xref: /openbmc/linux/drivers/md/dm.c (revision e8e0929d)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 /*
28  * Cookies are numeric values sent with CHANGE and REMOVE
29  * uevents while resuming, removing or renaming the device.
30  */
31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
32 #define DM_COOKIE_LENGTH 24
33 
34 static const char *_name = DM_NAME;
35 
36 static unsigned int major = 0;
37 static unsigned int _major = 0;
38 
39 static DEFINE_SPINLOCK(_minor_lock);
40 /*
41  * For bio-based dm.
42  * One of these is allocated per bio.
43  */
44 struct dm_io {
45 	struct mapped_device *md;
46 	int error;
47 	atomic_t io_count;
48 	struct bio *bio;
49 	unsigned long start_time;
50 };
51 
52 /*
53  * For bio-based dm.
54  * One of these is allocated per target within a bio.  Hopefully
55  * this will be simplified out one day.
56  */
57 struct dm_target_io {
58 	struct dm_io *io;
59 	struct dm_target *ti;
60 	union map_info info;
61 };
62 
63 /*
64  * For request-based dm.
65  * One of these is allocated per request.
66  */
67 struct dm_rq_target_io {
68 	struct mapped_device *md;
69 	struct dm_target *ti;
70 	struct request *orig, clone;
71 	int error;
72 	union map_info info;
73 };
74 
75 /*
76  * For request-based dm.
77  * One of these is allocated per bio.
78  */
79 struct dm_rq_clone_bio_info {
80 	struct bio *orig;
81 	struct dm_rq_target_io *tio;
82 };
83 
84 union map_info *dm_get_mapinfo(struct bio *bio)
85 {
86 	if (bio && bio->bi_private)
87 		return &((struct dm_target_io *)bio->bi_private)->info;
88 	return NULL;
89 }
90 
91 union map_info *dm_get_rq_mapinfo(struct request *rq)
92 {
93 	if (rq && rq->end_io_data)
94 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
95 	return NULL;
96 }
97 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
98 
99 #define MINOR_ALLOCED ((void *)-1)
100 
101 /*
102  * Bits for the md->flags field.
103  */
104 #define DMF_BLOCK_IO_FOR_SUSPEND 0
105 #define DMF_SUSPENDED 1
106 #define DMF_FROZEN 2
107 #define DMF_FREEING 3
108 #define DMF_DELETING 4
109 #define DMF_NOFLUSH_SUSPENDING 5
110 #define DMF_QUEUE_IO_TO_THREAD 6
111 
112 /*
113  * Work processed by per-device workqueue.
114  */
115 struct mapped_device {
116 	struct rw_semaphore io_lock;
117 	struct mutex suspend_lock;
118 	rwlock_t map_lock;
119 	atomic_t holders;
120 	atomic_t open_count;
121 
122 	unsigned long flags;
123 
124 	struct request_queue *queue;
125 	struct gendisk *disk;
126 	char name[16];
127 
128 	void *interface_ptr;
129 
130 	/*
131 	 * A list of ios that arrived while we were suspended.
132 	 */
133 	atomic_t pending;
134 	wait_queue_head_t wait;
135 	struct work_struct work;
136 	struct bio_list deferred;
137 	spinlock_t deferred_lock;
138 
139 	/*
140 	 * An error from the barrier request currently being processed.
141 	 */
142 	int barrier_error;
143 
144 	/*
145 	 * Processing queue (flush/barriers)
146 	 */
147 	struct workqueue_struct *wq;
148 
149 	/*
150 	 * The current mapping.
151 	 */
152 	struct dm_table *map;
153 
154 	/*
155 	 * io objects are allocated from here.
156 	 */
157 	mempool_t *io_pool;
158 	mempool_t *tio_pool;
159 
160 	struct bio_set *bs;
161 
162 	/*
163 	 * Event handling.
164 	 */
165 	atomic_t event_nr;
166 	wait_queue_head_t eventq;
167 	atomic_t uevent_seq;
168 	struct list_head uevent_list;
169 	spinlock_t uevent_lock; /* Protect access to uevent_list */
170 
171 	/*
172 	 * freeze/thaw support require holding onto a super block
173 	 */
174 	struct super_block *frozen_sb;
175 	struct block_device *bdev;
176 
177 	/* forced geometry settings */
178 	struct hd_geometry geometry;
179 
180 	/* marker of flush suspend for request-based dm */
181 	struct request suspend_rq;
182 
183 	/* For saving the address of __make_request for request based dm */
184 	make_request_fn *saved_make_request_fn;
185 
186 	/* sysfs handle */
187 	struct kobject kobj;
188 
189 	/* zero-length barrier that will be cloned and submitted to targets */
190 	struct bio barrier_bio;
191 };
192 
193 /*
194  * For mempools pre-allocation at the table loading time.
195  */
196 struct dm_md_mempools {
197 	mempool_t *io_pool;
198 	mempool_t *tio_pool;
199 	struct bio_set *bs;
200 };
201 
202 #define MIN_IOS 256
203 static struct kmem_cache *_io_cache;
204 static struct kmem_cache *_tio_cache;
205 static struct kmem_cache *_rq_tio_cache;
206 static struct kmem_cache *_rq_bio_info_cache;
207 
208 static int __init local_init(void)
209 {
210 	int r = -ENOMEM;
211 
212 	/* allocate a slab for the dm_ios */
213 	_io_cache = KMEM_CACHE(dm_io, 0);
214 	if (!_io_cache)
215 		return r;
216 
217 	/* allocate a slab for the target ios */
218 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
219 	if (!_tio_cache)
220 		goto out_free_io_cache;
221 
222 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
223 	if (!_rq_tio_cache)
224 		goto out_free_tio_cache;
225 
226 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
227 	if (!_rq_bio_info_cache)
228 		goto out_free_rq_tio_cache;
229 
230 	r = dm_uevent_init();
231 	if (r)
232 		goto out_free_rq_bio_info_cache;
233 
234 	_major = major;
235 	r = register_blkdev(_major, _name);
236 	if (r < 0)
237 		goto out_uevent_exit;
238 
239 	if (!_major)
240 		_major = r;
241 
242 	return 0;
243 
244 out_uevent_exit:
245 	dm_uevent_exit();
246 out_free_rq_bio_info_cache:
247 	kmem_cache_destroy(_rq_bio_info_cache);
248 out_free_rq_tio_cache:
249 	kmem_cache_destroy(_rq_tio_cache);
250 out_free_tio_cache:
251 	kmem_cache_destroy(_tio_cache);
252 out_free_io_cache:
253 	kmem_cache_destroy(_io_cache);
254 
255 	return r;
256 }
257 
258 static void local_exit(void)
259 {
260 	kmem_cache_destroy(_rq_bio_info_cache);
261 	kmem_cache_destroy(_rq_tio_cache);
262 	kmem_cache_destroy(_tio_cache);
263 	kmem_cache_destroy(_io_cache);
264 	unregister_blkdev(_major, _name);
265 	dm_uevent_exit();
266 
267 	_major = 0;
268 
269 	DMINFO("cleaned up");
270 }
271 
272 static int (*_inits[])(void) __initdata = {
273 	local_init,
274 	dm_target_init,
275 	dm_linear_init,
276 	dm_stripe_init,
277 	dm_kcopyd_init,
278 	dm_interface_init,
279 };
280 
281 static void (*_exits[])(void) = {
282 	local_exit,
283 	dm_target_exit,
284 	dm_linear_exit,
285 	dm_stripe_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 };
289 
290 static int __init dm_init(void)
291 {
292 	const int count = ARRAY_SIZE(_inits);
293 
294 	int r, i;
295 
296 	for (i = 0; i < count; i++) {
297 		r = _inits[i]();
298 		if (r)
299 			goto bad;
300 	}
301 
302 	return 0;
303 
304       bad:
305 	while (i--)
306 		_exits[i]();
307 
308 	return r;
309 }
310 
311 static void __exit dm_exit(void)
312 {
313 	int i = ARRAY_SIZE(_exits);
314 
315 	while (i--)
316 		_exits[i]();
317 }
318 
319 /*
320  * Block device functions
321  */
322 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
323 {
324 	struct mapped_device *md;
325 
326 	spin_lock(&_minor_lock);
327 
328 	md = bdev->bd_disk->private_data;
329 	if (!md)
330 		goto out;
331 
332 	if (test_bit(DMF_FREEING, &md->flags) ||
333 	    test_bit(DMF_DELETING, &md->flags)) {
334 		md = NULL;
335 		goto out;
336 	}
337 
338 	dm_get(md);
339 	atomic_inc(&md->open_count);
340 
341 out:
342 	spin_unlock(&_minor_lock);
343 
344 	return md ? 0 : -ENXIO;
345 }
346 
347 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
348 {
349 	struct mapped_device *md = disk->private_data;
350 	atomic_dec(&md->open_count);
351 	dm_put(md);
352 	return 0;
353 }
354 
355 int dm_open_count(struct mapped_device *md)
356 {
357 	return atomic_read(&md->open_count);
358 }
359 
360 /*
361  * Guarantees nothing is using the device before it's deleted.
362  */
363 int dm_lock_for_deletion(struct mapped_device *md)
364 {
365 	int r = 0;
366 
367 	spin_lock(&_minor_lock);
368 
369 	if (dm_open_count(md))
370 		r = -EBUSY;
371 	else
372 		set_bit(DMF_DELETING, &md->flags);
373 
374 	spin_unlock(&_minor_lock);
375 
376 	return r;
377 }
378 
379 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
380 {
381 	struct mapped_device *md = bdev->bd_disk->private_data;
382 
383 	return dm_get_geometry(md, geo);
384 }
385 
386 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
387 			unsigned int cmd, unsigned long arg)
388 {
389 	struct mapped_device *md = bdev->bd_disk->private_data;
390 	struct dm_table *map = dm_get_table(md);
391 	struct dm_target *tgt;
392 	int r = -ENOTTY;
393 
394 	if (!map || !dm_table_get_size(map))
395 		goto out;
396 
397 	/* We only support devices that have a single target */
398 	if (dm_table_get_num_targets(map) != 1)
399 		goto out;
400 
401 	tgt = dm_table_get_target(map, 0);
402 
403 	if (dm_suspended(md)) {
404 		r = -EAGAIN;
405 		goto out;
406 	}
407 
408 	if (tgt->type->ioctl)
409 		r = tgt->type->ioctl(tgt, cmd, arg);
410 
411 out:
412 	dm_table_put(map);
413 
414 	return r;
415 }
416 
417 static struct dm_io *alloc_io(struct mapped_device *md)
418 {
419 	return mempool_alloc(md->io_pool, GFP_NOIO);
420 }
421 
422 static void free_io(struct mapped_device *md, struct dm_io *io)
423 {
424 	mempool_free(io, md->io_pool);
425 }
426 
427 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
428 {
429 	mempool_free(tio, md->tio_pool);
430 }
431 
432 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md)
433 {
434 	return mempool_alloc(md->tio_pool, GFP_ATOMIC);
435 }
436 
437 static void free_rq_tio(struct dm_rq_target_io *tio)
438 {
439 	mempool_free(tio, tio->md->tio_pool);
440 }
441 
442 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
443 {
444 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
445 }
446 
447 static void free_bio_info(struct dm_rq_clone_bio_info *info)
448 {
449 	mempool_free(info, info->tio->md->io_pool);
450 }
451 
452 static void start_io_acct(struct dm_io *io)
453 {
454 	struct mapped_device *md = io->md;
455 	int cpu;
456 
457 	io->start_time = jiffies;
458 
459 	cpu = part_stat_lock();
460 	part_round_stats(cpu, &dm_disk(md)->part0);
461 	part_stat_unlock();
462 	dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
463 }
464 
465 static void end_io_acct(struct dm_io *io)
466 {
467 	struct mapped_device *md = io->md;
468 	struct bio *bio = io->bio;
469 	unsigned long duration = jiffies - io->start_time;
470 	int pending, cpu;
471 	int rw = bio_data_dir(bio);
472 
473 	cpu = part_stat_lock();
474 	part_round_stats(cpu, &dm_disk(md)->part0);
475 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
476 	part_stat_unlock();
477 
478 	/*
479 	 * After this is decremented the bio must not be touched if it is
480 	 * a barrier.
481 	 */
482 	dm_disk(md)->part0.in_flight = pending =
483 		atomic_dec_return(&md->pending);
484 
485 	/* nudge anyone waiting on suspend queue */
486 	if (!pending)
487 		wake_up(&md->wait);
488 }
489 
490 /*
491  * Add the bio to the list of deferred io.
492  */
493 static void queue_io(struct mapped_device *md, struct bio *bio)
494 {
495 	down_write(&md->io_lock);
496 
497 	spin_lock_irq(&md->deferred_lock);
498 	bio_list_add(&md->deferred, bio);
499 	spin_unlock_irq(&md->deferred_lock);
500 
501 	if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
502 		queue_work(md->wq, &md->work);
503 
504 	up_write(&md->io_lock);
505 }
506 
507 /*
508  * Everyone (including functions in this file), should use this
509  * function to access the md->map field, and make sure they call
510  * dm_table_put() when finished.
511  */
512 struct dm_table *dm_get_table(struct mapped_device *md)
513 {
514 	struct dm_table *t;
515 	unsigned long flags;
516 
517 	read_lock_irqsave(&md->map_lock, flags);
518 	t = md->map;
519 	if (t)
520 		dm_table_get(t);
521 	read_unlock_irqrestore(&md->map_lock, flags);
522 
523 	return t;
524 }
525 
526 /*
527  * Get the geometry associated with a dm device
528  */
529 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
530 {
531 	*geo = md->geometry;
532 
533 	return 0;
534 }
535 
536 /*
537  * Set the geometry of a device.
538  */
539 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
540 {
541 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
542 
543 	if (geo->start > sz) {
544 		DMWARN("Start sector is beyond the geometry limits.");
545 		return -EINVAL;
546 	}
547 
548 	md->geometry = *geo;
549 
550 	return 0;
551 }
552 
553 /*-----------------------------------------------------------------
554  * CRUD START:
555  *   A more elegant soln is in the works that uses the queue
556  *   merge fn, unfortunately there are a couple of changes to
557  *   the block layer that I want to make for this.  So in the
558  *   interests of getting something for people to use I give
559  *   you this clearly demarcated crap.
560  *---------------------------------------------------------------*/
561 
562 static int __noflush_suspending(struct mapped_device *md)
563 {
564 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
565 }
566 
567 /*
568  * Decrements the number of outstanding ios that a bio has been
569  * cloned into, completing the original io if necc.
570  */
571 static void dec_pending(struct dm_io *io, int error)
572 {
573 	unsigned long flags;
574 	int io_error;
575 	struct bio *bio;
576 	struct mapped_device *md = io->md;
577 
578 	/* Push-back supersedes any I/O errors */
579 	if (error && !(io->error > 0 && __noflush_suspending(md)))
580 		io->error = error;
581 
582 	if (atomic_dec_and_test(&io->io_count)) {
583 		if (io->error == DM_ENDIO_REQUEUE) {
584 			/*
585 			 * Target requested pushing back the I/O.
586 			 */
587 			spin_lock_irqsave(&md->deferred_lock, flags);
588 			if (__noflush_suspending(md)) {
589 				if (!bio_rw_flagged(io->bio, BIO_RW_BARRIER))
590 					bio_list_add_head(&md->deferred,
591 							  io->bio);
592 			} else
593 				/* noflush suspend was interrupted. */
594 				io->error = -EIO;
595 			spin_unlock_irqrestore(&md->deferred_lock, flags);
596 		}
597 
598 		io_error = io->error;
599 		bio = io->bio;
600 
601 		if (bio_rw_flagged(bio, BIO_RW_BARRIER)) {
602 			/*
603 			 * There can be just one barrier request so we use
604 			 * a per-device variable for error reporting.
605 			 * Note that you can't touch the bio after end_io_acct
606 			 */
607 			if (!md->barrier_error && io_error != -EOPNOTSUPP)
608 				md->barrier_error = io_error;
609 			end_io_acct(io);
610 		} else {
611 			end_io_acct(io);
612 
613 			if (io_error != DM_ENDIO_REQUEUE) {
614 				trace_block_bio_complete(md->queue, bio);
615 
616 				bio_endio(bio, io_error);
617 			}
618 		}
619 
620 		free_io(md, io);
621 	}
622 }
623 
624 static void clone_endio(struct bio *bio, int error)
625 {
626 	int r = 0;
627 	struct dm_target_io *tio = bio->bi_private;
628 	struct dm_io *io = tio->io;
629 	struct mapped_device *md = tio->io->md;
630 	dm_endio_fn endio = tio->ti->type->end_io;
631 
632 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
633 		error = -EIO;
634 
635 	if (endio) {
636 		r = endio(tio->ti, bio, error, &tio->info);
637 		if (r < 0 || r == DM_ENDIO_REQUEUE)
638 			/*
639 			 * error and requeue request are handled
640 			 * in dec_pending().
641 			 */
642 			error = r;
643 		else if (r == DM_ENDIO_INCOMPLETE)
644 			/* The target will handle the io */
645 			return;
646 		else if (r) {
647 			DMWARN("unimplemented target endio return value: %d", r);
648 			BUG();
649 		}
650 	}
651 
652 	/*
653 	 * Store md for cleanup instead of tio which is about to get freed.
654 	 */
655 	bio->bi_private = md->bs;
656 
657 	free_tio(md, tio);
658 	bio_put(bio);
659 	dec_pending(io, error);
660 }
661 
662 /*
663  * Partial completion handling for request-based dm
664  */
665 static void end_clone_bio(struct bio *clone, int error)
666 {
667 	struct dm_rq_clone_bio_info *info = clone->bi_private;
668 	struct dm_rq_target_io *tio = info->tio;
669 	struct bio *bio = info->orig;
670 	unsigned int nr_bytes = info->orig->bi_size;
671 
672 	bio_put(clone);
673 
674 	if (tio->error)
675 		/*
676 		 * An error has already been detected on the request.
677 		 * Once error occurred, just let clone->end_io() handle
678 		 * the remainder.
679 		 */
680 		return;
681 	else if (error) {
682 		/*
683 		 * Don't notice the error to the upper layer yet.
684 		 * The error handling decision is made by the target driver,
685 		 * when the request is completed.
686 		 */
687 		tio->error = error;
688 		return;
689 	}
690 
691 	/*
692 	 * I/O for the bio successfully completed.
693 	 * Notice the data completion to the upper layer.
694 	 */
695 
696 	/*
697 	 * bios are processed from the head of the list.
698 	 * So the completing bio should always be rq->bio.
699 	 * If it's not, something wrong is happening.
700 	 */
701 	if (tio->orig->bio != bio)
702 		DMERR("bio completion is going in the middle of the request");
703 
704 	/*
705 	 * Update the original request.
706 	 * Do not use blk_end_request() here, because it may complete
707 	 * the original request before the clone, and break the ordering.
708 	 */
709 	blk_update_request(tio->orig, 0, nr_bytes);
710 }
711 
712 /*
713  * Don't touch any member of the md after calling this function because
714  * the md may be freed in dm_put() at the end of this function.
715  * Or do dm_get() before calling this function and dm_put() later.
716  */
717 static void rq_completed(struct mapped_device *md, int run_queue)
718 {
719 	int wakeup_waiters = 0;
720 	struct request_queue *q = md->queue;
721 	unsigned long flags;
722 
723 	spin_lock_irqsave(q->queue_lock, flags);
724 	if (!queue_in_flight(q))
725 		wakeup_waiters = 1;
726 	spin_unlock_irqrestore(q->queue_lock, flags);
727 
728 	/* nudge anyone waiting on suspend queue */
729 	if (wakeup_waiters)
730 		wake_up(&md->wait);
731 
732 	if (run_queue)
733 		blk_run_queue(q);
734 
735 	/*
736 	 * dm_put() must be at the end of this function. See the comment above
737 	 */
738 	dm_put(md);
739 }
740 
741 static void free_rq_clone(struct request *clone)
742 {
743 	struct dm_rq_target_io *tio = clone->end_io_data;
744 
745 	blk_rq_unprep_clone(clone);
746 	free_rq_tio(tio);
747 }
748 
749 static void dm_unprep_request(struct request *rq)
750 {
751 	struct request *clone = rq->special;
752 
753 	rq->special = NULL;
754 	rq->cmd_flags &= ~REQ_DONTPREP;
755 
756 	free_rq_clone(clone);
757 }
758 
759 /*
760  * Requeue the original request of a clone.
761  */
762 void dm_requeue_unmapped_request(struct request *clone)
763 {
764 	struct dm_rq_target_io *tio = clone->end_io_data;
765 	struct mapped_device *md = tio->md;
766 	struct request *rq = tio->orig;
767 	struct request_queue *q = rq->q;
768 	unsigned long flags;
769 
770 	dm_unprep_request(rq);
771 
772 	spin_lock_irqsave(q->queue_lock, flags);
773 	if (elv_queue_empty(q))
774 		blk_plug_device(q);
775 	blk_requeue_request(q, rq);
776 	spin_unlock_irqrestore(q->queue_lock, flags);
777 
778 	rq_completed(md, 0);
779 }
780 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
781 
782 static void __stop_queue(struct request_queue *q)
783 {
784 	blk_stop_queue(q);
785 }
786 
787 static void stop_queue(struct request_queue *q)
788 {
789 	unsigned long flags;
790 
791 	spin_lock_irqsave(q->queue_lock, flags);
792 	__stop_queue(q);
793 	spin_unlock_irqrestore(q->queue_lock, flags);
794 }
795 
796 static void __start_queue(struct request_queue *q)
797 {
798 	if (blk_queue_stopped(q))
799 		blk_start_queue(q);
800 }
801 
802 static void start_queue(struct request_queue *q)
803 {
804 	unsigned long flags;
805 
806 	spin_lock_irqsave(q->queue_lock, flags);
807 	__start_queue(q);
808 	spin_unlock_irqrestore(q->queue_lock, flags);
809 }
810 
811 /*
812  * Complete the clone and the original request.
813  * Must be called without queue lock.
814  */
815 static void dm_end_request(struct request *clone, int error)
816 {
817 	struct dm_rq_target_io *tio = clone->end_io_data;
818 	struct mapped_device *md = tio->md;
819 	struct request *rq = tio->orig;
820 
821 	if (blk_pc_request(rq)) {
822 		rq->errors = clone->errors;
823 		rq->resid_len = clone->resid_len;
824 
825 		if (rq->sense)
826 			/*
827 			 * We are using the sense buffer of the original
828 			 * request.
829 			 * So setting the length of the sense data is enough.
830 			 */
831 			rq->sense_len = clone->sense_len;
832 	}
833 
834 	free_rq_clone(clone);
835 
836 	blk_end_request_all(rq, error);
837 
838 	rq_completed(md, 1);
839 }
840 
841 /*
842  * Request completion handler for request-based dm
843  */
844 static void dm_softirq_done(struct request *rq)
845 {
846 	struct request *clone = rq->completion_data;
847 	struct dm_rq_target_io *tio = clone->end_io_data;
848 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
849 	int error = tio->error;
850 
851 	if (!(rq->cmd_flags & REQ_FAILED) && rq_end_io)
852 		error = rq_end_io(tio->ti, clone, error, &tio->info);
853 
854 	if (error <= 0)
855 		/* The target wants to complete the I/O */
856 		dm_end_request(clone, error);
857 	else if (error == DM_ENDIO_INCOMPLETE)
858 		/* The target will handle the I/O */
859 		return;
860 	else if (error == DM_ENDIO_REQUEUE)
861 		/* The target wants to requeue the I/O */
862 		dm_requeue_unmapped_request(clone);
863 	else {
864 		DMWARN("unimplemented target endio return value: %d", error);
865 		BUG();
866 	}
867 }
868 
869 /*
870  * Complete the clone and the original request with the error status
871  * through softirq context.
872  */
873 static void dm_complete_request(struct request *clone, int error)
874 {
875 	struct dm_rq_target_io *tio = clone->end_io_data;
876 	struct request *rq = tio->orig;
877 
878 	tio->error = error;
879 	rq->completion_data = clone;
880 	blk_complete_request(rq);
881 }
882 
883 /*
884  * Complete the not-mapped clone and the original request with the error status
885  * through softirq context.
886  * Target's rq_end_io() function isn't called.
887  * This may be used when the target's map_rq() function fails.
888  */
889 void dm_kill_unmapped_request(struct request *clone, int error)
890 {
891 	struct dm_rq_target_io *tio = clone->end_io_data;
892 	struct request *rq = tio->orig;
893 
894 	rq->cmd_flags |= REQ_FAILED;
895 	dm_complete_request(clone, error);
896 }
897 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
898 
899 /*
900  * Called with the queue lock held
901  */
902 static void end_clone_request(struct request *clone, int error)
903 {
904 	/*
905 	 * For just cleaning up the information of the queue in which
906 	 * the clone was dispatched.
907 	 * The clone is *NOT* freed actually here because it is alloced from
908 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
909 	 */
910 	__blk_put_request(clone->q, clone);
911 
912 	/*
913 	 * Actual request completion is done in a softirq context which doesn't
914 	 * hold the queue lock.  Otherwise, deadlock could occur because:
915 	 *     - another request may be submitted by the upper level driver
916 	 *       of the stacking during the completion
917 	 *     - the submission which requires queue lock may be done
918 	 *       against this queue
919 	 */
920 	dm_complete_request(clone, error);
921 }
922 
923 static sector_t max_io_len(struct mapped_device *md,
924 			   sector_t sector, struct dm_target *ti)
925 {
926 	sector_t offset = sector - ti->begin;
927 	sector_t len = ti->len - offset;
928 
929 	/*
930 	 * Does the target need to split even further ?
931 	 */
932 	if (ti->split_io) {
933 		sector_t boundary;
934 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
935 			   - offset;
936 		if (len > boundary)
937 			len = boundary;
938 	}
939 
940 	return len;
941 }
942 
943 static void __map_bio(struct dm_target *ti, struct bio *clone,
944 		      struct dm_target_io *tio)
945 {
946 	int r;
947 	sector_t sector;
948 	struct mapped_device *md;
949 
950 	clone->bi_end_io = clone_endio;
951 	clone->bi_private = tio;
952 
953 	/*
954 	 * Map the clone.  If r == 0 we don't need to do
955 	 * anything, the target has assumed ownership of
956 	 * this io.
957 	 */
958 	atomic_inc(&tio->io->io_count);
959 	sector = clone->bi_sector;
960 	r = ti->type->map(ti, clone, &tio->info);
961 	if (r == DM_MAPIO_REMAPPED) {
962 		/* the bio has been remapped so dispatch it */
963 
964 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
965 				    tio->io->bio->bi_bdev->bd_dev, sector);
966 
967 		generic_make_request(clone);
968 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
969 		/* error the io and bail out, or requeue it if needed */
970 		md = tio->io->md;
971 		dec_pending(tio->io, r);
972 		/*
973 		 * Store bio_set for cleanup.
974 		 */
975 		clone->bi_private = md->bs;
976 		bio_put(clone);
977 		free_tio(md, tio);
978 	} else if (r) {
979 		DMWARN("unimplemented target map return value: %d", r);
980 		BUG();
981 	}
982 }
983 
984 struct clone_info {
985 	struct mapped_device *md;
986 	struct dm_table *map;
987 	struct bio *bio;
988 	struct dm_io *io;
989 	sector_t sector;
990 	sector_t sector_count;
991 	unsigned short idx;
992 };
993 
994 static void dm_bio_destructor(struct bio *bio)
995 {
996 	struct bio_set *bs = bio->bi_private;
997 
998 	bio_free(bio, bs);
999 }
1000 
1001 /*
1002  * Creates a little bio that is just does part of a bvec.
1003  */
1004 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1005 			      unsigned short idx, unsigned int offset,
1006 			      unsigned int len, struct bio_set *bs)
1007 {
1008 	struct bio *clone;
1009 	struct bio_vec *bv = bio->bi_io_vec + idx;
1010 
1011 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1012 	clone->bi_destructor = dm_bio_destructor;
1013 	*clone->bi_io_vec = *bv;
1014 
1015 	clone->bi_sector = sector;
1016 	clone->bi_bdev = bio->bi_bdev;
1017 	clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
1018 	clone->bi_vcnt = 1;
1019 	clone->bi_size = to_bytes(len);
1020 	clone->bi_io_vec->bv_offset = offset;
1021 	clone->bi_io_vec->bv_len = clone->bi_size;
1022 	clone->bi_flags |= 1 << BIO_CLONED;
1023 
1024 	if (bio_integrity(bio)) {
1025 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1026 		bio_integrity_trim(clone,
1027 				   bio_sector_offset(bio, idx, offset), len);
1028 	}
1029 
1030 	return clone;
1031 }
1032 
1033 /*
1034  * Creates a bio that consists of range of complete bvecs.
1035  */
1036 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1037 			     unsigned short idx, unsigned short bv_count,
1038 			     unsigned int len, struct bio_set *bs)
1039 {
1040 	struct bio *clone;
1041 
1042 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1043 	__bio_clone(clone, bio);
1044 	clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
1045 	clone->bi_destructor = dm_bio_destructor;
1046 	clone->bi_sector = sector;
1047 	clone->bi_idx = idx;
1048 	clone->bi_vcnt = idx + bv_count;
1049 	clone->bi_size = to_bytes(len);
1050 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1051 
1052 	if (bio_integrity(bio)) {
1053 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1054 
1055 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1056 			bio_integrity_trim(clone,
1057 					   bio_sector_offset(bio, idx, 0), len);
1058 	}
1059 
1060 	return clone;
1061 }
1062 
1063 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1064 				      struct dm_target *ti)
1065 {
1066 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1067 
1068 	tio->io = ci->io;
1069 	tio->ti = ti;
1070 	memset(&tio->info, 0, sizeof(tio->info));
1071 
1072 	return tio;
1073 }
1074 
1075 static void __flush_target(struct clone_info *ci, struct dm_target *ti,
1076 			  unsigned flush_nr)
1077 {
1078 	struct dm_target_io *tio = alloc_tio(ci, ti);
1079 	struct bio *clone;
1080 
1081 	tio->info.flush_request = flush_nr;
1082 
1083 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1084 	__bio_clone(clone, ci->bio);
1085 	clone->bi_destructor = dm_bio_destructor;
1086 
1087 	__map_bio(ti, clone, tio);
1088 }
1089 
1090 static int __clone_and_map_empty_barrier(struct clone_info *ci)
1091 {
1092 	unsigned target_nr = 0, flush_nr;
1093 	struct dm_target *ti;
1094 
1095 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1096 		for (flush_nr = 0; flush_nr < ti->num_flush_requests;
1097 		     flush_nr++)
1098 			__flush_target(ci, ti, flush_nr);
1099 
1100 	ci->sector_count = 0;
1101 
1102 	return 0;
1103 }
1104 
1105 static int __clone_and_map(struct clone_info *ci)
1106 {
1107 	struct bio *clone, *bio = ci->bio;
1108 	struct dm_target *ti;
1109 	sector_t len = 0, max;
1110 	struct dm_target_io *tio;
1111 
1112 	if (unlikely(bio_empty_barrier(bio)))
1113 		return __clone_and_map_empty_barrier(ci);
1114 
1115 	ti = dm_table_find_target(ci->map, ci->sector);
1116 	if (!dm_target_is_valid(ti))
1117 		return -EIO;
1118 
1119 	max = max_io_len(ci->md, ci->sector, ti);
1120 
1121 	/*
1122 	 * Allocate a target io object.
1123 	 */
1124 	tio = alloc_tio(ci, ti);
1125 
1126 	if (ci->sector_count <= max) {
1127 		/*
1128 		 * Optimise for the simple case where we can do all of
1129 		 * the remaining io with a single clone.
1130 		 */
1131 		clone = clone_bio(bio, ci->sector, ci->idx,
1132 				  bio->bi_vcnt - ci->idx, ci->sector_count,
1133 				  ci->md->bs);
1134 		__map_bio(ti, clone, tio);
1135 		ci->sector_count = 0;
1136 
1137 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1138 		/*
1139 		 * There are some bvecs that don't span targets.
1140 		 * Do as many of these as possible.
1141 		 */
1142 		int i;
1143 		sector_t remaining = max;
1144 		sector_t bv_len;
1145 
1146 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1147 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1148 
1149 			if (bv_len > remaining)
1150 				break;
1151 
1152 			remaining -= bv_len;
1153 			len += bv_len;
1154 		}
1155 
1156 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1157 				  ci->md->bs);
1158 		__map_bio(ti, clone, tio);
1159 
1160 		ci->sector += len;
1161 		ci->sector_count -= len;
1162 		ci->idx = i;
1163 
1164 	} else {
1165 		/*
1166 		 * Handle a bvec that must be split between two or more targets.
1167 		 */
1168 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1169 		sector_t remaining = to_sector(bv->bv_len);
1170 		unsigned int offset = 0;
1171 
1172 		do {
1173 			if (offset) {
1174 				ti = dm_table_find_target(ci->map, ci->sector);
1175 				if (!dm_target_is_valid(ti))
1176 					return -EIO;
1177 
1178 				max = max_io_len(ci->md, ci->sector, ti);
1179 
1180 				tio = alloc_tio(ci, ti);
1181 			}
1182 
1183 			len = min(remaining, max);
1184 
1185 			clone = split_bvec(bio, ci->sector, ci->idx,
1186 					   bv->bv_offset + offset, len,
1187 					   ci->md->bs);
1188 
1189 			__map_bio(ti, clone, tio);
1190 
1191 			ci->sector += len;
1192 			ci->sector_count -= len;
1193 			offset += to_bytes(len);
1194 		} while (remaining -= len);
1195 
1196 		ci->idx++;
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 /*
1203  * Split the bio into several clones and submit it to targets.
1204  */
1205 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1206 {
1207 	struct clone_info ci;
1208 	int error = 0;
1209 
1210 	ci.map = dm_get_table(md);
1211 	if (unlikely(!ci.map)) {
1212 		if (!bio_rw_flagged(bio, BIO_RW_BARRIER))
1213 			bio_io_error(bio);
1214 		else
1215 			if (!md->barrier_error)
1216 				md->barrier_error = -EIO;
1217 		return;
1218 	}
1219 
1220 	ci.md = md;
1221 	ci.bio = bio;
1222 	ci.io = alloc_io(md);
1223 	ci.io->error = 0;
1224 	atomic_set(&ci.io->io_count, 1);
1225 	ci.io->bio = bio;
1226 	ci.io->md = md;
1227 	ci.sector = bio->bi_sector;
1228 	ci.sector_count = bio_sectors(bio);
1229 	if (unlikely(bio_empty_barrier(bio)))
1230 		ci.sector_count = 1;
1231 	ci.idx = bio->bi_idx;
1232 
1233 	start_io_acct(ci.io);
1234 	while (ci.sector_count && !error)
1235 		error = __clone_and_map(&ci);
1236 
1237 	/* drop the extra reference count */
1238 	dec_pending(ci.io, error);
1239 	dm_table_put(ci.map);
1240 }
1241 /*-----------------------------------------------------------------
1242  * CRUD END
1243  *---------------------------------------------------------------*/
1244 
1245 static int dm_merge_bvec(struct request_queue *q,
1246 			 struct bvec_merge_data *bvm,
1247 			 struct bio_vec *biovec)
1248 {
1249 	struct mapped_device *md = q->queuedata;
1250 	struct dm_table *map = dm_get_table(md);
1251 	struct dm_target *ti;
1252 	sector_t max_sectors;
1253 	int max_size = 0;
1254 
1255 	if (unlikely(!map))
1256 		goto out;
1257 
1258 	ti = dm_table_find_target(map, bvm->bi_sector);
1259 	if (!dm_target_is_valid(ti))
1260 		goto out_table;
1261 
1262 	/*
1263 	 * Find maximum amount of I/O that won't need splitting
1264 	 */
1265 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
1266 			  (sector_t) BIO_MAX_SECTORS);
1267 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1268 	if (max_size < 0)
1269 		max_size = 0;
1270 
1271 	/*
1272 	 * merge_bvec_fn() returns number of bytes
1273 	 * it can accept at this offset
1274 	 * max is precomputed maximal io size
1275 	 */
1276 	if (max_size && ti->type->merge)
1277 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1278 	/*
1279 	 * If the target doesn't support merge method and some of the devices
1280 	 * provided their merge_bvec method (we know this by looking at
1281 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1282 	 * entries.  So always set max_size to 0, and the code below allows
1283 	 * just one page.
1284 	 */
1285 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1286 
1287 		max_size = 0;
1288 
1289 out_table:
1290 	dm_table_put(map);
1291 
1292 out:
1293 	/*
1294 	 * Always allow an entire first page
1295 	 */
1296 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1297 		max_size = biovec->bv_len;
1298 
1299 	return max_size;
1300 }
1301 
1302 /*
1303  * The request function that just remaps the bio built up by
1304  * dm_merge_bvec.
1305  */
1306 static int _dm_request(struct request_queue *q, struct bio *bio)
1307 {
1308 	int rw = bio_data_dir(bio);
1309 	struct mapped_device *md = q->queuedata;
1310 	int cpu;
1311 
1312 	down_read(&md->io_lock);
1313 
1314 	cpu = part_stat_lock();
1315 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1316 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1317 	part_stat_unlock();
1318 
1319 	/*
1320 	 * If we're suspended or the thread is processing barriers
1321 	 * we have to queue this io for later.
1322 	 */
1323 	if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1324 	    unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
1325 		up_read(&md->io_lock);
1326 
1327 		if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1328 		    bio_rw(bio) == READA) {
1329 			bio_io_error(bio);
1330 			return 0;
1331 		}
1332 
1333 		queue_io(md, bio);
1334 
1335 		return 0;
1336 	}
1337 
1338 	__split_and_process_bio(md, bio);
1339 	up_read(&md->io_lock);
1340 	return 0;
1341 }
1342 
1343 static int dm_make_request(struct request_queue *q, struct bio *bio)
1344 {
1345 	struct mapped_device *md = q->queuedata;
1346 
1347 	if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
1348 		bio_endio(bio, -EOPNOTSUPP);
1349 		return 0;
1350 	}
1351 
1352 	return md->saved_make_request_fn(q, bio); /* call __make_request() */
1353 }
1354 
1355 static int dm_request_based(struct mapped_device *md)
1356 {
1357 	return blk_queue_stackable(md->queue);
1358 }
1359 
1360 static int dm_request(struct request_queue *q, struct bio *bio)
1361 {
1362 	struct mapped_device *md = q->queuedata;
1363 
1364 	if (dm_request_based(md))
1365 		return dm_make_request(q, bio);
1366 
1367 	return _dm_request(q, bio);
1368 }
1369 
1370 void dm_dispatch_request(struct request *rq)
1371 {
1372 	int r;
1373 
1374 	if (blk_queue_io_stat(rq->q))
1375 		rq->cmd_flags |= REQ_IO_STAT;
1376 
1377 	rq->start_time = jiffies;
1378 	r = blk_insert_cloned_request(rq->q, rq);
1379 	if (r)
1380 		dm_complete_request(rq, r);
1381 }
1382 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1383 
1384 static void dm_rq_bio_destructor(struct bio *bio)
1385 {
1386 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1387 	struct mapped_device *md = info->tio->md;
1388 
1389 	free_bio_info(info);
1390 	bio_free(bio, md->bs);
1391 }
1392 
1393 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1394 				 void *data)
1395 {
1396 	struct dm_rq_target_io *tio = data;
1397 	struct mapped_device *md = tio->md;
1398 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1399 
1400 	if (!info)
1401 		return -ENOMEM;
1402 
1403 	info->orig = bio_orig;
1404 	info->tio = tio;
1405 	bio->bi_end_io = end_clone_bio;
1406 	bio->bi_private = info;
1407 	bio->bi_destructor = dm_rq_bio_destructor;
1408 
1409 	return 0;
1410 }
1411 
1412 static int setup_clone(struct request *clone, struct request *rq,
1413 		       struct dm_rq_target_io *tio)
1414 {
1415 	int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1416 				  dm_rq_bio_constructor, tio);
1417 
1418 	if (r)
1419 		return r;
1420 
1421 	clone->cmd = rq->cmd;
1422 	clone->cmd_len = rq->cmd_len;
1423 	clone->sense = rq->sense;
1424 	clone->buffer = rq->buffer;
1425 	clone->end_io = end_clone_request;
1426 	clone->end_io_data = tio;
1427 
1428 	return 0;
1429 }
1430 
1431 static int dm_rq_flush_suspending(struct mapped_device *md)
1432 {
1433 	return !md->suspend_rq.special;
1434 }
1435 
1436 /*
1437  * Called with the queue lock held.
1438  */
1439 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1440 {
1441 	struct mapped_device *md = q->queuedata;
1442 	struct dm_rq_target_io *tio;
1443 	struct request *clone;
1444 
1445 	if (unlikely(rq == &md->suspend_rq)) {
1446 		if (dm_rq_flush_suspending(md))
1447 			return BLKPREP_OK;
1448 		else
1449 			/* The flush suspend was interrupted */
1450 			return BLKPREP_KILL;
1451 	}
1452 
1453 	if (unlikely(rq->special)) {
1454 		DMWARN("Already has something in rq->special.");
1455 		return BLKPREP_KILL;
1456 	}
1457 
1458 	tio = alloc_rq_tio(md); /* Only one for each original request */
1459 	if (!tio)
1460 		/* -ENOMEM */
1461 		return BLKPREP_DEFER;
1462 
1463 	tio->md = md;
1464 	tio->ti = NULL;
1465 	tio->orig = rq;
1466 	tio->error = 0;
1467 	memset(&tio->info, 0, sizeof(tio->info));
1468 
1469 	clone = &tio->clone;
1470 	if (setup_clone(clone, rq, tio)) {
1471 		/* -ENOMEM */
1472 		free_rq_tio(tio);
1473 		return BLKPREP_DEFER;
1474 	}
1475 
1476 	rq->special = clone;
1477 	rq->cmd_flags |= REQ_DONTPREP;
1478 
1479 	return BLKPREP_OK;
1480 }
1481 
1482 static void map_request(struct dm_target *ti, struct request *rq,
1483 			struct mapped_device *md)
1484 {
1485 	int r;
1486 	struct request *clone = rq->special;
1487 	struct dm_rq_target_io *tio = clone->end_io_data;
1488 
1489 	/*
1490 	 * Hold the md reference here for the in-flight I/O.
1491 	 * We can't rely on the reference count by device opener,
1492 	 * because the device may be closed during the request completion
1493 	 * when all bios are completed.
1494 	 * See the comment in rq_completed() too.
1495 	 */
1496 	dm_get(md);
1497 
1498 	tio->ti = ti;
1499 	r = ti->type->map_rq(ti, clone, &tio->info);
1500 	switch (r) {
1501 	case DM_MAPIO_SUBMITTED:
1502 		/* The target has taken the I/O to submit by itself later */
1503 		break;
1504 	case DM_MAPIO_REMAPPED:
1505 		/* The target has remapped the I/O so dispatch it */
1506 		dm_dispatch_request(clone);
1507 		break;
1508 	case DM_MAPIO_REQUEUE:
1509 		/* The target wants to requeue the I/O */
1510 		dm_requeue_unmapped_request(clone);
1511 		break;
1512 	default:
1513 		if (r > 0) {
1514 			DMWARN("unimplemented target map return value: %d", r);
1515 			BUG();
1516 		}
1517 
1518 		/* The target wants to complete the I/O */
1519 		dm_kill_unmapped_request(clone, r);
1520 		break;
1521 	}
1522 }
1523 
1524 /*
1525  * q->request_fn for request-based dm.
1526  * Called with the queue lock held.
1527  */
1528 static void dm_request_fn(struct request_queue *q)
1529 {
1530 	struct mapped_device *md = q->queuedata;
1531 	struct dm_table *map = dm_get_table(md);
1532 	struct dm_target *ti;
1533 	struct request *rq;
1534 
1535 	/*
1536 	 * For noflush suspend, check blk_queue_stopped() to immediately
1537 	 * quit I/O dispatching.
1538 	 */
1539 	while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1540 		rq = blk_peek_request(q);
1541 		if (!rq)
1542 			goto plug_and_out;
1543 
1544 		if (unlikely(rq == &md->suspend_rq)) { /* Flush suspend maker */
1545 			if (queue_in_flight(q))
1546 				/* Not quiet yet.  Wait more */
1547 				goto plug_and_out;
1548 
1549 			/* This device should be quiet now */
1550 			__stop_queue(q);
1551 			blk_start_request(rq);
1552 			__blk_end_request_all(rq, 0);
1553 			wake_up(&md->wait);
1554 			goto out;
1555 		}
1556 
1557 		ti = dm_table_find_target(map, blk_rq_pos(rq));
1558 		if (ti->type->busy && ti->type->busy(ti))
1559 			goto plug_and_out;
1560 
1561 		blk_start_request(rq);
1562 		spin_unlock(q->queue_lock);
1563 		map_request(ti, rq, md);
1564 		spin_lock_irq(q->queue_lock);
1565 	}
1566 
1567 	goto out;
1568 
1569 plug_and_out:
1570 	if (!elv_queue_empty(q))
1571 		/* Some requests still remain, retry later */
1572 		blk_plug_device(q);
1573 
1574 out:
1575 	dm_table_put(map);
1576 
1577 	return;
1578 }
1579 
1580 int dm_underlying_device_busy(struct request_queue *q)
1581 {
1582 	return blk_lld_busy(q);
1583 }
1584 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1585 
1586 static int dm_lld_busy(struct request_queue *q)
1587 {
1588 	int r;
1589 	struct mapped_device *md = q->queuedata;
1590 	struct dm_table *map = dm_get_table(md);
1591 
1592 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1593 		r = 1;
1594 	else
1595 		r = dm_table_any_busy_target(map);
1596 
1597 	dm_table_put(map);
1598 
1599 	return r;
1600 }
1601 
1602 static void dm_unplug_all(struct request_queue *q)
1603 {
1604 	struct mapped_device *md = q->queuedata;
1605 	struct dm_table *map = dm_get_table(md);
1606 
1607 	if (map) {
1608 		if (dm_request_based(md))
1609 			generic_unplug_device(q);
1610 
1611 		dm_table_unplug_all(map);
1612 		dm_table_put(map);
1613 	}
1614 }
1615 
1616 static int dm_any_congested(void *congested_data, int bdi_bits)
1617 {
1618 	int r = bdi_bits;
1619 	struct mapped_device *md = congested_data;
1620 	struct dm_table *map;
1621 
1622 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1623 		map = dm_get_table(md);
1624 		if (map) {
1625 			/*
1626 			 * Request-based dm cares about only own queue for
1627 			 * the query about congestion status of request_queue
1628 			 */
1629 			if (dm_request_based(md))
1630 				r = md->queue->backing_dev_info.state &
1631 				    bdi_bits;
1632 			else
1633 				r = dm_table_any_congested(map, bdi_bits);
1634 
1635 			dm_table_put(map);
1636 		}
1637 	}
1638 
1639 	return r;
1640 }
1641 
1642 /*-----------------------------------------------------------------
1643  * An IDR is used to keep track of allocated minor numbers.
1644  *---------------------------------------------------------------*/
1645 static DEFINE_IDR(_minor_idr);
1646 
1647 static void free_minor(int minor)
1648 {
1649 	spin_lock(&_minor_lock);
1650 	idr_remove(&_minor_idr, minor);
1651 	spin_unlock(&_minor_lock);
1652 }
1653 
1654 /*
1655  * See if the device with a specific minor # is free.
1656  */
1657 static int specific_minor(int minor)
1658 {
1659 	int r, m;
1660 
1661 	if (minor >= (1 << MINORBITS))
1662 		return -EINVAL;
1663 
1664 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1665 	if (!r)
1666 		return -ENOMEM;
1667 
1668 	spin_lock(&_minor_lock);
1669 
1670 	if (idr_find(&_minor_idr, minor)) {
1671 		r = -EBUSY;
1672 		goto out;
1673 	}
1674 
1675 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1676 	if (r)
1677 		goto out;
1678 
1679 	if (m != minor) {
1680 		idr_remove(&_minor_idr, m);
1681 		r = -EBUSY;
1682 		goto out;
1683 	}
1684 
1685 out:
1686 	spin_unlock(&_minor_lock);
1687 	return r;
1688 }
1689 
1690 static int next_free_minor(int *minor)
1691 {
1692 	int r, m;
1693 
1694 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1695 	if (!r)
1696 		return -ENOMEM;
1697 
1698 	spin_lock(&_minor_lock);
1699 
1700 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1701 	if (r)
1702 		goto out;
1703 
1704 	if (m >= (1 << MINORBITS)) {
1705 		idr_remove(&_minor_idr, m);
1706 		r = -ENOSPC;
1707 		goto out;
1708 	}
1709 
1710 	*minor = m;
1711 
1712 out:
1713 	spin_unlock(&_minor_lock);
1714 	return r;
1715 }
1716 
1717 static const struct block_device_operations dm_blk_dops;
1718 
1719 static void dm_wq_work(struct work_struct *work);
1720 
1721 /*
1722  * Allocate and initialise a blank device with a given minor.
1723  */
1724 static struct mapped_device *alloc_dev(int minor)
1725 {
1726 	int r;
1727 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1728 	void *old_md;
1729 
1730 	if (!md) {
1731 		DMWARN("unable to allocate device, out of memory.");
1732 		return NULL;
1733 	}
1734 
1735 	if (!try_module_get(THIS_MODULE))
1736 		goto bad_module_get;
1737 
1738 	/* get a minor number for the dev */
1739 	if (minor == DM_ANY_MINOR)
1740 		r = next_free_minor(&minor);
1741 	else
1742 		r = specific_minor(minor);
1743 	if (r < 0)
1744 		goto bad_minor;
1745 
1746 	init_rwsem(&md->io_lock);
1747 	mutex_init(&md->suspend_lock);
1748 	spin_lock_init(&md->deferred_lock);
1749 	rwlock_init(&md->map_lock);
1750 	atomic_set(&md->holders, 1);
1751 	atomic_set(&md->open_count, 0);
1752 	atomic_set(&md->event_nr, 0);
1753 	atomic_set(&md->uevent_seq, 0);
1754 	INIT_LIST_HEAD(&md->uevent_list);
1755 	spin_lock_init(&md->uevent_lock);
1756 
1757 	md->queue = blk_init_queue(dm_request_fn, NULL);
1758 	if (!md->queue)
1759 		goto bad_queue;
1760 
1761 	/*
1762 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1763 	 * devices.  The type of this dm device has not been decided yet,
1764 	 * although we initialized the queue using blk_init_queue().
1765 	 * The type is decided at the first table loading time.
1766 	 * To prevent problematic device stacking, clear the queue flag
1767 	 * for request stacking support until then.
1768 	 *
1769 	 * This queue is new, so no concurrency on the queue_flags.
1770 	 */
1771 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1772 	md->saved_make_request_fn = md->queue->make_request_fn;
1773 	md->queue->queuedata = md;
1774 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1775 	md->queue->backing_dev_info.congested_data = md;
1776 	blk_queue_make_request(md->queue, dm_request);
1777 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1778 	md->queue->unplug_fn = dm_unplug_all;
1779 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1780 	blk_queue_softirq_done(md->queue, dm_softirq_done);
1781 	blk_queue_prep_rq(md->queue, dm_prep_fn);
1782 	blk_queue_lld_busy(md->queue, dm_lld_busy);
1783 
1784 	md->disk = alloc_disk(1);
1785 	if (!md->disk)
1786 		goto bad_disk;
1787 
1788 	atomic_set(&md->pending, 0);
1789 	init_waitqueue_head(&md->wait);
1790 	INIT_WORK(&md->work, dm_wq_work);
1791 	init_waitqueue_head(&md->eventq);
1792 
1793 	md->disk->major = _major;
1794 	md->disk->first_minor = minor;
1795 	md->disk->fops = &dm_blk_dops;
1796 	md->disk->queue = md->queue;
1797 	md->disk->private_data = md;
1798 	sprintf(md->disk->disk_name, "dm-%d", minor);
1799 	add_disk(md->disk);
1800 	format_dev_t(md->name, MKDEV(_major, minor));
1801 
1802 	md->wq = create_singlethread_workqueue("kdmflush");
1803 	if (!md->wq)
1804 		goto bad_thread;
1805 
1806 	md->bdev = bdget_disk(md->disk, 0);
1807 	if (!md->bdev)
1808 		goto bad_bdev;
1809 
1810 	/* Populate the mapping, nobody knows we exist yet */
1811 	spin_lock(&_minor_lock);
1812 	old_md = idr_replace(&_minor_idr, md, minor);
1813 	spin_unlock(&_minor_lock);
1814 
1815 	BUG_ON(old_md != MINOR_ALLOCED);
1816 
1817 	return md;
1818 
1819 bad_bdev:
1820 	destroy_workqueue(md->wq);
1821 bad_thread:
1822 	put_disk(md->disk);
1823 bad_disk:
1824 	blk_cleanup_queue(md->queue);
1825 bad_queue:
1826 	free_minor(minor);
1827 bad_minor:
1828 	module_put(THIS_MODULE);
1829 bad_module_get:
1830 	kfree(md);
1831 	return NULL;
1832 }
1833 
1834 static void unlock_fs(struct mapped_device *md);
1835 
1836 static void free_dev(struct mapped_device *md)
1837 {
1838 	int minor = MINOR(disk_devt(md->disk));
1839 
1840 	unlock_fs(md);
1841 	bdput(md->bdev);
1842 	destroy_workqueue(md->wq);
1843 	if (md->tio_pool)
1844 		mempool_destroy(md->tio_pool);
1845 	if (md->io_pool)
1846 		mempool_destroy(md->io_pool);
1847 	if (md->bs)
1848 		bioset_free(md->bs);
1849 	blk_integrity_unregister(md->disk);
1850 	del_gendisk(md->disk);
1851 	free_minor(minor);
1852 
1853 	spin_lock(&_minor_lock);
1854 	md->disk->private_data = NULL;
1855 	spin_unlock(&_minor_lock);
1856 
1857 	put_disk(md->disk);
1858 	blk_cleanup_queue(md->queue);
1859 	module_put(THIS_MODULE);
1860 	kfree(md);
1861 }
1862 
1863 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1864 {
1865 	struct dm_md_mempools *p;
1866 
1867 	if (md->io_pool && md->tio_pool && md->bs)
1868 		/* the md already has necessary mempools */
1869 		goto out;
1870 
1871 	p = dm_table_get_md_mempools(t);
1872 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1873 
1874 	md->io_pool = p->io_pool;
1875 	p->io_pool = NULL;
1876 	md->tio_pool = p->tio_pool;
1877 	p->tio_pool = NULL;
1878 	md->bs = p->bs;
1879 	p->bs = NULL;
1880 
1881 out:
1882 	/* mempool bind completed, now no need any mempools in the table */
1883 	dm_table_free_md_mempools(t);
1884 }
1885 
1886 /*
1887  * Bind a table to the device.
1888  */
1889 static void event_callback(void *context)
1890 {
1891 	unsigned long flags;
1892 	LIST_HEAD(uevents);
1893 	struct mapped_device *md = (struct mapped_device *) context;
1894 
1895 	spin_lock_irqsave(&md->uevent_lock, flags);
1896 	list_splice_init(&md->uevent_list, &uevents);
1897 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1898 
1899 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1900 
1901 	atomic_inc(&md->event_nr);
1902 	wake_up(&md->eventq);
1903 }
1904 
1905 static void __set_size(struct mapped_device *md, sector_t size)
1906 {
1907 	set_capacity(md->disk, size);
1908 
1909 	mutex_lock(&md->bdev->bd_inode->i_mutex);
1910 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1911 	mutex_unlock(&md->bdev->bd_inode->i_mutex);
1912 }
1913 
1914 static int __bind(struct mapped_device *md, struct dm_table *t,
1915 		  struct queue_limits *limits)
1916 {
1917 	struct request_queue *q = md->queue;
1918 	sector_t size;
1919 	unsigned long flags;
1920 
1921 	size = dm_table_get_size(t);
1922 
1923 	/*
1924 	 * Wipe any geometry if the size of the table changed.
1925 	 */
1926 	if (size != get_capacity(md->disk))
1927 		memset(&md->geometry, 0, sizeof(md->geometry));
1928 
1929 	__set_size(md, size);
1930 
1931 	if (!size) {
1932 		dm_table_destroy(t);
1933 		return 0;
1934 	}
1935 
1936 	dm_table_event_callback(t, event_callback, md);
1937 
1938 	/*
1939 	 * The queue hasn't been stopped yet, if the old table type wasn't
1940 	 * for request-based during suspension.  So stop it to prevent
1941 	 * I/O mapping before resume.
1942 	 * This must be done before setting the queue restrictions,
1943 	 * because request-based dm may be run just after the setting.
1944 	 */
1945 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
1946 		stop_queue(q);
1947 
1948 	__bind_mempools(md, t);
1949 
1950 	write_lock_irqsave(&md->map_lock, flags);
1951 	md->map = t;
1952 	dm_table_set_restrictions(t, q, limits);
1953 	write_unlock_irqrestore(&md->map_lock, flags);
1954 
1955 	return 0;
1956 }
1957 
1958 static void __unbind(struct mapped_device *md)
1959 {
1960 	struct dm_table *map = md->map;
1961 	unsigned long flags;
1962 
1963 	if (!map)
1964 		return;
1965 
1966 	dm_table_event_callback(map, NULL, NULL);
1967 	write_lock_irqsave(&md->map_lock, flags);
1968 	md->map = NULL;
1969 	write_unlock_irqrestore(&md->map_lock, flags);
1970 	dm_table_destroy(map);
1971 }
1972 
1973 /*
1974  * Constructor for a new device.
1975  */
1976 int dm_create(int minor, struct mapped_device **result)
1977 {
1978 	struct mapped_device *md;
1979 
1980 	md = alloc_dev(minor);
1981 	if (!md)
1982 		return -ENXIO;
1983 
1984 	dm_sysfs_init(md);
1985 
1986 	*result = md;
1987 	return 0;
1988 }
1989 
1990 static struct mapped_device *dm_find_md(dev_t dev)
1991 {
1992 	struct mapped_device *md;
1993 	unsigned minor = MINOR(dev);
1994 
1995 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1996 		return NULL;
1997 
1998 	spin_lock(&_minor_lock);
1999 
2000 	md = idr_find(&_minor_idr, minor);
2001 	if (md && (md == MINOR_ALLOCED ||
2002 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2003 		   test_bit(DMF_FREEING, &md->flags))) {
2004 		md = NULL;
2005 		goto out;
2006 	}
2007 
2008 out:
2009 	spin_unlock(&_minor_lock);
2010 
2011 	return md;
2012 }
2013 
2014 struct mapped_device *dm_get_md(dev_t dev)
2015 {
2016 	struct mapped_device *md = dm_find_md(dev);
2017 
2018 	if (md)
2019 		dm_get(md);
2020 
2021 	return md;
2022 }
2023 
2024 void *dm_get_mdptr(struct mapped_device *md)
2025 {
2026 	return md->interface_ptr;
2027 }
2028 
2029 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2030 {
2031 	md->interface_ptr = ptr;
2032 }
2033 
2034 void dm_get(struct mapped_device *md)
2035 {
2036 	atomic_inc(&md->holders);
2037 }
2038 
2039 const char *dm_device_name(struct mapped_device *md)
2040 {
2041 	return md->name;
2042 }
2043 EXPORT_SYMBOL_GPL(dm_device_name);
2044 
2045 void dm_put(struct mapped_device *md)
2046 {
2047 	struct dm_table *map;
2048 
2049 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2050 
2051 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
2052 		map = dm_get_table(md);
2053 		idr_replace(&_minor_idr, MINOR_ALLOCED,
2054 			    MINOR(disk_devt(dm_disk(md))));
2055 		set_bit(DMF_FREEING, &md->flags);
2056 		spin_unlock(&_minor_lock);
2057 		if (!dm_suspended(md)) {
2058 			dm_table_presuspend_targets(map);
2059 			dm_table_postsuspend_targets(map);
2060 		}
2061 		dm_sysfs_exit(md);
2062 		dm_table_put(map);
2063 		__unbind(md);
2064 		free_dev(md);
2065 	}
2066 }
2067 EXPORT_SYMBOL_GPL(dm_put);
2068 
2069 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2070 {
2071 	int r = 0;
2072 	DECLARE_WAITQUEUE(wait, current);
2073 	struct request_queue *q = md->queue;
2074 	unsigned long flags;
2075 
2076 	dm_unplug_all(md->queue);
2077 
2078 	add_wait_queue(&md->wait, &wait);
2079 
2080 	while (1) {
2081 		set_current_state(interruptible);
2082 
2083 		smp_mb();
2084 		if (dm_request_based(md)) {
2085 			spin_lock_irqsave(q->queue_lock, flags);
2086 			if (!queue_in_flight(q) && blk_queue_stopped(q)) {
2087 				spin_unlock_irqrestore(q->queue_lock, flags);
2088 				break;
2089 			}
2090 			spin_unlock_irqrestore(q->queue_lock, flags);
2091 		} else if (!atomic_read(&md->pending))
2092 			break;
2093 
2094 		if (interruptible == TASK_INTERRUPTIBLE &&
2095 		    signal_pending(current)) {
2096 			r = -EINTR;
2097 			break;
2098 		}
2099 
2100 		io_schedule();
2101 	}
2102 	set_current_state(TASK_RUNNING);
2103 
2104 	remove_wait_queue(&md->wait, &wait);
2105 
2106 	return r;
2107 }
2108 
2109 static void dm_flush(struct mapped_device *md)
2110 {
2111 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2112 
2113 	bio_init(&md->barrier_bio);
2114 	md->barrier_bio.bi_bdev = md->bdev;
2115 	md->barrier_bio.bi_rw = WRITE_BARRIER;
2116 	__split_and_process_bio(md, &md->barrier_bio);
2117 
2118 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2119 }
2120 
2121 static void process_barrier(struct mapped_device *md, struct bio *bio)
2122 {
2123 	md->barrier_error = 0;
2124 
2125 	dm_flush(md);
2126 
2127 	if (!bio_empty_barrier(bio)) {
2128 		__split_and_process_bio(md, bio);
2129 		dm_flush(md);
2130 	}
2131 
2132 	if (md->barrier_error != DM_ENDIO_REQUEUE)
2133 		bio_endio(bio, md->barrier_error);
2134 	else {
2135 		spin_lock_irq(&md->deferred_lock);
2136 		bio_list_add_head(&md->deferred, bio);
2137 		spin_unlock_irq(&md->deferred_lock);
2138 	}
2139 }
2140 
2141 /*
2142  * Process the deferred bios
2143  */
2144 static void dm_wq_work(struct work_struct *work)
2145 {
2146 	struct mapped_device *md = container_of(work, struct mapped_device,
2147 						work);
2148 	struct bio *c;
2149 
2150 	down_write(&md->io_lock);
2151 
2152 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2153 		spin_lock_irq(&md->deferred_lock);
2154 		c = bio_list_pop(&md->deferred);
2155 		spin_unlock_irq(&md->deferred_lock);
2156 
2157 		if (!c) {
2158 			clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2159 			break;
2160 		}
2161 
2162 		up_write(&md->io_lock);
2163 
2164 		if (dm_request_based(md))
2165 			generic_make_request(c);
2166 		else {
2167 			if (bio_rw_flagged(c, BIO_RW_BARRIER))
2168 				process_barrier(md, c);
2169 			else
2170 				__split_and_process_bio(md, c);
2171 		}
2172 
2173 		down_write(&md->io_lock);
2174 	}
2175 
2176 	up_write(&md->io_lock);
2177 }
2178 
2179 static void dm_queue_flush(struct mapped_device *md)
2180 {
2181 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2182 	smp_mb__after_clear_bit();
2183 	queue_work(md->wq, &md->work);
2184 }
2185 
2186 /*
2187  * Swap in a new table (destroying old one).
2188  */
2189 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
2190 {
2191 	struct queue_limits limits;
2192 	int r = -EINVAL;
2193 
2194 	mutex_lock(&md->suspend_lock);
2195 
2196 	/* device must be suspended */
2197 	if (!dm_suspended(md))
2198 		goto out;
2199 
2200 	r = dm_calculate_queue_limits(table, &limits);
2201 	if (r)
2202 		goto out;
2203 
2204 	/* cannot change the device type, once a table is bound */
2205 	if (md->map &&
2206 	    (dm_table_get_type(md->map) != dm_table_get_type(table))) {
2207 		DMWARN("can't change the device type after a table is bound");
2208 		goto out;
2209 	}
2210 
2211 	__unbind(md);
2212 	r = __bind(md, table, &limits);
2213 
2214 out:
2215 	mutex_unlock(&md->suspend_lock);
2216 	return r;
2217 }
2218 
2219 static void dm_rq_invalidate_suspend_marker(struct mapped_device *md)
2220 {
2221 	md->suspend_rq.special = (void *)0x1;
2222 }
2223 
2224 static void dm_rq_abort_suspend(struct mapped_device *md, int noflush)
2225 {
2226 	struct request_queue *q = md->queue;
2227 	unsigned long flags;
2228 
2229 	spin_lock_irqsave(q->queue_lock, flags);
2230 	if (!noflush)
2231 		dm_rq_invalidate_suspend_marker(md);
2232 	__start_queue(q);
2233 	spin_unlock_irqrestore(q->queue_lock, flags);
2234 }
2235 
2236 static void dm_rq_start_suspend(struct mapped_device *md, int noflush)
2237 {
2238 	struct request *rq = &md->suspend_rq;
2239 	struct request_queue *q = md->queue;
2240 
2241 	if (noflush)
2242 		stop_queue(q);
2243 	else {
2244 		blk_rq_init(q, rq);
2245 		blk_insert_request(q, rq, 0, NULL);
2246 	}
2247 }
2248 
2249 static int dm_rq_suspend_available(struct mapped_device *md, int noflush)
2250 {
2251 	int r = 1;
2252 	struct request *rq = &md->suspend_rq;
2253 	struct request_queue *q = md->queue;
2254 	unsigned long flags;
2255 
2256 	if (noflush)
2257 		return r;
2258 
2259 	/* The marker must be protected by queue lock if it is in use */
2260 	spin_lock_irqsave(q->queue_lock, flags);
2261 	if (unlikely(rq->ref_count)) {
2262 		/*
2263 		 * This can happen, when the previous flush suspend was
2264 		 * interrupted, the marker is still in the queue and
2265 		 * this flush suspend has been invoked, because we don't
2266 		 * remove the marker at the time of suspend interruption.
2267 		 * We have only one marker per mapped_device, so we can't
2268 		 * start another flush suspend while it is in use.
2269 		 */
2270 		BUG_ON(!rq->special); /* The marker should be invalidated */
2271 		DMWARN("Invalidating the previous flush suspend is still in"
2272 		       " progress.  Please retry later.");
2273 		r = 0;
2274 	}
2275 	spin_unlock_irqrestore(q->queue_lock, flags);
2276 
2277 	return r;
2278 }
2279 
2280 /*
2281  * Functions to lock and unlock any filesystem running on the
2282  * device.
2283  */
2284 static int lock_fs(struct mapped_device *md)
2285 {
2286 	int r;
2287 
2288 	WARN_ON(md->frozen_sb);
2289 
2290 	md->frozen_sb = freeze_bdev(md->bdev);
2291 	if (IS_ERR(md->frozen_sb)) {
2292 		r = PTR_ERR(md->frozen_sb);
2293 		md->frozen_sb = NULL;
2294 		return r;
2295 	}
2296 
2297 	set_bit(DMF_FROZEN, &md->flags);
2298 
2299 	return 0;
2300 }
2301 
2302 static void unlock_fs(struct mapped_device *md)
2303 {
2304 	if (!test_bit(DMF_FROZEN, &md->flags))
2305 		return;
2306 
2307 	thaw_bdev(md->bdev, md->frozen_sb);
2308 	md->frozen_sb = NULL;
2309 	clear_bit(DMF_FROZEN, &md->flags);
2310 }
2311 
2312 /*
2313  * We need to be able to change a mapping table under a mounted
2314  * filesystem.  For example we might want to move some data in
2315  * the background.  Before the table can be swapped with
2316  * dm_bind_table, dm_suspend must be called to flush any in
2317  * flight bios and ensure that any further io gets deferred.
2318  */
2319 /*
2320  * Suspend mechanism in request-based dm.
2321  *
2322  * After the suspend starts, further incoming requests are kept in
2323  * the request_queue and deferred.
2324  * Remaining requests in the request_queue at the start of suspend are flushed
2325  * if it is flush suspend.
2326  * The suspend completes when the following conditions have been satisfied,
2327  * so wait for it:
2328  *    1. q->in_flight is 0 (which means no in_flight request)
2329  *    2. queue has been stopped (which means no request dispatching)
2330  *
2331  *
2332  * Noflush suspend
2333  * ---------------
2334  * Noflush suspend doesn't need to dispatch remaining requests.
2335  * So stop the queue immediately.  Then, wait for all in_flight requests
2336  * to be completed or requeued.
2337  *
2338  * To abort noflush suspend, start the queue.
2339  *
2340  *
2341  * Flush suspend
2342  * -------------
2343  * Flush suspend needs to dispatch remaining requests.  So stop the queue
2344  * after the remaining requests are completed. (Requeued request must be also
2345  * re-dispatched and completed.  Until then, we can't stop the queue.)
2346  *
2347  * During flushing the remaining requests, further incoming requests are also
2348  * inserted to the same queue.  To distinguish which requests are to be
2349  * flushed, we insert a marker request to the queue at the time of starting
2350  * flush suspend, like a barrier.
2351  * The dispatching is blocked when the marker is found on the top of the queue.
2352  * And the queue is stopped when all in_flight requests are completed, since
2353  * that means the remaining requests are completely flushed.
2354  * Then, the marker is removed from the queue.
2355  *
2356  * To abort flush suspend, we also need to take care of the marker, not only
2357  * starting the queue.
2358  * We don't remove the marker forcibly from the queue since it's against
2359  * the block-layer manner.  Instead, we put a invalidated mark on the marker.
2360  * When the invalidated marker is found on the top of the queue, it is
2361  * immediately removed from the queue, so it doesn't block dispatching.
2362  * Because we have only one marker per mapped_device, we can't start another
2363  * flush suspend until the invalidated marker is removed from the queue.
2364  * So fail and return with -EBUSY in such a case.
2365  */
2366 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2367 {
2368 	struct dm_table *map = NULL;
2369 	int r = 0;
2370 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2371 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2372 
2373 	mutex_lock(&md->suspend_lock);
2374 
2375 	if (dm_suspended(md)) {
2376 		r = -EINVAL;
2377 		goto out_unlock;
2378 	}
2379 
2380 	if (dm_request_based(md) && !dm_rq_suspend_available(md, noflush)) {
2381 		r = -EBUSY;
2382 		goto out_unlock;
2383 	}
2384 
2385 	map = dm_get_table(md);
2386 
2387 	/*
2388 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2389 	 * This flag is cleared before dm_suspend returns.
2390 	 */
2391 	if (noflush)
2392 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2393 
2394 	/* This does not get reverted if there's an error later. */
2395 	dm_table_presuspend_targets(map);
2396 
2397 	/*
2398 	 * Flush I/O to the device. noflush supersedes do_lockfs,
2399 	 * because lock_fs() needs to flush I/Os.
2400 	 */
2401 	if (!noflush && do_lockfs) {
2402 		r = lock_fs(md);
2403 		if (r)
2404 			goto out;
2405 	}
2406 
2407 	/*
2408 	 * Here we must make sure that no processes are submitting requests
2409 	 * to target drivers i.e. no one may be executing
2410 	 * __split_and_process_bio. This is called from dm_request and
2411 	 * dm_wq_work.
2412 	 *
2413 	 * To get all processes out of __split_and_process_bio in dm_request,
2414 	 * we take the write lock. To prevent any process from reentering
2415 	 * __split_and_process_bio from dm_request, we set
2416 	 * DMF_QUEUE_IO_TO_THREAD.
2417 	 *
2418 	 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2419 	 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2420 	 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2421 	 * further calls to __split_and_process_bio from dm_wq_work.
2422 	 */
2423 	down_write(&md->io_lock);
2424 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2425 	set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2426 	up_write(&md->io_lock);
2427 
2428 	flush_workqueue(md->wq);
2429 
2430 	if (dm_request_based(md))
2431 		dm_rq_start_suspend(md, noflush);
2432 
2433 	/*
2434 	 * At this point no more requests are entering target request routines.
2435 	 * We call dm_wait_for_completion to wait for all existing requests
2436 	 * to finish.
2437 	 */
2438 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2439 
2440 	down_write(&md->io_lock);
2441 	if (noflush)
2442 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2443 	up_write(&md->io_lock);
2444 
2445 	/* were we interrupted ? */
2446 	if (r < 0) {
2447 		dm_queue_flush(md);
2448 
2449 		if (dm_request_based(md))
2450 			dm_rq_abort_suspend(md, noflush);
2451 
2452 		unlock_fs(md);
2453 		goto out; /* pushback list is already flushed, so skip flush */
2454 	}
2455 
2456 	/*
2457 	 * If dm_wait_for_completion returned 0, the device is completely
2458 	 * quiescent now. There is no request-processing activity. All new
2459 	 * requests are being added to md->deferred list.
2460 	 */
2461 
2462 	dm_table_postsuspend_targets(map);
2463 
2464 	set_bit(DMF_SUSPENDED, &md->flags);
2465 
2466 out:
2467 	dm_table_put(map);
2468 
2469 out_unlock:
2470 	mutex_unlock(&md->suspend_lock);
2471 	return r;
2472 }
2473 
2474 int dm_resume(struct mapped_device *md)
2475 {
2476 	int r = -EINVAL;
2477 	struct dm_table *map = NULL;
2478 
2479 	mutex_lock(&md->suspend_lock);
2480 	if (!dm_suspended(md))
2481 		goto out;
2482 
2483 	map = dm_get_table(md);
2484 	if (!map || !dm_table_get_size(map))
2485 		goto out;
2486 
2487 	r = dm_table_resume_targets(map);
2488 	if (r)
2489 		goto out;
2490 
2491 	dm_queue_flush(md);
2492 
2493 	/*
2494 	 * Flushing deferred I/Os must be done after targets are resumed
2495 	 * so that mapping of targets can work correctly.
2496 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2497 	 */
2498 	if (dm_request_based(md))
2499 		start_queue(md->queue);
2500 
2501 	unlock_fs(md);
2502 
2503 	clear_bit(DMF_SUSPENDED, &md->flags);
2504 
2505 	dm_table_unplug_all(map);
2506 	r = 0;
2507 out:
2508 	dm_table_put(map);
2509 	mutex_unlock(&md->suspend_lock);
2510 
2511 	return r;
2512 }
2513 
2514 /*-----------------------------------------------------------------
2515  * Event notification.
2516  *---------------------------------------------------------------*/
2517 void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2518 		       unsigned cookie)
2519 {
2520 	char udev_cookie[DM_COOKIE_LENGTH];
2521 	char *envp[] = { udev_cookie, NULL };
2522 
2523 	if (!cookie)
2524 		kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2525 	else {
2526 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2527 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2528 		kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2529 	}
2530 }
2531 
2532 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2533 {
2534 	return atomic_add_return(1, &md->uevent_seq);
2535 }
2536 
2537 uint32_t dm_get_event_nr(struct mapped_device *md)
2538 {
2539 	return atomic_read(&md->event_nr);
2540 }
2541 
2542 int dm_wait_event(struct mapped_device *md, int event_nr)
2543 {
2544 	return wait_event_interruptible(md->eventq,
2545 			(event_nr != atomic_read(&md->event_nr)));
2546 }
2547 
2548 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2549 {
2550 	unsigned long flags;
2551 
2552 	spin_lock_irqsave(&md->uevent_lock, flags);
2553 	list_add(elist, &md->uevent_list);
2554 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2555 }
2556 
2557 /*
2558  * The gendisk is only valid as long as you have a reference
2559  * count on 'md'.
2560  */
2561 struct gendisk *dm_disk(struct mapped_device *md)
2562 {
2563 	return md->disk;
2564 }
2565 
2566 struct kobject *dm_kobject(struct mapped_device *md)
2567 {
2568 	return &md->kobj;
2569 }
2570 
2571 /*
2572  * struct mapped_device should not be exported outside of dm.c
2573  * so use this check to verify that kobj is part of md structure
2574  */
2575 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2576 {
2577 	struct mapped_device *md;
2578 
2579 	md = container_of(kobj, struct mapped_device, kobj);
2580 	if (&md->kobj != kobj)
2581 		return NULL;
2582 
2583 	if (test_bit(DMF_FREEING, &md->flags) ||
2584 	    test_bit(DMF_DELETING, &md->flags))
2585 		return NULL;
2586 
2587 	dm_get(md);
2588 	return md;
2589 }
2590 
2591 int dm_suspended(struct mapped_device *md)
2592 {
2593 	return test_bit(DMF_SUSPENDED, &md->flags);
2594 }
2595 
2596 int dm_noflush_suspending(struct dm_target *ti)
2597 {
2598 	struct mapped_device *md = dm_table_get_md(ti->table);
2599 	int r = __noflush_suspending(md);
2600 
2601 	dm_put(md);
2602 
2603 	return r;
2604 }
2605 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2606 
2607 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2608 {
2609 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2610 
2611 	if (!pools)
2612 		return NULL;
2613 
2614 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2615 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2616 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2617 	if (!pools->io_pool)
2618 		goto free_pools_and_out;
2619 
2620 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2621 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2622 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2623 	if (!pools->tio_pool)
2624 		goto free_io_pool_and_out;
2625 
2626 	pools->bs = (type == DM_TYPE_BIO_BASED) ?
2627 		    bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2628 	if (!pools->bs)
2629 		goto free_tio_pool_and_out;
2630 
2631 	return pools;
2632 
2633 free_tio_pool_and_out:
2634 	mempool_destroy(pools->tio_pool);
2635 
2636 free_io_pool_and_out:
2637 	mempool_destroy(pools->io_pool);
2638 
2639 free_pools_and_out:
2640 	kfree(pools);
2641 
2642 	return NULL;
2643 }
2644 
2645 void dm_free_md_mempools(struct dm_md_mempools *pools)
2646 {
2647 	if (!pools)
2648 		return;
2649 
2650 	if (pools->io_pool)
2651 		mempool_destroy(pools->io_pool);
2652 
2653 	if (pools->tio_pool)
2654 		mempool_destroy(pools->tio_pool);
2655 
2656 	if (pools->bs)
2657 		bioset_free(pools->bs);
2658 
2659 	kfree(pools);
2660 }
2661 
2662 static const struct block_device_operations dm_blk_dops = {
2663 	.open = dm_blk_open,
2664 	.release = dm_blk_close,
2665 	.ioctl = dm_blk_ioctl,
2666 	.getgeo = dm_blk_getgeo,
2667 	.owner = THIS_MODULE
2668 };
2669 
2670 EXPORT_SYMBOL(dm_get_mapinfo);
2671 
2672 /*
2673  * module hooks
2674  */
2675 module_init(dm_init);
2676 module_exit(dm_exit);
2677 
2678 module_param(major, uint, 0);
2679 MODULE_PARM_DESC(major, "The major number of the device mapper");
2680 MODULE_DESCRIPTION(DM_NAME " driver");
2681 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2682 MODULE_LICENSE("GPL");
2683