1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 /* 53 * For bio-based dm. 54 * One of these is allocated per bio. 55 */ 56 struct dm_io { 57 struct mapped_device *md; 58 int error; 59 atomic_t io_count; 60 struct bio *bio; 61 unsigned long start_time; 62 spinlock_t endio_lock; 63 }; 64 65 /* 66 * For request-based dm. 67 * One of these is allocated per request. 68 */ 69 struct dm_rq_target_io { 70 struct mapped_device *md; 71 struct dm_target *ti; 72 struct request *orig, clone; 73 int error; 74 union map_info info; 75 }; 76 77 /* 78 * For request-based dm - the bio clones we allocate are embedded in these 79 * structs. 80 * 81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 82 * the bioset is created - this means the bio has to come at the end of the 83 * struct. 84 */ 85 struct dm_rq_clone_bio_info { 86 struct bio *orig; 87 struct dm_rq_target_io *tio; 88 struct bio clone; 89 }; 90 91 union map_info *dm_get_mapinfo(struct bio *bio) 92 { 93 if (bio && bio->bi_private) 94 return &((struct dm_target_io *)bio->bi_private)->info; 95 return NULL; 96 } 97 98 union map_info *dm_get_rq_mapinfo(struct request *rq) 99 { 100 if (rq && rq->end_io_data) 101 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 102 return NULL; 103 } 104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 105 106 #define MINOR_ALLOCED ((void *)-1) 107 108 /* 109 * Bits for the md->flags field. 110 */ 111 #define DMF_BLOCK_IO_FOR_SUSPEND 0 112 #define DMF_SUSPENDED 1 113 #define DMF_FROZEN 2 114 #define DMF_FREEING 3 115 #define DMF_DELETING 4 116 #define DMF_NOFLUSH_SUSPENDING 5 117 #define DMF_MERGE_IS_OPTIONAL 6 118 119 /* 120 * Work processed by per-device workqueue. 121 */ 122 struct mapped_device { 123 struct rw_semaphore io_lock; 124 struct mutex suspend_lock; 125 rwlock_t map_lock; 126 atomic_t holders; 127 atomic_t open_count; 128 129 unsigned long flags; 130 131 struct request_queue *queue; 132 unsigned type; 133 /* Protect queue and type against concurrent access. */ 134 struct mutex type_lock; 135 136 struct target_type *immutable_target_type; 137 138 struct gendisk *disk; 139 char name[16]; 140 141 void *interface_ptr; 142 143 /* 144 * A list of ios that arrived while we were suspended. 145 */ 146 atomic_t pending[2]; 147 wait_queue_head_t wait; 148 struct work_struct work; 149 struct bio_list deferred; 150 spinlock_t deferred_lock; 151 152 /* 153 * Processing queue (flush) 154 */ 155 struct workqueue_struct *wq; 156 157 /* 158 * The current mapping. 159 */ 160 struct dm_table *map; 161 162 /* 163 * io objects are allocated from here. 164 */ 165 mempool_t *io_pool; 166 167 struct bio_set *bs; 168 169 /* 170 * Event handling. 171 */ 172 atomic_t event_nr; 173 wait_queue_head_t eventq; 174 atomic_t uevent_seq; 175 struct list_head uevent_list; 176 spinlock_t uevent_lock; /* Protect access to uevent_list */ 177 178 /* 179 * freeze/thaw support require holding onto a super block 180 */ 181 struct super_block *frozen_sb; 182 struct block_device *bdev; 183 184 /* forced geometry settings */ 185 struct hd_geometry geometry; 186 187 /* sysfs handle */ 188 struct kobject kobj; 189 190 /* zero-length flush that will be cloned and submitted to targets */ 191 struct bio flush_bio; 192 }; 193 194 /* 195 * For mempools pre-allocation at the table loading time. 196 */ 197 struct dm_md_mempools { 198 mempool_t *io_pool; 199 struct bio_set *bs; 200 }; 201 202 #define MIN_IOS 256 203 static struct kmem_cache *_io_cache; 204 static struct kmem_cache *_rq_tio_cache; 205 206 static int __init local_init(void) 207 { 208 int r = -ENOMEM; 209 210 /* allocate a slab for the dm_ios */ 211 _io_cache = KMEM_CACHE(dm_io, 0); 212 if (!_io_cache) 213 return r; 214 215 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 216 if (!_rq_tio_cache) 217 goto out_free_io_cache; 218 219 r = dm_uevent_init(); 220 if (r) 221 goto out_free_rq_tio_cache; 222 223 _major = major; 224 r = register_blkdev(_major, _name); 225 if (r < 0) 226 goto out_uevent_exit; 227 228 if (!_major) 229 _major = r; 230 231 return 0; 232 233 out_uevent_exit: 234 dm_uevent_exit(); 235 out_free_rq_tio_cache: 236 kmem_cache_destroy(_rq_tio_cache); 237 out_free_io_cache: 238 kmem_cache_destroy(_io_cache); 239 240 return r; 241 } 242 243 static void local_exit(void) 244 { 245 kmem_cache_destroy(_rq_tio_cache); 246 kmem_cache_destroy(_io_cache); 247 unregister_blkdev(_major, _name); 248 dm_uevent_exit(); 249 250 _major = 0; 251 252 DMINFO("cleaned up"); 253 } 254 255 static int (*_inits[])(void) __initdata = { 256 local_init, 257 dm_target_init, 258 dm_linear_init, 259 dm_stripe_init, 260 dm_io_init, 261 dm_kcopyd_init, 262 dm_interface_init, 263 }; 264 265 static void (*_exits[])(void) = { 266 local_exit, 267 dm_target_exit, 268 dm_linear_exit, 269 dm_stripe_exit, 270 dm_io_exit, 271 dm_kcopyd_exit, 272 dm_interface_exit, 273 }; 274 275 static int __init dm_init(void) 276 { 277 const int count = ARRAY_SIZE(_inits); 278 279 int r, i; 280 281 for (i = 0; i < count; i++) { 282 r = _inits[i](); 283 if (r) 284 goto bad; 285 } 286 287 return 0; 288 289 bad: 290 while (i--) 291 _exits[i](); 292 293 return r; 294 } 295 296 static void __exit dm_exit(void) 297 { 298 int i = ARRAY_SIZE(_exits); 299 300 while (i--) 301 _exits[i](); 302 303 /* 304 * Should be empty by this point. 305 */ 306 idr_destroy(&_minor_idr); 307 } 308 309 /* 310 * Block device functions 311 */ 312 int dm_deleting_md(struct mapped_device *md) 313 { 314 return test_bit(DMF_DELETING, &md->flags); 315 } 316 317 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 318 { 319 struct mapped_device *md; 320 321 spin_lock(&_minor_lock); 322 323 md = bdev->bd_disk->private_data; 324 if (!md) 325 goto out; 326 327 if (test_bit(DMF_FREEING, &md->flags) || 328 dm_deleting_md(md)) { 329 md = NULL; 330 goto out; 331 } 332 333 dm_get(md); 334 atomic_inc(&md->open_count); 335 336 out: 337 spin_unlock(&_minor_lock); 338 339 return md ? 0 : -ENXIO; 340 } 341 342 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 343 { 344 struct mapped_device *md = disk->private_data; 345 346 spin_lock(&_minor_lock); 347 348 atomic_dec(&md->open_count); 349 dm_put(md); 350 351 spin_unlock(&_minor_lock); 352 } 353 354 int dm_open_count(struct mapped_device *md) 355 { 356 return atomic_read(&md->open_count); 357 } 358 359 /* 360 * Guarantees nothing is using the device before it's deleted. 361 */ 362 int dm_lock_for_deletion(struct mapped_device *md) 363 { 364 int r = 0; 365 366 spin_lock(&_minor_lock); 367 368 if (dm_open_count(md)) 369 r = -EBUSY; 370 else 371 set_bit(DMF_DELETING, &md->flags); 372 373 spin_unlock(&_minor_lock); 374 375 return r; 376 } 377 378 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 379 { 380 struct mapped_device *md = bdev->bd_disk->private_data; 381 382 return dm_get_geometry(md, geo); 383 } 384 385 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 386 unsigned int cmd, unsigned long arg) 387 { 388 struct mapped_device *md = bdev->bd_disk->private_data; 389 struct dm_table *map = dm_get_live_table(md); 390 struct dm_target *tgt; 391 int r = -ENOTTY; 392 393 if (!map || !dm_table_get_size(map)) 394 goto out; 395 396 /* We only support devices that have a single target */ 397 if (dm_table_get_num_targets(map) != 1) 398 goto out; 399 400 tgt = dm_table_get_target(map, 0); 401 402 if (dm_suspended_md(md)) { 403 r = -EAGAIN; 404 goto out; 405 } 406 407 if (tgt->type->ioctl) 408 r = tgt->type->ioctl(tgt, cmd, arg); 409 410 out: 411 dm_table_put(map); 412 413 return r; 414 } 415 416 static struct dm_io *alloc_io(struct mapped_device *md) 417 { 418 return mempool_alloc(md->io_pool, GFP_NOIO); 419 } 420 421 static void free_io(struct mapped_device *md, struct dm_io *io) 422 { 423 mempool_free(io, md->io_pool); 424 } 425 426 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 427 { 428 bio_put(&tio->clone); 429 } 430 431 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 432 gfp_t gfp_mask) 433 { 434 return mempool_alloc(md->io_pool, gfp_mask); 435 } 436 437 static void free_rq_tio(struct dm_rq_target_io *tio) 438 { 439 mempool_free(tio, tio->md->io_pool); 440 } 441 442 static int md_in_flight(struct mapped_device *md) 443 { 444 return atomic_read(&md->pending[READ]) + 445 atomic_read(&md->pending[WRITE]); 446 } 447 448 static void start_io_acct(struct dm_io *io) 449 { 450 struct mapped_device *md = io->md; 451 int cpu; 452 int rw = bio_data_dir(io->bio); 453 454 io->start_time = jiffies; 455 456 cpu = part_stat_lock(); 457 part_round_stats(cpu, &dm_disk(md)->part0); 458 part_stat_unlock(); 459 atomic_set(&dm_disk(md)->part0.in_flight[rw], 460 atomic_inc_return(&md->pending[rw])); 461 } 462 463 static void end_io_acct(struct dm_io *io) 464 { 465 struct mapped_device *md = io->md; 466 struct bio *bio = io->bio; 467 unsigned long duration = jiffies - io->start_time; 468 int pending, cpu; 469 int rw = bio_data_dir(bio); 470 471 cpu = part_stat_lock(); 472 part_round_stats(cpu, &dm_disk(md)->part0); 473 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 474 part_stat_unlock(); 475 476 /* 477 * After this is decremented the bio must not be touched if it is 478 * a flush. 479 */ 480 pending = atomic_dec_return(&md->pending[rw]); 481 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 482 pending += atomic_read(&md->pending[rw^0x1]); 483 484 /* nudge anyone waiting on suspend queue */ 485 if (!pending) 486 wake_up(&md->wait); 487 } 488 489 /* 490 * Add the bio to the list of deferred io. 491 */ 492 static void queue_io(struct mapped_device *md, struct bio *bio) 493 { 494 unsigned long flags; 495 496 spin_lock_irqsave(&md->deferred_lock, flags); 497 bio_list_add(&md->deferred, bio); 498 spin_unlock_irqrestore(&md->deferred_lock, flags); 499 queue_work(md->wq, &md->work); 500 } 501 502 /* 503 * Everyone (including functions in this file), should use this 504 * function to access the md->map field, and make sure they call 505 * dm_table_put() when finished. 506 */ 507 struct dm_table *dm_get_live_table(struct mapped_device *md) 508 { 509 struct dm_table *t; 510 unsigned long flags; 511 512 read_lock_irqsave(&md->map_lock, flags); 513 t = md->map; 514 if (t) 515 dm_table_get(t); 516 read_unlock_irqrestore(&md->map_lock, flags); 517 518 return t; 519 } 520 521 /* 522 * Get the geometry associated with a dm device 523 */ 524 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 525 { 526 *geo = md->geometry; 527 528 return 0; 529 } 530 531 /* 532 * Set the geometry of a device. 533 */ 534 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 535 { 536 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 537 538 if (geo->start > sz) { 539 DMWARN("Start sector is beyond the geometry limits."); 540 return -EINVAL; 541 } 542 543 md->geometry = *geo; 544 545 return 0; 546 } 547 548 /*----------------------------------------------------------------- 549 * CRUD START: 550 * A more elegant soln is in the works that uses the queue 551 * merge fn, unfortunately there are a couple of changes to 552 * the block layer that I want to make for this. So in the 553 * interests of getting something for people to use I give 554 * you this clearly demarcated crap. 555 *---------------------------------------------------------------*/ 556 557 static int __noflush_suspending(struct mapped_device *md) 558 { 559 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 560 } 561 562 /* 563 * Decrements the number of outstanding ios that a bio has been 564 * cloned into, completing the original io if necc. 565 */ 566 static void dec_pending(struct dm_io *io, int error) 567 { 568 unsigned long flags; 569 int io_error; 570 struct bio *bio; 571 struct mapped_device *md = io->md; 572 573 /* Push-back supersedes any I/O errors */ 574 if (unlikely(error)) { 575 spin_lock_irqsave(&io->endio_lock, flags); 576 if (!(io->error > 0 && __noflush_suspending(md))) 577 io->error = error; 578 spin_unlock_irqrestore(&io->endio_lock, flags); 579 } 580 581 if (atomic_dec_and_test(&io->io_count)) { 582 if (io->error == DM_ENDIO_REQUEUE) { 583 /* 584 * Target requested pushing back the I/O. 585 */ 586 spin_lock_irqsave(&md->deferred_lock, flags); 587 if (__noflush_suspending(md)) 588 bio_list_add_head(&md->deferred, io->bio); 589 else 590 /* noflush suspend was interrupted. */ 591 io->error = -EIO; 592 spin_unlock_irqrestore(&md->deferred_lock, flags); 593 } 594 595 io_error = io->error; 596 bio = io->bio; 597 end_io_acct(io); 598 free_io(md, io); 599 600 if (io_error == DM_ENDIO_REQUEUE) 601 return; 602 603 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { 604 /* 605 * Preflush done for flush with data, reissue 606 * without REQ_FLUSH. 607 */ 608 bio->bi_rw &= ~REQ_FLUSH; 609 queue_io(md, bio); 610 } else { 611 /* done with normal IO or empty flush */ 612 trace_block_bio_complete(md->queue, bio, io_error); 613 bio_endio(bio, io_error); 614 } 615 } 616 } 617 618 static void clone_endio(struct bio *bio, int error) 619 { 620 int r = 0; 621 struct dm_target_io *tio = bio->bi_private; 622 struct dm_io *io = tio->io; 623 struct mapped_device *md = tio->io->md; 624 dm_endio_fn endio = tio->ti->type->end_io; 625 626 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 627 error = -EIO; 628 629 if (endio) { 630 r = endio(tio->ti, bio, error); 631 if (r < 0 || r == DM_ENDIO_REQUEUE) 632 /* 633 * error and requeue request are handled 634 * in dec_pending(). 635 */ 636 error = r; 637 else if (r == DM_ENDIO_INCOMPLETE) 638 /* The target will handle the io */ 639 return; 640 else if (r) { 641 DMWARN("unimplemented target endio return value: %d", r); 642 BUG(); 643 } 644 } 645 646 free_tio(md, tio); 647 dec_pending(io, error); 648 } 649 650 /* 651 * Partial completion handling for request-based dm 652 */ 653 static void end_clone_bio(struct bio *clone, int error) 654 { 655 struct dm_rq_clone_bio_info *info = clone->bi_private; 656 struct dm_rq_target_io *tio = info->tio; 657 struct bio *bio = info->orig; 658 unsigned int nr_bytes = info->orig->bi_size; 659 660 bio_put(clone); 661 662 if (tio->error) 663 /* 664 * An error has already been detected on the request. 665 * Once error occurred, just let clone->end_io() handle 666 * the remainder. 667 */ 668 return; 669 else if (error) { 670 /* 671 * Don't notice the error to the upper layer yet. 672 * The error handling decision is made by the target driver, 673 * when the request is completed. 674 */ 675 tio->error = error; 676 return; 677 } 678 679 /* 680 * I/O for the bio successfully completed. 681 * Notice the data completion to the upper layer. 682 */ 683 684 /* 685 * bios are processed from the head of the list. 686 * So the completing bio should always be rq->bio. 687 * If it's not, something wrong is happening. 688 */ 689 if (tio->orig->bio != bio) 690 DMERR("bio completion is going in the middle of the request"); 691 692 /* 693 * Update the original request. 694 * Do not use blk_end_request() here, because it may complete 695 * the original request before the clone, and break the ordering. 696 */ 697 blk_update_request(tio->orig, 0, nr_bytes); 698 } 699 700 /* 701 * Don't touch any member of the md after calling this function because 702 * the md may be freed in dm_put() at the end of this function. 703 * Or do dm_get() before calling this function and dm_put() later. 704 */ 705 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 706 { 707 atomic_dec(&md->pending[rw]); 708 709 /* nudge anyone waiting on suspend queue */ 710 if (!md_in_flight(md)) 711 wake_up(&md->wait); 712 713 /* 714 * Run this off this callpath, as drivers could invoke end_io while 715 * inside their request_fn (and holding the queue lock). Calling 716 * back into ->request_fn() could deadlock attempting to grab the 717 * queue lock again. 718 */ 719 if (run_queue) 720 blk_run_queue_async(md->queue); 721 722 /* 723 * dm_put() must be at the end of this function. See the comment above 724 */ 725 dm_put(md); 726 } 727 728 static void free_rq_clone(struct request *clone) 729 { 730 struct dm_rq_target_io *tio = clone->end_io_data; 731 732 blk_rq_unprep_clone(clone); 733 free_rq_tio(tio); 734 } 735 736 /* 737 * Complete the clone and the original request. 738 * Must be called without queue lock. 739 */ 740 static void dm_end_request(struct request *clone, int error) 741 { 742 int rw = rq_data_dir(clone); 743 struct dm_rq_target_io *tio = clone->end_io_data; 744 struct mapped_device *md = tio->md; 745 struct request *rq = tio->orig; 746 747 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 748 rq->errors = clone->errors; 749 rq->resid_len = clone->resid_len; 750 751 if (rq->sense) 752 /* 753 * We are using the sense buffer of the original 754 * request. 755 * So setting the length of the sense data is enough. 756 */ 757 rq->sense_len = clone->sense_len; 758 } 759 760 free_rq_clone(clone); 761 blk_end_request_all(rq, error); 762 rq_completed(md, rw, true); 763 } 764 765 static void dm_unprep_request(struct request *rq) 766 { 767 struct request *clone = rq->special; 768 769 rq->special = NULL; 770 rq->cmd_flags &= ~REQ_DONTPREP; 771 772 free_rq_clone(clone); 773 } 774 775 /* 776 * Requeue the original request of a clone. 777 */ 778 void dm_requeue_unmapped_request(struct request *clone) 779 { 780 int rw = rq_data_dir(clone); 781 struct dm_rq_target_io *tio = clone->end_io_data; 782 struct mapped_device *md = tio->md; 783 struct request *rq = tio->orig; 784 struct request_queue *q = rq->q; 785 unsigned long flags; 786 787 dm_unprep_request(rq); 788 789 spin_lock_irqsave(q->queue_lock, flags); 790 blk_requeue_request(q, rq); 791 spin_unlock_irqrestore(q->queue_lock, flags); 792 793 rq_completed(md, rw, 0); 794 } 795 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 796 797 static void __stop_queue(struct request_queue *q) 798 { 799 blk_stop_queue(q); 800 } 801 802 static void stop_queue(struct request_queue *q) 803 { 804 unsigned long flags; 805 806 spin_lock_irqsave(q->queue_lock, flags); 807 __stop_queue(q); 808 spin_unlock_irqrestore(q->queue_lock, flags); 809 } 810 811 static void __start_queue(struct request_queue *q) 812 { 813 if (blk_queue_stopped(q)) 814 blk_start_queue(q); 815 } 816 817 static void start_queue(struct request_queue *q) 818 { 819 unsigned long flags; 820 821 spin_lock_irqsave(q->queue_lock, flags); 822 __start_queue(q); 823 spin_unlock_irqrestore(q->queue_lock, flags); 824 } 825 826 static void dm_done(struct request *clone, int error, bool mapped) 827 { 828 int r = error; 829 struct dm_rq_target_io *tio = clone->end_io_data; 830 dm_request_endio_fn rq_end_io = NULL; 831 832 if (tio->ti) { 833 rq_end_io = tio->ti->type->rq_end_io; 834 835 if (mapped && rq_end_io) 836 r = rq_end_io(tio->ti, clone, error, &tio->info); 837 } 838 839 if (r <= 0) 840 /* The target wants to complete the I/O */ 841 dm_end_request(clone, r); 842 else if (r == DM_ENDIO_INCOMPLETE) 843 /* The target will handle the I/O */ 844 return; 845 else if (r == DM_ENDIO_REQUEUE) 846 /* The target wants to requeue the I/O */ 847 dm_requeue_unmapped_request(clone); 848 else { 849 DMWARN("unimplemented target endio return value: %d", r); 850 BUG(); 851 } 852 } 853 854 /* 855 * Request completion handler for request-based dm 856 */ 857 static void dm_softirq_done(struct request *rq) 858 { 859 bool mapped = true; 860 struct request *clone = rq->completion_data; 861 struct dm_rq_target_io *tio = clone->end_io_data; 862 863 if (rq->cmd_flags & REQ_FAILED) 864 mapped = false; 865 866 dm_done(clone, tio->error, mapped); 867 } 868 869 /* 870 * Complete the clone and the original request with the error status 871 * through softirq context. 872 */ 873 static void dm_complete_request(struct request *clone, int error) 874 { 875 struct dm_rq_target_io *tio = clone->end_io_data; 876 struct request *rq = tio->orig; 877 878 tio->error = error; 879 rq->completion_data = clone; 880 blk_complete_request(rq); 881 } 882 883 /* 884 * Complete the not-mapped clone and the original request with the error status 885 * through softirq context. 886 * Target's rq_end_io() function isn't called. 887 * This may be used when the target's map_rq() function fails. 888 */ 889 void dm_kill_unmapped_request(struct request *clone, int error) 890 { 891 struct dm_rq_target_io *tio = clone->end_io_data; 892 struct request *rq = tio->orig; 893 894 rq->cmd_flags |= REQ_FAILED; 895 dm_complete_request(clone, error); 896 } 897 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 898 899 /* 900 * Called with the queue lock held 901 */ 902 static void end_clone_request(struct request *clone, int error) 903 { 904 /* 905 * For just cleaning up the information of the queue in which 906 * the clone was dispatched. 907 * The clone is *NOT* freed actually here because it is alloced from 908 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 909 */ 910 __blk_put_request(clone->q, clone); 911 912 /* 913 * Actual request completion is done in a softirq context which doesn't 914 * hold the queue lock. Otherwise, deadlock could occur because: 915 * - another request may be submitted by the upper level driver 916 * of the stacking during the completion 917 * - the submission which requires queue lock may be done 918 * against this queue 919 */ 920 dm_complete_request(clone, error); 921 } 922 923 /* 924 * Return maximum size of I/O possible at the supplied sector up to the current 925 * target boundary. 926 */ 927 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 928 { 929 sector_t target_offset = dm_target_offset(ti, sector); 930 931 return ti->len - target_offset; 932 } 933 934 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 935 { 936 sector_t len = max_io_len_target_boundary(sector, ti); 937 sector_t offset, max_len; 938 939 /* 940 * Does the target need to split even further? 941 */ 942 if (ti->max_io_len) { 943 offset = dm_target_offset(ti, sector); 944 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 945 max_len = sector_div(offset, ti->max_io_len); 946 else 947 max_len = offset & (ti->max_io_len - 1); 948 max_len = ti->max_io_len - max_len; 949 950 if (len > max_len) 951 len = max_len; 952 } 953 954 return len; 955 } 956 957 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 958 { 959 if (len > UINT_MAX) { 960 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 961 (unsigned long long)len, UINT_MAX); 962 ti->error = "Maximum size of target IO is too large"; 963 return -EINVAL; 964 } 965 966 ti->max_io_len = (uint32_t) len; 967 968 return 0; 969 } 970 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 971 972 static void __map_bio(struct dm_target_io *tio) 973 { 974 int r; 975 sector_t sector; 976 struct mapped_device *md; 977 struct bio *clone = &tio->clone; 978 struct dm_target *ti = tio->ti; 979 980 clone->bi_end_io = clone_endio; 981 clone->bi_private = tio; 982 983 /* 984 * Map the clone. If r == 0 we don't need to do 985 * anything, the target has assumed ownership of 986 * this io. 987 */ 988 atomic_inc(&tio->io->io_count); 989 sector = clone->bi_sector; 990 r = ti->type->map(ti, clone); 991 if (r == DM_MAPIO_REMAPPED) { 992 /* the bio has been remapped so dispatch it */ 993 994 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 995 tio->io->bio->bi_bdev->bd_dev, sector); 996 997 generic_make_request(clone); 998 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 999 /* error the io and bail out, or requeue it if needed */ 1000 md = tio->io->md; 1001 dec_pending(tio->io, r); 1002 free_tio(md, tio); 1003 } else if (r) { 1004 DMWARN("unimplemented target map return value: %d", r); 1005 BUG(); 1006 } 1007 } 1008 1009 struct clone_info { 1010 struct mapped_device *md; 1011 struct dm_table *map; 1012 struct bio *bio; 1013 struct dm_io *io; 1014 sector_t sector; 1015 sector_t sector_count; 1016 unsigned short idx; 1017 }; 1018 1019 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len) 1020 { 1021 bio->bi_sector = sector; 1022 bio->bi_size = to_bytes(len); 1023 } 1024 1025 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count) 1026 { 1027 bio->bi_idx = idx; 1028 bio->bi_vcnt = idx + bv_count; 1029 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 1030 } 1031 1032 static void clone_bio_integrity(struct bio *bio, struct bio *clone, 1033 unsigned short idx, unsigned len, unsigned offset, 1034 unsigned trim) 1035 { 1036 if (!bio_integrity(bio)) 1037 return; 1038 1039 bio_integrity_clone(clone, bio, GFP_NOIO); 1040 1041 if (trim) 1042 bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len); 1043 } 1044 1045 /* 1046 * Creates a little bio that just does part of a bvec. 1047 */ 1048 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio, 1049 sector_t sector, unsigned short idx, 1050 unsigned offset, unsigned len) 1051 { 1052 struct bio *clone = &tio->clone; 1053 struct bio_vec *bv = bio->bi_io_vec + idx; 1054 1055 *clone->bi_io_vec = *bv; 1056 1057 bio_setup_sector(clone, sector, len); 1058 1059 clone->bi_bdev = bio->bi_bdev; 1060 clone->bi_rw = bio->bi_rw; 1061 clone->bi_vcnt = 1; 1062 clone->bi_io_vec->bv_offset = offset; 1063 clone->bi_io_vec->bv_len = clone->bi_size; 1064 clone->bi_flags |= 1 << BIO_CLONED; 1065 1066 clone_bio_integrity(bio, clone, idx, len, offset, 1); 1067 } 1068 1069 /* 1070 * Creates a bio that consists of range of complete bvecs. 1071 */ 1072 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1073 sector_t sector, unsigned short idx, 1074 unsigned short bv_count, unsigned len) 1075 { 1076 struct bio *clone = &tio->clone; 1077 unsigned trim = 0; 1078 1079 __bio_clone(clone, bio); 1080 bio_setup_sector(clone, sector, len); 1081 bio_setup_bv(clone, idx, bv_count); 1082 1083 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1084 trim = 1; 1085 clone_bio_integrity(bio, clone, idx, len, 0, trim); 1086 } 1087 1088 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1089 struct dm_target *ti, int nr_iovecs, 1090 unsigned target_bio_nr) 1091 { 1092 struct dm_target_io *tio; 1093 struct bio *clone; 1094 1095 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs); 1096 tio = container_of(clone, struct dm_target_io, clone); 1097 1098 tio->io = ci->io; 1099 tio->ti = ti; 1100 memset(&tio->info, 0, sizeof(tio->info)); 1101 tio->target_bio_nr = target_bio_nr; 1102 1103 return tio; 1104 } 1105 1106 static void __clone_and_map_simple_bio(struct clone_info *ci, 1107 struct dm_target *ti, 1108 unsigned target_bio_nr, sector_t len) 1109 { 1110 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr); 1111 struct bio *clone = &tio->clone; 1112 1113 /* 1114 * Discard requests require the bio's inline iovecs be initialized. 1115 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1116 * and discard, so no need for concern about wasted bvec allocations. 1117 */ 1118 __bio_clone(clone, ci->bio); 1119 if (len) 1120 bio_setup_sector(clone, ci->sector, len); 1121 1122 __map_bio(tio); 1123 } 1124 1125 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1126 unsigned num_bios, sector_t len) 1127 { 1128 unsigned target_bio_nr; 1129 1130 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1131 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1132 } 1133 1134 static int __send_empty_flush(struct clone_info *ci) 1135 { 1136 unsigned target_nr = 0; 1137 struct dm_target *ti; 1138 1139 BUG_ON(bio_has_data(ci->bio)); 1140 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1141 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0); 1142 1143 return 0; 1144 } 1145 1146 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1147 sector_t sector, int nr_iovecs, 1148 unsigned short idx, unsigned short bv_count, 1149 unsigned offset, unsigned len, 1150 unsigned split_bvec) 1151 { 1152 struct bio *bio = ci->bio; 1153 struct dm_target_io *tio; 1154 unsigned target_bio_nr; 1155 unsigned num_target_bios = 1; 1156 1157 /* 1158 * Does the target want to receive duplicate copies of the bio? 1159 */ 1160 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1161 num_target_bios = ti->num_write_bios(ti, bio); 1162 1163 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1164 tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr); 1165 if (split_bvec) 1166 clone_split_bio(tio, bio, sector, idx, offset, len); 1167 else 1168 clone_bio(tio, bio, sector, idx, bv_count, len); 1169 __map_bio(tio); 1170 } 1171 } 1172 1173 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1174 1175 static unsigned get_num_discard_bios(struct dm_target *ti) 1176 { 1177 return ti->num_discard_bios; 1178 } 1179 1180 static unsigned get_num_write_same_bios(struct dm_target *ti) 1181 { 1182 return ti->num_write_same_bios; 1183 } 1184 1185 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1186 1187 static bool is_split_required_for_discard(struct dm_target *ti) 1188 { 1189 return ti->split_discard_bios; 1190 } 1191 1192 static int __send_changing_extent_only(struct clone_info *ci, 1193 get_num_bios_fn get_num_bios, 1194 is_split_required_fn is_split_required) 1195 { 1196 struct dm_target *ti; 1197 sector_t len; 1198 unsigned num_bios; 1199 1200 do { 1201 ti = dm_table_find_target(ci->map, ci->sector); 1202 if (!dm_target_is_valid(ti)) 1203 return -EIO; 1204 1205 /* 1206 * Even though the device advertised support for this type of 1207 * request, that does not mean every target supports it, and 1208 * reconfiguration might also have changed that since the 1209 * check was performed. 1210 */ 1211 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1212 if (!num_bios) 1213 return -EOPNOTSUPP; 1214 1215 if (is_split_required && !is_split_required(ti)) 1216 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1217 else 1218 len = min(ci->sector_count, max_io_len(ci->sector, ti)); 1219 1220 __send_duplicate_bios(ci, ti, num_bios, len); 1221 1222 ci->sector += len; 1223 } while (ci->sector_count -= len); 1224 1225 return 0; 1226 } 1227 1228 static int __send_discard(struct clone_info *ci) 1229 { 1230 return __send_changing_extent_only(ci, get_num_discard_bios, 1231 is_split_required_for_discard); 1232 } 1233 1234 static int __send_write_same(struct clone_info *ci) 1235 { 1236 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1237 } 1238 1239 /* 1240 * Find maximum number of sectors / bvecs we can process with a single bio. 1241 */ 1242 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx) 1243 { 1244 struct bio *bio = ci->bio; 1245 sector_t bv_len, total_len = 0; 1246 1247 for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) { 1248 bv_len = to_sector(bio->bi_io_vec[*idx].bv_len); 1249 1250 if (bv_len > max) 1251 break; 1252 1253 max -= bv_len; 1254 total_len += bv_len; 1255 } 1256 1257 return total_len; 1258 } 1259 1260 static int __split_bvec_across_targets(struct clone_info *ci, 1261 struct dm_target *ti, sector_t max) 1262 { 1263 struct bio *bio = ci->bio; 1264 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1265 sector_t remaining = to_sector(bv->bv_len); 1266 unsigned offset = 0; 1267 sector_t len; 1268 1269 do { 1270 if (offset) { 1271 ti = dm_table_find_target(ci->map, ci->sector); 1272 if (!dm_target_is_valid(ti)) 1273 return -EIO; 1274 1275 max = max_io_len(ci->sector, ti); 1276 } 1277 1278 len = min(remaining, max); 1279 1280 __clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0, 1281 bv->bv_offset + offset, len, 1); 1282 1283 ci->sector += len; 1284 ci->sector_count -= len; 1285 offset += to_bytes(len); 1286 } while (remaining -= len); 1287 1288 ci->idx++; 1289 1290 return 0; 1291 } 1292 1293 /* 1294 * Select the correct strategy for processing a non-flush bio. 1295 */ 1296 static int __split_and_process_non_flush(struct clone_info *ci) 1297 { 1298 struct bio *bio = ci->bio; 1299 struct dm_target *ti; 1300 sector_t len, max; 1301 int idx; 1302 1303 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1304 return __send_discard(ci); 1305 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1306 return __send_write_same(ci); 1307 1308 ti = dm_table_find_target(ci->map, ci->sector); 1309 if (!dm_target_is_valid(ti)) 1310 return -EIO; 1311 1312 max = max_io_len(ci->sector, ti); 1313 1314 /* 1315 * Optimise for the simple case where we can do all of 1316 * the remaining io with a single clone. 1317 */ 1318 if (ci->sector_count <= max) { 1319 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs, 1320 ci->idx, bio->bi_vcnt - ci->idx, 0, 1321 ci->sector_count, 0); 1322 ci->sector_count = 0; 1323 return 0; 1324 } 1325 1326 /* 1327 * There are some bvecs that don't span targets. 1328 * Do as many of these as possible. 1329 */ 1330 if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1331 len = __len_within_target(ci, max, &idx); 1332 1333 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs, 1334 ci->idx, idx - ci->idx, 0, len, 0); 1335 1336 ci->sector += len; 1337 ci->sector_count -= len; 1338 ci->idx = idx; 1339 1340 return 0; 1341 } 1342 1343 /* 1344 * Handle a bvec that must be split between two or more targets. 1345 */ 1346 return __split_bvec_across_targets(ci, ti, max); 1347 } 1348 1349 /* 1350 * Entry point to split a bio into clones and submit them to the targets. 1351 */ 1352 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1353 { 1354 struct clone_info ci; 1355 int error = 0; 1356 1357 ci.map = dm_get_live_table(md); 1358 if (unlikely(!ci.map)) { 1359 bio_io_error(bio); 1360 return; 1361 } 1362 1363 ci.md = md; 1364 ci.io = alloc_io(md); 1365 ci.io->error = 0; 1366 atomic_set(&ci.io->io_count, 1); 1367 ci.io->bio = bio; 1368 ci.io->md = md; 1369 spin_lock_init(&ci.io->endio_lock); 1370 ci.sector = bio->bi_sector; 1371 ci.idx = bio->bi_idx; 1372 1373 start_io_acct(ci.io); 1374 1375 if (bio->bi_rw & REQ_FLUSH) { 1376 ci.bio = &ci.md->flush_bio; 1377 ci.sector_count = 0; 1378 error = __send_empty_flush(&ci); 1379 /* dec_pending submits any data associated with flush */ 1380 } else { 1381 ci.bio = bio; 1382 ci.sector_count = bio_sectors(bio); 1383 while (ci.sector_count && !error) 1384 error = __split_and_process_non_flush(&ci); 1385 } 1386 1387 /* drop the extra reference count */ 1388 dec_pending(ci.io, error); 1389 dm_table_put(ci.map); 1390 } 1391 /*----------------------------------------------------------------- 1392 * CRUD END 1393 *---------------------------------------------------------------*/ 1394 1395 static int dm_merge_bvec(struct request_queue *q, 1396 struct bvec_merge_data *bvm, 1397 struct bio_vec *biovec) 1398 { 1399 struct mapped_device *md = q->queuedata; 1400 struct dm_table *map = dm_get_live_table(md); 1401 struct dm_target *ti; 1402 sector_t max_sectors; 1403 int max_size = 0; 1404 1405 if (unlikely(!map)) 1406 goto out; 1407 1408 ti = dm_table_find_target(map, bvm->bi_sector); 1409 if (!dm_target_is_valid(ti)) 1410 goto out_table; 1411 1412 /* 1413 * Find maximum amount of I/O that won't need splitting 1414 */ 1415 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1416 (sector_t) BIO_MAX_SECTORS); 1417 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1418 if (max_size < 0) 1419 max_size = 0; 1420 1421 /* 1422 * merge_bvec_fn() returns number of bytes 1423 * it can accept at this offset 1424 * max is precomputed maximal io size 1425 */ 1426 if (max_size && ti->type->merge) 1427 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1428 /* 1429 * If the target doesn't support merge method and some of the devices 1430 * provided their merge_bvec method (we know this by looking at 1431 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1432 * entries. So always set max_size to 0, and the code below allows 1433 * just one page. 1434 */ 1435 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1436 1437 max_size = 0; 1438 1439 out_table: 1440 dm_table_put(map); 1441 1442 out: 1443 /* 1444 * Always allow an entire first page 1445 */ 1446 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1447 max_size = biovec->bv_len; 1448 1449 return max_size; 1450 } 1451 1452 /* 1453 * The request function that just remaps the bio built up by 1454 * dm_merge_bvec. 1455 */ 1456 static void _dm_request(struct request_queue *q, struct bio *bio) 1457 { 1458 int rw = bio_data_dir(bio); 1459 struct mapped_device *md = q->queuedata; 1460 int cpu; 1461 1462 down_read(&md->io_lock); 1463 1464 cpu = part_stat_lock(); 1465 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1466 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1467 part_stat_unlock(); 1468 1469 /* if we're suspended, we have to queue this io for later */ 1470 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1471 up_read(&md->io_lock); 1472 1473 if (bio_rw(bio) != READA) 1474 queue_io(md, bio); 1475 else 1476 bio_io_error(bio); 1477 return; 1478 } 1479 1480 __split_and_process_bio(md, bio); 1481 up_read(&md->io_lock); 1482 return; 1483 } 1484 1485 static int dm_request_based(struct mapped_device *md) 1486 { 1487 return blk_queue_stackable(md->queue); 1488 } 1489 1490 static void dm_request(struct request_queue *q, struct bio *bio) 1491 { 1492 struct mapped_device *md = q->queuedata; 1493 1494 if (dm_request_based(md)) 1495 blk_queue_bio(q, bio); 1496 else 1497 _dm_request(q, bio); 1498 } 1499 1500 void dm_dispatch_request(struct request *rq) 1501 { 1502 int r; 1503 1504 if (blk_queue_io_stat(rq->q)) 1505 rq->cmd_flags |= REQ_IO_STAT; 1506 1507 rq->start_time = jiffies; 1508 r = blk_insert_cloned_request(rq->q, rq); 1509 if (r) 1510 dm_complete_request(rq, r); 1511 } 1512 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1513 1514 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1515 void *data) 1516 { 1517 struct dm_rq_target_io *tio = data; 1518 struct dm_rq_clone_bio_info *info = 1519 container_of(bio, struct dm_rq_clone_bio_info, clone); 1520 1521 info->orig = bio_orig; 1522 info->tio = tio; 1523 bio->bi_end_io = end_clone_bio; 1524 bio->bi_private = info; 1525 1526 return 0; 1527 } 1528 1529 static int setup_clone(struct request *clone, struct request *rq, 1530 struct dm_rq_target_io *tio) 1531 { 1532 int r; 1533 1534 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1535 dm_rq_bio_constructor, tio); 1536 if (r) 1537 return r; 1538 1539 clone->cmd = rq->cmd; 1540 clone->cmd_len = rq->cmd_len; 1541 clone->sense = rq->sense; 1542 clone->buffer = rq->buffer; 1543 clone->end_io = end_clone_request; 1544 clone->end_io_data = tio; 1545 1546 return 0; 1547 } 1548 1549 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1550 gfp_t gfp_mask) 1551 { 1552 struct request *clone; 1553 struct dm_rq_target_io *tio; 1554 1555 tio = alloc_rq_tio(md, gfp_mask); 1556 if (!tio) 1557 return NULL; 1558 1559 tio->md = md; 1560 tio->ti = NULL; 1561 tio->orig = rq; 1562 tio->error = 0; 1563 memset(&tio->info, 0, sizeof(tio->info)); 1564 1565 clone = &tio->clone; 1566 if (setup_clone(clone, rq, tio)) { 1567 /* -ENOMEM */ 1568 free_rq_tio(tio); 1569 return NULL; 1570 } 1571 1572 return clone; 1573 } 1574 1575 /* 1576 * Called with the queue lock held. 1577 */ 1578 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1579 { 1580 struct mapped_device *md = q->queuedata; 1581 struct request *clone; 1582 1583 if (unlikely(rq->special)) { 1584 DMWARN("Already has something in rq->special."); 1585 return BLKPREP_KILL; 1586 } 1587 1588 clone = clone_rq(rq, md, GFP_ATOMIC); 1589 if (!clone) 1590 return BLKPREP_DEFER; 1591 1592 rq->special = clone; 1593 rq->cmd_flags |= REQ_DONTPREP; 1594 1595 return BLKPREP_OK; 1596 } 1597 1598 /* 1599 * Returns: 1600 * 0 : the request has been processed (not requeued) 1601 * !0 : the request has been requeued 1602 */ 1603 static int map_request(struct dm_target *ti, struct request *clone, 1604 struct mapped_device *md) 1605 { 1606 int r, requeued = 0; 1607 struct dm_rq_target_io *tio = clone->end_io_data; 1608 1609 tio->ti = ti; 1610 r = ti->type->map_rq(ti, clone, &tio->info); 1611 switch (r) { 1612 case DM_MAPIO_SUBMITTED: 1613 /* The target has taken the I/O to submit by itself later */ 1614 break; 1615 case DM_MAPIO_REMAPPED: 1616 /* The target has remapped the I/O so dispatch it */ 1617 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1618 blk_rq_pos(tio->orig)); 1619 dm_dispatch_request(clone); 1620 break; 1621 case DM_MAPIO_REQUEUE: 1622 /* The target wants to requeue the I/O */ 1623 dm_requeue_unmapped_request(clone); 1624 requeued = 1; 1625 break; 1626 default: 1627 if (r > 0) { 1628 DMWARN("unimplemented target map return value: %d", r); 1629 BUG(); 1630 } 1631 1632 /* The target wants to complete the I/O */ 1633 dm_kill_unmapped_request(clone, r); 1634 break; 1635 } 1636 1637 return requeued; 1638 } 1639 1640 static struct request *dm_start_request(struct mapped_device *md, struct request *orig) 1641 { 1642 struct request *clone; 1643 1644 blk_start_request(orig); 1645 clone = orig->special; 1646 atomic_inc(&md->pending[rq_data_dir(clone)]); 1647 1648 /* 1649 * Hold the md reference here for the in-flight I/O. 1650 * We can't rely on the reference count by device opener, 1651 * because the device may be closed during the request completion 1652 * when all bios are completed. 1653 * See the comment in rq_completed() too. 1654 */ 1655 dm_get(md); 1656 1657 return clone; 1658 } 1659 1660 /* 1661 * q->request_fn for request-based dm. 1662 * Called with the queue lock held. 1663 */ 1664 static void dm_request_fn(struct request_queue *q) 1665 { 1666 struct mapped_device *md = q->queuedata; 1667 struct dm_table *map = dm_get_live_table(md); 1668 struct dm_target *ti; 1669 struct request *rq, *clone; 1670 sector_t pos; 1671 1672 /* 1673 * For suspend, check blk_queue_stopped() and increment 1674 * ->pending within a single queue_lock not to increment the 1675 * number of in-flight I/Os after the queue is stopped in 1676 * dm_suspend(). 1677 */ 1678 while (!blk_queue_stopped(q)) { 1679 rq = blk_peek_request(q); 1680 if (!rq) 1681 goto delay_and_out; 1682 1683 /* always use block 0 to find the target for flushes for now */ 1684 pos = 0; 1685 if (!(rq->cmd_flags & REQ_FLUSH)) 1686 pos = blk_rq_pos(rq); 1687 1688 ti = dm_table_find_target(map, pos); 1689 if (!dm_target_is_valid(ti)) { 1690 /* 1691 * Must perform setup, that dm_done() requires, 1692 * before calling dm_kill_unmapped_request 1693 */ 1694 DMERR_LIMIT("request attempted access beyond the end of device"); 1695 clone = dm_start_request(md, rq); 1696 dm_kill_unmapped_request(clone, -EIO); 1697 continue; 1698 } 1699 1700 if (ti->type->busy && ti->type->busy(ti)) 1701 goto delay_and_out; 1702 1703 clone = dm_start_request(md, rq); 1704 1705 spin_unlock(q->queue_lock); 1706 if (map_request(ti, clone, md)) 1707 goto requeued; 1708 1709 BUG_ON(!irqs_disabled()); 1710 spin_lock(q->queue_lock); 1711 } 1712 1713 goto out; 1714 1715 requeued: 1716 BUG_ON(!irqs_disabled()); 1717 spin_lock(q->queue_lock); 1718 1719 delay_and_out: 1720 blk_delay_queue(q, HZ / 10); 1721 out: 1722 dm_table_put(map); 1723 } 1724 1725 int dm_underlying_device_busy(struct request_queue *q) 1726 { 1727 return blk_lld_busy(q); 1728 } 1729 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1730 1731 static int dm_lld_busy(struct request_queue *q) 1732 { 1733 int r; 1734 struct mapped_device *md = q->queuedata; 1735 struct dm_table *map = dm_get_live_table(md); 1736 1737 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1738 r = 1; 1739 else 1740 r = dm_table_any_busy_target(map); 1741 1742 dm_table_put(map); 1743 1744 return r; 1745 } 1746 1747 static int dm_any_congested(void *congested_data, int bdi_bits) 1748 { 1749 int r = bdi_bits; 1750 struct mapped_device *md = congested_data; 1751 struct dm_table *map; 1752 1753 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1754 map = dm_get_live_table(md); 1755 if (map) { 1756 /* 1757 * Request-based dm cares about only own queue for 1758 * the query about congestion status of request_queue 1759 */ 1760 if (dm_request_based(md)) 1761 r = md->queue->backing_dev_info.state & 1762 bdi_bits; 1763 else 1764 r = dm_table_any_congested(map, bdi_bits); 1765 1766 dm_table_put(map); 1767 } 1768 } 1769 1770 return r; 1771 } 1772 1773 /*----------------------------------------------------------------- 1774 * An IDR is used to keep track of allocated minor numbers. 1775 *---------------------------------------------------------------*/ 1776 static void free_minor(int minor) 1777 { 1778 spin_lock(&_minor_lock); 1779 idr_remove(&_minor_idr, minor); 1780 spin_unlock(&_minor_lock); 1781 } 1782 1783 /* 1784 * See if the device with a specific minor # is free. 1785 */ 1786 static int specific_minor(int minor) 1787 { 1788 int r; 1789 1790 if (minor >= (1 << MINORBITS)) 1791 return -EINVAL; 1792 1793 idr_preload(GFP_KERNEL); 1794 spin_lock(&_minor_lock); 1795 1796 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1797 1798 spin_unlock(&_minor_lock); 1799 idr_preload_end(); 1800 if (r < 0) 1801 return r == -ENOSPC ? -EBUSY : r; 1802 return 0; 1803 } 1804 1805 static int next_free_minor(int *minor) 1806 { 1807 int r; 1808 1809 idr_preload(GFP_KERNEL); 1810 spin_lock(&_minor_lock); 1811 1812 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1813 1814 spin_unlock(&_minor_lock); 1815 idr_preload_end(); 1816 if (r < 0) 1817 return r; 1818 *minor = r; 1819 return 0; 1820 } 1821 1822 static const struct block_device_operations dm_blk_dops; 1823 1824 static void dm_wq_work(struct work_struct *work); 1825 1826 static void dm_init_md_queue(struct mapped_device *md) 1827 { 1828 /* 1829 * Request-based dm devices cannot be stacked on top of bio-based dm 1830 * devices. The type of this dm device has not been decided yet. 1831 * The type is decided at the first table loading time. 1832 * To prevent problematic device stacking, clear the queue flag 1833 * for request stacking support until then. 1834 * 1835 * This queue is new, so no concurrency on the queue_flags. 1836 */ 1837 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1838 1839 md->queue->queuedata = md; 1840 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1841 md->queue->backing_dev_info.congested_data = md; 1842 blk_queue_make_request(md->queue, dm_request); 1843 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1844 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1845 } 1846 1847 /* 1848 * Allocate and initialise a blank device with a given minor. 1849 */ 1850 static struct mapped_device *alloc_dev(int minor) 1851 { 1852 int r; 1853 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1854 void *old_md; 1855 1856 if (!md) { 1857 DMWARN("unable to allocate device, out of memory."); 1858 return NULL; 1859 } 1860 1861 if (!try_module_get(THIS_MODULE)) 1862 goto bad_module_get; 1863 1864 /* get a minor number for the dev */ 1865 if (minor == DM_ANY_MINOR) 1866 r = next_free_minor(&minor); 1867 else 1868 r = specific_minor(minor); 1869 if (r < 0) 1870 goto bad_minor; 1871 1872 md->type = DM_TYPE_NONE; 1873 init_rwsem(&md->io_lock); 1874 mutex_init(&md->suspend_lock); 1875 mutex_init(&md->type_lock); 1876 spin_lock_init(&md->deferred_lock); 1877 rwlock_init(&md->map_lock); 1878 atomic_set(&md->holders, 1); 1879 atomic_set(&md->open_count, 0); 1880 atomic_set(&md->event_nr, 0); 1881 atomic_set(&md->uevent_seq, 0); 1882 INIT_LIST_HEAD(&md->uevent_list); 1883 spin_lock_init(&md->uevent_lock); 1884 1885 md->queue = blk_alloc_queue(GFP_KERNEL); 1886 if (!md->queue) 1887 goto bad_queue; 1888 1889 dm_init_md_queue(md); 1890 1891 md->disk = alloc_disk(1); 1892 if (!md->disk) 1893 goto bad_disk; 1894 1895 atomic_set(&md->pending[0], 0); 1896 atomic_set(&md->pending[1], 0); 1897 init_waitqueue_head(&md->wait); 1898 INIT_WORK(&md->work, dm_wq_work); 1899 init_waitqueue_head(&md->eventq); 1900 1901 md->disk->major = _major; 1902 md->disk->first_minor = minor; 1903 md->disk->fops = &dm_blk_dops; 1904 md->disk->queue = md->queue; 1905 md->disk->private_data = md; 1906 sprintf(md->disk->disk_name, "dm-%d", minor); 1907 add_disk(md->disk); 1908 format_dev_t(md->name, MKDEV(_major, minor)); 1909 1910 md->wq = alloc_workqueue("kdmflush", 1911 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1912 if (!md->wq) 1913 goto bad_thread; 1914 1915 md->bdev = bdget_disk(md->disk, 0); 1916 if (!md->bdev) 1917 goto bad_bdev; 1918 1919 bio_init(&md->flush_bio); 1920 md->flush_bio.bi_bdev = md->bdev; 1921 md->flush_bio.bi_rw = WRITE_FLUSH; 1922 1923 /* Populate the mapping, nobody knows we exist yet */ 1924 spin_lock(&_minor_lock); 1925 old_md = idr_replace(&_minor_idr, md, minor); 1926 spin_unlock(&_minor_lock); 1927 1928 BUG_ON(old_md != MINOR_ALLOCED); 1929 1930 return md; 1931 1932 bad_bdev: 1933 destroy_workqueue(md->wq); 1934 bad_thread: 1935 del_gendisk(md->disk); 1936 put_disk(md->disk); 1937 bad_disk: 1938 blk_cleanup_queue(md->queue); 1939 bad_queue: 1940 free_minor(minor); 1941 bad_minor: 1942 module_put(THIS_MODULE); 1943 bad_module_get: 1944 kfree(md); 1945 return NULL; 1946 } 1947 1948 static void unlock_fs(struct mapped_device *md); 1949 1950 static void free_dev(struct mapped_device *md) 1951 { 1952 int minor = MINOR(disk_devt(md->disk)); 1953 1954 unlock_fs(md); 1955 bdput(md->bdev); 1956 destroy_workqueue(md->wq); 1957 if (md->io_pool) 1958 mempool_destroy(md->io_pool); 1959 if (md->bs) 1960 bioset_free(md->bs); 1961 blk_integrity_unregister(md->disk); 1962 del_gendisk(md->disk); 1963 free_minor(minor); 1964 1965 spin_lock(&_minor_lock); 1966 md->disk->private_data = NULL; 1967 spin_unlock(&_minor_lock); 1968 1969 put_disk(md->disk); 1970 blk_cleanup_queue(md->queue); 1971 module_put(THIS_MODULE); 1972 kfree(md); 1973 } 1974 1975 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1976 { 1977 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1978 1979 if (md->io_pool && md->bs) { 1980 /* The md already has necessary mempools. */ 1981 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 1982 /* 1983 * Reload bioset because front_pad may have changed 1984 * because a different table was loaded. 1985 */ 1986 bioset_free(md->bs); 1987 md->bs = p->bs; 1988 p->bs = NULL; 1989 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) { 1990 /* 1991 * There's no need to reload with request-based dm 1992 * because the size of front_pad doesn't change. 1993 * Note for future: If you are to reload bioset, 1994 * prep-ed requests in the queue may refer 1995 * to bio from the old bioset, so you must walk 1996 * through the queue to unprep. 1997 */ 1998 } 1999 goto out; 2000 } 2001 2002 BUG_ON(!p || md->io_pool || md->bs); 2003 2004 md->io_pool = p->io_pool; 2005 p->io_pool = NULL; 2006 md->bs = p->bs; 2007 p->bs = NULL; 2008 2009 out: 2010 /* mempool bind completed, now no need any mempools in the table */ 2011 dm_table_free_md_mempools(t); 2012 } 2013 2014 /* 2015 * Bind a table to the device. 2016 */ 2017 static void event_callback(void *context) 2018 { 2019 unsigned long flags; 2020 LIST_HEAD(uevents); 2021 struct mapped_device *md = (struct mapped_device *) context; 2022 2023 spin_lock_irqsave(&md->uevent_lock, flags); 2024 list_splice_init(&md->uevent_list, &uevents); 2025 spin_unlock_irqrestore(&md->uevent_lock, flags); 2026 2027 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2028 2029 atomic_inc(&md->event_nr); 2030 wake_up(&md->eventq); 2031 } 2032 2033 /* 2034 * Protected by md->suspend_lock obtained by dm_swap_table(). 2035 */ 2036 static void __set_size(struct mapped_device *md, sector_t size) 2037 { 2038 set_capacity(md->disk, size); 2039 2040 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2041 } 2042 2043 /* 2044 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2045 * 2046 * If this function returns 0, then the device is either a non-dm 2047 * device without a merge_bvec_fn, or it is a dm device that is 2048 * able to split any bios it receives that are too big. 2049 */ 2050 int dm_queue_merge_is_compulsory(struct request_queue *q) 2051 { 2052 struct mapped_device *dev_md; 2053 2054 if (!q->merge_bvec_fn) 2055 return 0; 2056 2057 if (q->make_request_fn == dm_request) { 2058 dev_md = q->queuedata; 2059 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2060 return 0; 2061 } 2062 2063 return 1; 2064 } 2065 2066 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2067 struct dm_dev *dev, sector_t start, 2068 sector_t len, void *data) 2069 { 2070 struct block_device *bdev = dev->bdev; 2071 struct request_queue *q = bdev_get_queue(bdev); 2072 2073 return dm_queue_merge_is_compulsory(q); 2074 } 2075 2076 /* 2077 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2078 * on the properties of the underlying devices. 2079 */ 2080 static int dm_table_merge_is_optional(struct dm_table *table) 2081 { 2082 unsigned i = 0; 2083 struct dm_target *ti; 2084 2085 while (i < dm_table_get_num_targets(table)) { 2086 ti = dm_table_get_target(table, i++); 2087 2088 if (ti->type->iterate_devices && 2089 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2090 return 0; 2091 } 2092 2093 return 1; 2094 } 2095 2096 /* 2097 * Returns old map, which caller must destroy. 2098 */ 2099 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2100 struct queue_limits *limits) 2101 { 2102 struct dm_table *old_map; 2103 struct request_queue *q = md->queue; 2104 sector_t size; 2105 unsigned long flags; 2106 int merge_is_optional; 2107 2108 size = dm_table_get_size(t); 2109 2110 /* 2111 * Wipe any geometry if the size of the table changed. 2112 */ 2113 if (size != get_capacity(md->disk)) 2114 memset(&md->geometry, 0, sizeof(md->geometry)); 2115 2116 __set_size(md, size); 2117 2118 dm_table_event_callback(t, event_callback, md); 2119 2120 /* 2121 * The queue hasn't been stopped yet, if the old table type wasn't 2122 * for request-based during suspension. So stop it to prevent 2123 * I/O mapping before resume. 2124 * This must be done before setting the queue restrictions, 2125 * because request-based dm may be run just after the setting. 2126 */ 2127 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2128 stop_queue(q); 2129 2130 __bind_mempools(md, t); 2131 2132 merge_is_optional = dm_table_merge_is_optional(t); 2133 2134 write_lock_irqsave(&md->map_lock, flags); 2135 old_map = md->map; 2136 md->map = t; 2137 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2138 2139 dm_table_set_restrictions(t, q, limits); 2140 if (merge_is_optional) 2141 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2142 else 2143 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2144 write_unlock_irqrestore(&md->map_lock, flags); 2145 2146 return old_map; 2147 } 2148 2149 /* 2150 * Returns unbound table for the caller to free. 2151 */ 2152 static struct dm_table *__unbind(struct mapped_device *md) 2153 { 2154 struct dm_table *map = md->map; 2155 unsigned long flags; 2156 2157 if (!map) 2158 return NULL; 2159 2160 dm_table_event_callback(map, NULL, NULL); 2161 write_lock_irqsave(&md->map_lock, flags); 2162 md->map = NULL; 2163 write_unlock_irqrestore(&md->map_lock, flags); 2164 2165 return map; 2166 } 2167 2168 /* 2169 * Constructor for a new device. 2170 */ 2171 int dm_create(int minor, struct mapped_device **result) 2172 { 2173 struct mapped_device *md; 2174 2175 md = alloc_dev(minor); 2176 if (!md) 2177 return -ENXIO; 2178 2179 dm_sysfs_init(md); 2180 2181 *result = md; 2182 return 0; 2183 } 2184 2185 /* 2186 * Functions to manage md->type. 2187 * All are required to hold md->type_lock. 2188 */ 2189 void dm_lock_md_type(struct mapped_device *md) 2190 { 2191 mutex_lock(&md->type_lock); 2192 } 2193 2194 void dm_unlock_md_type(struct mapped_device *md) 2195 { 2196 mutex_unlock(&md->type_lock); 2197 } 2198 2199 void dm_set_md_type(struct mapped_device *md, unsigned type) 2200 { 2201 md->type = type; 2202 } 2203 2204 unsigned dm_get_md_type(struct mapped_device *md) 2205 { 2206 return md->type; 2207 } 2208 2209 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2210 { 2211 return md->immutable_target_type; 2212 } 2213 2214 /* 2215 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2216 */ 2217 static int dm_init_request_based_queue(struct mapped_device *md) 2218 { 2219 struct request_queue *q = NULL; 2220 2221 if (md->queue->elevator) 2222 return 1; 2223 2224 /* Fully initialize the queue */ 2225 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2226 if (!q) 2227 return 0; 2228 2229 md->queue = q; 2230 dm_init_md_queue(md); 2231 blk_queue_softirq_done(md->queue, dm_softirq_done); 2232 blk_queue_prep_rq(md->queue, dm_prep_fn); 2233 blk_queue_lld_busy(md->queue, dm_lld_busy); 2234 2235 elv_register_queue(md->queue); 2236 2237 return 1; 2238 } 2239 2240 /* 2241 * Setup the DM device's queue based on md's type 2242 */ 2243 int dm_setup_md_queue(struct mapped_device *md) 2244 { 2245 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2246 !dm_init_request_based_queue(md)) { 2247 DMWARN("Cannot initialize queue for request-based mapped device"); 2248 return -EINVAL; 2249 } 2250 2251 return 0; 2252 } 2253 2254 static struct mapped_device *dm_find_md(dev_t dev) 2255 { 2256 struct mapped_device *md; 2257 unsigned minor = MINOR(dev); 2258 2259 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2260 return NULL; 2261 2262 spin_lock(&_minor_lock); 2263 2264 md = idr_find(&_minor_idr, minor); 2265 if (md && (md == MINOR_ALLOCED || 2266 (MINOR(disk_devt(dm_disk(md))) != minor) || 2267 dm_deleting_md(md) || 2268 test_bit(DMF_FREEING, &md->flags))) { 2269 md = NULL; 2270 goto out; 2271 } 2272 2273 out: 2274 spin_unlock(&_minor_lock); 2275 2276 return md; 2277 } 2278 2279 struct mapped_device *dm_get_md(dev_t dev) 2280 { 2281 struct mapped_device *md = dm_find_md(dev); 2282 2283 if (md) 2284 dm_get(md); 2285 2286 return md; 2287 } 2288 EXPORT_SYMBOL_GPL(dm_get_md); 2289 2290 void *dm_get_mdptr(struct mapped_device *md) 2291 { 2292 return md->interface_ptr; 2293 } 2294 2295 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2296 { 2297 md->interface_ptr = ptr; 2298 } 2299 2300 void dm_get(struct mapped_device *md) 2301 { 2302 atomic_inc(&md->holders); 2303 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2304 } 2305 2306 const char *dm_device_name(struct mapped_device *md) 2307 { 2308 return md->name; 2309 } 2310 EXPORT_SYMBOL_GPL(dm_device_name); 2311 2312 static void __dm_destroy(struct mapped_device *md, bool wait) 2313 { 2314 struct dm_table *map; 2315 2316 might_sleep(); 2317 2318 spin_lock(&_minor_lock); 2319 map = dm_get_live_table(md); 2320 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2321 set_bit(DMF_FREEING, &md->flags); 2322 spin_unlock(&_minor_lock); 2323 2324 if (!dm_suspended_md(md)) { 2325 dm_table_presuspend_targets(map); 2326 dm_table_postsuspend_targets(map); 2327 } 2328 2329 /* 2330 * Rare, but there may be I/O requests still going to complete, 2331 * for example. Wait for all references to disappear. 2332 * No one should increment the reference count of the mapped_device, 2333 * after the mapped_device state becomes DMF_FREEING. 2334 */ 2335 if (wait) 2336 while (atomic_read(&md->holders)) 2337 msleep(1); 2338 else if (atomic_read(&md->holders)) 2339 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2340 dm_device_name(md), atomic_read(&md->holders)); 2341 2342 dm_sysfs_exit(md); 2343 dm_table_put(map); 2344 dm_table_destroy(__unbind(md)); 2345 free_dev(md); 2346 } 2347 2348 void dm_destroy(struct mapped_device *md) 2349 { 2350 __dm_destroy(md, true); 2351 } 2352 2353 void dm_destroy_immediate(struct mapped_device *md) 2354 { 2355 __dm_destroy(md, false); 2356 } 2357 2358 void dm_put(struct mapped_device *md) 2359 { 2360 atomic_dec(&md->holders); 2361 } 2362 EXPORT_SYMBOL_GPL(dm_put); 2363 2364 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2365 { 2366 int r = 0; 2367 DECLARE_WAITQUEUE(wait, current); 2368 2369 add_wait_queue(&md->wait, &wait); 2370 2371 while (1) { 2372 set_current_state(interruptible); 2373 2374 if (!md_in_flight(md)) 2375 break; 2376 2377 if (interruptible == TASK_INTERRUPTIBLE && 2378 signal_pending(current)) { 2379 r = -EINTR; 2380 break; 2381 } 2382 2383 io_schedule(); 2384 } 2385 set_current_state(TASK_RUNNING); 2386 2387 remove_wait_queue(&md->wait, &wait); 2388 2389 return r; 2390 } 2391 2392 /* 2393 * Process the deferred bios 2394 */ 2395 static void dm_wq_work(struct work_struct *work) 2396 { 2397 struct mapped_device *md = container_of(work, struct mapped_device, 2398 work); 2399 struct bio *c; 2400 2401 down_read(&md->io_lock); 2402 2403 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2404 spin_lock_irq(&md->deferred_lock); 2405 c = bio_list_pop(&md->deferred); 2406 spin_unlock_irq(&md->deferred_lock); 2407 2408 if (!c) 2409 break; 2410 2411 up_read(&md->io_lock); 2412 2413 if (dm_request_based(md)) 2414 generic_make_request(c); 2415 else 2416 __split_and_process_bio(md, c); 2417 2418 down_read(&md->io_lock); 2419 } 2420 2421 up_read(&md->io_lock); 2422 } 2423 2424 static void dm_queue_flush(struct mapped_device *md) 2425 { 2426 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2427 smp_mb__after_clear_bit(); 2428 queue_work(md->wq, &md->work); 2429 } 2430 2431 /* 2432 * Swap in a new table, returning the old one for the caller to destroy. 2433 */ 2434 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2435 { 2436 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2437 struct queue_limits limits; 2438 int r; 2439 2440 mutex_lock(&md->suspend_lock); 2441 2442 /* device must be suspended */ 2443 if (!dm_suspended_md(md)) 2444 goto out; 2445 2446 /* 2447 * If the new table has no data devices, retain the existing limits. 2448 * This helps multipath with queue_if_no_path if all paths disappear, 2449 * then new I/O is queued based on these limits, and then some paths 2450 * reappear. 2451 */ 2452 if (dm_table_has_no_data_devices(table)) { 2453 live_map = dm_get_live_table(md); 2454 if (live_map) 2455 limits = md->queue->limits; 2456 dm_table_put(live_map); 2457 } 2458 2459 if (!live_map) { 2460 r = dm_calculate_queue_limits(table, &limits); 2461 if (r) { 2462 map = ERR_PTR(r); 2463 goto out; 2464 } 2465 } 2466 2467 map = __bind(md, table, &limits); 2468 2469 out: 2470 mutex_unlock(&md->suspend_lock); 2471 return map; 2472 } 2473 2474 /* 2475 * Functions to lock and unlock any filesystem running on the 2476 * device. 2477 */ 2478 static int lock_fs(struct mapped_device *md) 2479 { 2480 int r; 2481 2482 WARN_ON(md->frozen_sb); 2483 2484 md->frozen_sb = freeze_bdev(md->bdev); 2485 if (IS_ERR(md->frozen_sb)) { 2486 r = PTR_ERR(md->frozen_sb); 2487 md->frozen_sb = NULL; 2488 return r; 2489 } 2490 2491 set_bit(DMF_FROZEN, &md->flags); 2492 2493 return 0; 2494 } 2495 2496 static void unlock_fs(struct mapped_device *md) 2497 { 2498 if (!test_bit(DMF_FROZEN, &md->flags)) 2499 return; 2500 2501 thaw_bdev(md->bdev, md->frozen_sb); 2502 md->frozen_sb = NULL; 2503 clear_bit(DMF_FROZEN, &md->flags); 2504 } 2505 2506 /* 2507 * We need to be able to change a mapping table under a mounted 2508 * filesystem. For example we might want to move some data in 2509 * the background. Before the table can be swapped with 2510 * dm_bind_table, dm_suspend must be called to flush any in 2511 * flight bios and ensure that any further io gets deferred. 2512 */ 2513 /* 2514 * Suspend mechanism in request-based dm. 2515 * 2516 * 1. Flush all I/Os by lock_fs() if needed. 2517 * 2. Stop dispatching any I/O by stopping the request_queue. 2518 * 3. Wait for all in-flight I/Os to be completed or requeued. 2519 * 2520 * To abort suspend, start the request_queue. 2521 */ 2522 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2523 { 2524 struct dm_table *map = NULL; 2525 int r = 0; 2526 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2527 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2528 2529 mutex_lock(&md->suspend_lock); 2530 2531 if (dm_suspended_md(md)) { 2532 r = -EINVAL; 2533 goto out_unlock; 2534 } 2535 2536 map = dm_get_live_table(md); 2537 2538 /* 2539 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2540 * This flag is cleared before dm_suspend returns. 2541 */ 2542 if (noflush) 2543 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2544 2545 /* This does not get reverted if there's an error later. */ 2546 dm_table_presuspend_targets(map); 2547 2548 /* 2549 * Flush I/O to the device. 2550 * Any I/O submitted after lock_fs() may not be flushed. 2551 * noflush takes precedence over do_lockfs. 2552 * (lock_fs() flushes I/Os and waits for them to complete.) 2553 */ 2554 if (!noflush && do_lockfs) { 2555 r = lock_fs(md); 2556 if (r) 2557 goto out; 2558 } 2559 2560 /* 2561 * Here we must make sure that no processes are submitting requests 2562 * to target drivers i.e. no one may be executing 2563 * __split_and_process_bio. This is called from dm_request and 2564 * dm_wq_work. 2565 * 2566 * To get all processes out of __split_and_process_bio in dm_request, 2567 * we take the write lock. To prevent any process from reentering 2568 * __split_and_process_bio from dm_request and quiesce the thread 2569 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2570 * flush_workqueue(md->wq). 2571 */ 2572 down_write(&md->io_lock); 2573 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2574 up_write(&md->io_lock); 2575 2576 /* 2577 * Stop md->queue before flushing md->wq in case request-based 2578 * dm defers requests to md->wq from md->queue. 2579 */ 2580 if (dm_request_based(md)) 2581 stop_queue(md->queue); 2582 2583 flush_workqueue(md->wq); 2584 2585 /* 2586 * At this point no more requests are entering target request routines. 2587 * We call dm_wait_for_completion to wait for all existing requests 2588 * to finish. 2589 */ 2590 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2591 2592 down_write(&md->io_lock); 2593 if (noflush) 2594 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2595 up_write(&md->io_lock); 2596 2597 /* were we interrupted ? */ 2598 if (r < 0) { 2599 dm_queue_flush(md); 2600 2601 if (dm_request_based(md)) 2602 start_queue(md->queue); 2603 2604 unlock_fs(md); 2605 goto out; /* pushback list is already flushed, so skip flush */ 2606 } 2607 2608 /* 2609 * If dm_wait_for_completion returned 0, the device is completely 2610 * quiescent now. There is no request-processing activity. All new 2611 * requests are being added to md->deferred list. 2612 */ 2613 2614 set_bit(DMF_SUSPENDED, &md->flags); 2615 2616 dm_table_postsuspend_targets(map); 2617 2618 out: 2619 dm_table_put(map); 2620 2621 out_unlock: 2622 mutex_unlock(&md->suspend_lock); 2623 return r; 2624 } 2625 2626 int dm_resume(struct mapped_device *md) 2627 { 2628 int r = -EINVAL; 2629 struct dm_table *map = NULL; 2630 2631 mutex_lock(&md->suspend_lock); 2632 if (!dm_suspended_md(md)) 2633 goto out; 2634 2635 map = dm_get_live_table(md); 2636 if (!map || !dm_table_get_size(map)) 2637 goto out; 2638 2639 r = dm_table_resume_targets(map); 2640 if (r) 2641 goto out; 2642 2643 dm_queue_flush(md); 2644 2645 /* 2646 * Flushing deferred I/Os must be done after targets are resumed 2647 * so that mapping of targets can work correctly. 2648 * Request-based dm is queueing the deferred I/Os in its request_queue. 2649 */ 2650 if (dm_request_based(md)) 2651 start_queue(md->queue); 2652 2653 unlock_fs(md); 2654 2655 clear_bit(DMF_SUSPENDED, &md->flags); 2656 2657 r = 0; 2658 out: 2659 dm_table_put(map); 2660 mutex_unlock(&md->suspend_lock); 2661 2662 return r; 2663 } 2664 2665 /*----------------------------------------------------------------- 2666 * Event notification. 2667 *---------------------------------------------------------------*/ 2668 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2669 unsigned cookie) 2670 { 2671 char udev_cookie[DM_COOKIE_LENGTH]; 2672 char *envp[] = { udev_cookie, NULL }; 2673 2674 if (!cookie) 2675 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2676 else { 2677 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2678 DM_COOKIE_ENV_VAR_NAME, cookie); 2679 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2680 action, envp); 2681 } 2682 } 2683 2684 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2685 { 2686 return atomic_add_return(1, &md->uevent_seq); 2687 } 2688 2689 uint32_t dm_get_event_nr(struct mapped_device *md) 2690 { 2691 return atomic_read(&md->event_nr); 2692 } 2693 2694 int dm_wait_event(struct mapped_device *md, int event_nr) 2695 { 2696 return wait_event_interruptible(md->eventq, 2697 (event_nr != atomic_read(&md->event_nr))); 2698 } 2699 2700 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2701 { 2702 unsigned long flags; 2703 2704 spin_lock_irqsave(&md->uevent_lock, flags); 2705 list_add(elist, &md->uevent_list); 2706 spin_unlock_irqrestore(&md->uevent_lock, flags); 2707 } 2708 2709 /* 2710 * The gendisk is only valid as long as you have a reference 2711 * count on 'md'. 2712 */ 2713 struct gendisk *dm_disk(struct mapped_device *md) 2714 { 2715 return md->disk; 2716 } 2717 2718 struct kobject *dm_kobject(struct mapped_device *md) 2719 { 2720 return &md->kobj; 2721 } 2722 2723 /* 2724 * struct mapped_device should not be exported outside of dm.c 2725 * so use this check to verify that kobj is part of md structure 2726 */ 2727 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2728 { 2729 struct mapped_device *md; 2730 2731 md = container_of(kobj, struct mapped_device, kobj); 2732 if (&md->kobj != kobj) 2733 return NULL; 2734 2735 if (test_bit(DMF_FREEING, &md->flags) || 2736 dm_deleting_md(md)) 2737 return NULL; 2738 2739 dm_get(md); 2740 return md; 2741 } 2742 2743 int dm_suspended_md(struct mapped_device *md) 2744 { 2745 return test_bit(DMF_SUSPENDED, &md->flags); 2746 } 2747 2748 int dm_suspended(struct dm_target *ti) 2749 { 2750 return dm_suspended_md(dm_table_get_md(ti->table)); 2751 } 2752 EXPORT_SYMBOL_GPL(dm_suspended); 2753 2754 int dm_noflush_suspending(struct dm_target *ti) 2755 { 2756 return __noflush_suspending(dm_table_get_md(ti->table)); 2757 } 2758 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2759 2760 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) 2761 { 2762 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 2763 struct kmem_cache *cachep; 2764 unsigned int pool_size; 2765 unsigned int front_pad; 2766 2767 if (!pools) 2768 return NULL; 2769 2770 if (type == DM_TYPE_BIO_BASED) { 2771 cachep = _io_cache; 2772 pool_size = 16; 2773 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2774 } else if (type == DM_TYPE_REQUEST_BASED) { 2775 cachep = _rq_tio_cache; 2776 pool_size = MIN_IOS; 2777 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2778 /* per_bio_data_size is not used. See __bind_mempools(). */ 2779 WARN_ON(per_bio_data_size != 0); 2780 } else 2781 goto out; 2782 2783 pools->io_pool = mempool_create_slab_pool(MIN_IOS, cachep); 2784 if (!pools->io_pool) 2785 goto out; 2786 2787 pools->bs = bioset_create(pool_size, front_pad); 2788 if (!pools->bs) 2789 goto out; 2790 2791 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2792 goto out; 2793 2794 return pools; 2795 2796 out: 2797 dm_free_md_mempools(pools); 2798 2799 return NULL; 2800 } 2801 2802 void dm_free_md_mempools(struct dm_md_mempools *pools) 2803 { 2804 if (!pools) 2805 return; 2806 2807 if (pools->io_pool) 2808 mempool_destroy(pools->io_pool); 2809 2810 if (pools->bs) 2811 bioset_free(pools->bs); 2812 2813 kfree(pools); 2814 } 2815 2816 static const struct block_device_operations dm_blk_dops = { 2817 .open = dm_blk_open, 2818 .release = dm_blk_close, 2819 .ioctl = dm_blk_ioctl, 2820 .getgeo = dm_blk_getgeo, 2821 .owner = THIS_MODULE 2822 }; 2823 2824 EXPORT_SYMBOL(dm_get_mapinfo); 2825 2826 /* 2827 * module hooks 2828 */ 2829 module_init(dm_init); 2830 module_exit(dm_exit); 2831 2832 module_param(major, uint, 0); 2833 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2834 MODULE_DESCRIPTION(DM_NAME " driver"); 2835 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2836 MODULE_LICENSE("GPL"); 2837