1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 /* 44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 45 * dm_io into one list, and reuse bio->bi_private as the list head. Before 46 * ending this fs bio, we will recover its ->bi_private. 47 */ 48 #define REQ_DM_POLL_LIST REQ_DRV 49 50 static const char *_name = DM_NAME; 51 52 static unsigned int major = 0; 53 static unsigned int _major = 0; 54 55 static DEFINE_IDR(_minor_idr); 56 57 static DEFINE_SPINLOCK(_minor_lock); 58 59 static void do_deferred_remove(struct work_struct *w); 60 61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 62 63 static struct workqueue_struct *deferred_remove_workqueue; 64 65 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 67 68 void dm_issue_global_event(void) 69 { 70 atomic_inc(&dm_global_event_nr); 71 wake_up(&dm_global_eventq); 72 } 73 74 DEFINE_STATIC_KEY_FALSE(stats_enabled); 75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 76 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 77 78 /* 79 * One of these is allocated (on-stack) per original bio. 80 */ 81 struct clone_info { 82 struct dm_table *map; 83 struct bio *bio; 84 struct dm_io *io; 85 sector_t sector; 86 unsigned sector_count; 87 bool is_abnormal_io:1; 88 bool submit_as_polled:1; 89 }; 90 91 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 92 #define DM_IO_BIO_OFFSET \ 93 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 94 95 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 96 { 97 return container_of(clone, struct dm_target_io, clone); 98 } 99 100 void *dm_per_bio_data(struct bio *bio, size_t data_size) 101 { 102 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 103 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 104 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 105 } 106 EXPORT_SYMBOL_GPL(dm_per_bio_data); 107 108 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 109 { 110 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 111 if (io->magic == DM_IO_MAGIC) 112 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 113 BUG_ON(io->magic != DM_TIO_MAGIC); 114 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 115 } 116 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 117 118 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 119 { 120 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 123 124 #define MINOR_ALLOCED ((void *)-1) 125 126 #define DM_NUMA_NODE NUMA_NO_NODE 127 static int dm_numa_node = DM_NUMA_NODE; 128 129 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 130 static int swap_bios = DEFAULT_SWAP_BIOS; 131 static int get_swap_bios(void) 132 { 133 int latch = READ_ONCE(swap_bios); 134 if (unlikely(latch <= 0)) 135 latch = DEFAULT_SWAP_BIOS; 136 return latch; 137 } 138 139 struct table_device { 140 struct list_head list; 141 refcount_t count; 142 struct dm_dev dm_dev; 143 }; 144 145 /* 146 * Bio-based DM's mempools' reserved IOs set by the user. 147 */ 148 #define RESERVED_BIO_BASED_IOS 16 149 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 150 151 static int __dm_get_module_param_int(int *module_param, int min, int max) 152 { 153 int param = READ_ONCE(*module_param); 154 int modified_param = 0; 155 bool modified = true; 156 157 if (param < min) 158 modified_param = min; 159 else if (param > max) 160 modified_param = max; 161 else 162 modified = false; 163 164 if (modified) { 165 (void)cmpxchg(module_param, param, modified_param); 166 param = modified_param; 167 } 168 169 return param; 170 } 171 172 unsigned __dm_get_module_param(unsigned *module_param, 173 unsigned def, unsigned max) 174 { 175 unsigned param = READ_ONCE(*module_param); 176 unsigned modified_param = 0; 177 178 if (!param) 179 modified_param = def; 180 else if (param > max) 181 modified_param = max; 182 183 if (modified_param) { 184 (void)cmpxchg(module_param, param, modified_param); 185 param = modified_param; 186 } 187 188 return param; 189 } 190 191 unsigned dm_get_reserved_bio_based_ios(void) 192 { 193 return __dm_get_module_param(&reserved_bio_based_ios, 194 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 195 } 196 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 197 198 static unsigned dm_get_numa_node(void) 199 { 200 return __dm_get_module_param_int(&dm_numa_node, 201 DM_NUMA_NODE, num_online_nodes() - 1); 202 } 203 204 static int __init local_init(void) 205 { 206 int r; 207 208 r = dm_uevent_init(); 209 if (r) 210 return r; 211 212 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 213 if (!deferred_remove_workqueue) { 214 r = -ENOMEM; 215 goto out_uevent_exit; 216 } 217 218 _major = major; 219 r = register_blkdev(_major, _name); 220 if (r < 0) 221 goto out_free_workqueue; 222 223 if (!_major) 224 _major = r; 225 226 return 0; 227 228 out_free_workqueue: 229 destroy_workqueue(deferred_remove_workqueue); 230 out_uevent_exit: 231 dm_uevent_exit(); 232 233 return r; 234 } 235 236 static void local_exit(void) 237 { 238 flush_scheduled_work(); 239 destroy_workqueue(deferred_remove_workqueue); 240 241 unregister_blkdev(_major, _name); 242 dm_uevent_exit(); 243 244 _major = 0; 245 246 DMINFO("cleaned up"); 247 } 248 249 static int (*_inits[])(void) __initdata = { 250 local_init, 251 dm_target_init, 252 dm_linear_init, 253 dm_stripe_init, 254 dm_io_init, 255 dm_kcopyd_init, 256 dm_interface_init, 257 dm_statistics_init, 258 }; 259 260 static void (*_exits[])(void) = { 261 local_exit, 262 dm_target_exit, 263 dm_linear_exit, 264 dm_stripe_exit, 265 dm_io_exit, 266 dm_kcopyd_exit, 267 dm_interface_exit, 268 dm_statistics_exit, 269 }; 270 271 static int __init dm_init(void) 272 { 273 const int count = ARRAY_SIZE(_inits); 274 int r, i; 275 276 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 277 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 278 " Duplicate IMA measurements will not be recorded in the IMA log."); 279 #endif 280 281 for (i = 0; i < count; i++) { 282 r = _inits[i](); 283 if (r) 284 goto bad; 285 } 286 287 return 0; 288 bad: 289 while (i--) 290 _exits[i](); 291 292 return r; 293 } 294 295 static void __exit dm_exit(void) 296 { 297 int i = ARRAY_SIZE(_exits); 298 299 while (i--) 300 _exits[i](); 301 302 /* 303 * Should be empty by this point. 304 */ 305 idr_destroy(&_minor_idr); 306 } 307 308 /* 309 * Block device functions 310 */ 311 int dm_deleting_md(struct mapped_device *md) 312 { 313 return test_bit(DMF_DELETING, &md->flags); 314 } 315 316 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 317 { 318 struct mapped_device *md; 319 320 spin_lock(&_minor_lock); 321 322 md = bdev->bd_disk->private_data; 323 if (!md) 324 goto out; 325 326 if (test_bit(DMF_FREEING, &md->flags) || 327 dm_deleting_md(md)) { 328 md = NULL; 329 goto out; 330 } 331 332 dm_get(md); 333 atomic_inc(&md->open_count); 334 out: 335 spin_unlock(&_minor_lock); 336 337 return md ? 0 : -ENXIO; 338 } 339 340 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 341 { 342 struct mapped_device *md; 343 344 spin_lock(&_minor_lock); 345 346 md = disk->private_data; 347 if (WARN_ON(!md)) 348 goto out; 349 350 if (atomic_dec_and_test(&md->open_count) && 351 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 352 queue_work(deferred_remove_workqueue, &deferred_remove_work); 353 354 dm_put(md); 355 out: 356 spin_unlock(&_minor_lock); 357 } 358 359 int dm_open_count(struct mapped_device *md) 360 { 361 return atomic_read(&md->open_count); 362 } 363 364 /* 365 * Guarantees nothing is using the device before it's deleted. 366 */ 367 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 368 { 369 int r = 0; 370 371 spin_lock(&_minor_lock); 372 373 if (dm_open_count(md)) { 374 r = -EBUSY; 375 if (mark_deferred) 376 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 377 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 378 r = -EEXIST; 379 else 380 set_bit(DMF_DELETING, &md->flags); 381 382 spin_unlock(&_minor_lock); 383 384 return r; 385 } 386 387 int dm_cancel_deferred_remove(struct mapped_device *md) 388 { 389 int r = 0; 390 391 spin_lock(&_minor_lock); 392 393 if (test_bit(DMF_DELETING, &md->flags)) 394 r = -EBUSY; 395 else 396 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 397 398 spin_unlock(&_minor_lock); 399 400 return r; 401 } 402 403 static void do_deferred_remove(struct work_struct *w) 404 { 405 dm_deferred_remove(); 406 } 407 408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 409 { 410 struct mapped_device *md = bdev->bd_disk->private_data; 411 412 return dm_get_geometry(md, geo); 413 } 414 415 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 416 struct block_device **bdev) 417 { 418 struct dm_target *tgt; 419 struct dm_table *map; 420 int r; 421 422 retry: 423 r = -ENOTTY; 424 map = dm_get_live_table(md, srcu_idx); 425 if (!map || !dm_table_get_size(map)) 426 return r; 427 428 /* We only support devices that have a single target */ 429 if (dm_table_get_num_targets(map) != 1) 430 return r; 431 432 tgt = dm_table_get_target(map, 0); 433 if (!tgt->type->prepare_ioctl) 434 return r; 435 436 if (dm_suspended_md(md)) 437 return -EAGAIN; 438 439 r = tgt->type->prepare_ioctl(tgt, bdev); 440 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 441 dm_put_live_table(md, *srcu_idx); 442 msleep(10); 443 goto retry; 444 } 445 446 return r; 447 } 448 449 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 450 { 451 dm_put_live_table(md, srcu_idx); 452 } 453 454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 455 unsigned int cmd, unsigned long arg) 456 { 457 struct mapped_device *md = bdev->bd_disk->private_data; 458 int r, srcu_idx; 459 460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 461 if (r < 0) 462 goto out; 463 464 if (r > 0) { 465 /* 466 * Target determined this ioctl is being issued against a 467 * subset of the parent bdev; require extra privileges. 468 */ 469 if (!capable(CAP_SYS_RAWIO)) { 470 DMDEBUG_LIMIT( 471 "%s: sending ioctl %x to DM device without required privilege.", 472 current->comm, cmd); 473 r = -ENOIOCTLCMD; 474 goto out; 475 } 476 } 477 478 if (!bdev->bd_disk->fops->ioctl) 479 r = -ENOTTY; 480 else 481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 482 out: 483 dm_unprepare_ioctl(md, srcu_idx); 484 return r; 485 } 486 487 u64 dm_start_time_ns_from_clone(struct bio *bio) 488 { 489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 490 } 491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 492 493 static bool bio_is_flush_with_data(struct bio *bio) 494 { 495 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 496 } 497 498 static void dm_io_acct(struct dm_io *io, bool end) 499 { 500 struct dm_stats_aux *stats_aux = &io->stats_aux; 501 unsigned long start_time = io->start_time; 502 struct mapped_device *md = io->md; 503 struct bio *bio = io->orig_bio; 504 unsigned int sectors; 505 506 /* 507 * If REQ_PREFLUSH set, don't account payload, it will be 508 * submitted (and accounted) after this flush completes. 509 */ 510 if (bio_is_flush_with_data(bio)) 511 sectors = 0; 512 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT)))) 513 sectors = bio_sectors(bio); 514 else 515 sectors = io->sectors; 516 517 if (!end) 518 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio), 519 start_time); 520 else 521 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time); 522 523 if (static_branch_unlikely(&stats_enabled) && 524 unlikely(dm_stats_used(&md->stats))) { 525 sector_t sector; 526 527 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT))) 528 sector = bio->bi_iter.bi_sector; 529 else 530 sector = bio_end_sector(bio) - io->sector_offset; 531 532 dm_stats_account_io(&md->stats, bio_data_dir(bio), 533 sector, sectors, 534 end, start_time, stats_aux); 535 } 536 } 537 538 static void __dm_start_io_acct(struct dm_io *io) 539 { 540 dm_io_acct(io, false); 541 } 542 543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 544 { 545 /* 546 * Ensure IO accounting is only ever started once. 547 */ 548 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 549 return; 550 551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 553 dm_io_set_flag(io, DM_IO_ACCOUNTED); 554 } else { 555 unsigned long flags; 556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 557 spin_lock_irqsave(&io->lock, flags); 558 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 559 spin_unlock_irqrestore(&io->lock, flags); 560 return; 561 } 562 dm_io_set_flag(io, DM_IO_ACCOUNTED); 563 spin_unlock_irqrestore(&io->lock, flags); 564 } 565 566 __dm_start_io_acct(io); 567 } 568 569 static void dm_end_io_acct(struct dm_io *io) 570 { 571 dm_io_acct(io, true); 572 } 573 574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 575 { 576 struct dm_io *io; 577 struct dm_target_io *tio; 578 struct bio *clone; 579 580 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); 581 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 582 clone->bi_bdev = md->disk->part0; 583 584 tio = clone_to_tio(clone); 585 tio->flags = 0; 586 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 587 tio->io = NULL; 588 589 io = container_of(tio, struct dm_io, tio); 590 io->magic = DM_IO_MAGIC; 591 io->status = BLK_STS_OK; 592 593 /* one ref is for submission, the other is for completion */ 594 atomic_set(&io->io_count, 2); 595 this_cpu_inc(*md->pending_io); 596 io->orig_bio = bio; 597 io->split_bio = NULL; 598 io->md = md; 599 spin_lock_init(&io->lock); 600 io->start_time = jiffies; 601 io->flags = 0; 602 603 if (static_branch_unlikely(&stats_enabled)) 604 dm_stats_record_start(&md->stats, &io->stats_aux); 605 606 return io; 607 } 608 609 static void free_io(struct dm_io *io) 610 { 611 bio_put(&io->tio.clone); 612 } 613 614 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 615 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 616 { 617 struct dm_target_io *tio; 618 struct bio *clone; 619 620 if (!ci->io->tio.io) { 621 /* the dm_target_io embedded in ci->io is available */ 622 tio = &ci->io->tio; 623 /* alloc_io() already initialized embedded clone */ 624 clone = &tio->clone; 625 } else { 626 struct mapped_device *md = ci->io->md; 627 628 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 629 &md->mempools->bs); 630 if (!clone) 631 return NULL; 632 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 633 clone->bi_bdev = md->disk->part0; 634 635 /* REQ_DM_POLL_LIST shouldn't be inherited */ 636 clone->bi_opf &= ~REQ_DM_POLL_LIST; 637 638 tio = clone_to_tio(clone); 639 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 640 } 641 642 tio->magic = DM_TIO_MAGIC; 643 tio->io = ci->io; 644 tio->ti = ti; 645 tio->target_bio_nr = target_bio_nr; 646 tio->len_ptr = len; 647 tio->old_sector = 0; 648 649 if (len) { 650 clone->bi_iter.bi_size = to_bytes(*len); 651 if (bio_integrity(clone)) 652 bio_integrity_trim(clone); 653 } 654 655 return clone; 656 } 657 658 static void free_tio(struct bio *clone) 659 { 660 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 661 return; 662 bio_put(clone); 663 } 664 665 /* 666 * Add the bio to the list of deferred io. 667 */ 668 static void queue_io(struct mapped_device *md, struct bio *bio) 669 { 670 unsigned long flags; 671 672 spin_lock_irqsave(&md->deferred_lock, flags); 673 bio_list_add(&md->deferred, bio); 674 spin_unlock_irqrestore(&md->deferred_lock, flags); 675 queue_work(md->wq, &md->work); 676 } 677 678 /* 679 * Everyone (including functions in this file), should use this 680 * function to access the md->map field, and make sure they call 681 * dm_put_live_table() when finished. 682 */ 683 struct dm_table *dm_get_live_table(struct mapped_device *md, 684 int *srcu_idx) __acquires(md->io_barrier) 685 { 686 *srcu_idx = srcu_read_lock(&md->io_barrier); 687 688 return srcu_dereference(md->map, &md->io_barrier); 689 } 690 691 void dm_put_live_table(struct mapped_device *md, 692 int srcu_idx) __releases(md->io_barrier) 693 { 694 srcu_read_unlock(&md->io_barrier, srcu_idx); 695 } 696 697 void dm_sync_table(struct mapped_device *md) 698 { 699 synchronize_srcu(&md->io_barrier); 700 synchronize_rcu_expedited(); 701 } 702 703 /* 704 * A fast alternative to dm_get_live_table/dm_put_live_table. 705 * The caller must not block between these two functions. 706 */ 707 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 708 { 709 rcu_read_lock(); 710 return rcu_dereference(md->map); 711 } 712 713 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 714 { 715 rcu_read_unlock(); 716 } 717 718 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md, 719 int *srcu_idx, unsigned bio_opf) 720 { 721 if (bio_opf & REQ_NOWAIT) 722 return dm_get_live_table_fast(md); 723 else 724 return dm_get_live_table(md, srcu_idx); 725 } 726 727 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx, 728 unsigned bio_opf) 729 { 730 if (bio_opf & REQ_NOWAIT) 731 dm_put_live_table_fast(md); 732 else 733 dm_put_live_table(md, srcu_idx); 734 } 735 736 static char *_dm_claim_ptr = "I belong to device-mapper"; 737 738 /* 739 * Open a table device so we can use it as a map destination. 740 */ 741 static int open_table_device(struct table_device *td, dev_t dev, 742 struct mapped_device *md) 743 { 744 struct block_device *bdev; 745 u64 part_off; 746 int r; 747 748 BUG_ON(td->dm_dev.bdev); 749 750 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 751 if (IS_ERR(bdev)) 752 return PTR_ERR(bdev); 753 754 r = bd_link_disk_holder(bdev, dm_disk(md)); 755 if (r) { 756 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 757 return r; 758 } 759 760 td->dm_dev.bdev = bdev; 761 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 762 return 0; 763 } 764 765 /* 766 * Close a table device that we've been using. 767 */ 768 static void close_table_device(struct table_device *td, struct mapped_device *md) 769 { 770 if (!td->dm_dev.bdev) 771 return; 772 773 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 774 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 775 put_dax(td->dm_dev.dax_dev); 776 td->dm_dev.bdev = NULL; 777 td->dm_dev.dax_dev = NULL; 778 } 779 780 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 781 fmode_t mode) 782 { 783 struct table_device *td; 784 785 list_for_each_entry(td, l, list) 786 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 787 return td; 788 789 return NULL; 790 } 791 792 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 793 struct dm_dev **result) 794 { 795 int r; 796 struct table_device *td; 797 798 mutex_lock(&md->table_devices_lock); 799 td = find_table_device(&md->table_devices, dev, mode); 800 if (!td) { 801 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 802 if (!td) { 803 mutex_unlock(&md->table_devices_lock); 804 return -ENOMEM; 805 } 806 807 td->dm_dev.mode = mode; 808 td->dm_dev.bdev = NULL; 809 810 if ((r = open_table_device(td, dev, md))) { 811 mutex_unlock(&md->table_devices_lock); 812 kfree(td); 813 return r; 814 } 815 816 format_dev_t(td->dm_dev.name, dev); 817 818 refcount_set(&td->count, 1); 819 list_add(&td->list, &md->table_devices); 820 } else { 821 refcount_inc(&td->count); 822 } 823 mutex_unlock(&md->table_devices_lock); 824 825 *result = &td->dm_dev; 826 return 0; 827 } 828 829 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 830 { 831 struct table_device *td = container_of(d, struct table_device, dm_dev); 832 833 mutex_lock(&md->table_devices_lock); 834 if (refcount_dec_and_test(&td->count)) { 835 close_table_device(td, md); 836 list_del(&td->list); 837 kfree(td); 838 } 839 mutex_unlock(&md->table_devices_lock); 840 } 841 842 static void free_table_devices(struct list_head *devices) 843 { 844 struct list_head *tmp, *next; 845 846 list_for_each_safe(tmp, next, devices) { 847 struct table_device *td = list_entry(tmp, struct table_device, list); 848 849 DMWARN("dm_destroy: %s still exists with %d references", 850 td->dm_dev.name, refcount_read(&td->count)); 851 kfree(td); 852 } 853 } 854 855 /* 856 * Get the geometry associated with a dm device 857 */ 858 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 859 { 860 *geo = md->geometry; 861 862 return 0; 863 } 864 865 /* 866 * Set the geometry of a device. 867 */ 868 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 869 { 870 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 871 872 if (geo->start > sz) { 873 DMWARN("Start sector is beyond the geometry limits."); 874 return -EINVAL; 875 } 876 877 md->geometry = *geo; 878 879 return 0; 880 } 881 882 static int __noflush_suspending(struct mapped_device *md) 883 { 884 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 885 } 886 887 static void dm_io_complete(struct dm_io *io) 888 { 889 blk_status_t io_error; 890 struct mapped_device *md = io->md; 891 struct bio *bio = io->split_bio ? io->split_bio : io->orig_bio; 892 893 if (io->status == BLK_STS_DM_REQUEUE) { 894 unsigned long flags; 895 /* 896 * Target requested pushing back the I/O. 897 */ 898 spin_lock_irqsave(&md->deferred_lock, flags); 899 if (__noflush_suspending(md) && 900 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 901 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 902 bio_list_add_head(&md->deferred, bio); 903 } else { 904 /* 905 * noflush suspend was interrupted or this is 906 * a write to a zoned target. 907 */ 908 io->status = BLK_STS_IOERR; 909 } 910 spin_unlock_irqrestore(&md->deferred_lock, flags); 911 } 912 913 io_error = io->status; 914 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 915 dm_end_io_acct(io); 916 else if (!io_error) { 917 /* 918 * Must handle target that DM_MAPIO_SUBMITTED only to 919 * then bio_endio() rather than dm_submit_bio_remap() 920 */ 921 __dm_start_io_acct(io); 922 dm_end_io_acct(io); 923 } 924 free_io(io); 925 smp_wmb(); 926 this_cpu_dec(*md->pending_io); 927 928 /* nudge anyone waiting on suspend queue */ 929 if (unlikely(wq_has_sleeper(&md->wait))) 930 wake_up(&md->wait); 931 932 if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) { 933 if (bio->bi_opf & REQ_POLLED) { 934 /* 935 * Upper layer won't help us poll split bio (io->orig_bio 936 * may only reflect a subset of the pre-split original) 937 * so clear REQ_POLLED in case of requeue. 938 */ 939 bio_clear_polled(bio); 940 if (io_error == BLK_STS_AGAIN) { 941 /* io_uring doesn't handle BLK_STS_AGAIN (yet) */ 942 queue_io(md, bio); 943 return; 944 } 945 } 946 if (io_error == BLK_STS_DM_REQUEUE) 947 return; 948 } 949 950 if (bio_is_flush_with_data(bio)) { 951 /* 952 * Preflush done for flush with data, reissue 953 * without REQ_PREFLUSH. 954 */ 955 bio->bi_opf &= ~REQ_PREFLUSH; 956 queue_io(md, bio); 957 } else { 958 /* done with normal IO or empty flush */ 959 if (io_error) 960 bio->bi_status = io_error; 961 bio_endio(bio); 962 } 963 } 964 965 /* 966 * Decrements the number of outstanding ios that a bio has been 967 * cloned into, completing the original io if necc. 968 */ 969 static inline void __dm_io_dec_pending(struct dm_io *io) 970 { 971 if (atomic_dec_and_test(&io->io_count)) 972 dm_io_complete(io); 973 } 974 975 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 976 { 977 unsigned long flags; 978 979 /* Push-back supersedes any I/O errors */ 980 spin_lock_irqsave(&io->lock, flags); 981 if (!(io->status == BLK_STS_DM_REQUEUE && 982 __noflush_suspending(io->md))) { 983 io->status = error; 984 } 985 spin_unlock_irqrestore(&io->lock, flags); 986 } 987 988 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 989 { 990 if (unlikely(error)) 991 dm_io_set_error(io, error); 992 993 __dm_io_dec_pending(io); 994 } 995 996 void disable_discard(struct mapped_device *md) 997 { 998 struct queue_limits *limits = dm_get_queue_limits(md); 999 1000 /* device doesn't really support DISCARD, disable it */ 1001 limits->max_discard_sectors = 0; 1002 } 1003 1004 void disable_write_zeroes(struct mapped_device *md) 1005 { 1006 struct queue_limits *limits = dm_get_queue_limits(md); 1007 1008 /* device doesn't really support WRITE ZEROES, disable it */ 1009 limits->max_write_zeroes_sectors = 0; 1010 } 1011 1012 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1013 { 1014 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1015 } 1016 1017 static void clone_endio(struct bio *bio) 1018 { 1019 blk_status_t error = bio->bi_status; 1020 struct dm_target_io *tio = clone_to_tio(bio); 1021 struct dm_target *ti = tio->ti; 1022 dm_endio_fn endio = ti->type->end_io; 1023 struct dm_io *io = tio->io; 1024 struct mapped_device *md = io->md; 1025 1026 if (unlikely(error == BLK_STS_TARGET)) { 1027 if (bio_op(bio) == REQ_OP_DISCARD && 1028 !bdev_max_discard_sectors(bio->bi_bdev)) 1029 disable_discard(md); 1030 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1031 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1032 disable_write_zeroes(md); 1033 } 1034 1035 if (static_branch_unlikely(&zoned_enabled) && 1036 unlikely(blk_queue_is_zoned(bdev_get_queue(bio->bi_bdev)))) 1037 dm_zone_endio(io, bio); 1038 1039 if (endio) { 1040 int r = endio(ti, bio, &error); 1041 switch (r) { 1042 case DM_ENDIO_REQUEUE: 1043 if (static_branch_unlikely(&zoned_enabled)) { 1044 /* 1045 * Requeuing writes to a sequential zone of a zoned 1046 * target will break the sequential write pattern: 1047 * fail such IO. 1048 */ 1049 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1050 error = BLK_STS_IOERR; 1051 else 1052 error = BLK_STS_DM_REQUEUE; 1053 } else 1054 error = BLK_STS_DM_REQUEUE; 1055 fallthrough; 1056 case DM_ENDIO_DONE: 1057 break; 1058 case DM_ENDIO_INCOMPLETE: 1059 /* The target will handle the io */ 1060 return; 1061 default: 1062 DMWARN("unimplemented target endio return value: %d", r); 1063 BUG(); 1064 } 1065 } 1066 1067 if (static_branch_unlikely(&swap_bios_enabled) && 1068 unlikely(swap_bios_limit(ti, bio))) 1069 up(&md->swap_bios_semaphore); 1070 1071 free_tio(bio); 1072 dm_io_dec_pending(io, error); 1073 } 1074 1075 /* 1076 * Return maximum size of I/O possible at the supplied sector up to the current 1077 * target boundary. 1078 */ 1079 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1080 sector_t target_offset) 1081 { 1082 return ti->len - target_offset; 1083 } 1084 1085 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 1086 { 1087 sector_t target_offset = dm_target_offset(ti, sector); 1088 sector_t len = max_io_len_target_boundary(ti, target_offset); 1089 sector_t max_len; 1090 1091 /* 1092 * Does the target need to split IO even further? 1093 * - varied (per target) IO splitting is a tenet of DM; this 1094 * explains why stacked chunk_sectors based splitting via 1095 * blk_max_size_offset() isn't possible here. So pass in 1096 * ti->max_io_len to override stacked chunk_sectors. 1097 */ 1098 if (ti->max_io_len) { 1099 max_len = blk_max_size_offset(ti->table->md->queue, 1100 target_offset, ti->max_io_len); 1101 if (len > max_len) 1102 len = max_len; 1103 } 1104 1105 return len; 1106 } 1107 1108 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1109 { 1110 if (len > UINT_MAX) { 1111 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1112 (unsigned long long)len, UINT_MAX); 1113 ti->error = "Maximum size of target IO is too large"; 1114 return -EINVAL; 1115 } 1116 1117 ti->max_io_len = (uint32_t) len; 1118 1119 return 0; 1120 } 1121 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1122 1123 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1124 sector_t sector, int *srcu_idx) 1125 __acquires(md->io_barrier) 1126 { 1127 struct dm_table *map; 1128 struct dm_target *ti; 1129 1130 map = dm_get_live_table(md, srcu_idx); 1131 if (!map) 1132 return NULL; 1133 1134 ti = dm_table_find_target(map, sector); 1135 if (!ti) 1136 return NULL; 1137 1138 return ti; 1139 } 1140 1141 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1142 long nr_pages, enum dax_access_mode mode, void **kaddr, 1143 pfn_t *pfn) 1144 { 1145 struct mapped_device *md = dax_get_private(dax_dev); 1146 sector_t sector = pgoff * PAGE_SECTORS; 1147 struct dm_target *ti; 1148 long len, ret = -EIO; 1149 int srcu_idx; 1150 1151 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1152 1153 if (!ti) 1154 goto out; 1155 if (!ti->type->direct_access) 1156 goto out; 1157 len = max_io_len(ti, sector) / PAGE_SECTORS; 1158 if (len < 1) 1159 goto out; 1160 nr_pages = min(len, nr_pages); 1161 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1162 1163 out: 1164 dm_put_live_table(md, srcu_idx); 1165 1166 return ret; 1167 } 1168 1169 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1170 size_t nr_pages) 1171 { 1172 struct mapped_device *md = dax_get_private(dax_dev); 1173 sector_t sector = pgoff * PAGE_SECTORS; 1174 struct dm_target *ti; 1175 int ret = -EIO; 1176 int srcu_idx; 1177 1178 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1179 1180 if (!ti) 1181 goto out; 1182 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1183 /* 1184 * ->zero_page_range() is mandatory dax operation. If we are 1185 * here, something is wrong. 1186 */ 1187 goto out; 1188 } 1189 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1190 out: 1191 dm_put_live_table(md, srcu_idx); 1192 1193 return ret; 1194 } 1195 1196 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1197 void *addr, size_t bytes, struct iov_iter *i) 1198 { 1199 struct mapped_device *md = dax_get_private(dax_dev); 1200 sector_t sector = pgoff * PAGE_SECTORS; 1201 struct dm_target *ti; 1202 int srcu_idx; 1203 long ret = 0; 1204 1205 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1206 if (!ti || !ti->type->dax_recovery_write) 1207 goto out; 1208 1209 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1210 out: 1211 dm_put_live_table(md, srcu_idx); 1212 return ret; 1213 } 1214 1215 /* 1216 * A target may call dm_accept_partial_bio only from the map routine. It is 1217 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1218 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1219 * __send_duplicate_bios(). 1220 * 1221 * dm_accept_partial_bio informs the dm that the target only wants to process 1222 * additional n_sectors sectors of the bio and the rest of the data should be 1223 * sent in a next bio. 1224 * 1225 * A diagram that explains the arithmetics: 1226 * +--------------------+---------------+-------+ 1227 * | 1 | 2 | 3 | 1228 * +--------------------+---------------+-------+ 1229 * 1230 * <-------------- *tio->len_ptr ---------------> 1231 * <----- bio_sectors -----> 1232 * <-- n_sectors --> 1233 * 1234 * Region 1 was already iterated over with bio_advance or similar function. 1235 * (it may be empty if the target doesn't use bio_advance) 1236 * Region 2 is the remaining bio size that the target wants to process. 1237 * (it may be empty if region 1 is non-empty, although there is no reason 1238 * to make it empty) 1239 * The target requires that region 3 is to be sent in the next bio. 1240 * 1241 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1242 * the partially processed part (the sum of regions 1+2) must be the same for all 1243 * copies of the bio. 1244 */ 1245 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1246 { 1247 struct dm_target_io *tio = clone_to_tio(bio); 1248 unsigned bio_sectors = bio_sectors(bio); 1249 1250 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1251 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1252 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1253 BUG_ON(bio_sectors > *tio->len_ptr); 1254 BUG_ON(n_sectors > bio_sectors); 1255 1256 *tio->len_ptr -= bio_sectors - n_sectors; 1257 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1258 1259 /* 1260 * __split_and_process_bio() may have already saved mapped part 1261 * for accounting but it is being reduced so update accordingly. 1262 */ 1263 dm_io_set_flag(tio->io, DM_IO_WAS_SPLIT); 1264 tio->io->sectors = n_sectors; 1265 } 1266 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1267 1268 /* 1269 * @clone: clone bio that DM core passed to target's .map function 1270 * @tgt_clone: clone of @clone bio that target needs submitted 1271 * 1272 * Targets should use this interface to submit bios they take 1273 * ownership of when returning DM_MAPIO_SUBMITTED. 1274 * 1275 * Target should also enable ti->accounts_remapped_io 1276 */ 1277 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1278 { 1279 struct dm_target_io *tio = clone_to_tio(clone); 1280 struct dm_io *io = tio->io; 1281 1282 /* establish bio that will get submitted */ 1283 if (!tgt_clone) 1284 tgt_clone = clone; 1285 1286 /* 1287 * Account io->origin_bio to DM dev on behalf of target 1288 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1289 */ 1290 dm_start_io_acct(io, clone); 1291 1292 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1293 tio->old_sector); 1294 submit_bio_noacct(tgt_clone); 1295 } 1296 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1297 1298 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1299 { 1300 mutex_lock(&md->swap_bios_lock); 1301 while (latch < md->swap_bios) { 1302 cond_resched(); 1303 down(&md->swap_bios_semaphore); 1304 md->swap_bios--; 1305 } 1306 while (latch > md->swap_bios) { 1307 cond_resched(); 1308 up(&md->swap_bios_semaphore); 1309 md->swap_bios++; 1310 } 1311 mutex_unlock(&md->swap_bios_lock); 1312 } 1313 1314 static void __map_bio(struct bio *clone) 1315 { 1316 struct dm_target_io *tio = clone_to_tio(clone); 1317 struct dm_target *ti = tio->ti; 1318 struct dm_io *io = tio->io; 1319 struct mapped_device *md = io->md; 1320 int r; 1321 1322 clone->bi_end_io = clone_endio; 1323 1324 /* 1325 * Map the clone. 1326 */ 1327 tio->old_sector = clone->bi_iter.bi_sector; 1328 1329 if (static_branch_unlikely(&swap_bios_enabled) && 1330 unlikely(swap_bios_limit(ti, clone))) { 1331 int latch = get_swap_bios(); 1332 if (unlikely(latch != md->swap_bios)) 1333 __set_swap_bios_limit(md, latch); 1334 down(&md->swap_bios_semaphore); 1335 } 1336 1337 if (static_branch_unlikely(&zoned_enabled)) { 1338 /* 1339 * Check if the IO needs a special mapping due to zone append 1340 * emulation on zoned target. In this case, dm_zone_map_bio() 1341 * calls the target map operation. 1342 */ 1343 if (unlikely(dm_emulate_zone_append(md))) 1344 r = dm_zone_map_bio(tio); 1345 else 1346 r = ti->type->map(ti, clone); 1347 } else 1348 r = ti->type->map(ti, clone); 1349 1350 switch (r) { 1351 case DM_MAPIO_SUBMITTED: 1352 /* target has assumed ownership of this io */ 1353 if (!ti->accounts_remapped_io) 1354 dm_start_io_acct(io, clone); 1355 break; 1356 case DM_MAPIO_REMAPPED: 1357 dm_submit_bio_remap(clone, NULL); 1358 break; 1359 case DM_MAPIO_KILL: 1360 case DM_MAPIO_REQUEUE: 1361 if (static_branch_unlikely(&swap_bios_enabled) && 1362 unlikely(swap_bios_limit(ti, clone))) 1363 up(&md->swap_bios_semaphore); 1364 free_tio(clone); 1365 if (r == DM_MAPIO_KILL) 1366 dm_io_dec_pending(io, BLK_STS_IOERR); 1367 else 1368 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1369 break; 1370 default: 1371 DMWARN("unimplemented target map return value: %d", r); 1372 BUG(); 1373 } 1374 } 1375 1376 static void setup_split_accounting(struct clone_info *ci, unsigned len) 1377 { 1378 struct dm_io *io = ci->io; 1379 1380 if (ci->sector_count > len) { 1381 /* 1382 * Split needed, save the mapped part for accounting. 1383 * NOTE: dm_accept_partial_bio() will update accordingly. 1384 */ 1385 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1386 io->sectors = len; 1387 } 1388 1389 if (static_branch_unlikely(&stats_enabled) && 1390 unlikely(dm_stats_used(&io->md->stats))) { 1391 /* 1392 * Save bi_sector in terms of its offset from end of 1393 * original bio, only needed for DM-stats' benefit. 1394 * - saved regardless of whether split needed so that 1395 * dm_accept_partial_bio() doesn't need to. 1396 */ 1397 io->sector_offset = bio_end_sector(ci->bio) - ci->sector; 1398 } 1399 } 1400 1401 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1402 struct dm_target *ti, unsigned num_bios) 1403 { 1404 struct bio *bio; 1405 int try; 1406 1407 for (try = 0; try < 2; try++) { 1408 int bio_nr; 1409 1410 if (try) 1411 mutex_lock(&ci->io->md->table_devices_lock); 1412 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1413 bio = alloc_tio(ci, ti, bio_nr, NULL, 1414 try ? GFP_NOIO : GFP_NOWAIT); 1415 if (!bio) 1416 break; 1417 1418 bio_list_add(blist, bio); 1419 } 1420 if (try) 1421 mutex_unlock(&ci->io->md->table_devices_lock); 1422 if (bio_nr == num_bios) 1423 return; 1424 1425 while ((bio = bio_list_pop(blist))) 1426 free_tio(bio); 1427 } 1428 } 1429 1430 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1431 unsigned num_bios, unsigned *len) 1432 { 1433 struct bio_list blist = BIO_EMPTY_LIST; 1434 struct bio *clone; 1435 int ret = 0; 1436 1437 switch (num_bios) { 1438 case 0: 1439 break; 1440 case 1: 1441 if (len) 1442 setup_split_accounting(ci, *len); 1443 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1444 __map_bio(clone); 1445 ret = 1; 1446 break; 1447 default: 1448 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1449 alloc_multiple_bios(&blist, ci, ti, num_bios); 1450 while ((clone = bio_list_pop(&blist))) { 1451 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1452 __map_bio(clone); 1453 ret += 1; 1454 } 1455 break; 1456 } 1457 1458 return ret; 1459 } 1460 1461 static void __send_empty_flush(struct clone_info *ci) 1462 { 1463 unsigned target_nr = 0; 1464 struct dm_target *ti; 1465 struct bio flush_bio; 1466 1467 /* 1468 * Use an on-stack bio for this, it's safe since we don't 1469 * need to reference it after submit. It's just used as 1470 * the basis for the clone(s). 1471 */ 1472 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1473 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1474 1475 ci->bio = &flush_bio; 1476 ci->sector_count = 0; 1477 ci->io->tio.clone.bi_iter.bi_size = 0; 1478 1479 while ((ti = dm_table_get_target(ci->map, target_nr++))) { 1480 int bios; 1481 1482 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1483 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1484 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1485 } 1486 1487 /* 1488 * alloc_io() takes one extra reference for submission, so the 1489 * reference won't reach 0 without the following subtraction 1490 */ 1491 atomic_sub(1, &ci->io->io_count); 1492 1493 bio_uninit(ci->bio); 1494 } 1495 1496 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1497 unsigned num_bios) 1498 { 1499 unsigned len; 1500 int bios; 1501 1502 len = min_t(sector_t, ci->sector_count, 1503 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1504 1505 atomic_add(num_bios, &ci->io->io_count); 1506 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1507 /* 1508 * alloc_io() takes one extra reference for submission, so the 1509 * reference won't reach 0 without the following (+1) subtraction 1510 */ 1511 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1512 1513 ci->sector += len; 1514 ci->sector_count -= len; 1515 } 1516 1517 static bool is_abnormal_io(struct bio *bio) 1518 { 1519 unsigned int op = bio_op(bio); 1520 1521 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1522 switch (op) { 1523 case REQ_OP_DISCARD: 1524 case REQ_OP_SECURE_ERASE: 1525 case REQ_OP_WRITE_ZEROES: 1526 return true; 1527 default: 1528 break; 1529 } 1530 } 1531 1532 return false; 1533 } 1534 1535 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1536 struct dm_target *ti) 1537 { 1538 unsigned num_bios = 0; 1539 1540 switch (bio_op(ci->bio)) { 1541 case REQ_OP_DISCARD: 1542 num_bios = ti->num_discard_bios; 1543 break; 1544 case REQ_OP_SECURE_ERASE: 1545 num_bios = ti->num_secure_erase_bios; 1546 break; 1547 case REQ_OP_WRITE_ZEROES: 1548 num_bios = ti->num_write_zeroes_bios; 1549 break; 1550 } 1551 1552 /* 1553 * Even though the device advertised support for this type of 1554 * request, that does not mean every target supports it, and 1555 * reconfiguration might also have changed that since the 1556 * check was performed. 1557 */ 1558 if (unlikely(!num_bios)) 1559 return BLK_STS_NOTSUPP; 1560 1561 __send_changing_extent_only(ci, ti, num_bios); 1562 return BLK_STS_OK; 1563 } 1564 1565 /* 1566 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1567 * associated with this bio, and this bio's bi_private needs to be 1568 * stored in dm_io->data before the reuse. 1569 * 1570 * bio->bi_private is owned by fs or upper layer, so block layer won't 1571 * touch it after splitting. Meantime it won't be changed by anyone after 1572 * bio is submitted. So this reuse is safe. 1573 */ 1574 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1575 { 1576 return (struct dm_io **)&bio->bi_private; 1577 } 1578 1579 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1580 { 1581 struct dm_io **head = dm_poll_list_head(bio); 1582 1583 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1584 bio->bi_opf |= REQ_DM_POLL_LIST; 1585 /* 1586 * Save .bi_private into dm_io, so that we can reuse 1587 * .bi_private as dm_io list head for storing dm_io list 1588 */ 1589 io->data = bio->bi_private; 1590 1591 /* tell block layer to poll for completion */ 1592 bio->bi_cookie = ~BLK_QC_T_NONE; 1593 1594 io->next = NULL; 1595 } else { 1596 /* 1597 * bio recursed due to split, reuse original poll list, 1598 * and save bio->bi_private too. 1599 */ 1600 io->data = (*head)->data; 1601 io->next = *head; 1602 } 1603 1604 *head = io; 1605 } 1606 1607 /* 1608 * Select the correct strategy for processing a non-flush bio. 1609 */ 1610 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1611 { 1612 struct bio *clone; 1613 struct dm_target *ti; 1614 unsigned len; 1615 1616 ti = dm_table_find_target(ci->map, ci->sector); 1617 if (unlikely(!ti)) 1618 return BLK_STS_IOERR; 1619 1620 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) && 1621 unlikely(!dm_target_supports_nowait(ti->type))) 1622 return BLK_STS_NOTSUPP; 1623 1624 if (unlikely(ci->is_abnormal_io)) 1625 return __process_abnormal_io(ci, ti); 1626 1627 /* 1628 * Only support bio polling for normal IO, and the target io is 1629 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1630 */ 1631 ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED; 1632 1633 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1634 setup_split_accounting(ci, len); 1635 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1636 __map_bio(clone); 1637 1638 ci->sector += len; 1639 ci->sector_count -= len; 1640 1641 return BLK_STS_OK; 1642 } 1643 1644 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1645 struct dm_table *map, struct bio *bio, bool is_abnormal) 1646 { 1647 ci->map = map; 1648 ci->io = alloc_io(md, bio); 1649 ci->bio = bio; 1650 ci->is_abnormal_io = is_abnormal; 1651 ci->submit_as_polled = false; 1652 ci->sector = bio->bi_iter.bi_sector; 1653 ci->sector_count = bio_sectors(bio); 1654 1655 /* Shouldn't happen but sector_count was being set to 0 so... */ 1656 if (static_branch_unlikely(&zoned_enabled) && 1657 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1658 ci->sector_count = 0; 1659 } 1660 1661 /* 1662 * Entry point to split a bio into clones and submit them to the targets. 1663 */ 1664 static void dm_split_and_process_bio(struct mapped_device *md, 1665 struct dm_table *map, struct bio *bio) 1666 { 1667 struct clone_info ci; 1668 struct dm_io *io; 1669 blk_status_t error = BLK_STS_OK; 1670 bool is_abnormal; 1671 1672 is_abnormal = is_abnormal_io(bio); 1673 if (unlikely(is_abnormal)) { 1674 /* 1675 * Use blk_queue_split() for abnormal IO (e.g. discard, etc) 1676 * otherwise associated queue_limits won't be imposed. 1677 */ 1678 blk_queue_split(&bio); 1679 } 1680 1681 init_clone_info(&ci, md, map, bio, is_abnormal); 1682 io = ci.io; 1683 1684 if (bio->bi_opf & REQ_PREFLUSH) { 1685 __send_empty_flush(&ci); 1686 /* dm_io_complete submits any data associated with flush */ 1687 goto out; 1688 } 1689 1690 error = __split_and_process_bio(&ci); 1691 if (error || !ci.sector_count) 1692 goto out; 1693 /* 1694 * Remainder must be passed to submit_bio_noacct() so it gets handled 1695 * *after* bios already submitted have been completely processed. 1696 */ 1697 WARN_ON_ONCE(!dm_io_flagged(io, DM_IO_WAS_SPLIT)); 1698 io->split_bio = bio_split(bio, io->sectors, GFP_NOIO, 1699 &md->queue->bio_split); 1700 bio_chain(io->split_bio, bio); 1701 trace_block_split(io->split_bio, bio->bi_iter.bi_sector); 1702 submit_bio_noacct(bio); 1703 out: 1704 /* 1705 * Drop the extra reference count for non-POLLED bio, and hold one 1706 * reference for POLLED bio, which will be released in dm_poll_bio 1707 * 1708 * Add every dm_io instance into the dm_io list head which is stored 1709 * in bio->bi_private, so that dm_poll_bio can poll them all. 1710 */ 1711 if (error || !ci.submit_as_polled) { 1712 /* 1713 * In case of submission failure, the extra reference for 1714 * submitting io isn't consumed yet 1715 */ 1716 if (error) 1717 atomic_dec(&io->io_count); 1718 dm_io_dec_pending(io, error); 1719 } else 1720 dm_queue_poll_io(bio, io); 1721 } 1722 1723 static void dm_submit_bio(struct bio *bio) 1724 { 1725 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1726 int srcu_idx; 1727 struct dm_table *map; 1728 unsigned bio_opf = bio->bi_opf; 1729 1730 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf); 1731 1732 /* If suspended, or map not yet available, queue this IO for later */ 1733 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1734 unlikely(!map)) { 1735 if (bio->bi_opf & REQ_NOWAIT) 1736 bio_wouldblock_error(bio); 1737 else if (bio->bi_opf & REQ_RAHEAD) 1738 bio_io_error(bio); 1739 else 1740 queue_io(md, bio); 1741 goto out; 1742 } 1743 1744 dm_split_and_process_bio(md, map, bio); 1745 out: 1746 dm_put_live_table_bio(md, srcu_idx, bio_opf); 1747 } 1748 1749 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1750 unsigned int flags) 1751 { 1752 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1753 1754 /* don't poll if the mapped io is done */ 1755 if (atomic_read(&io->io_count) > 1) 1756 bio_poll(&io->tio.clone, iob, flags); 1757 1758 /* bio_poll holds the last reference */ 1759 return atomic_read(&io->io_count) == 1; 1760 } 1761 1762 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1763 unsigned int flags) 1764 { 1765 struct dm_io **head = dm_poll_list_head(bio); 1766 struct dm_io *list = *head; 1767 struct dm_io *tmp = NULL; 1768 struct dm_io *curr, *next; 1769 1770 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1771 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1772 return 0; 1773 1774 WARN_ON_ONCE(!list); 1775 1776 /* 1777 * Restore .bi_private before possibly completing dm_io. 1778 * 1779 * bio_poll() is only possible once @bio has been completely 1780 * submitted via submit_bio_noacct()'s depth-first submission. 1781 * So there is no dm_queue_poll_io() race associated with 1782 * clearing REQ_DM_POLL_LIST here. 1783 */ 1784 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1785 bio->bi_private = list->data; 1786 1787 for (curr = list, next = curr->next; curr; curr = next, next = 1788 curr ? curr->next : NULL) { 1789 if (dm_poll_dm_io(curr, iob, flags)) { 1790 /* 1791 * clone_endio() has already occurred, so no 1792 * error handling is needed here. 1793 */ 1794 __dm_io_dec_pending(curr); 1795 } else { 1796 curr->next = tmp; 1797 tmp = curr; 1798 } 1799 } 1800 1801 /* Not done? */ 1802 if (tmp) { 1803 bio->bi_opf |= REQ_DM_POLL_LIST; 1804 /* Reset bio->bi_private to dm_io list head */ 1805 *head = tmp; 1806 return 0; 1807 } 1808 return 1; 1809 } 1810 1811 /*----------------------------------------------------------------- 1812 * An IDR is used to keep track of allocated minor numbers. 1813 *---------------------------------------------------------------*/ 1814 static void free_minor(int minor) 1815 { 1816 spin_lock(&_minor_lock); 1817 idr_remove(&_minor_idr, minor); 1818 spin_unlock(&_minor_lock); 1819 } 1820 1821 /* 1822 * See if the device with a specific minor # is free. 1823 */ 1824 static int specific_minor(int minor) 1825 { 1826 int r; 1827 1828 if (minor >= (1 << MINORBITS)) 1829 return -EINVAL; 1830 1831 idr_preload(GFP_KERNEL); 1832 spin_lock(&_minor_lock); 1833 1834 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1835 1836 spin_unlock(&_minor_lock); 1837 idr_preload_end(); 1838 if (r < 0) 1839 return r == -ENOSPC ? -EBUSY : r; 1840 return 0; 1841 } 1842 1843 static int next_free_minor(int *minor) 1844 { 1845 int r; 1846 1847 idr_preload(GFP_KERNEL); 1848 spin_lock(&_minor_lock); 1849 1850 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1851 1852 spin_unlock(&_minor_lock); 1853 idr_preload_end(); 1854 if (r < 0) 1855 return r; 1856 *minor = r; 1857 return 0; 1858 } 1859 1860 static const struct block_device_operations dm_blk_dops; 1861 static const struct block_device_operations dm_rq_blk_dops; 1862 static const struct dax_operations dm_dax_ops; 1863 1864 static void dm_wq_work(struct work_struct *work); 1865 1866 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1867 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1868 { 1869 dm_destroy_crypto_profile(q->crypto_profile); 1870 } 1871 1872 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1873 1874 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1875 { 1876 } 1877 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1878 1879 static void cleanup_mapped_device(struct mapped_device *md) 1880 { 1881 if (md->wq) 1882 destroy_workqueue(md->wq); 1883 dm_free_md_mempools(md->mempools); 1884 1885 if (md->dax_dev) { 1886 dax_remove_host(md->disk); 1887 kill_dax(md->dax_dev); 1888 put_dax(md->dax_dev); 1889 md->dax_dev = NULL; 1890 } 1891 1892 dm_cleanup_zoned_dev(md); 1893 if (md->disk) { 1894 spin_lock(&_minor_lock); 1895 md->disk->private_data = NULL; 1896 spin_unlock(&_minor_lock); 1897 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1898 dm_sysfs_exit(md); 1899 del_gendisk(md->disk); 1900 } 1901 dm_queue_destroy_crypto_profile(md->queue); 1902 blk_cleanup_disk(md->disk); 1903 } 1904 1905 if (md->pending_io) { 1906 free_percpu(md->pending_io); 1907 md->pending_io = NULL; 1908 } 1909 1910 cleanup_srcu_struct(&md->io_barrier); 1911 1912 mutex_destroy(&md->suspend_lock); 1913 mutex_destroy(&md->type_lock); 1914 mutex_destroy(&md->table_devices_lock); 1915 mutex_destroy(&md->swap_bios_lock); 1916 1917 dm_mq_cleanup_mapped_device(md); 1918 } 1919 1920 /* 1921 * Allocate and initialise a blank device with a given minor. 1922 */ 1923 static struct mapped_device *alloc_dev(int minor) 1924 { 1925 int r, numa_node_id = dm_get_numa_node(); 1926 struct mapped_device *md; 1927 void *old_md; 1928 1929 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1930 if (!md) { 1931 DMWARN("unable to allocate device, out of memory."); 1932 return NULL; 1933 } 1934 1935 if (!try_module_get(THIS_MODULE)) 1936 goto bad_module_get; 1937 1938 /* get a minor number for the dev */ 1939 if (minor == DM_ANY_MINOR) 1940 r = next_free_minor(&minor); 1941 else 1942 r = specific_minor(minor); 1943 if (r < 0) 1944 goto bad_minor; 1945 1946 r = init_srcu_struct(&md->io_barrier); 1947 if (r < 0) 1948 goto bad_io_barrier; 1949 1950 md->numa_node_id = numa_node_id; 1951 md->init_tio_pdu = false; 1952 md->type = DM_TYPE_NONE; 1953 mutex_init(&md->suspend_lock); 1954 mutex_init(&md->type_lock); 1955 mutex_init(&md->table_devices_lock); 1956 spin_lock_init(&md->deferred_lock); 1957 atomic_set(&md->holders, 1); 1958 atomic_set(&md->open_count, 0); 1959 atomic_set(&md->event_nr, 0); 1960 atomic_set(&md->uevent_seq, 0); 1961 INIT_LIST_HEAD(&md->uevent_list); 1962 INIT_LIST_HEAD(&md->table_devices); 1963 spin_lock_init(&md->uevent_lock); 1964 1965 /* 1966 * default to bio-based until DM table is loaded and md->type 1967 * established. If request-based table is loaded: blk-mq will 1968 * override accordingly. 1969 */ 1970 md->disk = blk_alloc_disk(md->numa_node_id); 1971 if (!md->disk) 1972 goto bad; 1973 md->queue = md->disk->queue; 1974 1975 init_waitqueue_head(&md->wait); 1976 INIT_WORK(&md->work, dm_wq_work); 1977 init_waitqueue_head(&md->eventq); 1978 init_completion(&md->kobj_holder.completion); 1979 1980 md->swap_bios = get_swap_bios(); 1981 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1982 mutex_init(&md->swap_bios_lock); 1983 1984 md->disk->major = _major; 1985 md->disk->first_minor = minor; 1986 md->disk->minors = 1; 1987 md->disk->flags |= GENHD_FL_NO_PART; 1988 md->disk->fops = &dm_blk_dops; 1989 md->disk->queue = md->queue; 1990 md->disk->private_data = md; 1991 sprintf(md->disk->disk_name, "dm-%d", minor); 1992 1993 if (IS_ENABLED(CONFIG_FS_DAX)) { 1994 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1995 if (IS_ERR(md->dax_dev)) { 1996 md->dax_dev = NULL; 1997 goto bad; 1998 } 1999 set_dax_nocache(md->dax_dev); 2000 set_dax_nomc(md->dax_dev); 2001 if (dax_add_host(md->dax_dev, md->disk)) 2002 goto bad; 2003 } 2004 2005 format_dev_t(md->name, MKDEV(_major, minor)); 2006 2007 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2008 if (!md->wq) 2009 goto bad; 2010 2011 md->pending_io = alloc_percpu(unsigned long); 2012 if (!md->pending_io) 2013 goto bad; 2014 2015 dm_stats_init(&md->stats); 2016 2017 /* Populate the mapping, nobody knows we exist yet */ 2018 spin_lock(&_minor_lock); 2019 old_md = idr_replace(&_minor_idr, md, minor); 2020 spin_unlock(&_minor_lock); 2021 2022 BUG_ON(old_md != MINOR_ALLOCED); 2023 2024 return md; 2025 2026 bad: 2027 cleanup_mapped_device(md); 2028 bad_io_barrier: 2029 free_minor(minor); 2030 bad_minor: 2031 module_put(THIS_MODULE); 2032 bad_module_get: 2033 kvfree(md); 2034 return NULL; 2035 } 2036 2037 static void unlock_fs(struct mapped_device *md); 2038 2039 static void free_dev(struct mapped_device *md) 2040 { 2041 int minor = MINOR(disk_devt(md->disk)); 2042 2043 unlock_fs(md); 2044 2045 cleanup_mapped_device(md); 2046 2047 free_table_devices(&md->table_devices); 2048 dm_stats_cleanup(&md->stats); 2049 free_minor(minor); 2050 2051 module_put(THIS_MODULE); 2052 kvfree(md); 2053 } 2054 2055 /* 2056 * Bind a table to the device. 2057 */ 2058 static void event_callback(void *context) 2059 { 2060 unsigned long flags; 2061 LIST_HEAD(uevents); 2062 struct mapped_device *md = (struct mapped_device *) context; 2063 2064 spin_lock_irqsave(&md->uevent_lock, flags); 2065 list_splice_init(&md->uevent_list, &uevents); 2066 spin_unlock_irqrestore(&md->uevent_lock, flags); 2067 2068 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2069 2070 atomic_inc(&md->event_nr); 2071 wake_up(&md->eventq); 2072 dm_issue_global_event(); 2073 } 2074 2075 /* 2076 * Returns old map, which caller must destroy. 2077 */ 2078 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2079 struct queue_limits *limits) 2080 { 2081 struct dm_table *old_map; 2082 sector_t size; 2083 int ret; 2084 2085 lockdep_assert_held(&md->suspend_lock); 2086 2087 size = dm_table_get_size(t); 2088 2089 /* 2090 * Wipe any geometry if the size of the table changed. 2091 */ 2092 if (size != dm_get_size(md)) 2093 memset(&md->geometry, 0, sizeof(md->geometry)); 2094 2095 if (!get_capacity(md->disk)) 2096 set_capacity(md->disk, size); 2097 else 2098 set_capacity_and_notify(md->disk, size); 2099 2100 dm_table_event_callback(t, event_callback, md); 2101 2102 if (dm_table_request_based(t)) { 2103 /* 2104 * Leverage the fact that request-based DM targets are 2105 * immutable singletons - used to optimize dm_mq_queue_rq. 2106 */ 2107 md->immutable_target = dm_table_get_immutable_target(t); 2108 2109 /* 2110 * There is no need to reload with request-based dm because the 2111 * size of front_pad doesn't change. 2112 * 2113 * Note for future: If you are to reload bioset, prep-ed 2114 * requests in the queue may refer to bio from the old bioset, 2115 * so you must walk through the queue to unprep. 2116 */ 2117 if (!md->mempools) { 2118 md->mempools = t->mempools; 2119 t->mempools = NULL; 2120 } 2121 } else { 2122 /* 2123 * The md may already have mempools that need changing. 2124 * If so, reload bioset because front_pad may have changed 2125 * because a different table was loaded. 2126 */ 2127 dm_free_md_mempools(md->mempools); 2128 md->mempools = t->mempools; 2129 t->mempools = NULL; 2130 } 2131 2132 ret = dm_table_set_restrictions(t, md->queue, limits); 2133 if (ret) { 2134 old_map = ERR_PTR(ret); 2135 goto out; 2136 } 2137 2138 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2139 rcu_assign_pointer(md->map, (void *)t); 2140 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2141 2142 if (old_map) 2143 dm_sync_table(md); 2144 out: 2145 return old_map; 2146 } 2147 2148 /* 2149 * Returns unbound table for the caller to free. 2150 */ 2151 static struct dm_table *__unbind(struct mapped_device *md) 2152 { 2153 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2154 2155 if (!map) 2156 return NULL; 2157 2158 dm_table_event_callback(map, NULL, NULL); 2159 RCU_INIT_POINTER(md->map, NULL); 2160 dm_sync_table(md); 2161 2162 return map; 2163 } 2164 2165 /* 2166 * Constructor for a new device. 2167 */ 2168 int dm_create(int minor, struct mapped_device **result) 2169 { 2170 struct mapped_device *md; 2171 2172 md = alloc_dev(minor); 2173 if (!md) 2174 return -ENXIO; 2175 2176 dm_ima_reset_data(md); 2177 2178 *result = md; 2179 return 0; 2180 } 2181 2182 /* 2183 * Functions to manage md->type. 2184 * All are required to hold md->type_lock. 2185 */ 2186 void dm_lock_md_type(struct mapped_device *md) 2187 { 2188 mutex_lock(&md->type_lock); 2189 } 2190 2191 void dm_unlock_md_type(struct mapped_device *md) 2192 { 2193 mutex_unlock(&md->type_lock); 2194 } 2195 2196 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2197 { 2198 BUG_ON(!mutex_is_locked(&md->type_lock)); 2199 md->type = type; 2200 } 2201 2202 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2203 { 2204 return md->type; 2205 } 2206 2207 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2208 { 2209 return md->immutable_target_type; 2210 } 2211 2212 /* 2213 * The queue_limits are only valid as long as you have a reference 2214 * count on 'md'. 2215 */ 2216 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2217 { 2218 BUG_ON(!atomic_read(&md->holders)); 2219 return &md->queue->limits; 2220 } 2221 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2222 2223 /* 2224 * Setup the DM device's queue based on md's type 2225 */ 2226 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2227 { 2228 enum dm_queue_mode type = dm_table_get_type(t); 2229 struct queue_limits limits; 2230 int r; 2231 2232 switch (type) { 2233 case DM_TYPE_REQUEST_BASED: 2234 md->disk->fops = &dm_rq_blk_dops; 2235 r = dm_mq_init_request_queue(md, t); 2236 if (r) { 2237 DMERR("Cannot initialize queue for request-based dm mapped device"); 2238 return r; 2239 } 2240 break; 2241 case DM_TYPE_BIO_BASED: 2242 case DM_TYPE_DAX_BIO_BASED: 2243 break; 2244 case DM_TYPE_NONE: 2245 WARN_ON_ONCE(true); 2246 break; 2247 } 2248 2249 r = dm_calculate_queue_limits(t, &limits); 2250 if (r) { 2251 DMERR("Cannot calculate initial queue limits"); 2252 return r; 2253 } 2254 r = dm_table_set_restrictions(t, md->queue, &limits); 2255 if (r) 2256 return r; 2257 2258 r = add_disk(md->disk); 2259 if (r) 2260 return r; 2261 2262 r = dm_sysfs_init(md); 2263 if (r) { 2264 del_gendisk(md->disk); 2265 return r; 2266 } 2267 md->type = type; 2268 return 0; 2269 } 2270 2271 struct mapped_device *dm_get_md(dev_t dev) 2272 { 2273 struct mapped_device *md; 2274 unsigned minor = MINOR(dev); 2275 2276 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2277 return NULL; 2278 2279 spin_lock(&_minor_lock); 2280 2281 md = idr_find(&_minor_idr, minor); 2282 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2283 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2284 md = NULL; 2285 goto out; 2286 } 2287 dm_get(md); 2288 out: 2289 spin_unlock(&_minor_lock); 2290 2291 return md; 2292 } 2293 EXPORT_SYMBOL_GPL(dm_get_md); 2294 2295 void *dm_get_mdptr(struct mapped_device *md) 2296 { 2297 return md->interface_ptr; 2298 } 2299 2300 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2301 { 2302 md->interface_ptr = ptr; 2303 } 2304 2305 void dm_get(struct mapped_device *md) 2306 { 2307 atomic_inc(&md->holders); 2308 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2309 } 2310 2311 int dm_hold(struct mapped_device *md) 2312 { 2313 spin_lock(&_minor_lock); 2314 if (test_bit(DMF_FREEING, &md->flags)) { 2315 spin_unlock(&_minor_lock); 2316 return -EBUSY; 2317 } 2318 dm_get(md); 2319 spin_unlock(&_minor_lock); 2320 return 0; 2321 } 2322 EXPORT_SYMBOL_GPL(dm_hold); 2323 2324 const char *dm_device_name(struct mapped_device *md) 2325 { 2326 return md->name; 2327 } 2328 EXPORT_SYMBOL_GPL(dm_device_name); 2329 2330 static void __dm_destroy(struct mapped_device *md, bool wait) 2331 { 2332 struct dm_table *map; 2333 int srcu_idx; 2334 2335 might_sleep(); 2336 2337 spin_lock(&_minor_lock); 2338 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2339 set_bit(DMF_FREEING, &md->flags); 2340 spin_unlock(&_minor_lock); 2341 2342 blk_mark_disk_dead(md->disk); 2343 2344 /* 2345 * Take suspend_lock so that presuspend and postsuspend methods 2346 * do not race with internal suspend. 2347 */ 2348 mutex_lock(&md->suspend_lock); 2349 map = dm_get_live_table(md, &srcu_idx); 2350 if (!dm_suspended_md(md)) { 2351 dm_table_presuspend_targets(map); 2352 set_bit(DMF_SUSPENDED, &md->flags); 2353 set_bit(DMF_POST_SUSPENDING, &md->flags); 2354 dm_table_postsuspend_targets(map); 2355 } 2356 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2357 dm_put_live_table(md, srcu_idx); 2358 mutex_unlock(&md->suspend_lock); 2359 2360 /* 2361 * Rare, but there may be I/O requests still going to complete, 2362 * for example. Wait for all references to disappear. 2363 * No one should increment the reference count of the mapped_device, 2364 * after the mapped_device state becomes DMF_FREEING. 2365 */ 2366 if (wait) 2367 while (atomic_read(&md->holders)) 2368 msleep(1); 2369 else if (atomic_read(&md->holders)) 2370 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2371 dm_device_name(md), atomic_read(&md->holders)); 2372 2373 dm_table_destroy(__unbind(md)); 2374 free_dev(md); 2375 } 2376 2377 void dm_destroy(struct mapped_device *md) 2378 { 2379 __dm_destroy(md, true); 2380 } 2381 2382 void dm_destroy_immediate(struct mapped_device *md) 2383 { 2384 __dm_destroy(md, false); 2385 } 2386 2387 void dm_put(struct mapped_device *md) 2388 { 2389 atomic_dec(&md->holders); 2390 } 2391 EXPORT_SYMBOL_GPL(dm_put); 2392 2393 static bool dm_in_flight_bios(struct mapped_device *md) 2394 { 2395 int cpu; 2396 unsigned long sum = 0; 2397 2398 for_each_possible_cpu(cpu) 2399 sum += *per_cpu_ptr(md->pending_io, cpu); 2400 2401 return sum != 0; 2402 } 2403 2404 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2405 { 2406 int r = 0; 2407 DEFINE_WAIT(wait); 2408 2409 while (true) { 2410 prepare_to_wait(&md->wait, &wait, task_state); 2411 2412 if (!dm_in_flight_bios(md)) 2413 break; 2414 2415 if (signal_pending_state(task_state, current)) { 2416 r = -EINTR; 2417 break; 2418 } 2419 2420 io_schedule(); 2421 } 2422 finish_wait(&md->wait, &wait); 2423 2424 smp_rmb(); 2425 2426 return r; 2427 } 2428 2429 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2430 { 2431 int r = 0; 2432 2433 if (!queue_is_mq(md->queue)) 2434 return dm_wait_for_bios_completion(md, task_state); 2435 2436 while (true) { 2437 if (!blk_mq_queue_inflight(md->queue)) 2438 break; 2439 2440 if (signal_pending_state(task_state, current)) { 2441 r = -EINTR; 2442 break; 2443 } 2444 2445 msleep(5); 2446 } 2447 2448 return r; 2449 } 2450 2451 /* 2452 * Process the deferred bios 2453 */ 2454 static void dm_wq_work(struct work_struct *work) 2455 { 2456 struct mapped_device *md = container_of(work, struct mapped_device, work); 2457 struct bio *bio; 2458 2459 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2460 spin_lock_irq(&md->deferred_lock); 2461 bio = bio_list_pop(&md->deferred); 2462 spin_unlock_irq(&md->deferred_lock); 2463 2464 if (!bio) 2465 break; 2466 2467 submit_bio_noacct(bio); 2468 } 2469 } 2470 2471 static void dm_queue_flush(struct mapped_device *md) 2472 { 2473 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2474 smp_mb__after_atomic(); 2475 queue_work(md->wq, &md->work); 2476 } 2477 2478 /* 2479 * Swap in a new table, returning the old one for the caller to destroy. 2480 */ 2481 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2482 { 2483 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2484 struct queue_limits limits; 2485 int r; 2486 2487 mutex_lock(&md->suspend_lock); 2488 2489 /* device must be suspended */ 2490 if (!dm_suspended_md(md)) 2491 goto out; 2492 2493 /* 2494 * If the new table has no data devices, retain the existing limits. 2495 * This helps multipath with queue_if_no_path if all paths disappear, 2496 * then new I/O is queued based on these limits, and then some paths 2497 * reappear. 2498 */ 2499 if (dm_table_has_no_data_devices(table)) { 2500 live_map = dm_get_live_table_fast(md); 2501 if (live_map) 2502 limits = md->queue->limits; 2503 dm_put_live_table_fast(md); 2504 } 2505 2506 if (!live_map) { 2507 r = dm_calculate_queue_limits(table, &limits); 2508 if (r) { 2509 map = ERR_PTR(r); 2510 goto out; 2511 } 2512 } 2513 2514 map = __bind(md, table, &limits); 2515 dm_issue_global_event(); 2516 2517 out: 2518 mutex_unlock(&md->suspend_lock); 2519 return map; 2520 } 2521 2522 /* 2523 * Functions to lock and unlock any filesystem running on the 2524 * device. 2525 */ 2526 static int lock_fs(struct mapped_device *md) 2527 { 2528 int r; 2529 2530 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2531 2532 r = freeze_bdev(md->disk->part0); 2533 if (!r) 2534 set_bit(DMF_FROZEN, &md->flags); 2535 return r; 2536 } 2537 2538 static void unlock_fs(struct mapped_device *md) 2539 { 2540 if (!test_bit(DMF_FROZEN, &md->flags)) 2541 return; 2542 thaw_bdev(md->disk->part0); 2543 clear_bit(DMF_FROZEN, &md->flags); 2544 } 2545 2546 /* 2547 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2548 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2549 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2550 * 2551 * If __dm_suspend returns 0, the device is completely quiescent 2552 * now. There is no request-processing activity. All new requests 2553 * are being added to md->deferred list. 2554 */ 2555 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2556 unsigned suspend_flags, unsigned int task_state, 2557 int dmf_suspended_flag) 2558 { 2559 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2560 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2561 int r; 2562 2563 lockdep_assert_held(&md->suspend_lock); 2564 2565 /* 2566 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2567 * This flag is cleared before dm_suspend returns. 2568 */ 2569 if (noflush) 2570 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2571 else 2572 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2573 2574 /* 2575 * This gets reverted if there's an error later and the targets 2576 * provide the .presuspend_undo hook. 2577 */ 2578 dm_table_presuspend_targets(map); 2579 2580 /* 2581 * Flush I/O to the device. 2582 * Any I/O submitted after lock_fs() may not be flushed. 2583 * noflush takes precedence over do_lockfs. 2584 * (lock_fs() flushes I/Os and waits for them to complete.) 2585 */ 2586 if (!noflush && do_lockfs) { 2587 r = lock_fs(md); 2588 if (r) { 2589 dm_table_presuspend_undo_targets(map); 2590 return r; 2591 } 2592 } 2593 2594 /* 2595 * Here we must make sure that no processes are submitting requests 2596 * to target drivers i.e. no one may be executing 2597 * dm_split_and_process_bio from dm_submit_bio. 2598 * 2599 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2600 * we take the write lock. To prevent any process from reentering 2601 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2602 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2603 * flush_workqueue(md->wq). 2604 */ 2605 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2606 if (map) 2607 synchronize_srcu(&md->io_barrier); 2608 2609 /* 2610 * Stop md->queue before flushing md->wq in case request-based 2611 * dm defers requests to md->wq from md->queue. 2612 */ 2613 if (dm_request_based(md)) 2614 dm_stop_queue(md->queue); 2615 2616 flush_workqueue(md->wq); 2617 2618 /* 2619 * At this point no more requests are entering target request routines. 2620 * We call dm_wait_for_completion to wait for all existing requests 2621 * to finish. 2622 */ 2623 r = dm_wait_for_completion(md, task_state); 2624 if (!r) 2625 set_bit(dmf_suspended_flag, &md->flags); 2626 2627 if (noflush) 2628 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2629 if (map) 2630 synchronize_srcu(&md->io_barrier); 2631 2632 /* were we interrupted ? */ 2633 if (r < 0) { 2634 dm_queue_flush(md); 2635 2636 if (dm_request_based(md)) 2637 dm_start_queue(md->queue); 2638 2639 unlock_fs(md); 2640 dm_table_presuspend_undo_targets(map); 2641 /* pushback list is already flushed, so skip flush */ 2642 } 2643 2644 return r; 2645 } 2646 2647 /* 2648 * We need to be able to change a mapping table under a mounted 2649 * filesystem. For example we might want to move some data in 2650 * the background. Before the table can be swapped with 2651 * dm_bind_table, dm_suspend must be called to flush any in 2652 * flight bios and ensure that any further io gets deferred. 2653 */ 2654 /* 2655 * Suspend mechanism in request-based dm. 2656 * 2657 * 1. Flush all I/Os by lock_fs() if needed. 2658 * 2. Stop dispatching any I/O by stopping the request_queue. 2659 * 3. Wait for all in-flight I/Os to be completed or requeued. 2660 * 2661 * To abort suspend, start the request_queue. 2662 */ 2663 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2664 { 2665 struct dm_table *map = NULL; 2666 int r = 0; 2667 2668 retry: 2669 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2670 2671 if (dm_suspended_md(md)) { 2672 r = -EINVAL; 2673 goto out_unlock; 2674 } 2675 2676 if (dm_suspended_internally_md(md)) { 2677 /* already internally suspended, wait for internal resume */ 2678 mutex_unlock(&md->suspend_lock); 2679 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2680 if (r) 2681 return r; 2682 goto retry; 2683 } 2684 2685 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2686 2687 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2688 if (r) 2689 goto out_unlock; 2690 2691 set_bit(DMF_POST_SUSPENDING, &md->flags); 2692 dm_table_postsuspend_targets(map); 2693 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2694 2695 out_unlock: 2696 mutex_unlock(&md->suspend_lock); 2697 return r; 2698 } 2699 2700 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2701 { 2702 if (map) { 2703 int r = dm_table_resume_targets(map); 2704 if (r) 2705 return r; 2706 } 2707 2708 dm_queue_flush(md); 2709 2710 /* 2711 * Flushing deferred I/Os must be done after targets are resumed 2712 * so that mapping of targets can work correctly. 2713 * Request-based dm is queueing the deferred I/Os in its request_queue. 2714 */ 2715 if (dm_request_based(md)) 2716 dm_start_queue(md->queue); 2717 2718 unlock_fs(md); 2719 2720 return 0; 2721 } 2722 2723 int dm_resume(struct mapped_device *md) 2724 { 2725 int r; 2726 struct dm_table *map = NULL; 2727 2728 retry: 2729 r = -EINVAL; 2730 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2731 2732 if (!dm_suspended_md(md)) 2733 goto out; 2734 2735 if (dm_suspended_internally_md(md)) { 2736 /* already internally suspended, wait for internal resume */ 2737 mutex_unlock(&md->suspend_lock); 2738 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2739 if (r) 2740 return r; 2741 goto retry; 2742 } 2743 2744 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2745 if (!map || !dm_table_get_size(map)) 2746 goto out; 2747 2748 r = __dm_resume(md, map); 2749 if (r) 2750 goto out; 2751 2752 clear_bit(DMF_SUSPENDED, &md->flags); 2753 out: 2754 mutex_unlock(&md->suspend_lock); 2755 2756 return r; 2757 } 2758 2759 /* 2760 * Internal suspend/resume works like userspace-driven suspend. It waits 2761 * until all bios finish and prevents issuing new bios to the target drivers. 2762 * It may be used only from the kernel. 2763 */ 2764 2765 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2766 { 2767 struct dm_table *map = NULL; 2768 2769 lockdep_assert_held(&md->suspend_lock); 2770 2771 if (md->internal_suspend_count++) 2772 return; /* nested internal suspend */ 2773 2774 if (dm_suspended_md(md)) { 2775 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2776 return; /* nest suspend */ 2777 } 2778 2779 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2780 2781 /* 2782 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2783 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2784 * would require changing .presuspend to return an error -- avoid this 2785 * until there is a need for more elaborate variants of internal suspend. 2786 */ 2787 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2788 DMF_SUSPENDED_INTERNALLY); 2789 2790 set_bit(DMF_POST_SUSPENDING, &md->flags); 2791 dm_table_postsuspend_targets(map); 2792 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2793 } 2794 2795 static void __dm_internal_resume(struct mapped_device *md) 2796 { 2797 BUG_ON(!md->internal_suspend_count); 2798 2799 if (--md->internal_suspend_count) 2800 return; /* resume from nested internal suspend */ 2801 2802 if (dm_suspended_md(md)) 2803 goto done; /* resume from nested suspend */ 2804 2805 /* 2806 * NOTE: existing callers don't need to call dm_table_resume_targets 2807 * (which may fail -- so best to avoid it for now by passing NULL map) 2808 */ 2809 (void) __dm_resume(md, NULL); 2810 2811 done: 2812 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2813 smp_mb__after_atomic(); 2814 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2815 } 2816 2817 void dm_internal_suspend_noflush(struct mapped_device *md) 2818 { 2819 mutex_lock(&md->suspend_lock); 2820 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2821 mutex_unlock(&md->suspend_lock); 2822 } 2823 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2824 2825 void dm_internal_resume(struct mapped_device *md) 2826 { 2827 mutex_lock(&md->suspend_lock); 2828 __dm_internal_resume(md); 2829 mutex_unlock(&md->suspend_lock); 2830 } 2831 EXPORT_SYMBOL_GPL(dm_internal_resume); 2832 2833 /* 2834 * Fast variants of internal suspend/resume hold md->suspend_lock, 2835 * which prevents interaction with userspace-driven suspend. 2836 */ 2837 2838 void dm_internal_suspend_fast(struct mapped_device *md) 2839 { 2840 mutex_lock(&md->suspend_lock); 2841 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2842 return; 2843 2844 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2845 synchronize_srcu(&md->io_barrier); 2846 flush_workqueue(md->wq); 2847 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2848 } 2849 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2850 2851 void dm_internal_resume_fast(struct mapped_device *md) 2852 { 2853 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2854 goto done; 2855 2856 dm_queue_flush(md); 2857 2858 done: 2859 mutex_unlock(&md->suspend_lock); 2860 } 2861 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2862 2863 /*----------------------------------------------------------------- 2864 * Event notification. 2865 *---------------------------------------------------------------*/ 2866 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2867 unsigned cookie) 2868 { 2869 int r; 2870 unsigned noio_flag; 2871 char udev_cookie[DM_COOKIE_LENGTH]; 2872 char *envp[] = { udev_cookie, NULL }; 2873 2874 noio_flag = memalloc_noio_save(); 2875 2876 if (!cookie) 2877 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2878 else { 2879 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2880 DM_COOKIE_ENV_VAR_NAME, cookie); 2881 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2882 action, envp); 2883 } 2884 2885 memalloc_noio_restore(noio_flag); 2886 2887 return r; 2888 } 2889 2890 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2891 { 2892 return atomic_add_return(1, &md->uevent_seq); 2893 } 2894 2895 uint32_t dm_get_event_nr(struct mapped_device *md) 2896 { 2897 return atomic_read(&md->event_nr); 2898 } 2899 2900 int dm_wait_event(struct mapped_device *md, int event_nr) 2901 { 2902 return wait_event_interruptible(md->eventq, 2903 (event_nr != atomic_read(&md->event_nr))); 2904 } 2905 2906 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2907 { 2908 unsigned long flags; 2909 2910 spin_lock_irqsave(&md->uevent_lock, flags); 2911 list_add(elist, &md->uevent_list); 2912 spin_unlock_irqrestore(&md->uevent_lock, flags); 2913 } 2914 2915 /* 2916 * The gendisk is only valid as long as you have a reference 2917 * count on 'md'. 2918 */ 2919 struct gendisk *dm_disk(struct mapped_device *md) 2920 { 2921 return md->disk; 2922 } 2923 EXPORT_SYMBOL_GPL(dm_disk); 2924 2925 struct kobject *dm_kobject(struct mapped_device *md) 2926 { 2927 return &md->kobj_holder.kobj; 2928 } 2929 2930 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2931 { 2932 struct mapped_device *md; 2933 2934 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2935 2936 spin_lock(&_minor_lock); 2937 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2938 md = NULL; 2939 goto out; 2940 } 2941 dm_get(md); 2942 out: 2943 spin_unlock(&_minor_lock); 2944 2945 return md; 2946 } 2947 2948 int dm_suspended_md(struct mapped_device *md) 2949 { 2950 return test_bit(DMF_SUSPENDED, &md->flags); 2951 } 2952 2953 static int dm_post_suspending_md(struct mapped_device *md) 2954 { 2955 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2956 } 2957 2958 int dm_suspended_internally_md(struct mapped_device *md) 2959 { 2960 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2961 } 2962 2963 int dm_test_deferred_remove_flag(struct mapped_device *md) 2964 { 2965 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2966 } 2967 2968 int dm_suspended(struct dm_target *ti) 2969 { 2970 return dm_suspended_md(ti->table->md); 2971 } 2972 EXPORT_SYMBOL_GPL(dm_suspended); 2973 2974 int dm_post_suspending(struct dm_target *ti) 2975 { 2976 return dm_post_suspending_md(ti->table->md); 2977 } 2978 EXPORT_SYMBOL_GPL(dm_post_suspending); 2979 2980 int dm_noflush_suspending(struct dm_target *ti) 2981 { 2982 return __noflush_suspending(ti->table->md); 2983 } 2984 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2985 2986 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2987 unsigned per_io_data_size, unsigned min_pool_size, 2988 bool integrity, bool poll) 2989 { 2990 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2991 unsigned int pool_size = 0; 2992 unsigned int front_pad, io_front_pad; 2993 int ret; 2994 2995 if (!pools) 2996 return NULL; 2997 2998 switch (type) { 2999 case DM_TYPE_BIO_BASED: 3000 case DM_TYPE_DAX_BIO_BASED: 3001 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 3002 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 3003 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 3004 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, poll ? BIOSET_PERCPU_CACHE : 0); 3005 if (ret) 3006 goto out; 3007 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3008 goto out; 3009 break; 3010 case DM_TYPE_REQUEST_BASED: 3011 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3012 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3013 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3014 break; 3015 default: 3016 BUG(); 3017 } 3018 3019 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3020 if (ret) 3021 goto out; 3022 3023 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3024 goto out; 3025 3026 return pools; 3027 3028 out: 3029 dm_free_md_mempools(pools); 3030 3031 return NULL; 3032 } 3033 3034 void dm_free_md_mempools(struct dm_md_mempools *pools) 3035 { 3036 if (!pools) 3037 return; 3038 3039 bioset_exit(&pools->bs); 3040 bioset_exit(&pools->io_bs); 3041 3042 kfree(pools); 3043 } 3044 3045 struct dm_pr { 3046 u64 old_key; 3047 u64 new_key; 3048 u32 flags; 3049 bool fail_early; 3050 }; 3051 3052 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3053 void *data) 3054 { 3055 struct mapped_device *md = bdev->bd_disk->private_data; 3056 struct dm_table *table; 3057 struct dm_target *ti; 3058 int ret = -ENOTTY, srcu_idx; 3059 3060 table = dm_get_live_table(md, &srcu_idx); 3061 if (!table || !dm_table_get_size(table)) 3062 goto out; 3063 3064 /* We only support devices that have a single target */ 3065 if (dm_table_get_num_targets(table) != 1) 3066 goto out; 3067 ti = dm_table_get_target(table, 0); 3068 3069 ret = -EINVAL; 3070 if (!ti->type->iterate_devices) 3071 goto out; 3072 3073 ret = ti->type->iterate_devices(ti, fn, data); 3074 out: 3075 dm_put_live_table(md, srcu_idx); 3076 return ret; 3077 } 3078 3079 /* 3080 * For register / unregister we need to manually call out to every path. 3081 */ 3082 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3083 sector_t start, sector_t len, void *data) 3084 { 3085 struct dm_pr *pr = data; 3086 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3087 3088 if (!ops || !ops->pr_register) 3089 return -EOPNOTSUPP; 3090 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3091 } 3092 3093 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3094 u32 flags) 3095 { 3096 struct dm_pr pr = { 3097 .old_key = old_key, 3098 .new_key = new_key, 3099 .flags = flags, 3100 .fail_early = true, 3101 }; 3102 int ret; 3103 3104 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3105 if (ret && new_key) { 3106 /* unregister all paths if we failed to register any path */ 3107 pr.old_key = new_key; 3108 pr.new_key = 0; 3109 pr.flags = 0; 3110 pr.fail_early = false; 3111 dm_call_pr(bdev, __dm_pr_register, &pr); 3112 } 3113 3114 return ret; 3115 } 3116 3117 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3118 u32 flags) 3119 { 3120 struct mapped_device *md = bdev->bd_disk->private_data; 3121 const struct pr_ops *ops; 3122 int r, srcu_idx; 3123 3124 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3125 if (r < 0) 3126 goto out; 3127 3128 ops = bdev->bd_disk->fops->pr_ops; 3129 if (ops && ops->pr_reserve) 3130 r = ops->pr_reserve(bdev, key, type, flags); 3131 else 3132 r = -EOPNOTSUPP; 3133 out: 3134 dm_unprepare_ioctl(md, srcu_idx); 3135 return r; 3136 } 3137 3138 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3139 { 3140 struct mapped_device *md = bdev->bd_disk->private_data; 3141 const struct pr_ops *ops; 3142 int r, srcu_idx; 3143 3144 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3145 if (r < 0) 3146 goto out; 3147 3148 ops = bdev->bd_disk->fops->pr_ops; 3149 if (ops && ops->pr_release) 3150 r = ops->pr_release(bdev, key, type); 3151 else 3152 r = -EOPNOTSUPP; 3153 out: 3154 dm_unprepare_ioctl(md, srcu_idx); 3155 return r; 3156 } 3157 3158 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3159 enum pr_type type, bool abort) 3160 { 3161 struct mapped_device *md = bdev->bd_disk->private_data; 3162 const struct pr_ops *ops; 3163 int r, srcu_idx; 3164 3165 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3166 if (r < 0) 3167 goto out; 3168 3169 ops = bdev->bd_disk->fops->pr_ops; 3170 if (ops && ops->pr_preempt) 3171 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3172 else 3173 r = -EOPNOTSUPP; 3174 out: 3175 dm_unprepare_ioctl(md, srcu_idx); 3176 return r; 3177 } 3178 3179 static int dm_pr_clear(struct block_device *bdev, u64 key) 3180 { 3181 struct mapped_device *md = bdev->bd_disk->private_data; 3182 const struct pr_ops *ops; 3183 int r, srcu_idx; 3184 3185 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3186 if (r < 0) 3187 goto out; 3188 3189 ops = bdev->bd_disk->fops->pr_ops; 3190 if (ops && ops->pr_clear) 3191 r = ops->pr_clear(bdev, key); 3192 else 3193 r = -EOPNOTSUPP; 3194 out: 3195 dm_unprepare_ioctl(md, srcu_idx); 3196 return r; 3197 } 3198 3199 static const struct pr_ops dm_pr_ops = { 3200 .pr_register = dm_pr_register, 3201 .pr_reserve = dm_pr_reserve, 3202 .pr_release = dm_pr_release, 3203 .pr_preempt = dm_pr_preempt, 3204 .pr_clear = dm_pr_clear, 3205 }; 3206 3207 static const struct block_device_operations dm_blk_dops = { 3208 .submit_bio = dm_submit_bio, 3209 .poll_bio = dm_poll_bio, 3210 .open = dm_blk_open, 3211 .release = dm_blk_close, 3212 .ioctl = dm_blk_ioctl, 3213 .getgeo = dm_blk_getgeo, 3214 .report_zones = dm_blk_report_zones, 3215 .pr_ops = &dm_pr_ops, 3216 .owner = THIS_MODULE 3217 }; 3218 3219 static const struct block_device_operations dm_rq_blk_dops = { 3220 .open = dm_blk_open, 3221 .release = dm_blk_close, 3222 .ioctl = dm_blk_ioctl, 3223 .getgeo = dm_blk_getgeo, 3224 .pr_ops = &dm_pr_ops, 3225 .owner = THIS_MODULE 3226 }; 3227 3228 static const struct dax_operations dm_dax_ops = { 3229 .direct_access = dm_dax_direct_access, 3230 .zero_page_range = dm_dax_zero_page_range, 3231 .recovery_write = dm_dax_recovery_write, 3232 }; 3233 3234 /* 3235 * module hooks 3236 */ 3237 module_init(dm_init); 3238 module_exit(dm_exit); 3239 3240 module_param(major, uint, 0); 3241 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3242 3243 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3244 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3245 3246 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3247 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3248 3249 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 3250 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3251 3252 MODULE_DESCRIPTION(DM_NAME " driver"); 3253 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3254 MODULE_LICENSE("GPL"); 3255