xref: /openbmc/linux/drivers/md/dm.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 
28 #include <trace/events/block.h>
29 
30 #define DM_MSG_PREFIX "core"
31 
32 #ifdef CONFIG_PRINTK
33 /*
34  * ratelimit state to be used in DMXXX_LIMIT().
35  */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 		       DEFAULT_RATELIMIT_INTERVAL,
38 		       DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41 
42 /*
43  * Cookies are numeric values sent with CHANGE and REMOVE
44  * uevents while resuming, removing or renaming the device.
45  */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48 
49 static const char *_name = DM_NAME;
50 
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53 
54 static DEFINE_IDR(_minor_idr);
55 
56 static DEFINE_SPINLOCK(_minor_lock);
57 
58 static void do_deferred_remove(struct work_struct *w);
59 
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61 
62 static struct workqueue_struct *deferred_remove_workqueue;
63 
64 /*
65  * For bio-based dm.
66  * One of these is allocated per bio.
67  */
68 struct dm_io {
69 	struct mapped_device *md;
70 	int error;
71 	atomic_t io_count;
72 	struct bio *bio;
73 	unsigned long start_time;
74 	spinlock_t endio_lock;
75 	struct dm_stats_aux stats_aux;
76 };
77 
78 /*
79  * For request-based dm.
80  * One of these is allocated per request.
81  */
82 struct dm_rq_target_io {
83 	struct mapped_device *md;
84 	struct dm_target *ti;
85 	struct request *orig, *clone;
86 	struct kthread_work work;
87 	int error;
88 	union map_info info;
89 	struct dm_stats_aux stats_aux;
90 	unsigned long duration_jiffies;
91 	unsigned n_sectors;
92 };
93 
94 /*
95  * For request-based dm - the bio clones we allocate are embedded in these
96  * structs.
97  *
98  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
99  * the bioset is created - this means the bio has to come at the end of the
100  * struct.
101  */
102 struct dm_rq_clone_bio_info {
103 	struct bio *orig;
104 	struct dm_rq_target_io *tio;
105 	struct bio clone;
106 };
107 
108 union map_info *dm_get_rq_mapinfo(struct request *rq)
109 {
110 	if (rq && rq->end_io_data)
111 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
112 	return NULL;
113 }
114 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
115 
116 #define MINOR_ALLOCED ((void *)-1)
117 
118 /*
119  * Bits for the md->flags field.
120  */
121 #define DMF_BLOCK_IO_FOR_SUSPEND 0
122 #define DMF_SUSPENDED 1
123 #define DMF_FROZEN 2
124 #define DMF_FREEING 3
125 #define DMF_DELETING 4
126 #define DMF_NOFLUSH_SUSPENDING 5
127 #define DMF_DEFERRED_REMOVE 6
128 #define DMF_SUSPENDED_INTERNALLY 7
129 
130 /*
131  * A dummy definition to make RCU happy.
132  * struct dm_table should never be dereferenced in this file.
133  */
134 struct dm_table {
135 	int undefined__;
136 };
137 
138 /*
139  * Work processed by per-device workqueue.
140  */
141 struct mapped_device {
142 	struct srcu_struct io_barrier;
143 	struct mutex suspend_lock;
144 	atomic_t holders;
145 	atomic_t open_count;
146 
147 	/*
148 	 * The current mapping.
149 	 * Use dm_get_live_table{_fast} or take suspend_lock for
150 	 * dereference.
151 	 */
152 	struct dm_table __rcu *map;
153 
154 	struct list_head table_devices;
155 	struct mutex table_devices_lock;
156 
157 	unsigned long flags;
158 
159 	struct request_queue *queue;
160 	unsigned type;
161 	/* Protect queue and type against concurrent access. */
162 	struct mutex type_lock;
163 
164 	struct target_type *immutable_target_type;
165 
166 	struct gendisk *disk;
167 	char name[16];
168 
169 	void *interface_ptr;
170 
171 	/*
172 	 * A list of ios that arrived while we were suspended.
173 	 */
174 	atomic_t pending[2];
175 	wait_queue_head_t wait;
176 	struct work_struct work;
177 	struct bio_list deferred;
178 	spinlock_t deferred_lock;
179 
180 	/*
181 	 * Processing queue (flush)
182 	 */
183 	struct workqueue_struct *wq;
184 
185 	/*
186 	 * io objects are allocated from here.
187 	 */
188 	mempool_t *io_pool;
189 	mempool_t *rq_pool;
190 
191 	struct bio_set *bs;
192 
193 	/*
194 	 * Event handling.
195 	 */
196 	atomic_t event_nr;
197 	wait_queue_head_t eventq;
198 	atomic_t uevent_seq;
199 	struct list_head uevent_list;
200 	spinlock_t uevent_lock; /* Protect access to uevent_list */
201 
202 	/*
203 	 * freeze/thaw support require holding onto a super block
204 	 */
205 	struct super_block *frozen_sb;
206 	struct block_device *bdev;
207 
208 	/* forced geometry settings */
209 	struct hd_geometry geometry;
210 
211 	/* kobject and completion */
212 	struct dm_kobject_holder kobj_holder;
213 
214 	/* zero-length flush that will be cloned and submitted to targets */
215 	struct bio flush_bio;
216 
217 	/* the number of internal suspends */
218 	unsigned internal_suspend_count;
219 
220 	struct dm_stats stats;
221 
222 	struct kthread_worker kworker;
223 	struct task_struct *kworker_task;
224 
225 	/* for request-based merge heuristic in dm_request_fn() */
226 	unsigned seq_rq_merge_deadline_usecs;
227 	int last_rq_rw;
228 	sector_t last_rq_pos;
229 	ktime_t last_rq_start_time;
230 
231 	/* for blk-mq request-based DM support */
232 	struct blk_mq_tag_set tag_set;
233 	bool use_blk_mq;
234 };
235 
236 #ifdef CONFIG_DM_MQ_DEFAULT
237 static bool use_blk_mq = true;
238 #else
239 static bool use_blk_mq = false;
240 #endif
241 
242 bool dm_use_blk_mq(struct mapped_device *md)
243 {
244 	return md->use_blk_mq;
245 }
246 
247 /*
248  * For mempools pre-allocation at the table loading time.
249  */
250 struct dm_md_mempools {
251 	mempool_t *io_pool;
252 	mempool_t *rq_pool;
253 	struct bio_set *bs;
254 };
255 
256 struct table_device {
257 	struct list_head list;
258 	atomic_t count;
259 	struct dm_dev dm_dev;
260 };
261 
262 #define RESERVED_BIO_BASED_IOS		16
263 #define RESERVED_REQUEST_BASED_IOS	256
264 #define RESERVED_MAX_IOS		1024
265 static struct kmem_cache *_io_cache;
266 static struct kmem_cache *_rq_tio_cache;
267 static struct kmem_cache *_rq_cache;
268 
269 /*
270  * Bio-based DM's mempools' reserved IOs set by the user.
271  */
272 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
273 
274 /*
275  * Request-based DM's mempools' reserved IOs set by the user.
276  */
277 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
278 
279 static unsigned __dm_get_module_param(unsigned *module_param,
280 				      unsigned def, unsigned max)
281 {
282 	unsigned param = ACCESS_ONCE(*module_param);
283 	unsigned modified_param = 0;
284 
285 	if (!param)
286 		modified_param = def;
287 	else if (param > max)
288 		modified_param = max;
289 
290 	if (modified_param) {
291 		(void)cmpxchg(module_param, param, modified_param);
292 		param = modified_param;
293 	}
294 
295 	return param;
296 }
297 
298 unsigned dm_get_reserved_bio_based_ios(void)
299 {
300 	return __dm_get_module_param(&reserved_bio_based_ios,
301 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
302 }
303 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
304 
305 unsigned dm_get_reserved_rq_based_ios(void)
306 {
307 	return __dm_get_module_param(&reserved_rq_based_ios,
308 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
309 }
310 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
311 
312 static int __init local_init(void)
313 {
314 	int r = -ENOMEM;
315 
316 	/* allocate a slab for the dm_ios */
317 	_io_cache = KMEM_CACHE(dm_io, 0);
318 	if (!_io_cache)
319 		return r;
320 
321 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
322 	if (!_rq_tio_cache)
323 		goto out_free_io_cache;
324 
325 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
326 				      __alignof__(struct request), 0, NULL);
327 	if (!_rq_cache)
328 		goto out_free_rq_tio_cache;
329 
330 	r = dm_uevent_init();
331 	if (r)
332 		goto out_free_rq_cache;
333 
334 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
335 	if (!deferred_remove_workqueue) {
336 		r = -ENOMEM;
337 		goto out_uevent_exit;
338 	}
339 
340 	_major = major;
341 	r = register_blkdev(_major, _name);
342 	if (r < 0)
343 		goto out_free_workqueue;
344 
345 	if (!_major)
346 		_major = r;
347 
348 	return 0;
349 
350 out_free_workqueue:
351 	destroy_workqueue(deferred_remove_workqueue);
352 out_uevent_exit:
353 	dm_uevent_exit();
354 out_free_rq_cache:
355 	kmem_cache_destroy(_rq_cache);
356 out_free_rq_tio_cache:
357 	kmem_cache_destroy(_rq_tio_cache);
358 out_free_io_cache:
359 	kmem_cache_destroy(_io_cache);
360 
361 	return r;
362 }
363 
364 static void local_exit(void)
365 {
366 	flush_scheduled_work();
367 	destroy_workqueue(deferred_remove_workqueue);
368 
369 	kmem_cache_destroy(_rq_cache);
370 	kmem_cache_destroy(_rq_tio_cache);
371 	kmem_cache_destroy(_io_cache);
372 	unregister_blkdev(_major, _name);
373 	dm_uevent_exit();
374 
375 	_major = 0;
376 
377 	DMINFO("cleaned up");
378 }
379 
380 static int (*_inits[])(void) __initdata = {
381 	local_init,
382 	dm_target_init,
383 	dm_linear_init,
384 	dm_stripe_init,
385 	dm_io_init,
386 	dm_kcopyd_init,
387 	dm_interface_init,
388 	dm_statistics_init,
389 };
390 
391 static void (*_exits[])(void) = {
392 	local_exit,
393 	dm_target_exit,
394 	dm_linear_exit,
395 	dm_stripe_exit,
396 	dm_io_exit,
397 	dm_kcopyd_exit,
398 	dm_interface_exit,
399 	dm_statistics_exit,
400 };
401 
402 static int __init dm_init(void)
403 {
404 	const int count = ARRAY_SIZE(_inits);
405 
406 	int r, i;
407 
408 	for (i = 0; i < count; i++) {
409 		r = _inits[i]();
410 		if (r)
411 			goto bad;
412 	}
413 
414 	return 0;
415 
416       bad:
417 	while (i--)
418 		_exits[i]();
419 
420 	return r;
421 }
422 
423 static void __exit dm_exit(void)
424 {
425 	int i = ARRAY_SIZE(_exits);
426 
427 	while (i--)
428 		_exits[i]();
429 
430 	/*
431 	 * Should be empty by this point.
432 	 */
433 	idr_destroy(&_minor_idr);
434 }
435 
436 /*
437  * Block device functions
438  */
439 int dm_deleting_md(struct mapped_device *md)
440 {
441 	return test_bit(DMF_DELETING, &md->flags);
442 }
443 
444 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
445 {
446 	struct mapped_device *md;
447 
448 	spin_lock(&_minor_lock);
449 
450 	md = bdev->bd_disk->private_data;
451 	if (!md)
452 		goto out;
453 
454 	if (test_bit(DMF_FREEING, &md->flags) ||
455 	    dm_deleting_md(md)) {
456 		md = NULL;
457 		goto out;
458 	}
459 
460 	dm_get(md);
461 	atomic_inc(&md->open_count);
462 out:
463 	spin_unlock(&_minor_lock);
464 
465 	return md ? 0 : -ENXIO;
466 }
467 
468 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
469 {
470 	struct mapped_device *md;
471 
472 	spin_lock(&_minor_lock);
473 
474 	md = disk->private_data;
475 	if (WARN_ON(!md))
476 		goto out;
477 
478 	if (atomic_dec_and_test(&md->open_count) &&
479 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
480 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
481 
482 	dm_put(md);
483 out:
484 	spin_unlock(&_minor_lock);
485 }
486 
487 int dm_open_count(struct mapped_device *md)
488 {
489 	return atomic_read(&md->open_count);
490 }
491 
492 /*
493  * Guarantees nothing is using the device before it's deleted.
494  */
495 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
496 {
497 	int r = 0;
498 
499 	spin_lock(&_minor_lock);
500 
501 	if (dm_open_count(md)) {
502 		r = -EBUSY;
503 		if (mark_deferred)
504 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
505 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
506 		r = -EEXIST;
507 	else
508 		set_bit(DMF_DELETING, &md->flags);
509 
510 	spin_unlock(&_minor_lock);
511 
512 	return r;
513 }
514 
515 int dm_cancel_deferred_remove(struct mapped_device *md)
516 {
517 	int r = 0;
518 
519 	spin_lock(&_minor_lock);
520 
521 	if (test_bit(DMF_DELETING, &md->flags))
522 		r = -EBUSY;
523 	else
524 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
525 
526 	spin_unlock(&_minor_lock);
527 
528 	return r;
529 }
530 
531 static void do_deferred_remove(struct work_struct *w)
532 {
533 	dm_deferred_remove();
534 }
535 
536 sector_t dm_get_size(struct mapped_device *md)
537 {
538 	return get_capacity(md->disk);
539 }
540 
541 struct request_queue *dm_get_md_queue(struct mapped_device *md)
542 {
543 	return md->queue;
544 }
545 
546 struct dm_stats *dm_get_stats(struct mapped_device *md)
547 {
548 	return &md->stats;
549 }
550 
551 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
552 {
553 	struct mapped_device *md = bdev->bd_disk->private_data;
554 
555 	return dm_get_geometry(md, geo);
556 }
557 
558 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
559 			unsigned int cmd, unsigned long arg)
560 {
561 	struct mapped_device *md = bdev->bd_disk->private_data;
562 	int srcu_idx;
563 	struct dm_table *map;
564 	struct dm_target *tgt;
565 	int r = -ENOTTY;
566 
567 retry:
568 	map = dm_get_live_table(md, &srcu_idx);
569 
570 	if (!map || !dm_table_get_size(map))
571 		goto out;
572 
573 	/* We only support devices that have a single target */
574 	if (dm_table_get_num_targets(map) != 1)
575 		goto out;
576 
577 	tgt = dm_table_get_target(map, 0);
578 	if (!tgt->type->ioctl)
579 		goto out;
580 
581 	if (dm_suspended_md(md)) {
582 		r = -EAGAIN;
583 		goto out;
584 	}
585 
586 	r = tgt->type->ioctl(tgt, cmd, arg);
587 
588 out:
589 	dm_put_live_table(md, srcu_idx);
590 
591 	if (r == -ENOTCONN) {
592 		msleep(10);
593 		goto retry;
594 	}
595 
596 	return r;
597 }
598 
599 static struct dm_io *alloc_io(struct mapped_device *md)
600 {
601 	return mempool_alloc(md->io_pool, GFP_NOIO);
602 }
603 
604 static void free_io(struct mapped_device *md, struct dm_io *io)
605 {
606 	mempool_free(io, md->io_pool);
607 }
608 
609 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
610 {
611 	bio_put(&tio->clone);
612 }
613 
614 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
615 					    gfp_t gfp_mask)
616 {
617 	return mempool_alloc(md->io_pool, gfp_mask);
618 }
619 
620 static void free_rq_tio(struct dm_rq_target_io *tio)
621 {
622 	mempool_free(tio, tio->md->io_pool);
623 }
624 
625 static struct request *alloc_clone_request(struct mapped_device *md,
626 					   gfp_t gfp_mask)
627 {
628 	return mempool_alloc(md->rq_pool, gfp_mask);
629 }
630 
631 static void free_clone_request(struct mapped_device *md, struct request *rq)
632 {
633 	mempool_free(rq, md->rq_pool);
634 }
635 
636 static int md_in_flight(struct mapped_device *md)
637 {
638 	return atomic_read(&md->pending[READ]) +
639 	       atomic_read(&md->pending[WRITE]);
640 }
641 
642 static void start_io_acct(struct dm_io *io)
643 {
644 	struct mapped_device *md = io->md;
645 	struct bio *bio = io->bio;
646 	int cpu;
647 	int rw = bio_data_dir(bio);
648 
649 	io->start_time = jiffies;
650 
651 	cpu = part_stat_lock();
652 	part_round_stats(cpu, &dm_disk(md)->part0);
653 	part_stat_unlock();
654 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
655 		atomic_inc_return(&md->pending[rw]));
656 
657 	if (unlikely(dm_stats_used(&md->stats)))
658 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
659 				    bio_sectors(bio), false, 0, &io->stats_aux);
660 }
661 
662 static void end_io_acct(struct dm_io *io)
663 {
664 	struct mapped_device *md = io->md;
665 	struct bio *bio = io->bio;
666 	unsigned long duration = jiffies - io->start_time;
667 	int pending;
668 	int rw = bio_data_dir(bio);
669 
670 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
671 
672 	if (unlikely(dm_stats_used(&md->stats)))
673 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
674 				    bio_sectors(bio), true, duration, &io->stats_aux);
675 
676 	/*
677 	 * After this is decremented the bio must not be touched if it is
678 	 * a flush.
679 	 */
680 	pending = atomic_dec_return(&md->pending[rw]);
681 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
682 	pending += atomic_read(&md->pending[rw^0x1]);
683 
684 	/* nudge anyone waiting on suspend queue */
685 	if (!pending)
686 		wake_up(&md->wait);
687 }
688 
689 /*
690  * Add the bio to the list of deferred io.
691  */
692 static void queue_io(struct mapped_device *md, struct bio *bio)
693 {
694 	unsigned long flags;
695 
696 	spin_lock_irqsave(&md->deferred_lock, flags);
697 	bio_list_add(&md->deferred, bio);
698 	spin_unlock_irqrestore(&md->deferred_lock, flags);
699 	queue_work(md->wq, &md->work);
700 }
701 
702 /*
703  * Everyone (including functions in this file), should use this
704  * function to access the md->map field, and make sure they call
705  * dm_put_live_table() when finished.
706  */
707 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
708 {
709 	*srcu_idx = srcu_read_lock(&md->io_barrier);
710 
711 	return srcu_dereference(md->map, &md->io_barrier);
712 }
713 
714 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
715 {
716 	srcu_read_unlock(&md->io_barrier, srcu_idx);
717 }
718 
719 void dm_sync_table(struct mapped_device *md)
720 {
721 	synchronize_srcu(&md->io_barrier);
722 	synchronize_rcu_expedited();
723 }
724 
725 /*
726  * A fast alternative to dm_get_live_table/dm_put_live_table.
727  * The caller must not block between these two functions.
728  */
729 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
730 {
731 	rcu_read_lock();
732 	return rcu_dereference(md->map);
733 }
734 
735 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
736 {
737 	rcu_read_unlock();
738 }
739 
740 /*
741  * Open a table device so we can use it as a map destination.
742  */
743 static int open_table_device(struct table_device *td, dev_t dev,
744 			     struct mapped_device *md)
745 {
746 	static char *_claim_ptr = "I belong to device-mapper";
747 	struct block_device *bdev;
748 
749 	int r;
750 
751 	BUG_ON(td->dm_dev.bdev);
752 
753 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
754 	if (IS_ERR(bdev))
755 		return PTR_ERR(bdev);
756 
757 	r = bd_link_disk_holder(bdev, dm_disk(md));
758 	if (r) {
759 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
760 		return r;
761 	}
762 
763 	td->dm_dev.bdev = bdev;
764 	return 0;
765 }
766 
767 /*
768  * Close a table device that we've been using.
769  */
770 static void close_table_device(struct table_device *td, struct mapped_device *md)
771 {
772 	if (!td->dm_dev.bdev)
773 		return;
774 
775 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
776 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
777 	td->dm_dev.bdev = NULL;
778 }
779 
780 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
781 					      fmode_t mode) {
782 	struct table_device *td;
783 
784 	list_for_each_entry(td, l, list)
785 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
786 			return td;
787 
788 	return NULL;
789 }
790 
791 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
792 			struct dm_dev **result) {
793 	int r;
794 	struct table_device *td;
795 
796 	mutex_lock(&md->table_devices_lock);
797 	td = find_table_device(&md->table_devices, dev, mode);
798 	if (!td) {
799 		td = kmalloc(sizeof(*td), GFP_KERNEL);
800 		if (!td) {
801 			mutex_unlock(&md->table_devices_lock);
802 			return -ENOMEM;
803 		}
804 
805 		td->dm_dev.mode = mode;
806 		td->dm_dev.bdev = NULL;
807 
808 		if ((r = open_table_device(td, dev, md))) {
809 			mutex_unlock(&md->table_devices_lock);
810 			kfree(td);
811 			return r;
812 		}
813 
814 		format_dev_t(td->dm_dev.name, dev);
815 
816 		atomic_set(&td->count, 0);
817 		list_add(&td->list, &md->table_devices);
818 	}
819 	atomic_inc(&td->count);
820 	mutex_unlock(&md->table_devices_lock);
821 
822 	*result = &td->dm_dev;
823 	return 0;
824 }
825 EXPORT_SYMBOL_GPL(dm_get_table_device);
826 
827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 	struct table_device *td = container_of(d, struct table_device, dm_dev);
830 
831 	mutex_lock(&md->table_devices_lock);
832 	if (atomic_dec_and_test(&td->count)) {
833 		close_table_device(td, md);
834 		list_del(&td->list);
835 		kfree(td);
836 	}
837 	mutex_unlock(&md->table_devices_lock);
838 }
839 EXPORT_SYMBOL(dm_put_table_device);
840 
841 static void free_table_devices(struct list_head *devices)
842 {
843 	struct list_head *tmp, *next;
844 
845 	list_for_each_safe(tmp, next, devices) {
846 		struct table_device *td = list_entry(tmp, struct table_device, list);
847 
848 		DMWARN("dm_destroy: %s still exists with %d references",
849 		       td->dm_dev.name, atomic_read(&td->count));
850 		kfree(td);
851 	}
852 }
853 
854 /*
855  * Get the geometry associated with a dm device
856  */
857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
858 {
859 	*geo = md->geometry;
860 
861 	return 0;
862 }
863 
864 /*
865  * Set the geometry of a device.
866  */
867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
868 {
869 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
870 
871 	if (geo->start > sz) {
872 		DMWARN("Start sector is beyond the geometry limits.");
873 		return -EINVAL;
874 	}
875 
876 	md->geometry = *geo;
877 
878 	return 0;
879 }
880 
881 /*-----------------------------------------------------------------
882  * CRUD START:
883  *   A more elegant soln is in the works that uses the queue
884  *   merge fn, unfortunately there are a couple of changes to
885  *   the block layer that I want to make for this.  So in the
886  *   interests of getting something for people to use I give
887  *   you this clearly demarcated crap.
888  *---------------------------------------------------------------*/
889 
890 static int __noflush_suspending(struct mapped_device *md)
891 {
892 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
893 }
894 
895 /*
896  * Decrements the number of outstanding ios that a bio has been
897  * cloned into, completing the original io if necc.
898  */
899 static void dec_pending(struct dm_io *io, int error)
900 {
901 	unsigned long flags;
902 	int io_error;
903 	struct bio *bio;
904 	struct mapped_device *md = io->md;
905 
906 	/* Push-back supersedes any I/O errors */
907 	if (unlikely(error)) {
908 		spin_lock_irqsave(&io->endio_lock, flags);
909 		if (!(io->error > 0 && __noflush_suspending(md)))
910 			io->error = error;
911 		spin_unlock_irqrestore(&io->endio_lock, flags);
912 	}
913 
914 	if (atomic_dec_and_test(&io->io_count)) {
915 		if (io->error == DM_ENDIO_REQUEUE) {
916 			/*
917 			 * Target requested pushing back the I/O.
918 			 */
919 			spin_lock_irqsave(&md->deferred_lock, flags);
920 			if (__noflush_suspending(md))
921 				bio_list_add_head(&md->deferred, io->bio);
922 			else
923 				/* noflush suspend was interrupted. */
924 				io->error = -EIO;
925 			spin_unlock_irqrestore(&md->deferred_lock, flags);
926 		}
927 
928 		io_error = io->error;
929 		bio = io->bio;
930 		end_io_acct(io);
931 		free_io(md, io);
932 
933 		if (io_error == DM_ENDIO_REQUEUE)
934 			return;
935 
936 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
937 			/*
938 			 * Preflush done for flush with data, reissue
939 			 * without REQ_FLUSH.
940 			 */
941 			bio->bi_rw &= ~REQ_FLUSH;
942 			queue_io(md, bio);
943 		} else {
944 			/* done with normal IO or empty flush */
945 			trace_block_bio_complete(md->queue, bio, io_error);
946 			bio->bi_error = io_error;
947 			bio_endio(bio);
948 		}
949 	}
950 }
951 
952 static void disable_write_same(struct mapped_device *md)
953 {
954 	struct queue_limits *limits = dm_get_queue_limits(md);
955 
956 	/* device doesn't really support WRITE SAME, disable it */
957 	limits->max_write_same_sectors = 0;
958 }
959 
960 static void clone_endio(struct bio *bio)
961 {
962 	int error = bio->bi_error;
963 	int r = error;
964 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
965 	struct dm_io *io = tio->io;
966 	struct mapped_device *md = tio->io->md;
967 	dm_endio_fn endio = tio->ti->type->end_io;
968 
969 	if (endio) {
970 		r = endio(tio->ti, bio, error);
971 		if (r < 0 || r == DM_ENDIO_REQUEUE)
972 			/*
973 			 * error and requeue request are handled
974 			 * in dec_pending().
975 			 */
976 			error = r;
977 		else if (r == DM_ENDIO_INCOMPLETE)
978 			/* The target will handle the io */
979 			return;
980 		else if (r) {
981 			DMWARN("unimplemented target endio return value: %d", r);
982 			BUG();
983 		}
984 	}
985 
986 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
987 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
988 		disable_write_same(md);
989 
990 	free_tio(md, tio);
991 	dec_pending(io, error);
992 }
993 
994 /*
995  * Partial completion handling for request-based dm
996  */
997 static void end_clone_bio(struct bio *clone)
998 {
999 	struct dm_rq_clone_bio_info *info =
1000 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1001 	struct dm_rq_target_io *tio = info->tio;
1002 	struct bio *bio = info->orig;
1003 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1004 
1005 	bio_put(clone);
1006 
1007 	if (tio->error)
1008 		/*
1009 		 * An error has already been detected on the request.
1010 		 * Once error occurred, just let clone->end_io() handle
1011 		 * the remainder.
1012 		 */
1013 		return;
1014 	else if (bio->bi_error) {
1015 		/*
1016 		 * Don't notice the error to the upper layer yet.
1017 		 * The error handling decision is made by the target driver,
1018 		 * when the request is completed.
1019 		 */
1020 		tio->error = bio->bi_error;
1021 		return;
1022 	}
1023 
1024 	/*
1025 	 * I/O for the bio successfully completed.
1026 	 * Notice the data completion to the upper layer.
1027 	 */
1028 
1029 	/*
1030 	 * bios are processed from the head of the list.
1031 	 * So the completing bio should always be rq->bio.
1032 	 * If it's not, something wrong is happening.
1033 	 */
1034 	if (tio->orig->bio != bio)
1035 		DMERR("bio completion is going in the middle of the request");
1036 
1037 	/*
1038 	 * Update the original request.
1039 	 * Do not use blk_end_request() here, because it may complete
1040 	 * the original request before the clone, and break the ordering.
1041 	 */
1042 	blk_update_request(tio->orig, 0, nr_bytes);
1043 }
1044 
1045 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1046 {
1047 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1048 }
1049 
1050 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1051 {
1052 	if (unlikely(dm_stats_used(&md->stats))) {
1053 		struct dm_rq_target_io *tio = tio_from_request(orig);
1054 		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1055 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1056 				    tio->n_sectors, true, tio->duration_jiffies,
1057 				    &tio->stats_aux);
1058 	}
1059 }
1060 
1061 /*
1062  * Don't touch any member of the md after calling this function because
1063  * the md may be freed in dm_put() at the end of this function.
1064  * Or do dm_get() before calling this function and dm_put() later.
1065  */
1066 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1067 {
1068 	atomic_dec(&md->pending[rw]);
1069 
1070 	/* nudge anyone waiting on suspend queue */
1071 	if (!md_in_flight(md))
1072 		wake_up(&md->wait);
1073 
1074 	/*
1075 	 * Run this off this callpath, as drivers could invoke end_io while
1076 	 * inside their request_fn (and holding the queue lock). Calling
1077 	 * back into ->request_fn() could deadlock attempting to grab the
1078 	 * queue lock again.
1079 	 */
1080 	if (run_queue) {
1081 		if (md->queue->mq_ops)
1082 			blk_mq_run_hw_queues(md->queue, true);
1083 		else
1084 			blk_run_queue_async(md->queue);
1085 	}
1086 
1087 	/*
1088 	 * dm_put() must be at the end of this function. See the comment above
1089 	 */
1090 	dm_put(md);
1091 }
1092 
1093 static void free_rq_clone(struct request *clone)
1094 {
1095 	struct dm_rq_target_io *tio = clone->end_io_data;
1096 	struct mapped_device *md = tio->md;
1097 
1098 	blk_rq_unprep_clone(clone);
1099 
1100 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1101 		/* stacked on blk-mq queue(s) */
1102 		tio->ti->type->release_clone_rq(clone);
1103 	else if (!md->queue->mq_ops)
1104 		/* request_fn queue stacked on request_fn queue(s) */
1105 		free_clone_request(md, clone);
1106 	/*
1107 	 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1108 	 * no need to call free_clone_request() because we leverage blk-mq by
1109 	 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1110 	 */
1111 
1112 	if (!md->queue->mq_ops)
1113 		free_rq_tio(tio);
1114 }
1115 
1116 /*
1117  * Complete the clone and the original request.
1118  * Must be called without clone's queue lock held,
1119  * see end_clone_request() for more details.
1120  */
1121 static void dm_end_request(struct request *clone, int error)
1122 {
1123 	int rw = rq_data_dir(clone);
1124 	struct dm_rq_target_io *tio = clone->end_io_data;
1125 	struct mapped_device *md = tio->md;
1126 	struct request *rq = tio->orig;
1127 
1128 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1129 		rq->errors = clone->errors;
1130 		rq->resid_len = clone->resid_len;
1131 
1132 		if (rq->sense)
1133 			/*
1134 			 * We are using the sense buffer of the original
1135 			 * request.
1136 			 * So setting the length of the sense data is enough.
1137 			 */
1138 			rq->sense_len = clone->sense_len;
1139 	}
1140 
1141 	free_rq_clone(clone);
1142 	rq_end_stats(md, rq);
1143 	if (!rq->q->mq_ops)
1144 		blk_end_request_all(rq, error);
1145 	else
1146 		blk_mq_end_request(rq, error);
1147 	rq_completed(md, rw, true);
1148 }
1149 
1150 static void dm_unprep_request(struct request *rq)
1151 {
1152 	struct dm_rq_target_io *tio = tio_from_request(rq);
1153 	struct request *clone = tio->clone;
1154 
1155 	if (!rq->q->mq_ops) {
1156 		rq->special = NULL;
1157 		rq->cmd_flags &= ~REQ_DONTPREP;
1158 	}
1159 
1160 	if (clone)
1161 		free_rq_clone(clone);
1162 }
1163 
1164 /*
1165  * Requeue the original request of a clone.
1166  */
1167 static void old_requeue_request(struct request *rq)
1168 {
1169 	struct request_queue *q = rq->q;
1170 	unsigned long flags;
1171 
1172 	spin_lock_irqsave(q->queue_lock, flags);
1173 	blk_requeue_request(q, rq);
1174 	blk_run_queue_async(q);
1175 	spin_unlock_irqrestore(q->queue_lock, flags);
1176 }
1177 
1178 static void dm_requeue_original_request(struct mapped_device *md,
1179 					struct request *rq)
1180 {
1181 	int rw = rq_data_dir(rq);
1182 
1183 	dm_unprep_request(rq);
1184 
1185 	rq_end_stats(md, rq);
1186 	if (!rq->q->mq_ops)
1187 		old_requeue_request(rq);
1188 	else {
1189 		blk_mq_requeue_request(rq);
1190 		blk_mq_kick_requeue_list(rq->q);
1191 	}
1192 
1193 	rq_completed(md, rw, false);
1194 }
1195 
1196 static void old_stop_queue(struct request_queue *q)
1197 {
1198 	unsigned long flags;
1199 
1200 	if (blk_queue_stopped(q))
1201 		return;
1202 
1203 	spin_lock_irqsave(q->queue_lock, flags);
1204 	blk_stop_queue(q);
1205 	spin_unlock_irqrestore(q->queue_lock, flags);
1206 }
1207 
1208 static void stop_queue(struct request_queue *q)
1209 {
1210 	if (!q->mq_ops)
1211 		old_stop_queue(q);
1212 	else
1213 		blk_mq_stop_hw_queues(q);
1214 }
1215 
1216 static void old_start_queue(struct request_queue *q)
1217 {
1218 	unsigned long flags;
1219 
1220 	spin_lock_irqsave(q->queue_lock, flags);
1221 	if (blk_queue_stopped(q))
1222 		blk_start_queue(q);
1223 	spin_unlock_irqrestore(q->queue_lock, flags);
1224 }
1225 
1226 static void start_queue(struct request_queue *q)
1227 {
1228 	if (!q->mq_ops)
1229 		old_start_queue(q);
1230 	else
1231 		blk_mq_start_stopped_hw_queues(q, true);
1232 }
1233 
1234 static void dm_done(struct request *clone, int error, bool mapped)
1235 {
1236 	int r = error;
1237 	struct dm_rq_target_io *tio = clone->end_io_data;
1238 	dm_request_endio_fn rq_end_io = NULL;
1239 
1240 	if (tio->ti) {
1241 		rq_end_io = tio->ti->type->rq_end_io;
1242 
1243 		if (mapped && rq_end_io)
1244 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1245 	}
1246 
1247 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1248 		     !clone->q->limits.max_write_same_sectors))
1249 		disable_write_same(tio->md);
1250 
1251 	if (r <= 0)
1252 		/* The target wants to complete the I/O */
1253 		dm_end_request(clone, r);
1254 	else if (r == DM_ENDIO_INCOMPLETE)
1255 		/* The target will handle the I/O */
1256 		return;
1257 	else if (r == DM_ENDIO_REQUEUE)
1258 		/* The target wants to requeue the I/O */
1259 		dm_requeue_original_request(tio->md, tio->orig);
1260 	else {
1261 		DMWARN("unimplemented target endio return value: %d", r);
1262 		BUG();
1263 	}
1264 }
1265 
1266 /*
1267  * Request completion handler for request-based dm
1268  */
1269 static void dm_softirq_done(struct request *rq)
1270 {
1271 	bool mapped = true;
1272 	struct dm_rq_target_io *tio = tio_from_request(rq);
1273 	struct request *clone = tio->clone;
1274 	int rw;
1275 
1276 	if (!clone) {
1277 		rq_end_stats(tio->md, rq);
1278 		rw = rq_data_dir(rq);
1279 		if (!rq->q->mq_ops) {
1280 			blk_end_request_all(rq, tio->error);
1281 			rq_completed(tio->md, rw, false);
1282 			free_rq_tio(tio);
1283 		} else {
1284 			blk_mq_end_request(rq, tio->error);
1285 			rq_completed(tio->md, rw, false);
1286 		}
1287 		return;
1288 	}
1289 
1290 	if (rq->cmd_flags & REQ_FAILED)
1291 		mapped = false;
1292 
1293 	dm_done(clone, tio->error, mapped);
1294 }
1295 
1296 /*
1297  * Complete the clone and the original request with the error status
1298  * through softirq context.
1299  */
1300 static void dm_complete_request(struct request *rq, int error)
1301 {
1302 	struct dm_rq_target_io *tio = tio_from_request(rq);
1303 
1304 	tio->error = error;
1305 	blk_complete_request(rq);
1306 }
1307 
1308 /*
1309  * Complete the not-mapped clone and the original request with the error status
1310  * through softirq context.
1311  * Target's rq_end_io() function isn't called.
1312  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1313  */
1314 static void dm_kill_unmapped_request(struct request *rq, int error)
1315 {
1316 	rq->cmd_flags |= REQ_FAILED;
1317 	dm_complete_request(rq, error);
1318 }
1319 
1320 /*
1321  * Called with the clone's queue lock held (for non-blk-mq)
1322  */
1323 static void end_clone_request(struct request *clone, int error)
1324 {
1325 	struct dm_rq_target_io *tio = clone->end_io_data;
1326 
1327 	if (!clone->q->mq_ops) {
1328 		/*
1329 		 * For just cleaning up the information of the queue in which
1330 		 * the clone was dispatched.
1331 		 * The clone is *NOT* freed actually here because it is alloced
1332 		 * from dm own mempool (REQ_ALLOCED isn't set).
1333 		 */
1334 		__blk_put_request(clone->q, clone);
1335 	}
1336 
1337 	/*
1338 	 * Actual request completion is done in a softirq context which doesn't
1339 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1340 	 *     - another request may be submitted by the upper level driver
1341 	 *       of the stacking during the completion
1342 	 *     - the submission which requires queue lock may be done
1343 	 *       against this clone's queue
1344 	 */
1345 	dm_complete_request(tio->orig, error);
1346 }
1347 
1348 /*
1349  * Return maximum size of I/O possible at the supplied sector up to the current
1350  * target boundary.
1351  */
1352 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1353 {
1354 	sector_t target_offset = dm_target_offset(ti, sector);
1355 
1356 	return ti->len - target_offset;
1357 }
1358 
1359 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1360 {
1361 	sector_t len = max_io_len_target_boundary(sector, ti);
1362 	sector_t offset, max_len;
1363 
1364 	/*
1365 	 * Does the target need to split even further?
1366 	 */
1367 	if (ti->max_io_len) {
1368 		offset = dm_target_offset(ti, sector);
1369 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1370 			max_len = sector_div(offset, ti->max_io_len);
1371 		else
1372 			max_len = offset & (ti->max_io_len - 1);
1373 		max_len = ti->max_io_len - max_len;
1374 
1375 		if (len > max_len)
1376 			len = max_len;
1377 	}
1378 
1379 	return len;
1380 }
1381 
1382 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1383 {
1384 	if (len > UINT_MAX) {
1385 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1386 		      (unsigned long long)len, UINT_MAX);
1387 		ti->error = "Maximum size of target IO is too large";
1388 		return -EINVAL;
1389 	}
1390 
1391 	ti->max_io_len = (uint32_t) len;
1392 
1393 	return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1396 
1397 /*
1398  * A target may call dm_accept_partial_bio only from the map routine.  It is
1399  * allowed for all bio types except REQ_FLUSH.
1400  *
1401  * dm_accept_partial_bio informs the dm that the target only wants to process
1402  * additional n_sectors sectors of the bio and the rest of the data should be
1403  * sent in a next bio.
1404  *
1405  * A diagram that explains the arithmetics:
1406  * +--------------------+---------------+-------+
1407  * |         1          |       2       |   3   |
1408  * +--------------------+---------------+-------+
1409  *
1410  * <-------------- *tio->len_ptr --------------->
1411  *                      <------- bi_size ------->
1412  *                      <-- n_sectors -->
1413  *
1414  * Region 1 was already iterated over with bio_advance or similar function.
1415  *	(it may be empty if the target doesn't use bio_advance)
1416  * Region 2 is the remaining bio size that the target wants to process.
1417  *	(it may be empty if region 1 is non-empty, although there is no reason
1418  *	 to make it empty)
1419  * The target requires that region 3 is to be sent in the next bio.
1420  *
1421  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1422  * the partially processed part (the sum of regions 1+2) must be the same for all
1423  * copies of the bio.
1424  */
1425 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1426 {
1427 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1428 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1429 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1430 	BUG_ON(bi_size > *tio->len_ptr);
1431 	BUG_ON(n_sectors > bi_size);
1432 	*tio->len_ptr -= bi_size - n_sectors;
1433 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1434 }
1435 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1436 
1437 static void __map_bio(struct dm_target_io *tio)
1438 {
1439 	int r;
1440 	sector_t sector;
1441 	struct mapped_device *md;
1442 	struct bio *clone = &tio->clone;
1443 	struct dm_target *ti = tio->ti;
1444 
1445 	clone->bi_end_io = clone_endio;
1446 
1447 	/*
1448 	 * Map the clone.  If r == 0 we don't need to do
1449 	 * anything, the target has assumed ownership of
1450 	 * this io.
1451 	 */
1452 	atomic_inc(&tio->io->io_count);
1453 	sector = clone->bi_iter.bi_sector;
1454 	r = ti->type->map(ti, clone);
1455 	if (r == DM_MAPIO_REMAPPED) {
1456 		/* the bio has been remapped so dispatch it */
1457 
1458 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1459 				      tio->io->bio->bi_bdev->bd_dev, sector);
1460 
1461 		generic_make_request(clone);
1462 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1463 		/* error the io and bail out, or requeue it if needed */
1464 		md = tio->io->md;
1465 		dec_pending(tio->io, r);
1466 		free_tio(md, tio);
1467 	} else if (r != DM_MAPIO_SUBMITTED) {
1468 		DMWARN("unimplemented target map return value: %d", r);
1469 		BUG();
1470 	}
1471 }
1472 
1473 struct clone_info {
1474 	struct mapped_device *md;
1475 	struct dm_table *map;
1476 	struct bio *bio;
1477 	struct dm_io *io;
1478 	sector_t sector;
1479 	unsigned sector_count;
1480 };
1481 
1482 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1483 {
1484 	bio->bi_iter.bi_sector = sector;
1485 	bio->bi_iter.bi_size = to_bytes(len);
1486 }
1487 
1488 /*
1489  * Creates a bio that consists of range of complete bvecs.
1490  */
1491 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1492 		      sector_t sector, unsigned len)
1493 {
1494 	struct bio *clone = &tio->clone;
1495 
1496 	__bio_clone_fast(clone, bio);
1497 
1498 	if (bio_integrity(bio))
1499 		bio_integrity_clone(clone, bio, GFP_NOIO);
1500 
1501 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1502 	clone->bi_iter.bi_size = to_bytes(len);
1503 
1504 	if (bio_integrity(bio))
1505 		bio_integrity_trim(clone, 0, len);
1506 }
1507 
1508 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1509 				      struct dm_target *ti,
1510 				      unsigned target_bio_nr)
1511 {
1512 	struct dm_target_io *tio;
1513 	struct bio *clone;
1514 
1515 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1516 	tio = container_of(clone, struct dm_target_io, clone);
1517 
1518 	tio->io = ci->io;
1519 	tio->ti = ti;
1520 	tio->target_bio_nr = target_bio_nr;
1521 
1522 	return tio;
1523 }
1524 
1525 static void __clone_and_map_simple_bio(struct clone_info *ci,
1526 				       struct dm_target *ti,
1527 				       unsigned target_bio_nr, unsigned *len)
1528 {
1529 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1530 	struct bio *clone = &tio->clone;
1531 
1532 	tio->len_ptr = len;
1533 
1534 	__bio_clone_fast(clone, ci->bio);
1535 	if (len)
1536 		bio_setup_sector(clone, ci->sector, *len);
1537 
1538 	__map_bio(tio);
1539 }
1540 
1541 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1542 				  unsigned num_bios, unsigned *len)
1543 {
1544 	unsigned target_bio_nr;
1545 
1546 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1547 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1548 }
1549 
1550 static int __send_empty_flush(struct clone_info *ci)
1551 {
1552 	unsigned target_nr = 0;
1553 	struct dm_target *ti;
1554 
1555 	BUG_ON(bio_has_data(ci->bio));
1556 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1557 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1558 
1559 	return 0;
1560 }
1561 
1562 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1563 				     sector_t sector, unsigned *len)
1564 {
1565 	struct bio *bio = ci->bio;
1566 	struct dm_target_io *tio;
1567 	unsigned target_bio_nr;
1568 	unsigned num_target_bios = 1;
1569 
1570 	/*
1571 	 * Does the target want to receive duplicate copies of the bio?
1572 	 */
1573 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1574 		num_target_bios = ti->num_write_bios(ti, bio);
1575 
1576 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1577 		tio = alloc_tio(ci, ti, target_bio_nr);
1578 		tio->len_ptr = len;
1579 		clone_bio(tio, bio, sector, *len);
1580 		__map_bio(tio);
1581 	}
1582 }
1583 
1584 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1585 
1586 static unsigned get_num_discard_bios(struct dm_target *ti)
1587 {
1588 	return ti->num_discard_bios;
1589 }
1590 
1591 static unsigned get_num_write_same_bios(struct dm_target *ti)
1592 {
1593 	return ti->num_write_same_bios;
1594 }
1595 
1596 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1597 
1598 static bool is_split_required_for_discard(struct dm_target *ti)
1599 {
1600 	return ti->split_discard_bios;
1601 }
1602 
1603 static int __send_changing_extent_only(struct clone_info *ci,
1604 				       get_num_bios_fn get_num_bios,
1605 				       is_split_required_fn is_split_required)
1606 {
1607 	struct dm_target *ti;
1608 	unsigned len;
1609 	unsigned num_bios;
1610 
1611 	do {
1612 		ti = dm_table_find_target(ci->map, ci->sector);
1613 		if (!dm_target_is_valid(ti))
1614 			return -EIO;
1615 
1616 		/*
1617 		 * Even though the device advertised support for this type of
1618 		 * request, that does not mean every target supports it, and
1619 		 * reconfiguration might also have changed that since the
1620 		 * check was performed.
1621 		 */
1622 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1623 		if (!num_bios)
1624 			return -EOPNOTSUPP;
1625 
1626 		if (is_split_required && !is_split_required(ti))
1627 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1628 		else
1629 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1630 
1631 		__send_duplicate_bios(ci, ti, num_bios, &len);
1632 
1633 		ci->sector += len;
1634 	} while (ci->sector_count -= len);
1635 
1636 	return 0;
1637 }
1638 
1639 static int __send_discard(struct clone_info *ci)
1640 {
1641 	return __send_changing_extent_only(ci, get_num_discard_bios,
1642 					   is_split_required_for_discard);
1643 }
1644 
1645 static int __send_write_same(struct clone_info *ci)
1646 {
1647 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1648 }
1649 
1650 /*
1651  * Select the correct strategy for processing a non-flush bio.
1652  */
1653 static int __split_and_process_non_flush(struct clone_info *ci)
1654 {
1655 	struct bio *bio = ci->bio;
1656 	struct dm_target *ti;
1657 	unsigned len;
1658 
1659 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1660 		return __send_discard(ci);
1661 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1662 		return __send_write_same(ci);
1663 
1664 	ti = dm_table_find_target(ci->map, ci->sector);
1665 	if (!dm_target_is_valid(ti))
1666 		return -EIO;
1667 
1668 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1669 
1670 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1671 
1672 	ci->sector += len;
1673 	ci->sector_count -= len;
1674 
1675 	return 0;
1676 }
1677 
1678 /*
1679  * Entry point to split a bio into clones and submit them to the targets.
1680  */
1681 static void __split_and_process_bio(struct mapped_device *md,
1682 				    struct dm_table *map, struct bio *bio)
1683 {
1684 	struct clone_info ci;
1685 	int error = 0;
1686 
1687 	if (unlikely(!map)) {
1688 		bio_io_error(bio);
1689 		return;
1690 	}
1691 
1692 	ci.map = map;
1693 	ci.md = md;
1694 	ci.io = alloc_io(md);
1695 	ci.io->error = 0;
1696 	atomic_set(&ci.io->io_count, 1);
1697 	ci.io->bio = bio;
1698 	ci.io->md = md;
1699 	spin_lock_init(&ci.io->endio_lock);
1700 	ci.sector = bio->bi_iter.bi_sector;
1701 
1702 	start_io_acct(ci.io);
1703 
1704 	if (bio->bi_rw & REQ_FLUSH) {
1705 		ci.bio = &ci.md->flush_bio;
1706 		ci.sector_count = 0;
1707 		error = __send_empty_flush(&ci);
1708 		/* dec_pending submits any data associated with flush */
1709 	} else {
1710 		ci.bio = bio;
1711 		ci.sector_count = bio_sectors(bio);
1712 		while (ci.sector_count && !error)
1713 			error = __split_and_process_non_flush(&ci);
1714 	}
1715 
1716 	/* drop the extra reference count */
1717 	dec_pending(ci.io, error);
1718 }
1719 /*-----------------------------------------------------------------
1720  * CRUD END
1721  *---------------------------------------------------------------*/
1722 
1723 /*
1724  * The request function that just remaps the bio built up by
1725  * dm_merge_bvec.
1726  */
1727 static void dm_make_request(struct request_queue *q, struct bio *bio)
1728 {
1729 	int rw = bio_data_dir(bio);
1730 	struct mapped_device *md = q->queuedata;
1731 	int srcu_idx;
1732 	struct dm_table *map;
1733 
1734 	map = dm_get_live_table(md, &srcu_idx);
1735 
1736 	blk_queue_split(q, &bio, q->bio_split);
1737 
1738 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1739 
1740 	/* if we're suspended, we have to queue this io for later */
1741 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1742 		dm_put_live_table(md, srcu_idx);
1743 
1744 		if (bio_rw(bio) != READA)
1745 			queue_io(md, bio);
1746 		else
1747 			bio_io_error(bio);
1748 		return;
1749 	}
1750 
1751 	__split_and_process_bio(md, map, bio);
1752 	dm_put_live_table(md, srcu_idx);
1753 	return;
1754 }
1755 
1756 int dm_request_based(struct mapped_device *md)
1757 {
1758 	return blk_queue_stackable(md->queue);
1759 }
1760 
1761 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1762 {
1763 	int r;
1764 
1765 	if (blk_queue_io_stat(clone->q))
1766 		clone->cmd_flags |= REQ_IO_STAT;
1767 
1768 	clone->start_time = jiffies;
1769 	r = blk_insert_cloned_request(clone->q, clone);
1770 	if (r)
1771 		/* must complete clone in terms of original request */
1772 		dm_complete_request(rq, r);
1773 }
1774 
1775 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1776 				 void *data)
1777 {
1778 	struct dm_rq_target_io *tio = data;
1779 	struct dm_rq_clone_bio_info *info =
1780 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1781 
1782 	info->orig = bio_orig;
1783 	info->tio = tio;
1784 	bio->bi_end_io = end_clone_bio;
1785 
1786 	return 0;
1787 }
1788 
1789 static int setup_clone(struct request *clone, struct request *rq,
1790 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1791 {
1792 	int r;
1793 
1794 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1795 			      dm_rq_bio_constructor, tio);
1796 	if (r)
1797 		return r;
1798 
1799 	clone->cmd = rq->cmd;
1800 	clone->cmd_len = rq->cmd_len;
1801 	clone->sense = rq->sense;
1802 	clone->end_io = end_clone_request;
1803 	clone->end_io_data = tio;
1804 
1805 	tio->clone = clone;
1806 
1807 	return 0;
1808 }
1809 
1810 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1811 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1812 {
1813 	/*
1814 	 * Do not allocate a clone if tio->clone was already set
1815 	 * (see: dm_mq_queue_rq).
1816 	 */
1817 	bool alloc_clone = !tio->clone;
1818 	struct request *clone;
1819 
1820 	if (alloc_clone) {
1821 		clone = alloc_clone_request(md, gfp_mask);
1822 		if (!clone)
1823 			return NULL;
1824 	} else
1825 		clone = tio->clone;
1826 
1827 	blk_rq_init(NULL, clone);
1828 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1829 		/* -ENOMEM */
1830 		if (alloc_clone)
1831 			free_clone_request(md, clone);
1832 		return NULL;
1833 	}
1834 
1835 	return clone;
1836 }
1837 
1838 static void map_tio_request(struct kthread_work *work);
1839 
1840 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1841 		     struct mapped_device *md)
1842 {
1843 	tio->md = md;
1844 	tio->ti = NULL;
1845 	tio->clone = NULL;
1846 	tio->orig = rq;
1847 	tio->error = 0;
1848 	memset(&tio->info, 0, sizeof(tio->info));
1849 	if (md->kworker_task)
1850 		init_kthread_work(&tio->work, map_tio_request);
1851 }
1852 
1853 static struct dm_rq_target_io *prep_tio(struct request *rq,
1854 					struct mapped_device *md, gfp_t gfp_mask)
1855 {
1856 	struct dm_rq_target_io *tio;
1857 	int srcu_idx;
1858 	struct dm_table *table;
1859 
1860 	tio = alloc_rq_tio(md, gfp_mask);
1861 	if (!tio)
1862 		return NULL;
1863 
1864 	init_tio(tio, rq, md);
1865 
1866 	table = dm_get_live_table(md, &srcu_idx);
1867 	if (!dm_table_mq_request_based(table)) {
1868 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1869 			dm_put_live_table(md, srcu_idx);
1870 			free_rq_tio(tio);
1871 			return NULL;
1872 		}
1873 	}
1874 	dm_put_live_table(md, srcu_idx);
1875 
1876 	return tio;
1877 }
1878 
1879 /*
1880  * Called with the queue lock held.
1881  */
1882 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1883 {
1884 	struct mapped_device *md = q->queuedata;
1885 	struct dm_rq_target_io *tio;
1886 
1887 	if (unlikely(rq->special)) {
1888 		DMWARN("Already has something in rq->special.");
1889 		return BLKPREP_KILL;
1890 	}
1891 
1892 	tio = prep_tio(rq, md, GFP_ATOMIC);
1893 	if (!tio)
1894 		return BLKPREP_DEFER;
1895 
1896 	rq->special = tio;
1897 	rq->cmd_flags |= REQ_DONTPREP;
1898 
1899 	return BLKPREP_OK;
1900 }
1901 
1902 /*
1903  * Returns:
1904  * 0                : the request has been processed
1905  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1906  * < 0              : the request was completed due to failure
1907  */
1908 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1909 		       struct mapped_device *md)
1910 {
1911 	int r;
1912 	struct dm_target *ti = tio->ti;
1913 	struct request *clone = NULL;
1914 
1915 	if (tio->clone) {
1916 		clone = tio->clone;
1917 		r = ti->type->map_rq(ti, clone, &tio->info);
1918 	} else {
1919 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1920 		if (r < 0) {
1921 			/* The target wants to complete the I/O */
1922 			dm_kill_unmapped_request(rq, r);
1923 			return r;
1924 		}
1925 		if (r != DM_MAPIO_REMAPPED)
1926 			return r;
1927 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1928 			/* -ENOMEM */
1929 			ti->type->release_clone_rq(clone);
1930 			return DM_MAPIO_REQUEUE;
1931 		}
1932 	}
1933 
1934 	switch (r) {
1935 	case DM_MAPIO_SUBMITTED:
1936 		/* The target has taken the I/O to submit by itself later */
1937 		break;
1938 	case DM_MAPIO_REMAPPED:
1939 		/* The target has remapped the I/O so dispatch it */
1940 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1941 				     blk_rq_pos(rq));
1942 		dm_dispatch_clone_request(clone, rq);
1943 		break;
1944 	case DM_MAPIO_REQUEUE:
1945 		/* The target wants to requeue the I/O */
1946 		dm_requeue_original_request(md, tio->orig);
1947 		break;
1948 	default:
1949 		if (r > 0) {
1950 			DMWARN("unimplemented target map return value: %d", r);
1951 			BUG();
1952 		}
1953 
1954 		/* The target wants to complete the I/O */
1955 		dm_kill_unmapped_request(rq, r);
1956 		return r;
1957 	}
1958 
1959 	return 0;
1960 }
1961 
1962 static void map_tio_request(struct kthread_work *work)
1963 {
1964 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1965 	struct request *rq = tio->orig;
1966 	struct mapped_device *md = tio->md;
1967 
1968 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
1969 		dm_requeue_original_request(md, rq);
1970 }
1971 
1972 static void dm_start_request(struct mapped_device *md, struct request *orig)
1973 {
1974 	if (!orig->q->mq_ops)
1975 		blk_start_request(orig);
1976 	else
1977 		blk_mq_start_request(orig);
1978 	atomic_inc(&md->pending[rq_data_dir(orig)]);
1979 
1980 	if (md->seq_rq_merge_deadline_usecs) {
1981 		md->last_rq_pos = rq_end_sector(orig);
1982 		md->last_rq_rw = rq_data_dir(orig);
1983 		md->last_rq_start_time = ktime_get();
1984 	}
1985 
1986 	if (unlikely(dm_stats_used(&md->stats))) {
1987 		struct dm_rq_target_io *tio = tio_from_request(orig);
1988 		tio->duration_jiffies = jiffies;
1989 		tio->n_sectors = blk_rq_sectors(orig);
1990 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1991 				    tio->n_sectors, false, 0, &tio->stats_aux);
1992 	}
1993 
1994 	/*
1995 	 * Hold the md reference here for the in-flight I/O.
1996 	 * We can't rely on the reference count by device opener,
1997 	 * because the device may be closed during the request completion
1998 	 * when all bios are completed.
1999 	 * See the comment in rq_completed() too.
2000 	 */
2001 	dm_get(md);
2002 }
2003 
2004 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2005 
2006 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2007 {
2008 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2009 }
2010 
2011 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2012 						     const char *buf, size_t count)
2013 {
2014 	unsigned deadline;
2015 
2016 	if (!dm_request_based(md) || md->use_blk_mq)
2017 		return count;
2018 
2019 	if (kstrtouint(buf, 10, &deadline))
2020 		return -EINVAL;
2021 
2022 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2023 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2024 
2025 	md->seq_rq_merge_deadline_usecs = deadline;
2026 
2027 	return count;
2028 }
2029 
2030 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2031 {
2032 	ktime_t kt_deadline;
2033 
2034 	if (!md->seq_rq_merge_deadline_usecs)
2035 		return false;
2036 
2037 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2038 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2039 
2040 	return !ktime_after(ktime_get(), kt_deadline);
2041 }
2042 
2043 /*
2044  * q->request_fn for request-based dm.
2045  * Called with the queue lock held.
2046  */
2047 static void dm_request_fn(struct request_queue *q)
2048 {
2049 	struct mapped_device *md = q->queuedata;
2050 	int srcu_idx;
2051 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2052 	struct dm_target *ti;
2053 	struct request *rq;
2054 	struct dm_rq_target_io *tio;
2055 	sector_t pos;
2056 
2057 	/*
2058 	 * For suspend, check blk_queue_stopped() and increment
2059 	 * ->pending within a single queue_lock not to increment the
2060 	 * number of in-flight I/Os after the queue is stopped in
2061 	 * dm_suspend().
2062 	 */
2063 	while (!blk_queue_stopped(q)) {
2064 		rq = blk_peek_request(q);
2065 		if (!rq)
2066 			goto out;
2067 
2068 		/* always use block 0 to find the target for flushes for now */
2069 		pos = 0;
2070 		if (!(rq->cmd_flags & REQ_FLUSH))
2071 			pos = blk_rq_pos(rq);
2072 
2073 		ti = dm_table_find_target(map, pos);
2074 		if (!dm_target_is_valid(ti)) {
2075 			/*
2076 			 * Must perform setup, that rq_completed() requires,
2077 			 * before calling dm_kill_unmapped_request
2078 			 */
2079 			DMERR_LIMIT("request attempted access beyond the end of device");
2080 			dm_start_request(md, rq);
2081 			dm_kill_unmapped_request(rq, -EIO);
2082 			continue;
2083 		}
2084 
2085 		if (dm_request_peeked_before_merge_deadline(md) &&
2086 		    md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2087 		    md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2088 			goto delay_and_out;
2089 
2090 		if (ti->type->busy && ti->type->busy(ti))
2091 			goto delay_and_out;
2092 
2093 		dm_start_request(md, rq);
2094 
2095 		tio = tio_from_request(rq);
2096 		/* Establish tio->ti before queuing work (map_tio_request) */
2097 		tio->ti = ti;
2098 		queue_kthread_work(&md->kworker, &tio->work);
2099 		BUG_ON(!irqs_disabled());
2100 	}
2101 
2102 	goto out;
2103 
2104 delay_and_out:
2105 	blk_delay_queue(q, HZ / 100);
2106 out:
2107 	dm_put_live_table(md, srcu_idx);
2108 }
2109 
2110 static int dm_any_congested(void *congested_data, int bdi_bits)
2111 {
2112 	int r = bdi_bits;
2113 	struct mapped_device *md = congested_data;
2114 	struct dm_table *map;
2115 
2116 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2117 		map = dm_get_live_table_fast(md);
2118 		if (map) {
2119 			/*
2120 			 * Request-based dm cares about only own queue for
2121 			 * the query about congestion status of request_queue
2122 			 */
2123 			if (dm_request_based(md))
2124 				r = md->queue->backing_dev_info.wb.state &
2125 				    bdi_bits;
2126 			else
2127 				r = dm_table_any_congested(map, bdi_bits);
2128 		}
2129 		dm_put_live_table_fast(md);
2130 	}
2131 
2132 	return r;
2133 }
2134 
2135 /*-----------------------------------------------------------------
2136  * An IDR is used to keep track of allocated minor numbers.
2137  *---------------------------------------------------------------*/
2138 static void free_minor(int minor)
2139 {
2140 	spin_lock(&_minor_lock);
2141 	idr_remove(&_minor_idr, minor);
2142 	spin_unlock(&_minor_lock);
2143 }
2144 
2145 /*
2146  * See if the device with a specific minor # is free.
2147  */
2148 static int specific_minor(int minor)
2149 {
2150 	int r;
2151 
2152 	if (minor >= (1 << MINORBITS))
2153 		return -EINVAL;
2154 
2155 	idr_preload(GFP_KERNEL);
2156 	spin_lock(&_minor_lock);
2157 
2158 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2159 
2160 	spin_unlock(&_minor_lock);
2161 	idr_preload_end();
2162 	if (r < 0)
2163 		return r == -ENOSPC ? -EBUSY : r;
2164 	return 0;
2165 }
2166 
2167 static int next_free_minor(int *minor)
2168 {
2169 	int r;
2170 
2171 	idr_preload(GFP_KERNEL);
2172 	spin_lock(&_minor_lock);
2173 
2174 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2175 
2176 	spin_unlock(&_minor_lock);
2177 	idr_preload_end();
2178 	if (r < 0)
2179 		return r;
2180 	*minor = r;
2181 	return 0;
2182 }
2183 
2184 static const struct block_device_operations dm_blk_dops;
2185 
2186 static void dm_wq_work(struct work_struct *work);
2187 
2188 static void dm_init_md_queue(struct mapped_device *md)
2189 {
2190 	/*
2191 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2192 	 * devices.  The type of this dm device may not have been decided yet.
2193 	 * The type is decided at the first table loading time.
2194 	 * To prevent problematic device stacking, clear the queue flag
2195 	 * for request stacking support until then.
2196 	 *
2197 	 * This queue is new, so no concurrency on the queue_flags.
2198 	 */
2199 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2200 }
2201 
2202 static void dm_init_old_md_queue(struct mapped_device *md)
2203 {
2204 	md->use_blk_mq = false;
2205 	dm_init_md_queue(md);
2206 
2207 	/*
2208 	 * Initialize aspects of queue that aren't relevant for blk-mq
2209 	 */
2210 	md->queue->queuedata = md;
2211 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2212 	md->queue->backing_dev_info.congested_data = md;
2213 
2214 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2215 }
2216 
2217 static void cleanup_mapped_device(struct mapped_device *md)
2218 {
2219 	if (md->wq)
2220 		destroy_workqueue(md->wq);
2221 	if (md->kworker_task)
2222 		kthread_stop(md->kworker_task);
2223 	if (md->io_pool)
2224 		mempool_destroy(md->io_pool);
2225 	if (md->rq_pool)
2226 		mempool_destroy(md->rq_pool);
2227 	if (md->bs)
2228 		bioset_free(md->bs);
2229 
2230 	cleanup_srcu_struct(&md->io_barrier);
2231 
2232 	if (md->disk) {
2233 		spin_lock(&_minor_lock);
2234 		md->disk->private_data = NULL;
2235 		spin_unlock(&_minor_lock);
2236 		if (blk_get_integrity(md->disk))
2237 			blk_integrity_unregister(md->disk);
2238 		del_gendisk(md->disk);
2239 		put_disk(md->disk);
2240 	}
2241 
2242 	if (md->queue)
2243 		blk_cleanup_queue(md->queue);
2244 
2245 	if (md->bdev) {
2246 		bdput(md->bdev);
2247 		md->bdev = NULL;
2248 	}
2249 }
2250 
2251 /*
2252  * Allocate and initialise a blank device with a given minor.
2253  */
2254 static struct mapped_device *alloc_dev(int minor)
2255 {
2256 	int r;
2257 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2258 	void *old_md;
2259 
2260 	if (!md) {
2261 		DMWARN("unable to allocate device, out of memory.");
2262 		return NULL;
2263 	}
2264 
2265 	if (!try_module_get(THIS_MODULE))
2266 		goto bad_module_get;
2267 
2268 	/* get a minor number for the dev */
2269 	if (minor == DM_ANY_MINOR)
2270 		r = next_free_minor(&minor);
2271 	else
2272 		r = specific_minor(minor);
2273 	if (r < 0)
2274 		goto bad_minor;
2275 
2276 	r = init_srcu_struct(&md->io_barrier);
2277 	if (r < 0)
2278 		goto bad_io_barrier;
2279 
2280 	md->use_blk_mq = use_blk_mq;
2281 	md->type = DM_TYPE_NONE;
2282 	mutex_init(&md->suspend_lock);
2283 	mutex_init(&md->type_lock);
2284 	mutex_init(&md->table_devices_lock);
2285 	spin_lock_init(&md->deferred_lock);
2286 	atomic_set(&md->holders, 1);
2287 	atomic_set(&md->open_count, 0);
2288 	atomic_set(&md->event_nr, 0);
2289 	atomic_set(&md->uevent_seq, 0);
2290 	INIT_LIST_HEAD(&md->uevent_list);
2291 	INIT_LIST_HEAD(&md->table_devices);
2292 	spin_lock_init(&md->uevent_lock);
2293 
2294 	md->queue = blk_alloc_queue(GFP_KERNEL);
2295 	if (!md->queue)
2296 		goto bad;
2297 
2298 	dm_init_md_queue(md);
2299 
2300 	md->disk = alloc_disk(1);
2301 	if (!md->disk)
2302 		goto bad;
2303 
2304 	atomic_set(&md->pending[0], 0);
2305 	atomic_set(&md->pending[1], 0);
2306 	init_waitqueue_head(&md->wait);
2307 	INIT_WORK(&md->work, dm_wq_work);
2308 	init_waitqueue_head(&md->eventq);
2309 	init_completion(&md->kobj_holder.completion);
2310 	md->kworker_task = NULL;
2311 
2312 	md->disk->major = _major;
2313 	md->disk->first_minor = minor;
2314 	md->disk->fops = &dm_blk_dops;
2315 	md->disk->queue = md->queue;
2316 	md->disk->private_data = md;
2317 	sprintf(md->disk->disk_name, "dm-%d", minor);
2318 	add_disk(md->disk);
2319 	format_dev_t(md->name, MKDEV(_major, minor));
2320 
2321 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2322 	if (!md->wq)
2323 		goto bad;
2324 
2325 	md->bdev = bdget_disk(md->disk, 0);
2326 	if (!md->bdev)
2327 		goto bad;
2328 
2329 	bio_init(&md->flush_bio);
2330 	md->flush_bio.bi_bdev = md->bdev;
2331 	md->flush_bio.bi_rw = WRITE_FLUSH;
2332 
2333 	dm_stats_init(&md->stats);
2334 
2335 	/* Populate the mapping, nobody knows we exist yet */
2336 	spin_lock(&_minor_lock);
2337 	old_md = idr_replace(&_minor_idr, md, minor);
2338 	spin_unlock(&_minor_lock);
2339 
2340 	BUG_ON(old_md != MINOR_ALLOCED);
2341 
2342 	return md;
2343 
2344 bad:
2345 	cleanup_mapped_device(md);
2346 bad_io_barrier:
2347 	free_minor(minor);
2348 bad_minor:
2349 	module_put(THIS_MODULE);
2350 bad_module_get:
2351 	kfree(md);
2352 	return NULL;
2353 }
2354 
2355 static void unlock_fs(struct mapped_device *md);
2356 
2357 static void free_dev(struct mapped_device *md)
2358 {
2359 	int minor = MINOR(disk_devt(md->disk));
2360 
2361 	unlock_fs(md);
2362 
2363 	cleanup_mapped_device(md);
2364 	if (md->use_blk_mq)
2365 		blk_mq_free_tag_set(&md->tag_set);
2366 
2367 	free_table_devices(&md->table_devices);
2368 	dm_stats_cleanup(&md->stats);
2369 	free_minor(minor);
2370 
2371 	module_put(THIS_MODULE);
2372 	kfree(md);
2373 }
2374 
2375 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2376 {
2377 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2378 
2379 	if (md->bs) {
2380 		/* The md already has necessary mempools. */
2381 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2382 			/*
2383 			 * Reload bioset because front_pad may have changed
2384 			 * because a different table was loaded.
2385 			 */
2386 			bioset_free(md->bs);
2387 			md->bs = p->bs;
2388 			p->bs = NULL;
2389 		}
2390 		/*
2391 		 * There's no need to reload with request-based dm
2392 		 * because the size of front_pad doesn't change.
2393 		 * Note for future: If you are to reload bioset,
2394 		 * prep-ed requests in the queue may refer
2395 		 * to bio from the old bioset, so you must walk
2396 		 * through the queue to unprep.
2397 		 */
2398 		goto out;
2399 	}
2400 
2401 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2402 
2403 	md->io_pool = p->io_pool;
2404 	p->io_pool = NULL;
2405 	md->rq_pool = p->rq_pool;
2406 	p->rq_pool = NULL;
2407 	md->bs = p->bs;
2408 	p->bs = NULL;
2409 
2410 out:
2411 	/* mempool bind completed, no longer need any mempools in the table */
2412 	dm_table_free_md_mempools(t);
2413 }
2414 
2415 /*
2416  * Bind a table to the device.
2417  */
2418 static void event_callback(void *context)
2419 {
2420 	unsigned long flags;
2421 	LIST_HEAD(uevents);
2422 	struct mapped_device *md = (struct mapped_device *) context;
2423 
2424 	spin_lock_irqsave(&md->uevent_lock, flags);
2425 	list_splice_init(&md->uevent_list, &uevents);
2426 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2427 
2428 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2429 
2430 	atomic_inc(&md->event_nr);
2431 	wake_up(&md->eventq);
2432 }
2433 
2434 /*
2435  * Protected by md->suspend_lock obtained by dm_swap_table().
2436  */
2437 static void __set_size(struct mapped_device *md, sector_t size)
2438 {
2439 	set_capacity(md->disk, size);
2440 
2441 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2442 }
2443 
2444 /*
2445  * Returns old map, which caller must destroy.
2446  */
2447 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2448 			       struct queue_limits *limits)
2449 {
2450 	struct dm_table *old_map;
2451 	struct request_queue *q = md->queue;
2452 	sector_t size;
2453 
2454 	size = dm_table_get_size(t);
2455 
2456 	/*
2457 	 * Wipe any geometry if the size of the table changed.
2458 	 */
2459 	if (size != dm_get_size(md))
2460 		memset(&md->geometry, 0, sizeof(md->geometry));
2461 
2462 	__set_size(md, size);
2463 
2464 	dm_table_event_callback(t, event_callback, md);
2465 
2466 	/*
2467 	 * The queue hasn't been stopped yet, if the old table type wasn't
2468 	 * for request-based during suspension.  So stop it to prevent
2469 	 * I/O mapping before resume.
2470 	 * This must be done before setting the queue restrictions,
2471 	 * because request-based dm may be run just after the setting.
2472 	 */
2473 	if (dm_table_request_based(t))
2474 		stop_queue(q);
2475 
2476 	__bind_mempools(md, t);
2477 
2478 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2479 	rcu_assign_pointer(md->map, t);
2480 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2481 
2482 	dm_table_set_restrictions(t, q, limits);
2483 	if (old_map)
2484 		dm_sync_table(md);
2485 
2486 	return old_map;
2487 }
2488 
2489 /*
2490  * Returns unbound table for the caller to free.
2491  */
2492 static struct dm_table *__unbind(struct mapped_device *md)
2493 {
2494 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2495 
2496 	if (!map)
2497 		return NULL;
2498 
2499 	dm_table_event_callback(map, NULL, NULL);
2500 	RCU_INIT_POINTER(md->map, NULL);
2501 	dm_sync_table(md);
2502 
2503 	return map;
2504 }
2505 
2506 /*
2507  * Constructor for a new device.
2508  */
2509 int dm_create(int minor, struct mapped_device **result)
2510 {
2511 	struct mapped_device *md;
2512 
2513 	md = alloc_dev(minor);
2514 	if (!md)
2515 		return -ENXIO;
2516 
2517 	dm_sysfs_init(md);
2518 
2519 	*result = md;
2520 	return 0;
2521 }
2522 
2523 /*
2524  * Functions to manage md->type.
2525  * All are required to hold md->type_lock.
2526  */
2527 void dm_lock_md_type(struct mapped_device *md)
2528 {
2529 	mutex_lock(&md->type_lock);
2530 }
2531 
2532 void dm_unlock_md_type(struct mapped_device *md)
2533 {
2534 	mutex_unlock(&md->type_lock);
2535 }
2536 
2537 void dm_set_md_type(struct mapped_device *md, unsigned type)
2538 {
2539 	BUG_ON(!mutex_is_locked(&md->type_lock));
2540 	md->type = type;
2541 }
2542 
2543 unsigned dm_get_md_type(struct mapped_device *md)
2544 {
2545 	BUG_ON(!mutex_is_locked(&md->type_lock));
2546 	return md->type;
2547 }
2548 
2549 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2550 {
2551 	return md->immutable_target_type;
2552 }
2553 
2554 /*
2555  * The queue_limits are only valid as long as you have a reference
2556  * count on 'md'.
2557  */
2558 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2559 {
2560 	BUG_ON(!atomic_read(&md->holders));
2561 	return &md->queue->limits;
2562 }
2563 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2564 
2565 static void init_rq_based_worker_thread(struct mapped_device *md)
2566 {
2567 	/* Initialize the request-based DM worker thread */
2568 	init_kthread_worker(&md->kworker);
2569 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2570 				       "kdmwork-%s", dm_device_name(md));
2571 }
2572 
2573 /*
2574  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2575  */
2576 static int dm_init_request_based_queue(struct mapped_device *md)
2577 {
2578 	struct request_queue *q = NULL;
2579 
2580 	/* Fully initialize the queue */
2581 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2582 	if (!q)
2583 		return -EINVAL;
2584 
2585 	/* disable dm_request_fn's merge heuristic by default */
2586 	md->seq_rq_merge_deadline_usecs = 0;
2587 
2588 	md->queue = q;
2589 	dm_init_old_md_queue(md);
2590 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2591 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2592 
2593 	init_rq_based_worker_thread(md);
2594 
2595 	elv_register_queue(md->queue);
2596 
2597 	return 0;
2598 }
2599 
2600 static int dm_mq_init_request(void *data, struct request *rq,
2601 			      unsigned int hctx_idx, unsigned int request_idx,
2602 			      unsigned int numa_node)
2603 {
2604 	struct mapped_device *md = data;
2605 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2606 
2607 	/*
2608 	 * Must initialize md member of tio, otherwise it won't
2609 	 * be available in dm_mq_queue_rq.
2610 	 */
2611 	tio->md = md;
2612 
2613 	return 0;
2614 }
2615 
2616 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2617 			  const struct blk_mq_queue_data *bd)
2618 {
2619 	struct request *rq = bd->rq;
2620 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2621 	struct mapped_device *md = tio->md;
2622 	int srcu_idx;
2623 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2624 	struct dm_target *ti;
2625 	sector_t pos;
2626 
2627 	/* always use block 0 to find the target for flushes for now */
2628 	pos = 0;
2629 	if (!(rq->cmd_flags & REQ_FLUSH))
2630 		pos = blk_rq_pos(rq);
2631 
2632 	ti = dm_table_find_target(map, pos);
2633 	if (!dm_target_is_valid(ti)) {
2634 		dm_put_live_table(md, srcu_idx);
2635 		DMERR_LIMIT("request attempted access beyond the end of device");
2636 		/*
2637 		 * Must perform setup, that rq_completed() requires,
2638 		 * before returning BLK_MQ_RQ_QUEUE_ERROR
2639 		 */
2640 		dm_start_request(md, rq);
2641 		return BLK_MQ_RQ_QUEUE_ERROR;
2642 	}
2643 	dm_put_live_table(md, srcu_idx);
2644 
2645 	if (ti->type->busy && ti->type->busy(ti))
2646 		return BLK_MQ_RQ_QUEUE_BUSY;
2647 
2648 	dm_start_request(md, rq);
2649 
2650 	/* Init tio using md established in .init_request */
2651 	init_tio(tio, rq, md);
2652 
2653 	/*
2654 	 * Establish tio->ti before queuing work (map_tio_request)
2655 	 * or making direct call to map_request().
2656 	 */
2657 	tio->ti = ti;
2658 
2659 	/* Clone the request if underlying devices aren't blk-mq */
2660 	if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2661 		/* clone request is allocated at the end of the pdu */
2662 		tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2663 		(void) clone_rq(rq, md, tio, GFP_ATOMIC);
2664 		queue_kthread_work(&md->kworker, &tio->work);
2665 	} else {
2666 		/* Direct call is fine since .queue_rq allows allocations */
2667 		if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2668 			/* Undo dm_start_request() before requeuing */
2669 			rq_end_stats(md, rq);
2670 			rq_completed(md, rq_data_dir(rq), false);
2671 			return BLK_MQ_RQ_QUEUE_BUSY;
2672 		}
2673 	}
2674 
2675 	return BLK_MQ_RQ_QUEUE_OK;
2676 }
2677 
2678 static struct blk_mq_ops dm_mq_ops = {
2679 	.queue_rq = dm_mq_queue_rq,
2680 	.map_queue = blk_mq_map_queue,
2681 	.complete = dm_softirq_done,
2682 	.init_request = dm_mq_init_request,
2683 };
2684 
2685 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2686 {
2687 	unsigned md_type = dm_get_md_type(md);
2688 	struct request_queue *q;
2689 	int err;
2690 
2691 	memset(&md->tag_set, 0, sizeof(md->tag_set));
2692 	md->tag_set.ops = &dm_mq_ops;
2693 	md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2694 	md->tag_set.numa_node = NUMA_NO_NODE;
2695 	md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2696 	md->tag_set.nr_hw_queues = 1;
2697 	if (md_type == DM_TYPE_REQUEST_BASED) {
2698 		/* make the memory for non-blk-mq clone part of the pdu */
2699 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2700 	} else
2701 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2702 	md->tag_set.driver_data = md;
2703 
2704 	err = blk_mq_alloc_tag_set(&md->tag_set);
2705 	if (err)
2706 		return err;
2707 
2708 	q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2709 	if (IS_ERR(q)) {
2710 		err = PTR_ERR(q);
2711 		goto out_tag_set;
2712 	}
2713 	md->queue = q;
2714 	dm_init_md_queue(md);
2715 
2716 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2717 	blk_mq_register_disk(md->disk);
2718 
2719 	if (md_type == DM_TYPE_REQUEST_BASED)
2720 		init_rq_based_worker_thread(md);
2721 
2722 	return 0;
2723 
2724 out_tag_set:
2725 	blk_mq_free_tag_set(&md->tag_set);
2726 	return err;
2727 }
2728 
2729 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2730 {
2731 	if (type == DM_TYPE_BIO_BASED)
2732 		return type;
2733 
2734 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2735 }
2736 
2737 /*
2738  * Setup the DM device's queue based on md's type
2739  */
2740 int dm_setup_md_queue(struct mapped_device *md)
2741 {
2742 	int r;
2743 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2744 
2745 	switch (md_type) {
2746 	case DM_TYPE_REQUEST_BASED:
2747 		r = dm_init_request_based_queue(md);
2748 		if (r) {
2749 			DMWARN("Cannot initialize queue for request-based mapped device");
2750 			return r;
2751 		}
2752 		break;
2753 	case DM_TYPE_MQ_REQUEST_BASED:
2754 		r = dm_init_request_based_blk_mq_queue(md);
2755 		if (r) {
2756 			DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2757 			return r;
2758 		}
2759 		break;
2760 	case DM_TYPE_BIO_BASED:
2761 		dm_init_old_md_queue(md);
2762 		blk_queue_make_request(md->queue, dm_make_request);
2763 		break;
2764 	}
2765 
2766 	return 0;
2767 }
2768 
2769 struct mapped_device *dm_get_md(dev_t dev)
2770 {
2771 	struct mapped_device *md;
2772 	unsigned minor = MINOR(dev);
2773 
2774 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2775 		return NULL;
2776 
2777 	spin_lock(&_minor_lock);
2778 
2779 	md = idr_find(&_minor_idr, minor);
2780 	if (md) {
2781 		if ((md == MINOR_ALLOCED ||
2782 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2783 		     dm_deleting_md(md) ||
2784 		     test_bit(DMF_FREEING, &md->flags))) {
2785 			md = NULL;
2786 			goto out;
2787 		}
2788 		dm_get(md);
2789 	}
2790 
2791 out:
2792 	spin_unlock(&_minor_lock);
2793 
2794 	return md;
2795 }
2796 EXPORT_SYMBOL_GPL(dm_get_md);
2797 
2798 void *dm_get_mdptr(struct mapped_device *md)
2799 {
2800 	return md->interface_ptr;
2801 }
2802 
2803 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2804 {
2805 	md->interface_ptr = ptr;
2806 }
2807 
2808 void dm_get(struct mapped_device *md)
2809 {
2810 	atomic_inc(&md->holders);
2811 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2812 }
2813 
2814 int dm_hold(struct mapped_device *md)
2815 {
2816 	spin_lock(&_minor_lock);
2817 	if (test_bit(DMF_FREEING, &md->flags)) {
2818 		spin_unlock(&_minor_lock);
2819 		return -EBUSY;
2820 	}
2821 	dm_get(md);
2822 	spin_unlock(&_minor_lock);
2823 	return 0;
2824 }
2825 EXPORT_SYMBOL_GPL(dm_hold);
2826 
2827 const char *dm_device_name(struct mapped_device *md)
2828 {
2829 	return md->name;
2830 }
2831 EXPORT_SYMBOL_GPL(dm_device_name);
2832 
2833 static void __dm_destroy(struct mapped_device *md, bool wait)
2834 {
2835 	struct dm_table *map;
2836 	int srcu_idx;
2837 
2838 	might_sleep();
2839 
2840 	map = dm_get_live_table(md, &srcu_idx);
2841 
2842 	spin_lock(&_minor_lock);
2843 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2844 	set_bit(DMF_FREEING, &md->flags);
2845 	spin_unlock(&_minor_lock);
2846 
2847 	if (dm_request_based(md) && md->kworker_task)
2848 		flush_kthread_worker(&md->kworker);
2849 
2850 	/*
2851 	 * Take suspend_lock so that presuspend and postsuspend methods
2852 	 * do not race with internal suspend.
2853 	 */
2854 	mutex_lock(&md->suspend_lock);
2855 	if (!dm_suspended_md(md)) {
2856 		dm_table_presuspend_targets(map);
2857 		dm_table_postsuspend_targets(map);
2858 	}
2859 	mutex_unlock(&md->suspend_lock);
2860 
2861 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2862 	dm_put_live_table(md, srcu_idx);
2863 
2864 	/*
2865 	 * Rare, but there may be I/O requests still going to complete,
2866 	 * for example.  Wait for all references to disappear.
2867 	 * No one should increment the reference count of the mapped_device,
2868 	 * after the mapped_device state becomes DMF_FREEING.
2869 	 */
2870 	if (wait)
2871 		while (atomic_read(&md->holders))
2872 			msleep(1);
2873 	else if (atomic_read(&md->holders))
2874 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2875 		       dm_device_name(md), atomic_read(&md->holders));
2876 
2877 	dm_sysfs_exit(md);
2878 	dm_table_destroy(__unbind(md));
2879 	free_dev(md);
2880 }
2881 
2882 void dm_destroy(struct mapped_device *md)
2883 {
2884 	__dm_destroy(md, true);
2885 }
2886 
2887 void dm_destroy_immediate(struct mapped_device *md)
2888 {
2889 	__dm_destroy(md, false);
2890 }
2891 
2892 void dm_put(struct mapped_device *md)
2893 {
2894 	atomic_dec(&md->holders);
2895 }
2896 EXPORT_SYMBOL_GPL(dm_put);
2897 
2898 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2899 {
2900 	int r = 0;
2901 	DECLARE_WAITQUEUE(wait, current);
2902 
2903 	add_wait_queue(&md->wait, &wait);
2904 
2905 	while (1) {
2906 		set_current_state(interruptible);
2907 
2908 		if (!md_in_flight(md))
2909 			break;
2910 
2911 		if (interruptible == TASK_INTERRUPTIBLE &&
2912 		    signal_pending(current)) {
2913 			r = -EINTR;
2914 			break;
2915 		}
2916 
2917 		io_schedule();
2918 	}
2919 	set_current_state(TASK_RUNNING);
2920 
2921 	remove_wait_queue(&md->wait, &wait);
2922 
2923 	return r;
2924 }
2925 
2926 /*
2927  * Process the deferred bios
2928  */
2929 static void dm_wq_work(struct work_struct *work)
2930 {
2931 	struct mapped_device *md = container_of(work, struct mapped_device,
2932 						work);
2933 	struct bio *c;
2934 	int srcu_idx;
2935 	struct dm_table *map;
2936 
2937 	map = dm_get_live_table(md, &srcu_idx);
2938 
2939 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2940 		spin_lock_irq(&md->deferred_lock);
2941 		c = bio_list_pop(&md->deferred);
2942 		spin_unlock_irq(&md->deferred_lock);
2943 
2944 		if (!c)
2945 			break;
2946 
2947 		if (dm_request_based(md))
2948 			generic_make_request(c);
2949 		else
2950 			__split_and_process_bio(md, map, c);
2951 	}
2952 
2953 	dm_put_live_table(md, srcu_idx);
2954 }
2955 
2956 static void dm_queue_flush(struct mapped_device *md)
2957 {
2958 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2959 	smp_mb__after_atomic();
2960 	queue_work(md->wq, &md->work);
2961 }
2962 
2963 /*
2964  * Swap in a new table, returning the old one for the caller to destroy.
2965  */
2966 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2967 {
2968 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2969 	struct queue_limits limits;
2970 	int r;
2971 
2972 	mutex_lock(&md->suspend_lock);
2973 
2974 	/* device must be suspended */
2975 	if (!dm_suspended_md(md))
2976 		goto out;
2977 
2978 	/*
2979 	 * If the new table has no data devices, retain the existing limits.
2980 	 * This helps multipath with queue_if_no_path if all paths disappear,
2981 	 * then new I/O is queued based on these limits, and then some paths
2982 	 * reappear.
2983 	 */
2984 	if (dm_table_has_no_data_devices(table)) {
2985 		live_map = dm_get_live_table_fast(md);
2986 		if (live_map)
2987 			limits = md->queue->limits;
2988 		dm_put_live_table_fast(md);
2989 	}
2990 
2991 	if (!live_map) {
2992 		r = dm_calculate_queue_limits(table, &limits);
2993 		if (r) {
2994 			map = ERR_PTR(r);
2995 			goto out;
2996 		}
2997 	}
2998 
2999 	map = __bind(md, table, &limits);
3000 
3001 out:
3002 	mutex_unlock(&md->suspend_lock);
3003 	return map;
3004 }
3005 
3006 /*
3007  * Functions to lock and unlock any filesystem running on the
3008  * device.
3009  */
3010 static int lock_fs(struct mapped_device *md)
3011 {
3012 	int r;
3013 
3014 	WARN_ON(md->frozen_sb);
3015 
3016 	md->frozen_sb = freeze_bdev(md->bdev);
3017 	if (IS_ERR(md->frozen_sb)) {
3018 		r = PTR_ERR(md->frozen_sb);
3019 		md->frozen_sb = NULL;
3020 		return r;
3021 	}
3022 
3023 	set_bit(DMF_FROZEN, &md->flags);
3024 
3025 	return 0;
3026 }
3027 
3028 static void unlock_fs(struct mapped_device *md)
3029 {
3030 	if (!test_bit(DMF_FROZEN, &md->flags))
3031 		return;
3032 
3033 	thaw_bdev(md->bdev, md->frozen_sb);
3034 	md->frozen_sb = NULL;
3035 	clear_bit(DMF_FROZEN, &md->flags);
3036 }
3037 
3038 /*
3039  * If __dm_suspend returns 0, the device is completely quiescent
3040  * now. There is no request-processing activity. All new requests
3041  * are being added to md->deferred list.
3042  *
3043  * Caller must hold md->suspend_lock
3044  */
3045 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3046 			unsigned suspend_flags, int interruptible)
3047 {
3048 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3049 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3050 	int r;
3051 
3052 	/*
3053 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3054 	 * This flag is cleared before dm_suspend returns.
3055 	 */
3056 	if (noflush)
3057 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3058 
3059 	/*
3060 	 * This gets reverted if there's an error later and the targets
3061 	 * provide the .presuspend_undo hook.
3062 	 */
3063 	dm_table_presuspend_targets(map);
3064 
3065 	/*
3066 	 * Flush I/O to the device.
3067 	 * Any I/O submitted after lock_fs() may not be flushed.
3068 	 * noflush takes precedence over do_lockfs.
3069 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3070 	 */
3071 	if (!noflush && do_lockfs) {
3072 		r = lock_fs(md);
3073 		if (r) {
3074 			dm_table_presuspend_undo_targets(map);
3075 			return r;
3076 		}
3077 	}
3078 
3079 	/*
3080 	 * Here we must make sure that no processes are submitting requests
3081 	 * to target drivers i.e. no one may be executing
3082 	 * __split_and_process_bio. This is called from dm_request and
3083 	 * dm_wq_work.
3084 	 *
3085 	 * To get all processes out of __split_and_process_bio in dm_request,
3086 	 * we take the write lock. To prevent any process from reentering
3087 	 * __split_and_process_bio from dm_request and quiesce the thread
3088 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3089 	 * flush_workqueue(md->wq).
3090 	 */
3091 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3092 	if (map)
3093 		synchronize_srcu(&md->io_barrier);
3094 
3095 	/*
3096 	 * Stop md->queue before flushing md->wq in case request-based
3097 	 * dm defers requests to md->wq from md->queue.
3098 	 */
3099 	if (dm_request_based(md)) {
3100 		stop_queue(md->queue);
3101 		if (md->kworker_task)
3102 			flush_kthread_worker(&md->kworker);
3103 	}
3104 
3105 	flush_workqueue(md->wq);
3106 
3107 	/*
3108 	 * At this point no more requests are entering target request routines.
3109 	 * We call dm_wait_for_completion to wait for all existing requests
3110 	 * to finish.
3111 	 */
3112 	r = dm_wait_for_completion(md, interruptible);
3113 
3114 	if (noflush)
3115 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3116 	if (map)
3117 		synchronize_srcu(&md->io_barrier);
3118 
3119 	/* were we interrupted ? */
3120 	if (r < 0) {
3121 		dm_queue_flush(md);
3122 
3123 		if (dm_request_based(md))
3124 			start_queue(md->queue);
3125 
3126 		unlock_fs(md);
3127 		dm_table_presuspend_undo_targets(map);
3128 		/* pushback list is already flushed, so skip flush */
3129 	}
3130 
3131 	return r;
3132 }
3133 
3134 /*
3135  * We need to be able to change a mapping table under a mounted
3136  * filesystem.  For example we might want to move some data in
3137  * the background.  Before the table can be swapped with
3138  * dm_bind_table, dm_suspend must be called to flush any in
3139  * flight bios and ensure that any further io gets deferred.
3140  */
3141 /*
3142  * Suspend mechanism in request-based dm.
3143  *
3144  * 1. Flush all I/Os by lock_fs() if needed.
3145  * 2. Stop dispatching any I/O by stopping the request_queue.
3146  * 3. Wait for all in-flight I/Os to be completed or requeued.
3147  *
3148  * To abort suspend, start the request_queue.
3149  */
3150 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3151 {
3152 	struct dm_table *map = NULL;
3153 	int r = 0;
3154 
3155 retry:
3156 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3157 
3158 	if (dm_suspended_md(md)) {
3159 		r = -EINVAL;
3160 		goto out_unlock;
3161 	}
3162 
3163 	if (dm_suspended_internally_md(md)) {
3164 		/* already internally suspended, wait for internal resume */
3165 		mutex_unlock(&md->suspend_lock);
3166 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3167 		if (r)
3168 			return r;
3169 		goto retry;
3170 	}
3171 
3172 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3173 
3174 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3175 	if (r)
3176 		goto out_unlock;
3177 
3178 	set_bit(DMF_SUSPENDED, &md->flags);
3179 
3180 	dm_table_postsuspend_targets(map);
3181 
3182 out_unlock:
3183 	mutex_unlock(&md->suspend_lock);
3184 	return r;
3185 }
3186 
3187 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3188 {
3189 	if (map) {
3190 		int r = dm_table_resume_targets(map);
3191 		if (r)
3192 			return r;
3193 	}
3194 
3195 	dm_queue_flush(md);
3196 
3197 	/*
3198 	 * Flushing deferred I/Os must be done after targets are resumed
3199 	 * so that mapping of targets can work correctly.
3200 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3201 	 */
3202 	if (dm_request_based(md))
3203 		start_queue(md->queue);
3204 
3205 	unlock_fs(md);
3206 
3207 	return 0;
3208 }
3209 
3210 int dm_resume(struct mapped_device *md)
3211 {
3212 	int r = -EINVAL;
3213 	struct dm_table *map = NULL;
3214 
3215 retry:
3216 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3217 
3218 	if (!dm_suspended_md(md))
3219 		goto out;
3220 
3221 	if (dm_suspended_internally_md(md)) {
3222 		/* already internally suspended, wait for internal resume */
3223 		mutex_unlock(&md->suspend_lock);
3224 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3225 		if (r)
3226 			return r;
3227 		goto retry;
3228 	}
3229 
3230 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3231 	if (!map || !dm_table_get_size(map))
3232 		goto out;
3233 
3234 	r = __dm_resume(md, map);
3235 	if (r)
3236 		goto out;
3237 
3238 	clear_bit(DMF_SUSPENDED, &md->flags);
3239 
3240 	r = 0;
3241 out:
3242 	mutex_unlock(&md->suspend_lock);
3243 
3244 	return r;
3245 }
3246 
3247 /*
3248  * Internal suspend/resume works like userspace-driven suspend. It waits
3249  * until all bios finish and prevents issuing new bios to the target drivers.
3250  * It may be used only from the kernel.
3251  */
3252 
3253 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3254 {
3255 	struct dm_table *map = NULL;
3256 
3257 	if (md->internal_suspend_count++)
3258 		return; /* nested internal suspend */
3259 
3260 	if (dm_suspended_md(md)) {
3261 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3262 		return; /* nest suspend */
3263 	}
3264 
3265 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3266 
3267 	/*
3268 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3269 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3270 	 * would require changing .presuspend to return an error -- avoid this
3271 	 * until there is a need for more elaborate variants of internal suspend.
3272 	 */
3273 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3274 
3275 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3276 
3277 	dm_table_postsuspend_targets(map);
3278 }
3279 
3280 static void __dm_internal_resume(struct mapped_device *md)
3281 {
3282 	BUG_ON(!md->internal_suspend_count);
3283 
3284 	if (--md->internal_suspend_count)
3285 		return; /* resume from nested internal suspend */
3286 
3287 	if (dm_suspended_md(md))
3288 		goto done; /* resume from nested suspend */
3289 
3290 	/*
3291 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3292 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3293 	 */
3294 	(void) __dm_resume(md, NULL);
3295 
3296 done:
3297 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3298 	smp_mb__after_atomic();
3299 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3300 }
3301 
3302 void dm_internal_suspend_noflush(struct mapped_device *md)
3303 {
3304 	mutex_lock(&md->suspend_lock);
3305 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3306 	mutex_unlock(&md->suspend_lock);
3307 }
3308 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3309 
3310 void dm_internal_resume(struct mapped_device *md)
3311 {
3312 	mutex_lock(&md->suspend_lock);
3313 	__dm_internal_resume(md);
3314 	mutex_unlock(&md->suspend_lock);
3315 }
3316 EXPORT_SYMBOL_GPL(dm_internal_resume);
3317 
3318 /*
3319  * Fast variants of internal suspend/resume hold md->suspend_lock,
3320  * which prevents interaction with userspace-driven suspend.
3321  */
3322 
3323 void dm_internal_suspend_fast(struct mapped_device *md)
3324 {
3325 	mutex_lock(&md->suspend_lock);
3326 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3327 		return;
3328 
3329 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3330 	synchronize_srcu(&md->io_barrier);
3331 	flush_workqueue(md->wq);
3332 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3333 }
3334 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3335 
3336 void dm_internal_resume_fast(struct mapped_device *md)
3337 {
3338 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3339 		goto done;
3340 
3341 	dm_queue_flush(md);
3342 
3343 done:
3344 	mutex_unlock(&md->suspend_lock);
3345 }
3346 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3347 
3348 /*-----------------------------------------------------------------
3349  * Event notification.
3350  *---------------------------------------------------------------*/
3351 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3352 		       unsigned cookie)
3353 {
3354 	char udev_cookie[DM_COOKIE_LENGTH];
3355 	char *envp[] = { udev_cookie, NULL };
3356 
3357 	if (!cookie)
3358 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3359 	else {
3360 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3361 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3362 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3363 					  action, envp);
3364 	}
3365 }
3366 
3367 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3368 {
3369 	return atomic_add_return(1, &md->uevent_seq);
3370 }
3371 
3372 uint32_t dm_get_event_nr(struct mapped_device *md)
3373 {
3374 	return atomic_read(&md->event_nr);
3375 }
3376 
3377 int dm_wait_event(struct mapped_device *md, int event_nr)
3378 {
3379 	return wait_event_interruptible(md->eventq,
3380 			(event_nr != atomic_read(&md->event_nr)));
3381 }
3382 
3383 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3384 {
3385 	unsigned long flags;
3386 
3387 	spin_lock_irqsave(&md->uevent_lock, flags);
3388 	list_add(elist, &md->uevent_list);
3389 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3390 }
3391 
3392 /*
3393  * The gendisk is only valid as long as you have a reference
3394  * count on 'md'.
3395  */
3396 struct gendisk *dm_disk(struct mapped_device *md)
3397 {
3398 	return md->disk;
3399 }
3400 EXPORT_SYMBOL_GPL(dm_disk);
3401 
3402 struct kobject *dm_kobject(struct mapped_device *md)
3403 {
3404 	return &md->kobj_holder.kobj;
3405 }
3406 
3407 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3408 {
3409 	struct mapped_device *md;
3410 
3411 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3412 
3413 	if (test_bit(DMF_FREEING, &md->flags) ||
3414 	    dm_deleting_md(md))
3415 		return NULL;
3416 
3417 	dm_get(md);
3418 	return md;
3419 }
3420 
3421 int dm_suspended_md(struct mapped_device *md)
3422 {
3423 	return test_bit(DMF_SUSPENDED, &md->flags);
3424 }
3425 
3426 int dm_suspended_internally_md(struct mapped_device *md)
3427 {
3428 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3429 }
3430 
3431 int dm_test_deferred_remove_flag(struct mapped_device *md)
3432 {
3433 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3434 }
3435 
3436 int dm_suspended(struct dm_target *ti)
3437 {
3438 	return dm_suspended_md(dm_table_get_md(ti->table));
3439 }
3440 EXPORT_SYMBOL_GPL(dm_suspended);
3441 
3442 int dm_noflush_suspending(struct dm_target *ti)
3443 {
3444 	return __noflush_suspending(dm_table_get_md(ti->table));
3445 }
3446 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3447 
3448 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3449 					    unsigned integrity, unsigned per_bio_data_size)
3450 {
3451 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3452 	struct kmem_cache *cachep = NULL;
3453 	unsigned int pool_size = 0;
3454 	unsigned int front_pad;
3455 
3456 	if (!pools)
3457 		return NULL;
3458 
3459 	type = filter_md_type(type, md);
3460 
3461 	switch (type) {
3462 	case DM_TYPE_BIO_BASED:
3463 		cachep = _io_cache;
3464 		pool_size = dm_get_reserved_bio_based_ios();
3465 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3466 		break;
3467 	case DM_TYPE_REQUEST_BASED:
3468 		cachep = _rq_tio_cache;
3469 		pool_size = dm_get_reserved_rq_based_ios();
3470 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3471 		if (!pools->rq_pool)
3472 			goto out;
3473 		/* fall through to setup remaining rq-based pools */
3474 	case DM_TYPE_MQ_REQUEST_BASED:
3475 		if (!pool_size)
3476 			pool_size = dm_get_reserved_rq_based_ios();
3477 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3478 		/* per_bio_data_size is not used. See __bind_mempools(). */
3479 		WARN_ON(per_bio_data_size != 0);
3480 		break;
3481 	default:
3482 		BUG();
3483 	}
3484 
3485 	if (cachep) {
3486 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3487 		if (!pools->io_pool)
3488 			goto out;
3489 	}
3490 
3491 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3492 	if (!pools->bs)
3493 		goto out;
3494 
3495 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3496 		goto out;
3497 
3498 	return pools;
3499 
3500 out:
3501 	dm_free_md_mempools(pools);
3502 
3503 	return NULL;
3504 }
3505 
3506 void dm_free_md_mempools(struct dm_md_mempools *pools)
3507 {
3508 	if (!pools)
3509 		return;
3510 
3511 	if (pools->io_pool)
3512 		mempool_destroy(pools->io_pool);
3513 
3514 	if (pools->rq_pool)
3515 		mempool_destroy(pools->rq_pool);
3516 
3517 	if (pools->bs)
3518 		bioset_free(pools->bs);
3519 
3520 	kfree(pools);
3521 }
3522 
3523 static const struct block_device_operations dm_blk_dops = {
3524 	.open = dm_blk_open,
3525 	.release = dm_blk_close,
3526 	.ioctl = dm_blk_ioctl,
3527 	.getgeo = dm_blk_getgeo,
3528 	.owner = THIS_MODULE
3529 };
3530 
3531 /*
3532  * module hooks
3533  */
3534 module_init(dm_init);
3535 module_exit(dm_exit);
3536 
3537 module_param(major, uint, 0);
3538 MODULE_PARM_DESC(major, "The major number of the device mapper");
3539 
3540 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3541 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3542 
3543 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3544 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3545 
3546 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3547 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3548 
3549 MODULE_DESCRIPTION(DM_NAME " driver");
3550 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3551 MODULE_LICENSE("GPL");
3552