1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/buffer_head.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/idr.h> 21 #include <linux/hdreg.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 /* 28 * Cookies are numeric values sent with CHANGE and REMOVE 29 * uevents while resuming, removing or renaming the device. 30 */ 31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 32 #define DM_COOKIE_LENGTH 24 33 34 static const char *_name = DM_NAME; 35 36 static unsigned int major = 0; 37 static unsigned int _major = 0; 38 39 static DEFINE_SPINLOCK(_minor_lock); 40 /* 41 * For bio-based dm. 42 * One of these is allocated per bio. 43 */ 44 struct dm_io { 45 struct mapped_device *md; 46 int error; 47 atomic_t io_count; 48 struct bio *bio; 49 unsigned long start_time; 50 }; 51 52 /* 53 * For bio-based dm. 54 * One of these is allocated per target within a bio. Hopefully 55 * this will be simplified out one day. 56 */ 57 struct dm_target_io { 58 struct dm_io *io; 59 struct dm_target *ti; 60 union map_info info; 61 }; 62 63 /* 64 * For request-based dm. 65 * One of these is allocated per request. 66 */ 67 struct dm_rq_target_io { 68 struct mapped_device *md; 69 struct dm_target *ti; 70 struct request *orig, clone; 71 int error; 72 union map_info info; 73 }; 74 75 /* 76 * For request-based dm. 77 * One of these is allocated per bio. 78 */ 79 struct dm_rq_clone_bio_info { 80 struct bio *orig; 81 struct dm_rq_target_io *tio; 82 }; 83 84 union map_info *dm_get_mapinfo(struct bio *bio) 85 { 86 if (bio && bio->bi_private) 87 return &((struct dm_target_io *)bio->bi_private)->info; 88 return NULL; 89 } 90 91 union map_info *dm_get_rq_mapinfo(struct request *rq) 92 { 93 if (rq && rq->end_io_data) 94 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 95 return NULL; 96 } 97 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 98 99 #define MINOR_ALLOCED ((void *)-1) 100 101 /* 102 * Bits for the md->flags field. 103 */ 104 #define DMF_BLOCK_IO_FOR_SUSPEND 0 105 #define DMF_SUSPENDED 1 106 #define DMF_FROZEN 2 107 #define DMF_FREEING 3 108 #define DMF_DELETING 4 109 #define DMF_NOFLUSH_SUSPENDING 5 110 #define DMF_QUEUE_IO_TO_THREAD 6 111 112 /* 113 * Work processed by per-device workqueue. 114 */ 115 struct mapped_device { 116 struct rw_semaphore io_lock; 117 struct mutex suspend_lock; 118 rwlock_t map_lock; 119 atomic_t holders; 120 atomic_t open_count; 121 122 unsigned long flags; 123 124 struct request_queue *queue; 125 struct gendisk *disk; 126 char name[16]; 127 128 void *interface_ptr; 129 130 /* 131 * A list of ios that arrived while we were suspended. 132 */ 133 atomic_t pending; 134 wait_queue_head_t wait; 135 struct work_struct work; 136 struct bio_list deferred; 137 spinlock_t deferred_lock; 138 139 /* 140 * An error from the barrier request currently being processed. 141 */ 142 int barrier_error; 143 144 /* 145 * Processing queue (flush/barriers) 146 */ 147 struct workqueue_struct *wq; 148 149 /* 150 * The current mapping. 151 */ 152 struct dm_table *map; 153 154 /* 155 * io objects are allocated from here. 156 */ 157 mempool_t *io_pool; 158 mempool_t *tio_pool; 159 160 struct bio_set *bs; 161 162 /* 163 * Event handling. 164 */ 165 atomic_t event_nr; 166 wait_queue_head_t eventq; 167 atomic_t uevent_seq; 168 struct list_head uevent_list; 169 spinlock_t uevent_lock; /* Protect access to uevent_list */ 170 171 /* 172 * freeze/thaw support require holding onto a super block 173 */ 174 struct super_block *frozen_sb; 175 struct block_device *bdev; 176 177 /* forced geometry settings */ 178 struct hd_geometry geometry; 179 180 /* marker of flush suspend for request-based dm */ 181 struct request suspend_rq; 182 183 /* For saving the address of __make_request for request based dm */ 184 make_request_fn *saved_make_request_fn; 185 186 /* sysfs handle */ 187 struct kobject kobj; 188 189 /* zero-length barrier that will be cloned and submitted to targets */ 190 struct bio barrier_bio; 191 }; 192 193 /* 194 * For mempools pre-allocation at the table loading time. 195 */ 196 struct dm_md_mempools { 197 mempool_t *io_pool; 198 mempool_t *tio_pool; 199 struct bio_set *bs; 200 }; 201 202 #define MIN_IOS 256 203 static struct kmem_cache *_io_cache; 204 static struct kmem_cache *_tio_cache; 205 static struct kmem_cache *_rq_tio_cache; 206 static struct kmem_cache *_rq_bio_info_cache; 207 208 static int __init local_init(void) 209 { 210 int r = -ENOMEM; 211 212 /* allocate a slab for the dm_ios */ 213 _io_cache = KMEM_CACHE(dm_io, 0); 214 if (!_io_cache) 215 return r; 216 217 /* allocate a slab for the target ios */ 218 _tio_cache = KMEM_CACHE(dm_target_io, 0); 219 if (!_tio_cache) 220 goto out_free_io_cache; 221 222 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 223 if (!_rq_tio_cache) 224 goto out_free_tio_cache; 225 226 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 227 if (!_rq_bio_info_cache) 228 goto out_free_rq_tio_cache; 229 230 r = dm_uevent_init(); 231 if (r) 232 goto out_free_rq_bio_info_cache; 233 234 _major = major; 235 r = register_blkdev(_major, _name); 236 if (r < 0) 237 goto out_uevent_exit; 238 239 if (!_major) 240 _major = r; 241 242 return 0; 243 244 out_uevent_exit: 245 dm_uevent_exit(); 246 out_free_rq_bio_info_cache: 247 kmem_cache_destroy(_rq_bio_info_cache); 248 out_free_rq_tio_cache: 249 kmem_cache_destroy(_rq_tio_cache); 250 out_free_tio_cache: 251 kmem_cache_destroy(_tio_cache); 252 out_free_io_cache: 253 kmem_cache_destroy(_io_cache); 254 255 return r; 256 } 257 258 static void local_exit(void) 259 { 260 kmem_cache_destroy(_rq_bio_info_cache); 261 kmem_cache_destroy(_rq_tio_cache); 262 kmem_cache_destroy(_tio_cache); 263 kmem_cache_destroy(_io_cache); 264 unregister_blkdev(_major, _name); 265 dm_uevent_exit(); 266 267 _major = 0; 268 269 DMINFO("cleaned up"); 270 } 271 272 static int (*_inits[])(void) __initdata = { 273 local_init, 274 dm_target_init, 275 dm_linear_init, 276 dm_stripe_init, 277 dm_kcopyd_init, 278 dm_interface_init, 279 }; 280 281 static void (*_exits[])(void) = { 282 local_exit, 283 dm_target_exit, 284 dm_linear_exit, 285 dm_stripe_exit, 286 dm_kcopyd_exit, 287 dm_interface_exit, 288 }; 289 290 static int __init dm_init(void) 291 { 292 const int count = ARRAY_SIZE(_inits); 293 294 int r, i; 295 296 for (i = 0; i < count; i++) { 297 r = _inits[i](); 298 if (r) 299 goto bad; 300 } 301 302 return 0; 303 304 bad: 305 while (i--) 306 _exits[i](); 307 308 return r; 309 } 310 311 static void __exit dm_exit(void) 312 { 313 int i = ARRAY_SIZE(_exits); 314 315 while (i--) 316 _exits[i](); 317 } 318 319 /* 320 * Block device functions 321 */ 322 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 323 { 324 struct mapped_device *md; 325 326 spin_lock(&_minor_lock); 327 328 md = bdev->bd_disk->private_data; 329 if (!md) 330 goto out; 331 332 if (test_bit(DMF_FREEING, &md->flags) || 333 test_bit(DMF_DELETING, &md->flags)) { 334 md = NULL; 335 goto out; 336 } 337 338 dm_get(md); 339 atomic_inc(&md->open_count); 340 341 out: 342 spin_unlock(&_minor_lock); 343 344 return md ? 0 : -ENXIO; 345 } 346 347 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 348 { 349 struct mapped_device *md = disk->private_data; 350 atomic_dec(&md->open_count); 351 dm_put(md); 352 return 0; 353 } 354 355 int dm_open_count(struct mapped_device *md) 356 { 357 return atomic_read(&md->open_count); 358 } 359 360 /* 361 * Guarantees nothing is using the device before it's deleted. 362 */ 363 int dm_lock_for_deletion(struct mapped_device *md) 364 { 365 int r = 0; 366 367 spin_lock(&_minor_lock); 368 369 if (dm_open_count(md)) 370 r = -EBUSY; 371 else 372 set_bit(DMF_DELETING, &md->flags); 373 374 spin_unlock(&_minor_lock); 375 376 return r; 377 } 378 379 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 380 { 381 struct mapped_device *md = bdev->bd_disk->private_data; 382 383 return dm_get_geometry(md, geo); 384 } 385 386 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 387 unsigned int cmd, unsigned long arg) 388 { 389 struct mapped_device *md = bdev->bd_disk->private_data; 390 struct dm_table *map = dm_get_table(md); 391 struct dm_target *tgt; 392 int r = -ENOTTY; 393 394 if (!map || !dm_table_get_size(map)) 395 goto out; 396 397 /* We only support devices that have a single target */ 398 if (dm_table_get_num_targets(map) != 1) 399 goto out; 400 401 tgt = dm_table_get_target(map, 0); 402 403 if (dm_suspended(md)) { 404 r = -EAGAIN; 405 goto out; 406 } 407 408 if (tgt->type->ioctl) 409 r = tgt->type->ioctl(tgt, cmd, arg); 410 411 out: 412 dm_table_put(map); 413 414 return r; 415 } 416 417 static struct dm_io *alloc_io(struct mapped_device *md) 418 { 419 return mempool_alloc(md->io_pool, GFP_NOIO); 420 } 421 422 static void free_io(struct mapped_device *md, struct dm_io *io) 423 { 424 mempool_free(io, md->io_pool); 425 } 426 427 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 428 { 429 mempool_free(tio, md->tio_pool); 430 } 431 432 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md) 433 { 434 return mempool_alloc(md->tio_pool, GFP_ATOMIC); 435 } 436 437 static void free_rq_tio(struct dm_rq_target_io *tio) 438 { 439 mempool_free(tio, tio->md->tio_pool); 440 } 441 442 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md) 443 { 444 return mempool_alloc(md->io_pool, GFP_ATOMIC); 445 } 446 447 static void free_bio_info(struct dm_rq_clone_bio_info *info) 448 { 449 mempool_free(info, info->tio->md->io_pool); 450 } 451 452 static void start_io_acct(struct dm_io *io) 453 { 454 struct mapped_device *md = io->md; 455 int cpu; 456 457 io->start_time = jiffies; 458 459 cpu = part_stat_lock(); 460 part_round_stats(cpu, &dm_disk(md)->part0); 461 part_stat_unlock(); 462 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending); 463 } 464 465 static void end_io_acct(struct dm_io *io) 466 { 467 struct mapped_device *md = io->md; 468 struct bio *bio = io->bio; 469 unsigned long duration = jiffies - io->start_time; 470 int pending, cpu; 471 int rw = bio_data_dir(bio); 472 473 cpu = part_stat_lock(); 474 part_round_stats(cpu, &dm_disk(md)->part0); 475 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 476 part_stat_unlock(); 477 478 /* 479 * After this is decremented the bio must not be touched if it is 480 * a barrier. 481 */ 482 dm_disk(md)->part0.in_flight = pending = 483 atomic_dec_return(&md->pending); 484 485 /* nudge anyone waiting on suspend queue */ 486 if (!pending) 487 wake_up(&md->wait); 488 } 489 490 /* 491 * Add the bio to the list of deferred io. 492 */ 493 static void queue_io(struct mapped_device *md, struct bio *bio) 494 { 495 down_write(&md->io_lock); 496 497 spin_lock_irq(&md->deferred_lock); 498 bio_list_add(&md->deferred, bio); 499 spin_unlock_irq(&md->deferred_lock); 500 501 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) 502 queue_work(md->wq, &md->work); 503 504 up_write(&md->io_lock); 505 } 506 507 /* 508 * Everyone (including functions in this file), should use this 509 * function to access the md->map field, and make sure they call 510 * dm_table_put() when finished. 511 */ 512 struct dm_table *dm_get_table(struct mapped_device *md) 513 { 514 struct dm_table *t; 515 unsigned long flags; 516 517 read_lock_irqsave(&md->map_lock, flags); 518 t = md->map; 519 if (t) 520 dm_table_get(t); 521 read_unlock_irqrestore(&md->map_lock, flags); 522 523 return t; 524 } 525 526 /* 527 * Get the geometry associated with a dm device 528 */ 529 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 530 { 531 *geo = md->geometry; 532 533 return 0; 534 } 535 536 /* 537 * Set the geometry of a device. 538 */ 539 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 540 { 541 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 542 543 if (geo->start > sz) { 544 DMWARN("Start sector is beyond the geometry limits."); 545 return -EINVAL; 546 } 547 548 md->geometry = *geo; 549 550 return 0; 551 } 552 553 /*----------------------------------------------------------------- 554 * CRUD START: 555 * A more elegant soln is in the works that uses the queue 556 * merge fn, unfortunately there are a couple of changes to 557 * the block layer that I want to make for this. So in the 558 * interests of getting something for people to use I give 559 * you this clearly demarcated crap. 560 *---------------------------------------------------------------*/ 561 562 static int __noflush_suspending(struct mapped_device *md) 563 { 564 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 565 } 566 567 /* 568 * Decrements the number of outstanding ios that a bio has been 569 * cloned into, completing the original io if necc. 570 */ 571 static void dec_pending(struct dm_io *io, int error) 572 { 573 unsigned long flags; 574 int io_error; 575 struct bio *bio; 576 struct mapped_device *md = io->md; 577 578 /* Push-back supersedes any I/O errors */ 579 if (error && !(io->error > 0 && __noflush_suspending(md))) 580 io->error = error; 581 582 if (atomic_dec_and_test(&io->io_count)) { 583 if (io->error == DM_ENDIO_REQUEUE) { 584 /* 585 * Target requested pushing back the I/O. 586 */ 587 spin_lock_irqsave(&md->deferred_lock, flags); 588 if (__noflush_suspending(md)) { 589 if (!bio_rw_flagged(io->bio, BIO_RW_BARRIER)) 590 bio_list_add_head(&md->deferred, 591 io->bio); 592 } else 593 /* noflush suspend was interrupted. */ 594 io->error = -EIO; 595 spin_unlock_irqrestore(&md->deferred_lock, flags); 596 } 597 598 io_error = io->error; 599 bio = io->bio; 600 601 if (bio_rw_flagged(bio, BIO_RW_BARRIER)) { 602 /* 603 * There can be just one barrier request so we use 604 * a per-device variable for error reporting. 605 * Note that you can't touch the bio after end_io_acct 606 */ 607 if (!md->barrier_error && io_error != -EOPNOTSUPP) 608 md->barrier_error = io_error; 609 end_io_acct(io); 610 } else { 611 end_io_acct(io); 612 613 if (io_error != DM_ENDIO_REQUEUE) { 614 trace_block_bio_complete(md->queue, bio); 615 616 bio_endio(bio, io_error); 617 } 618 } 619 620 free_io(md, io); 621 } 622 } 623 624 static void clone_endio(struct bio *bio, int error) 625 { 626 int r = 0; 627 struct dm_target_io *tio = bio->bi_private; 628 struct dm_io *io = tio->io; 629 struct mapped_device *md = tio->io->md; 630 dm_endio_fn endio = tio->ti->type->end_io; 631 632 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 633 error = -EIO; 634 635 if (endio) { 636 r = endio(tio->ti, bio, error, &tio->info); 637 if (r < 0 || r == DM_ENDIO_REQUEUE) 638 /* 639 * error and requeue request are handled 640 * in dec_pending(). 641 */ 642 error = r; 643 else if (r == DM_ENDIO_INCOMPLETE) 644 /* The target will handle the io */ 645 return; 646 else if (r) { 647 DMWARN("unimplemented target endio return value: %d", r); 648 BUG(); 649 } 650 } 651 652 /* 653 * Store md for cleanup instead of tio which is about to get freed. 654 */ 655 bio->bi_private = md->bs; 656 657 free_tio(md, tio); 658 bio_put(bio); 659 dec_pending(io, error); 660 } 661 662 /* 663 * Partial completion handling for request-based dm 664 */ 665 static void end_clone_bio(struct bio *clone, int error) 666 { 667 struct dm_rq_clone_bio_info *info = clone->bi_private; 668 struct dm_rq_target_io *tio = info->tio; 669 struct bio *bio = info->orig; 670 unsigned int nr_bytes = info->orig->bi_size; 671 672 bio_put(clone); 673 674 if (tio->error) 675 /* 676 * An error has already been detected on the request. 677 * Once error occurred, just let clone->end_io() handle 678 * the remainder. 679 */ 680 return; 681 else if (error) { 682 /* 683 * Don't notice the error to the upper layer yet. 684 * The error handling decision is made by the target driver, 685 * when the request is completed. 686 */ 687 tio->error = error; 688 return; 689 } 690 691 /* 692 * I/O for the bio successfully completed. 693 * Notice the data completion to the upper layer. 694 */ 695 696 /* 697 * bios are processed from the head of the list. 698 * So the completing bio should always be rq->bio. 699 * If it's not, something wrong is happening. 700 */ 701 if (tio->orig->bio != bio) 702 DMERR("bio completion is going in the middle of the request"); 703 704 /* 705 * Update the original request. 706 * Do not use blk_end_request() here, because it may complete 707 * the original request before the clone, and break the ordering. 708 */ 709 blk_update_request(tio->orig, 0, nr_bytes); 710 } 711 712 /* 713 * Don't touch any member of the md after calling this function because 714 * the md may be freed in dm_put() at the end of this function. 715 * Or do dm_get() before calling this function and dm_put() later. 716 */ 717 static void rq_completed(struct mapped_device *md, int run_queue) 718 { 719 int wakeup_waiters = 0; 720 struct request_queue *q = md->queue; 721 unsigned long flags; 722 723 spin_lock_irqsave(q->queue_lock, flags); 724 if (!queue_in_flight(q)) 725 wakeup_waiters = 1; 726 spin_unlock_irqrestore(q->queue_lock, flags); 727 728 /* nudge anyone waiting on suspend queue */ 729 if (wakeup_waiters) 730 wake_up(&md->wait); 731 732 if (run_queue) 733 blk_run_queue(q); 734 735 /* 736 * dm_put() must be at the end of this function. See the comment above 737 */ 738 dm_put(md); 739 } 740 741 static void free_rq_clone(struct request *clone) 742 { 743 struct dm_rq_target_io *tio = clone->end_io_data; 744 745 blk_rq_unprep_clone(clone); 746 free_rq_tio(tio); 747 } 748 749 static void dm_unprep_request(struct request *rq) 750 { 751 struct request *clone = rq->special; 752 753 rq->special = NULL; 754 rq->cmd_flags &= ~REQ_DONTPREP; 755 756 free_rq_clone(clone); 757 } 758 759 /* 760 * Requeue the original request of a clone. 761 */ 762 void dm_requeue_unmapped_request(struct request *clone) 763 { 764 struct dm_rq_target_io *tio = clone->end_io_data; 765 struct mapped_device *md = tio->md; 766 struct request *rq = tio->orig; 767 struct request_queue *q = rq->q; 768 unsigned long flags; 769 770 dm_unprep_request(rq); 771 772 spin_lock_irqsave(q->queue_lock, flags); 773 if (elv_queue_empty(q)) 774 blk_plug_device(q); 775 blk_requeue_request(q, rq); 776 spin_unlock_irqrestore(q->queue_lock, flags); 777 778 rq_completed(md, 0); 779 } 780 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 781 782 static void __stop_queue(struct request_queue *q) 783 { 784 blk_stop_queue(q); 785 } 786 787 static void stop_queue(struct request_queue *q) 788 { 789 unsigned long flags; 790 791 spin_lock_irqsave(q->queue_lock, flags); 792 __stop_queue(q); 793 spin_unlock_irqrestore(q->queue_lock, flags); 794 } 795 796 static void __start_queue(struct request_queue *q) 797 { 798 if (blk_queue_stopped(q)) 799 blk_start_queue(q); 800 } 801 802 static void start_queue(struct request_queue *q) 803 { 804 unsigned long flags; 805 806 spin_lock_irqsave(q->queue_lock, flags); 807 __start_queue(q); 808 spin_unlock_irqrestore(q->queue_lock, flags); 809 } 810 811 /* 812 * Complete the clone and the original request. 813 * Must be called without queue lock. 814 */ 815 static void dm_end_request(struct request *clone, int error) 816 { 817 struct dm_rq_target_io *tio = clone->end_io_data; 818 struct mapped_device *md = tio->md; 819 struct request *rq = tio->orig; 820 821 if (blk_pc_request(rq)) { 822 rq->errors = clone->errors; 823 rq->resid_len = clone->resid_len; 824 825 if (rq->sense) 826 /* 827 * We are using the sense buffer of the original 828 * request. 829 * So setting the length of the sense data is enough. 830 */ 831 rq->sense_len = clone->sense_len; 832 } 833 834 free_rq_clone(clone); 835 836 blk_end_request_all(rq, error); 837 838 rq_completed(md, 1); 839 } 840 841 /* 842 * Request completion handler for request-based dm 843 */ 844 static void dm_softirq_done(struct request *rq) 845 { 846 struct request *clone = rq->completion_data; 847 struct dm_rq_target_io *tio = clone->end_io_data; 848 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io; 849 int error = tio->error; 850 851 if (!(rq->cmd_flags & REQ_FAILED) && rq_end_io) 852 error = rq_end_io(tio->ti, clone, error, &tio->info); 853 854 if (error <= 0) 855 /* The target wants to complete the I/O */ 856 dm_end_request(clone, error); 857 else if (error == DM_ENDIO_INCOMPLETE) 858 /* The target will handle the I/O */ 859 return; 860 else if (error == DM_ENDIO_REQUEUE) 861 /* The target wants to requeue the I/O */ 862 dm_requeue_unmapped_request(clone); 863 else { 864 DMWARN("unimplemented target endio return value: %d", error); 865 BUG(); 866 } 867 } 868 869 /* 870 * Complete the clone and the original request with the error status 871 * through softirq context. 872 */ 873 static void dm_complete_request(struct request *clone, int error) 874 { 875 struct dm_rq_target_io *tio = clone->end_io_data; 876 struct request *rq = tio->orig; 877 878 tio->error = error; 879 rq->completion_data = clone; 880 blk_complete_request(rq); 881 } 882 883 /* 884 * Complete the not-mapped clone and the original request with the error status 885 * through softirq context. 886 * Target's rq_end_io() function isn't called. 887 * This may be used when the target's map_rq() function fails. 888 */ 889 void dm_kill_unmapped_request(struct request *clone, int error) 890 { 891 struct dm_rq_target_io *tio = clone->end_io_data; 892 struct request *rq = tio->orig; 893 894 rq->cmd_flags |= REQ_FAILED; 895 dm_complete_request(clone, error); 896 } 897 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 898 899 /* 900 * Called with the queue lock held 901 */ 902 static void end_clone_request(struct request *clone, int error) 903 { 904 /* 905 * For just cleaning up the information of the queue in which 906 * the clone was dispatched. 907 * The clone is *NOT* freed actually here because it is alloced from 908 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 909 */ 910 __blk_put_request(clone->q, clone); 911 912 /* 913 * Actual request completion is done in a softirq context which doesn't 914 * hold the queue lock. Otherwise, deadlock could occur because: 915 * - another request may be submitted by the upper level driver 916 * of the stacking during the completion 917 * - the submission which requires queue lock may be done 918 * against this queue 919 */ 920 dm_complete_request(clone, error); 921 } 922 923 static sector_t max_io_len(struct mapped_device *md, 924 sector_t sector, struct dm_target *ti) 925 { 926 sector_t offset = sector - ti->begin; 927 sector_t len = ti->len - offset; 928 929 /* 930 * Does the target need to split even further ? 931 */ 932 if (ti->split_io) { 933 sector_t boundary; 934 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 935 - offset; 936 if (len > boundary) 937 len = boundary; 938 } 939 940 return len; 941 } 942 943 static void __map_bio(struct dm_target *ti, struct bio *clone, 944 struct dm_target_io *tio) 945 { 946 int r; 947 sector_t sector; 948 struct mapped_device *md; 949 950 clone->bi_end_io = clone_endio; 951 clone->bi_private = tio; 952 953 /* 954 * Map the clone. If r == 0 we don't need to do 955 * anything, the target has assumed ownership of 956 * this io. 957 */ 958 atomic_inc(&tio->io->io_count); 959 sector = clone->bi_sector; 960 r = ti->type->map(ti, clone, &tio->info); 961 if (r == DM_MAPIO_REMAPPED) { 962 /* the bio has been remapped so dispatch it */ 963 964 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone, 965 tio->io->bio->bi_bdev->bd_dev, sector); 966 967 generic_make_request(clone); 968 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 969 /* error the io and bail out, or requeue it if needed */ 970 md = tio->io->md; 971 dec_pending(tio->io, r); 972 /* 973 * Store bio_set for cleanup. 974 */ 975 clone->bi_private = md->bs; 976 bio_put(clone); 977 free_tio(md, tio); 978 } else if (r) { 979 DMWARN("unimplemented target map return value: %d", r); 980 BUG(); 981 } 982 } 983 984 struct clone_info { 985 struct mapped_device *md; 986 struct dm_table *map; 987 struct bio *bio; 988 struct dm_io *io; 989 sector_t sector; 990 sector_t sector_count; 991 unsigned short idx; 992 }; 993 994 static void dm_bio_destructor(struct bio *bio) 995 { 996 struct bio_set *bs = bio->bi_private; 997 998 bio_free(bio, bs); 999 } 1000 1001 /* 1002 * Creates a little bio that is just does part of a bvec. 1003 */ 1004 static struct bio *split_bvec(struct bio *bio, sector_t sector, 1005 unsigned short idx, unsigned int offset, 1006 unsigned int len, struct bio_set *bs) 1007 { 1008 struct bio *clone; 1009 struct bio_vec *bv = bio->bi_io_vec + idx; 1010 1011 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 1012 clone->bi_destructor = dm_bio_destructor; 1013 *clone->bi_io_vec = *bv; 1014 1015 clone->bi_sector = sector; 1016 clone->bi_bdev = bio->bi_bdev; 1017 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER); 1018 clone->bi_vcnt = 1; 1019 clone->bi_size = to_bytes(len); 1020 clone->bi_io_vec->bv_offset = offset; 1021 clone->bi_io_vec->bv_len = clone->bi_size; 1022 clone->bi_flags |= 1 << BIO_CLONED; 1023 1024 if (bio_integrity(bio)) { 1025 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1026 bio_integrity_trim(clone, 1027 bio_sector_offset(bio, idx, offset), len); 1028 } 1029 1030 return clone; 1031 } 1032 1033 /* 1034 * Creates a bio that consists of range of complete bvecs. 1035 */ 1036 static struct bio *clone_bio(struct bio *bio, sector_t sector, 1037 unsigned short idx, unsigned short bv_count, 1038 unsigned int len, struct bio_set *bs) 1039 { 1040 struct bio *clone; 1041 1042 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 1043 __bio_clone(clone, bio); 1044 clone->bi_rw &= ~(1 << BIO_RW_BARRIER); 1045 clone->bi_destructor = dm_bio_destructor; 1046 clone->bi_sector = sector; 1047 clone->bi_idx = idx; 1048 clone->bi_vcnt = idx + bv_count; 1049 clone->bi_size = to_bytes(len); 1050 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 1051 1052 if (bio_integrity(bio)) { 1053 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1054 1055 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1056 bio_integrity_trim(clone, 1057 bio_sector_offset(bio, idx, 0), len); 1058 } 1059 1060 return clone; 1061 } 1062 1063 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1064 struct dm_target *ti) 1065 { 1066 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO); 1067 1068 tio->io = ci->io; 1069 tio->ti = ti; 1070 memset(&tio->info, 0, sizeof(tio->info)); 1071 1072 return tio; 1073 } 1074 1075 static void __flush_target(struct clone_info *ci, struct dm_target *ti, 1076 unsigned flush_nr) 1077 { 1078 struct dm_target_io *tio = alloc_tio(ci, ti); 1079 struct bio *clone; 1080 1081 tio->info.flush_request = flush_nr; 1082 1083 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1084 __bio_clone(clone, ci->bio); 1085 clone->bi_destructor = dm_bio_destructor; 1086 1087 __map_bio(ti, clone, tio); 1088 } 1089 1090 static int __clone_and_map_empty_barrier(struct clone_info *ci) 1091 { 1092 unsigned target_nr = 0, flush_nr; 1093 struct dm_target *ti; 1094 1095 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1096 for (flush_nr = 0; flush_nr < ti->num_flush_requests; 1097 flush_nr++) 1098 __flush_target(ci, ti, flush_nr); 1099 1100 ci->sector_count = 0; 1101 1102 return 0; 1103 } 1104 1105 static int __clone_and_map(struct clone_info *ci) 1106 { 1107 struct bio *clone, *bio = ci->bio; 1108 struct dm_target *ti; 1109 sector_t len = 0, max; 1110 struct dm_target_io *tio; 1111 1112 if (unlikely(bio_empty_barrier(bio))) 1113 return __clone_and_map_empty_barrier(ci); 1114 1115 ti = dm_table_find_target(ci->map, ci->sector); 1116 if (!dm_target_is_valid(ti)) 1117 return -EIO; 1118 1119 max = max_io_len(ci->md, ci->sector, ti); 1120 1121 /* 1122 * Allocate a target io object. 1123 */ 1124 tio = alloc_tio(ci, ti); 1125 1126 if (ci->sector_count <= max) { 1127 /* 1128 * Optimise for the simple case where we can do all of 1129 * the remaining io with a single clone. 1130 */ 1131 clone = clone_bio(bio, ci->sector, ci->idx, 1132 bio->bi_vcnt - ci->idx, ci->sector_count, 1133 ci->md->bs); 1134 __map_bio(ti, clone, tio); 1135 ci->sector_count = 0; 1136 1137 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1138 /* 1139 * There are some bvecs that don't span targets. 1140 * Do as many of these as possible. 1141 */ 1142 int i; 1143 sector_t remaining = max; 1144 sector_t bv_len; 1145 1146 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 1147 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 1148 1149 if (bv_len > remaining) 1150 break; 1151 1152 remaining -= bv_len; 1153 len += bv_len; 1154 } 1155 1156 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 1157 ci->md->bs); 1158 __map_bio(ti, clone, tio); 1159 1160 ci->sector += len; 1161 ci->sector_count -= len; 1162 ci->idx = i; 1163 1164 } else { 1165 /* 1166 * Handle a bvec that must be split between two or more targets. 1167 */ 1168 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1169 sector_t remaining = to_sector(bv->bv_len); 1170 unsigned int offset = 0; 1171 1172 do { 1173 if (offset) { 1174 ti = dm_table_find_target(ci->map, ci->sector); 1175 if (!dm_target_is_valid(ti)) 1176 return -EIO; 1177 1178 max = max_io_len(ci->md, ci->sector, ti); 1179 1180 tio = alloc_tio(ci, ti); 1181 } 1182 1183 len = min(remaining, max); 1184 1185 clone = split_bvec(bio, ci->sector, ci->idx, 1186 bv->bv_offset + offset, len, 1187 ci->md->bs); 1188 1189 __map_bio(ti, clone, tio); 1190 1191 ci->sector += len; 1192 ci->sector_count -= len; 1193 offset += to_bytes(len); 1194 } while (remaining -= len); 1195 1196 ci->idx++; 1197 } 1198 1199 return 0; 1200 } 1201 1202 /* 1203 * Split the bio into several clones and submit it to targets. 1204 */ 1205 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1206 { 1207 struct clone_info ci; 1208 int error = 0; 1209 1210 ci.map = dm_get_table(md); 1211 if (unlikely(!ci.map)) { 1212 if (!bio_rw_flagged(bio, BIO_RW_BARRIER)) 1213 bio_io_error(bio); 1214 else 1215 if (!md->barrier_error) 1216 md->barrier_error = -EIO; 1217 return; 1218 } 1219 1220 ci.md = md; 1221 ci.bio = bio; 1222 ci.io = alloc_io(md); 1223 ci.io->error = 0; 1224 atomic_set(&ci.io->io_count, 1); 1225 ci.io->bio = bio; 1226 ci.io->md = md; 1227 ci.sector = bio->bi_sector; 1228 ci.sector_count = bio_sectors(bio); 1229 if (unlikely(bio_empty_barrier(bio))) 1230 ci.sector_count = 1; 1231 ci.idx = bio->bi_idx; 1232 1233 start_io_acct(ci.io); 1234 while (ci.sector_count && !error) 1235 error = __clone_and_map(&ci); 1236 1237 /* drop the extra reference count */ 1238 dec_pending(ci.io, error); 1239 dm_table_put(ci.map); 1240 } 1241 /*----------------------------------------------------------------- 1242 * CRUD END 1243 *---------------------------------------------------------------*/ 1244 1245 static int dm_merge_bvec(struct request_queue *q, 1246 struct bvec_merge_data *bvm, 1247 struct bio_vec *biovec) 1248 { 1249 struct mapped_device *md = q->queuedata; 1250 struct dm_table *map = dm_get_table(md); 1251 struct dm_target *ti; 1252 sector_t max_sectors; 1253 int max_size = 0; 1254 1255 if (unlikely(!map)) 1256 goto out; 1257 1258 ti = dm_table_find_target(map, bvm->bi_sector); 1259 if (!dm_target_is_valid(ti)) 1260 goto out_table; 1261 1262 /* 1263 * Find maximum amount of I/O that won't need splitting 1264 */ 1265 max_sectors = min(max_io_len(md, bvm->bi_sector, ti), 1266 (sector_t) BIO_MAX_SECTORS); 1267 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1268 if (max_size < 0) 1269 max_size = 0; 1270 1271 /* 1272 * merge_bvec_fn() returns number of bytes 1273 * it can accept at this offset 1274 * max is precomputed maximal io size 1275 */ 1276 if (max_size && ti->type->merge) 1277 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1278 /* 1279 * If the target doesn't support merge method and some of the devices 1280 * provided their merge_bvec method (we know this by looking at 1281 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1282 * entries. So always set max_size to 0, and the code below allows 1283 * just one page. 1284 */ 1285 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1286 1287 max_size = 0; 1288 1289 out_table: 1290 dm_table_put(map); 1291 1292 out: 1293 /* 1294 * Always allow an entire first page 1295 */ 1296 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1297 max_size = biovec->bv_len; 1298 1299 return max_size; 1300 } 1301 1302 /* 1303 * The request function that just remaps the bio built up by 1304 * dm_merge_bvec. 1305 */ 1306 static int _dm_request(struct request_queue *q, struct bio *bio) 1307 { 1308 int rw = bio_data_dir(bio); 1309 struct mapped_device *md = q->queuedata; 1310 int cpu; 1311 1312 down_read(&md->io_lock); 1313 1314 cpu = part_stat_lock(); 1315 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1316 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1317 part_stat_unlock(); 1318 1319 /* 1320 * If we're suspended or the thread is processing barriers 1321 * we have to queue this io for later. 1322 */ 1323 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) || 1324 unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) { 1325 up_read(&md->io_lock); 1326 1327 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) && 1328 bio_rw(bio) == READA) { 1329 bio_io_error(bio); 1330 return 0; 1331 } 1332 1333 queue_io(md, bio); 1334 1335 return 0; 1336 } 1337 1338 __split_and_process_bio(md, bio); 1339 up_read(&md->io_lock); 1340 return 0; 1341 } 1342 1343 static int dm_make_request(struct request_queue *q, struct bio *bio) 1344 { 1345 struct mapped_device *md = q->queuedata; 1346 1347 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) { 1348 bio_endio(bio, -EOPNOTSUPP); 1349 return 0; 1350 } 1351 1352 return md->saved_make_request_fn(q, bio); /* call __make_request() */ 1353 } 1354 1355 static int dm_request_based(struct mapped_device *md) 1356 { 1357 return blk_queue_stackable(md->queue); 1358 } 1359 1360 static int dm_request(struct request_queue *q, struct bio *bio) 1361 { 1362 struct mapped_device *md = q->queuedata; 1363 1364 if (dm_request_based(md)) 1365 return dm_make_request(q, bio); 1366 1367 return _dm_request(q, bio); 1368 } 1369 1370 void dm_dispatch_request(struct request *rq) 1371 { 1372 int r; 1373 1374 if (blk_queue_io_stat(rq->q)) 1375 rq->cmd_flags |= REQ_IO_STAT; 1376 1377 rq->start_time = jiffies; 1378 r = blk_insert_cloned_request(rq->q, rq); 1379 if (r) 1380 dm_complete_request(rq, r); 1381 } 1382 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1383 1384 static void dm_rq_bio_destructor(struct bio *bio) 1385 { 1386 struct dm_rq_clone_bio_info *info = bio->bi_private; 1387 struct mapped_device *md = info->tio->md; 1388 1389 free_bio_info(info); 1390 bio_free(bio, md->bs); 1391 } 1392 1393 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1394 void *data) 1395 { 1396 struct dm_rq_target_io *tio = data; 1397 struct mapped_device *md = tio->md; 1398 struct dm_rq_clone_bio_info *info = alloc_bio_info(md); 1399 1400 if (!info) 1401 return -ENOMEM; 1402 1403 info->orig = bio_orig; 1404 info->tio = tio; 1405 bio->bi_end_io = end_clone_bio; 1406 bio->bi_private = info; 1407 bio->bi_destructor = dm_rq_bio_destructor; 1408 1409 return 0; 1410 } 1411 1412 static int setup_clone(struct request *clone, struct request *rq, 1413 struct dm_rq_target_io *tio) 1414 { 1415 int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1416 dm_rq_bio_constructor, tio); 1417 1418 if (r) 1419 return r; 1420 1421 clone->cmd = rq->cmd; 1422 clone->cmd_len = rq->cmd_len; 1423 clone->sense = rq->sense; 1424 clone->buffer = rq->buffer; 1425 clone->end_io = end_clone_request; 1426 clone->end_io_data = tio; 1427 1428 return 0; 1429 } 1430 1431 static int dm_rq_flush_suspending(struct mapped_device *md) 1432 { 1433 return !md->suspend_rq.special; 1434 } 1435 1436 /* 1437 * Called with the queue lock held. 1438 */ 1439 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1440 { 1441 struct mapped_device *md = q->queuedata; 1442 struct dm_rq_target_io *tio; 1443 struct request *clone; 1444 1445 if (unlikely(rq == &md->suspend_rq)) { 1446 if (dm_rq_flush_suspending(md)) 1447 return BLKPREP_OK; 1448 else 1449 /* The flush suspend was interrupted */ 1450 return BLKPREP_KILL; 1451 } 1452 1453 if (unlikely(rq->special)) { 1454 DMWARN("Already has something in rq->special."); 1455 return BLKPREP_KILL; 1456 } 1457 1458 tio = alloc_rq_tio(md); /* Only one for each original request */ 1459 if (!tio) 1460 /* -ENOMEM */ 1461 return BLKPREP_DEFER; 1462 1463 tio->md = md; 1464 tio->ti = NULL; 1465 tio->orig = rq; 1466 tio->error = 0; 1467 memset(&tio->info, 0, sizeof(tio->info)); 1468 1469 clone = &tio->clone; 1470 if (setup_clone(clone, rq, tio)) { 1471 /* -ENOMEM */ 1472 free_rq_tio(tio); 1473 return BLKPREP_DEFER; 1474 } 1475 1476 rq->special = clone; 1477 rq->cmd_flags |= REQ_DONTPREP; 1478 1479 return BLKPREP_OK; 1480 } 1481 1482 static void map_request(struct dm_target *ti, struct request *rq, 1483 struct mapped_device *md) 1484 { 1485 int r; 1486 struct request *clone = rq->special; 1487 struct dm_rq_target_io *tio = clone->end_io_data; 1488 1489 /* 1490 * Hold the md reference here for the in-flight I/O. 1491 * We can't rely on the reference count by device opener, 1492 * because the device may be closed during the request completion 1493 * when all bios are completed. 1494 * See the comment in rq_completed() too. 1495 */ 1496 dm_get(md); 1497 1498 tio->ti = ti; 1499 r = ti->type->map_rq(ti, clone, &tio->info); 1500 switch (r) { 1501 case DM_MAPIO_SUBMITTED: 1502 /* The target has taken the I/O to submit by itself later */ 1503 break; 1504 case DM_MAPIO_REMAPPED: 1505 /* The target has remapped the I/O so dispatch it */ 1506 dm_dispatch_request(clone); 1507 break; 1508 case DM_MAPIO_REQUEUE: 1509 /* The target wants to requeue the I/O */ 1510 dm_requeue_unmapped_request(clone); 1511 break; 1512 default: 1513 if (r > 0) { 1514 DMWARN("unimplemented target map return value: %d", r); 1515 BUG(); 1516 } 1517 1518 /* The target wants to complete the I/O */ 1519 dm_kill_unmapped_request(clone, r); 1520 break; 1521 } 1522 } 1523 1524 /* 1525 * q->request_fn for request-based dm. 1526 * Called with the queue lock held. 1527 */ 1528 static void dm_request_fn(struct request_queue *q) 1529 { 1530 struct mapped_device *md = q->queuedata; 1531 struct dm_table *map = dm_get_table(md); 1532 struct dm_target *ti; 1533 struct request *rq; 1534 1535 /* 1536 * For noflush suspend, check blk_queue_stopped() to immediately 1537 * quit I/O dispatching. 1538 */ 1539 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) { 1540 rq = blk_peek_request(q); 1541 if (!rq) 1542 goto plug_and_out; 1543 1544 if (unlikely(rq == &md->suspend_rq)) { /* Flush suspend maker */ 1545 if (queue_in_flight(q)) 1546 /* Not quiet yet. Wait more */ 1547 goto plug_and_out; 1548 1549 /* This device should be quiet now */ 1550 __stop_queue(q); 1551 blk_start_request(rq); 1552 __blk_end_request_all(rq, 0); 1553 wake_up(&md->wait); 1554 goto out; 1555 } 1556 1557 ti = dm_table_find_target(map, blk_rq_pos(rq)); 1558 if (ti->type->busy && ti->type->busy(ti)) 1559 goto plug_and_out; 1560 1561 blk_start_request(rq); 1562 spin_unlock(q->queue_lock); 1563 map_request(ti, rq, md); 1564 spin_lock_irq(q->queue_lock); 1565 } 1566 1567 goto out; 1568 1569 plug_and_out: 1570 if (!elv_queue_empty(q)) 1571 /* Some requests still remain, retry later */ 1572 blk_plug_device(q); 1573 1574 out: 1575 dm_table_put(map); 1576 1577 return; 1578 } 1579 1580 int dm_underlying_device_busy(struct request_queue *q) 1581 { 1582 return blk_lld_busy(q); 1583 } 1584 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1585 1586 static int dm_lld_busy(struct request_queue *q) 1587 { 1588 int r; 1589 struct mapped_device *md = q->queuedata; 1590 struct dm_table *map = dm_get_table(md); 1591 1592 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1593 r = 1; 1594 else 1595 r = dm_table_any_busy_target(map); 1596 1597 dm_table_put(map); 1598 1599 return r; 1600 } 1601 1602 static void dm_unplug_all(struct request_queue *q) 1603 { 1604 struct mapped_device *md = q->queuedata; 1605 struct dm_table *map = dm_get_table(md); 1606 1607 if (map) { 1608 if (dm_request_based(md)) 1609 generic_unplug_device(q); 1610 1611 dm_table_unplug_all(map); 1612 dm_table_put(map); 1613 } 1614 } 1615 1616 static int dm_any_congested(void *congested_data, int bdi_bits) 1617 { 1618 int r = bdi_bits; 1619 struct mapped_device *md = congested_data; 1620 struct dm_table *map; 1621 1622 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1623 map = dm_get_table(md); 1624 if (map) { 1625 /* 1626 * Request-based dm cares about only own queue for 1627 * the query about congestion status of request_queue 1628 */ 1629 if (dm_request_based(md)) 1630 r = md->queue->backing_dev_info.state & 1631 bdi_bits; 1632 else 1633 r = dm_table_any_congested(map, bdi_bits); 1634 1635 dm_table_put(map); 1636 } 1637 } 1638 1639 return r; 1640 } 1641 1642 /*----------------------------------------------------------------- 1643 * An IDR is used to keep track of allocated minor numbers. 1644 *---------------------------------------------------------------*/ 1645 static DEFINE_IDR(_minor_idr); 1646 1647 static void free_minor(int minor) 1648 { 1649 spin_lock(&_minor_lock); 1650 idr_remove(&_minor_idr, minor); 1651 spin_unlock(&_minor_lock); 1652 } 1653 1654 /* 1655 * See if the device with a specific minor # is free. 1656 */ 1657 static int specific_minor(int minor) 1658 { 1659 int r, m; 1660 1661 if (minor >= (1 << MINORBITS)) 1662 return -EINVAL; 1663 1664 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1665 if (!r) 1666 return -ENOMEM; 1667 1668 spin_lock(&_minor_lock); 1669 1670 if (idr_find(&_minor_idr, minor)) { 1671 r = -EBUSY; 1672 goto out; 1673 } 1674 1675 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 1676 if (r) 1677 goto out; 1678 1679 if (m != minor) { 1680 idr_remove(&_minor_idr, m); 1681 r = -EBUSY; 1682 goto out; 1683 } 1684 1685 out: 1686 spin_unlock(&_minor_lock); 1687 return r; 1688 } 1689 1690 static int next_free_minor(int *minor) 1691 { 1692 int r, m; 1693 1694 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1695 if (!r) 1696 return -ENOMEM; 1697 1698 spin_lock(&_minor_lock); 1699 1700 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1701 if (r) 1702 goto out; 1703 1704 if (m >= (1 << MINORBITS)) { 1705 idr_remove(&_minor_idr, m); 1706 r = -ENOSPC; 1707 goto out; 1708 } 1709 1710 *minor = m; 1711 1712 out: 1713 spin_unlock(&_minor_lock); 1714 return r; 1715 } 1716 1717 static const struct block_device_operations dm_blk_dops; 1718 1719 static void dm_wq_work(struct work_struct *work); 1720 1721 /* 1722 * Allocate and initialise a blank device with a given minor. 1723 */ 1724 static struct mapped_device *alloc_dev(int minor) 1725 { 1726 int r; 1727 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1728 void *old_md; 1729 1730 if (!md) { 1731 DMWARN("unable to allocate device, out of memory."); 1732 return NULL; 1733 } 1734 1735 if (!try_module_get(THIS_MODULE)) 1736 goto bad_module_get; 1737 1738 /* get a minor number for the dev */ 1739 if (minor == DM_ANY_MINOR) 1740 r = next_free_minor(&minor); 1741 else 1742 r = specific_minor(minor); 1743 if (r < 0) 1744 goto bad_minor; 1745 1746 init_rwsem(&md->io_lock); 1747 mutex_init(&md->suspend_lock); 1748 spin_lock_init(&md->deferred_lock); 1749 rwlock_init(&md->map_lock); 1750 atomic_set(&md->holders, 1); 1751 atomic_set(&md->open_count, 0); 1752 atomic_set(&md->event_nr, 0); 1753 atomic_set(&md->uevent_seq, 0); 1754 INIT_LIST_HEAD(&md->uevent_list); 1755 spin_lock_init(&md->uevent_lock); 1756 1757 md->queue = blk_init_queue(dm_request_fn, NULL); 1758 if (!md->queue) 1759 goto bad_queue; 1760 1761 /* 1762 * Request-based dm devices cannot be stacked on top of bio-based dm 1763 * devices. The type of this dm device has not been decided yet, 1764 * although we initialized the queue using blk_init_queue(). 1765 * The type is decided at the first table loading time. 1766 * To prevent problematic device stacking, clear the queue flag 1767 * for request stacking support until then. 1768 * 1769 * This queue is new, so no concurrency on the queue_flags. 1770 */ 1771 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1772 md->saved_make_request_fn = md->queue->make_request_fn; 1773 md->queue->queuedata = md; 1774 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1775 md->queue->backing_dev_info.congested_data = md; 1776 blk_queue_make_request(md->queue, dm_request); 1777 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1778 md->queue->unplug_fn = dm_unplug_all; 1779 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1780 blk_queue_softirq_done(md->queue, dm_softirq_done); 1781 blk_queue_prep_rq(md->queue, dm_prep_fn); 1782 blk_queue_lld_busy(md->queue, dm_lld_busy); 1783 1784 md->disk = alloc_disk(1); 1785 if (!md->disk) 1786 goto bad_disk; 1787 1788 atomic_set(&md->pending, 0); 1789 init_waitqueue_head(&md->wait); 1790 INIT_WORK(&md->work, dm_wq_work); 1791 init_waitqueue_head(&md->eventq); 1792 1793 md->disk->major = _major; 1794 md->disk->first_minor = minor; 1795 md->disk->fops = &dm_blk_dops; 1796 md->disk->queue = md->queue; 1797 md->disk->private_data = md; 1798 sprintf(md->disk->disk_name, "dm-%d", minor); 1799 add_disk(md->disk); 1800 format_dev_t(md->name, MKDEV(_major, minor)); 1801 1802 md->wq = create_singlethread_workqueue("kdmflush"); 1803 if (!md->wq) 1804 goto bad_thread; 1805 1806 md->bdev = bdget_disk(md->disk, 0); 1807 if (!md->bdev) 1808 goto bad_bdev; 1809 1810 /* Populate the mapping, nobody knows we exist yet */ 1811 spin_lock(&_minor_lock); 1812 old_md = idr_replace(&_minor_idr, md, minor); 1813 spin_unlock(&_minor_lock); 1814 1815 BUG_ON(old_md != MINOR_ALLOCED); 1816 1817 return md; 1818 1819 bad_bdev: 1820 destroy_workqueue(md->wq); 1821 bad_thread: 1822 put_disk(md->disk); 1823 bad_disk: 1824 blk_cleanup_queue(md->queue); 1825 bad_queue: 1826 free_minor(minor); 1827 bad_minor: 1828 module_put(THIS_MODULE); 1829 bad_module_get: 1830 kfree(md); 1831 return NULL; 1832 } 1833 1834 static void unlock_fs(struct mapped_device *md); 1835 1836 static void free_dev(struct mapped_device *md) 1837 { 1838 int minor = MINOR(disk_devt(md->disk)); 1839 1840 unlock_fs(md); 1841 bdput(md->bdev); 1842 destroy_workqueue(md->wq); 1843 if (md->tio_pool) 1844 mempool_destroy(md->tio_pool); 1845 if (md->io_pool) 1846 mempool_destroy(md->io_pool); 1847 if (md->bs) 1848 bioset_free(md->bs); 1849 blk_integrity_unregister(md->disk); 1850 del_gendisk(md->disk); 1851 free_minor(minor); 1852 1853 spin_lock(&_minor_lock); 1854 md->disk->private_data = NULL; 1855 spin_unlock(&_minor_lock); 1856 1857 put_disk(md->disk); 1858 blk_cleanup_queue(md->queue); 1859 module_put(THIS_MODULE); 1860 kfree(md); 1861 } 1862 1863 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1864 { 1865 struct dm_md_mempools *p; 1866 1867 if (md->io_pool && md->tio_pool && md->bs) 1868 /* the md already has necessary mempools */ 1869 goto out; 1870 1871 p = dm_table_get_md_mempools(t); 1872 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs); 1873 1874 md->io_pool = p->io_pool; 1875 p->io_pool = NULL; 1876 md->tio_pool = p->tio_pool; 1877 p->tio_pool = NULL; 1878 md->bs = p->bs; 1879 p->bs = NULL; 1880 1881 out: 1882 /* mempool bind completed, now no need any mempools in the table */ 1883 dm_table_free_md_mempools(t); 1884 } 1885 1886 /* 1887 * Bind a table to the device. 1888 */ 1889 static void event_callback(void *context) 1890 { 1891 unsigned long flags; 1892 LIST_HEAD(uevents); 1893 struct mapped_device *md = (struct mapped_device *) context; 1894 1895 spin_lock_irqsave(&md->uevent_lock, flags); 1896 list_splice_init(&md->uevent_list, &uevents); 1897 spin_unlock_irqrestore(&md->uevent_lock, flags); 1898 1899 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1900 1901 atomic_inc(&md->event_nr); 1902 wake_up(&md->eventq); 1903 } 1904 1905 static void __set_size(struct mapped_device *md, sector_t size) 1906 { 1907 set_capacity(md->disk, size); 1908 1909 mutex_lock(&md->bdev->bd_inode->i_mutex); 1910 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1911 mutex_unlock(&md->bdev->bd_inode->i_mutex); 1912 } 1913 1914 static int __bind(struct mapped_device *md, struct dm_table *t, 1915 struct queue_limits *limits) 1916 { 1917 struct request_queue *q = md->queue; 1918 sector_t size; 1919 unsigned long flags; 1920 1921 size = dm_table_get_size(t); 1922 1923 /* 1924 * Wipe any geometry if the size of the table changed. 1925 */ 1926 if (size != get_capacity(md->disk)) 1927 memset(&md->geometry, 0, sizeof(md->geometry)); 1928 1929 __set_size(md, size); 1930 1931 if (!size) { 1932 dm_table_destroy(t); 1933 return 0; 1934 } 1935 1936 dm_table_event_callback(t, event_callback, md); 1937 1938 /* 1939 * The queue hasn't been stopped yet, if the old table type wasn't 1940 * for request-based during suspension. So stop it to prevent 1941 * I/O mapping before resume. 1942 * This must be done before setting the queue restrictions, 1943 * because request-based dm may be run just after the setting. 1944 */ 1945 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 1946 stop_queue(q); 1947 1948 __bind_mempools(md, t); 1949 1950 write_lock_irqsave(&md->map_lock, flags); 1951 md->map = t; 1952 dm_table_set_restrictions(t, q, limits); 1953 write_unlock_irqrestore(&md->map_lock, flags); 1954 1955 return 0; 1956 } 1957 1958 static void __unbind(struct mapped_device *md) 1959 { 1960 struct dm_table *map = md->map; 1961 unsigned long flags; 1962 1963 if (!map) 1964 return; 1965 1966 dm_table_event_callback(map, NULL, NULL); 1967 write_lock_irqsave(&md->map_lock, flags); 1968 md->map = NULL; 1969 write_unlock_irqrestore(&md->map_lock, flags); 1970 dm_table_destroy(map); 1971 } 1972 1973 /* 1974 * Constructor for a new device. 1975 */ 1976 int dm_create(int minor, struct mapped_device **result) 1977 { 1978 struct mapped_device *md; 1979 1980 md = alloc_dev(minor); 1981 if (!md) 1982 return -ENXIO; 1983 1984 dm_sysfs_init(md); 1985 1986 *result = md; 1987 return 0; 1988 } 1989 1990 static struct mapped_device *dm_find_md(dev_t dev) 1991 { 1992 struct mapped_device *md; 1993 unsigned minor = MINOR(dev); 1994 1995 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1996 return NULL; 1997 1998 spin_lock(&_minor_lock); 1999 2000 md = idr_find(&_minor_idr, minor); 2001 if (md && (md == MINOR_ALLOCED || 2002 (MINOR(disk_devt(dm_disk(md))) != minor) || 2003 test_bit(DMF_FREEING, &md->flags))) { 2004 md = NULL; 2005 goto out; 2006 } 2007 2008 out: 2009 spin_unlock(&_minor_lock); 2010 2011 return md; 2012 } 2013 2014 struct mapped_device *dm_get_md(dev_t dev) 2015 { 2016 struct mapped_device *md = dm_find_md(dev); 2017 2018 if (md) 2019 dm_get(md); 2020 2021 return md; 2022 } 2023 2024 void *dm_get_mdptr(struct mapped_device *md) 2025 { 2026 return md->interface_ptr; 2027 } 2028 2029 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2030 { 2031 md->interface_ptr = ptr; 2032 } 2033 2034 void dm_get(struct mapped_device *md) 2035 { 2036 atomic_inc(&md->holders); 2037 } 2038 2039 const char *dm_device_name(struct mapped_device *md) 2040 { 2041 return md->name; 2042 } 2043 EXPORT_SYMBOL_GPL(dm_device_name); 2044 2045 void dm_put(struct mapped_device *md) 2046 { 2047 struct dm_table *map; 2048 2049 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2050 2051 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) { 2052 map = dm_get_table(md); 2053 idr_replace(&_minor_idr, MINOR_ALLOCED, 2054 MINOR(disk_devt(dm_disk(md)))); 2055 set_bit(DMF_FREEING, &md->flags); 2056 spin_unlock(&_minor_lock); 2057 if (!dm_suspended(md)) { 2058 dm_table_presuspend_targets(map); 2059 dm_table_postsuspend_targets(map); 2060 } 2061 dm_sysfs_exit(md); 2062 dm_table_put(map); 2063 __unbind(md); 2064 free_dev(md); 2065 } 2066 } 2067 EXPORT_SYMBOL_GPL(dm_put); 2068 2069 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2070 { 2071 int r = 0; 2072 DECLARE_WAITQUEUE(wait, current); 2073 struct request_queue *q = md->queue; 2074 unsigned long flags; 2075 2076 dm_unplug_all(md->queue); 2077 2078 add_wait_queue(&md->wait, &wait); 2079 2080 while (1) { 2081 set_current_state(interruptible); 2082 2083 smp_mb(); 2084 if (dm_request_based(md)) { 2085 spin_lock_irqsave(q->queue_lock, flags); 2086 if (!queue_in_flight(q) && blk_queue_stopped(q)) { 2087 spin_unlock_irqrestore(q->queue_lock, flags); 2088 break; 2089 } 2090 spin_unlock_irqrestore(q->queue_lock, flags); 2091 } else if (!atomic_read(&md->pending)) 2092 break; 2093 2094 if (interruptible == TASK_INTERRUPTIBLE && 2095 signal_pending(current)) { 2096 r = -EINTR; 2097 break; 2098 } 2099 2100 io_schedule(); 2101 } 2102 set_current_state(TASK_RUNNING); 2103 2104 remove_wait_queue(&md->wait, &wait); 2105 2106 return r; 2107 } 2108 2109 static void dm_flush(struct mapped_device *md) 2110 { 2111 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2112 2113 bio_init(&md->barrier_bio); 2114 md->barrier_bio.bi_bdev = md->bdev; 2115 md->barrier_bio.bi_rw = WRITE_BARRIER; 2116 __split_and_process_bio(md, &md->barrier_bio); 2117 2118 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2119 } 2120 2121 static void process_barrier(struct mapped_device *md, struct bio *bio) 2122 { 2123 md->barrier_error = 0; 2124 2125 dm_flush(md); 2126 2127 if (!bio_empty_barrier(bio)) { 2128 __split_and_process_bio(md, bio); 2129 dm_flush(md); 2130 } 2131 2132 if (md->barrier_error != DM_ENDIO_REQUEUE) 2133 bio_endio(bio, md->barrier_error); 2134 else { 2135 spin_lock_irq(&md->deferred_lock); 2136 bio_list_add_head(&md->deferred, bio); 2137 spin_unlock_irq(&md->deferred_lock); 2138 } 2139 } 2140 2141 /* 2142 * Process the deferred bios 2143 */ 2144 static void dm_wq_work(struct work_struct *work) 2145 { 2146 struct mapped_device *md = container_of(work, struct mapped_device, 2147 work); 2148 struct bio *c; 2149 2150 down_write(&md->io_lock); 2151 2152 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2153 spin_lock_irq(&md->deferred_lock); 2154 c = bio_list_pop(&md->deferred); 2155 spin_unlock_irq(&md->deferred_lock); 2156 2157 if (!c) { 2158 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags); 2159 break; 2160 } 2161 2162 up_write(&md->io_lock); 2163 2164 if (dm_request_based(md)) 2165 generic_make_request(c); 2166 else { 2167 if (bio_rw_flagged(c, BIO_RW_BARRIER)) 2168 process_barrier(md, c); 2169 else 2170 __split_and_process_bio(md, c); 2171 } 2172 2173 down_write(&md->io_lock); 2174 } 2175 2176 up_write(&md->io_lock); 2177 } 2178 2179 static void dm_queue_flush(struct mapped_device *md) 2180 { 2181 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2182 smp_mb__after_clear_bit(); 2183 queue_work(md->wq, &md->work); 2184 } 2185 2186 /* 2187 * Swap in a new table (destroying old one). 2188 */ 2189 int dm_swap_table(struct mapped_device *md, struct dm_table *table) 2190 { 2191 struct queue_limits limits; 2192 int r = -EINVAL; 2193 2194 mutex_lock(&md->suspend_lock); 2195 2196 /* device must be suspended */ 2197 if (!dm_suspended(md)) 2198 goto out; 2199 2200 r = dm_calculate_queue_limits(table, &limits); 2201 if (r) 2202 goto out; 2203 2204 /* cannot change the device type, once a table is bound */ 2205 if (md->map && 2206 (dm_table_get_type(md->map) != dm_table_get_type(table))) { 2207 DMWARN("can't change the device type after a table is bound"); 2208 goto out; 2209 } 2210 2211 __unbind(md); 2212 r = __bind(md, table, &limits); 2213 2214 out: 2215 mutex_unlock(&md->suspend_lock); 2216 return r; 2217 } 2218 2219 static void dm_rq_invalidate_suspend_marker(struct mapped_device *md) 2220 { 2221 md->suspend_rq.special = (void *)0x1; 2222 } 2223 2224 static void dm_rq_abort_suspend(struct mapped_device *md, int noflush) 2225 { 2226 struct request_queue *q = md->queue; 2227 unsigned long flags; 2228 2229 spin_lock_irqsave(q->queue_lock, flags); 2230 if (!noflush) 2231 dm_rq_invalidate_suspend_marker(md); 2232 __start_queue(q); 2233 spin_unlock_irqrestore(q->queue_lock, flags); 2234 } 2235 2236 static void dm_rq_start_suspend(struct mapped_device *md, int noflush) 2237 { 2238 struct request *rq = &md->suspend_rq; 2239 struct request_queue *q = md->queue; 2240 2241 if (noflush) 2242 stop_queue(q); 2243 else { 2244 blk_rq_init(q, rq); 2245 blk_insert_request(q, rq, 0, NULL); 2246 } 2247 } 2248 2249 static int dm_rq_suspend_available(struct mapped_device *md, int noflush) 2250 { 2251 int r = 1; 2252 struct request *rq = &md->suspend_rq; 2253 struct request_queue *q = md->queue; 2254 unsigned long flags; 2255 2256 if (noflush) 2257 return r; 2258 2259 /* The marker must be protected by queue lock if it is in use */ 2260 spin_lock_irqsave(q->queue_lock, flags); 2261 if (unlikely(rq->ref_count)) { 2262 /* 2263 * This can happen, when the previous flush suspend was 2264 * interrupted, the marker is still in the queue and 2265 * this flush suspend has been invoked, because we don't 2266 * remove the marker at the time of suspend interruption. 2267 * We have only one marker per mapped_device, so we can't 2268 * start another flush suspend while it is in use. 2269 */ 2270 BUG_ON(!rq->special); /* The marker should be invalidated */ 2271 DMWARN("Invalidating the previous flush suspend is still in" 2272 " progress. Please retry later."); 2273 r = 0; 2274 } 2275 spin_unlock_irqrestore(q->queue_lock, flags); 2276 2277 return r; 2278 } 2279 2280 /* 2281 * Functions to lock and unlock any filesystem running on the 2282 * device. 2283 */ 2284 static int lock_fs(struct mapped_device *md) 2285 { 2286 int r; 2287 2288 WARN_ON(md->frozen_sb); 2289 2290 md->frozen_sb = freeze_bdev(md->bdev); 2291 if (IS_ERR(md->frozen_sb)) { 2292 r = PTR_ERR(md->frozen_sb); 2293 md->frozen_sb = NULL; 2294 return r; 2295 } 2296 2297 set_bit(DMF_FROZEN, &md->flags); 2298 2299 return 0; 2300 } 2301 2302 static void unlock_fs(struct mapped_device *md) 2303 { 2304 if (!test_bit(DMF_FROZEN, &md->flags)) 2305 return; 2306 2307 thaw_bdev(md->bdev, md->frozen_sb); 2308 md->frozen_sb = NULL; 2309 clear_bit(DMF_FROZEN, &md->flags); 2310 } 2311 2312 /* 2313 * We need to be able to change a mapping table under a mounted 2314 * filesystem. For example we might want to move some data in 2315 * the background. Before the table can be swapped with 2316 * dm_bind_table, dm_suspend must be called to flush any in 2317 * flight bios and ensure that any further io gets deferred. 2318 */ 2319 /* 2320 * Suspend mechanism in request-based dm. 2321 * 2322 * After the suspend starts, further incoming requests are kept in 2323 * the request_queue and deferred. 2324 * Remaining requests in the request_queue at the start of suspend are flushed 2325 * if it is flush suspend. 2326 * The suspend completes when the following conditions have been satisfied, 2327 * so wait for it: 2328 * 1. q->in_flight is 0 (which means no in_flight request) 2329 * 2. queue has been stopped (which means no request dispatching) 2330 * 2331 * 2332 * Noflush suspend 2333 * --------------- 2334 * Noflush suspend doesn't need to dispatch remaining requests. 2335 * So stop the queue immediately. Then, wait for all in_flight requests 2336 * to be completed or requeued. 2337 * 2338 * To abort noflush suspend, start the queue. 2339 * 2340 * 2341 * Flush suspend 2342 * ------------- 2343 * Flush suspend needs to dispatch remaining requests. So stop the queue 2344 * after the remaining requests are completed. (Requeued request must be also 2345 * re-dispatched and completed. Until then, we can't stop the queue.) 2346 * 2347 * During flushing the remaining requests, further incoming requests are also 2348 * inserted to the same queue. To distinguish which requests are to be 2349 * flushed, we insert a marker request to the queue at the time of starting 2350 * flush suspend, like a barrier. 2351 * The dispatching is blocked when the marker is found on the top of the queue. 2352 * And the queue is stopped when all in_flight requests are completed, since 2353 * that means the remaining requests are completely flushed. 2354 * Then, the marker is removed from the queue. 2355 * 2356 * To abort flush suspend, we also need to take care of the marker, not only 2357 * starting the queue. 2358 * We don't remove the marker forcibly from the queue since it's against 2359 * the block-layer manner. Instead, we put a invalidated mark on the marker. 2360 * When the invalidated marker is found on the top of the queue, it is 2361 * immediately removed from the queue, so it doesn't block dispatching. 2362 * Because we have only one marker per mapped_device, we can't start another 2363 * flush suspend until the invalidated marker is removed from the queue. 2364 * So fail and return with -EBUSY in such a case. 2365 */ 2366 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2367 { 2368 struct dm_table *map = NULL; 2369 int r = 0; 2370 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2371 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2372 2373 mutex_lock(&md->suspend_lock); 2374 2375 if (dm_suspended(md)) { 2376 r = -EINVAL; 2377 goto out_unlock; 2378 } 2379 2380 if (dm_request_based(md) && !dm_rq_suspend_available(md, noflush)) { 2381 r = -EBUSY; 2382 goto out_unlock; 2383 } 2384 2385 map = dm_get_table(md); 2386 2387 /* 2388 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2389 * This flag is cleared before dm_suspend returns. 2390 */ 2391 if (noflush) 2392 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2393 2394 /* This does not get reverted if there's an error later. */ 2395 dm_table_presuspend_targets(map); 2396 2397 /* 2398 * Flush I/O to the device. noflush supersedes do_lockfs, 2399 * because lock_fs() needs to flush I/Os. 2400 */ 2401 if (!noflush && do_lockfs) { 2402 r = lock_fs(md); 2403 if (r) 2404 goto out; 2405 } 2406 2407 /* 2408 * Here we must make sure that no processes are submitting requests 2409 * to target drivers i.e. no one may be executing 2410 * __split_and_process_bio. This is called from dm_request and 2411 * dm_wq_work. 2412 * 2413 * To get all processes out of __split_and_process_bio in dm_request, 2414 * we take the write lock. To prevent any process from reentering 2415 * __split_and_process_bio from dm_request, we set 2416 * DMF_QUEUE_IO_TO_THREAD. 2417 * 2418 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND 2419 * and call flush_workqueue(md->wq). flush_workqueue will wait until 2420 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any 2421 * further calls to __split_and_process_bio from dm_wq_work. 2422 */ 2423 down_write(&md->io_lock); 2424 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2425 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags); 2426 up_write(&md->io_lock); 2427 2428 flush_workqueue(md->wq); 2429 2430 if (dm_request_based(md)) 2431 dm_rq_start_suspend(md, noflush); 2432 2433 /* 2434 * At this point no more requests are entering target request routines. 2435 * We call dm_wait_for_completion to wait for all existing requests 2436 * to finish. 2437 */ 2438 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2439 2440 down_write(&md->io_lock); 2441 if (noflush) 2442 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2443 up_write(&md->io_lock); 2444 2445 /* were we interrupted ? */ 2446 if (r < 0) { 2447 dm_queue_flush(md); 2448 2449 if (dm_request_based(md)) 2450 dm_rq_abort_suspend(md, noflush); 2451 2452 unlock_fs(md); 2453 goto out; /* pushback list is already flushed, so skip flush */ 2454 } 2455 2456 /* 2457 * If dm_wait_for_completion returned 0, the device is completely 2458 * quiescent now. There is no request-processing activity. All new 2459 * requests are being added to md->deferred list. 2460 */ 2461 2462 dm_table_postsuspend_targets(map); 2463 2464 set_bit(DMF_SUSPENDED, &md->flags); 2465 2466 out: 2467 dm_table_put(map); 2468 2469 out_unlock: 2470 mutex_unlock(&md->suspend_lock); 2471 return r; 2472 } 2473 2474 int dm_resume(struct mapped_device *md) 2475 { 2476 int r = -EINVAL; 2477 struct dm_table *map = NULL; 2478 2479 mutex_lock(&md->suspend_lock); 2480 if (!dm_suspended(md)) 2481 goto out; 2482 2483 map = dm_get_table(md); 2484 if (!map || !dm_table_get_size(map)) 2485 goto out; 2486 2487 r = dm_table_resume_targets(map); 2488 if (r) 2489 goto out; 2490 2491 dm_queue_flush(md); 2492 2493 /* 2494 * Flushing deferred I/Os must be done after targets are resumed 2495 * so that mapping of targets can work correctly. 2496 * Request-based dm is queueing the deferred I/Os in its request_queue. 2497 */ 2498 if (dm_request_based(md)) 2499 start_queue(md->queue); 2500 2501 unlock_fs(md); 2502 2503 clear_bit(DMF_SUSPENDED, &md->flags); 2504 2505 dm_table_unplug_all(map); 2506 r = 0; 2507 out: 2508 dm_table_put(map); 2509 mutex_unlock(&md->suspend_lock); 2510 2511 return r; 2512 } 2513 2514 /*----------------------------------------------------------------- 2515 * Event notification. 2516 *---------------------------------------------------------------*/ 2517 void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2518 unsigned cookie) 2519 { 2520 char udev_cookie[DM_COOKIE_LENGTH]; 2521 char *envp[] = { udev_cookie, NULL }; 2522 2523 if (!cookie) 2524 kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2525 else { 2526 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2527 DM_COOKIE_ENV_VAR_NAME, cookie); 2528 kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 2529 } 2530 } 2531 2532 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2533 { 2534 return atomic_add_return(1, &md->uevent_seq); 2535 } 2536 2537 uint32_t dm_get_event_nr(struct mapped_device *md) 2538 { 2539 return atomic_read(&md->event_nr); 2540 } 2541 2542 int dm_wait_event(struct mapped_device *md, int event_nr) 2543 { 2544 return wait_event_interruptible(md->eventq, 2545 (event_nr != atomic_read(&md->event_nr))); 2546 } 2547 2548 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2549 { 2550 unsigned long flags; 2551 2552 spin_lock_irqsave(&md->uevent_lock, flags); 2553 list_add(elist, &md->uevent_list); 2554 spin_unlock_irqrestore(&md->uevent_lock, flags); 2555 } 2556 2557 /* 2558 * The gendisk is only valid as long as you have a reference 2559 * count on 'md'. 2560 */ 2561 struct gendisk *dm_disk(struct mapped_device *md) 2562 { 2563 return md->disk; 2564 } 2565 2566 struct kobject *dm_kobject(struct mapped_device *md) 2567 { 2568 return &md->kobj; 2569 } 2570 2571 /* 2572 * struct mapped_device should not be exported outside of dm.c 2573 * so use this check to verify that kobj is part of md structure 2574 */ 2575 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2576 { 2577 struct mapped_device *md; 2578 2579 md = container_of(kobj, struct mapped_device, kobj); 2580 if (&md->kobj != kobj) 2581 return NULL; 2582 2583 if (test_bit(DMF_FREEING, &md->flags) || 2584 test_bit(DMF_DELETING, &md->flags)) 2585 return NULL; 2586 2587 dm_get(md); 2588 return md; 2589 } 2590 2591 int dm_suspended(struct mapped_device *md) 2592 { 2593 return test_bit(DMF_SUSPENDED, &md->flags); 2594 } 2595 2596 int dm_noflush_suspending(struct dm_target *ti) 2597 { 2598 struct mapped_device *md = dm_table_get_md(ti->table); 2599 int r = __noflush_suspending(md); 2600 2601 dm_put(md); 2602 2603 return r; 2604 } 2605 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2606 2607 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type) 2608 { 2609 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL); 2610 2611 if (!pools) 2612 return NULL; 2613 2614 pools->io_pool = (type == DM_TYPE_BIO_BASED) ? 2615 mempool_create_slab_pool(MIN_IOS, _io_cache) : 2616 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache); 2617 if (!pools->io_pool) 2618 goto free_pools_and_out; 2619 2620 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ? 2621 mempool_create_slab_pool(MIN_IOS, _tio_cache) : 2622 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache); 2623 if (!pools->tio_pool) 2624 goto free_io_pool_and_out; 2625 2626 pools->bs = (type == DM_TYPE_BIO_BASED) ? 2627 bioset_create(16, 0) : bioset_create(MIN_IOS, 0); 2628 if (!pools->bs) 2629 goto free_tio_pool_and_out; 2630 2631 return pools; 2632 2633 free_tio_pool_and_out: 2634 mempool_destroy(pools->tio_pool); 2635 2636 free_io_pool_and_out: 2637 mempool_destroy(pools->io_pool); 2638 2639 free_pools_and_out: 2640 kfree(pools); 2641 2642 return NULL; 2643 } 2644 2645 void dm_free_md_mempools(struct dm_md_mempools *pools) 2646 { 2647 if (!pools) 2648 return; 2649 2650 if (pools->io_pool) 2651 mempool_destroy(pools->io_pool); 2652 2653 if (pools->tio_pool) 2654 mempool_destroy(pools->tio_pool); 2655 2656 if (pools->bs) 2657 bioset_free(pools->bs); 2658 2659 kfree(pools); 2660 } 2661 2662 static const struct block_device_operations dm_blk_dops = { 2663 .open = dm_blk_open, 2664 .release = dm_blk_close, 2665 .ioctl = dm_blk_ioctl, 2666 .getgeo = dm_blk_getgeo, 2667 .owner = THIS_MODULE 2668 }; 2669 2670 EXPORT_SYMBOL(dm_get_mapinfo); 2671 2672 /* 2673 * module hooks 2674 */ 2675 module_init(dm_init); 2676 module_exit(dm_exit); 2677 2678 module_param(major, uint, 0); 2679 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2680 MODULE_DESCRIPTION(DM_NAME " driver"); 2681 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2682 MODULE_LICENSE("GPL"); 2683