xref: /openbmc/linux/drivers/md/dm.c (revision ed1666f6)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set bs;
152 	struct bio_set io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 /*
162  * Bio-based DM's mempools' reserved IOs set by the user.
163  */
164 #define RESERVED_BIO_BASED_IOS		16
165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
166 
167 static int __dm_get_module_param_int(int *module_param, int min, int max)
168 {
169 	int param = READ_ONCE(*module_param);
170 	int modified_param = 0;
171 	bool modified = true;
172 
173 	if (param < min)
174 		modified_param = min;
175 	else if (param > max)
176 		modified_param = max;
177 	else
178 		modified = false;
179 
180 	if (modified) {
181 		(void)cmpxchg(module_param, param, modified_param);
182 		param = modified_param;
183 	}
184 
185 	return param;
186 }
187 
188 unsigned __dm_get_module_param(unsigned *module_param,
189 			       unsigned def, unsigned max)
190 {
191 	unsigned param = READ_ONCE(*module_param);
192 	unsigned modified_param = 0;
193 
194 	if (!param)
195 		modified_param = def;
196 	else if (param > max)
197 		modified_param = max;
198 
199 	if (modified_param) {
200 		(void)cmpxchg(module_param, param, modified_param);
201 		param = modified_param;
202 	}
203 
204 	return param;
205 }
206 
207 unsigned dm_get_reserved_bio_based_ios(void)
208 {
209 	return __dm_get_module_param(&reserved_bio_based_ios,
210 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
211 }
212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
213 
214 static unsigned dm_get_numa_node(void)
215 {
216 	return __dm_get_module_param_int(&dm_numa_node,
217 					 DM_NUMA_NODE, num_online_nodes() - 1);
218 }
219 
220 static int __init local_init(void)
221 {
222 	int r;
223 
224 	r = dm_uevent_init();
225 	if (r)
226 		return r;
227 
228 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
229 	if (!deferred_remove_workqueue) {
230 		r = -ENOMEM;
231 		goto out_uevent_exit;
232 	}
233 
234 	_major = major;
235 	r = register_blkdev(_major, _name);
236 	if (r < 0)
237 		goto out_free_workqueue;
238 
239 	if (!_major)
240 		_major = r;
241 
242 	return 0;
243 
244 out_free_workqueue:
245 	destroy_workqueue(deferred_remove_workqueue);
246 out_uevent_exit:
247 	dm_uevent_exit();
248 
249 	return r;
250 }
251 
252 static void local_exit(void)
253 {
254 	flush_scheduled_work();
255 	destroy_workqueue(deferred_remove_workqueue);
256 
257 	unregister_blkdev(_major, _name);
258 	dm_uevent_exit();
259 
260 	_major = 0;
261 
262 	DMINFO("cleaned up");
263 }
264 
265 static int (*_inits[])(void) __initdata = {
266 	local_init,
267 	dm_target_init,
268 	dm_linear_init,
269 	dm_stripe_init,
270 	dm_io_init,
271 	dm_kcopyd_init,
272 	dm_interface_init,
273 	dm_statistics_init,
274 };
275 
276 static void (*_exits[])(void) = {
277 	local_exit,
278 	dm_target_exit,
279 	dm_linear_exit,
280 	dm_stripe_exit,
281 	dm_io_exit,
282 	dm_kcopyd_exit,
283 	dm_interface_exit,
284 	dm_statistics_exit,
285 };
286 
287 static int __init dm_init(void)
288 {
289 	const int count = ARRAY_SIZE(_inits);
290 
291 	int r, i;
292 
293 	for (i = 0; i < count; i++) {
294 		r = _inits[i]();
295 		if (r)
296 			goto bad;
297 	}
298 
299 	return 0;
300 
301       bad:
302 	while (i--)
303 		_exits[i]();
304 
305 	return r;
306 }
307 
308 static void __exit dm_exit(void)
309 {
310 	int i = ARRAY_SIZE(_exits);
311 
312 	while (i--)
313 		_exits[i]();
314 
315 	/*
316 	 * Should be empty by this point.
317 	 */
318 	idr_destroy(&_minor_idr);
319 }
320 
321 /*
322  * Block device functions
323  */
324 int dm_deleting_md(struct mapped_device *md)
325 {
326 	return test_bit(DMF_DELETING, &md->flags);
327 }
328 
329 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
330 {
331 	struct mapped_device *md;
332 
333 	spin_lock(&_minor_lock);
334 
335 	md = bdev->bd_disk->private_data;
336 	if (!md)
337 		goto out;
338 
339 	if (test_bit(DMF_FREEING, &md->flags) ||
340 	    dm_deleting_md(md)) {
341 		md = NULL;
342 		goto out;
343 	}
344 
345 	dm_get(md);
346 	atomic_inc(&md->open_count);
347 out:
348 	spin_unlock(&_minor_lock);
349 
350 	return md ? 0 : -ENXIO;
351 }
352 
353 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
354 {
355 	struct mapped_device *md;
356 
357 	spin_lock(&_minor_lock);
358 
359 	md = disk->private_data;
360 	if (WARN_ON(!md))
361 		goto out;
362 
363 	if (atomic_dec_and_test(&md->open_count) &&
364 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
365 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
366 
367 	dm_put(md);
368 out:
369 	spin_unlock(&_minor_lock);
370 }
371 
372 int dm_open_count(struct mapped_device *md)
373 {
374 	return atomic_read(&md->open_count);
375 }
376 
377 /*
378  * Guarantees nothing is using the device before it's deleted.
379  */
380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
381 {
382 	int r = 0;
383 
384 	spin_lock(&_minor_lock);
385 
386 	if (dm_open_count(md)) {
387 		r = -EBUSY;
388 		if (mark_deferred)
389 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
390 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
391 		r = -EEXIST;
392 	else
393 		set_bit(DMF_DELETING, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 int dm_cancel_deferred_remove(struct mapped_device *md)
401 {
402 	int r = 0;
403 
404 	spin_lock(&_minor_lock);
405 
406 	if (test_bit(DMF_DELETING, &md->flags))
407 		r = -EBUSY;
408 	else
409 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
410 
411 	spin_unlock(&_minor_lock);
412 
413 	return r;
414 }
415 
416 static void do_deferred_remove(struct work_struct *w)
417 {
418 	dm_deferred_remove();
419 }
420 
421 sector_t dm_get_size(struct mapped_device *md)
422 {
423 	return get_capacity(md->disk);
424 }
425 
426 struct request_queue *dm_get_md_queue(struct mapped_device *md)
427 {
428 	return md->queue;
429 }
430 
431 struct dm_stats *dm_get_stats(struct mapped_device *md)
432 {
433 	return &md->stats;
434 }
435 
436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
437 {
438 	struct mapped_device *md = bdev->bd_disk->private_data;
439 
440 	return dm_get_geometry(md, geo);
441 }
442 
443 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
444 			       struct blk_zone *zones, unsigned int *nr_zones,
445 			       gfp_t gfp_mask)
446 {
447 #ifdef CONFIG_BLK_DEV_ZONED
448 	struct mapped_device *md = disk->private_data;
449 	struct dm_target *tgt;
450 	struct dm_table *map;
451 	int srcu_idx, ret;
452 
453 	if (dm_suspended_md(md))
454 		return -EAGAIN;
455 
456 	map = dm_get_live_table(md, &srcu_idx);
457 	if (!map)
458 		return -EIO;
459 
460 	tgt = dm_table_find_target(map, sector);
461 	if (!dm_target_is_valid(tgt)) {
462 		ret = -EIO;
463 		goto out;
464 	}
465 
466 	/*
467 	 * If we are executing this, we already know that the block device
468 	 * is a zoned device and so each target should have support for that
469 	 * type of drive. A missing report_zones method means that the target
470 	 * driver has a problem.
471 	 */
472 	if (WARN_ON(!tgt->type->report_zones)) {
473 		ret = -EIO;
474 		goto out;
475 	}
476 
477 	/*
478 	 * blkdev_report_zones() will loop and call this again to cover all the
479 	 * zones of the target, eventually moving on to the next target.
480 	 * So there is no need to loop here trying to fill the entire array
481 	 * of zones.
482 	 */
483 	ret = tgt->type->report_zones(tgt, sector, zones,
484 				      nr_zones, gfp_mask);
485 
486 out:
487 	dm_put_live_table(md, srcu_idx);
488 	return ret;
489 #else
490 	return -ENOTSUPP;
491 #endif
492 }
493 
494 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
495 			    struct block_device **bdev)
496 	__acquires(md->io_barrier)
497 {
498 	struct dm_target *tgt;
499 	struct dm_table *map;
500 	int r;
501 
502 retry:
503 	r = -ENOTTY;
504 	map = dm_get_live_table(md, srcu_idx);
505 	if (!map || !dm_table_get_size(map))
506 		return r;
507 
508 	/* We only support devices that have a single target */
509 	if (dm_table_get_num_targets(map) != 1)
510 		return r;
511 
512 	tgt = dm_table_get_target(map, 0);
513 	if (!tgt->type->prepare_ioctl)
514 		return r;
515 
516 	if (dm_suspended_md(md))
517 		return -EAGAIN;
518 
519 	r = tgt->type->prepare_ioctl(tgt, bdev);
520 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
521 		dm_put_live_table(md, *srcu_idx);
522 		msleep(10);
523 		goto retry;
524 	}
525 
526 	return r;
527 }
528 
529 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
530 	__releases(md->io_barrier)
531 {
532 	dm_put_live_table(md, srcu_idx);
533 }
534 
535 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
536 			unsigned int cmd, unsigned long arg)
537 {
538 	struct mapped_device *md = bdev->bd_disk->private_data;
539 	int r, srcu_idx;
540 
541 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
542 	if (r < 0)
543 		goto out;
544 
545 	if (r > 0) {
546 		/*
547 		 * Target determined this ioctl is being issued against a
548 		 * subset of the parent bdev; require extra privileges.
549 		 */
550 		if (!capable(CAP_SYS_RAWIO)) {
551 			DMWARN_LIMIT(
552 	"%s: sending ioctl %x to DM device without required privilege.",
553 				current->comm, cmd);
554 			r = -ENOIOCTLCMD;
555 			goto out;
556 		}
557 	}
558 
559 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
560 out:
561 	dm_unprepare_ioctl(md, srcu_idx);
562 	return r;
563 }
564 
565 static void start_io_acct(struct dm_io *io);
566 
567 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
568 {
569 	struct dm_io *io;
570 	struct dm_target_io *tio;
571 	struct bio *clone;
572 
573 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
574 	if (!clone)
575 		return NULL;
576 
577 	tio = container_of(clone, struct dm_target_io, clone);
578 	tio->inside_dm_io = true;
579 	tio->io = NULL;
580 
581 	io = container_of(tio, struct dm_io, tio);
582 	io->magic = DM_IO_MAGIC;
583 	io->status = 0;
584 	atomic_set(&io->io_count, 1);
585 	io->orig_bio = bio;
586 	io->md = md;
587 	spin_lock_init(&io->endio_lock);
588 
589 	start_io_acct(io);
590 
591 	return io;
592 }
593 
594 static void free_io(struct mapped_device *md, struct dm_io *io)
595 {
596 	bio_put(&io->tio.clone);
597 }
598 
599 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
600 				      unsigned target_bio_nr, gfp_t gfp_mask)
601 {
602 	struct dm_target_io *tio;
603 
604 	if (!ci->io->tio.io) {
605 		/* the dm_target_io embedded in ci->io is available */
606 		tio = &ci->io->tio;
607 	} else {
608 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
609 		if (!clone)
610 			return NULL;
611 
612 		tio = container_of(clone, struct dm_target_io, clone);
613 		tio->inside_dm_io = false;
614 	}
615 
616 	tio->magic = DM_TIO_MAGIC;
617 	tio->io = ci->io;
618 	tio->ti = ti;
619 	tio->target_bio_nr = target_bio_nr;
620 
621 	return tio;
622 }
623 
624 static void free_tio(struct dm_target_io *tio)
625 {
626 	if (tio->inside_dm_io)
627 		return;
628 	bio_put(&tio->clone);
629 }
630 
631 static bool md_in_flight_bios(struct mapped_device *md)
632 {
633 	int cpu;
634 	struct hd_struct *part = &dm_disk(md)->part0;
635 	long sum = 0;
636 
637 	for_each_possible_cpu(cpu) {
638 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
639 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
640 	}
641 
642 	return sum != 0;
643 }
644 
645 static bool md_in_flight(struct mapped_device *md)
646 {
647 	if (queue_is_mq(md->queue))
648 		return blk_mq_queue_inflight(md->queue);
649 	else
650 		return md_in_flight_bios(md);
651 }
652 
653 static void start_io_acct(struct dm_io *io)
654 {
655 	struct mapped_device *md = io->md;
656 	struct bio *bio = io->orig_bio;
657 
658 	io->start_time = jiffies;
659 
660 	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
661 			      &dm_disk(md)->part0);
662 
663 	if (unlikely(dm_stats_used(&md->stats)))
664 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
665 				    bio->bi_iter.bi_sector, bio_sectors(bio),
666 				    false, 0, &io->stats_aux);
667 }
668 
669 static void end_io_acct(struct dm_io *io)
670 {
671 	struct mapped_device *md = io->md;
672 	struct bio *bio = io->orig_bio;
673 	unsigned long duration = jiffies - io->start_time;
674 
675 	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
676 			    io->start_time);
677 
678 	if (unlikely(dm_stats_used(&md->stats)))
679 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
680 				    bio->bi_iter.bi_sector, bio_sectors(bio),
681 				    true, duration, &io->stats_aux);
682 
683 	/* nudge anyone waiting on suspend queue */
684 	if (unlikely(wq_has_sleeper(&md->wait)))
685 		wake_up(&md->wait);
686 }
687 
688 /*
689  * Add the bio to the list of deferred io.
690  */
691 static void queue_io(struct mapped_device *md, struct bio *bio)
692 {
693 	unsigned long flags;
694 
695 	spin_lock_irqsave(&md->deferred_lock, flags);
696 	bio_list_add(&md->deferred, bio);
697 	spin_unlock_irqrestore(&md->deferred_lock, flags);
698 	queue_work(md->wq, &md->work);
699 }
700 
701 /*
702  * Everyone (including functions in this file), should use this
703  * function to access the md->map field, and make sure they call
704  * dm_put_live_table() when finished.
705  */
706 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
707 {
708 	*srcu_idx = srcu_read_lock(&md->io_barrier);
709 
710 	return srcu_dereference(md->map, &md->io_barrier);
711 }
712 
713 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
714 {
715 	srcu_read_unlock(&md->io_barrier, srcu_idx);
716 }
717 
718 void dm_sync_table(struct mapped_device *md)
719 {
720 	synchronize_srcu(&md->io_barrier);
721 	synchronize_rcu_expedited();
722 }
723 
724 /*
725  * A fast alternative to dm_get_live_table/dm_put_live_table.
726  * The caller must not block between these two functions.
727  */
728 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
729 {
730 	rcu_read_lock();
731 	return rcu_dereference(md->map);
732 }
733 
734 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
735 {
736 	rcu_read_unlock();
737 }
738 
739 static char *_dm_claim_ptr = "I belong to device-mapper";
740 
741 /*
742  * Open a table device so we can use it as a map destination.
743  */
744 static int open_table_device(struct table_device *td, dev_t dev,
745 			     struct mapped_device *md)
746 {
747 	struct block_device *bdev;
748 
749 	int r;
750 
751 	BUG_ON(td->dm_dev.bdev);
752 
753 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
754 	if (IS_ERR(bdev))
755 		return PTR_ERR(bdev);
756 
757 	r = bd_link_disk_holder(bdev, dm_disk(md));
758 	if (r) {
759 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
760 		return r;
761 	}
762 
763 	td->dm_dev.bdev = bdev;
764 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
765 	return 0;
766 }
767 
768 /*
769  * Close a table device that we've been using.
770  */
771 static void close_table_device(struct table_device *td, struct mapped_device *md)
772 {
773 	if (!td->dm_dev.bdev)
774 		return;
775 
776 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
777 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
778 	put_dax(td->dm_dev.dax_dev);
779 	td->dm_dev.bdev = NULL;
780 	td->dm_dev.dax_dev = NULL;
781 }
782 
783 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
784 					      fmode_t mode) {
785 	struct table_device *td;
786 
787 	list_for_each_entry(td, l, list)
788 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
789 			return td;
790 
791 	return NULL;
792 }
793 
794 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
795 			struct dm_dev **result) {
796 	int r;
797 	struct table_device *td;
798 
799 	mutex_lock(&md->table_devices_lock);
800 	td = find_table_device(&md->table_devices, dev, mode);
801 	if (!td) {
802 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
803 		if (!td) {
804 			mutex_unlock(&md->table_devices_lock);
805 			return -ENOMEM;
806 		}
807 
808 		td->dm_dev.mode = mode;
809 		td->dm_dev.bdev = NULL;
810 
811 		if ((r = open_table_device(td, dev, md))) {
812 			mutex_unlock(&md->table_devices_lock);
813 			kfree(td);
814 			return r;
815 		}
816 
817 		format_dev_t(td->dm_dev.name, dev);
818 
819 		refcount_set(&td->count, 1);
820 		list_add(&td->list, &md->table_devices);
821 	} else {
822 		refcount_inc(&td->count);
823 	}
824 	mutex_unlock(&md->table_devices_lock);
825 
826 	*result = &td->dm_dev;
827 	return 0;
828 }
829 EXPORT_SYMBOL_GPL(dm_get_table_device);
830 
831 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
832 {
833 	struct table_device *td = container_of(d, struct table_device, dm_dev);
834 
835 	mutex_lock(&md->table_devices_lock);
836 	if (refcount_dec_and_test(&td->count)) {
837 		close_table_device(td, md);
838 		list_del(&td->list);
839 		kfree(td);
840 	}
841 	mutex_unlock(&md->table_devices_lock);
842 }
843 EXPORT_SYMBOL(dm_put_table_device);
844 
845 static void free_table_devices(struct list_head *devices)
846 {
847 	struct list_head *tmp, *next;
848 
849 	list_for_each_safe(tmp, next, devices) {
850 		struct table_device *td = list_entry(tmp, struct table_device, list);
851 
852 		DMWARN("dm_destroy: %s still exists with %d references",
853 		       td->dm_dev.name, refcount_read(&td->count));
854 		kfree(td);
855 	}
856 }
857 
858 /*
859  * Get the geometry associated with a dm device
860  */
861 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
862 {
863 	*geo = md->geometry;
864 
865 	return 0;
866 }
867 
868 /*
869  * Set the geometry of a device.
870  */
871 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
872 {
873 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
874 
875 	if (geo->start > sz) {
876 		DMWARN("Start sector is beyond the geometry limits.");
877 		return -EINVAL;
878 	}
879 
880 	md->geometry = *geo;
881 
882 	return 0;
883 }
884 
885 static int __noflush_suspending(struct mapped_device *md)
886 {
887 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
888 }
889 
890 /*
891  * Decrements the number of outstanding ios that a bio has been
892  * cloned into, completing the original io if necc.
893  */
894 static void dec_pending(struct dm_io *io, blk_status_t error)
895 {
896 	unsigned long flags;
897 	blk_status_t io_error;
898 	struct bio *bio;
899 	struct mapped_device *md = io->md;
900 
901 	/* Push-back supersedes any I/O errors */
902 	if (unlikely(error)) {
903 		spin_lock_irqsave(&io->endio_lock, flags);
904 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
905 			io->status = error;
906 		spin_unlock_irqrestore(&io->endio_lock, flags);
907 	}
908 
909 	if (atomic_dec_and_test(&io->io_count)) {
910 		if (io->status == BLK_STS_DM_REQUEUE) {
911 			/*
912 			 * Target requested pushing back the I/O.
913 			 */
914 			spin_lock_irqsave(&md->deferred_lock, flags);
915 			if (__noflush_suspending(md))
916 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
917 				bio_list_add_head(&md->deferred, io->orig_bio);
918 			else
919 				/* noflush suspend was interrupted. */
920 				io->status = BLK_STS_IOERR;
921 			spin_unlock_irqrestore(&md->deferred_lock, flags);
922 		}
923 
924 		io_error = io->status;
925 		bio = io->orig_bio;
926 		end_io_acct(io);
927 		free_io(md, io);
928 
929 		if (io_error == BLK_STS_DM_REQUEUE)
930 			return;
931 
932 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
933 			/*
934 			 * Preflush done for flush with data, reissue
935 			 * without REQ_PREFLUSH.
936 			 */
937 			bio->bi_opf &= ~REQ_PREFLUSH;
938 			queue_io(md, bio);
939 		} else {
940 			/* done with normal IO or empty flush */
941 			if (io_error)
942 				bio->bi_status = io_error;
943 			bio_endio(bio);
944 		}
945 	}
946 }
947 
948 void disable_write_same(struct mapped_device *md)
949 {
950 	struct queue_limits *limits = dm_get_queue_limits(md);
951 
952 	/* device doesn't really support WRITE SAME, disable it */
953 	limits->max_write_same_sectors = 0;
954 }
955 
956 void disable_write_zeroes(struct mapped_device *md)
957 {
958 	struct queue_limits *limits = dm_get_queue_limits(md);
959 
960 	/* device doesn't really support WRITE ZEROES, disable it */
961 	limits->max_write_zeroes_sectors = 0;
962 }
963 
964 static void clone_endio(struct bio *bio)
965 {
966 	blk_status_t error = bio->bi_status;
967 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
968 	struct dm_io *io = tio->io;
969 	struct mapped_device *md = tio->io->md;
970 	dm_endio_fn endio = tio->ti->type->end_io;
971 
972 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
973 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
974 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
975 			disable_write_same(md);
976 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
977 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
978 			disable_write_zeroes(md);
979 	}
980 
981 	if (endio) {
982 		int r = endio(tio->ti, bio, &error);
983 		switch (r) {
984 		case DM_ENDIO_REQUEUE:
985 			error = BLK_STS_DM_REQUEUE;
986 			/*FALLTHRU*/
987 		case DM_ENDIO_DONE:
988 			break;
989 		case DM_ENDIO_INCOMPLETE:
990 			/* The target will handle the io */
991 			return;
992 		default:
993 			DMWARN("unimplemented target endio return value: %d", r);
994 			BUG();
995 		}
996 	}
997 
998 	free_tio(tio);
999 	dec_pending(io, error);
1000 }
1001 
1002 /*
1003  * Return maximum size of I/O possible at the supplied sector up to the current
1004  * target boundary.
1005  */
1006 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1007 {
1008 	sector_t target_offset = dm_target_offset(ti, sector);
1009 
1010 	return ti->len - target_offset;
1011 }
1012 
1013 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1014 {
1015 	sector_t len = max_io_len_target_boundary(sector, ti);
1016 	sector_t offset, max_len;
1017 
1018 	/*
1019 	 * Does the target need to split even further?
1020 	 */
1021 	if (ti->max_io_len) {
1022 		offset = dm_target_offset(ti, sector);
1023 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1024 			max_len = sector_div(offset, ti->max_io_len);
1025 		else
1026 			max_len = offset & (ti->max_io_len - 1);
1027 		max_len = ti->max_io_len - max_len;
1028 
1029 		if (len > max_len)
1030 			len = max_len;
1031 	}
1032 
1033 	return len;
1034 }
1035 
1036 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1037 {
1038 	if (len > UINT_MAX) {
1039 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1040 		      (unsigned long long)len, UINT_MAX);
1041 		ti->error = "Maximum size of target IO is too large";
1042 		return -EINVAL;
1043 	}
1044 
1045 	/*
1046 	 * BIO based queue uses its own splitting. When multipage bvecs
1047 	 * is switched on, size of the incoming bio may be too big to
1048 	 * be handled in some targets, such as crypt.
1049 	 *
1050 	 * When these targets are ready for the big bio, we can remove
1051 	 * the limit.
1052 	 */
1053 	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1054 
1055 	return 0;
1056 }
1057 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1058 
1059 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1060 						sector_t sector, int *srcu_idx)
1061 	__acquires(md->io_barrier)
1062 {
1063 	struct dm_table *map;
1064 	struct dm_target *ti;
1065 
1066 	map = dm_get_live_table(md, srcu_idx);
1067 	if (!map)
1068 		return NULL;
1069 
1070 	ti = dm_table_find_target(map, sector);
1071 	if (!dm_target_is_valid(ti))
1072 		return NULL;
1073 
1074 	return ti;
1075 }
1076 
1077 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1078 				 long nr_pages, void **kaddr, pfn_t *pfn)
1079 {
1080 	struct mapped_device *md = dax_get_private(dax_dev);
1081 	sector_t sector = pgoff * PAGE_SECTORS;
1082 	struct dm_target *ti;
1083 	long len, ret = -EIO;
1084 	int srcu_idx;
1085 
1086 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1087 
1088 	if (!ti)
1089 		goto out;
1090 	if (!ti->type->direct_access)
1091 		goto out;
1092 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1093 	if (len < 1)
1094 		goto out;
1095 	nr_pages = min(len, nr_pages);
1096 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1097 
1098  out:
1099 	dm_put_live_table(md, srcu_idx);
1100 
1101 	return ret;
1102 }
1103 
1104 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1105 				    void *addr, size_t bytes, struct iov_iter *i)
1106 {
1107 	struct mapped_device *md = dax_get_private(dax_dev);
1108 	sector_t sector = pgoff * PAGE_SECTORS;
1109 	struct dm_target *ti;
1110 	long ret = 0;
1111 	int srcu_idx;
1112 
1113 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1114 
1115 	if (!ti)
1116 		goto out;
1117 	if (!ti->type->dax_copy_from_iter) {
1118 		ret = copy_from_iter(addr, bytes, i);
1119 		goto out;
1120 	}
1121 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1122  out:
1123 	dm_put_live_table(md, srcu_idx);
1124 
1125 	return ret;
1126 }
1127 
1128 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1129 		void *addr, size_t bytes, struct iov_iter *i)
1130 {
1131 	struct mapped_device *md = dax_get_private(dax_dev);
1132 	sector_t sector = pgoff * PAGE_SECTORS;
1133 	struct dm_target *ti;
1134 	long ret = 0;
1135 	int srcu_idx;
1136 
1137 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1138 
1139 	if (!ti)
1140 		goto out;
1141 	if (!ti->type->dax_copy_to_iter) {
1142 		ret = copy_to_iter(addr, bytes, i);
1143 		goto out;
1144 	}
1145 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1146  out:
1147 	dm_put_live_table(md, srcu_idx);
1148 
1149 	return ret;
1150 }
1151 
1152 /*
1153  * A target may call dm_accept_partial_bio only from the map routine.  It is
1154  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1155  *
1156  * dm_accept_partial_bio informs the dm that the target only wants to process
1157  * additional n_sectors sectors of the bio and the rest of the data should be
1158  * sent in a next bio.
1159  *
1160  * A diagram that explains the arithmetics:
1161  * +--------------------+---------------+-------+
1162  * |         1          |       2       |   3   |
1163  * +--------------------+---------------+-------+
1164  *
1165  * <-------------- *tio->len_ptr --------------->
1166  *                      <------- bi_size ------->
1167  *                      <-- n_sectors -->
1168  *
1169  * Region 1 was already iterated over with bio_advance or similar function.
1170  *	(it may be empty if the target doesn't use bio_advance)
1171  * Region 2 is the remaining bio size that the target wants to process.
1172  *	(it may be empty if region 1 is non-empty, although there is no reason
1173  *	 to make it empty)
1174  * The target requires that region 3 is to be sent in the next bio.
1175  *
1176  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1177  * the partially processed part (the sum of regions 1+2) must be the same for all
1178  * copies of the bio.
1179  */
1180 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1181 {
1182 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1183 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1184 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1185 	BUG_ON(bi_size > *tio->len_ptr);
1186 	BUG_ON(n_sectors > bi_size);
1187 	*tio->len_ptr -= bi_size - n_sectors;
1188 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1189 }
1190 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1191 
1192 /*
1193  * The zone descriptors obtained with a zone report indicate
1194  * zone positions within the underlying device of the target. The zone
1195  * descriptors must be remapped to match their position within the dm device.
1196  * The caller target should obtain the zones information using
1197  * blkdev_report_zones() to ensure that remapping for partition offset is
1198  * already handled.
1199  */
1200 void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1201 			  struct blk_zone *zones, unsigned int *nr_zones)
1202 {
1203 #ifdef CONFIG_BLK_DEV_ZONED
1204 	struct blk_zone *zone;
1205 	unsigned int nrz = *nr_zones;
1206 	int i;
1207 
1208 	/*
1209 	 * Remap the start sector and write pointer position of the zones in
1210 	 * the array. Since we may have obtained from the target underlying
1211 	 * device more zones that the target size, also adjust the number
1212 	 * of zones.
1213 	 */
1214 	for (i = 0; i < nrz; i++) {
1215 		zone = zones + i;
1216 		if (zone->start >= start + ti->len) {
1217 			memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1218 			break;
1219 		}
1220 
1221 		zone->start = zone->start + ti->begin - start;
1222 		if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1223 			continue;
1224 
1225 		if (zone->cond == BLK_ZONE_COND_FULL)
1226 			zone->wp = zone->start + zone->len;
1227 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
1228 			zone->wp = zone->start;
1229 		else
1230 			zone->wp = zone->wp + ti->begin - start;
1231 	}
1232 
1233 	*nr_zones = i;
1234 #else /* !CONFIG_BLK_DEV_ZONED */
1235 	*nr_zones = 0;
1236 #endif
1237 }
1238 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1239 
1240 static blk_qc_t __map_bio(struct dm_target_io *tio)
1241 {
1242 	int r;
1243 	sector_t sector;
1244 	struct bio *clone = &tio->clone;
1245 	struct dm_io *io = tio->io;
1246 	struct mapped_device *md = io->md;
1247 	struct dm_target *ti = tio->ti;
1248 	blk_qc_t ret = BLK_QC_T_NONE;
1249 
1250 	clone->bi_end_io = clone_endio;
1251 
1252 	/*
1253 	 * Map the clone.  If r == 0 we don't need to do
1254 	 * anything, the target has assumed ownership of
1255 	 * this io.
1256 	 */
1257 	atomic_inc(&io->io_count);
1258 	sector = clone->bi_iter.bi_sector;
1259 
1260 	r = ti->type->map(ti, clone);
1261 	switch (r) {
1262 	case DM_MAPIO_SUBMITTED:
1263 		break;
1264 	case DM_MAPIO_REMAPPED:
1265 		/* the bio has been remapped so dispatch it */
1266 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1267 				      bio_dev(io->orig_bio), sector);
1268 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1269 			ret = direct_make_request(clone);
1270 		else
1271 			ret = generic_make_request(clone);
1272 		break;
1273 	case DM_MAPIO_KILL:
1274 		free_tio(tio);
1275 		dec_pending(io, BLK_STS_IOERR);
1276 		break;
1277 	case DM_MAPIO_REQUEUE:
1278 		free_tio(tio);
1279 		dec_pending(io, BLK_STS_DM_REQUEUE);
1280 		break;
1281 	default:
1282 		DMWARN("unimplemented target map return value: %d", r);
1283 		BUG();
1284 	}
1285 
1286 	return ret;
1287 }
1288 
1289 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1290 {
1291 	bio->bi_iter.bi_sector = sector;
1292 	bio->bi_iter.bi_size = to_bytes(len);
1293 }
1294 
1295 /*
1296  * Creates a bio that consists of range of complete bvecs.
1297  */
1298 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1299 		     sector_t sector, unsigned len)
1300 {
1301 	struct bio *clone = &tio->clone;
1302 
1303 	__bio_clone_fast(clone, bio);
1304 
1305 	if (bio_integrity(bio)) {
1306 		int r;
1307 
1308 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1309 			     !dm_target_passes_integrity(tio->ti->type))) {
1310 			DMWARN("%s: the target %s doesn't support integrity data.",
1311 				dm_device_name(tio->io->md),
1312 				tio->ti->type->name);
1313 			return -EIO;
1314 		}
1315 
1316 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1317 		if (r < 0)
1318 			return r;
1319 	}
1320 
1321 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1322 	clone->bi_iter.bi_size = to_bytes(len);
1323 
1324 	if (bio_integrity(bio))
1325 		bio_integrity_trim(clone);
1326 
1327 	return 0;
1328 }
1329 
1330 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1331 				struct dm_target *ti, unsigned num_bios)
1332 {
1333 	struct dm_target_io *tio;
1334 	int try;
1335 
1336 	if (!num_bios)
1337 		return;
1338 
1339 	if (num_bios == 1) {
1340 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1341 		bio_list_add(blist, &tio->clone);
1342 		return;
1343 	}
1344 
1345 	for (try = 0; try < 2; try++) {
1346 		int bio_nr;
1347 		struct bio *bio;
1348 
1349 		if (try)
1350 			mutex_lock(&ci->io->md->table_devices_lock);
1351 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1352 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1353 			if (!tio)
1354 				break;
1355 
1356 			bio_list_add(blist, &tio->clone);
1357 		}
1358 		if (try)
1359 			mutex_unlock(&ci->io->md->table_devices_lock);
1360 		if (bio_nr == num_bios)
1361 			return;
1362 
1363 		while ((bio = bio_list_pop(blist))) {
1364 			tio = container_of(bio, struct dm_target_io, clone);
1365 			free_tio(tio);
1366 		}
1367 	}
1368 }
1369 
1370 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1371 					   struct dm_target_io *tio, unsigned *len)
1372 {
1373 	struct bio *clone = &tio->clone;
1374 
1375 	tio->len_ptr = len;
1376 
1377 	__bio_clone_fast(clone, ci->bio);
1378 	if (len)
1379 		bio_setup_sector(clone, ci->sector, *len);
1380 
1381 	return __map_bio(tio);
1382 }
1383 
1384 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1385 				  unsigned num_bios, unsigned *len)
1386 {
1387 	struct bio_list blist = BIO_EMPTY_LIST;
1388 	struct bio *bio;
1389 	struct dm_target_io *tio;
1390 
1391 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1392 
1393 	while ((bio = bio_list_pop(&blist))) {
1394 		tio = container_of(bio, struct dm_target_io, clone);
1395 		(void) __clone_and_map_simple_bio(ci, tio, len);
1396 	}
1397 }
1398 
1399 static int __send_empty_flush(struct clone_info *ci)
1400 {
1401 	unsigned target_nr = 0;
1402 	struct dm_target *ti;
1403 
1404 	/*
1405 	 * Empty flush uses a statically initialized bio, as the base for
1406 	 * cloning.  However, blkg association requires that a bdev is
1407 	 * associated with a gendisk, which doesn't happen until the bdev is
1408 	 * opened.  So, blkg association is done at issue time of the flush
1409 	 * rather than when the device is created in alloc_dev().
1410 	 */
1411 	bio_set_dev(ci->bio, ci->io->md->bdev);
1412 
1413 	BUG_ON(bio_has_data(ci->bio));
1414 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1415 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1416 
1417 	bio_disassociate_blkg(ci->bio);
1418 
1419 	return 0;
1420 }
1421 
1422 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1423 				    sector_t sector, unsigned *len)
1424 {
1425 	struct bio *bio = ci->bio;
1426 	struct dm_target_io *tio;
1427 	int r;
1428 
1429 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1430 	tio->len_ptr = len;
1431 	r = clone_bio(tio, bio, sector, *len);
1432 	if (r < 0) {
1433 		free_tio(tio);
1434 		return r;
1435 	}
1436 	(void) __map_bio(tio);
1437 
1438 	return 0;
1439 }
1440 
1441 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1442 
1443 static unsigned get_num_discard_bios(struct dm_target *ti)
1444 {
1445 	return ti->num_discard_bios;
1446 }
1447 
1448 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1449 {
1450 	return ti->num_secure_erase_bios;
1451 }
1452 
1453 static unsigned get_num_write_same_bios(struct dm_target *ti)
1454 {
1455 	return ti->num_write_same_bios;
1456 }
1457 
1458 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1459 {
1460 	return ti->num_write_zeroes_bios;
1461 }
1462 
1463 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1464 				       unsigned num_bios)
1465 {
1466 	unsigned len = ci->sector_count;
1467 
1468 	/*
1469 	 * Even though the device advertised support for this type of
1470 	 * request, that does not mean every target supports it, and
1471 	 * reconfiguration might also have changed that since the
1472 	 * check was performed.
1473 	 */
1474 	if (!num_bios)
1475 		return -EOPNOTSUPP;
1476 
1477 	__send_duplicate_bios(ci, ti, num_bios, &len);
1478 
1479 	ci->sector += len;
1480 	ci->sector_count -= len;
1481 
1482 	return 0;
1483 }
1484 
1485 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1486 {
1487 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1488 }
1489 
1490 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1491 {
1492 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1493 }
1494 
1495 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1496 {
1497 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1498 }
1499 
1500 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1501 {
1502 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1503 }
1504 
1505 static bool is_abnormal_io(struct bio *bio)
1506 {
1507 	bool r = false;
1508 
1509 	switch (bio_op(bio)) {
1510 	case REQ_OP_DISCARD:
1511 	case REQ_OP_SECURE_ERASE:
1512 	case REQ_OP_WRITE_SAME:
1513 	case REQ_OP_WRITE_ZEROES:
1514 		r = true;
1515 		break;
1516 	}
1517 
1518 	return r;
1519 }
1520 
1521 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1522 				  int *result)
1523 {
1524 	struct bio *bio = ci->bio;
1525 
1526 	if (bio_op(bio) == REQ_OP_DISCARD)
1527 		*result = __send_discard(ci, ti);
1528 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1529 		*result = __send_secure_erase(ci, ti);
1530 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1531 		*result = __send_write_same(ci, ti);
1532 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1533 		*result = __send_write_zeroes(ci, ti);
1534 	else
1535 		return false;
1536 
1537 	return true;
1538 }
1539 
1540 /*
1541  * Select the correct strategy for processing a non-flush bio.
1542  */
1543 static int __split_and_process_non_flush(struct clone_info *ci)
1544 {
1545 	struct dm_target *ti;
1546 	unsigned len;
1547 	int r;
1548 
1549 	ti = dm_table_find_target(ci->map, ci->sector);
1550 	if (!dm_target_is_valid(ti))
1551 		return -EIO;
1552 
1553 	if (__process_abnormal_io(ci, ti, &r))
1554 		return r;
1555 
1556 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1557 
1558 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1559 	if (r < 0)
1560 		return r;
1561 
1562 	ci->sector += len;
1563 	ci->sector_count -= len;
1564 
1565 	return 0;
1566 }
1567 
1568 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1569 			    struct dm_table *map, struct bio *bio)
1570 {
1571 	ci->map = map;
1572 	ci->io = alloc_io(md, bio);
1573 	ci->sector = bio->bi_iter.bi_sector;
1574 }
1575 
1576 #define __dm_part_stat_sub(part, field, subnd)	\
1577 	(part_stat_get(part, field) -= (subnd))
1578 
1579 /*
1580  * Entry point to split a bio into clones and submit them to the targets.
1581  */
1582 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1583 					struct dm_table *map, struct bio *bio)
1584 {
1585 	struct clone_info ci;
1586 	blk_qc_t ret = BLK_QC_T_NONE;
1587 	int error = 0;
1588 
1589 	init_clone_info(&ci, md, map, bio);
1590 
1591 	if (bio->bi_opf & REQ_PREFLUSH) {
1592 		struct bio flush_bio;
1593 
1594 		/*
1595 		 * Use an on-stack bio for this, it's safe since we don't
1596 		 * need to reference it after submit. It's just used as
1597 		 * the basis for the clone(s).
1598 		 */
1599 		bio_init(&flush_bio, NULL, 0);
1600 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1601 		ci.bio = &flush_bio;
1602 		ci.sector_count = 0;
1603 		error = __send_empty_flush(&ci);
1604 		/* dec_pending submits any data associated with flush */
1605 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1606 		ci.bio = bio;
1607 		ci.sector_count = 0;
1608 		error = __split_and_process_non_flush(&ci);
1609 	} else {
1610 		ci.bio = bio;
1611 		ci.sector_count = bio_sectors(bio);
1612 		while (ci.sector_count && !error) {
1613 			error = __split_and_process_non_flush(&ci);
1614 			if (current->bio_list && ci.sector_count && !error) {
1615 				/*
1616 				 * Remainder must be passed to generic_make_request()
1617 				 * so that it gets handled *after* bios already submitted
1618 				 * have been completely processed.
1619 				 * We take a clone of the original to store in
1620 				 * ci.io->orig_bio to be used by end_io_acct() and
1621 				 * for dec_pending to use for completion handling.
1622 				 */
1623 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1624 							  GFP_NOIO, &md->queue->bio_split);
1625 				ci.io->orig_bio = b;
1626 
1627 				/*
1628 				 * Adjust IO stats for each split, otherwise upon queue
1629 				 * reentry there will be redundant IO accounting.
1630 				 * NOTE: this is a stop-gap fix, a proper fix involves
1631 				 * significant refactoring of DM core's bio splitting
1632 				 * (by eliminating DM's splitting and just using bio_split)
1633 				 */
1634 				part_stat_lock();
1635 				__dm_part_stat_sub(&dm_disk(md)->part0,
1636 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1637 				part_stat_unlock();
1638 
1639 				bio_chain(b, bio);
1640 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1641 				ret = generic_make_request(bio);
1642 				break;
1643 			}
1644 		}
1645 	}
1646 
1647 	/* drop the extra reference count */
1648 	dec_pending(ci.io, errno_to_blk_status(error));
1649 	return ret;
1650 }
1651 
1652 /*
1653  * Optimized variant of __split_and_process_bio that leverages the
1654  * fact that targets that use it do _not_ have a need to split bios.
1655  */
1656 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1657 			      struct bio *bio, struct dm_target *ti)
1658 {
1659 	struct clone_info ci;
1660 	blk_qc_t ret = BLK_QC_T_NONE;
1661 	int error = 0;
1662 
1663 	init_clone_info(&ci, md, map, bio);
1664 
1665 	if (bio->bi_opf & REQ_PREFLUSH) {
1666 		struct bio flush_bio;
1667 
1668 		/*
1669 		 * Use an on-stack bio for this, it's safe since we don't
1670 		 * need to reference it after submit. It's just used as
1671 		 * the basis for the clone(s).
1672 		 */
1673 		bio_init(&flush_bio, NULL, 0);
1674 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1675 		ci.bio = &flush_bio;
1676 		ci.sector_count = 0;
1677 		error = __send_empty_flush(&ci);
1678 		/* dec_pending submits any data associated with flush */
1679 	} else {
1680 		struct dm_target_io *tio;
1681 
1682 		ci.bio = bio;
1683 		ci.sector_count = bio_sectors(bio);
1684 		if (__process_abnormal_io(&ci, ti, &error))
1685 			goto out;
1686 
1687 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1688 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1689 	}
1690 out:
1691 	/* drop the extra reference count */
1692 	dec_pending(ci.io, errno_to_blk_status(error));
1693 	return ret;
1694 }
1695 
1696 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1697 {
1698 	unsigned len, sector_count;
1699 
1700 	sector_count = bio_sectors(*bio);
1701 	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1702 
1703 	if (sector_count > len) {
1704 		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1705 
1706 		bio_chain(split, *bio);
1707 		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1708 		generic_make_request(*bio);
1709 		*bio = split;
1710 	}
1711 }
1712 
1713 static blk_qc_t dm_process_bio(struct mapped_device *md,
1714 			       struct dm_table *map, struct bio *bio)
1715 {
1716 	blk_qc_t ret = BLK_QC_T_NONE;
1717 	struct dm_target *ti = md->immutable_target;
1718 
1719 	if (unlikely(!map)) {
1720 		bio_io_error(bio);
1721 		return ret;
1722 	}
1723 
1724 	if (!ti) {
1725 		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1726 		if (unlikely(!ti || !dm_target_is_valid(ti))) {
1727 			bio_io_error(bio);
1728 			return ret;
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1734 	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1735 	 * won't be imposed.
1736 	 */
1737 	if (current->bio_list) {
1738 		blk_queue_split(md->queue, &bio);
1739 		if (!is_abnormal_io(bio))
1740 			dm_queue_split(md, ti, &bio);
1741 	}
1742 
1743 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1744 		return __process_bio(md, map, bio, ti);
1745 	else
1746 		return __split_and_process_bio(md, map, bio);
1747 }
1748 
1749 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1750 {
1751 	struct mapped_device *md = q->queuedata;
1752 	blk_qc_t ret = BLK_QC_T_NONE;
1753 	int srcu_idx;
1754 	struct dm_table *map;
1755 
1756 	map = dm_get_live_table(md, &srcu_idx);
1757 
1758 	/* if we're suspended, we have to queue this io for later */
1759 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1760 		dm_put_live_table(md, srcu_idx);
1761 
1762 		if (!(bio->bi_opf & REQ_RAHEAD))
1763 			queue_io(md, bio);
1764 		else
1765 			bio_io_error(bio);
1766 		return ret;
1767 	}
1768 
1769 	ret = dm_process_bio(md, map, bio);
1770 
1771 	dm_put_live_table(md, srcu_idx);
1772 	return ret;
1773 }
1774 
1775 static int dm_any_congested(void *congested_data, int bdi_bits)
1776 {
1777 	int r = bdi_bits;
1778 	struct mapped_device *md = congested_data;
1779 	struct dm_table *map;
1780 
1781 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1782 		if (dm_request_based(md)) {
1783 			/*
1784 			 * With request-based DM we only need to check the
1785 			 * top-level queue for congestion.
1786 			 */
1787 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1788 		} else {
1789 			map = dm_get_live_table_fast(md);
1790 			if (map)
1791 				r = dm_table_any_congested(map, bdi_bits);
1792 			dm_put_live_table_fast(md);
1793 		}
1794 	}
1795 
1796 	return r;
1797 }
1798 
1799 /*-----------------------------------------------------------------
1800  * An IDR is used to keep track of allocated minor numbers.
1801  *---------------------------------------------------------------*/
1802 static void free_minor(int minor)
1803 {
1804 	spin_lock(&_minor_lock);
1805 	idr_remove(&_minor_idr, minor);
1806 	spin_unlock(&_minor_lock);
1807 }
1808 
1809 /*
1810  * See if the device with a specific minor # is free.
1811  */
1812 static int specific_minor(int minor)
1813 {
1814 	int r;
1815 
1816 	if (minor >= (1 << MINORBITS))
1817 		return -EINVAL;
1818 
1819 	idr_preload(GFP_KERNEL);
1820 	spin_lock(&_minor_lock);
1821 
1822 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1823 
1824 	spin_unlock(&_minor_lock);
1825 	idr_preload_end();
1826 	if (r < 0)
1827 		return r == -ENOSPC ? -EBUSY : r;
1828 	return 0;
1829 }
1830 
1831 static int next_free_minor(int *minor)
1832 {
1833 	int r;
1834 
1835 	idr_preload(GFP_KERNEL);
1836 	spin_lock(&_minor_lock);
1837 
1838 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1839 
1840 	spin_unlock(&_minor_lock);
1841 	idr_preload_end();
1842 	if (r < 0)
1843 		return r;
1844 	*minor = r;
1845 	return 0;
1846 }
1847 
1848 static const struct block_device_operations dm_blk_dops;
1849 static const struct dax_operations dm_dax_ops;
1850 
1851 static void dm_wq_work(struct work_struct *work);
1852 
1853 static void dm_init_normal_md_queue(struct mapped_device *md)
1854 {
1855 	/*
1856 	 * Initialize aspects of queue that aren't relevant for blk-mq
1857 	 */
1858 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1859 }
1860 
1861 static void cleanup_mapped_device(struct mapped_device *md)
1862 {
1863 	if (md->wq)
1864 		destroy_workqueue(md->wq);
1865 	bioset_exit(&md->bs);
1866 	bioset_exit(&md->io_bs);
1867 
1868 	if (md->dax_dev) {
1869 		kill_dax(md->dax_dev);
1870 		put_dax(md->dax_dev);
1871 		md->dax_dev = NULL;
1872 	}
1873 
1874 	if (md->disk) {
1875 		spin_lock(&_minor_lock);
1876 		md->disk->private_data = NULL;
1877 		spin_unlock(&_minor_lock);
1878 		del_gendisk(md->disk);
1879 		put_disk(md->disk);
1880 	}
1881 
1882 	if (md->queue)
1883 		blk_cleanup_queue(md->queue);
1884 
1885 	cleanup_srcu_struct(&md->io_barrier);
1886 
1887 	if (md->bdev) {
1888 		bdput(md->bdev);
1889 		md->bdev = NULL;
1890 	}
1891 
1892 	mutex_destroy(&md->suspend_lock);
1893 	mutex_destroy(&md->type_lock);
1894 	mutex_destroy(&md->table_devices_lock);
1895 
1896 	dm_mq_cleanup_mapped_device(md);
1897 }
1898 
1899 /*
1900  * Allocate and initialise a blank device with a given minor.
1901  */
1902 static struct mapped_device *alloc_dev(int minor)
1903 {
1904 	int r, numa_node_id = dm_get_numa_node();
1905 	struct dax_device *dax_dev = NULL;
1906 	struct mapped_device *md;
1907 	void *old_md;
1908 
1909 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1910 	if (!md) {
1911 		DMWARN("unable to allocate device, out of memory.");
1912 		return NULL;
1913 	}
1914 
1915 	if (!try_module_get(THIS_MODULE))
1916 		goto bad_module_get;
1917 
1918 	/* get a minor number for the dev */
1919 	if (minor == DM_ANY_MINOR)
1920 		r = next_free_minor(&minor);
1921 	else
1922 		r = specific_minor(minor);
1923 	if (r < 0)
1924 		goto bad_minor;
1925 
1926 	r = init_srcu_struct(&md->io_barrier);
1927 	if (r < 0)
1928 		goto bad_io_barrier;
1929 
1930 	md->numa_node_id = numa_node_id;
1931 	md->init_tio_pdu = false;
1932 	md->type = DM_TYPE_NONE;
1933 	mutex_init(&md->suspend_lock);
1934 	mutex_init(&md->type_lock);
1935 	mutex_init(&md->table_devices_lock);
1936 	spin_lock_init(&md->deferred_lock);
1937 	atomic_set(&md->holders, 1);
1938 	atomic_set(&md->open_count, 0);
1939 	atomic_set(&md->event_nr, 0);
1940 	atomic_set(&md->uevent_seq, 0);
1941 	INIT_LIST_HEAD(&md->uevent_list);
1942 	INIT_LIST_HEAD(&md->table_devices);
1943 	spin_lock_init(&md->uevent_lock);
1944 
1945 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1946 	if (!md->queue)
1947 		goto bad;
1948 	md->queue->queuedata = md;
1949 	md->queue->backing_dev_info->congested_data = md;
1950 
1951 	md->disk = alloc_disk_node(1, md->numa_node_id);
1952 	if (!md->disk)
1953 		goto bad;
1954 
1955 	init_waitqueue_head(&md->wait);
1956 	INIT_WORK(&md->work, dm_wq_work);
1957 	init_waitqueue_head(&md->eventq);
1958 	init_completion(&md->kobj_holder.completion);
1959 
1960 	md->disk->major = _major;
1961 	md->disk->first_minor = minor;
1962 	md->disk->fops = &dm_blk_dops;
1963 	md->disk->queue = md->queue;
1964 	md->disk->private_data = md;
1965 	sprintf(md->disk->disk_name, "dm-%d", minor);
1966 
1967 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1968 		dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1969 		if (!dax_dev)
1970 			goto bad;
1971 	}
1972 	md->dax_dev = dax_dev;
1973 
1974 	add_disk_no_queue_reg(md->disk);
1975 	format_dev_t(md->name, MKDEV(_major, minor));
1976 
1977 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1978 	if (!md->wq)
1979 		goto bad;
1980 
1981 	md->bdev = bdget_disk(md->disk, 0);
1982 	if (!md->bdev)
1983 		goto bad;
1984 
1985 	dm_stats_init(&md->stats);
1986 
1987 	/* Populate the mapping, nobody knows we exist yet */
1988 	spin_lock(&_minor_lock);
1989 	old_md = idr_replace(&_minor_idr, md, minor);
1990 	spin_unlock(&_minor_lock);
1991 
1992 	BUG_ON(old_md != MINOR_ALLOCED);
1993 
1994 	return md;
1995 
1996 bad:
1997 	cleanup_mapped_device(md);
1998 bad_io_barrier:
1999 	free_minor(minor);
2000 bad_minor:
2001 	module_put(THIS_MODULE);
2002 bad_module_get:
2003 	kvfree(md);
2004 	return NULL;
2005 }
2006 
2007 static void unlock_fs(struct mapped_device *md);
2008 
2009 static void free_dev(struct mapped_device *md)
2010 {
2011 	int minor = MINOR(disk_devt(md->disk));
2012 
2013 	unlock_fs(md);
2014 
2015 	cleanup_mapped_device(md);
2016 
2017 	free_table_devices(&md->table_devices);
2018 	dm_stats_cleanup(&md->stats);
2019 	free_minor(minor);
2020 
2021 	module_put(THIS_MODULE);
2022 	kvfree(md);
2023 }
2024 
2025 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2026 {
2027 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2028 	int ret = 0;
2029 
2030 	if (dm_table_bio_based(t)) {
2031 		/*
2032 		 * The md may already have mempools that need changing.
2033 		 * If so, reload bioset because front_pad may have changed
2034 		 * because a different table was loaded.
2035 		 */
2036 		bioset_exit(&md->bs);
2037 		bioset_exit(&md->io_bs);
2038 
2039 	} else if (bioset_initialized(&md->bs)) {
2040 		/*
2041 		 * There's no need to reload with request-based dm
2042 		 * because the size of front_pad doesn't change.
2043 		 * Note for future: If you are to reload bioset,
2044 		 * prep-ed requests in the queue may refer
2045 		 * to bio from the old bioset, so you must walk
2046 		 * through the queue to unprep.
2047 		 */
2048 		goto out;
2049 	}
2050 
2051 	BUG_ON(!p ||
2052 	       bioset_initialized(&md->bs) ||
2053 	       bioset_initialized(&md->io_bs));
2054 
2055 	ret = bioset_init_from_src(&md->bs, &p->bs);
2056 	if (ret)
2057 		goto out;
2058 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2059 	if (ret)
2060 		bioset_exit(&md->bs);
2061 out:
2062 	/* mempool bind completed, no longer need any mempools in the table */
2063 	dm_table_free_md_mempools(t);
2064 	return ret;
2065 }
2066 
2067 /*
2068  * Bind a table to the device.
2069  */
2070 static void event_callback(void *context)
2071 {
2072 	unsigned long flags;
2073 	LIST_HEAD(uevents);
2074 	struct mapped_device *md = (struct mapped_device *) context;
2075 
2076 	spin_lock_irqsave(&md->uevent_lock, flags);
2077 	list_splice_init(&md->uevent_list, &uevents);
2078 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2079 
2080 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2081 
2082 	atomic_inc(&md->event_nr);
2083 	wake_up(&md->eventq);
2084 	dm_issue_global_event();
2085 }
2086 
2087 /*
2088  * Protected by md->suspend_lock obtained by dm_swap_table().
2089  */
2090 static void __set_size(struct mapped_device *md, sector_t size)
2091 {
2092 	lockdep_assert_held(&md->suspend_lock);
2093 
2094 	set_capacity(md->disk, size);
2095 
2096 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2097 }
2098 
2099 /*
2100  * Returns old map, which caller must destroy.
2101  */
2102 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2103 			       struct queue_limits *limits)
2104 {
2105 	struct dm_table *old_map;
2106 	struct request_queue *q = md->queue;
2107 	bool request_based = dm_table_request_based(t);
2108 	sector_t size;
2109 	int ret;
2110 
2111 	lockdep_assert_held(&md->suspend_lock);
2112 
2113 	size = dm_table_get_size(t);
2114 
2115 	/*
2116 	 * Wipe any geometry if the size of the table changed.
2117 	 */
2118 	if (size != dm_get_size(md))
2119 		memset(&md->geometry, 0, sizeof(md->geometry));
2120 
2121 	__set_size(md, size);
2122 
2123 	dm_table_event_callback(t, event_callback, md);
2124 
2125 	/*
2126 	 * The queue hasn't been stopped yet, if the old table type wasn't
2127 	 * for request-based during suspension.  So stop it to prevent
2128 	 * I/O mapping before resume.
2129 	 * This must be done before setting the queue restrictions,
2130 	 * because request-based dm may be run just after the setting.
2131 	 */
2132 	if (request_based)
2133 		dm_stop_queue(q);
2134 
2135 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2136 		/*
2137 		 * Leverage the fact that request-based DM targets and
2138 		 * NVMe bio based targets are immutable singletons
2139 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2140 		 *   and __process_bio.
2141 		 */
2142 		md->immutable_target = dm_table_get_immutable_target(t);
2143 	}
2144 
2145 	ret = __bind_mempools(md, t);
2146 	if (ret) {
2147 		old_map = ERR_PTR(ret);
2148 		goto out;
2149 	}
2150 
2151 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2152 	rcu_assign_pointer(md->map, (void *)t);
2153 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2154 
2155 	dm_table_set_restrictions(t, q, limits);
2156 	if (old_map)
2157 		dm_sync_table(md);
2158 
2159 out:
2160 	return old_map;
2161 }
2162 
2163 /*
2164  * Returns unbound table for the caller to free.
2165  */
2166 static struct dm_table *__unbind(struct mapped_device *md)
2167 {
2168 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2169 
2170 	if (!map)
2171 		return NULL;
2172 
2173 	dm_table_event_callback(map, NULL, NULL);
2174 	RCU_INIT_POINTER(md->map, NULL);
2175 	dm_sync_table(md);
2176 
2177 	return map;
2178 }
2179 
2180 /*
2181  * Constructor for a new device.
2182  */
2183 int dm_create(int minor, struct mapped_device **result)
2184 {
2185 	int r;
2186 	struct mapped_device *md;
2187 
2188 	md = alloc_dev(minor);
2189 	if (!md)
2190 		return -ENXIO;
2191 
2192 	r = dm_sysfs_init(md);
2193 	if (r) {
2194 		free_dev(md);
2195 		return r;
2196 	}
2197 
2198 	*result = md;
2199 	return 0;
2200 }
2201 
2202 /*
2203  * Functions to manage md->type.
2204  * All are required to hold md->type_lock.
2205  */
2206 void dm_lock_md_type(struct mapped_device *md)
2207 {
2208 	mutex_lock(&md->type_lock);
2209 }
2210 
2211 void dm_unlock_md_type(struct mapped_device *md)
2212 {
2213 	mutex_unlock(&md->type_lock);
2214 }
2215 
2216 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2217 {
2218 	BUG_ON(!mutex_is_locked(&md->type_lock));
2219 	md->type = type;
2220 }
2221 
2222 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2223 {
2224 	return md->type;
2225 }
2226 
2227 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2228 {
2229 	return md->immutable_target_type;
2230 }
2231 
2232 /*
2233  * The queue_limits are only valid as long as you have a reference
2234  * count on 'md'.
2235  */
2236 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2237 {
2238 	BUG_ON(!atomic_read(&md->holders));
2239 	return &md->queue->limits;
2240 }
2241 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2242 
2243 /*
2244  * Setup the DM device's queue based on md's type
2245  */
2246 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2247 {
2248 	int r;
2249 	struct queue_limits limits;
2250 	enum dm_queue_mode type = dm_get_md_type(md);
2251 
2252 	switch (type) {
2253 	case DM_TYPE_REQUEST_BASED:
2254 		r = dm_mq_init_request_queue(md, t);
2255 		if (r) {
2256 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2257 			return r;
2258 		}
2259 		break;
2260 	case DM_TYPE_BIO_BASED:
2261 	case DM_TYPE_DAX_BIO_BASED:
2262 	case DM_TYPE_NVME_BIO_BASED:
2263 		dm_init_normal_md_queue(md);
2264 		blk_queue_make_request(md->queue, dm_make_request);
2265 		break;
2266 	case DM_TYPE_NONE:
2267 		WARN_ON_ONCE(true);
2268 		break;
2269 	}
2270 
2271 	r = dm_calculate_queue_limits(t, &limits);
2272 	if (r) {
2273 		DMERR("Cannot calculate initial queue limits");
2274 		return r;
2275 	}
2276 	dm_table_set_restrictions(t, md->queue, &limits);
2277 	blk_register_queue(md->disk);
2278 
2279 	return 0;
2280 }
2281 
2282 struct mapped_device *dm_get_md(dev_t dev)
2283 {
2284 	struct mapped_device *md;
2285 	unsigned minor = MINOR(dev);
2286 
2287 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2288 		return NULL;
2289 
2290 	spin_lock(&_minor_lock);
2291 
2292 	md = idr_find(&_minor_idr, minor);
2293 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2294 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2295 		md = NULL;
2296 		goto out;
2297 	}
2298 	dm_get(md);
2299 out:
2300 	spin_unlock(&_minor_lock);
2301 
2302 	return md;
2303 }
2304 EXPORT_SYMBOL_GPL(dm_get_md);
2305 
2306 void *dm_get_mdptr(struct mapped_device *md)
2307 {
2308 	return md->interface_ptr;
2309 }
2310 
2311 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2312 {
2313 	md->interface_ptr = ptr;
2314 }
2315 
2316 void dm_get(struct mapped_device *md)
2317 {
2318 	atomic_inc(&md->holders);
2319 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2320 }
2321 
2322 int dm_hold(struct mapped_device *md)
2323 {
2324 	spin_lock(&_minor_lock);
2325 	if (test_bit(DMF_FREEING, &md->flags)) {
2326 		spin_unlock(&_minor_lock);
2327 		return -EBUSY;
2328 	}
2329 	dm_get(md);
2330 	spin_unlock(&_minor_lock);
2331 	return 0;
2332 }
2333 EXPORT_SYMBOL_GPL(dm_hold);
2334 
2335 const char *dm_device_name(struct mapped_device *md)
2336 {
2337 	return md->name;
2338 }
2339 EXPORT_SYMBOL_GPL(dm_device_name);
2340 
2341 static void __dm_destroy(struct mapped_device *md, bool wait)
2342 {
2343 	struct dm_table *map;
2344 	int srcu_idx;
2345 
2346 	might_sleep();
2347 
2348 	spin_lock(&_minor_lock);
2349 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2350 	set_bit(DMF_FREEING, &md->flags);
2351 	spin_unlock(&_minor_lock);
2352 
2353 	blk_set_queue_dying(md->queue);
2354 
2355 	/*
2356 	 * Take suspend_lock so that presuspend and postsuspend methods
2357 	 * do not race with internal suspend.
2358 	 */
2359 	mutex_lock(&md->suspend_lock);
2360 	map = dm_get_live_table(md, &srcu_idx);
2361 	if (!dm_suspended_md(md)) {
2362 		dm_table_presuspend_targets(map);
2363 		dm_table_postsuspend_targets(map);
2364 	}
2365 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2366 	dm_put_live_table(md, srcu_idx);
2367 	mutex_unlock(&md->suspend_lock);
2368 
2369 	/*
2370 	 * Rare, but there may be I/O requests still going to complete,
2371 	 * for example.  Wait for all references to disappear.
2372 	 * No one should increment the reference count of the mapped_device,
2373 	 * after the mapped_device state becomes DMF_FREEING.
2374 	 */
2375 	if (wait)
2376 		while (atomic_read(&md->holders))
2377 			msleep(1);
2378 	else if (atomic_read(&md->holders))
2379 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2380 		       dm_device_name(md), atomic_read(&md->holders));
2381 
2382 	dm_sysfs_exit(md);
2383 	dm_table_destroy(__unbind(md));
2384 	free_dev(md);
2385 }
2386 
2387 void dm_destroy(struct mapped_device *md)
2388 {
2389 	__dm_destroy(md, true);
2390 }
2391 
2392 void dm_destroy_immediate(struct mapped_device *md)
2393 {
2394 	__dm_destroy(md, false);
2395 }
2396 
2397 void dm_put(struct mapped_device *md)
2398 {
2399 	atomic_dec(&md->holders);
2400 }
2401 EXPORT_SYMBOL_GPL(dm_put);
2402 
2403 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2404 {
2405 	int r = 0;
2406 	DEFINE_WAIT(wait);
2407 
2408 	while (1) {
2409 		prepare_to_wait(&md->wait, &wait, task_state);
2410 
2411 		if (!md_in_flight(md))
2412 			break;
2413 
2414 		if (signal_pending_state(task_state, current)) {
2415 			r = -EINTR;
2416 			break;
2417 		}
2418 
2419 		io_schedule();
2420 	}
2421 	finish_wait(&md->wait, &wait);
2422 
2423 	return r;
2424 }
2425 
2426 /*
2427  * Process the deferred bios
2428  */
2429 static void dm_wq_work(struct work_struct *work)
2430 {
2431 	struct mapped_device *md = container_of(work, struct mapped_device,
2432 						work);
2433 	struct bio *c;
2434 	int srcu_idx;
2435 	struct dm_table *map;
2436 
2437 	map = dm_get_live_table(md, &srcu_idx);
2438 
2439 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2440 		spin_lock_irq(&md->deferred_lock);
2441 		c = bio_list_pop(&md->deferred);
2442 		spin_unlock_irq(&md->deferred_lock);
2443 
2444 		if (!c)
2445 			break;
2446 
2447 		if (dm_request_based(md))
2448 			(void) generic_make_request(c);
2449 		else
2450 			(void) dm_process_bio(md, map, c);
2451 	}
2452 
2453 	dm_put_live_table(md, srcu_idx);
2454 }
2455 
2456 static void dm_queue_flush(struct mapped_device *md)
2457 {
2458 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2459 	smp_mb__after_atomic();
2460 	queue_work(md->wq, &md->work);
2461 }
2462 
2463 /*
2464  * Swap in a new table, returning the old one for the caller to destroy.
2465  */
2466 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2467 {
2468 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2469 	struct queue_limits limits;
2470 	int r;
2471 
2472 	mutex_lock(&md->suspend_lock);
2473 
2474 	/* device must be suspended */
2475 	if (!dm_suspended_md(md))
2476 		goto out;
2477 
2478 	/*
2479 	 * If the new table has no data devices, retain the existing limits.
2480 	 * This helps multipath with queue_if_no_path if all paths disappear,
2481 	 * then new I/O is queued based on these limits, and then some paths
2482 	 * reappear.
2483 	 */
2484 	if (dm_table_has_no_data_devices(table)) {
2485 		live_map = dm_get_live_table_fast(md);
2486 		if (live_map)
2487 			limits = md->queue->limits;
2488 		dm_put_live_table_fast(md);
2489 	}
2490 
2491 	if (!live_map) {
2492 		r = dm_calculate_queue_limits(table, &limits);
2493 		if (r) {
2494 			map = ERR_PTR(r);
2495 			goto out;
2496 		}
2497 	}
2498 
2499 	map = __bind(md, table, &limits);
2500 	dm_issue_global_event();
2501 
2502 out:
2503 	mutex_unlock(&md->suspend_lock);
2504 	return map;
2505 }
2506 
2507 /*
2508  * Functions to lock and unlock any filesystem running on the
2509  * device.
2510  */
2511 static int lock_fs(struct mapped_device *md)
2512 {
2513 	int r;
2514 
2515 	WARN_ON(md->frozen_sb);
2516 
2517 	md->frozen_sb = freeze_bdev(md->bdev);
2518 	if (IS_ERR(md->frozen_sb)) {
2519 		r = PTR_ERR(md->frozen_sb);
2520 		md->frozen_sb = NULL;
2521 		return r;
2522 	}
2523 
2524 	set_bit(DMF_FROZEN, &md->flags);
2525 
2526 	return 0;
2527 }
2528 
2529 static void unlock_fs(struct mapped_device *md)
2530 {
2531 	if (!test_bit(DMF_FROZEN, &md->flags))
2532 		return;
2533 
2534 	thaw_bdev(md->bdev, md->frozen_sb);
2535 	md->frozen_sb = NULL;
2536 	clear_bit(DMF_FROZEN, &md->flags);
2537 }
2538 
2539 /*
2540  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2541  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2542  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2543  *
2544  * If __dm_suspend returns 0, the device is completely quiescent
2545  * now. There is no request-processing activity. All new requests
2546  * are being added to md->deferred list.
2547  */
2548 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2549 			unsigned suspend_flags, long task_state,
2550 			int dmf_suspended_flag)
2551 {
2552 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2553 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2554 	int r;
2555 
2556 	lockdep_assert_held(&md->suspend_lock);
2557 
2558 	/*
2559 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2560 	 * This flag is cleared before dm_suspend returns.
2561 	 */
2562 	if (noflush)
2563 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2564 	else
2565 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2566 
2567 	/*
2568 	 * This gets reverted if there's an error later and the targets
2569 	 * provide the .presuspend_undo hook.
2570 	 */
2571 	dm_table_presuspend_targets(map);
2572 
2573 	/*
2574 	 * Flush I/O to the device.
2575 	 * Any I/O submitted after lock_fs() may not be flushed.
2576 	 * noflush takes precedence over do_lockfs.
2577 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2578 	 */
2579 	if (!noflush && do_lockfs) {
2580 		r = lock_fs(md);
2581 		if (r) {
2582 			dm_table_presuspend_undo_targets(map);
2583 			return r;
2584 		}
2585 	}
2586 
2587 	/*
2588 	 * Here we must make sure that no processes are submitting requests
2589 	 * to target drivers i.e. no one may be executing
2590 	 * __split_and_process_bio. This is called from dm_request and
2591 	 * dm_wq_work.
2592 	 *
2593 	 * To get all processes out of __split_and_process_bio in dm_request,
2594 	 * we take the write lock. To prevent any process from reentering
2595 	 * __split_and_process_bio from dm_request and quiesce the thread
2596 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2597 	 * flush_workqueue(md->wq).
2598 	 */
2599 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2600 	if (map)
2601 		synchronize_srcu(&md->io_barrier);
2602 
2603 	/*
2604 	 * Stop md->queue before flushing md->wq in case request-based
2605 	 * dm defers requests to md->wq from md->queue.
2606 	 */
2607 	if (dm_request_based(md))
2608 		dm_stop_queue(md->queue);
2609 
2610 	flush_workqueue(md->wq);
2611 
2612 	/*
2613 	 * At this point no more requests are entering target request routines.
2614 	 * We call dm_wait_for_completion to wait for all existing requests
2615 	 * to finish.
2616 	 */
2617 	r = dm_wait_for_completion(md, task_state);
2618 	if (!r)
2619 		set_bit(dmf_suspended_flag, &md->flags);
2620 
2621 	if (noflush)
2622 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2623 	if (map)
2624 		synchronize_srcu(&md->io_barrier);
2625 
2626 	/* were we interrupted ? */
2627 	if (r < 0) {
2628 		dm_queue_flush(md);
2629 
2630 		if (dm_request_based(md))
2631 			dm_start_queue(md->queue);
2632 
2633 		unlock_fs(md);
2634 		dm_table_presuspend_undo_targets(map);
2635 		/* pushback list is already flushed, so skip flush */
2636 	}
2637 
2638 	return r;
2639 }
2640 
2641 /*
2642  * We need to be able to change a mapping table under a mounted
2643  * filesystem.  For example we might want to move some data in
2644  * the background.  Before the table can be swapped with
2645  * dm_bind_table, dm_suspend must be called to flush any in
2646  * flight bios and ensure that any further io gets deferred.
2647  */
2648 /*
2649  * Suspend mechanism in request-based dm.
2650  *
2651  * 1. Flush all I/Os by lock_fs() if needed.
2652  * 2. Stop dispatching any I/O by stopping the request_queue.
2653  * 3. Wait for all in-flight I/Os to be completed or requeued.
2654  *
2655  * To abort suspend, start the request_queue.
2656  */
2657 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2658 {
2659 	struct dm_table *map = NULL;
2660 	int r = 0;
2661 
2662 retry:
2663 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2664 
2665 	if (dm_suspended_md(md)) {
2666 		r = -EINVAL;
2667 		goto out_unlock;
2668 	}
2669 
2670 	if (dm_suspended_internally_md(md)) {
2671 		/* already internally suspended, wait for internal resume */
2672 		mutex_unlock(&md->suspend_lock);
2673 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2674 		if (r)
2675 			return r;
2676 		goto retry;
2677 	}
2678 
2679 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2680 
2681 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2682 	if (r)
2683 		goto out_unlock;
2684 
2685 	dm_table_postsuspend_targets(map);
2686 
2687 out_unlock:
2688 	mutex_unlock(&md->suspend_lock);
2689 	return r;
2690 }
2691 
2692 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2693 {
2694 	if (map) {
2695 		int r = dm_table_resume_targets(map);
2696 		if (r)
2697 			return r;
2698 	}
2699 
2700 	dm_queue_flush(md);
2701 
2702 	/*
2703 	 * Flushing deferred I/Os must be done after targets are resumed
2704 	 * so that mapping of targets can work correctly.
2705 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2706 	 */
2707 	if (dm_request_based(md))
2708 		dm_start_queue(md->queue);
2709 
2710 	unlock_fs(md);
2711 
2712 	return 0;
2713 }
2714 
2715 int dm_resume(struct mapped_device *md)
2716 {
2717 	int r;
2718 	struct dm_table *map = NULL;
2719 
2720 retry:
2721 	r = -EINVAL;
2722 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2723 
2724 	if (!dm_suspended_md(md))
2725 		goto out;
2726 
2727 	if (dm_suspended_internally_md(md)) {
2728 		/* already internally suspended, wait for internal resume */
2729 		mutex_unlock(&md->suspend_lock);
2730 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2731 		if (r)
2732 			return r;
2733 		goto retry;
2734 	}
2735 
2736 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2737 	if (!map || !dm_table_get_size(map))
2738 		goto out;
2739 
2740 	r = __dm_resume(md, map);
2741 	if (r)
2742 		goto out;
2743 
2744 	clear_bit(DMF_SUSPENDED, &md->flags);
2745 out:
2746 	mutex_unlock(&md->suspend_lock);
2747 
2748 	return r;
2749 }
2750 
2751 /*
2752  * Internal suspend/resume works like userspace-driven suspend. It waits
2753  * until all bios finish and prevents issuing new bios to the target drivers.
2754  * It may be used only from the kernel.
2755  */
2756 
2757 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2758 {
2759 	struct dm_table *map = NULL;
2760 
2761 	lockdep_assert_held(&md->suspend_lock);
2762 
2763 	if (md->internal_suspend_count++)
2764 		return; /* nested internal suspend */
2765 
2766 	if (dm_suspended_md(md)) {
2767 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2768 		return; /* nest suspend */
2769 	}
2770 
2771 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2772 
2773 	/*
2774 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2775 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2776 	 * would require changing .presuspend to return an error -- avoid this
2777 	 * until there is a need for more elaborate variants of internal suspend.
2778 	 */
2779 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2780 			    DMF_SUSPENDED_INTERNALLY);
2781 
2782 	dm_table_postsuspend_targets(map);
2783 }
2784 
2785 static void __dm_internal_resume(struct mapped_device *md)
2786 {
2787 	BUG_ON(!md->internal_suspend_count);
2788 
2789 	if (--md->internal_suspend_count)
2790 		return; /* resume from nested internal suspend */
2791 
2792 	if (dm_suspended_md(md))
2793 		goto done; /* resume from nested suspend */
2794 
2795 	/*
2796 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2797 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2798 	 */
2799 	(void) __dm_resume(md, NULL);
2800 
2801 done:
2802 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2803 	smp_mb__after_atomic();
2804 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2805 }
2806 
2807 void dm_internal_suspend_noflush(struct mapped_device *md)
2808 {
2809 	mutex_lock(&md->suspend_lock);
2810 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2811 	mutex_unlock(&md->suspend_lock);
2812 }
2813 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2814 
2815 void dm_internal_resume(struct mapped_device *md)
2816 {
2817 	mutex_lock(&md->suspend_lock);
2818 	__dm_internal_resume(md);
2819 	mutex_unlock(&md->suspend_lock);
2820 }
2821 EXPORT_SYMBOL_GPL(dm_internal_resume);
2822 
2823 /*
2824  * Fast variants of internal suspend/resume hold md->suspend_lock,
2825  * which prevents interaction with userspace-driven suspend.
2826  */
2827 
2828 void dm_internal_suspend_fast(struct mapped_device *md)
2829 {
2830 	mutex_lock(&md->suspend_lock);
2831 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2832 		return;
2833 
2834 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2835 	synchronize_srcu(&md->io_barrier);
2836 	flush_workqueue(md->wq);
2837 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2838 }
2839 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2840 
2841 void dm_internal_resume_fast(struct mapped_device *md)
2842 {
2843 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2844 		goto done;
2845 
2846 	dm_queue_flush(md);
2847 
2848 done:
2849 	mutex_unlock(&md->suspend_lock);
2850 }
2851 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2852 
2853 /*-----------------------------------------------------------------
2854  * Event notification.
2855  *---------------------------------------------------------------*/
2856 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2857 		       unsigned cookie)
2858 {
2859 	char udev_cookie[DM_COOKIE_LENGTH];
2860 	char *envp[] = { udev_cookie, NULL };
2861 
2862 	if (!cookie)
2863 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2864 	else {
2865 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2866 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2867 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2868 					  action, envp);
2869 	}
2870 }
2871 
2872 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2873 {
2874 	return atomic_add_return(1, &md->uevent_seq);
2875 }
2876 
2877 uint32_t dm_get_event_nr(struct mapped_device *md)
2878 {
2879 	return atomic_read(&md->event_nr);
2880 }
2881 
2882 int dm_wait_event(struct mapped_device *md, int event_nr)
2883 {
2884 	return wait_event_interruptible(md->eventq,
2885 			(event_nr != atomic_read(&md->event_nr)));
2886 }
2887 
2888 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2889 {
2890 	unsigned long flags;
2891 
2892 	spin_lock_irqsave(&md->uevent_lock, flags);
2893 	list_add(elist, &md->uevent_list);
2894 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2895 }
2896 
2897 /*
2898  * The gendisk is only valid as long as you have a reference
2899  * count on 'md'.
2900  */
2901 struct gendisk *dm_disk(struct mapped_device *md)
2902 {
2903 	return md->disk;
2904 }
2905 EXPORT_SYMBOL_GPL(dm_disk);
2906 
2907 struct kobject *dm_kobject(struct mapped_device *md)
2908 {
2909 	return &md->kobj_holder.kobj;
2910 }
2911 
2912 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2913 {
2914 	struct mapped_device *md;
2915 
2916 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2917 
2918 	spin_lock(&_minor_lock);
2919 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2920 		md = NULL;
2921 		goto out;
2922 	}
2923 	dm_get(md);
2924 out:
2925 	spin_unlock(&_minor_lock);
2926 
2927 	return md;
2928 }
2929 
2930 int dm_suspended_md(struct mapped_device *md)
2931 {
2932 	return test_bit(DMF_SUSPENDED, &md->flags);
2933 }
2934 
2935 int dm_suspended_internally_md(struct mapped_device *md)
2936 {
2937 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2938 }
2939 
2940 int dm_test_deferred_remove_flag(struct mapped_device *md)
2941 {
2942 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2943 }
2944 
2945 int dm_suspended(struct dm_target *ti)
2946 {
2947 	return dm_suspended_md(dm_table_get_md(ti->table));
2948 }
2949 EXPORT_SYMBOL_GPL(dm_suspended);
2950 
2951 int dm_noflush_suspending(struct dm_target *ti)
2952 {
2953 	return __noflush_suspending(dm_table_get_md(ti->table));
2954 }
2955 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2956 
2957 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2958 					    unsigned integrity, unsigned per_io_data_size,
2959 					    unsigned min_pool_size)
2960 {
2961 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2962 	unsigned int pool_size = 0;
2963 	unsigned int front_pad, io_front_pad;
2964 	int ret;
2965 
2966 	if (!pools)
2967 		return NULL;
2968 
2969 	switch (type) {
2970 	case DM_TYPE_BIO_BASED:
2971 	case DM_TYPE_DAX_BIO_BASED:
2972 	case DM_TYPE_NVME_BIO_BASED:
2973 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2974 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2975 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2976 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2977 		if (ret)
2978 			goto out;
2979 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2980 			goto out;
2981 		break;
2982 	case DM_TYPE_REQUEST_BASED:
2983 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2984 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2985 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2986 		break;
2987 	default:
2988 		BUG();
2989 	}
2990 
2991 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2992 	if (ret)
2993 		goto out;
2994 
2995 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2996 		goto out;
2997 
2998 	return pools;
2999 
3000 out:
3001 	dm_free_md_mempools(pools);
3002 
3003 	return NULL;
3004 }
3005 
3006 void dm_free_md_mempools(struct dm_md_mempools *pools)
3007 {
3008 	if (!pools)
3009 		return;
3010 
3011 	bioset_exit(&pools->bs);
3012 	bioset_exit(&pools->io_bs);
3013 
3014 	kfree(pools);
3015 }
3016 
3017 struct dm_pr {
3018 	u64	old_key;
3019 	u64	new_key;
3020 	u32	flags;
3021 	bool	fail_early;
3022 };
3023 
3024 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3025 		      void *data)
3026 {
3027 	struct mapped_device *md = bdev->bd_disk->private_data;
3028 	struct dm_table *table;
3029 	struct dm_target *ti;
3030 	int ret = -ENOTTY, srcu_idx;
3031 
3032 	table = dm_get_live_table(md, &srcu_idx);
3033 	if (!table || !dm_table_get_size(table))
3034 		goto out;
3035 
3036 	/* We only support devices that have a single target */
3037 	if (dm_table_get_num_targets(table) != 1)
3038 		goto out;
3039 	ti = dm_table_get_target(table, 0);
3040 
3041 	ret = -EINVAL;
3042 	if (!ti->type->iterate_devices)
3043 		goto out;
3044 
3045 	ret = ti->type->iterate_devices(ti, fn, data);
3046 out:
3047 	dm_put_live_table(md, srcu_idx);
3048 	return ret;
3049 }
3050 
3051 /*
3052  * For register / unregister we need to manually call out to every path.
3053  */
3054 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3055 			    sector_t start, sector_t len, void *data)
3056 {
3057 	struct dm_pr *pr = data;
3058 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3059 
3060 	if (!ops || !ops->pr_register)
3061 		return -EOPNOTSUPP;
3062 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3063 }
3064 
3065 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3066 			  u32 flags)
3067 {
3068 	struct dm_pr pr = {
3069 		.old_key	= old_key,
3070 		.new_key	= new_key,
3071 		.flags		= flags,
3072 		.fail_early	= true,
3073 	};
3074 	int ret;
3075 
3076 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3077 	if (ret && new_key) {
3078 		/* unregister all paths if we failed to register any path */
3079 		pr.old_key = new_key;
3080 		pr.new_key = 0;
3081 		pr.flags = 0;
3082 		pr.fail_early = false;
3083 		dm_call_pr(bdev, __dm_pr_register, &pr);
3084 	}
3085 
3086 	return ret;
3087 }
3088 
3089 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3090 			 u32 flags)
3091 {
3092 	struct mapped_device *md = bdev->bd_disk->private_data;
3093 	const struct pr_ops *ops;
3094 	int r, srcu_idx;
3095 
3096 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3097 	if (r < 0)
3098 		goto out;
3099 
3100 	ops = bdev->bd_disk->fops->pr_ops;
3101 	if (ops && ops->pr_reserve)
3102 		r = ops->pr_reserve(bdev, key, type, flags);
3103 	else
3104 		r = -EOPNOTSUPP;
3105 out:
3106 	dm_unprepare_ioctl(md, srcu_idx);
3107 	return r;
3108 }
3109 
3110 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3111 {
3112 	struct mapped_device *md = bdev->bd_disk->private_data;
3113 	const struct pr_ops *ops;
3114 	int r, srcu_idx;
3115 
3116 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3117 	if (r < 0)
3118 		goto out;
3119 
3120 	ops = bdev->bd_disk->fops->pr_ops;
3121 	if (ops && ops->pr_release)
3122 		r = ops->pr_release(bdev, key, type);
3123 	else
3124 		r = -EOPNOTSUPP;
3125 out:
3126 	dm_unprepare_ioctl(md, srcu_idx);
3127 	return r;
3128 }
3129 
3130 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3131 			 enum pr_type type, bool abort)
3132 {
3133 	struct mapped_device *md = bdev->bd_disk->private_data;
3134 	const struct pr_ops *ops;
3135 	int r, srcu_idx;
3136 
3137 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3138 	if (r < 0)
3139 		goto out;
3140 
3141 	ops = bdev->bd_disk->fops->pr_ops;
3142 	if (ops && ops->pr_preempt)
3143 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3144 	else
3145 		r = -EOPNOTSUPP;
3146 out:
3147 	dm_unprepare_ioctl(md, srcu_idx);
3148 	return r;
3149 }
3150 
3151 static int dm_pr_clear(struct block_device *bdev, u64 key)
3152 {
3153 	struct mapped_device *md = bdev->bd_disk->private_data;
3154 	const struct pr_ops *ops;
3155 	int r, srcu_idx;
3156 
3157 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3158 	if (r < 0)
3159 		goto out;
3160 
3161 	ops = bdev->bd_disk->fops->pr_ops;
3162 	if (ops && ops->pr_clear)
3163 		r = ops->pr_clear(bdev, key);
3164 	else
3165 		r = -EOPNOTSUPP;
3166 out:
3167 	dm_unprepare_ioctl(md, srcu_idx);
3168 	return r;
3169 }
3170 
3171 static const struct pr_ops dm_pr_ops = {
3172 	.pr_register	= dm_pr_register,
3173 	.pr_reserve	= dm_pr_reserve,
3174 	.pr_release	= dm_pr_release,
3175 	.pr_preempt	= dm_pr_preempt,
3176 	.pr_clear	= dm_pr_clear,
3177 };
3178 
3179 static const struct block_device_operations dm_blk_dops = {
3180 	.open = dm_blk_open,
3181 	.release = dm_blk_close,
3182 	.ioctl = dm_blk_ioctl,
3183 	.getgeo = dm_blk_getgeo,
3184 	.report_zones = dm_blk_report_zones,
3185 	.pr_ops = &dm_pr_ops,
3186 	.owner = THIS_MODULE
3187 };
3188 
3189 static const struct dax_operations dm_dax_ops = {
3190 	.direct_access = dm_dax_direct_access,
3191 	.copy_from_iter = dm_dax_copy_from_iter,
3192 	.copy_to_iter = dm_dax_copy_to_iter,
3193 };
3194 
3195 /*
3196  * module hooks
3197  */
3198 module_init(dm_init);
3199 module_exit(dm_exit);
3200 
3201 module_param(major, uint, 0);
3202 MODULE_PARM_DESC(major, "The major number of the device mapper");
3203 
3204 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3205 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3206 
3207 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3208 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3209 
3210 MODULE_DESCRIPTION(DM_NAME " driver");
3211 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3212 MODULE_LICENSE("GPL");
3213