1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set *bs; 152 struct bio_set *io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 static struct kmem_cache *_rq_tio_cache; 162 static struct kmem_cache *_rq_cache; 163 164 /* 165 * Bio-based DM's mempools' reserved IOs set by the user. 166 */ 167 #define RESERVED_BIO_BASED_IOS 16 168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 169 170 static int __dm_get_module_param_int(int *module_param, int min, int max) 171 { 172 int param = READ_ONCE(*module_param); 173 int modified_param = 0; 174 bool modified = true; 175 176 if (param < min) 177 modified_param = min; 178 else if (param > max) 179 modified_param = max; 180 else 181 modified = false; 182 183 if (modified) { 184 (void)cmpxchg(module_param, param, modified_param); 185 param = modified_param; 186 } 187 188 return param; 189 } 190 191 unsigned __dm_get_module_param(unsigned *module_param, 192 unsigned def, unsigned max) 193 { 194 unsigned param = READ_ONCE(*module_param); 195 unsigned modified_param = 0; 196 197 if (!param) 198 modified_param = def; 199 else if (param > max) 200 modified_param = max; 201 202 if (modified_param) { 203 (void)cmpxchg(module_param, param, modified_param); 204 param = modified_param; 205 } 206 207 return param; 208 } 209 210 unsigned dm_get_reserved_bio_based_ios(void) 211 { 212 return __dm_get_module_param(&reserved_bio_based_ios, 213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 214 } 215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 216 217 static unsigned dm_get_numa_node(void) 218 { 219 return __dm_get_module_param_int(&dm_numa_node, 220 DM_NUMA_NODE, num_online_nodes() - 1); 221 } 222 223 static int __init local_init(void) 224 { 225 int r = -ENOMEM; 226 227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 228 if (!_rq_tio_cache) 229 return r; 230 231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 232 __alignof__(struct request), 0, NULL); 233 if (!_rq_cache) 234 goto out_free_rq_tio_cache; 235 236 r = dm_uevent_init(); 237 if (r) 238 goto out_free_rq_cache; 239 240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 241 if (!deferred_remove_workqueue) { 242 r = -ENOMEM; 243 goto out_uevent_exit; 244 } 245 246 _major = major; 247 r = register_blkdev(_major, _name); 248 if (r < 0) 249 goto out_free_workqueue; 250 251 if (!_major) 252 _major = r; 253 254 return 0; 255 256 out_free_workqueue: 257 destroy_workqueue(deferred_remove_workqueue); 258 out_uevent_exit: 259 dm_uevent_exit(); 260 out_free_rq_cache: 261 kmem_cache_destroy(_rq_cache); 262 out_free_rq_tio_cache: 263 kmem_cache_destroy(_rq_tio_cache); 264 265 return r; 266 } 267 268 static void local_exit(void) 269 { 270 flush_scheduled_work(); 271 destroy_workqueue(deferred_remove_workqueue); 272 273 kmem_cache_destroy(_rq_cache); 274 kmem_cache_destroy(_rq_tio_cache); 275 unregister_blkdev(_major, _name); 276 dm_uevent_exit(); 277 278 _major = 0; 279 280 DMINFO("cleaned up"); 281 } 282 283 static int (*_inits[])(void) __initdata = { 284 local_init, 285 dm_target_init, 286 dm_linear_init, 287 dm_stripe_init, 288 dm_io_init, 289 dm_kcopyd_init, 290 dm_interface_init, 291 dm_statistics_init, 292 }; 293 294 static void (*_exits[])(void) = { 295 local_exit, 296 dm_target_exit, 297 dm_linear_exit, 298 dm_stripe_exit, 299 dm_io_exit, 300 dm_kcopyd_exit, 301 dm_interface_exit, 302 dm_statistics_exit, 303 }; 304 305 static int __init dm_init(void) 306 { 307 const int count = ARRAY_SIZE(_inits); 308 309 int r, i; 310 311 for (i = 0; i < count; i++) { 312 r = _inits[i](); 313 if (r) 314 goto bad; 315 } 316 317 return 0; 318 319 bad: 320 while (i--) 321 _exits[i](); 322 323 return r; 324 } 325 326 static void __exit dm_exit(void) 327 { 328 int i = ARRAY_SIZE(_exits); 329 330 while (i--) 331 _exits[i](); 332 333 /* 334 * Should be empty by this point. 335 */ 336 idr_destroy(&_minor_idr); 337 } 338 339 /* 340 * Block device functions 341 */ 342 int dm_deleting_md(struct mapped_device *md) 343 { 344 return test_bit(DMF_DELETING, &md->flags); 345 } 346 347 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 348 { 349 struct mapped_device *md; 350 351 spin_lock(&_minor_lock); 352 353 md = bdev->bd_disk->private_data; 354 if (!md) 355 goto out; 356 357 if (test_bit(DMF_FREEING, &md->flags) || 358 dm_deleting_md(md)) { 359 md = NULL; 360 goto out; 361 } 362 363 dm_get(md); 364 atomic_inc(&md->open_count); 365 out: 366 spin_unlock(&_minor_lock); 367 368 return md ? 0 : -ENXIO; 369 } 370 371 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 372 { 373 struct mapped_device *md; 374 375 spin_lock(&_minor_lock); 376 377 md = disk->private_data; 378 if (WARN_ON(!md)) 379 goto out; 380 381 if (atomic_dec_and_test(&md->open_count) && 382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 383 queue_work(deferred_remove_workqueue, &deferred_remove_work); 384 385 dm_put(md); 386 out: 387 spin_unlock(&_minor_lock); 388 } 389 390 int dm_open_count(struct mapped_device *md) 391 { 392 return atomic_read(&md->open_count); 393 } 394 395 /* 396 * Guarantees nothing is using the device before it's deleted. 397 */ 398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 399 { 400 int r = 0; 401 402 spin_lock(&_minor_lock); 403 404 if (dm_open_count(md)) { 405 r = -EBUSY; 406 if (mark_deferred) 407 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 409 r = -EEXIST; 410 else 411 set_bit(DMF_DELETING, &md->flags); 412 413 spin_unlock(&_minor_lock); 414 415 return r; 416 } 417 418 int dm_cancel_deferred_remove(struct mapped_device *md) 419 { 420 int r = 0; 421 422 spin_lock(&_minor_lock); 423 424 if (test_bit(DMF_DELETING, &md->flags)) 425 r = -EBUSY; 426 else 427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 428 429 spin_unlock(&_minor_lock); 430 431 return r; 432 } 433 434 static void do_deferred_remove(struct work_struct *w) 435 { 436 dm_deferred_remove(); 437 } 438 439 sector_t dm_get_size(struct mapped_device *md) 440 { 441 return get_capacity(md->disk); 442 } 443 444 struct request_queue *dm_get_md_queue(struct mapped_device *md) 445 { 446 return md->queue; 447 } 448 449 struct dm_stats *dm_get_stats(struct mapped_device *md) 450 { 451 return &md->stats; 452 } 453 454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 455 { 456 struct mapped_device *md = bdev->bd_disk->private_data; 457 458 return dm_get_geometry(md, geo); 459 } 460 461 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 462 struct block_device **bdev) 463 __acquires(md->io_barrier) 464 { 465 struct dm_target *tgt; 466 struct dm_table *map; 467 int r; 468 469 retry: 470 r = -ENOTTY; 471 map = dm_get_live_table(md, srcu_idx); 472 if (!map || !dm_table_get_size(map)) 473 return r; 474 475 /* We only support devices that have a single target */ 476 if (dm_table_get_num_targets(map) != 1) 477 return r; 478 479 tgt = dm_table_get_target(map, 0); 480 if (!tgt->type->prepare_ioctl) 481 return r; 482 483 if (dm_suspended_md(md)) 484 return -EAGAIN; 485 486 r = tgt->type->prepare_ioctl(tgt, bdev); 487 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 488 dm_put_live_table(md, *srcu_idx); 489 msleep(10); 490 goto retry; 491 } 492 493 return r; 494 } 495 496 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 497 __releases(md->io_barrier) 498 { 499 dm_put_live_table(md, srcu_idx); 500 } 501 502 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 503 unsigned int cmd, unsigned long arg) 504 { 505 struct mapped_device *md = bdev->bd_disk->private_data; 506 int r, srcu_idx; 507 508 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 509 if (r < 0) 510 goto out; 511 512 if (r > 0) { 513 /* 514 * Target determined this ioctl is being issued against a 515 * subset of the parent bdev; require extra privileges. 516 */ 517 if (!capable(CAP_SYS_RAWIO)) { 518 DMWARN_LIMIT( 519 "%s: sending ioctl %x to DM device without required privilege.", 520 current->comm, cmd); 521 r = -ENOIOCTLCMD; 522 goto out; 523 } 524 } 525 526 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 527 out: 528 dm_unprepare_ioctl(md, srcu_idx); 529 return r; 530 } 531 532 static void start_io_acct(struct dm_io *io); 533 534 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 535 { 536 struct dm_io *io; 537 struct dm_target_io *tio; 538 struct bio *clone; 539 540 clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs); 541 if (!clone) 542 return NULL; 543 544 tio = container_of(clone, struct dm_target_io, clone); 545 tio->inside_dm_io = true; 546 tio->io = NULL; 547 548 io = container_of(tio, struct dm_io, tio); 549 io->magic = DM_IO_MAGIC; 550 io->status = 0; 551 atomic_set(&io->io_count, 1); 552 io->orig_bio = bio; 553 io->md = md; 554 spin_lock_init(&io->endio_lock); 555 556 start_io_acct(io); 557 558 return io; 559 } 560 561 static void free_io(struct mapped_device *md, struct dm_io *io) 562 { 563 bio_put(&io->tio.clone); 564 } 565 566 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 567 unsigned target_bio_nr, gfp_t gfp_mask) 568 { 569 struct dm_target_io *tio; 570 571 if (!ci->io->tio.io) { 572 /* the dm_target_io embedded in ci->io is available */ 573 tio = &ci->io->tio; 574 } else { 575 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs); 576 if (!clone) 577 return NULL; 578 579 tio = container_of(clone, struct dm_target_io, clone); 580 tio->inside_dm_io = false; 581 } 582 583 tio->magic = DM_TIO_MAGIC; 584 tio->io = ci->io; 585 tio->ti = ti; 586 tio->target_bio_nr = target_bio_nr; 587 588 return tio; 589 } 590 591 static void free_tio(struct dm_target_io *tio) 592 { 593 if (tio->inside_dm_io) 594 return; 595 bio_put(&tio->clone); 596 } 597 598 int md_in_flight(struct mapped_device *md) 599 { 600 return atomic_read(&md->pending[READ]) + 601 atomic_read(&md->pending[WRITE]); 602 } 603 604 static void start_io_acct(struct dm_io *io) 605 { 606 struct mapped_device *md = io->md; 607 struct bio *bio = io->orig_bio; 608 int rw = bio_data_dir(bio); 609 610 io->start_time = jiffies; 611 612 generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0); 613 614 atomic_set(&dm_disk(md)->part0.in_flight[rw], 615 atomic_inc_return(&md->pending[rw])); 616 617 if (unlikely(dm_stats_used(&md->stats))) 618 dm_stats_account_io(&md->stats, bio_data_dir(bio), 619 bio->bi_iter.bi_sector, bio_sectors(bio), 620 false, 0, &io->stats_aux); 621 } 622 623 static void end_io_acct(struct dm_io *io) 624 { 625 struct mapped_device *md = io->md; 626 struct bio *bio = io->orig_bio; 627 unsigned long duration = jiffies - io->start_time; 628 int pending; 629 int rw = bio_data_dir(bio); 630 631 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time); 632 633 if (unlikely(dm_stats_used(&md->stats))) 634 dm_stats_account_io(&md->stats, bio_data_dir(bio), 635 bio->bi_iter.bi_sector, bio_sectors(bio), 636 true, duration, &io->stats_aux); 637 638 /* 639 * After this is decremented the bio must not be touched if it is 640 * a flush. 641 */ 642 pending = atomic_dec_return(&md->pending[rw]); 643 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 644 pending += atomic_read(&md->pending[rw^0x1]); 645 646 /* nudge anyone waiting on suspend queue */ 647 if (!pending) 648 wake_up(&md->wait); 649 } 650 651 /* 652 * Add the bio to the list of deferred io. 653 */ 654 static void queue_io(struct mapped_device *md, struct bio *bio) 655 { 656 unsigned long flags; 657 658 spin_lock_irqsave(&md->deferred_lock, flags); 659 bio_list_add(&md->deferred, bio); 660 spin_unlock_irqrestore(&md->deferred_lock, flags); 661 queue_work(md->wq, &md->work); 662 } 663 664 /* 665 * Everyone (including functions in this file), should use this 666 * function to access the md->map field, and make sure they call 667 * dm_put_live_table() when finished. 668 */ 669 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 670 { 671 *srcu_idx = srcu_read_lock(&md->io_barrier); 672 673 return srcu_dereference(md->map, &md->io_barrier); 674 } 675 676 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 677 { 678 srcu_read_unlock(&md->io_barrier, srcu_idx); 679 } 680 681 void dm_sync_table(struct mapped_device *md) 682 { 683 synchronize_srcu(&md->io_barrier); 684 synchronize_rcu_expedited(); 685 } 686 687 /* 688 * A fast alternative to dm_get_live_table/dm_put_live_table. 689 * The caller must not block between these two functions. 690 */ 691 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 692 { 693 rcu_read_lock(); 694 return rcu_dereference(md->map); 695 } 696 697 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 698 { 699 rcu_read_unlock(); 700 } 701 702 static char *_dm_claim_ptr = "I belong to device-mapper"; 703 704 /* 705 * Open a table device so we can use it as a map destination. 706 */ 707 static int open_table_device(struct table_device *td, dev_t dev, 708 struct mapped_device *md) 709 { 710 struct block_device *bdev; 711 712 int r; 713 714 BUG_ON(td->dm_dev.bdev); 715 716 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 717 if (IS_ERR(bdev)) 718 return PTR_ERR(bdev); 719 720 r = bd_link_disk_holder(bdev, dm_disk(md)); 721 if (r) { 722 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 723 return r; 724 } 725 726 td->dm_dev.bdev = bdev; 727 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 728 return 0; 729 } 730 731 /* 732 * Close a table device that we've been using. 733 */ 734 static void close_table_device(struct table_device *td, struct mapped_device *md) 735 { 736 if (!td->dm_dev.bdev) 737 return; 738 739 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 740 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 741 put_dax(td->dm_dev.dax_dev); 742 td->dm_dev.bdev = NULL; 743 td->dm_dev.dax_dev = NULL; 744 } 745 746 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 747 fmode_t mode) { 748 struct table_device *td; 749 750 list_for_each_entry(td, l, list) 751 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 752 return td; 753 754 return NULL; 755 } 756 757 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 758 struct dm_dev **result) { 759 int r; 760 struct table_device *td; 761 762 mutex_lock(&md->table_devices_lock); 763 td = find_table_device(&md->table_devices, dev, mode); 764 if (!td) { 765 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 766 if (!td) { 767 mutex_unlock(&md->table_devices_lock); 768 return -ENOMEM; 769 } 770 771 td->dm_dev.mode = mode; 772 td->dm_dev.bdev = NULL; 773 774 if ((r = open_table_device(td, dev, md))) { 775 mutex_unlock(&md->table_devices_lock); 776 kfree(td); 777 return r; 778 } 779 780 format_dev_t(td->dm_dev.name, dev); 781 782 refcount_set(&td->count, 1); 783 list_add(&td->list, &md->table_devices); 784 } else { 785 refcount_inc(&td->count); 786 } 787 mutex_unlock(&md->table_devices_lock); 788 789 *result = &td->dm_dev; 790 return 0; 791 } 792 EXPORT_SYMBOL_GPL(dm_get_table_device); 793 794 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 795 { 796 struct table_device *td = container_of(d, struct table_device, dm_dev); 797 798 mutex_lock(&md->table_devices_lock); 799 if (refcount_dec_and_test(&td->count)) { 800 close_table_device(td, md); 801 list_del(&td->list); 802 kfree(td); 803 } 804 mutex_unlock(&md->table_devices_lock); 805 } 806 EXPORT_SYMBOL(dm_put_table_device); 807 808 static void free_table_devices(struct list_head *devices) 809 { 810 struct list_head *tmp, *next; 811 812 list_for_each_safe(tmp, next, devices) { 813 struct table_device *td = list_entry(tmp, struct table_device, list); 814 815 DMWARN("dm_destroy: %s still exists with %d references", 816 td->dm_dev.name, refcount_read(&td->count)); 817 kfree(td); 818 } 819 } 820 821 /* 822 * Get the geometry associated with a dm device 823 */ 824 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 825 { 826 *geo = md->geometry; 827 828 return 0; 829 } 830 831 /* 832 * Set the geometry of a device. 833 */ 834 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 835 { 836 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 837 838 if (geo->start > sz) { 839 DMWARN("Start sector is beyond the geometry limits."); 840 return -EINVAL; 841 } 842 843 md->geometry = *geo; 844 845 return 0; 846 } 847 848 static int __noflush_suspending(struct mapped_device *md) 849 { 850 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 851 } 852 853 /* 854 * Decrements the number of outstanding ios that a bio has been 855 * cloned into, completing the original io if necc. 856 */ 857 static void dec_pending(struct dm_io *io, blk_status_t error) 858 { 859 unsigned long flags; 860 blk_status_t io_error; 861 struct bio *bio; 862 struct mapped_device *md = io->md; 863 864 /* Push-back supersedes any I/O errors */ 865 if (unlikely(error)) { 866 spin_lock_irqsave(&io->endio_lock, flags); 867 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 868 io->status = error; 869 spin_unlock_irqrestore(&io->endio_lock, flags); 870 } 871 872 if (atomic_dec_and_test(&io->io_count)) { 873 if (io->status == BLK_STS_DM_REQUEUE) { 874 /* 875 * Target requested pushing back the I/O. 876 */ 877 spin_lock_irqsave(&md->deferred_lock, flags); 878 if (__noflush_suspending(md)) 879 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 880 bio_list_add_head(&md->deferred, io->orig_bio); 881 else 882 /* noflush suspend was interrupted. */ 883 io->status = BLK_STS_IOERR; 884 spin_unlock_irqrestore(&md->deferred_lock, flags); 885 } 886 887 io_error = io->status; 888 bio = io->orig_bio; 889 end_io_acct(io); 890 free_io(md, io); 891 892 if (io_error == BLK_STS_DM_REQUEUE) 893 return; 894 895 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 896 /* 897 * Preflush done for flush with data, reissue 898 * without REQ_PREFLUSH. 899 */ 900 bio->bi_opf &= ~REQ_PREFLUSH; 901 queue_io(md, bio); 902 } else { 903 /* done with normal IO or empty flush */ 904 if (io_error) 905 bio->bi_status = io_error; 906 bio_endio(bio); 907 } 908 } 909 } 910 911 void disable_write_same(struct mapped_device *md) 912 { 913 struct queue_limits *limits = dm_get_queue_limits(md); 914 915 /* device doesn't really support WRITE SAME, disable it */ 916 limits->max_write_same_sectors = 0; 917 } 918 919 void disable_write_zeroes(struct mapped_device *md) 920 { 921 struct queue_limits *limits = dm_get_queue_limits(md); 922 923 /* device doesn't really support WRITE ZEROES, disable it */ 924 limits->max_write_zeroes_sectors = 0; 925 } 926 927 static void clone_endio(struct bio *bio) 928 { 929 blk_status_t error = bio->bi_status; 930 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 931 struct dm_io *io = tio->io; 932 struct mapped_device *md = tio->io->md; 933 dm_endio_fn endio = tio->ti->type->end_io; 934 935 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 936 if (bio_op(bio) == REQ_OP_WRITE_SAME && 937 !bio->bi_disk->queue->limits.max_write_same_sectors) 938 disable_write_same(md); 939 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 940 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 941 disable_write_zeroes(md); 942 } 943 944 if (endio) { 945 int r = endio(tio->ti, bio, &error); 946 switch (r) { 947 case DM_ENDIO_REQUEUE: 948 error = BLK_STS_DM_REQUEUE; 949 /*FALLTHRU*/ 950 case DM_ENDIO_DONE: 951 break; 952 case DM_ENDIO_INCOMPLETE: 953 /* The target will handle the io */ 954 return; 955 default: 956 DMWARN("unimplemented target endio return value: %d", r); 957 BUG(); 958 } 959 } 960 961 free_tio(tio); 962 dec_pending(io, error); 963 } 964 965 /* 966 * Return maximum size of I/O possible at the supplied sector up to the current 967 * target boundary. 968 */ 969 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 970 { 971 sector_t target_offset = dm_target_offset(ti, sector); 972 973 return ti->len - target_offset; 974 } 975 976 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 977 { 978 sector_t len = max_io_len_target_boundary(sector, ti); 979 sector_t offset, max_len; 980 981 /* 982 * Does the target need to split even further? 983 */ 984 if (ti->max_io_len) { 985 offset = dm_target_offset(ti, sector); 986 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 987 max_len = sector_div(offset, ti->max_io_len); 988 else 989 max_len = offset & (ti->max_io_len - 1); 990 max_len = ti->max_io_len - max_len; 991 992 if (len > max_len) 993 len = max_len; 994 } 995 996 return len; 997 } 998 999 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1000 { 1001 if (len > UINT_MAX) { 1002 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1003 (unsigned long long)len, UINT_MAX); 1004 ti->error = "Maximum size of target IO is too large"; 1005 return -EINVAL; 1006 } 1007 1008 /* 1009 * BIO based queue uses its own splitting. When multipage bvecs 1010 * is switched on, size of the incoming bio may be too big to 1011 * be handled in some targets, such as crypt. 1012 * 1013 * When these targets are ready for the big bio, we can remove 1014 * the limit. 1015 */ 1016 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE); 1017 1018 return 0; 1019 } 1020 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1021 1022 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1023 sector_t sector, int *srcu_idx) 1024 __acquires(md->io_barrier) 1025 { 1026 struct dm_table *map; 1027 struct dm_target *ti; 1028 1029 map = dm_get_live_table(md, srcu_idx); 1030 if (!map) 1031 return NULL; 1032 1033 ti = dm_table_find_target(map, sector); 1034 if (!dm_target_is_valid(ti)) 1035 return NULL; 1036 1037 return ti; 1038 } 1039 1040 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1041 long nr_pages, void **kaddr, pfn_t *pfn) 1042 { 1043 struct mapped_device *md = dax_get_private(dax_dev); 1044 sector_t sector = pgoff * PAGE_SECTORS; 1045 struct dm_target *ti; 1046 long len, ret = -EIO; 1047 int srcu_idx; 1048 1049 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1050 1051 if (!ti) 1052 goto out; 1053 if (!ti->type->direct_access) 1054 goto out; 1055 len = max_io_len(sector, ti) / PAGE_SECTORS; 1056 if (len < 1) 1057 goto out; 1058 nr_pages = min(len, nr_pages); 1059 if (ti->type->direct_access) 1060 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1061 1062 out: 1063 dm_put_live_table(md, srcu_idx); 1064 1065 return ret; 1066 } 1067 1068 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1069 void *addr, size_t bytes, struct iov_iter *i) 1070 { 1071 struct mapped_device *md = dax_get_private(dax_dev); 1072 sector_t sector = pgoff * PAGE_SECTORS; 1073 struct dm_target *ti; 1074 long ret = 0; 1075 int srcu_idx; 1076 1077 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1078 1079 if (!ti) 1080 goto out; 1081 if (!ti->type->dax_copy_from_iter) { 1082 ret = copy_from_iter(addr, bytes, i); 1083 goto out; 1084 } 1085 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1086 out: 1087 dm_put_live_table(md, srcu_idx); 1088 1089 return ret; 1090 } 1091 1092 /* 1093 * A target may call dm_accept_partial_bio only from the map routine. It is 1094 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1095 * 1096 * dm_accept_partial_bio informs the dm that the target only wants to process 1097 * additional n_sectors sectors of the bio and the rest of the data should be 1098 * sent in a next bio. 1099 * 1100 * A diagram that explains the arithmetics: 1101 * +--------------------+---------------+-------+ 1102 * | 1 | 2 | 3 | 1103 * +--------------------+---------------+-------+ 1104 * 1105 * <-------------- *tio->len_ptr ---------------> 1106 * <------- bi_size -------> 1107 * <-- n_sectors --> 1108 * 1109 * Region 1 was already iterated over with bio_advance or similar function. 1110 * (it may be empty if the target doesn't use bio_advance) 1111 * Region 2 is the remaining bio size that the target wants to process. 1112 * (it may be empty if region 1 is non-empty, although there is no reason 1113 * to make it empty) 1114 * The target requires that region 3 is to be sent in the next bio. 1115 * 1116 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1117 * the partially processed part (the sum of regions 1+2) must be the same for all 1118 * copies of the bio. 1119 */ 1120 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1121 { 1122 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1123 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1124 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1125 BUG_ON(bi_size > *tio->len_ptr); 1126 BUG_ON(n_sectors > bi_size); 1127 *tio->len_ptr -= bi_size - n_sectors; 1128 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1129 } 1130 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1131 1132 /* 1133 * The zone descriptors obtained with a zone report indicate 1134 * zone positions within the target device. The zone descriptors 1135 * must be remapped to match their position within the dm device. 1136 * A target may call dm_remap_zone_report after completion of a 1137 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained 1138 * from the target device mapping to the dm device. 1139 */ 1140 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start) 1141 { 1142 #ifdef CONFIG_BLK_DEV_ZONED 1143 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1144 struct bio *report_bio = tio->io->orig_bio; 1145 struct blk_zone_report_hdr *hdr = NULL; 1146 struct blk_zone *zone; 1147 unsigned int nr_rep = 0; 1148 unsigned int ofst; 1149 struct bio_vec bvec; 1150 struct bvec_iter iter; 1151 void *addr; 1152 1153 if (bio->bi_status) 1154 return; 1155 1156 /* 1157 * Remap the start sector of the reported zones. For sequential zones, 1158 * also remap the write pointer position. 1159 */ 1160 bio_for_each_segment(bvec, report_bio, iter) { 1161 addr = kmap_atomic(bvec.bv_page); 1162 1163 /* Remember the report header in the first page */ 1164 if (!hdr) { 1165 hdr = addr; 1166 ofst = sizeof(struct blk_zone_report_hdr); 1167 } else 1168 ofst = 0; 1169 1170 /* Set zones start sector */ 1171 while (hdr->nr_zones && ofst < bvec.bv_len) { 1172 zone = addr + ofst; 1173 if (zone->start >= start + ti->len) { 1174 hdr->nr_zones = 0; 1175 break; 1176 } 1177 zone->start = zone->start + ti->begin - start; 1178 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 1179 if (zone->cond == BLK_ZONE_COND_FULL) 1180 zone->wp = zone->start + zone->len; 1181 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1182 zone->wp = zone->start; 1183 else 1184 zone->wp = zone->wp + ti->begin - start; 1185 } 1186 ofst += sizeof(struct blk_zone); 1187 hdr->nr_zones--; 1188 nr_rep++; 1189 } 1190 1191 if (addr != hdr) 1192 kunmap_atomic(addr); 1193 1194 if (!hdr->nr_zones) 1195 break; 1196 } 1197 1198 if (hdr) { 1199 hdr->nr_zones = nr_rep; 1200 kunmap_atomic(hdr); 1201 } 1202 1203 bio_advance(report_bio, report_bio->bi_iter.bi_size); 1204 1205 #else /* !CONFIG_BLK_DEV_ZONED */ 1206 bio->bi_status = BLK_STS_NOTSUPP; 1207 #endif 1208 } 1209 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1210 1211 static blk_qc_t __map_bio(struct dm_target_io *tio) 1212 { 1213 int r; 1214 sector_t sector; 1215 struct bio *clone = &tio->clone; 1216 struct dm_io *io = tio->io; 1217 struct mapped_device *md = io->md; 1218 struct dm_target *ti = tio->ti; 1219 blk_qc_t ret = BLK_QC_T_NONE; 1220 1221 clone->bi_end_io = clone_endio; 1222 1223 /* 1224 * Map the clone. If r == 0 we don't need to do 1225 * anything, the target has assumed ownership of 1226 * this io. 1227 */ 1228 atomic_inc(&io->io_count); 1229 sector = clone->bi_iter.bi_sector; 1230 1231 r = ti->type->map(ti, clone); 1232 switch (r) { 1233 case DM_MAPIO_SUBMITTED: 1234 break; 1235 case DM_MAPIO_REMAPPED: 1236 /* the bio has been remapped so dispatch it */ 1237 trace_block_bio_remap(clone->bi_disk->queue, clone, 1238 bio_dev(io->orig_bio), sector); 1239 if (md->type == DM_TYPE_NVME_BIO_BASED) 1240 ret = direct_make_request(clone); 1241 else 1242 ret = generic_make_request(clone); 1243 break; 1244 case DM_MAPIO_KILL: 1245 free_tio(tio); 1246 dec_pending(io, BLK_STS_IOERR); 1247 break; 1248 case DM_MAPIO_REQUEUE: 1249 free_tio(tio); 1250 dec_pending(io, BLK_STS_DM_REQUEUE); 1251 break; 1252 default: 1253 DMWARN("unimplemented target map return value: %d", r); 1254 BUG(); 1255 } 1256 1257 return ret; 1258 } 1259 1260 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1261 { 1262 bio->bi_iter.bi_sector = sector; 1263 bio->bi_iter.bi_size = to_bytes(len); 1264 } 1265 1266 /* 1267 * Creates a bio that consists of range of complete bvecs. 1268 */ 1269 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1270 sector_t sector, unsigned len) 1271 { 1272 struct bio *clone = &tio->clone; 1273 1274 __bio_clone_fast(clone, bio); 1275 1276 if (unlikely(bio_integrity(bio) != NULL)) { 1277 int r; 1278 1279 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1280 !dm_target_passes_integrity(tio->ti->type))) { 1281 DMWARN("%s: the target %s doesn't support integrity data.", 1282 dm_device_name(tio->io->md), 1283 tio->ti->type->name); 1284 return -EIO; 1285 } 1286 1287 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1288 if (r < 0) 1289 return r; 1290 } 1291 1292 if (bio_op(bio) != REQ_OP_ZONE_REPORT) 1293 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1294 clone->bi_iter.bi_size = to_bytes(len); 1295 1296 if (unlikely(bio_integrity(bio) != NULL)) 1297 bio_integrity_trim(clone); 1298 1299 return 0; 1300 } 1301 1302 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1303 struct dm_target *ti, unsigned num_bios) 1304 { 1305 struct dm_target_io *tio; 1306 int try; 1307 1308 if (!num_bios) 1309 return; 1310 1311 if (num_bios == 1) { 1312 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1313 bio_list_add(blist, &tio->clone); 1314 return; 1315 } 1316 1317 for (try = 0; try < 2; try++) { 1318 int bio_nr; 1319 struct bio *bio; 1320 1321 if (try) 1322 mutex_lock(&ci->io->md->table_devices_lock); 1323 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1324 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1325 if (!tio) 1326 break; 1327 1328 bio_list_add(blist, &tio->clone); 1329 } 1330 if (try) 1331 mutex_unlock(&ci->io->md->table_devices_lock); 1332 if (bio_nr == num_bios) 1333 return; 1334 1335 while ((bio = bio_list_pop(blist))) { 1336 tio = container_of(bio, struct dm_target_io, clone); 1337 free_tio(tio); 1338 } 1339 } 1340 } 1341 1342 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1343 struct dm_target_io *tio, unsigned *len) 1344 { 1345 struct bio *clone = &tio->clone; 1346 1347 tio->len_ptr = len; 1348 1349 __bio_clone_fast(clone, ci->bio); 1350 if (len) 1351 bio_setup_sector(clone, ci->sector, *len); 1352 1353 return __map_bio(tio); 1354 } 1355 1356 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1357 unsigned num_bios, unsigned *len) 1358 { 1359 struct bio_list blist = BIO_EMPTY_LIST; 1360 struct bio *bio; 1361 struct dm_target_io *tio; 1362 1363 alloc_multiple_bios(&blist, ci, ti, num_bios); 1364 1365 while ((bio = bio_list_pop(&blist))) { 1366 tio = container_of(bio, struct dm_target_io, clone); 1367 (void) __clone_and_map_simple_bio(ci, tio, len); 1368 } 1369 } 1370 1371 static int __send_empty_flush(struct clone_info *ci) 1372 { 1373 unsigned target_nr = 0; 1374 struct dm_target *ti; 1375 1376 BUG_ON(bio_has_data(ci->bio)); 1377 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1378 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1379 1380 return 0; 1381 } 1382 1383 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1384 sector_t sector, unsigned *len) 1385 { 1386 struct bio *bio = ci->bio; 1387 struct dm_target_io *tio; 1388 int r; 1389 1390 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1391 tio->len_ptr = len; 1392 r = clone_bio(tio, bio, sector, *len); 1393 if (r < 0) { 1394 free_tio(tio); 1395 return r; 1396 } 1397 (void) __map_bio(tio); 1398 1399 return 0; 1400 } 1401 1402 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1403 1404 static unsigned get_num_discard_bios(struct dm_target *ti) 1405 { 1406 return ti->num_discard_bios; 1407 } 1408 1409 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1410 { 1411 return ti->num_secure_erase_bios; 1412 } 1413 1414 static unsigned get_num_write_same_bios(struct dm_target *ti) 1415 { 1416 return ti->num_write_same_bios; 1417 } 1418 1419 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1420 { 1421 return ti->num_write_zeroes_bios; 1422 } 1423 1424 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1425 1426 static bool is_split_required_for_discard(struct dm_target *ti) 1427 { 1428 return ti->split_discard_bios; 1429 } 1430 1431 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1432 get_num_bios_fn get_num_bios, 1433 is_split_required_fn is_split_required) 1434 { 1435 unsigned len; 1436 unsigned num_bios; 1437 1438 /* 1439 * Even though the device advertised support for this type of 1440 * request, that does not mean every target supports it, and 1441 * reconfiguration might also have changed that since the 1442 * check was performed. 1443 */ 1444 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1445 if (!num_bios) 1446 return -EOPNOTSUPP; 1447 1448 if (is_split_required && !is_split_required(ti)) 1449 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1450 else 1451 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1452 1453 __send_duplicate_bios(ci, ti, num_bios, &len); 1454 1455 ci->sector += len; 1456 ci->sector_count -= len; 1457 1458 return 0; 1459 } 1460 1461 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1462 { 1463 return __send_changing_extent_only(ci, ti, get_num_discard_bios, 1464 is_split_required_for_discard); 1465 } 1466 1467 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1468 { 1469 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL); 1470 } 1471 1472 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1473 { 1474 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL); 1475 } 1476 1477 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1478 { 1479 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL); 1480 } 1481 1482 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1483 int *result) 1484 { 1485 struct bio *bio = ci->bio; 1486 1487 if (bio_op(bio) == REQ_OP_DISCARD) 1488 *result = __send_discard(ci, ti); 1489 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1490 *result = __send_secure_erase(ci, ti); 1491 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1492 *result = __send_write_same(ci, ti); 1493 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1494 *result = __send_write_zeroes(ci, ti); 1495 else 1496 return false; 1497 1498 return true; 1499 } 1500 1501 /* 1502 * Select the correct strategy for processing a non-flush bio. 1503 */ 1504 static int __split_and_process_non_flush(struct clone_info *ci) 1505 { 1506 struct bio *bio = ci->bio; 1507 struct dm_target *ti; 1508 unsigned len; 1509 int r; 1510 1511 ti = dm_table_find_target(ci->map, ci->sector); 1512 if (!dm_target_is_valid(ti)) 1513 return -EIO; 1514 1515 if (unlikely(__process_abnormal_io(ci, ti, &r))) 1516 return r; 1517 1518 if (bio_op(bio) == REQ_OP_ZONE_REPORT) 1519 len = ci->sector_count; 1520 else 1521 len = min_t(sector_t, max_io_len(ci->sector, ti), 1522 ci->sector_count); 1523 1524 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1525 if (r < 0) 1526 return r; 1527 1528 ci->sector += len; 1529 ci->sector_count -= len; 1530 1531 return 0; 1532 } 1533 1534 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1535 struct dm_table *map, struct bio *bio) 1536 { 1537 ci->map = map; 1538 ci->io = alloc_io(md, bio); 1539 ci->sector = bio->bi_iter.bi_sector; 1540 } 1541 1542 /* 1543 * Entry point to split a bio into clones and submit them to the targets. 1544 */ 1545 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1546 struct dm_table *map, struct bio *bio) 1547 { 1548 struct clone_info ci; 1549 blk_qc_t ret = BLK_QC_T_NONE; 1550 int error = 0; 1551 1552 if (unlikely(!map)) { 1553 bio_io_error(bio); 1554 return ret; 1555 } 1556 1557 init_clone_info(&ci, md, map, bio); 1558 1559 if (bio->bi_opf & REQ_PREFLUSH) { 1560 ci.bio = &ci.io->md->flush_bio; 1561 ci.sector_count = 0; 1562 error = __send_empty_flush(&ci); 1563 /* dec_pending submits any data associated with flush */ 1564 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1565 ci.bio = bio; 1566 ci.sector_count = 0; 1567 error = __split_and_process_non_flush(&ci); 1568 } else { 1569 ci.bio = bio; 1570 ci.sector_count = bio_sectors(bio); 1571 while (ci.sector_count && !error) { 1572 error = __split_and_process_non_flush(&ci); 1573 if (current->bio_list && ci.sector_count && !error) { 1574 /* 1575 * Remainder must be passed to generic_make_request() 1576 * so that it gets handled *after* bios already submitted 1577 * have been completely processed. 1578 * We take a clone of the original to store in 1579 * ci.io->orig_bio to be used by end_io_acct() and 1580 * for dec_pending to use for completion handling. 1581 * As this path is not used for REQ_OP_ZONE_REPORT, 1582 * the usage of io->orig_bio in dm_remap_zone_report() 1583 * won't be affected by this reassignment. 1584 */ 1585 struct bio *b = bio_clone_bioset(bio, GFP_NOIO, 1586 md->queue->bio_split); 1587 ci.io->orig_bio = b; 1588 bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9); 1589 bio_chain(b, bio); 1590 ret = generic_make_request(bio); 1591 break; 1592 } 1593 } 1594 } 1595 1596 /* drop the extra reference count */ 1597 dec_pending(ci.io, errno_to_blk_status(error)); 1598 return ret; 1599 } 1600 1601 /* 1602 * Optimized variant of __split_and_process_bio that leverages the 1603 * fact that targets that use it do _not_ have a need to split bios. 1604 */ 1605 static blk_qc_t __process_bio(struct mapped_device *md, 1606 struct dm_table *map, struct bio *bio) 1607 { 1608 struct clone_info ci; 1609 blk_qc_t ret = BLK_QC_T_NONE; 1610 int error = 0; 1611 1612 if (unlikely(!map)) { 1613 bio_io_error(bio); 1614 return ret; 1615 } 1616 1617 init_clone_info(&ci, md, map, bio); 1618 1619 if (bio->bi_opf & REQ_PREFLUSH) { 1620 ci.bio = &ci.io->md->flush_bio; 1621 ci.sector_count = 0; 1622 error = __send_empty_flush(&ci); 1623 /* dec_pending submits any data associated with flush */ 1624 } else { 1625 struct dm_target *ti = md->immutable_target; 1626 struct dm_target_io *tio; 1627 1628 /* 1629 * Defend against IO still getting in during teardown 1630 * - as was seen for a time with nvme-fcloop 1631 */ 1632 if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) { 1633 error = -EIO; 1634 goto out; 1635 } 1636 1637 ci.bio = bio; 1638 ci.sector_count = bio_sectors(bio); 1639 if (unlikely(__process_abnormal_io(&ci, ti, &error))) 1640 goto out; 1641 1642 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1643 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1644 } 1645 out: 1646 /* drop the extra reference count */ 1647 dec_pending(ci.io, errno_to_blk_status(error)); 1648 return ret; 1649 } 1650 1651 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *); 1652 1653 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio, 1654 process_bio_fn process_bio) 1655 { 1656 struct mapped_device *md = q->queuedata; 1657 blk_qc_t ret = BLK_QC_T_NONE; 1658 int srcu_idx; 1659 struct dm_table *map; 1660 1661 map = dm_get_live_table(md, &srcu_idx); 1662 1663 /* if we're suspended, we have to queue this io for later */ 1664 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1665 dm_put_live_table(md, srcu_idx); 1666 1667 if (!(bio->bi_opf & REQ_RAHEAD)) 1668 queue_io(md, bio); 1669 else 1670 bio_io_error(bio); 1671 return ret; 1672 } 1673 1674 ret = process_bio(md, map, bio); 1675 1676 dm_put_live_table(md, srcu_idx); 1677 return ret; 1678 } 1679 1680 /* 1681 * The request function that remaps the bio to one target and 1682 * splits off any remainder. 1683 */ 1684 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1685 { 1686 return __dm_make_request(q, bio, __split_and_process_bio); 1687 } 1688 1689 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio) 1690 { 1691 return __dm_make_request(q, bio, __process_bio); 1692 } 1693 1694 static int dm_any_congested(void *congested_data, int bdi_bits) 1695 { 1696 int r = bdi_bits; 1697 struct mapped_device *md = congested_data; 1698 struct dm_table *map; 1699 1700 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1701 if (dm_request_based(md)) { 1702 /* 1703 * With request-based DM we only need to check the 1704 * top-level queue for congestion. 1705 */ 1706 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1707 } else { 1708 map = dm_get_live_table_fast(md); 1709 if (map) 1710 r = dm_table_any_congested(map, bdi_bits); 1711 dm_put_live_table_fast(md); 1712 } 1713 } 1714 1715 return r; 1716 } 1717 1718 /*----------------------------------------------------------------- 1719 * An IDR is used to keep track of allocated minor numbers. 1720 *---------------------------------------------------------------*/ 1721 static void free_minor(int minor) 1722 { 1723 spin_lock(&_minor_lock); 1724 idr_remove(&_minor_idr, minor); 1725 spin_unlock(&_minor_lock); 1726 } 1727 1728 /* 1729 * See if the device with a specific minor # is free. 1730 */ 1731 static int specific_minor(int minor) 1732 { 1733 int r; 1734 1735 if (minor >= (1 << MINORBITS)) 1736 return -EINVAL; 1737 1738 idr_preload(GFP_KERNEL); 1739 spin_lock(&_minor_lock); 1740 1741 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1742 1743 spin_unlock(&_minor_lock); 1744 idr_preload_end(); 1745 if (r < 0) 1746 return r == -ENOSPC ? -EBUSY : r; 1747 return 0; 1748 } 1749 1750 static int next_free_minor(int *minor) 1751 { 1752 int r; 1753 1754 idr_preload(GFP_KERNEL); 1755 spin_lock(&_minor_lock); 1756 1757 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1758 1759 spin_unlock(&_minor_lock); 1760 idr_preload_end(); 1761 if (r < 0) 1762 return r; 1763 *minor = r; 1764 return 0; 1765 } 1766 1767 static const struct block_device_operations dm_blk_dops; 1768 static const struct dax_operations dm_dax_ops; 1769 1770 static void dm_wq_work(struct work_struct *work); 1771 1772 static void dm_init_normal_md_queue(struct mapped_device *md) 1773 { 1774 md->use_blk_mq = false; 1775 1776 /* 1777 * Initialize aspects of queue that aren't relevant for blk-mq 1778 */ 1779 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1780 } 1781 1782 static void cleanup_mapped_device(struct mapped_device *md) 1783 { 1784 if (md->wq) 1785 destroy_workqueue(md->wq); 1786 if (md->kworker_task) 1787 kthread_stop(md->kworker_task); 1788 if (md->bs) 1789 bioset_free(md->bs); 1790 if (md->io_bs) 1791 bioset_free(md->io_bs); 1792 1793 if (md->dax_dev) { 1794 kill_dax(md->dax_dev); 1795 put_dax(md->dax_dev); 1796 md->dax_dev = NULL; 1797 } 1798 1799 if (md->disk) { 1800 spin_lock(&_minor_lock); 1801 md->disk->private_data = NULL; 1802 spin_unlock(&_minor_lock); 1803 del_gendisk(md->disk); 1804 put_disk(md->disk); 1805 } 1806 1807 if (md->queue) 1808 blk_cleanup_queue(md->queue); 1809 1810 cleanup_srcu_struct(&md->io_barrier); 1811 1812 if (md->bdev) { 1813 bdput(md->bdev); 1814 md->bdev = NULL; 1815 } 1816 1817 mutex_destroy(&md->suspend_lock); 1818 mutex_destroy(&md->type_lock); 1819 mutex_destroy(&md->table_devices_lock); 1820 1821 dm_mq_cleanup_mapped_device(md); 1822 } 1823 1824 /* 1825 * Allocate and initialise a blank device with a given minor. 1826 */ 1827 static struct mapped_device *alloc_dev(int minor) 1828 { 1829 int r, numa_node_id = dm_get_numa_node(); 1830 struct dax_device *dax_dev = NULL; 1831 struct mapped_device *md; 1832 void *old_md; 1833 1834 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1835 if (!md) { 1836 DMWARN("unable to allocate device, out of memory."); 1837 return NULL; 1838 } 1839 1840 if (!try_module_get(THIS_MODULE)) 1841 goto bad_module_get; 1842 1843 /* get a minor number for the dev */ 1844 if (minor == DM_ANY_MINOR) 1845 r = next_free_minor(&minor); 1846 else 1847 r = specific_minor(minor); 1848 if (r < 0) 1849 goto bad_minor; 1850 1851 r = init_srcu_struct(&md->io_barrier); 1852 if (r < 0) 1853 goto bad_io_barrier; 1854 1855 md->numa_node_id = numa_node_id; 1856 md->use_blk_mq = dm_use_blk_mq_default(); 1857 md->init_tio_pdu = false; 1858 md->type = DM_TYPE_NONE; 1859 mutex_init(&md->suspend_lock); 1860 mutex_init(&md->type_lock); 1861 mutex_init(&md->table_devices_lock); 1862 spin_lock_init(&md->deferred_lock); 1863 atomic_set(&md->holders, 1); 1864 atomic_set(&md->open_count, 0); 1865 atomic_set(&md->event_nr, 0); 1866 atomic_set(&md->uevent_seq, 0); 1867 INIT_LIST_HEAD(&md->uevent_list); 1868 INIT_LIST_HEAD(&md->table_devices); 1869 spin_lock_init(&md->uevent_lock); 1870 1871 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL); 1872 if (!md->queue) 1873 goto bad; 1874 md->queue->queuedata = md; 1875 md->queue->backing_dev_info->congested_data = md; 1876 1877 md->disk = alloc_disk_node(1, md->numa_node_id); 1878 if (!md->disk) 1879 goto bad; 1880 1881 atomic_set(&md->pending[0], 0); 1882 atomic_set(&md->pending[1], 0); 1883 init_waitqueue_head(&md->wait); 1884 INIT_WORK(&md->work, dm_wq_work); 1885 init_waitqueue_head(&md->eventq); 1886 init_completion(&md->kobj_holder.completion); 1887 md->kworker_task = NULL; 1888 1889 md->disk->major = _major; 1890 md->disk->first_minor = minor; 1891 md->disk->fops = &dm_blk_dops; 1892 md->disk->queue = md->queue; 1893 md->disk->private_data = md; 1894 sprintf(md->disk->disk_name, "dm-%d", minor); 1895 1896 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1897 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1898 if (!dax_dev) 1899 goto bad; 1900 } 1901 md->dax_dev = dax_dev; 1902 1903 add_disk_no_queue_reg(md->disk); 1904 format_dev_t(md->name, MKDEV(_major, minor)); 1905 1906 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1907 if (!md->wq) 1908 goto bad; 1909 1910 md->bdev = bdget_disk(md->disk, 0); 1911 if (!md->bdev) 1912 goto bad; 1913 1914 bio_init(&md->flush_bio, NULL, 0); 1915 bio_set_dev(&md->flush_bio, md->bdev); 1916 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1917 1918 dm_stats_init(&md->stats); 1919 1920 /* Populate the mapping, nobody knows we exist yet */ 1921 spin_lock(&_minor_lock); 1922 old_md = idr_replace(&_minor_idr, md, minor); 1923 spin_unlock(&_minor_lock); 1924 1925 BUG_ON(old_md != MINOR_ALLOCED); 1926 1927 return md; 1928 1929 bad: 1930 cleanup_mapped_device(md); 1931 bad_io_barrier: 1932 free_minor(minor); 1933 bad_minor: 1934 module_put(THIS_MODULE); 1935 bad_module_get: 1936 kvfree(md); 1937 return NULL; 1938 } 1939 1940 static void unlock_fs(struct mapped_device *md); 1941 1942 static void free_dev(struct mapped_device *md) 1943 { 1944 int minor = MINOR(disk_devt(md->disk)); 1945 1946 unlock_fs(md); 1947 1948 cleanup_mapped_device(md); 1949 1950 free_table_devices(&md->table_devices); 1951 dm_stats_cleanup(&md->stats); 1952 free_minor(minor); 1953 1954 module_put(THIS_MODULE); 1955 kvfree(md); 1956 } 1957 1958 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1959 { 1960 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1961 1962 if (dm_table_bio_based(t)) { 1963 /* 1964 * The md may already have mempools that need changing. 1965 * If so, reload bioset because front_pad may have changed 1966 * because a different table was loaded. 1967 */ 1968 if (md->bs) { 1969 bioset_free(md->bs); 1970 md->bs = NULL; 1971 } 1972 if (md->io_bs) { 1973 bioset_free(md->io_bs); 1974 md->io_bs = NULL; 1975 } 1976 1977 } else if (md->bs) { 1978 /* 1979 * There's no need to reload with request-based dm 1980 * because the size of front_pad doesn't change. 1981 * Note for future: If you are to reload bioset, 1982 * prep-ed requests in the queue may refer 1983 * to bio from the old bioset, so you must walk 1984 * through the queue to unprep. 1985 */ 1986 goto out; 1987 } 1988 1989 BUG_ON(!p || md->bs || md->io_bs); 1990 1991 md->bs = p->bs; 1992 p->bs = NULL; 1993 md->io_bs = p->io_bs; 1994 p->io_bs = NULL; 1995 out: 1996 /* mempool bind completed, no longer need any mempools in the table */ 1997 dm_table_free_md_mempools(t); 1998 } 1999 2000 /* 2001 * Bind a table to the device. 2002 */ 2003 static void event_callback(void *context) 2004 { 2005 unsigned long flags; 2006 LIST_HEAD(uevents); 2007 struct mapped_device *md = (struct mapped_device *) context; 2008 2009 spin_lock_irqsave(&md->uevent_lock, flags); 2010 list_splice_init(&md->uevent_list, &uevents); 2011 spin_unlock_irqrestore(&md->uevent_lock, flags); 2012 2013 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2014 2015 atomic_inc(&md->event_nr); 2016 wake_up(&md->eventq); 2017 dm_issue_global_event(); 2018 } 2019 2020 /* 2021 * Protected by md->suspend_lock obtained by dm_swap_table(). 2022 */ 2023 static void __set_size(struct mapped_device *md, sector_t size) 2024 { 2025 lockdep_assert_held(&md->suspend_lock); 2026 2027 set_capacity(md->disk, size); 2028 2029 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2030 } 2031 2032 /* 2033 * Returns old map, which caller must destroy. 2034 */ 2035 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2036 struct queue_limits *limits) 2037 { 2038 struct dm_table *old_map; 2039 struct request_queue *q = md->queue; 2040 bool request_based = dm_table_request_based(t); 2041 sector_t size; 2042 2043 lockdep_assert_held(&md->suspend_lock); 2044 2045 size = dm_table_get_size(t); 2046 2047 /* 2048 * Wipe any geometry if the size of the table changed. 2049 */ 2050 if (size != dm_get_size(md)) 2051 memset(&md->geometry, 0, sizeof(md->geometry)); 2052 2053 __set_size(md, size); 2054 2055 dm_table_event_callback(t, event_callback, md); 2056 2057 /* 2058 * The queue hasn't been stopped yet, if the old table type wasn't 2059 * for request-based during suspension. So stop it to prevent 2060 * I/O mapping before resume. 2061 * This must be done before setting the queue restrictions, 2062 * because request-based dm may be run just after the setting. 2063 */ 2064 if (request_based) 2065 dm_stop_queue(q); 2066 2067 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2068 /* 2069 * Leverage the fact that request-based DM targets and 2070 * NVMe bio based targets are immutable singletons 2071 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2072 * and __process_bio. 2073 */ 2074 md->immutable_target = dm_table_get_immutable_target(t); 2075 } 2076 2077 __bind_mempools(md, t); 2078 2079 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2080 rcu_assign_pointer(md->map, (void *)t); 2081 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2082 2083 dm_table_set_restrictions(t, q, limits); 2084 if (old_map) 2085 dm_sync_table(md); 2086 2087 return old_map; 2088 } 2089 2090 /* 2091 * Returns unbound table for the caller to free. 2092 */ 2093 static struct dm_table *__unbind(struct mapped_device *md) 2094 { 2095 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2096 2097 if (!map) 2098 return NULL; 2099 2100 dm_table_event_callback(map, NULL, NULL); 2101 RCU_INIT_POINTER(md->map, NULL); 2102 dm_sync_table(md); 2103 2104 return map; 2105 } 2106 2107 /* 2108 * Constructor for a new device. 2109 */ 2110 int dm_create(int minor, struct mapped_device **result) 2111 { 2112 int r; 2113 struct mapped_device *md; 2114 2115 md = alloc_dev(minor); 2116 if (!md) 2117 return -ENXIO; 2118 2119 r = dm_sysfs_init(md); 2120 if (r) { 2121 free_dev(md); 2122 return r; 2123 } 2124 2125 *result = md; 2126 return 0; 2127 } 2128 2129 /* 2130 * Functions to manage md->type. 2131 * All are required to hold md->type_lock. 2132 */ 2133 void dm_lock_md_type(struct mapped_device *md) 2134 { 2135 mutex_lock(&md->type_lock); 2136 } 2137 2138 void dm_unlock_md_type(struct mapped_device *md) 2139 { 2140 mutex_unlock(&md->type_lock); 2141 } 2142 2143 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2144 { 2145 BUG_ON(!mutex_is_locked(&md->type_lock)); 2146 md->type = type; 2147 } 2148 2149 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2150 { 2151 return md->type; 2152 } 2153 2154 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2155 { 2156 return md->immutable_target_type; 2157 } 2158 2159 /* 2160 * The queue_limits are only valid as long as you have a reference 2161 * count on 'md'. 2162 */ 2163 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2164 { 2165 BUG_ON(!atomic_read(&md->holders)); 2166 return &md->queue->limits; 2167 } 2168 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2169 2170 /* 2171 * Setup the DM device's queue based on md's type 2172 */ 2173 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2174 { 2175 int r; 2176 struct queue_limits limits; 2177 enum dm_queue_mode type = dm_get_md_type(md); 2178 2179 switch (type) { 2180 case DM_TYPE_REQUEST_BASED: 2181 dm_init_normal_md_queue(md); 2182 r = dm_old_init_request_queue(md, t); 2183 if (r) { 2184 DMERR("Cannot initialize queue for request-based mapped device"); 2185 return r; 2186 } 2187 break; 2188 case DM_TYPE_MQ_REQUEST_BASED: 2189 r = dm_mq_init_request_queue(md, t); 2190 if (r) { 2191 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2192 return r; 2193 } 2194 break; 2195 case DM_TYPE_BIO_BASED: 2196 case DM_TYPE_DAX_BIO_BASED: 2197 dm_init_normal_md_queue(md); 2198 blk_queue_make_request(md->queue, dm_make_request); 2199 break; 2200 case DM_TYPE_NVME_BIO_BASED: 2201 dm_init_normal_md_queue(md); 2202 blk_queue_make_request(md->queue, dm_make_request_nvme); 2203 break; 2204 case DM_TYPE_NONE: 2205 WARN_ON_ONCE(true); 2206 break; 2207 } 2208 2209 r = dm_calculate_queue_limits(t, &limits); 2210 if (r) { 2211 DMERR("Cannot calculate initial queue limits"); 2212 return r; 2213 } 2214 dm_table_set_restrictions(t, md->queue, &limits); 2215 blk_register_queue(md->disk); 2216 2217 return 0; 2218 } 2219 2220 struct mapped_device *dm_get_md(dev_t dev) 2221 { 2222 struct mapped_device *md; 2223 unsigned minor = MINOR(dev); 2224 2225 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2226 return NULL; 2227 2228 spin_lock(&_minor_lock); 2229 2230 md = idr_find(&_minor_idr, minor); 2231 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2232 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2233 md = NULL; 2234 goto out; 2235 } 2236 dm_get(md); 2237 out: 2238 spin_unlock(&_minor_lock); 2239 2240 return md; 2241 } 2242 EXPORT_SYMBOL_GPL(dm_get_md); 2243 2244 void *dm_get_mdptr(struct mapped_device *md) 2245 { 2246 return md->interface_ptr; 2247 } 2248 2249 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2250 { 2251 md->interface_ptr = ptr; 2252 } 2253 2254 void dm_get(struct mapped_device *md) 2255 { 2256 atomic_inc(&md->holders); 2257 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2258 } 2259 2260 int dm_hold(struct mapped_device *md) 2261 { 2262 spin_lock(&_minor_lock); 2263 if (test_bit(DMF_FREEING, &md->flags)) { 2264 spin_unlock(&_minor_lock); 2265 return -EBUSY; 2266 } 2267 dm_get(md); 2268 spin_unlock(&_minor_lock); 2269 return 0; 2270 } 2271 EXPORT_SYMBOL_GPL(dm_hold); 2272 2273 const char *dm_device_name(struct mapped_device *md) 2274 { 2275 return md->name; 2276 } 2277 EXPORT_SYMBOL_GPL(dm_device_name); 2278 2279 static void __dm_destroy(struct mapped_device *md, bool wait) 2280 { 2281 struct dm_table *map; 2282 int srcu_idx; 2283 2284 might_sleep(); 2285 2286 spin_lock(&_minor_lock); 2287 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2288 set_bit(DMF_FREEING, &md->flags); 2289 spin_unlock(&_minor_lock); 2290 2291 blk_set_queue_dying(md->queue); 2292 2293 if (dm_request_based(md) && md->kworker_task) 2294 kthread_flush_worker(&md->kworker); 2295 2296 /* 2297 * Take suspend_lock so that presuspend and postsuspend methods 2298 * do not race with internal suspend. 2299 */ 2300 mutex_lock(&md->suspend_lock); 2301 map = dm_get_live_table(md, &srcu_idx); 2302 if (!dm_suspended_md(md)) { 2303 dm_table_presuspend_targets(map); 2304 dm_table_postsuspend_targets(map); 2305 } 2306 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2307 dm_put_live_table(md, srcu_idx); 2308 mutex_unlock(&md->suspend_lock); 2309 2310 /* 2311 * Rare, but there may be I/O requests still going to complete, 2312 * for example. Wait for all references to disappear. 2313 * No one should increment the reference count of the mapped_device, 2314 * after the mapped_device state becomes DMF_FREEING. 2315 */ 2316 if (wait) 2317 while (atomic_read(&md->holders)) 2318 msleep(1); 2319 else if (atomic_read(&md->holders)) 2320 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2321 dm_device_name(md), atomic_read(&md->holders)); 2322 2323 dm_sysfs_exit(md); 2324 dm_table_destroy(__unbind(md)); 2325 free_dev(md); 2326 } 2327 2328 void dm_destroy(struct mapped_device *md) 2329 { 2330 __dm_destroy(md, true); 2331 } 2332 2333 void dm_destroy_immediate(struct mapped_device *md) 2334 { 2335 __dm_destroy(md, false); 2336 } 2337 2338 void dm_put(struct mapped_device *md) 2339 { 2340 atomic_dec(&md->holders); 2341 } 2342 EXPORT_SYMBOL_GPL(dm_put); 2343 2344 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2345 { 2346 int r = 0; 2347 DEFINE_WAIT(wait); 2348 2349 while (1) { 2350 prepare_to_wait(&md->wait, &wait, task_state); 2351 2352 if (!md_in_flight(md)) 2353 break; 2354 2355 if (signal_pending_state(task_state, current)) { 2356 r = -EINTR; 2357 break; 2358 } 2359 2360 io_schedule(); 2361 } 2362 finish_wait(&md->wait, &wait); 2363 2364 return r; 2365 } 2366 2367 /* 2368 * Process the deferred bios 2369 */ 2370 static void dm_wq_work(struct work_struct *work) 2371 { 2372 struct mapped_device *md = container_of(work, struct mapped_device, 2373 work); 2374 struct bio *c; 2375 int srcu_idx; 2376 struct dm_table *map; 2377 2378 map = dm_get_live_table(md, &srcu_idx); 2379 2380 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2381 spin_lock_irq(&md->deferred_lock); 2382 c = bio_list_pop(&md->deferred); 2383 spin_unlock_irq(&md->deferred_lock); 2384 2385 if (!c) 2386 break; 2387 2388 if (dm_request_based(md)) 2389 generic_make_request(c); 2390 else 2391 __split_and_process_bio(md, map, c); 2392 } 2393 2394 dm_put_live_table(md, srcu_idx); 2395 } 2396 2397 static void dm_queue_flush(struct mapped_device *md) 2398 { 2399 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2400 smp_mb__after_atomic(); 2401 queue_work(md->wq, &md->work); 2402 } 2403 2404 /* 2405 * Swap in a new table, returning the old one for the caller to destroy. 2406 */ 2407 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2408 { 2409 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2410 struct queue_limits limits; 2411 int r; 2412 2413 mutex_lock(&md->suspend_lock); 2414 2415 /* device must be suspended */ 2416 if (!dm_suspended_md(md)) 2417 goto out; 2418 2419 /* 2420 * If the new table has no data devices, retain the existing limits. 2421 * This helps multipath with queue_if_no_path if all paths disappear, 2422 * then new I/O is queued based on these limits, and then some paths 2423 * reappear. 2424 */ 2425 if (dm_table_has_no_data_devices(table)) { 2426 live_map = dm_get_live_table_fast(md); 2427 if (live_map) 2428 limits = md->queue->limits; 2429 dm_put_live_table_fast(md); 2430 } 2431 2432 if (!live_map) { 2433 r = dm_calculate_queue_limits(table, &limits); 2434 if (r) { 2435 map = ERR_PTR(r); 2436 goto out; 2437 } 2438 } 2439 2440 map = __bind(md, table, &limits); 2441 dm_issue_global_event(); 2442 2443 out: 2444 mutex_unlock(&md->suspend_lock); 2445 return map; 2446 } 2447 2448 /* 2449 * Functions to lock and unlock any filesystem running on the 2450 * device. 2451 */ 2452 static int lock_fs(struct mapped_device *md) 2453 { 2454 int r; 2455 2456 WARN_ON(md->frozen_sb); 2457 2458 md->frozen_sb = freeze_bdev(md->bdev); 2459 if (IS_ERR(md->frozen_sb)) { 2460 r = PTR_ERR(md->frozen_sb); 2461 md->frozen_sb = NULL; 2462 return r; 2463 } 2464 2465 set_bit(DMF_FROZEN, &md->flags); 2466 2467 return 0; 2468 } 2469 2470 static void unlock_fs(struct mapped_device *md) 2471 { 2472 if (!test_bit(DMF_FROZEN, &md->flags)) 2473 return; 2474 2475 thaw_bdev(md->bdev, md->frozen_sb); 2476 md->frozen_sb = NULL; 2477 clear_bit(DMF_FROZEN, &md->flags); 2478 } 2479 2480 /* 2481 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2482 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2483 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2484 * 2485 * If __dm_suspend returns 0, the device is completely quiescent 2486 * now. There is no request-processing activity. All new requests 2487 * are being added to md->deferred list. 2488 */ 2489 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2490 unsigned suspend_flags, long task_state, 2491 int dmf_suspended_flag) 2492 { 2493 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2494 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2495 int r; 2496 2497 lockdep_assert_held(&md->suspend_lock); 2498 2499 /* 2500 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2501 * This flag is cleared before dm_suspend returns. 2502 */ 2503 if (noflush) 2504 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2505 else 2506 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2507 2508 /* 2509 * This gets reverted if there's an error later and the targets 2510 * provide the .presuspend_undo hook. 2511 */ 2512 dm_table_presuspend_targets(map); 2513 2514 /* 2515 * Flush I/O to the device. 2516 * Any I/O submitted after lock_fs() may not be flushed. 2517 * noflush takes precedence over do_lockfs. 2518 * (lock_fs() flushes I/Os and waits for them to complete.) 2519 */ 2520 if (!noflush && do_lockfs) { 2521 r = lock_fs(md); 2522 if (r) { 2523 dm_table_presuspend_undo_targets(map); 2524 return r; 2525 } 2526 } 2527 2528 /* 2529 * Here we must make sure that no processes are submitting requests 2530 * to target drivers i.e. no one may be executing 2531 * __split_and_process_bio. This is called from dm_request and 2532 * dm_wq_work. 2533 * 2534 * To get all processes out of __split_and_process_bio in dm_request, 2535 * we take the write lock. To prevent any process from reentering 2536 * __split_and_process_bio from dm_request and quiesce the thread 2537 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2538 * flush_workqueue(md->wq). 2539 */ 2540 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2541 if (map) 2542 synchronize_srcu(&md->io_barrier); 2543 2544 /* 2545 * Stop md->queue before flushing md->wq in case request-based 2546 * dm defers requests to md->wq from md->queue. 2547 */ 2548 if (dm_request_based(md)) { 2549 dm_stop_queue(md->queue); 2550 if (md->kworker_task) 2551 kthread_flush_worker(&md->kworker); 2552 } 2553 2554 flush_workqueue(md->wq); 2555 2556 /* 2557 * At this point no more requests are entering target request routines. 2558 * We call dm_wait_for_completion to wait for all existing requests 2559 * to finish. 2560 */ 2561 r = dm_wait_for_completion(md, task_state); 2562 if (!r) 2563 set_bit(dmf_suspended_flag, &md->flags); 2564 2565 if (noflush) 2566 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2567 if (map) 2568 synchronize_srcu(&md->io_barrier); 2569 2570 /* were we interrupted ? */ 2571 if (r < 0) { 2572 dm_queue_flush(md); 2573 2574 if (dm_request_based(md)) 2575 dm_start_queue(md->queue); 2576 2577 unlock_fs(md); 2578 dm_table_presuspend_undo_targets(map); 2579 /* pushback list is already flushed, so skip flush */ 2580 } 2581 2582 return r; 2583 } 2584 2585 /* 2586 * We need to be able to change a mapping table under a mounted 2587 * filesystem. For example we might want to move some data in 2588 * the background. Before the table can be swapped with 2589 * dm_bind_table, dm_suspend must be called to flush any in 2590 * flight bios and ensure that any further io gets deferred. 2591 */ 2592 /* 2593 * Suspend mechanism in request-based dm. 2594 * 2595 * 1. Flush all I/Os by lock_fs() if needed. 2596 * 2. Stop dispatching any I/O by stopping the request_queue. 2597 * 3. Wait for all in-flight I/Os to be completed or requeued. 2598 * 2599 * To abort suspend, start the request_queue. 2600 */ 2601 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2602 { 2603 struct dm_table *map = NULL; 2604 int r = 0; 2605 2606 retry: 2607 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2608 2609 if (dm_suspended_md(md)) { 2610 r = -EINVAL; 2611 goto out_unlock; 2612 } 2613 2614 if (dm_suspended_internally_md(md)) { 2615 /* already internally suspended, wait for internal resume */ 2616 mutex_unlock(&md->suspend_lock); 2617 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2618 if (r) 2619 return r; 2620 goto retry; 2621 } 2622 2623 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2624 2625 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2626 if (r) 2627 goto out_unlock; 2628 2629 dm_table_postsuspend_targets(map); 2630 2631 out_unlock: 2632 mutex_unlock(&md->suspend_lock); 2633 return r; 2634 } 2635 2636 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2637 { 2638 if (map) { 2639 int r = dm_table_resume_targets(map); 2640 if (r) 2641 return r; 2642 } 2643 2644 dm_queue_flush(md); 2645 2646 /* 2647 * Flushing deferred I/Os must be done after targets are resumed 2648 * so that mapping of targets can work correctly. 2649 * Request-based dm is queueing the deferred I/Os in its request_queue. 2650 */ 2651 if (dm_request_based(md)) 2652 dm_start_queue(md->queue); 2653 2654 unlock_fs(md); 2655 2656 return 0; 2657 } 2658 2659 int dm_resume(struct mapped_device *md) 2660 { 2661 int r; 2662 struct dm_table *map = NULL; 2663 2664 retry: 2665 r = -EINVAL; 2666 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2667 2668 if (!dm_suspended_md(md)) 2669 goto out; 2670 2671 if (dm_suspended_internally_md(md)) { 2672 /* already internally suspended, wait for internal resume */ 2673 mutex_unlock(&md->suspend_lock); 2674 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2675 if (r) 2676 return r; 2677 goto retry; 2678 } 2679 2680 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2681 if (!map || !dm_table_get_size(map)) 2682 goto out; 2683 2684 r = __dm_resume(md, map); 2685 if (r) 2686 goto out; 2687 2688 clear_bit(DMF_SUSPENDED, &md->flags); 2689 out: 2690 mutex_unlock(&md->suspend_lock); 2691 2692 return r; 2693 } 2694 2695 /* 2696 * Internal suspend/resume works like userspace-driven suspend. It waits 2697 * until all bios finish and prevents issuing new bios to the target drivers. 2698 * It may be used only from the kernel. 2699 */ 2700 2701 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2702 { 2703 struct dm_table *map = NULL; 2704 2705 lockdep_assert_held(&md->suspend_lock); 2706 2707 if (md->internal_suspend_count++) 2708 return; /* nested internal suspend */ 2709 2710 if (dm_suspended_md(md)) { 2711 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2712 return; /* nest suspend */ 2713 } 2714 2715 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2716 2717 /* 2718 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2719 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2720 * would require changing .presuspend to return an error -- avoid this 2721 * until there is a need for more elaborate variants of internal suspend. 2722 */ 2723 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2724 DMF_SUSPENDED_INTERNALLY); 2725 2726 dm_table_postsuspend_targets(map); 2727 } 2728 2729 static void __dm_internal_resume(struct mapped_device *md) 2730 { 2731 BUG_ON(!md->internal_suspend_count); 2732 2733 if (--md->internal_suspend_count) 2734 return; /* resume from nested internal suspend */ 2735 2736 if (dm_suspended_md(md)) 2737 goto done; /* resume from nested suspend */ 2738 2739 /* 2740 * NOTE: existing callers don't need to call dm_table_resume_targets 2741 * (which may fail -- so best to avoid it for now by passing NULL map) 2742 */ 2743 (void) __dm_resume(md, NULL); 2744 2745 done: 2746 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2747 smp_mb__after_atomic(); 2748 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2749 } 2750 2751 void dm_internal_suspend_noflush(struct mapped_device *md) 2752 { 2753 mutex_lock(&md->suspend_lock); 2754 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2755 mutex_unlock(&md->suspend_lock); 2756 } 2757 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2758 2759 void dm_internal_resume(struct mapped_device *md) 2760 { 2761 mutex_lock(&md->suspend_lock); 2762 __dm_internal_resume(md); 2763 mutex_unlock(&md->suspend_lock); 2764 } 2765 EXPORT_SYMBOL_GPL(dm_internal_resume); 2766 2767 /* 2768 * Fast variants of internal suspend/resume hold md->suspend_lock, 2769 * which prevents interaction with userspace-driven suspend. 2770 */ 2771 2772 void dm_internal_suspend_fast(struct mapped_device *md) 2773 { 2774 mutex_lock(&md->suspend_lock); 2775 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2776 return; 2777 2778 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2779 synchronize_srcu(&md->io_barrier); 2780 flush_workqueue(md->wq); 2781 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2782 } 2783 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2784 2785 void dm_internal_resume_fast(struct mapped_device *md) 2786 { 2787 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2788 goto done; 2789 2790 dm_queue_flush(md); 2791 2792 done: 2793 mutex_unlock(&md->suspend_lock); 2794 } 2795 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2796 2797 /*----------------------------------------------------------------- 2798 * Event notification. 2799 *---------------------------------------------------------------*/ 2800 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2801 unsigned cookie) 2802 { 2803 char udev_cookie[DM_COOKIE_LENGTH]; 2804 char *envp[] = { udev_cookie, NULL }; 2805 2806 if (!cookie) 2807 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2808 else { 2809 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2810 DM_COOKIE_ENV_VAR_NAME, cookie); 2811 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2812 action, envp); 2813 } 2814 } 2815 2816 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2817 { 2818 return atomic_add_return(1, &md->uevent_seq); 2819 } 2820 2821 uint32_t dm_get_event_nr(struct mapped_device *md) 2822 { 2823 return atomic_read(&md->event_nr); 2824 } 2825 2826 int dm_wait_event(struct mapped_device *md, int event_nr) 2827 { 2828 return wait_event_interruptible(md->eventq, 2829 (event_nr != atomic_read(&md->event_nr))); 2830 } 2831 2832 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2833 { 2834 unsigned long flags; 2835 2836 spin_lock_irqsave(&md->uevent_lock, flags); 2837 list_add(elist, &md->uevent_list); 2838 spin_unlock_irqrestore(&md->uevent_lock, flags); 2839 } 2840 2841 /* 2842 * The gendisk is only valid as long as you have a reference 2843 * count on 'md'. 2844 */ 2845 struct gendisk *dm_disk(struct mapped_device *md) 2846 { 2847 return md->disk; 2848 } 2849 EXPORT_SYMBOL_GPL(dm_disk); 2850 2851 struct kobject *dm_kobject(struct mapped_device *md) 2852 { 2853 return &md->kobj_holder.kobj; 2854 } 2855 2856 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2857 { 2858 struct mapped_device *md; 2859 2860 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2861 2862 spin_lock(&_minor_lock); 2863 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2864 md = NULL; 2865 goto out; 2866 } 2867 dm_get(md); 2868 out: 2869 spin_unlock(&_minor_lock); 2870 2871 return md; 2872 } 2873 2874 int dm_suspended_md(struct mapped_device *md) 2875 { 2876 return test_bit(DMF_SUSPENDED, &md->flags); 2877 } 2878 2879 int dm_suspended_internally_md(struct mapped_device *md) 2880 { 2881 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2882 } 2883 2884 int dm_test_deferred_remove_flag(struct mapped_device *md) 2885 { 2886 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2887 } 2888 2889 int dm_suspended(struct dm_target *ti) 2890 { 2891 return dm_suspended_md(dm_table_get_md(ti->table)); 2892 } 2893 EXPORT_SYMBOL_GPL(dm_suspended); 2894 2895 int dm_noflush_suspending(struct dm_target *ti) 2896 { 2897 return __noflush_suspending(dm_table_get_md(ti->table)); 2898 } 2899 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2900 2901 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2902 unsigned integrity, unsigned per_io_data_size, 2903 unsigned min_pool_size) 2904 { 2905 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2906 unsigned int pool_size = 0; 2907 unsigned int front_pad, io_front_pad; 2908 2909 if (!pools) 2910 return NULL; 2911 2912 switch (type) { 2913 case DM_TYPE_BIO_BASED: 2914 case DM_TYPE_DAX_BIO_BASED: 2915 case DM_TYPE_NVME_BIO_BASED: 2916 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2917 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2918 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2919 pools->io_bs = bioset_create(pool_size, io_front_pad, 0); 2920 if (!pools->io_bs) 2921 goto out; 2922 if (integrity && bioset_integrity_create(pools->io_bs, pool_size)) 2923 goto out; 2924 break; 2925 case DM_TYPE_REQUEST_BASED: 2926 case DM_TYPE_MQ_REQUEST_BASED: 2927 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2928 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2929 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2930 break; 2931 default: 2932 BUG(); 2933 } 2934 2935 pools->bs = bioset_create(pool_size, front_pad, 0); 2936 if (!pools->bs) 2937 goto out; 2938 2939 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2940 goto out; 2941 2942 return pools; 2943 2944 out: 2945 dm_free_md_mempools(pools); 2946 2947 return NULL; 2948 } 2949 2950 void dm_free_md_mempools(struct dm_md_mempools *pools) 2951 { 2952 if (!pools) 2953 return; 2954 2955 if (pools->bs) 2956 bioset_free(pools->bs); 2957 if (pools->io_bs) 2958 bioset_free(pools->io_bs); 2959 2960 kfree(pools); 2961 } 2962 2963 struct dm_pr { 2964 u64 old_key; 2965 u64 new_key; 2966 u32 flags; 2967 bool fail_early; 2968 }; 2969 2970 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2971 void *data) 2972 { 2973 struct mapped_device *md = bdev->bd_disk->private_data; 2974 struct dm_table *table; 2975 struct dm_target *ti; 2976 int ret = -ENOTTY, srcu_idx; 2977 2978 table = dm_get_live_table(md, &srcu_idx); 2979 if (!table || !dm_table_get_size(table)) 2980 goto out; 2981 2982 /* We only support devices that have a single target */ 2983 if (dm_table_get_num_targets(table) != 1) 2984 goto out; 2985 ti = dm_table_get_target(table, 0); 2986 2987 ret = -EINVAL; 2988 if (!ti->type->iterate_devices) 2989 goto out; 2990 2991 ret = ti->type->iterate_devices(ti, fn, data); 2992 out: 2993 dm_put_live_table(md, srcu_idx); 2994 return ret; 2995 } 2996 2997 /* 2998 * For register / unregister we need to manually call out to every path. 2999 */ 3000 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3001 sector_t start, sector_t len, void *data) 3002 { 3003 struct dm_pr *pr = data; 3004 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3005 3006 if (!ops || !ops->pr_register) 3007 return -EOPNOTSUPP; 3008 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3009 } 3010 3011 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3012 u32 flags) 3013 { 3014 struct dm_pr pr = { 3015 .old_key = old_key, 3016 .new_key = new_key, 3017 .flags = flags, 3018 .fail_early = true, 3019 }; 3020 int ret; 3021 3022 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3023 if (ret && new_key) { 3024 /* unregister all paths if we failed to register any path */ 3025 pr.old_key = new_key; 3026 pr.new_key = 0; 3027 pr.flags = 0; 3028 pr.fail_early = false; 3029 dm_call_pr(bdev, __dm_pr_register, &pr); 3030 } 3031 3032 return ret; 3033 } 3034 3035 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3036 u32 flags) 3037 { 3038 struct mapped_device *md = bdev->bd_disk->private_data; 3039 const struct pr_ops *ops; 3040 int r, srcu_idx; 3041 3042 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3043 if (r < 0) 3044 goto out; 3045 3046 ops = bdev->bd_disk->fops->pr_ops; 3047 if (ops && ops->pr_reserve) 3048 r = ops->pr_reserve(bdev, key, type, flags); 3049 else 3050 r = -EOPNOTSUPP; 3051 out: 3052 dm_unprepare_ioctl(md, srcu_idx); 3053 return r; 3054 } 3055 3056 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3057 { 3058 struct mapped_device *md = bdev->bd_disk->private_data; 3059 const struct pr_ops *ops; 3060 int r, srcu_idx; 3061 3062 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3063 if (r < 0) 3064 goto out; 3065 3066 ops = bdev->bd_disk->fops->pr_ops; 3067 if (ops && ops->pr_release) 3068 r = ops->pr_release(bdev, key, type); 3069 else 3070 r = -EOPNOTSUPP; 3071 out: 3072 dm_unprepare_ioctl(md, srcu_idx); 3073 return r; 3074 } 3075 3076 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3077 enum pr_type type, bool abort) 3078 { 3079 struct mapped_device *md = bdev->bd_disk->private_data; 3080 const struct pr_ops *ops; 3081 int r, srcu_idx; 3082 3083 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3084 if (r < 0) 3085 goto out; 3086 3087 ops = bdev->bd_disk->fops->pr_ops; 3088 if (ops && ops->pr_preempt) 3089 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3090 else 3091 r = -EOPNOTSUPP; 3092 out: 3093 dm_unprepare_ioctl(md, srcu_idx); 3094 return r; 3095 } 3096 3097 static int dm_pr_clear(struct block_device *bdev, u64 key) 3098 { 3099 struct mapped_device *md = bdev->bd_disk->private_data; 3100 const struct pr_ops *ops; 3101 int r, srcu_idx; 3102 3103 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3104 if (r < 0) 3105 goto out; 3106 3107 ops = bdev->bd_disk->fops->pr_ops; 3108 if (ops && ops->pr_clear) 3109 r = ops->pr_clear(bdev, key); 3110 else 3111 r = -EOPNOTSUPP; 3112 out: 3113 dm_unprepare_ioctl(md, srcu_idx); 3114 return r; 3115 } 3116 3117 static const struct pr_ops dm_pr_ops = { 3118 .pr_register = dm_pr_register, 3119 .pr_reserve = dm_pr_reserve, 3120 .pr_release = dm_pr_release, 3121 .pr_preempt = dm_pr_preempt, 3122 .pr_clear = dm_pr_clear, 3123 }; 3124 3125 static const struct block_device_operations dm_blk_dops = { 3126 .open = dm_blk_open, 3127 .release = dm_blk_close, 3128 .ioctl = dm_blk_ioctl, 3129 .getgeo = dm_blk_getgeo, 3130 .pr_ops = &dm_pr_ops, 3131 .owner = THIS_MODULE 3132 }; 3133 3134 static const struct dax_operations dm_dax_ops = { 3135 .direct_access = dm_dax_direct_access, 3136 .copy_from_iter = dm_dax_copy_from_iter, 3137 }; 3138 3139 /* 3140 * module hooks 3141 */ 3142 module_init(dm_init); 3143 module_exit(dm_exit); 3144 3145 module_param(major, uint, 0); 3146 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3147 3148 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3149 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3150 3151 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3152 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3153 3154 MODULE_DESCRIPTION(DM_NAME " driver"); 3155 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3156 MODULE_LICENSE("GPL"); 3157