Restore .bi_private before possibly completing dm_io.
1778 	 *
1779 	 * bio_poll() is only possible once @bio has been completely
1780 	 * submitted via submit_bio_noacct()'s depth-first submission.
1781 	 * So there is no dm_queue_poll_io() race associated with
1782 	 * clearing REQ_DM_POLL_LIST here.
1783 	 */
1784 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1785 	bio->bi_private = list->data;
1786 
1787 	for (curr = list, next = curr->next; curr; curr = next, next =
1788 			curr ? curr->next : NULL) {
1789 		if (dm_poll_dm_io(curr, iob, flags)) {
1790 			/*
1791 			 * clone_endio() has already occurred, so no
1792 			 * error handling is needed here.
1793 			 */
1794 			__dm_io_dec_pending(curr);
1795 		} else {
1796 			curr->next = tmp;
1797 			tmp = curr;
1798 		}
1799 	}
1800 
1801 	/* Not done? */
1802 	if (tmp) {
1803 		bio->bi_opf |= REQ_DM_POLL_LIST;
1804 		/* Reset bio->bi_private to dm_io list head */
1805 		*head = tmp;
1806 		return 0;
1807 	}
1808 	return 1;
1809 }
1810 
1811 /*-----------------------------------------------------------------
1812  * An IDR is used to keep track of allocated minor numbers.
1813  *---------------------------------------------------------------*/
1814 static void free_minor(int minor)
1815 {
1816 	spin_lock(&_minor_lock);
1817 	idr_remove(&_minor_idr, minor);
1818 	spin_unlock(&_minor_lock);
1819 }
1820 
1821 /*
1822  * See if the device with a specific minor # is free.
1823  */
1824 static int specific_minor(int minor)
1825 {
1826 	int r;
1827 
1828 	if (minor >= (1 << MINORBITS))
1829 		return -EINVAL;
1830 
1831 	idr_preload(GFP_KERNEL);
1832 	spin_lock(&_minor_lock);
1833 
1834 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1835 
1836 	spin_unlock(&_minor_lock);
1837 	idr_preload_end();
1838 	if (r < 0)
1839 		return r == -ENOSPC ? -EBUSY : r;
1840 	return 0;
1841 }
1842 
1843 static int next_free_minor(int *minor)
1844 {
1845 	int r;
1846 
1847 	idr_preload(GFP_KERNEL);
1848 	spin_lock(&_minor_lock);
1849 
1850 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1851 
1852 	spin_unlock(&_minor_lock);
1853 	idr_preload_end();
1854 	if (r < 0)
1855 		return r;
1856 	*minor = r;
1857 	return 0;
1858 }
1859 
1860 static const struct block_device_operations dm_blk_dops;
1861 static const struct block_device_operations dm_rq_blk_dops;
1862 static const struct dax_operations dm_dax_ops;
1863 
1864 static void dm_wq_work(struct work_struct *work);
1865 
1866 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1867 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1868 {
1869 	dm_destroy_crypto_profile(q->crypto_profile);
1870 }
1871 
1872 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1873 
1874 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1875 {
1876 }
1877 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1878 
1879 static void cleanup_mapped_device(struct mapped_device *md)
1880 {
1881 	if (md->wq)
1882 		destroy_workqueue(md->wq);
1883 	dm_free_md_mempools(md->mempools);
1884 
1885 	if (md->dax_dev) {
1886 		dax_remove_host(md->disk);
1887 		kill_dax(md->dax_dev);
1888 		put_dax(md->dax_dev);
1889 		md->dax_dev = NULL;
1890 	}
1891 
1892 	dm_cleanup_zoned_dev(md);
1893 	if (md->disk) {
1894 		spin_lock(&_minor_lock);
1895 		md->disk->private_data = NULL;
1896 		spin_unlock(&_minor_lock);
1897 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1898 			dm_sysfs_exit(md);
1899 			del_gendisk(md->disk);
1900 		}
1901 		dm_queue_destroy_crypto_profile(md->queue);
1902 		blk_cleanup_disk(md->disk);
1903 	}
1904 
1905 	if (md->pending_io) {
1906 		free_percpu(md->pending_io);
1907 		md->pending_io = NULL;
1908 	}
1909 
1910 	cleanup_srcu_struct(&md->io_barrier);
1911 
1912 	mutex_destroy(&md->suspend_lock);
1913 	mutex_destroy(&md->type_lock);
1914 	mutex_destroy(&md->table_devices_lock);
1915 	mutex_destroy(&md->swap_bios_lock);
1916 
1917 	dm_mq_cleanup_mapped_device(md);
1918 }
1919 
1920 /*
1921  * Allocate and initialise a blank device with a given minor.
1922  */
1923 static struct mapped_device *alloc_dev(int minor)
1924 {
1925 	int r, numa_node_id = dm_get_numa_node();
1926 	struct mapped_device *md;
1927 	void *old_md;
1928 
1929 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1930 	if (!md) {
1931 		DMWARN("unable to allocate device, out of memory.");
1932 		return NULL;
1933 	}
1934 
1935 	if (!try_module_get(THIS_MODULE))
1936 		goto bad_module_get;
1937 
1938 	/* get a minor number for the dev */
1939 	if (minor == DM_ANY_MINOR)
1940 		r = next_free_minor(&minor);
1941 	else
1942 		r = specific_minor(minor);
1943 	if (r < 0)
1944 		goto bad_minor;
1945 
1946 	r = init_srcu_struct(&md->io_barrier);
1947 	if (r < 0)
1948 		goto bad_io_barrier;
1949 
1950 	md->numa_node_id = numa_node_id;
1951 	md->init_tio_pdu = false;
1952 	md->type = DM_TYPE_NONE;
1953 	mutex_init(&md->suspend_lock);
1954 	mutex_init(&md->type_lock);
1955 	mutex_init(&md->table_devices_lock);
1956 	spin_lock_init(&md->deferred_lock);
1957 	atomic_set(&md->holders, 1);
1958 	atomic_set(&md->open_count, 0);
1959 	atomic_set(&md->event_nr, 0);
1960 	atomic_set(&md->uevent_seq, 0);
1961 	INIT_LIST_HEAD(&md->uevent_list);
1962 	INIT_LIST_HEAD(&md->table_devices);
1963 	spin_lock_init(&md->uevent_lock);
1964 
1965 	/*
1966 	 * default to bio-based until DM table is loaded and md->type
1967 	 * established. If request-based table is loaded: blk-mq will
1968 	 * override accordingly.
1969 	 */
1970 	md->disk = blk_alloc_disk(md->numa_node_id);
1971 	if (!md->disk)
1972 		goto bad;
1973 	md->queue = md->disk->queue;
1974 
1975 	init_waitqueue_head(&md->wait);
1976 	INIT_WORK(&md->work, dm_wq_work);
1977 	init_waitqueue_head(&md->eventq);
1978 	init_completion(&md->kobj_holder.completion);
1979 
1980 	md->swap_bios = get_swap_bios();
1981 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1982 	mutex_init(&md->swap_bios_lock);
1983 
1984 	md->disk->major = _major;
1985 	md->disk->first_minor = minor;
1986 	md->disk->minors = 1;
1987 	md->disk->flags |= GENHD_FL_NO_PART;
1988 	md->disk->fops = &dm_blk_dops;
1989 	md->disk->queue = md->queue;
1990 	md->disk->private_data = md;
1991 	sprintf(md->disk->disk_name, "dm-%d", minor);
1992 
1993 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1994 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1995 		if (IS_ERR(md->dax_dev)) {
1996 			md->dax_dev = NULL;
1997 			goto bad;
1998 		}
1999 		set_dax_nocache(md->dax_dev);
2000 		set_dax_nomc(md->dax_dev);
2001 		if (dax_add_host(md->dax_dev, md->disk))
2002 			goto bad;
2003 	}
2004 
2005 	format_dev_t(md->name, MKDEV(_major, minor));
2006 
2007 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2008 	if (!md->wq)
2009 		goto bad;
2010 
2011 	md->pending_io = alloc_percpu(unsigned long);
2012 	if (!md->pending_io)
2013 		goto bad;
2014 
2015 	dm_stats_init(&md->stats);
2016 
2017 	/* Populate the mapping, nobody knows we exist yet */
2018 	spin_lock(&_minor_lock);
2019 	old_md = idr_replace(&_minor_idr, md, minor);
2020 	spin_unlock(&_minor_lock);
2021 
2022 	BUG_ON(old_md != MINOR_ALLOCED);
2023 
2024 	return md;
2025 
2026 bad:
2027 	cleanup_mapped_device(md);
2028 bad_io_barrier:
2029 	free_minor(minor);
2030 bad_minor:
2031 	module_put(THIS_MODULE);
2032 bad_module_get:
2033 	kvfree(md);
2034 	return NULL;
2035 }
2036 
2037 static void unlock_fs(struct mapped_device *md);
2038 
2039 static void free_dev(struct mapped_device *md)
2040 {
2041 	int minor = MINOR(disk_devt(md->disk));
2042 
2043 	unlock_fs(md);
2044 
2045 	cleanup_mapped_device(md);
2046 
2047 	free_table_devices(&md->table_devices);
2048 	dm_stats_cleanup(&md->stats);
2049 	free_minor(minor);
2050 
2051 	module_put(THIS_MODULE);
2052 	kvfree(md);
2053 }
2054 
2055 /*
2056  * Bind a table to the device.
2057  */
2058 static void event_callback(void *context)
2059 {
2060 	unsigned long flags;
2061 	LIST_HEAD(uevents);
2062 	struct mapped_device *md = (struct mapped_device *) context;
2063 
2064 	spin_lock_irqsave(&md->uevent_lock, flags);
2065 	list_splice_init(&md->uevent_list, &uevents);
2066 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2067 
2068 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2069 
2070 	atomic_inc(&md->event_nr);
2071 	wake_up(&md->eventq);
2072 	dm_issue_global_event();
2073 }
2074 
2075 /*
2076  * Returns old map, which caller must destroy.
2077  */
2078 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2079 			       struct queue_limits *limits)
2080 {
2081 	struct dm_table *old_map;
2082 	sector_t size;
2083 	int ret;
2084 
2085 	lockdep_assert_held(&md->suspend_lock);
2086 
2087 	size = dm_table_get_size(t);
2088 
2089 	/*
2090 	 * Wipe any geometry if the size of the table changed.
2091 	 */
2092 	if (size != dm_get_size(md))
2093 		memset(&md->geometry, 0, sizeof(md->geometry));
2094 
2095 	if (!get_capacity(md->disk))
2096 		set_capacity(md->disk, size);
2097 	else
2098 		set_capacity_and_notify(md->disk, size);
2099 
2100 	dm_table_event_callback(t, event_callback, md);
2101 
2102 	if (dm_table_request_based(t)) {
2103 		/*
2104 		 * Leverage the fact that request-based DM targets are
2105 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2106 		 */
2107 		md->immutable_target = dm_table_get_immutable_target(t);
2108 
2109 		/*
2110 		 * There is no need to reload with request-based dm because the
2111 		 * size of front_pad doesn't change.
2112 		 *
2113 		 * Note for future: If you are to reload bioset, prep-ed
2114 		 * requests in the queue may refer to bio from the old bioset,
2115 		 * so you must walk through the queue to unprep.
2116 		 */
2117 		if (!md->mempools) {
2118 			md->mempools = t->mempools;
2119 			t->mempools = NULL;
2120 		}
2121 	} else {
2122 		/*
2123 		 * The md may already have mempools that need changing.
2124 		 * If so, reload bioset because front_pad may have changed
2125 		 * because a different table was loaded.
2126 		 */
2127 		dm_free_md_mempools(md->mempools);
2128 		md->mempools = t->mempools;
2129 		t->mempools = NULL;
2130 	}
2131 
2132 	ret = dm_table_set_restrictions(t, md->queue, limits);
2133 	if (ret) {
2134 		old_map = ERR_PTR(ret);
2135 		goto out;
2136 	}
2137 
2138 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2139 	rcu_assign_pointer(md->map, (void *)t);
2140 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2141 
2142 	if (old_map)
2143 		dm_sync_table(md);
2144 out:
2145 	return old_map;
2146 }
2147 
2148 /*
2149  * Returns unbound table for the caller to free.
2150  */
2151 static struct dm_table *__unbind(struct mapped_device *md)
2152 {
2153 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2154 
2155 	if (!map)
2156 		return NULL;
2157 
2158 	dm_table_event_callback(map, NULL, NULL);
2159 	RCU_INIT_POINTER(md->map, NULL);
2160 	dm_sync_table(md);
2161 
2162 	return map;
2163 }
2164 
2165 /*
2166  * Constructor for a new device.
2167  */
2168 int dm_create(int minor, struct mapped_device **result)
2169 {
2170 	struct mapped_device *md;
2171 
2172 	md = alloc_dev(minor);
2173 	if (!md)
2174 		return -ENXIO;
2175 
2176 	dm_ima_reset_data(md);
2177 
2178 	*result = md;
2179 	return 0;
2180 }
2181 
2182 /*
2183  * Functions to manage md->type.
2184  * All are required to hold md->type_lock.
2185  */
2186 void dm_lock_md_type(struct mapped_device *md)
2187 {
2188 	mutex_lock(&md->type_lock);
2189 }
2190 
2191 void dm_unlock_md_type(struct mapped_device *md)
2192 {
2193 	mutex_unlock(&md->type_lock);
2194 }
2195 
2196 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2197 {
2198 	BUG_ON(!mutex_is_locked(&md->type_lock));
2199 	md->type = type;
2200 }
2201 
2202 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2203 {
2204 	return md->type;
2205 }
2206 
2207 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2208 {
2209 	return md->immutable_target_type;
2210 }
2211 
2212 /*
2213  * The queue_limits are only valid as long as you have a reference
2214  * count on 'md'.
2215  */
2216 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2217 {
2218 	BUG_ON(!atomic_read(&md->holders));
2219 	return &md->queue->limits;
2220 }
2221 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2222 
2223 /*
2224  * Setup the DM device's queue based on md's type
2225  */
2226 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2227 {
2228 	enum dm_queue_mode type = dm_table_get_type(t);
2229 	struct queue_limits limits;
2230 	int r;
2231 
2232 	switch (type) {
2233 	case DM_TYPE_REQUEST_BASED:
2234 		md->disk->fops = &dm_rq_blk_dops;
2235 		r = dm_mq_init_request_queue(md, t);
2236 		if (r) {
2237 			DMERR("Cannot initialize queue for request-based dm mapped device");
2238 			return r;
2239 		}
2240 		break;
2241 	case DM_TYPE_BIO_BASED:
2242 	case DM_TYPE_DAX_BIO_BASED:
2243 		break;
2244 	case DM_TYPE_NONE:
2245 		WARN_ON_ONCE(true);
2246 		break;
2247 	}
2248 
2249 	r = dm_calculate_queue_limits(t, &limits);
2250 	if (r) {
2251 		DMERR("Cannot calculate initial queue limits");
2252 		return r;
2253 	}
2254 	r = dm_table_set_restrictions(t, md->queue, &limits);
2255 	if (r)
2256 		return r;
2257 
2258 	r = add_disk(md->disk);
2259 	if (r)
2260 		return r;
2261 
2262 	r = dm_sysfs_init(md);
2263 	if (r) {
2264 		del_gendisk(md->disk);
2265 		return r;
2266 	}
2267 	md->type = type;
2268 	return 0;
2269 }
2270 
2271 struct mapped_device *dm_get_md(dev_t dev)
2272 {
2273 	struct mapped_device *md;
2274 	unsigned minor = MINOR(dev);
2275 
2276 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2277 		return NULL;
2278 
2279 	spin_lock(&_minor_lock);
2280 
2281 	md = idr_find(&_minor_idr, minor);
2282 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2283 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2284 		md = NULL;
2285 		goto out;
2286 	}
2287 	dm_get(md);
2288 out:
2289 	spin_unlock(&_minor_lock);
2290 
2291 	return md;
2292 }
2293 EXPORT_SYMBOL_GPL(dm_get_md);
2294 
2295 void *dm_get_mdptr(struct mapped_device *md)
2296 {
2297 	return md->interface_ptr;
2298 }
2299 
2300 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2301 {
2302 	md->interface_ptr = ptr;
2303 }
2304 
2305 void dm_get(struct mapped_device *md)
2306 {
2307 	atomic_inc(&md->holders);
2308 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2309 }
2310 
2311 int dm_hold(struct mapped_device *md)
2312 {
2313 	spin_lock(&_minor_lock);
2314 	if (test_bit(DMF_FREEING, &md->flags)) {
2315 		spin_unlock(&_minor_lock);
2316 		return -EBUSY;
2317 	}
2318 	dm_get(md);
2319 	spin_unlock(&_minor_lock);
2320 	return 0;
2321 }
2322 EXPORT_SYMBOL_GPL(dm_hold);
2323 
2324 const char *dm_device_name(struct mapped_device *md)
2325 {
2326 	return md->name;
2327 }
2328 EXPORT_SYMBOL_GPL(dm_device_name);
2329 
2330 static void __dm_destroy(struct mapped_device *md, bool wait)
2331 {
2332 	struct dm_table *map;
2333 	int srcu_idx;
2334 
2335 	might_sleep();
2336 
2337 	spin_lock(&_minor_lock);
2338 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2339 	set_bit(DMF_FREEING, &md->flags);
2340 	spin_unlock(&_minor_lock);
2341 
2342 	blk_mark_disk_dead(md->disk);
2343 
2344 	/*
2345 	 * Take suspend_lock so that presuspend and postsuspend methods
2346 	 * do not race with internal suspend.
2347 	 */
2348 	mutex_lock(&md->suspend_lock);
2349 	map = dm_get_live_table(md, &srcu_idx);
2350 	if (!dm_suspended_md(md)) {
2351 		dm_table_presuspend_targets(map);
2352 		set_bit(DMF_SUSPENDED, &md->flags);
2353 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2354 		dm_table_postsuspend_targets(map);
2355 	}
2356 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2357 	dm_put_live_table(md, srcu_idx);
2358 	mutex_unlock(&md->suspend_lock);
2359 
2360 	/*
2361 	 * Rare, but there may be I/O requests still going to complete,
2362 	 * for example.  Wait for all references to disappear.
2363 	 * No one should increment the reference count of the mapped_device,
2364 	 * after the mapped_device state becomes DMF_FREEING.
2365 	 */
2366 	if (wait)
2367 		while (atomic_read(&md->holders))
2368 			msleep(1);
2369 	else if (atomic_read(&md->holders))
2370 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2371 		       dm_device_name(md), atomic_read(&md->holders));
2372 
2373 	dm_table_destroy(__unbind(md));
2374 	free_dev(md);
2375 }
2376 
2377 void dm_destroy(struct mapped_device *md)
2378 {
2379 	__dm_destroy(md, true);
2380 }
2381 
2382 void dm_destroy_immediate(struct mapped_device *md)
2383 {
2384 	__dm_destroy(md, false);
2385 }
2386 
2387 void dm_put(struct mapped_device *md)
2388 {
2389 	atomic_dec(&md->holders);
2390 }
2391 EXPORT_SYMBOL_GPL(dm_put);
2392 
2393 static bool dm_in_flight_bios(struct mapped_device *md)
2394 {
2395 	int cpu;
2396 	unsigned long sum = 0;
2397 
2398 	for_each_possible_cpu(cpu)
2399 		sum += *per_cpu_ptr(md->pending_io, cpu);
2400 
2401 	return sum != 0;
2402 }
2403 
2404 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2405 {
2406 	int r = 0;
2407 	DEFINE_WAIT(wait);
2408 
2409 	while (true) {
2410 		prepare_to_wait(&md->wait, &wait, task_state);
2411 
2412 		if (!dm_in_flight_bios(md))
2413 			break;
2414 
2415 		if (signal_pending_state(task_state, current)) {
2416 			r = -EINTR;
2417 			break;
2418 		}
2419 
2420 		io_schedule();
2421 	}
2422 	finish_wait(&md->wait, &wait);
2423 
2424 	smp_rmb();
2425 
2426 	return r;
2427 }
2428 
2429 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2430 {
2431 	int r = 0;
2432 
2433 	if (!queue_is_mq(md->queue))
2434 		return dm_wait_for_bios_completion(md, task_state);
2435 
2436 	while (true) {
2437 		if (!blk_mq_queue_inflight(md->queue))
2438 			break;
2439 
2440 		if (signal_pending_state(task_state, current)) {
2441 			r = -EINTR;
2442 			break;
2443 		}
2444 
2445 		msleep(5);
2446 	}
2447 
2448 	return r;
2449 }
2450 
2451 /*
2452  * Process the deferred bios
2453  */
2454 static void dm_wq_work(struct work_struct *work)
2455 {
2456 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2457 	struct bio *bio;
2458 
2459 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2460 		spin_lock_irq(&md->deferred_lock);
2461 		bio = bio_list_pop(&md->deferred);
2462 		spin_unlock_irq(&md->deferred_lock);
2463 
2464 		if (!bio)
2465 			break;
2466 
2467 		submit_bio_noacct(bio);
2468 	}
2469 }
2470 
2471 static void dm_queue_flush(struct mapped_device *md)
2472 {
2473 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2474 	smp_mb__after_atomic();
2475 	queue_work(md->wq, &md->work);
2476 }
2477 
2478 /*
2479  * Swap in a new table, returning the old one for the caller to destroy.
2480  */
2481 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2482 {
2483 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2484 	struct queue_limits limits;
2485 	int r;
2486 
2487 	mutex_lock(&md->suspend_lock);
2488 
2489 	/* device must be suspended */
2490 	if (!dm_suspended_md(md))
2491 		goto out;
2492 
2493 	/*
2494 	 * If the new table has no data devices, retain the existing limits.
2495 	 * This helps multipath with queue_if_no_path if all paths disappear,
2496 	 * then new I/O is queued based on these limits, and then some paths
2497 	 * reappear.
2498 	 */
2499 	if (dm_table_has_no_data_devices(table)) {
2500 		live_map = dm_get_live_table_fast(md);
2501 		if (live_map)
2502 			limits = md->queue->limits;
2503 		dm_put_live_table_fast(md);
2504 	}
2505 
2506 	if (!live_map) {
2507 		r = dm_calculate_queue_limits(table, &limits);
2508 		if (r) {
2509 			map = ERR_PTR(r);
2510 			goto out;
2511 		}
2512 	}
2513 
2514 	map = __bind(md, table, &limits);
2515 	dm_issue_global_event();
2516 
2517 out:
2518 	mutex_unlock(&md->suspend_lock);
2519 	return map;
2520 }
2521 
2522 /*
2523  * Functions to lock and unlock any filesystem running on the
2524  * device.
2525  */
2526 static int lock_fs(struct mapped_device *md)
2527 {
2528 	int r;
2529 
2530 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2531 
2532 	r = freeze_bdev(md->disk->part0);
2533 	if (!r)
2534 		set_bit(DMF_FROZEN, &md->flags);
2535 	return r;
2536 }
2537 
2538 static void unlock_fs(struct mapped_device *md)
2539 {
2540 	if (!test_bit(DMF_FROZEN, &md->flags))
2541 		return;
2542 	thaw_bdev(md->disk->part0);
2543 	clear_bit(DMF_FROZEN, &md->flags);
2544 }
2545 
2546 /*
2547  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2548  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2549  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2550  *
2551  * If __dm_suspend returns 0, the device is completely quiescent
2552  * now. There is no request-processing activity. All new requests
2553  * are being added to md->deferred list.
2554  */
2555 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2556 			unsigned suspend_flags, unsigned int task_state,
2557 			int dmf_suspended_flag)
2558 {
2559 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2560 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2561 	int r;
2562 
2563 	lockdep_assert_held(&md->suspend_lock);
2564 
2565 	/*
2566 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2567 	 * This flag is cleared before dm_suspend returns.
2568 	 */
2569 	if (noflush)
2570 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2571 	else
2572 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2573 
2574 	/*
2575 	 * This gets reverted if there's an error later and the targets
2576 	 * provide the .presuspend_undo hook.
2577 	 */
2578 	dm_table_presuspend_targets(map);
2579 
2580 	/*
2581 	 * Flush I/O to the device.
2582 	 * Any I/O submitted after lock_fs() may not be flushed.
2583 	 * noflush takes precedence over do_lockfs.
2584 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2585 	 */
2586 	if (!noflush && do_lockfs) {
2587 		r = lock_fs(md);
2588 		if (r) {
2589 			dm_table_presuspend_undo_targets(map);
2590 			return r;
2591 		}
2592 	}
2593 
2594 	/*
2595 	 * Here we must make sure that no processes are submitting requests
2596 	 * to target drivers i.e. no one may be executing
2597 	 * dm_split_and_process_bio from dm_submit_bio.
2598 	 *
2599 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2600 	 * we take the write lock. To prevent any process from reentering
2601 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2602 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2603 	 * flush_workqueue(md->wq).
2604 	 */
2605 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2606 	if (map)
2607 		synchronize_srcu(&md->io_barrier);
2608 
2609 	/*
2610 	 * Stop md->queue before flushing md->wq in case request-based
2611 	 * dm defers requests to md->wq from md->queue.
2612 	 */
2613 	if (dm_request_based(md))
2614 		dm_stop_queue(md->queue);
2615 
2616 	flush_workqueue(md->wq);
2617 
2618 	/*
2619 	 * At this point no more requests are entering target request routines.
2620 	 * We call dm_wait_for_completion to wait for all existing requests
2621 	 * to finish.
2622 	 */
2623 	r = dm_wait_for_completion(md, task_state);
2624 	if (!r)
2625 		set_bit(dmf_suspended_flag, &md->flags);
2626 
2627 	if (noflush)
2628 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2629 	if (map)
2630 		synchronize_srcu(&md->io_barrier);
2631 
2632 	/* were we interrupted ? */
2633 	if (r < 0) {
2634 		dm_queue_flush(md);
2635 
2636 		if (dm_request_based(md))
2637 			dm_start_queue(md->queue);
2638 
2639 		unlock_fs(md);
2640 		dm_table_presuspend_undo_targets(map);
2641 		/* pushback list is already flushed, so skip flush */
2642 	}
2643 
2644 	return r;
2645 }
2646 
2647 /*
2648  * We need to be able to change a mapping table under a mounted
2649  * filesystem.  For example we might want to move some data in
2650  * the background.  Before the table can be swapped with
2651  * dm_bind_table, dm_suspend must be called to flush any in
2652  * flight bios and ensure that any further io gets deferred.
2653  */
2654 /*
2655  * Suspend mechanism in request-based dm.
2656  *
2657  * 1. Flush all I/Os by lock_fs() if needed.
2658  * 2. Stop dispatching any I/O by stopping the request_queue.
2659  * 3. Wait for all in-flight I/Os to be completed or requeued.
2660  *
2661  * To abort suspend, start the request_queue.
2662  */
2663 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2664 {
2665 	struct dm_table *map = NULL;
2666 	int r = 0;
2667 
2668 retry:
2669 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2670 
2671 	if (dm_suspended_md(md)) {
2672 		r = -EINVAL;
2673 		goto out_unlock;
2674 	}
2675 
2676 	if (dm_suspended_internally_md(md)) {
2677 		/* already internally suspended, wait for internal resume */
2678 		mutex_unlock(&md->suspend_lock);
2679 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2680 		if (r)
2681 			return r;
2682 		goto retry;
2683 	}
2684 
2685 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2686 
2687 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2688 	if (r)
2689 		goto out_unlock;
2690 
2691 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2692 	dm_table_postsuspend_targets(map);
2693 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2694 
2695 out_unlock:
2696 	mutex_unlock(&md->suspend_lock);
2697 	return r;
2698 }
2699 
2700 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2701 {
2702 	if (map) {
2703 		int r = dm_table_resume_targets(map);
2704 		if (r)
2705 			return r;
2706 	}
2707 
2708 	dm_queue_flush(md);
2709 
2710 	/*
2711 	 * Flushing deferred I/Os must be done after targets are resumed
2712 	 * so that mapping of targets can work correctly.
2713 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2714 	 */
2715 	if (dm_request_based(md))
2716 		dm_start_queue(md->queue);
2717 
2718 	unlock_fs(md);
2719 
2720 	return 0;
2721 }
2722 
2723 int dm_resume(struct mapped_device *md)
2724 {
2725 	int r;
2726 	struct dm_table *map = NULL;
2727 
2728 retry:
2729 	r = -EINVAL;
2730 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2731 
2732 	if (!dm_suspended_md(md))
2733 		goto out;
2734 
2735 	if (dm_suspended_internally_md(md)) {
2736 		/* already internally suspended, wait for internal resume */
2737 		mutex_unlock(&md->suspend_lock);
2738 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2739 		if (r)
2740 			return r;
2741 		goto retry;
2742 	}
2743 
2744 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2745 	if (!map || !dm_table_get_size(map))
2746 		goto out;
2747 
2748 	r = __dm_resume(md, map);
2749 	if (r)
2750 		goto out;
2751 
2752 	clear_bit(DMF_SUSPENDED, &md->flags);
2753 out:
2754 	mutex_unlock(&md->suspend_lock);
2755 
2756 	return r;
2757 }
2758 
2759 /*
2760  * Internal suspend/resume works like userspace-driven suspend. It waits
2761  * until all bios finish and prevents issuing new bios to the target drivers.
2762  * It may be used only from the kernel.
2763  */
2764 
2765 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2766 {
2767 	struct dm_table *map = NULL;
2768 
2769 	lockdep_assert_held(&md->suspend_lock);
2770 
2771 	if (md->internal_suspend_count++)
2772 		return; /* nested internal suspend */
2773 
2774 	if (dm_suspended_md(md)) {
2775 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2776 		return; /* nest suspend */
2777 	}
2778 
2779 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2780 
2781 	/*
2782 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2783 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2784 	 * would require changing .presuspend to return an error -- avoid this
2785 	 * until there is a need for more elaborate variants of internal suspend.
2786 	 */
2787 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2788 			    DMF_SUSPENDED_INTERNALLY);
2789 
2790 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2791 	dm_table_postsuspend_targets(map);
2792 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2793 }
2794 
2795 static void __dm_internal_resume(struct mapped_device *md)
2796 {
2797 	BUG_ON(!md->internal_suspend_count);
2798 
2799 	if (--md->internal_suspend_count)
2800 		return; /* resume from nested internal suspend */
2801 
2802 	if (dm_suspended_md(md))
2803 		goto done; /* resume from nested suspend */
2804 
2805 	/*
2806 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2807 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2808 	 */
2809 	(void) __dm_resume(md, NULL);
2810 
2811 done:
2812 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2813 	smp_mb__after_atomic();
2814 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2815 }
2816 
2817 void dm_internal_suspend_noflush(struct mapped_device *md)
2818 {
2819 	mutex_lock(&md->suspend_lock);
2820 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2821 	mutex_unlock(&md->suspend_lock);
2822 }
2823 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2824 
2825 void dm_internal_resume(struct mapped_device *md)
2826 {
2827 	mutex_lock(&md->suspend_lock);
2828 	__dm_internal_resume(md);
2829 	mutex_unlock(&md->suspend_lock);
2830 }
2831 EXPORT_SYMBOL_GPL(dm_internal_resume);
2832 
2833 /*
2834  * Fast variants of internal suspend/resume hold md->suspend_lock,
2835  * which prevents interaction with userspace-driven suspend.
2836  */
2837 
2838 void dm_internal_suspend_fast(struct mapped_device *md)
2839 {
2840 	mutex_lock(&md->suspend_lock);
2841 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2842 		return;
2843 
2844 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2845 	synchronize_srcu(&md->io_barrier);
2846 	flush_workqueue(md->wq);
2847 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2848 }
2849 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2850 
2851 void dm_internal_resume_fast(struct mapped_device *md)
2852 {
2853 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2854 		goto done;
2855 
2856 	dm_queue_flush(md);
2857 
2858 done:
2859 	mutex_unlock(&md->suspend_lock);
2860 }
2861 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2862 
2863 /*-----------------------------------------------------------------
2864  * Event notification.
2865  *---------------------------------------------------------------*/
2866 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2867 		       unsigned cookie)
2868 {
2869 	int r;
2870 	unsigned noio_flag;
2871 	char udev_cookie[DM_COOKIE_LENGTH];
2872 	char *envp[] = { udev_cookie, NULL };
2873 
2874 	noio_flag = memalloc_noio_save();
2875 
2876 	if (!cookie)
2877 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2878 	else {
2879 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2880 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2881 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2882 				       action, envp);
2883 	}
2884 
2885 	memalloc_noio_restore(noio_flag);
2886 
2887 	return r;
2888 }
2889 
2890 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2891 {
2892 	return atomic_add_return(1, &md->uevent_seq);
2893 }
2894 
2895 uint32_t dm_get_event_nr(struct mapped_device *md)
2896 {
2897 	return atomic_read(&md->event_nr);
2898 }
2899 
2900 int dm_wait_event(struct mapped_device *md, int event_nr)
2901 {
2902 	return wait_event_interruptible(md->eventq,
2903 			(event_nr != atomic_read(&md->event_nr)));
2904 }
2905 
2906 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2907 {
2908 	unsigned long flags;
2909 
2910 	spin_lock_irqsave(&md->uevent_lock, flags);
2911 	list_add(elist, &md->uevent_list);
2912 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2913 }
2914 
2915 /*
2916  * The gendisk is only valid as long as you have a reference
2917  * count on 'md'.
2918  */
2919 struct gendisk *dm_disk(struct mapped_device *md)
2920 {
2921 	return md->disk;
2922 }
2923 EXPORT_SYMBOL_GPL(dm_disk);
2924 
2925 struct kobject *dm_kobject(struct mapped_device *md)
2926 {
2927 	return &md->kobj_holder.kobj;
2928 }
2929 
2930 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2931 {
2932 	struct mapped_device *md;
2933 
2934 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2935 
2936 	spin_lock(&_minor_lock);
2937 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2938 		md = NULL;
2939 		goto out;
2940 	}
2941 	dm_get(md);
2942 out:
2943 	spin_unlock(&_minor_lock);
2944 
2945 	return md;
2946 }
2947 
2948 int dm_suspended_md(struct mapped_device *md)
2949 {
2950 	return test_bit(DMF_SUSPENDED, &md->flags);
2951 }
2952 
2953 static int dm_post_suspending_md(struct mapped_device *md)
2954 {
2955 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2956 }
2957 
2958 int dm_suspended_internally_md(struct mapped_device *md)
2959 {
2960 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2961 }
2962 
2963 int dm_test_deferred_remove_flag(struct mapped_device *md)
2964 {
2965 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2966 }
2967 
2968 int dm_suspended(struct dm_target *ti)
2969 {
2970 	return dm_suspended_md(ti->table->md);
2971 }
2972 EXPORT_SYMBOL_GPL(dm_suspended);
2973 
2974 int dm_post_suspending(struct dm_target *ti)
2975 {
2976 	return dm_post_suspending_md(ti->table->md);
2977 }
2978 EXPORT_SYMBOL_GPL(dm_post_suspending);
2979 
2980 int dm_noflush_suspending(struct dm_target *ti)
2981 {
2982 	return __noflush_suspending(ti->table->md);
2983 }
2984 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2985 
2986 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2987 					    unsigned per_io_data_size, unsigned min_pool_size,
2988 					    bool integrity, bool poll)
2989 {
2990 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2991 	unsigned int pool_size = 0;
2992 	unsigned int front_pad, io_front_pad;
2993 	int ret;
2994 
2995 	if (!pools)
2996 		return NULL;
2997 
2998 	switch (type) {
2999 	case DM_TYPE_BIO_BASED:
3000 	case DM_TYPE_DAX_BIO_BASED:
3001 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3002 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
3003 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
3004 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, poll ? BIOSET_PERCPU_CACHE : 0);
3005 		if (ret)
3006 			goto out;
3007 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3008 			goto out;
3009 		break;
3010 	case DM_TYPE_REQUEST_BASED:
3011 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3012 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3013 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3014 		break;
3015 	default:
3016 		BUG();
3017 	}
3018 
3019 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3020 	if (ret)
3021 		goto out;
3022 
3023 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3024 		goto out;
3025 
3026 	return pools;
3027 
3028 out:
3029 	dm_free_md_mempools(pools);
3030 
3031 	return NULL;
3032 }
3033 
3034 void dm_free_md_mempools(struct dm_md_mempools *pools)
3035 {
3036 	if (!pools)
3037 		return;
3038 
3039 	bioset_exit(&pools->bs);
3040 	bioset_exit(&pools->io_bs);
3041 
3042 	kfree(pools);
3043 }
3044 
3045 struct dm_pr {
3046 	u64	old_key;
3047 	u64	new_key;
3048 	u32	flags;
3049 	bool	fail_early;
3050 };
3051 
3052 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3053 		      void *data)
3054 {
3055 	struct mapped_device *md = bdev->bd_disk->private_data;
3056 	struct dm_table *table;
3057 	struct dm_target *ti;
3058 	int ret = -ENOTTY, srcu_idx;
3059 
3060 	table = dm_get_live_table(md, &srcu_idx);
3061 	if (!table || !dm_table_get_size(table))
3062 		goto out;
3063 
3064 	/* We only support devices that have a single target */
3065 	if (dm_table_get_num_targets(table) != 1)
3066 		goto out;
3067 	ti = dm_table_get_target(table, 0);
3068 
3069 	ret = -EINVAL;
3070 	if (!ti->type->iterate_devices)
3071 		goto out;
3072 
3073 	ret = ti->type->iterate_devices(ti, fn, data);
3074 out:
3075 	dm_put_live_table(md, srcu_idx);
3076 	return ret;
3077 }
3078 
3079 /*
3080  * For register / unregister we need to manually call out to every path.
3081  */
3082 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3083 			    sector_t start, sector_t len, void *data)
3084 {
3085 	struct dm_pr *pr = data;
3086 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3087 
3088 	if (!ops || !ops->pr_register)
3089 		return -EOPNOTSUPP;
3090 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3091 }
3092 
3093 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3094 			  u32 flags)
3095 {
3096 	struct dm_pr pr = {
3097 		.old_key	= old_key,
3098 		.new_key	= new_key,
3099 		.flags		= flags,
3100 		.fail_early	= true,
3101 	};
3102 	int ret;
3103 
3104 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3105 	if (ret && new_key) {
3106 		/* unregister all paths if we failed to register any path */
3107 		pr.old_key = new_key;
3108 		pr.new_key = 0;
3109 		pr.flags = 0;
3110 		pr.fail_early = false;
3111 		dm_call_pr(bdev, __dm_pr_register, &pr);
3112 	}
3113 
3114 	return ret;
3115 }
3116 
3117 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3118 			 u32 flags)
3119 {
3120 	struct mapped_device *md = bdev->bd_disk->private_data;
3121 	const struct pr_ops *ops;
3122 	int r, srcu_idx;
3123 
3124 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3125 	if (r < 0)
3126 		goto out;
3127 
3128 	ops = bdev->bd_disk->fops->pr_ops;
3129 	if (ops && ops->pr_reserve)
3130 		r = ops->pr_reserve(bdev, key, type, flags);
3131 	else
3132 		r = -EOPNOTSUPP;
3133 out:
3134 	dm_unprepare_ioctl(md, srcu_idx);
3135 	return r;
3136 }
3137 
3138 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3139 {
3140 	struct mapped_device *md = bdev->bd_disk->private_data;
3141 	const struct pr_ops *ops;
3142 	int r, srcu_idx;
3143 
3144 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3145 	if (r < 0)
3146 		goto out;
3147 
3148 	ops = bdev->bd_disk->fops->pr_ops;
3149 	if (ops && ops->pr_release)
3150 		r = ops->pr_release(bdev, key, type);
3151 	else
3152 		r = -EOPNOTSUPP;
3153 out:
3154 	dm_unprepare_ioctl(md, srcu_idx);
3155 	return r;
3156 }
3157 
3158 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3159 			 enum pr_type type, bool abort)
3160 {
3161 	struct mapped_device *md = bdev->bd_disk->private_data;
3162 	const struct pr_ops *ops;
3163 	int r, srcu_idx;
3164 
3165 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3166 	if (r < 0)
3167 		goto out;
3168 
3169 	ops = bdev->bd_disk->fops->pr_ops;
3170 	if (ops && ops->pr_preempt)
3171 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3172 	else
3173 		r = -EOPNOTSUPP;
3174 out:
3175 	dm_unprepare_ioctl(md, srcu_idx);
3176 	return r;
3177 }
3178 
3179 static int dm_pr_clear(struct block_device *bdev, u64 key)
3180 {
3181 	struct mapped_device *md = bdev->bd_disk->private_data;
3182 	const struct pr_ops *ops;
3183 	int r, srcu_idx;
3184 
3185 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3186 	if (r < 0)
3187 		goto out;
3188 
3189 	ops = bdev->bd_disk->fops->pr_ops;
3190 	if (ops && ops->pr_clear)
3191 		r = ops->pr_clear(bdev, key);
3192 	else
3193 		r = -EOPNOTSUPP;
3194 out:
3195 	dm_unprepare_ioctl(md, srcu_idx);
3196 	return r;
3197 }
3198 
3199 static const struct pr_ops dm_pr_ops = {
3200 	.pr_register	= dm_pr_register,
3201 	.pr_reserve	= dm_pr_reserve,
3202 	.pr_release	= dm_pr_release,
3203 	.pr_preempt	= dm_pr_preempt,
3204 	.pr_clear	= dm_pr_clear,
3205 };
3206 
3207 static const struct block_device_operations dm_blk_dops = {
3208 	.submit_bio = dm_submit_bio,
3209 	.poll_bio = dm_poll_bio,
3210 	.open = dm_blk_open,
3211 	.release = dm_blk_close,
3212 	.ioctl = dm_blk_ioctl,
3213 	.getgeo = dm_blk_getgeo,
3214 	.report_zones = dm_blk_report_zones,
3215 	.pr_ops = &dm_pr_ops,
3216 	.owner = THIS_MODULE
3217 };
3218 
3219 static const struct block_device_operations dm_rq_blk_dops = {
3220 	.open = dm_blk_open,
3221 	.release = dm_blk_close,
3222 	.ioctl = dm_blk_ioctl,
3223 	.getgeo = dm_blk_getgeo,
3224 	.pr_ops = &dm_pr_ops,
3225 	.owner = THIS_MODULE
3226 };
3227 
3228 static const struct dax_operations dm_dax_ops = {
3229 	.direct_access = dm_dax_direct_access,
3230 	.zero_page_range = dm_dax_zero_page_range,
3231 	.recovery_write = dm_dax_recovery_write,
3232 };
3233 
3234 /*
3235  * module hooks
3236  */
3237 module_init(dm_init);
3238 module_exit(dm_exit);
3239 
3240 module_param(major, uint, 0);
3241 MODULE_PARM_DESC(major, "The major number of the device mapper");
3242 
3243 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3244 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3245 
3246 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3247 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3248 
3249 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3250 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3251 
3252 MODULE_DESCRIPTION(DM_NAME " driver");
3253 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3254 MODULE_LICENSE("GPL");
3255