1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/buffer_head.h> 18 #include <linux/mempool.h> 19 #include <linux/slab.h> 20 #include <linux/idr.h> 21 #include <linux/hdreg.h> 22 #include <linux/delay.h> 23 24 #include <trace/events/block.h> 25 26 #define DM_MSG_PREFIX "core" 27 28 /* 29 * Cookies are numeric values sent with CHANGE and REMOVE 30 * uevents while resuming, removing or renaming the device. 31 */ 32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 33 #define DM_COOKIE_LENGTH 24 34 35 static const char *_name = DM_NAME; 36 37 static unsigned int major = 0; 38 static unsigned int _major = 0; 39 40 static DEFINE_SPINLOCK(_minor_lock); 41 /* 42 * For bio-based dm. 43 * One of these is allocated per bio. 44 */ 45 struct dm_io { 46 struct mapped_device *md; 47 int error; 48 atomic_t io_count; 49 struct bio *bio; 50 unsigned long start_time; 51 spinlock_t endio_lock; 52 }; 53 54 /* 55 * For bio-based dm. 56 * One of these is allocated per target within a bio. Hopefully 57 * this will be simplified out one day. 58 */ 59 struct dm_target_io { 60 struct dm_io *io; 61 struct dm_target *ti; 62 union map_info info; 63 }; 64 65 /* 66 * For request-based dm. 67 * One of these is allocated per request. 68 */ 69 struct dm_rq_target_io { 70 struct mapped_device *md; 71 struct dm_target *ti; 72 struct request *orig, clone; 73 int error; 74 union map_info info; 75 }; 76 77 /* 78 * For request-based dm. 79 * One of these is allocated per bio. 80 */ 81 struct dm_rq_clone_bio_info { 82 struct bio *orig; 83 struct dm_rq_target_io *tio; 84 }; 85 86 union map_info *dm_get_mapinfo(struct bio *bio) 87 { 88 if (bio && bio->bi_private) 89 return &((struct dm_target_io *)bio->bi_private)->info; 90 return NULL; 91 } 92 93 union map_info *dm_get_rq_mapinfo(struct request *rq) 94 { 95 if (rq && rq->end_io_data) 96 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 97 return NULL; 98 } 99 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 100 101 #define MINOR_ALLOCED ((void *)-1) 102 103 /* 104 * Bits for the md->flags field. 105 */ 106 #define DMF_BLOCK_IO_FOR_SUSPEND 0 107 #define DMF_SUSPENDED 1 108 #define DMF_FROZEN 2 109 #define DMF_FREEING 3 110 #define DMF_DELETING 4 111 #define DMF_NOFLUSH_SUSPENDING 5 112 113 /* 114 * Work processed by per-device workqueue. 115 */ 116 struct mapped_device { 117 struct rw_semaphore io_lock; 118 struct mutex suspend_lock; 119 rwlock_t map_lock; 120 atomic_t holders; 121 atomic_t open_count; 122 123 unsigned long flags; 124 125 struct request_queue *queue; 126 unsigned type; 127 /* Protect queue and type against concurrent access. */ 128 struct mutex type_lock; 129 130 struct gendisk *disk; 131 char name[16]; 132 133 void *interface_ptr; 134 135 /* 136 * A list of ios that arrived while we were suspended. 137 */ 138 atomic_t pending[2]; 139 wait_queue_head_t wait; 140 struct work_struct work; 141 struct bio_list deferred; 142 spinlock_t deferred_lock; 143 144 /* 145 * Processing queue (flush) 146 */ 147 struct workqueue_struct *wq; 148 149 /* 150 * The current mapping. 151 */ 152 struct dm_table *map; 153 154 /* 155 * io objects are allocated from here. 156 */ 157 mempool_t *io_pool; 158 mempool_t *tio_pool; 159 160 struct bio_set *bs; 161 162 /* 163 * Event handling. 164 */ 165 atomic_t event_nr; 166 wait_queue_head_t eventq; 167 atomic_t uevent_seq; 168 struct list_head uevent_list; 169 spinlock_t uevent_lock; /* Protect access to uevent_list */ 170 171 /* 172 * freeze/thaw support require holding onto a super block 173 */ 174 struct super_block *frozen_sb; 175 struct block_device *bdev; 176 177 /* forced geometry settings */ 178 struct hd_geometry geometry; 179 180 /* For saving the address of __make_request for request based dm */ 181 make_request_fn *saved_make_request_fn; 182 183 /* sysfs handle */ 184 struct kobject kobj; 185 186 /* zero-length flush that will be cloned and submitted to targets */ 187 struct bio flush_bio; 188 }; 189 190 /* 191 * For mempools pre-allocation at the table loading time. 192 */ 193 struct dm_md_mempools { 194 mempool_t *io_pool; 195 mempool_t *tio_pool; 196 struct bio_set *bs; 197 }; 198 199 #define MIN_IOS 256 200 static struct kmem_cache *_io_cache; 201 static struct kmem_cache *_tio_cache; 202 static struct kmem_cache *_rq_tio_cache; 203 static struct kmem_cache *_rq_bio_info_cache; 204 205 static int __init local_init(void) 206 { 207 int r = -ENOMEM; 208 209 /* allocate a slab for the dm_ios */ 210 _io_cache = KMEM_CACHE(dm_io, 0); 211 if (!_io_cache) 212 return r; 213 214 /* allocate a slab for the target ios */ 215 _tio_cache = KMEM_CACHE(dm_target_io, 0); 216 if (!_tio_cache) 217 goto out_free_io_cache; 218 219 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 220 if (!_rq_tio_cache) 221 goto out_free_tio_cache; 222 223 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 224 if (!_rq_bio_info_cache) 225 goto out_free_rq_tio_cache; 226 227 r = dm_uevent_init(); 228 if (r) 229 goto out_free_rq_bio_info_cache; 230 231 _major = major; 232 r = register_blkdev(_major, _name); 233 if (r < 0) 234 goto out_uevent_exit; 235 236 if (!_major) 237 _major = r; 238 239 return 0; 240 241 out_uevent_exit: 242 dm_uevent_exit(); 243 out_free_rq_bio_info_cache: 244 kmem_cache_destroy(_rq_bio_info_cache); 245 out_free_rq_tio_cache: 246 kmem_cache_destroy(_rq_tio_cache); 247 out_free_tio_cache: 248 kmem_cache_destroy(_tio_cache); 249 out_free_io_cache: 250 kmem_cache_destroy(_io_cache); 251 252 return r; 253 } 254 255 static void local_exit(void) 256 { 257 kmem_cache_destroy(_rq_bio_info_cache); 258 kmem_cache_destroy(_rq_tio_cache); 259 kmem_cache_destroy(_tio_cache); 260 kmem_cache_destroy(_io_cache); 261 unregister_blkdev(_major, _name); 262 dm_uevent_exit(); 263 264 _major = 0; 265 266 DMINFO("cleaned up"); 267 } 268 269 static int (*_inits[])(void) __initdata = { 270 local_init, 271 dm_target_init, 272 dm_linear_init, 273 dm_stripe_init, 274 dm_io_init, 275 dm_kcopyd_init, 276 dm_interface_init, 277 }; 278 279 static void (*_exits[])(void) = { 280 local_exit, 281 dm_target_exit, 282 dm_linear_exit, 283 dm_stripe_exit, 284 dm_io_exit, 285 dm_kcopyd_exit, 286 dm_interface_exit, 287 }; 288 289 static int __init dm_init(void) 290 { 291 const int count = ARRAY_SIZE(_inits); 292 293 int r, i; 294 295 for (i = 0; i < count; i++) { 296 r = _inits[i](); 297 if (r) 298 goto bad; 299 } 300 301 return 0; 302 303 bad: 304 while (i--) 305 _exits[i](); 306 307 return r; 308 } 309 310 static void __exit dm_exit(void) 311 { 312 int i = ARRAY_SIZE(_exits); 313 314 while (i--) 315 _exits[i](); 316 } 317 318 /* 319 * Block device functions 320 */ 321 int dm_deleting_md(struct mapped_device *md) 322 { 323 return test_bit(DMF_DELETING, &md->flags); 324 } 325 326 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 327 { 328 struct mapped_device *md; 329 330 spin_lock(&_minor_lock); 331 332 md = bdev->bd_disk->private_data; 333 if (!md) 334 goto out; 335 336 if (test_bit(DMF_FREEING, &md->flags) || 337 dm_deleting_md(md)) { 338 md = NULL; 339 goto out; 340 } 341 342 dm_get(md); 343 atomic_inc(&md->open_count); 344 345 out: 346 spin_unlock(&_minor_lock); 347 348 return md ? 0 : -ENXIO; 349 } 350 351 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 352 { 353 struct mapped_device *md = disk->private_data; 354 355 spin_lock(&_minor_lock); 356 357 atomic_dec(&md->open_count); 358 dm_put(md); 359 360 spin_unlock(&_minor_lock); 361 362 return 0; 363 } 364 365 int dm_open_count(struct mapped_device *md) 366 { 367 return atomic_read(&md->open_count); 368 } 369 370 /* 371 * Guarantees nothing is using the device before it's deleted. 372 */ 373 int dm_lock_for_deletion(struct mapped_device *md) 374 { 375 int r = 0; 376 377 spin_lock(&_minor_lock); 378 379 if (dm_open_count(md)) 380 r = -EBUSY; 381 else 382 set_bit(DMF_DELETING, &md->flags); 383 384 spin_unlock(&_minor_lock); 385 386 return r; 387 } 388 389 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 390 { 391 struct mapped_device *md = bdev->bd_disk->private_data; 392 393 return dm_get_geometry(md, geo); 394 } 395 396 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 397 unsigned int cmd, unsigned long arg) 398 { 399 struct mapped_device *md = bdev->bd_disk->private_data; 400 struct dm_table *map = dm_get_live_table(md); 401 struct dm_target *tgt; 402 int r = -ENOTTY; 403 404 if (!map || !dm_table_get_size(map)) 405 goto out; 406 407 /* We only support devices that have a single target */ 408 if (dm_table_get_num_targets(map) != 1) 409 goto out; 410 411 tgt = dm_table_get_target(map, 0); 412 413 if (dm_suspended_md(md)) { 414 r = -EAGAIN; 415 goto out; 416 } 417 418 if (tgt->type->ioctl) 419 r = tgt->type->ioctl(tgt, cmd, arg); 420 421 out: 422 dm_table_put(map); 423 424 return r; 425 } 426 427 static struct dm_io *alloc_io(struct mapped_device *md) 428 { 429 return mempool_alloc(md->io_pool, GFP_NOIO); 430 } 431 432 static void free_io(struct mapped_device *md, struct dm_io *io) 433 { 434 mempool_free(io, md->io_pool); 435 } 436 437 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 438 { 439 mempool_free(tio, md->tio_pool); 440 } 441 442 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 443 gfp_t gfp_mask) 444 { 445 return mempool_alloc(md->tio_pool, gfp_mask); 446 } 447 448 static void free_rq_tio(struct dm_rq_target_io *tio) 449 { 450 mempool_free(tio, tio->md->tio_pool); 451 } 452 453 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md) 454 { 455 return mempool_alloc(md->io_pool, GFP_ATOMIC); 456 } 457 458 static void free_bio_info(struct dm_rq_clone_bio_info *info) 459 { 460 mempool_free(info, info->tio->md->io_pool); 461 } 462 463 static int md_in_flight(struct mapped_device *md) 464 { 465 return atomic_read(&md->pending[READ]) + 466 atomic_read(&md->pending[WRITE]); 467 } 468 469 static void start_io_acct(struct dm_io *io) 470 { 471 struct mapped_device *md = io->md; 472 int cpu; 473 int rw = bio_data_dir(io->bio); 474 475 io->start_time = jiffies; 476 477 cpu = part_stat_lock(); 478 part_round_stats(cpu, &dm_disk(md)->part0); 479 part_stat_unlock(); 480 dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]); 481 } 482 483 static void end_io_acct(struct dm_io *io) 484 { 485 struct mapped_device *md = io->md; 486 struct bio *bio = io->bio; 487 unsigned long duration = jiffies - io->start_time; 488 int pending, cpu; 489 int rw = bio_data_dir(bio); 490 491 cpu = part_stat_lock(); 492 part_round_stats(cpu, &dm_disk(md)->part0); 493 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 494 part_stat_unlock(); 495 496 /* 497 * After this is decremented the bio must not be touched if it is 498 * a flush. 499 */ 500 dm_disk(md)->part0.in_flight[rw] = pending = 501 atomic_dec_return(&md->pending[rw]); 502 pending += atomic_read(&md->pending[rw^0x1]); 503 504 /* nudge anyone waiting on suspend queue */ 505 if (!pending) 506 wake_up(&md->wait); 507 } 508 509 /* 510 * Add the bio to the list of deferred io. 511 */ 512 static void queue_io(struct mapped_device *md, struct bio *bio) 513 { 514 unsigned long flags; 515 516 spin_lock_irqsave(&md->deferred_lock, flags); 517 bio_list_add(&md->deferred, bio); 518 spin_unlock_irqrestore(&md->deferred_lock, flags); 519 queue_work(md->wq, &md->work); 520 } 521 522 /* 523 * Everyone (including functions in this file), should use this 524 * function to access the md->map field, and make sure they call 525 * dm_table_put() when finished. 526 */ 527 struct dm_table *dm_get_live_table(struct mapped_device *md) 528 { 529 struct dm_table *t; 530 unsigned long flags; 531 532 read_lock_irqsave(&md->map_lock, flags); 533 t = md->map; 534 if (t) 535 dm_table_get(t); 536 read_unlock_irqrestore(&md->map_lock, flags); 537 538 return t; 539 } 540 541 /* 542 * Get the geometry associated with a dm device 543 */ 544 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 545 { 546 *geo = md->geometry; 547 548 return 0; 549 } 550 551 /* 552 * Set the geometry of a device. 553 */ 554 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 555 { 556 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 557 558 if (geo->start > sz) { 559 DMWARN("Start sector is beyond the geometry limits."); 560 return -EINVAL; 561 } 562 563 md->geometry = *geo; 564 565 return 0; 566 } 567 568 /*----------------------------------------------------------------- 569 * CRUD START: 570 * A more elegant soln is in the works that uses the queue 571 * merge fn, unfortunately there are a couple of changes to 572 * the block layer that I want to make for this. So in the 573 * interests of getting something for people to use I give 574 * you this clearly demarcated crap. 575 *---------------------------------------------------------------*/ 576 577 static int __noflush_suspending(struct mapped_device *md) 578 { 579 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 580 } 581 582 /* 583 * Decrements the number of outstanding ios that a bio has been 584 * cloned into, completing the original io if necc. 585 */ 586 static void dec_pending(struct dm_io *io, int error) 587 { 588 unsigned long flags; 589 int io_error; 590 struct bio *bio; 591 struct mapped_device *md = io->md; 592 593 /* Push-back supersedes any I/O errors */ 594 if (unlikely(error)) { 595 spin_lock_irqsave(&io->endio_lock, flags); 596 if (!(io->error > 0 && __noflush_suspending(md))) 597 io->error = error; 598 spin_unlock_irqrestore(&io->endio_lock, flags); 599 } 600 601 if (atomic_dec_and_test(&io->io_count)) { 602 if (io->error == DM_ENDIO_REQUEUE) { 603 /* 604 * Target requested pushing back the I/O. 605 */ 606 spin_lock_irqsave(&md->deferred_lock, flags); 607 if (__noflush_suspending(md)) 608 bio_list_add_head(&md->deferred, io->bio); 609 else 610 /* noflush suspend was interrupted. */ 611 io->error = -EIO; 612 spin_unlock_irqrestore(&md->deferred_lock, flags); 613 } 614 615 io_error = io->error; 616 bio = io->bio; 617 end_io_acct(io); 618 free_io(md, io); 619 620 if (io_error == DM_ENDIO_REQUEUE) 621 return; 622 623 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { 624 /* 625 * Preflush done for flush with data, reissue 626 * without REQ_FLUSH. 627 */ 628 bio->bi_rw &= ~REQ_FLUSH; 629 queue_io(md, bio); 630 } else { 631 /* done with normal IO or empty flush */ 632 trace_block_bio_complete(md->queue, bio, io_error); 633 bio_endio(bio, io_error); 634 } 635 } 636 } 637 638 static void clone_endio(struct bio *bio, int error) 639 { 640 int r = 0; 641 struct dm_target_io *tio = bio->bi_private; 642 struct dm_io *io = tio->io; 643 struct mapped_device *md = tio->io->md; 644 dm_endio_fn endio = tio->ti->type->end_io; 645 646 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 647 error = -EIO; 648 649 if (endio) { 650 r = endio(tio->ti, bio, error, &tio->info); 651 if (r < 0 || r == DM_ENDIO_REQUEUE) 652 /* 653 * error and requeue request are handled 654 * in dec_pending(). 655 */ 656 error = r; 657 else if (r == DM_ENDIO_INCOMPLETE) 658 /* The target will handle the io */ 659 return; 660 else if (r) { 661 DMWARN("unimplemented target endio return value: %d", r); 662 BUG(); 663 } 664 } 665 666 /* 667 * Store md for cleanup instead of tio which is about to get freed. 668 */ 669 bio->bi_private = md->bs; 670 671 free_tio(md, tio); 672 bio_put(bio); 673 dec_pending(io, error); 674 } 675 676 /* 677 * Partial completion handling for request-based dm 678 */ 679 static void end_clone_bio(struct bio *clone, int error) 680 { 681 struct dm_rq_clone_bio_info *info = clone->bi_private; 682 struct dm_rq_target_io *tio = info->tio; 683 struct bio *bio = info->orig; 684 unsigned int nr_bytes = info->orig->bi_size; 685 686 bio_put(clone); 687 688 if (tio->error) 689 /* 690 * An error has already been detected on the request. 691 * Once error occurred, just let clone->end_io() handle 692 * the remainder. 693 */ 694 return; 695 else if (error) { 696 /* 697 * Don't notice the error to the upper layer yet. 698 * The error handling decision is made by the target driver, 699 * when the request is completed. 700 */ 701 tio->error = error; 702 return; 703 } 704 705 /* 706 * I/O for the bio successfully completed. 707 * Notice the data completion to the upper layer. 708 */ 709 710 /* 711 * bios are processed from the head of the list. 712 * So the completing bio should always be rq->bio. 713 * If it's not, something wrong is happening. 714 */ 715 if (tio->orig->bio != bio) 716 DMERR("bio completion is going in the middle of the request"); 717 718 /* 719 * Update the original request. 720 * Do not use blk_end_request() here, because it may complete 721 * the original request before the clone, and break the ordering. 722 */ 723 blk_update_request(tio->orig, 0, nr_bytes); 724 } 725 726 /* 727 * Don't touch any member of the md after calling this function because 728 * the md may be freed in dm_put() at the end of this function. 729 * Or do dm_get() before calling this function and dm_put() later. 730 */ 731 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 732 { 733 atomic_dec(&md->pending[rw]); 734 735 /* nudge anyone waiting on suspend queue */ 736 if (!md_in_flight(md)) 737 wake_up(&md->wait); 738 739 if (run_queue) 740 blk_run_queue(md->queue); 741 742 /* 743 * dm_put() must be at the end of this function. See the comment above 744 */ 745 dm_put(md); 746 } 747 748 static void free_rq_clone(struct request *clone) 749 { 750 struct dm_rq_target_io *tio = clone->end_io_data; 751 752 blk_rq_unprep_clone(clone); 753 free_rq_tio(tio); 754 } 755 756 /* 757 * Complete the clone and the original request. 758 * Must be called without queue lock. 759 */ 760 static void dm_end_request(struct request *clone, int error) 761 { 762 int rw = rq_data_dir(clone); 763 struct dm_rq_target_io *tio = clone->end_io_data; 764 struct mapped_device *md = tio->md; 765 struct request *rq = tio->orig; 766 767 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 768 rq->errors = clone->errors; 769 rq->resid_len = clone->resid_len; 770 771 if (rq->sense) 772 /* 773 * We are using the sense buffer of the original 774 * request. 775 * So setting the length of the sense data is enough. 776 */ 777 rq->sense_len = clone->sense_len; 778 } 779 780 free_rq_clone(clone); 781 blk_end_request_all(rq, error); 782 rq_completed(md, rw, true); 783 } 784 785 static void dm_unprep_request(struct request *rq) 786 { 787 struct request *clone = rq->special; 788 789 rq->special = NULL; 790 rq->cmd_flags &= ~REQ_DONTPREP; 791 792 free_rq_clone(clone); 793 } 794 795 /* 796 * Requeue the original request of a clone. 797 */ 798 void dm_requeue_unmapped_request(struct request *clone) 799 { 800 int rw = rq_data_dir(clone); 801 struct dm_rq_target_io *tio = clone->end_io_data; 802 struct mapped_device *md = tio->md; 803 struct request *rq = tio->orig; 804 struct request_queue *q = rq->q; 805 unsigned long flags; 806 807 dm_unprep_request(rq); 808 809 spin_lock_irqsave(q->queue_lock, flags); 810 if (elv_queue_empty(q)) 811 blk_plug_device(q); 812 blk_requeue_request(q, rq); 813 spin_unlock_irqrestore(q->queue_lock, flags); 814 815 rq_completed(md, rw, 0); 816 } 817 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 818 819 static void __stop_queue(struct request_queue *q) 820 { 821 blk_stop_queue(q); 822 } 823 824 static void stop_queue(struct request_queue *q) 825 { 826 unsigned long flags; 827 828 spin_lock_irqsave(q->queue_lock, flags); 829 __stop_queue(q); 830 spin_unlock_irqrestore(q->queue_lock, flags); 831 } 832 833 static void __start_queue(struct request_queue *q) 834 { 835 if (blk_queue_stopped(q)) 836 blk_start_queue(q); 837 } 838 839 static void start_queue(struct request_queue *q) 840 { 841 unsigned long flags; 842 843 spin_lock_irqsave(q->queue_lock, flags); 844 __start_queue(q); 845 spin_unlock_irqrestore(q->queue_lock, flags); 846 } 847 848 static void dm_done(struct request *clone, int error, bool mapped) 849 { 850 int r = error; 851 struct dm_rq_target_io *tio = clone->end_io_data; 852 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io; 853 854 if (mapped && rq_end_io) 855 r = rq_end_io(tio->ti, clone, error, &tio->info); 856 857 if (r <= 0) 858 /* The target wants to complete the I/O */ 859 dm_end_request(clone, r); 860 else if (r == DM_ENDIO_INCOMPLETE) 861 /* The target will handle the I/O */ 862 return; 863 else if (r == DM_ENDIO_REQUEUE) 864 /* The target wants to requeue the I/O */ 865 dm_requeue_unmapped_request(clone); 866 else { 867 DMWARN("unimplemented target endio return value: %d", r); 868 BUG(); 869 } 870 } 871 872 /* 873 * Request completion handler for request-based dm 874 */ 875 static void dm_softirq_done(struct request *rq) 876 { 877 bool mapped = true; 878 struct request *clone = rq->completion_data; 879 struct dm_rq_target_io *tio = clone->end_io_data; 880 881 if (rq->cmd_flags & REQ_FAILED) 882 mapped = false; 883 884 dm_done(clone, tio->error, mapped); 885 } 886 887 /* 888 * Complete the clone and the original request with the error status 889 * through softirq context. 890 */ 891 static void dm_complete_request(struct request *clone, int error) 892 { 893 struct dm_rq_target_io *tio = clone->end_io_data; 894 struct request *rq = tio->orig; 895 896 tio->error = error; 897 rq->completion_data = clone; 898 blk_complete_request(rq); 899 } 900 901 /* 902 * Complete the not-mapped clone and the original request with the error status 903 * through softirq context. 904 * Target's rq_end_io() function isn't called. 905 * This may be used when the target's map_rq() function fails. 906 */ 907 void dm_kill_unmapped_request(struct request *clone, int error) 908 { 909 struct dm_rq_target_io *tio = clone->end_io_data; 910 struct request *rq = tio->orig; 911 912 rq->cmd_flags |= REQ_FAILED; 913 dm_complete_request(clone, error); 914 } 915 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 916 917 /* 918 * Called with the queue lock held 919 */ 920 static void end_clone_request(struct request *clone, int error) 921 { 922 /* 923 * For just cleaning up the information of the queue in which 924 * the clone was dispatched. 925 * The clone is *NOT* freed actually here because it is alloced from 926 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 927 */ 928 __blk_put_request(clone->q, clone); 929 930 /* 931 * Actual request completion is done in a softirq context which doesn't 932 * hold the queue lock. Otherwise, deadlock could occur because: 933 * - another request may be submitted by the upper level driver 934 * of the stacking during the completion 935 * - the submission which requires queue lock may be done 936 * against this queue 937 */ 938 dm_complete_request(clone, error); 939 } 940 941 /* 942 * Return maximum size of I/O possible at the supplied sector up to the current 943 * target boundary. 944 */ 945 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 946 { 947 sector_t target_offset = dm_target_offset(ti, sector); 948 949 return ti->len - target_offset; 950 } 951 952 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 953 { 954 sector_t len = max_io_len_target_boundary(sector, ti); 955 956 /* 957 * Does the target need to split even further ? 958 */ 959 if (ti->split_io) { 960 sector_t boundary; 961 sector_t offset = dm_target_offset(ti, sector); 962 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 963 - offset; 964 if (len > boundary) 965 len = boundary; 966 } 967 968 return len; 969 } 970 971 static void __map_bio(struct dm_target *ti, struct bio *clone, 972 struct dm_target_io *tio) 973 { 974 int r; 975 sector_t sector; 976 struct mapped_device *md; 977 978 clone->bi_end_io = clone_endio; 979 clone->bi_private = tio; 980 981 /* 982 * Map the clone. If r == 0 we don't need to do 983 * anything, the target has assumed ownership of 984 * this io. 985 */ 986 atomic_inc(&tio->io->io_count); 987 sector = clone->bi_sector; 988 r = ti->type->map(ti, clone, &tio->info); 989 if (r == DM_MAPIO_REMAPPED) { 990 /* the bio has been remapped so dispatch it */ 991 992 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 993 tio->io->bio->bi_bdev->bd_dev, sector); 994 995 generic_make_request(clone); 996 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 997 /* error the io and bail out, or requeue it if needed */ 998 md = tio->io->md; 999 dec_pending(tio->io, r); 1000 /* 1001 * Store bio_set for cleanup. 1002 */ 1003 clone->bi_private = md->bs; 1004 bio_put(clone); 1005 free_tio(md, tio); 1006 } else if (r) { 1007 DMWARN("unimplemented target map return value: %d", r); 1008 BUG(); 1009 } 1010 } 1011 1012 struct clone_info { 1013 struct mapped_device *md; 1014 struct dm_table *map; 1015 struct bio *bio; 1016 struct dm_io *io; 1017 sector_t sector; 1018 sector_t sector_count; 1019 unsigned short idx; 1020 }; 1021 1022 static void dm_bio_destructor(struct bio *bio) 1023 { 1024 struct bio_set *bs = bio->bi_private; 1025 1026 bio_free(bio, bs); 1027 } 1028 1029 /* 1030 * Creates a little bio that just does part of a bvec. 1031 */ 1032 static struct bio *split_bvec(struct bio *bio, sector_t sector, 1033 unsigned short idx, unsigned int offset, 1034 unsigned int len, struct bio_set *bs) 1035 { 1036 struct bio *clone; 1037 struct bio_vec *bv = bio->bi_io_vec + idx; 1038 1039 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 1040 clone->bi_destructor = dm_bio_destructor; 1041 *clone->bi_io_vec = *bv; 1042 1043 clone->bi_sector = sector; 1044 clone->bi_bdev = bio->bi_bdev; 1045 clone->bi_rw = bio->bi_rw; 1046 clone->bi_vcnt = 1; 1047 clone->bi_size = to_bytes(len); 1048 clone->bi_io_vec->bv_offset = offset; 1049 clone->bi_io_vec->bv_len = clone->bi_size; 1050 clone->bi_flags |= 1 << BIO_CLONED; 1051 1052 if (bio_integrity(bio)) { 1053 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1054 bio_integrity_trim(clone, 1055 bio_sector_offset(bio, idx, offset), len); 1056 } 1057 1058 return clone; 1059 } 1060 1061 /* 1062 * Creates a bio that consists of range of complete bvecs. 1063 */ 1064 static struct bio *clone_bio(struct bio *bio, sector_t sector, 1065 unsigned short idx, unsigned short bv_count, 1066 unsigned int len, struct bio_set *bs) 1067 { 1068 struct bio *clone; 1069 1070 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 1071 __bio_clone(clone, bio); 1072 clone->bi_destructor = dm_bio_destructor; 1073 clone->bi_sector = sector; 1074 clone->bi_idx = idx; 1075 clone->bi_vcnt = idx + bv_count; 1076 clone->bi_size = to_bytes(len); 1077 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 1078 1079 if (bio_integrity(bio)) { 1080 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1081 1082 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1083 bio_integrity_trim(clone, 1084 bio_sector_offset(bio, idx, 0), len); 1085 } 1086 1087 return clone; 1088 } 1089 1090 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1091 struct dm_target *ti) 1092 { 1093 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO); 1094 1095 tio->io = ci->io; 1096 tio->ti = ti; 1097 memset(&tio->info, 0, sizeof(tio->info)); 1098 1099 return tio; 1100 } 1101 1102 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti, 1103 unsigned request_nr, sector_t len) 1104 { 1105 struct dm_target_io *tio = alloc_tio(ci, ti); 1106 struct bio *clone; 1107 1108 tio->info.target_request_nr = request_nr; 1109 1110 /* 1111 * Discard requests require the bio's inline iovecs be initialized. 1112 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1113 * and discard, so no need for concern about wasted bvec allocations. 1114 */ 1115 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs); 1116 __bio_clone(clone, ci->bio); 1117 clone->bi_destructor = dm_bio_destructor; 1118 if (len) { 1119 clone->bi_sector = ci->sector; 1120 clone->bi_size = to_bytes(len); 1121 } 1122 1123 __map_bio(ti, clone, tio); 1124 } 1125 1126 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti, 1127 unsigned num_requests, sector_t len) 1128 { 1129 unsigned request_nr; 1130 1131 for (request_nr = 0; request_nr < num_requests; request_nr++) 1132 __issue_target_request(ci, ti, request_nr, len); 1133 } 1134 1135 static int __clone_and_map_empty_flush(struct clone_info *ci) 1136 { 1137 unsigned target_nr = 0; 1138 struct dm_target *ti; 1139 1140 BUG_ON(bio_has_data(ci->bio)); 1141 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1142 __issue_target_requests(ci, ti, ti->num_flush_requests, 0); 1143 1144 return 0; 1145 } 1146 1147 /* 1148 * Perform all io with a single clone. 1149 */ 1150 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti) 1151 { 1152 struct bio *clone, *bio = ci->bio; 1153 struct dm_target_io *tio; 1154 1155 tio = alloc_tio(ci, ti); 1156 clone = clone_bio(bio, ci->sector, ci->idx, 1157 bio->bi_vcnt - ci->idx, ci->sector_count, 1158 ci->md->bs); 1159 __map_bio(ti, clone, tio); 1160 ci->sector_count = 0; 1161 } 1162 1163 static int __clone_and_map_discard(struct clone_info *ci) 1164 { 1165 struct dm_target *ti; 1166 sector_t len; 1167 1168 do { 1169 ti = dm_table_find_target(ci->map, ci->sector); 1170 if (!dm_target_is_valid(ti)) 1171 return -EIO; 1172 1173 /* 1174 * Even though the device advertised discard support, 1175 * reconfiguration might have changed that since the 1176 * check was performed. 1177 */ 1178 if (!ti->num_discard_requests) 1179 return -EOPNOTSUPP; 1180 1181 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1182 1183 __issue_target_requests(ci, ti, ti->num_discard_requests, len); 1184 1185 ci->sector += len; 1186 } while (ci->sector_count -= len); 1187 1188 return 0; 1189 } 1190 1191 static int __clone_and_map(struct clone_info *ci) 1192 { 1193 struct bio *clone, *bio = ci->bio; 1194 struct dm_target *ti; 1195 sector_t len = 0, max; 1196 struct dm_target_io *tio; 1197 1198 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1199 return __clone_and_map_discard(ci); 1200 1201 ti = dm_table_find_target(ci->map, ci->sector); 1202 if (!dm_target_is_valid(ti)) 1203 return -EIO; 1204 1205 max = max_io_len(ci->sector, ti); 1206 1207 if (ci->sector_count <= max) { 1208 /* 1209 * Optimise for the simple case where we can do all of 1210 * the remaining io with a single clone. 1211 */ 1212 __clone_and_map_simple(ci, ti); 1213 1214 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1215 /* 1216 * There are some bvecs that don't span targets. 1217 * Do as many of these as possible. 1218 */ 1219 int i; 1220 sector_t remaining = max; 1221 sector_t bv_len; 1222 1223 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 1224 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 1225 1226 if (bv_len > remaining) 1227 break; 1228 1229 remaining -= bv_len; 1230 len += bv_len; 1231 } 1232 1233 tio = alloc_tio(ci, ti); 1234 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 1235 ci->md->bs); 1236 __map_bio(ti, clone, tio); 1237 1238 ci->sector += len; 1239 ci->sector_count -= len; 1240 ci->idx = i; 1241 1242 } else { 1243 /* 1244 * Handle a bvec that must be split between two or more targets. 1245 */ 1246 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1247 sector_t remaining = to_sector(bv->bv_len); 1248 unsigned int offset = 0; 1249 1250 do { 1251 if (offset) { 1252 ti = dm_table_find_target(ci->map, ci->sector); 1253 if (!dm_target_is_valid(ti)) 1254 return -EIO; 1255 1256 max = max_io_len(ci->sector, ti); 1257 } 1258 1259 len = min(remaining, max); 1260 1261 tio = alloc_tio(ci, ti); 1262 clone = split_bvec(bio, ci->sector, ci->idx, 1263 bv->bv_offset + offset, len, 1264 ci->md->bs); 1265 1266 __map_bio(ti, clone, tio); 1267 1268 ci->sector += len; 1269 ci->sector_count -= len; 1270 offset += to_bytes(len); 1271 } while (remaining -= len); 1272 1273 ci->idx++; 1274 } 1275 1276 return 0; 1277 } 1278 1279 /* 1280 * Split the bio into several clones and submit it to targets. 1281 */ 1282 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1283 { 1284 struct clone_info ci; 1285 int error = 0; 1286 1287 ci.map = dm_get_live_table(md); 1288 if (unlikely(!ci.map)) { 1289 bio_io_error(bio); 1290 return; 1291 } 1292 1293 ci.md = md; 1294 ci.io = alloc_io(md); 1295 ci.io->error = 0; 1296 atomic_set(&ci.io->io_count, 1); 1297 ci.io->bio = bio; 1298 ci.io->md = md; 1299 spin_lock_init(&ci.io->endio_lock); 1300 ci.sector = bio->bi_sector; 1301 ci.idx = bio->bi_idx; 1302 1303 start_io_acct(ci.io); 1304 if (bio->bi_rw & REQ_FLUSH) { 1305 ci.bio = &ci.md->flush_bio; 1306 ci.sector_count = 0; 1307 error = __clone_and_map_empty_flush(&ci); 1308 /* dec_pending submits any data associated with flush */ 1309 } else { 1310 ci.bio = bio; 1311 ci.sector_count = bio_sectors(bio); 1312 while (ci.sector_count && !error) 1313 error = __clone_and_map(&ci); 1314 } 1315 1316 /* drop the extra reference count */ 1317 dec_pending(ci.io, error); 1318 dm_table_put(ci.map); 1319 } 1320 /*----------------------------------------------------------------- 1321 * CRUD END 1322 *---------------------------------------------------------------*/ 1323 1324 static int dm_merge_bvec(struct request_queue *q, 1325 struct bvec_merge_data *bvm, 1326 struct bio_vec *biovec) 1327 { 1328 struct mapped_device *md = q->queuedata; 1329 struct dm_table *map = dm_get_live_table(md); 1330 struct dm_target *ti; 1331 sector_t max_sectors; 1332 int max_size = 0; 1333 1334 if (unlikely(!map)) 1335 goto out; 1336 1337 ti = dm_table_find_target(map, bvm->bi_sector); 1338 if (!dm_target_is_valid(ti)) 1339 goto out_table; 1340 1341 /* 1342 * Find maximum amount of I/O that won't need splitting 1343 */ 1344 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1345 (sector_t) BIO_MAX_SECTORS); 1346 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1347 if (max_size < 0) 1348 max_size = 0; 1349 1350 /* 1351 * merge_bvec_fn() returns number of bytes 1352 * it can accept at this offset 1353 * max is precomputed maximal io size 1354 */ 1355 if (max_size && ti->type->merge) 1356 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1357 /* 1358 * If the target doesn't support merge method and some of the devices 1359 * provided their merge_bvec method (we know this by looking at 1360 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1361 * entries. So always set max_size to 0, and the code below allows 1362 * just one page. 1363 */ 1364 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1365 1366 max_size = 0; 1367 1368 out_table: 1369 dm_table_put(map); 1370 1371 out: 1372 /* 1373 * Always allow an entire first page 1374 */ 1375 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1376 max_size = biovec->bv_len; 1377 1378 return max_size; 1379 } 1380 1381 /* 1382 * The request function that just remaps the bio built up by 1383 * dm_merge_bvec. 1384 */ 1385 static int _dm_request(struct request_queue *q, struct bio *bio) 1386 { 1387 int rw = bio_data_dir(bio); 1388 struct mapped_device *md = q->queuedata; 1389 int cpu; 1390 1391 down_read(&md->io_lock); 1392 1393 cpu = part_stat_lock(); 1394 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1395 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1396 part_stat_unlock(); 1397 1398 /* if we're suspended, we have to queue this io for later */ 1399 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1400 up_read(&md->io_lock); 1401 1402 if (bio_rw(bio) != READA) 1403 queue_io(md, bio); 1404 else 1405 bio_io_error(bio); 1406 return 0; 1407 } 1408 1409 __split_and_process_bio(md, bio); 1410 up_read(&md->io_lock); 1411 return 0; 1412 } 1413 1414 static int dm_make_request(struct request_queue *q, struct bio *bio) 1415 { 1416 struct mapped_device *md = q->queuedata; 1417 1418 return md->saved_make_request_fn(q, bio); /* call __make_request() */ 1419 } 1420 1421 static int dm_request_based(struct mapped_device *md) 1422 { 1423 return blk_queue_stackable(md->queue); 1424 } 1425 1426 static int dm_request(struct request_queue *q, struct bio *bio) 1427 { 1428 struct mapped_device *md = q->queuedata; 1429 1430 if (dm_request_based(md)) 1431 return dm_make_request(q, bio); 1432 1433 return _dm_request(q, bio); 1434 } 1435 1436 void dm_dispatch_request(struct request *rq) 1437 { 1438 int r; 1439 1440 if (blk_queue_io_stat(rq->q)) 1441 rq->cmd_flags |= REQ_IO_STAT; 1442 1443 rq->start_time = jiffies; 1444 r = blk_insert_cloned_request(rq->q, rq); 1445 if (r) 1446 dm_complete_request(rq, r); 1447 } 1448 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1449 1450 static void dm_rq_bio_destructor(struct bio *bio) 1451 { 1452 struct dm_rq_clone_bio_info *info = bio->bi_private; 1453 struct mapped_device *md = info->tio->md; 1454 1455 free_bio_info(info); 1456 bio_free(bio, md->bs); 1457 } 1458 1459 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1460 void *data) 1461 { 1462 struct dm_rq_target_io *tio = data; 1463 struct mapped_device *md = tio->md; 1464 struct dm_rq_clone_bio_info *info = alloc_bio_info(md); 1465 1466 if (!info) 1467 return -ENOMEM; 1468 1469 info->orig = bio_orig; 1470 info->tio = tio; 1471 bio->bi_end_io = end_clone_bio; 1472 bio->bi_private = info; 1473 bio->bi_destructor = dm_rq_bio_destructor; 1474 1475 return 0; 1476 } 1477 1478 static int setup_clone(struct request *clone, struct request *rq, 1479 struct dm_rq_target_io *tio) 1480 { 1481 int r; 1482 1483 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1484 dm_rq_bio_constructor, tio); 1485 if (r) 1486 return r; 1487 1488 clone->cmd = rq->cmd; 1489 clone->cmd_len = rq->cmd_len; 1490 clone->sense = rq->sense; 1491 clone->buffer = rq->buffer; 1492 clone->end_io = end_clone_request; 1493 clone->end_io_data = tio; 1494 1495 return 0; 1496 } 1497 1498 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1499 gfp_t gfp_mask) 1500 { 1501 struct request *clone; 1502 struct dm_rq_target_io *tio; 1503 1504 tio = alloc_rq_tio(md, gfp_mask); 1505 if (!tio) 1506 return NULL; 1507 1508 tio->md = md; 1509 tio->ti = NULL; 1510 tio->orig = rq; 1511 tio->error = 0; 1512 memset(&tio->info, 0, sizeof(tio->info)); 1513 1514 clone = &tio->clone; 1515 if (setup_clone(clone, rq, tio)) { 1516 /* -ENOMEM */ 1517 free_rq_tio(tio); 1518 return NULL; 1519 } 1520 1521 return clone; 1522 } 1523 1524 /* 1525 * Called with the queue lock held. 1526 */ 1527 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1528 { 1529 struct mapped_device *md = q->queuedata; 1530 struct request *clone; 1531 1532 if (unlikely(rq->special)) { 1533 DMWARN("Already has something in rq->special."); 1534 return BLKPREP_KILL; 1535 } 1536 1537 clone = clone_rq(rq, md, GFP_ATOMIC); 1538 if (!clone) 1539 return BLKPREP_DEFER; 1540 1541 rq->special = clone; 1542 rq->cmd_flags |= REQ_DONTPREP; 1543 1544 return BLKPREP_OK; 1545 } 1546 1547 /* 1548 * Returns: 1549 * 0 : the request has been processed (not requeued) 1550 * !0 : the request has been requeued 1551 */ 1552 static int map_request(struct dm_target *ti, struct request *clone, 1553 struct mapped_device *md) 1554 { 1555 int r, requeued = 0; 1556 struct dm_rq_target_io *tio = clone->end_io_data; 1557 1558 /* 1559 * Hold the md reference here for the in-flight I/O. 1560 * We can't rely on the reference count by device opener, 1561 * because the device may be closed during the request completion 1562 * when all bios are completed. 1563 * See the comment in rq_completed() too. 1564 */ 1565 dm_get(md); 1566 1567 tio->ti = ti; 1568 r = ti->type->map_rq(ti, clone, &tio->info); 1569 switch (r) { 1570 case DM_MAPIO_SUBMITTED: 1571 /* The target has taken the I/O to submit by itself later */ 1572 break; 1573 case DM_MAPIO_REMAPPED: 1574 /* The target has remapped the I/O so dispatch it */ 1575 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1576 blk_rq_pos(tio->orig)); 1577 dm_dispatch_request(clone); 1578 break; 1579 case DM_MAPIO_REQUEUE: 1580 /* The target wants to requeue the I/O */ 1581 dm_requeue_unmapped_request(clone); 1582 requeued = 1; 1583 break; 1584 default: 1585 if (r > 0) { 1586 DMWARN("unimplemented target map return value: %d", r); 1587 BUG(); 1588 } 1589 1590 /* The target wants to complete the I/O */ 1591 dm_kill_unmapped_request(clone, r); 1592 break; 1593 } 1594 1595 return requeued; 1596 } 1597 1598 /* 1599 * q->request_fn for request-based dm. 1600 * Called with the queue lock held. 1601 */ 1602 static void dm_request_fn(struct request_queue *q) 1603 { 1604 struct mapped_device *md = q->queuedata; 1605 struct dm_table *map = dm_get_live_table(md); 1606 struct dm_target *ti; 1607 struct request *rq, *clone; 1608 sector_t pos; 1609 1610 /* 1611 * For suspend, check blk_queue_stopped() and increment 1612 * ->pending within a single queue_lock not to increment the 1613 * number of in-flight I/Os after the queue is stopped in 1614 * dm_suspend(). 1615 */ 1616 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) { 1617 rq = blk_peek_request(q); 1618 if (!rq) 1619 goto plug_and_out; 1620 1621 /* always use block 0 to find the target for flushes for now */ 1622 pos = 0; 1623 if (!(rq->cmd_flags & REQ_FLUSH)) 1624 pos = blk_rq_pos(rq); 1625 1626 ti = dm_table_find_target(map, pos); 1627 BUG_ON(!dm_target_is_valid(ti)); 1628 1629 if (ti->type->busy && ti->type->busy(ti)) 1630 goto plug_and_out; 1631 1632 blk_start_request(rq); 1633 clone = rq->special; 1634 atomic_inc(&md->pending[rq_data_dir(clone)]); 1635 1636 spin_unlock(q->queue_lock); 1637 if (map_request(ti, clone, md)) 1638 goto requeued; 1639 1640 BUG_ON(!irqs_disabled()); 1641 spin_lock(q->queue_lock); 1642 } 1643 1644 goto out; 1645 1646 requeued: 1647 BUG_ON(!irqs_disabled()); 1648 spin_lock(q->queue_lock); 1649 1650 plug_and_out: 1651 if (!elv_queue_empty(q)) 1652 /* Some requests still remain, retry later */ 1653 blk_plug_device(q); 1654 1655 out: 1656 dm_table_put(map); 1657 1658 return; 1659 } 1660 1661 int dm_underlying_device_busy(struct request_queue *q) 1662 { 1663 return blk_lld_busy(q); 1664 } 1665 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1666 1667 static int dm_lld_busy(struct request_queue *q) 1668 { 1669 int r; 1670 struct mapped_device *md = q->queuedata; 1671 struct dm_table *map = dm_get_live_table(md); 1672 1673 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1674 r = 1; 1675 else 1676 r = dm_table_any_busy_target(map); 1677 1678 dm_table_put(map); 1679 1680 return r; 1681 } 1682 1683 static void dm_unplug_all(struct request_queue *q) 1684 { 1685 struct mapped_device *md = q->queuedata; 1686 struct dm_table *map = dm_get_live_table(md); 1687 1688 if (map) { 1689 if (dm_request_based(md)) 1690 generic_unplug_device(q); 1691 1692 dm_table_unplug_all(map); 1693 dm_table_put(map); 1694 } 1695 } 1696 1697 static int dm_any_congested(void *congested_data, int bdi_bits) 1698 { 1699 int r = bdi_bits; 1700 struct mapped_device *md = congested_data; 1701 struct dm_table *map; 1702 1703 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1704 map = dm_get_live_table(md); 1705 if (map) { 1706 /* 1707 * Request-based dm cares about only own queue for 1708 * the query about congestion status of request_queue 1709 */ 1710 if (dm_request_based(md)) 1711 r = md->queue->backing_dev_info.state & 1712 bdi_bits; 1713 else 1714 r = dm_table_any_congested(map, bdi_bits); 1715 1716 dm_table_put(map); 1717 } 1718 } 1719 1720 return r; 1721 } 1722 1723 /*----------------------------------------------------------------- 1724 * An IDR is used to keep track of allocated minor numbers. 1725 *---------------------------------------------------------------*/ 1726 static DEFINE_IDR(_minor_idr); 1727 1728 static void free_minor(int minor) 1729 { 1730 spin_lock(&_minor_lock); 1731 idr_remove(&_minor_idr, minor); 1732 spin_unlock(&_minor_lock); 1733 } 1734 1735 /* 1736 * See if the device with a specific minor # is free. 1737 */ 1738 static int specific_minor(int minor) 1739 { 1740 int r, m; 1741 1742 if (minor >= (1 << MINORBITS)) 1743 return -EINVAL; 1744 1745 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1746 if (!r) 1747 return -ENOMEM; 1748 1749 spin_lock(&_minor_lock); 1750 1751 if (idr_find(&_minor_idr, minor)) { 1752 r = -EBUSY; 1753 goto out; 1754 } 1755 1756 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 1757 if (r) 1758 goto out; 1759 1760 if (m != minor) { 1761 idr_remove(&_minor_idr, m); 1762 r = -EBUSY; 1763 goto out; 1764 } 1765 1766 out: 1767 spin_unlock(&_minor_lock); 1768 return r; 1769 } 1770 1771 static int next_free_minor(int *minor) 1772 { 1773 int r, m; 1774 1775 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1776 if (!r) 1777 return -ENOMEM; 1778 1779 spin_lock(&_minor_lock); 1780 1781 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1782 if (r) 1783 goto out; 1784 1785 if (m >= (1 << MINORBITS)) { 1786 idr_remove(&_minor_idr, m); 1787 r = -ENOSPC; 1788 goto out; 1789 } 1790 1791 *minor = m; 1792 1793 out: 1794 spin_unlock(&_minor_lock); 1795 return r; 1796 } 1797 1798 static const struct block_device_operations dm_blk_dops; 1799 1800 static void dm_wq_work(struct work_struct *work); 1801 1802 static void dm_init_md_queue(struct mapped_device *md) 1803 { 1804 /* 1805 * Request-based dm devices cannot be stacked on top of bio-based dm 1806 * devices. The type of this dm device has not been decided yet. 1807 * The type is decided at the first table loading time. 1808 * To prevent problematic device stacking, clear the queue flag 1809 * for request stacking support until then. 1810 * 1811 * This queue is new, so no concurrency on the queue_flags. 1812 */ 1813 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1814 1815 md->queue->queuedata = md; 1816 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1817 md->queue->backing_dev_info.congested_data = md; 1818 blk_queue_make_request(md->queue, dm_request); 1819 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1820 md->queue->unplug_fn = dm_unplug_all; 1821 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1822 blk_queue_flush(md->queue, REQ_FLUSH | REQ_FUA); 1823 } 1824 1825 /* 1826 * Allocate and initialise a blank device with a given minor. 1827 */ 1828 static struct mapped_device *alloc_dev(int minor) 1829 { 1830 int r; 1831 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1832 void *old_md; 1833 1834 if (!md) { 1835 DMWARN("unable to allocate device, out of memory."); 1836 return NULL; 1837 } 1838 1839 if (!try_module_get(THIS_MODULE)) 1840 goto bad_module_get; 1841 1842 /* get a minor number for the dev */ 1843 if (minor == DM_ANY_MINOR) 1844 r = next_free_minor(&minor); 1845 else 1846 r = specific_minor(minor); 1847 if (r < 0) 1848 goto bad_minor; 1849 1850 md->type = DM_TYPE_NONE; 1851 init_rwsem(&md->io_lock); 1852 mutex_init(&md->suspend_lock); 1853 mutex_init(&md->type_lock); 1854 spin_lock_init(&md->deferred_lock); 1855 rwlock_init(&md->map_lock); 1856 atomic_set(&md->holders, 1); 1857 atomic_set(&md->open_count, 0); 1858 atomic_set(&md->event_nr, 0); 1859 atomic_set(&md->uevent_seq, 0); 1860 INIT_LIST_HEAD(&md->uevent_list); 1861 spin_lock_init(&md->uevent_lock); 1862 1863 md->queue = blk_alloc_queue(GFP_KERNEL); 1864 if (!md->queue) 1865 goto bad_queue; 1866 1867 dm_init_md_queue(md); 1868 1869 md->disk = alloc_disk(1); 1870 if (!md->disk) 1871 goto bad_disk; 1872 1873 atomic_set(&md->pending[0], 0); 1874 atomic_set(&md->pending[1], 0); 1875 init_waitqueue_head(&md->wait); 1876 INIT_WORK(&md->work, dm_wq_work); 1877 init_waitqueue_head(&md->eventq); 1878 1879 md->disk->major = _major; 1880 md->disk->first_minor = minor; 1881 md->disk->fops = &dm_blk_dops; 1882 md->disk->queue = md->queue; 1883 md->disk->private_data = md; 1884 sprintf(md->disk->disk_name, "dm-%d", minor); 1885 add_disk(md->disk); 1886 format_dev_t(md->name, MKDEV(_major, minor)); 1887 1888 md->wq = alloc_workqueue("kdmflush", 1889 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1890 if (!md->wq) 1891 goto bad_thread; 1892 1893 md->bdev = bdget_disk(md->disk, 0); 1894 if (!md->bdev) 1895 goto bad_bdev; 1896 1897 bio_init(&md->flush_bio); 1898 md->flush_bio.bi_bdev = md->bdev; 1899 md->flush_bio.bi_rw = WRITE_FLUSH; 1900 1901 /* Populate the mapping, nobody knows we exist yet */ 1902 spin_lock(&_minor_lock); 1903 old_md = idr_replace(&_minor_idr, md, minor); 1904 spin_unlock(&_minor_lock); 1905 1906 BUG_ON(old_md != MINOR_ALLOCED); 1907 1908 return md; 1909 1910 bad_bdev: 1911 destroy_workqueue(md->wq); 1912 bad_thread: 1913 del_gendisk(md->disk); 1914 put_disk(md->disk); 1915 bad_disk: 1916 blk_cleanup_queue(md->queue); 1917 bad_queue: 1918 free_minor(minor); 1919 bad_minor: 1920 module_put(THIS_MODULE); 1921 bad_module_get: 1922 kfree(md); 1923 return NULL; 1924 } 1925 1926 static void unlock_fs(struct mapped_device *md); 1927 1928 static void free_dev(struct mapped_device *md) 1929 { 1930 int minor = MINOR(disk_devt(md->disk)); 1931 1932 unlock_fs(md); 1933 bdput(md->bdev); 1934 destroy_workqueue(md->wq); 1935 if (md->tio_pool) 1936 mempool_destroy(md->tio_pool); 1937 if (md->io_pool) 1938 mempool_destroy(md->io_pool); 1939 if (md->bs) 1940 bioset_free(md->bs); 1941 blk_integrity_unregister(md->disk); 1942 del_gendisk(md->disk); 1943 free_minor(minor); 1944 1945 spin_lock(&_minor_lock); 1946 md->disk->private_data = NULL; 1947 spin_unlock(&_minor_lock); 1948 1949 put_disk(md->disk); 1950 blk_cleanup_queue(md->queue); 1951 module_put(THIS_MODULE); 1952 kfree(md); 1953 } 1954 1955 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1956 { 1957 struct dm_md_mempools *p; 1958 1959 if (md->io_pool && md->tio_pool && md->bs) 1960 /* the md already has necessary mempools */ 1961 goto out; 1962 1963 p = dm_table_get_md_mempools(t); 1964 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs); 1965 1966 md->io_pool = p->io_pool; 1967 p->io_pool = NULL; 1968 md->tio_pool = p->tio_pool; 1969 p->tio_pool = NULL; 1970 md->bs = p->bs; 1971 p->bs = NULL; 1972 1973 out: 1974 /* mempool bind completed, now no need any mempools in the table */ 1975 dm_table_free_md_mempools(t); 1976 } 1977 1978 /* 1979 * Bind a table to the device. 1980 */ 1981 static void event_callback(void *context) 1982 { 1983 unsigned long flags; 1984 LIST_HEAD(uevents); 1985 struct mapped_device *md = (struct mapped_device *) context; 1986 1987 spin_lock_irqsave(&md->uevent_lock, flags); 1988 list_splice_init(&md->uevent_list, &uevents); 1989 spin_unlock_irqrestore(&md->uevent_lock, flags); 1990 1991 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1992 1993 atomic_inc(&md->event_nr); 1994 wake_up(&md->eventq); 1995 } 1996 1997 /* 1998 * Protected by md->suspend_lock obtained by dm_swap_table(). 1999 */ 2000 static void __set_size(struct mapped_device *md, sector_t size) 2001 { 2002 set_capacity(md->disk, size); 2003 2004 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2005 } 2006 2007 /* 2008 * Returns old map, which caller must destroy. 2009 */ 2010 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2011 struct queue_limits *limits) 2012 { 2013 struct dm_table *old_map; 2014 struct request_queue *q = md->queue; 2015 sector_t size; 2016 unsigned long flags; 2017 2018 size = dm_table_get_size(t); 2019 2020 /* 2021 * Wipe any geometry if the size of the table changed. 2022 */ 2023 if (size != get_capacity(md->disk)) 2024 memset(&md->geometry, 0, sizeof(md->geometry)); 2025 2026 __set_size(md, size); 2027 2028 dm_table_event_callback(t, event_callback, md); 2029 2030 /* 2031 * The queue hasn't been stopped yet, if the old table type wasn't 2032 * for request-based during suspension. So stop it to prevent 2033 * I/O mapping before resume. 2034 * This must be done before setting the queue restrictions, 2035 * because request-based dm may be run just after the setting. 2036 */ 2037 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2038 stop_queue(q); 2039 2040 __bind_mempools(md, t); 2041 2042 write_lock_irqsave(&md->map_lock, flags); 2043 old_map = md->map; 2044 md->map = t; 2045 dm_table_set_restrictions(t, q, limits); 2046 write_unlock_irqrestore(&md->map_lock, flags); 2047 2048 return old_map; 2049 } 2050 2051 /* 2052 * Returns unbound table for the caller to free. 2053 */ 2054 static struct dm_table *__unbind(struct mapped_device *md) 2055 { 2056 struct dm_table *map = md->map; 2057 unsigned long flags; 2058 2059 if (!map) 2060 return NULL; 2061 2062 dm_table_event_callback(map, NULL, NULL); 2063 write_lock_irqsave(&md->map_lock, flags); 2064 md->map = NULL; 2065 write_unlock_irqrestore(&md->map_lock, flags); 2066 2067 return map; 2068 } 2069 2070 /* 2071 * Constructor for a new device. 2072 */ 2073 int dm_create(int minor, struct mapped_device **result) 2074 { 2075 struct mapped_device *md; 2076 2077 md = alloc_dev(minor); 2078 if (!md) 2079 return -ENXIO; 2080 2081 dm_sysfs_init(md); 2082 2083 *result = md; 2084 return 0; 2085 } 2086 2087 /* 2088 * Functions to manage md->type. 2089 * All are required to hold md->type_lock. 2090 */ 2091 void dm_lock_md_type(struct mapped_device *md) 2092 { 2093 mutex_lock(&md->type_lock); 2094 } 2095 2096 void dm_unlock_md_type(struct mapped_device *md) 2097 { 2098 mutex_unlock(&md->type_lock); 2099 } 2100 2101 void dm_set_md_type(struct mapped_device *md, unsigned type) 2102 { 2103 md->type = type; 2104 } 2105 2106 unsigned dm_get_md_type(struct mapped_device *md) 2107 { 2108 return md->type; 2109 } 2110 2111 /* 2112 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2113 */ 2114 static int dm_init_request_based_queue(struct mapped_device *md) 2115 { 2116 struct request_queue *q = NULL; 2117 2118 if (md->queue->elevator) 2119 return 1; 2120 2121 /* Fully initialize the queue */ 2122 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2123 if (!q) 2124 return 0; 2125 2126 md->queue = q; 2127 md->saved_make_request_fn = md->queue->make_request_fn; 2128 dm_init_md_queue(md); 2129 blk_queue_softirq_done(md->queue, dm_softirq_done); 2130 blk_queue_prep_rq(md->queue, dm_prep_fn); 2131 blk_queue_lld_busy(md->queue, dm_lld_busy); 2132 2133 elv_register_queue(md->queue); 2134 2135 return 1; 2136 } 2137 2138 /* 2139 * Setup the DM device's queue based on md's type 2140 */ 2141 int dm_setup_md_queue(struct mapped_device *md) 2142 { 2143 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2144 !dm_init_request_based_queue(md)) { 2145 DMWARN("Cannot initialize queue for request-based mapped device"); 2146 return -EINVAL; 2147 } 2148 2149 return 0; 2150 } 2151 2152 static struct mapped_device *dm_find_md(dev_t dev) 2153 { 2154 struct mapped_device *md; 2155 unsigned minor = MINOR(dev); 2156 2157 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2158 return NULL; 2159 2160 spin_lock(&_minor_lock); 2161 2162 md = idr_find(&_minor_idr, minor); 2163 if (md && (md == MINOR_ALLOCED || 2164 (MINOR(disk_devt(dm_disk(md))) != minor) || 2165 dm_deleting_md(md) || 2166 test_bit(DMF_FREEING, &md->flags))) { 2167 md = NULL; 2168 goto out; 2169 } 2170 2171 out: 2172 spin_unlock(&_minor_lock); 2173 2174 return md; 2175 } 2176 2177 struct mapped_device *dm_get_md(dev_t dev) 2178 { 2179 struct mapped_device *md = dm_find_md(dev); 2180 2181 if (md) 2182 dm_get(md); 2183 2184 return md; 2185 } 2186 2187 void *dm_get_mdptr(struct mapped_device *md) 2188 { 2189 return md->interface_ptr; 2190 } 2191 2192 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2193 { 2194 md->interface_ptr = ptr; 2195 } 2196 2197 void dm_get(struct mapped_device *md) 2198 { 2199 atomic_inc(&md->holders); 2200 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2201 } 2202 2203 const char *dm_device_name(struct mapped_device *md) 2204 { 2205 return md->name; 2206 } 2207 EXPORT_SYMBOL_GPL(dm_device_name); 2208 2209 static void __dm_destroy(struct mapped_device *md, bool wait) 2210 { 2211 struct dm_table *map; 2212 2213 might_sleep(); 2214 2215 spin_lock(&_minor_lock); 2216 map = dm_get_live_table(md); 2217 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2218 set_bit(DMF_FREEING, &md->flags); 2219 spin_unlock(&_minor_lock); 2220 2221 if (!dm_suspended_md(md)) { 2222 dm_table_presuspend_targets(map); 2223 dm_table_postsuspend_targets(map); 2224 } 2225 2226 /* 2227 * Rare, but there may be I/O requests still going to complete, 2228 * for example. Wait for all references to disappear. 2229 * No one should increment the reference count of the mapped_device, 2230 * after the mapped_device state becomes DMF_FREEING. 2231 */ 2232 if (wait) 2233 while (atomic_read(&md->holders)) 2234 msleep(1); 2235 else if (atomic_read(&md->holders)) 2236 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2237 dm_device_name(md), atomic_read(&md->holders)); 2238 2239 dm_sysfs_exit(md); 2240 dm_table_put(map); 2241 dm_table_destroy(__unbind(md)); 2242 free_dev(md); 2243 } 2244 2245 void dm_destroy(struct mapped_device *md) 2246 { 2247 __dm_destroy(md, true); 2248 } 2249 2250 void dm_destroy_immediate(struct mapped_device *md) 2251 { 2252 __dm_destroy(md, false); 2253 } 2254 2255 void dm_put(struct mapped_device *md) 2256 { 2257 atomic_dec(&md->holders); 2258 } 2259 EXPORT_SYMBOL_GPL(dm_put); 2260 2261 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2262 { 2263 int r = 0; 2264 DECLARE_WAITQUEUE(wait, current); 2265 2266 dm_unplug_all(md->queue); 2267 2268 add_wait_queue(&md->wait, &wait); 2269 2270 while (1) { 2271 set_current_state(interruptible); 2272 2273 smp_mb(); 2274 if (!md_in_flight(md)) 2275 break; 2276 2277 if (interruptible == TASK_INTERRUPTIBLE && 2278 signal_pending(current)) { 2279 r = -EINTR; 2280 break; 2281 } 2282 2283 io_schedule(); 2284 } 2285 set_current_state(TASK_RUNNING); 2286 2287 remove_wait_queue(&md->wait, &wait); 2288 2289 return r; 2290 } 2291 2292 /* 2293 * Process the deferred bios 2294 */ 2295 static void dm_wq_work(struct work_struct *work) 2296 { 2297 struct mapped_device *md = container_of(work, struct mapped_device, 2298 work); 2299 struct bio *c; 2300 2301 down_read(&md->io_lock); 2302 2303 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2304 spin_lock_irq(&md->deferred_lock); 2305 c = bio_list_pop(&md->deferred); 2306 spin_unlock_irq(&md->deferred_lock); 2307 2308 if (!c) 2309 break; 2310 2311 up_read(&md->io_lock); 2312 2313 if (dm_request_based(md)) 2314 generic_make_request(c); 2315 else 2316 __split_and_process_bio(md, c); 2317 2318 down_read(&md->io_lock); 2319 } 2320 2321 up_read(&md->io_lock); 2322 } 2323 2324 static void dm_queue_flush(struct mapped_device *md) 2325 { 2326 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2327 smp_mb__after_clear_bit(); 2328 queue_work(md->wq, &md->work); 2329 } 2330 2331 /* 2332 * Swap in a new table, returning the old one for the caller to destroy. 2333 */ 2334 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2335 { 2336 struct dm_table *map = ERR_PTR(-EINVAL); 2337 struct queue_limits limits; 2338 int r; 2339 2340 mutex_lock(&md->suspend_lock); 2341 2342 /* device must be suspended */ 2343 if (!dm_suspended_md(md)) 2344 goto out; 2345 2346 r = dm_calculate_queue_limits(table, &limits); 2347 if (r) { 2348 map = ERR_PTR(r); 2349 goto out; 2350 } 2351 2352 map = __bind(md, table, &limits); 2353 2354 out: 2355 mutex_unlock(&md->suspend_lock); 2356 return map; 2357 } 2358 2359 /* 2360 * Functions to lock and unlock any filesystem running on the 2361 * device. 2362 */ 2363 static int lock_fs(struct mapped_device *md) 2364 { 2365 int r; 2366 2367 WARN_ON(md->frozen_sb); 2368 2369 md->frozen_sb = freeze_bdev(md->bdev); 2370 if (IS_ERR(md->frozen_sb)) { 2371 r = PTR_ERR(md->frozen_sb); 2372 md->frozen_sb = NULL; 2373 return r; 2374 } 2375 2376 set_bit(DMF_FROZEN, &md->flags); 2377 2378 return 0; 2379 } 2380 2381 static void unlock_fs(struct mapped_device *md) 2382 { 2383 if (!test_bit(DMF_FROZEN, &md->flags)) 2384 return; 2385 2386 thaw_bdev(md->bdev, md->frozen_sb); 2387 md->frozen_sb = NULL; 2388 clear_bit(DMF_FROZEN, &md->flags); 2389 } 2390 2391 /* 2392 * We need to be able to change a mapping table under a mounted 2393 * filesystem. For example we might want to move some data in 2394 * the background. Before the table can be swapped with 2395 * dm_bind_table, dm_suspend must be called to flush any in 2396 * flight bios and ensure that any further io gets deferred. 2397 */ 2398 /* 2399 * Suspend mechanism in request-based dm. 2400 * 2401 * 1. Flush all I/Os by lock_fs() if needed. 2402 * 2. Stop dispatching any I/O by stopping the request_queue. 2403 * 3. Wait for all in-flight I/Os to be completed or requeued. 2404 * 2405 * To abort suspend, start the request_queue. 2406 */ 2407 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2408 { 2409 struct dm_table *map = NULL; 2410 int r = 0; 2411 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2412 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2413 2414 mutex_lock(&md->suspend_lock); 2415 2416 if (dm_suspended_md(md)) { 2417 r = -EINVAL; 2418 goto out_unlock; 2419 } 2420 2421 map = dm_get_live_table(md); 2422 2423 /* 2424 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2425 * This flag is cleared before dm_suspend returns. 2426 */ 2427 if (noflush) 2428 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2429 2430 /* This does not get reverted if there's an error later. */ 2431 dm_table_presuspend_targets(map); 2432 2433 /* 2434 * Flush I/O to the device. 2435 * Any I/O submitted after lock_fs() may not be flushed. 2436 * noflush takes precedence over do_lockfs. 2437 * (lock_fs() flushes I/Os and waits for them to complete.) 2438 */ 2439 if (!noflush && do_lockfs) { 2440 r = lock_fs(md); 2441 if (r) 2442 goto out; 2443 } 2444 2445 /* 2446 * Here we must make sure that no processes are submitting requests 2447 * to target drivers i.e. no one may be executing 2448 * __split_and_process_bio. This is called from dm_request and 2449 * dm_wq_work. 2450 * 2451 * To get all processes out of __split_and_process_bio in dm_request, 2452 * we take the write lock. To prevent any process from reentering 2453 * __split_and_process_bio from dm_request and quiesce the thread 2454 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2455 * flush_workqueue(md->wq). 2456 */ 2457 down_write(&md->io_lock); 2458 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2459 up_write(&md->io_lock); 2460 2461 /* 2462 * Stop md->queue before flushing md->wq in case request-based 2463 * dm defers requests to md->wq from md->queue. 2464 */ 2465 if (dm_request_based(md)) 2466 stop_queue(md->queue); 2467 2468 flush_workqueue(md->wq); 2469 2470 /* 2471 * At this point no more requests are entering target request routines. 2472 * We call dm_wait_for_completion to wait for all existing requests 2473 * to finish. 2474 */ 2475 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2476 2477 down_write(&md->io_lock); 2478 if (noflush) 2479 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2480 up_write(&md->io_lock); 2481 2482 /* were we interrupted ? */ 2483 if (r < 0) { 2484 dm_queue_flush(md); 2485 2486 if (dm_request_based(md)) 2487 start_queue(md->queue); 2488 2489 unlock_fs(md); 2490 goto out; /* pushback list is already flushed, so skip flush */ 2491 } 2492 2493 /* 2494 * If dm_wait_for_completion returned 0, the device is completely 2495 * quiescent now. There is no request-processing activity. All new 2496 * requests are being added to md->deferred list. 2497 */ 2498 2499 set_bit(DMF_SUSPENDED, &md->flags); 2500 2501 dm_table_postsuspend_targets(map); 2502 2503 out: 2504 dm_table_put(map); 2505 2506 out_unlock: 2507 mutex_unlock(&md->suspend_lock); 2508 return r; 2509 } 2510 2511 int dm_resume(struct mapped_device *md) 2512 { 2513 int r = -EINVAL; 2514 struct dm_table *map = NULL; 2515 2516 mutex_lock(&md->suspend_lock); 2517 if (!dm_suspended_md(md)) 2518 goto out; 2519 2520 map = dm_get_live_table(md); 2521 if (!map || !dm_table_get_size(map)) 2522 goto out; 2523 2524 r = dm_table_resume_targets(map); 2525 if (r) 2526 goto out; 2527 2528 dm_queue_flush(md); 2529 2530 /* 2531 * Flushing deferred I/Os must be done after targets are resumed 2532 * so that mapping of targets can work correctly. 2533 * Request-based dm is queueing the deferred I/Os in its request_queue. 2534 */ 2535 if (dm_request_based(md)) 2536 start_queue(md->queue); 2537 2538 unlock_fs(md); 2539 2540 clear_bit(DMF_SUSPENDED, &md->flags); 2541 2542 dm_table_unplug_all(map); 2543 r = 0; 2544 out: 2545 dm_table_put(map); 2546 mutex_unlock(&md->suspend_lock); 2547 2548 return r; 2549 } 2550 2551 /*----------------------------------------------------------------- 2552 * Event notification. 2553 *---------------------------------------------------------------*/ 2554 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2555 unsigned cookie) 2556 { 2557 char udev_cookie[DM_COOKIE_LENGTH]; 2558 char *envp[] = { udev_cookie, NULL }; 2559 2560 if (!cookie) 2561 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2562 else { 2563 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2564 DM_COOKIE_ENV_VAR_NAME, cookie); 2565 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2566 action, envp); 2567 } 2568 } 2569 2570 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2571 { 2572 return atomic_add_return(1, &md->uevent_seq); 2573 } 2574 2575 uint32_t dm_get_event_nr(struct mapped_device *md) 2576 { 2577 return atomic_read(&md->event_nr); 2578 } 2579 2580 int dm_wait_event(struct mapped_device *md, int event_nr) 2581 { 2582 return wait_event_interruptible(md->eventq, 2583 (event_nr != atomic_read(&md->event_nr))); 2584 } 2585 2586 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2587 { 2588 unsigned long flags; 2589 2590 spin_lock_irqsave(&md->uevent_lock, flags); 2591 list_add(elist, &md->uevent_list); 2592 spin_unlock_irqrestore(&md->uevent_lock, flags); 2593 } 2594 2595 /* 2596 * The gendisk is only valid as long as you have a reference 2597 * count on 'md'. 2598 */ 2599 struct gendisk *dm_disk(struct mapped_device *md) 2600 { 2601 return md->disk; 2602 } 2603 2604 struct kobject *dm_kobject(struct mapped_device *md) 2605 { 2606 return &md->kobj; 2607 } 2608 2609 /* 2610 * struct mapped_device should not be exported outside of dm.c 2611 * so use this check to verify that kobj is part of md structure 2612 */ 2613 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2614 { 2615 struct mapped_device *md; 2616 2617 md = container_of(kobj, struct mapped_device, kobj); 2618 if (&md->kobj != kobj) 2619 return NULL; 2620 2621 if (test_bit(DMF_FREEING, &md->flags) || 2622 dm_deleting_md(md)) 2623 return NULL; 2624 2625 dm_get(md); 2626 return md; 2627 } 2628 2629 int dm_suspended_md(struct mapped_device *md) 2630 { 2631 return test_bit(DMF_SUSPENDED, &md->flags); 2632 } 2633 2634 int dm_suspended(struct dm_target *ti) 2635 { 2636 return dm_suspended_md(dm_table_get_md(ti->table)); 2637 } 2638 EXPORT_SYMBOL_GPL(dm_suspended); 2639 2640 int dm_noflush_suspending(struct dm_target *ti) 2641 { 2642 return __noflush_suspending(dm_table_get_md(ti->table)); 2643 } 2644 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2645 2646 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type) 2647 { 2648 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL); 2649 2650 if (!pools) 2651 return NULL; 2652 2653 pools->io_pool = (type == DM_TYPE_BIO_BASED) ? 2654 mempool_create_slab_pool(MIN_IOS, _io_cache) : 2655 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache); 2656 if (!pools->io_pool) 2657 goto free_pools_and_out; 2658 2659 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ? 2660 mempool_create_slab_pool(MIN_IOS, _tio_cache) : 2661 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache); 2662 if (!pools->tio_pool) 2663 goto free_io_pool_and_out; 2664 2665 pools->bs = (type == DM_TYPE_BIO_BASED) ? 2666 bioset_create(16, 0) : bioset_create(MIN_IOS, 0); 2667 if (!pools->bs) 2668 goto free_tio_pool_and_out; 2669 2670 return pools; 2671 2672 free_tio_pool_and_out: 2673 mempool_destroy(pools->tio_pool); 2674 2675 free_io_pool_and_out: 2676 mempool_destroy(pools->io_pool); 2677 2678 free_pools_and_out: 2679 kfree(pools); 2680 2681 return NULL; 2682 } 2683 2684 void dm_free_md_mempools(struct dm_md_mempools *pools) 2685 { 2686 if (!pools) 2687 return; 2688 2689 if (pools->io_pool) 2690 mempool_destroy(pools->io_pool); 2691 2692 if (pools->tio_pool) 2693 mempool_destroy(pools->tio_pool); 2694 2695 if (pools->bs) 2696 bioset_free(pools->bs); 2697 2698 kfree(pools); 2699 } 2700 2701 static const struct block_device_operations dm_blk_dops = { 2702 .open = dm_blk_open, 2703 .release = dm_blk_close, 2704 .ioctl = dm_blk_ioctl, 2705 .getgeo = dm_blk_getgeo, 2706 .owner = THIS_MODULE 2707 }; 2708 2709 EXPORT_SYMBOL(dm_get_mapinfo); 2710 2711 /* 2712 * module hooks 2713 */ 2714 module_init(dm_init); 2715 module_exit(dm_exit); 2716 2717 module_param(major, uint, 0); 2718 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2719 MODULE_DESCRIPTION(DM_NAME " driver"); 2720 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2721 MODULE_LICENSE("GPL"); 2722