1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 #include "dm-ima.h" 12 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/sched/mm.h> 17 #include <linux/sched/signal.h> 18 #include <linux/blkpg.h> 19 #include <linux/bio.h> 20 #include <linux/mempool.h> 21 #include <linux/dax.h> 22 #include <linux/slab.h> 23 #include <linux/idr.h> 24 #include <linux/uio.h> 25 #include <linux/hdreg.h> 26 #include <linux/delay.h> 27 #include <linux/wait.h> 28 #include <linux/pr.h> 29 #include <linux/refcount.h> 30 #include <linux/part_stat.h> 31 #include <linux/blk-crypto.h> 32 #include <linux/blk-crypto-profile.h> 33 34 #define DM_MSG_PREFIX "core" 35 36 /* 37 * Cookies are numeric values sent with CHANGE and REMOVE 38 * uevents while resuming, removing or renaming the device. 39 */ 40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 41 #define DM_COOKIE_LENGTH 24 42 43 /* 44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 45 * dm_io into one list, and reuse bio->bi_private as the list head. Before 46 * ending this fs bio, we will recover its ->bi_private. 47 */ 48 #define REQ_DM_POLL_LIST REQ_DRV 49 50 static const char *_name = DM_NAME; 51 52 static unsigned int major = 0; 53 static unsigned int _major = 0; 54 55 static DEFINE_IDR(_minor_idr); 56 57 static DEFINE_SPINLOCK(_minor_lock); 58 59 static void do_deferred_remove(struct work_struct *w); 60 61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 62 63 static struct workqueue_struct *deferred_remove_workqueue; 64 65 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 67 68 void dm_issue_global_event(void) 69 { 70 atomic_inc(&dm_global_event_nr); 71 wake_up(&dm_global_eventq); 72 } 73 74 DEFINE_STATIC_KEY_FALSE(stats_enabled); 75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 76 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 77 78 /* 79 * One of these is allocated (on-stack) per original bio. 80 */ 81 struct clone_info { 82 struct dm_table *map; 83 struct bio *bio; 84 struct dm_io *io; 85 sector_t sector; 86 unsigned sector_count; 87 bool is_abnormal_io:1; 88 bool submit_as_polled:1; 89 }; 90 91 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 92 #define DM_IO_BIO_OFFSET \ 93 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 94 95 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 96 { 97 return container_of(clone, struct dm_target_io, clone); 98 } 99 100 void *dm_per_bio_data(struct bio *bio, size_t data_size) 101 { 102 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 103 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 104 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 105 } 106 EXPORT_SYMBOL_GPL(dm_per_bio_data); 107 108 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 109 { 110 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 111 if (io->magic == DM_IO_MAGIC) 112 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 113 BUG_ON(io->magic != DM_TIO_MAGIC); 114 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 115 } 116 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 117 118 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 119 { 120 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 123 124 #define MINOR_ALLOCED ((void *)-1) 125 126 #define DM_NUMA_NODE NUMA_NO_NODE 127 static int dm_numa_node = DM_NUMA_NODE; 128 129 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 130 static int swap_bios = DEFAULT_SWAP_BIOS; 131 static int get_swap_bios(void) 132 { 133 int latch = READ_ONCE(swap_bios); 134 if (unlikely(latch <= 0)) 135 latch = DEFAULT_SWAP_BIOS; 136 return latch; 137 } 138 139 struct table_device { 140 struct list_head list; 141 refcount_t count; 142 struct dm_dev dm_dev; 143 }; 144 145 /* 146 * Bio-based DM's mempools' reserved IOs set by the user. 147 */ 148 #define RESERVED_BIO_BASED_IOS 16 149 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 150 151 static int __dm_get_module_param_int(int *module_param, int min, int max) 152 { 153 int param = READ_ONCE(*module_param); 154 int modified_param = 0; 155 bool modified = true; 156 157 if (param < min) 158 modified_param = min; 159 else if (param > max) 160 modified_param = max; 161 else 162 modified = false; 163 164 if (modified) { 165 (void)cmpxchg(module_param, param, modified_param); 166 param = modified_param; 167 } 168 169 return param; 170 } 171 172 unsigned __dm_get_module_param(unsigned *module_param, 173 unsigned def, unsigned max) 174 { 175 unsigned param = READ_ONCE(*module_param); 176 unsigned modified_param = 0; 177 178 if (!param) 179 modified_param = def; 180 else if (param > max) 181 modified_param = max; 182 183 if (modified_param) { 184 (void)cmpxchg(module_param, param, modified_param); 185 param = modified_param; 186 } 187 188 return param; 189 } 190 191 unsigned dm_get_reserved_bio_based_ios(void) 192 { 193 return __dm_get_module_param(&reserved_bio_based_ios, 194 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 195 } 196 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 197 198 static unsigned dm_get_numa_node(void) 199 { 200 return __dm_get_module_param_int(&dm_numa_node, 201 DM_NUMA_NODE, num_online_nodes() - 1); 202 } 203 204 static int __init local_init(void) 205 { 206 int r; 207 208 r = dm_uevent_init(); 209 if (r) 210 return r; 211 212 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 213 if (!deferred_remove_workqueue) { 214 r = -ENOMEM; 215 goto out_uevent_exit; 216 } 217 218 _major = major; 219 r = register_blkdev(_major, _name); 220 if (r < 0) 221 goto out_free_workqueue; 222 223 if (!_major) 224 _major = r; 225 226 return 0; 227 228 out_free_workqueue: 229 destroy_workqueue(deferred_remove_workqueue); 230 out_uevent_exit: 231 dm_uevent_exit(); 232 233 return r; 234 } 235 236 static void local_exit(void) 237 { 238 flush_scheduled_work(); 239 destroy_workqueue(deferred_remove_workqueue); 240 241 unregister_blkdev(_major, _name); 242 dm_uevent_exit(); 243 244 _major = 0; 245 246 DMINFO("cleaned up"); 247 } 248 249 static int (*_inits[])(void) __initdata = { 250 local_init, 251 dm_target_init, 252 dm_linear_init, 253 dm_stripe_init, 254 dm_io_init, 255 dm_kcopyd_init, 256 dm_interface_init, 257 dm_statistics_init, 258 }; 259 260 static void (*_exits[])(void) = { 261 local_exit, 262 dm_target_exit, 263 dm_linear_exit, 264 dm_stripe_exit, 265 dm_io_exit, 266 dm_kcopyd_exit, 267 dm_interface_exit, 268 dm_statistics_exit, 269 }; 270 271 static int __init dm_init(void) 272 { 273 const int count = ARRAY_SIZE(_inits); 274 int r, i; 275 276 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 277 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 278 " Duplicate IMA measurements will not be recorded in the IMA log."); 279 #endif 280 281 for (i = 0; i < count; i++) { 282 r = _inits[i](); 283 if (r) 284 goto bad; 285 } 286 287 return 0; 288 bad: 289 while (i--) 290 _exits[i](); 291 292 return r; 293 } 294 295 static void __exit dm_exit(void) 296 { 297 int i = ARRAY_SIZE(_exits); 298 299 while (i--) 300 _exits[i](); 301 302 /* 303 * Should be empty by this point. 304 */ 305 idr_destroy(&_minor_idr); 306 } 307 308 /* 309 * Block device functions 310 */ 311 int dm_deleting_md(struct mapped_device *md) 312 { 313 return test_bit(DMF_DELETING, &md->flags); 314 } 315 316 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 317 { 318 struct mapped_device *md; 319 320 spin_lock(&_minor_lock); 321 322 md = bdev->bd_disk->private_data; 323 if (!md) 324 goto out; 325 326 if (test_bit(DMF_FREEING, &md->flags) || 327 dm_deleting_md(md)) { 328 md = NULL; 329 goto out; 330 } 331 332 dm_get(md); 333 atomic_inc(&md->open_count); 334 out: 335 spin_unlock(&_minor_lock); 336 337 return md ? 0 : -ENXIO; 338 } 339 340 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 341 { 342 struct mapped_device *md; 343 344 spin_lock(&_minor_lock); 345 346 md = disk->private_data; 347 if (WARN_ON(!md)) 348 goto out; 349 350 if (atomic_dec_and_test(&md->open_count) && 351 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 352 queue_work(deferred_remove_workqueue, &deferred_remove_work); 353 354 dm_put(md); 355 out: 356 spin_unlock(&_minor_lock); 357 } 358 359 int dm_open_count(struct mapped_device *md) 360 { 361 return atomic_read(&md->open_count); 362 } 363 364 /* 365 * Guarantees nothing is using the device before it's deleted. 366 */ 367 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 368 { 369 int r = 0; 370 371 spin_lock(&_minor_lock); 372 373 if (dm_open_count(md)) { 374 r = -EBUSY; 375 if (mark_deferred) 376 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 377 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 378 r = -EEXIST; 379 else 380 set_bit(DMF_DELETING, &md->flags); 381 382 spin_unlock(&_minor_lock); 383 384 return r; 385 } 386 387 int dm_cancel_deferred_remove(struct mapped_device *md) 388 { 389 int r = 0; 390 391 spin_lock(&_minor_lock); 392 393 if (test_bit(DMF_DELETING, &md->flags)) 394 r = -EBUSY; 395 else 396 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 397 398 spin_unlock(&_minor_lock); 399 400 return r; 401 } 402 403 static void do_deferred_remove(struct work_struct *w) 404 { 405 dm_deferred_remove(); 406 } 407 408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 409 { 410 struct mapped_device *md = bdev->bd_disk->private_data; 411 412 return dm_get_geometry(md, geo); 413 } 414 415 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 416 struct block_device **bdev) 417 { 418 struct dm_target *tgt; 419 struct dm_table *map; 420 int r; 421 422 retry: 423 r = -ENOTTY; 424 map = dm_get_live_table(md, srcu_idx); 425 if (!map || !dm_table_get_size(map)) 426 return r; 427 428 /* We only support devices that have a single target */ 429 if (dm_table_get_num_targets(map) != 1) 430 return r; 431 432 tgt = dm_table_get_target(map, 0); 433 if (!tgt->type->prepare_ioctl) 434 return r; 435 436 if (dm_suspended_md(md)) 437 return -EAGAIN; 438 439 r = tgt->type->prepare_ioctl(tgt, bdev); 440 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 441 dm_put_live_table(md, *srcu_idx); 442 msleep(10); 443 goto retry; 444 } 445 446 return r; 447 } 448 449 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 450 { 451 dm_put_live_table(md, srcu_idx); 452 } 453 454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 455 unsigned int cmd, unsigned long arg) 456 { 457 struct mapped_device *md = bdev->bd_disk->private_data; 458 int r, srcu_idx; 459 460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 461 if (r < 0) 462 goto out; 463 464 if (r > 0) { 465 /* 466 * Target determined this ioctl is being issued against a 467 * subset of the parent bdev; require extra privileges. 468 */ 469 if (!capable(CAP_SYS_RAWIO)) { 470 DMDEBUG_LIMIT( 471 "%s: sending ioctl %x to DM device without required privilege.", 472 current->comm, cmd); 473 r = -ENOIOCTLCMD; 474 goto out; 475 } 476 } 477 478 if (!bdev->bd_disk->fops->ioctl) 479 r = -ENOTTY; 480 else 481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 482 out: 483 dm_unprepare_ioctl(md, srcu_idx); 484 return r; 485 } 486 487 u64 dm_start_time_ns_from_clone(struct bio *bio) 488 { 489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 490 } 491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 492 493 static bool bio_is_flush_with_data(struct bio *bio) 494 { 495 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 496 } 497 498 static void dm_io_acct(struct dm_io *io, bool end) 499 { 500 struct dm_stats_aux *stats_aux = &io->stats_aux; 501 unsigned long start_time = io->start_time; 502 struct mapped_device *md = io->md; 503 struct bio *bio = io->orig_bio; 504 unsigned int sectors; 505 506 /* 507 * If REQ_PREFLUSH set, don't account payload, it will be 508 * submitted (and accounted) after this flush completes. 509 */ 510 if (bio_is_flush_with_data(bio)) 511 sectors = 0; 512 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT)))) 513 sectors = bio_sectors(bio); 514 else 515 sectors = io->sectors; 516 517 if (!end) 518 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio), 519 start_time); 520 else 521 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time); 522 523 if (static_branch_unlikely(&stats_enabled) && 524 unlikely(dm_stats_used(&md->stats))) { 525 sector_t sector; 526 527 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT))) 528 sector = bio->bi_iter.bi_sector; 529 else 530 sector = bio_end_sector(bio) - io->sector_offset; 531 532 dm_stats_account_io(&md->stats, bio_data_dir(bio), 533 sector, sectors, 534 end, start_time, stats_aux); 535 } 536 } 537 538 static void __dm_start_io_acct(struct dm_io *io) 539 { 540 dm_io_acct(io, false); 541 } 542 543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 544 { 545 /* 546 * Ensure IO accounting is only ever started once. 547 */ 548 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 549 return; 550 551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 553 dm_io_set_flag(io, DM_IO_ACCOUNTED); 554 } else { 555 unsigned long flags; 556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 557 spin_lock_irqsave(&io->lock, flags); 558 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 559 spin_unlock_irqrestore(&io->lock, flags); 560 return; 561 } 562 dm_io_set_flag(io, DM_IO_ACCOUNTED); 563 spin_unlock_irqrestore(&io->lock, flags); 564 } 565 566 __dm_start_io_acct(io); 567 } 568 569 static void dm_end_io_acct(struct dm_io *io) 570 { 571 dm_io_acct(io, true); 572 } 573 574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 575 { 576 struct dm_io *io; 577 struct dm_target_io *tio; 578 struct bio *clone; 579 580 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); 581 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 582 clone->bi_bdev = md->disk->part0; 583 584 tio = clone_to_tio(clone); 585 tio->flags = 0; 586 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 587 tio->io = NULL; 588 589 io = container_of(tio, struct dm_io, tio); 590 io->magic = DM_IO_MAGIC; 591 io->status = BLK_STS_OK; 592 593 /* one ref is for submission, the other is for completion */ 594 atomic_set(&io->io_count, 2); 595 this_cpu_inc(*md->pending_io); 596 io->orig_bio = bio; 597 io->md = md; 598 spin_lock_init(&io->lock); 599 io->start_time = jiffies; 600 io->flags = 0; 601 602 if (static_branch_unlikely(&stats_enabled)) 603 dm_stats_record_start(&md->stats, &io->stats_aux); 604 605 return io; 606 } 607 608 static void free_io(struct dm_io *io) 609 { 610 bio_put(&io->tio.clone); 611 } 612 613 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 614 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask) 615 { 616 struct dm_target_io *tio; 617 struct bio *clone; 618 619 if (!ci->io->tio.io) { 620 /* the dm_target_io embedded in ci->io is available */ 621 tio = &ci->io->tio; 622 /* alloc_io() already initialized embedded clone */ 623 clone = &tio->clone; 624 } else { 625 struct mapped_device *md = ci->io->md; 626 627 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 628 &md->mempools->bs); 629 if (!clone) 630 return NULL; 631 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 632 clone->bi_bdev = md->disk->part0; 633 634 /* REQ_DM_POLL_LIST shouldn't be inherited */ 635 clone->bi_opf &= ~REQ_DM_POLL_LIST; 636 637 tio = clone_to_tio(clone); 638 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 639 } 640 641 tio->magic = DM_TIO_MAGIC; 642 tio->io = ci->io; 643 tio->ti = ti; 644 tio->target_bio_nr = target_bio_nr; 645 tio->len_ptr = len; 646 tio->old_sector = 0; 647 648 if (len) { 649 clone->bi_iter.bi_size = to_bytes(*len); 650 if (bio_integrity(clone)) 651 bio_integrity_trim(clone); 652 } 653 654 return clone; 655 } 656 657 static void free_tio(struct bio *clone) 658 { 659 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 660 return; 661 bio_put(clone); 662 } 663 664 /* 665 * Add the bio to the list of deferred io. 666 */ 667 static void queue_io(struct mapped_device *md, struct bio *bio) 668 { 669 unsigned long flags; 670 671 spin_lock_irqsave(&md->deferred_lock, flags); 672 bio_list_add(&md->deferred, bio); 673 spin_unlock_irqrestore(&md->deferred_lock, flags); 674 queue_work(md->wq, &md->work); 675 } 676 677 /* 678 * Everyone (including functions in this file), should use this 679 * function to access the md->map field, and make sure they call 680 * dm_put_live_table() when finished. 681 */ 682 struct dm_table *dm_get_live_table(struct mapped_device *md, 683 int *srcu_idx) __acquires(md->io_barrier) 684 { 685 *srcu_idx = srcu_read_lock(&md->io_barrier); 686 687 return srcu_dereference(md->map, &md->io_barrier); 688 } 689 690 void dm_put_live_table(struct mapped_device *md, 691 int srcu_idx) __releases(md->io_barrier) 692 { 693 srcu_read_unlock(&md->io_barrier, srcu_idx); 694 } 695 696 void dm_sync_table(struct mapped_device *md) 697 { 698 synchronize_srcu(&md->io_barrier); 699 synchronize_rcu_expedited(); 700 } 701 702 /* 703 * A fast alternative to dm_get_live_table/dm_put_live_table. 704 * The caller must not block between these two functions. 705 */ 706 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 707 { 708 rcu_read_lock(); 709 return rcu_dereference(md->map); 710 } 711 712 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 713 { 714 rcu_read_unlock(); 715 } 716 717 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md, 718 int *srcu_idx, unsigned bio_opf) 719 { 720 if (bio_opf & REQ_NOWAIT) 721 return dm_get_live_table_fast(md); 722 else 723 return dm_get_live_table(md, srcu_idx); 724 } 725 726 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx, 727 unsigned bio_opf) 728 { 729 if (bio_opf & REQ_NOWAIT) 730 dm_put_live_table_fast(md); 731 else 732 dm_put_live_table(md, srcu_idx); 733 } 734 735 static char *_dm_claim_ptr = "I belong to device-mapper"; 736 737 /* 738 * Open a table device so we can use it as a map destination. 739 */ 740 static int open_table_device(struct table_device *td, dev_t dev, 741 struct mapped_device *md) 742 { 743 struct block_device *bdev; 744 u64 part_off; 745 int r; 746 747 BUG_ON(td->dm_dev.bdev); 748 749 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 750 if (IS_ERR(bdev)) 751 return PTR_ERR(bdev); 752 753 r = bd_link_disk_holder(bdev, dm_disk(md)); 754 if (r) { 755 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 756 return r; 757 } 758 759 td->dm_dev.bdev = bdev; 760 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off); 761 return 0; 762 } 763 764 /* 765 * Close a table device that we've been using. 766 */ 767 static void close_table_device(struct table_device *td, struct mapped_device *md) 768 { 769 if (!td->dm_dev.bdev) 770 return; 771 772 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 773 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 774 put_dax(td->dm_dev.dax_dev); 775 td->dm_dev.bdev = NULL; 776 td->dm_dev.dax_dev = NULL; 777 } 778 779 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 780 fmode_t mode) 781 { 782 struct table_device *td; 783 784 list_for_each_entry(td, l, list) 785 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 786 return td; 787 788 return NULL; 789 } 790 791 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 792 struct dm_dev **result) 793 { 794 int r; 795 struct table_device *td; 796 797 mutex_lock(&md->table_devices_lock); 798 td = find_table_device(&md->table_devices, dev, mode); 799 if (!td) { 800 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 801 if (!td) { 802 mutex_unlock(&md->table_devices_lock); 803 return -ENOMEM; 804 } 805 806 td->dm_dev.mode = mode; 807 td->dm_dev.bdev = NULL; 808 809 if ((r = open_table_device(td, dev, md))) { 810 mutex_unlock(&md->table_devices_lock); 811 kfree(td); 812 return r; 813 } 814 815 format_dev_t(td->dm_dev.name, dev); 816 817 refcount_set(&td->count, 1); 818 list_add(&td->list, &md->table_devices); 819 } else { 820 refcount_inc(&td->count); 821 } 822 mutex_unlock(&md->table_devices_lock); 823 824 *result = &td->dm_dev; 825 return 0; 826 } 827 828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 829 { 830 struct table_device *td = container_of(d, struct table_device, dm_dev); 831 832 mutex_lock(&md->table_devices_lock); 833 if (refcount_dec_and_test(&td->count)) { 834 close_table_device(td, md); 835 list_del(&td->list); 836 kfree(td); 837 } 838 mutex_unlock(&md->table_devices_lock); 839 } 840 841 static void free_table_devices(struct list_head *devices) 842 { 843 struct list_head *tmp, *next; 844 845 list_for_each_safe(tmp, next, devices) { 846 struct table_device *td = list_entry(tmp, struct table_device, list); 847 848 DMWARN("dm_destroy: %s still exists with %d references", 849 td->dm_dev.name, refcount_read(&td->count)); 850 kfree(td); 851 } 852 } 853 854 /* 855 * Get the geometry associated with a dm device 856 */ 857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 858 { 859 *geo = md->geometry; 860 861 return 0; 862 } 863 864 /* 865 * Set the geometry of a device. 866 */ 867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 868 { 869 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 870 871 if (geo->start > sz) { 872 DMWARN("Start sector is beyond the geometry limits."); 873 return -EINVAL; 874 } 875 876 md->geometry = *geo; 877 878 return 0; 879 } 880 881 static int __noflush_suspending(struct mapped_device *md) 882 { 883 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 884 } 885 886 static void dm_io_complete(struct dm_io *io) 887 { 888 blk_status_t io_error; 889 struct mapped_device *md = io->md; 890 struct bio *bio = io->orig_bio; 891 892 if (io->status == BLK_STS_DM_REQUEUE) { 893 unsigned long flags; 894 /* 895 * Target requested pushing back the I/O. 896 */ 897 spin_lock_irqsave(&md->deferred_lock, flags); 898 if (__noflush_suspending(md) && 899 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 900 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 901 bio_list_add_head(&md->deferred, bio); 902 } else { 903 /* 904 * noflush suspend was interrupted or this is 905 * a write to a zoned target. 906 */ 907 io->status = BLK_STS_IOERR; 908 } 909 spin_unlock_irqrestore(&md->deferred_lock, flags); 910 } 911 912 io_error = io->status; 913 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 914 dm_end_io_acct(io); 915 else if (!io_error) { 916 /* 917 * Must handle target that DM_MAPIO_SUBMITTED only to 918 * then bio_endio() rather than dm_submit_bio_remap() 919 */ 920 __dm_start_io_acct(io); 921 dm_end_io_acct(io); 922 } 923 free_io(io); 924 smp_wmb(); 925 this_cpu_dec(*md->pending_io); 926 927 /* nudge anyone waiting on suspend queue */ 928 if (unlikely(wq_has_sleeper(&md->wait))) 929 wake_up(&md->wait); 930 931 if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) { 932 if (bio->bi_opf & REQ_POLLED) { 933 /* 934 * Upper layer won't help us poll split bio (io->orig_bio 935 * may only reflect a subset of the pre-split original) 936 * so clear REQ_POLLED in case of requeue. 937 */ 938 bio_clear_polled(bio); 939 if (io_error == BLK_STS_AGAIN) { 940 /* io_uring doesn't handle BLK_STS_AGAIN (yet) */ 941 queue_io(md, bio); 942 } 943 } 944 return; 945 } 946 947 if (bio_is_flush_with_data(bio)) { 948 /* 949 * Preflush done for flush with data, reissue 950 * without REQ_PREFLUSH. 951 */ 952 bio->bi_opf &= ~REQ_PREFLUSH; 953 queue_io(md, bio); 954 } else { 955 /* done with normal IO or empty flush */ 956 if (io_error) 957 bio->bi_status = io_error; 958 bio_endio(bio); 959 } 960 } 961 962 /* 963 * Decrements the number of outstanding ios that a bio has been 964 * cloned into, completing the original io if necc. 965 */ 966 static inline void __dm_io_dec_pending(struct dm_io *io) 967 { 968 if (atomic_dec_and_test(&io->io_count)) 969 dm_io_complete(io); 970 } 971 972 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 973 { 974 unsigned long flags; 975 976 /* Push-back supersedes any I/O errors */ 977 spin_lock_irqsave(&io->lock, flags); 978 if (!(io->status == BLK_STS_DM_REQUEUE && 979 __noflush_suspending(io->md))) { 980 io->status = error; 981 } 982 spin_unlock_irqrestore(&io->lock, flags); 983 } 984 985 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 986 { 987 if (unlikely(error)) 988 dm_io_set_error(io, error); 989 990 __dm_io_dec_pending(io); 991 } 992 993 void disable_discard(struct mapped_device *md) 994 { 995 struct queue_limits *limits = dm_get_queue_limits(md); 996 997 /* device doesn't really support DISCARD, disable it */ 998 limits->max_discard_sectors = 0; 999 } 1000 1001 void disable_write_zeroes(struct mapped_device *md) 1002 { 1003 struct queue_limits *limits = dm_get_queue_limits(md); 1004 1005 /* device doesn't really support WRITE ZEROES, disable it */ 1006 limits->max_write_zeroes_sectors = 0; 1007 } 1008 1009 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1010 { 1011 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1012 } 1013 1014 static void clone_endio(struct bio *bio) 1015 { 1016 blk_status_t error = bio->bi_status; 1017 struct dm_target_io *tio = clone_to_tio(bio); 1018 struct dm_target *ti = tio->ti; 1019 dm_endio_fn endio = ti->type->end_io; 1020 struct dm_io *io = tio->io; 1021 struct mapped_device *md = io->md; 1022 1023 if (unlikely(error == BLK_STS_TARGET)) { 1024 if (bio_op(bio) == REQ_OP_DISCARD && 1025 !bdev_max_discard_sectors(bio->bi_bdev)) 1026 disable_discard(md); 1027 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1028 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1029 disable_write_zeroes(md); 1030 } 1031 1032 if (static_branch_unlikely(&zoned_enabled) && 1033 unlikely(blk_queue_is_zoned(bdev_get_queue(bio->bi_bdev)))) 1034 dm_zone_endio(io, bio); 1035 1036 if (endio) { 1037 int r = endio(ti, bio, &error); 1038 switch (r) { 1039 case DM_ENDIO_REQUEUE: 1040 if (static_branch_unlikely(&zoned_enabled)) { 1041 /* 1042 * Requeuing writes to a sequential zone of a zoned 1043 * target will break the sequential write pattern: 1044 * fail such IO. 1045 */ 1046 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1047 error = BLK_STS_IOERR; 1048 else 1049 error = BLK_STS_DM_REQUEUE; 1050 } else 1051 error = BLK_STS_DM_REQUEUE; 1052 fallthrough; 1053 case DM_ENDIO_DONE: 1054 break; 1055 case DM_ENDIO_INCOMPLETE: 1056 /* The target will handle the io */ 1057 return; 1058 default: 1059 DMWARN("unimplemented target endio return value: %d", r); 1060 BUG(); 1061 } 1062 } 1063 1064 if (static_branch_unlikely(&swap_bios_enabled) && 1065 unlikely(swap_bios_limit(ti, bio))) 1066 up(&md->swap_bios_semaphore); 1067 1068 free_tio(bio); 1069 dm_io_dec_pending(io, error); 1070 } 1071 1072 /* 1073 * Return maximum size of I/O possible at the supplied sector up to the current 1074 * target boundary. 1075 */ 1076 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1077 sector_t target_offset) 1078 { 1079 return ti->len - target_offset; 1080 } 1081 1082 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 1083 { 1084 sector_t target_offset = dm_target_offset(ti, sector); 1085 sector_t len = max_io_len_target_boundary(ti, target_offset); 1086 sector_t max_len; 1087 1088 /* 1089 * Does the target need to split IO even further? 1090 * - varied (per target) IO splitting is a tenet of DM; this 1091 * explains why stacked chunk_sectors based splitting via 1092 * blk_max_size_offset() isn't possible here. So pass in 1093 * ti->max_io_len to override stacked chunk_sectors. 1094 */ 1095 if (ti->max_io_len) { 1096 max_len = blk_max_size_offset(ti->table->md->queue, 1097 target_offset, ti->max_io_len); 1098 if (len > max_len) 1099 len = max_len; 1100 } 1101 1102 return len; 1103 } 1104 1105 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1106 { 1107 if (len > UINT_MAX) { 1108 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1109 (unsigned long long)len, UINT_MAX); 1110 ti->error = "Maximum size of target IO is too large"; 1111 return -EINVAL; 1112 } 1113 1114 ti->max_io_len = (uint32_t) len; 1115 1116 return 0; 1117 } 1118 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1119 1120 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1121 sector_t sector, int *srcu_idx) 1122 __acquires(md->io_barrier) 1123 { 1124 struct dm_table *map; 1125 struct dm_target *ti; 1126 1127 map = dm_get_live_table(md, srcu_idx); 1128 if (!map) 1129 return NULL; 1130 1131 ti = dm_table_find_target(map, sector); 1132 if (!ti) 1133 return NULL; 1134 1135 return ti; 1136 } 1137 1138 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1139 long nr_pages, enum dax_access_mode mode, void **kaddr, 1140 pfn_t *pfn) 1141 { 1142 struct mapped_device *md = dax_get_private(dax_dev); 1143 sector_t sector = pgoff * PAGE_SECTORS; 1144 struct dm_target *ti; 1145 long len, ret = -EIO; 1146 int srcu_idx; 1147 1148 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1149 1150 if (!ti) 1151 goto out; 1152 if (!ti->type->direct_access) 1153 goto out; 1154 len = max_io_len(ti, sector) / PAGE_SECTORS; 1155 if (len < 1) 1156 goto out; 1157 nr_pages = min(len, nr_pages); 1158 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1159 1160 out: 1161 dm_put_live_table(md, srcu_idx); 1162 1163 return ret; 1164 } 1165 1166 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1167 size_t nr_pages) 1168 { 1169 struct mapped_device *md = dax_get_private(dax_dev); 1170 sector_t sector = pgoff * PAGE_SECTORS; 1171 struct dm_target *ti; 1172 int ret = -EIO; 1173 int srcu_idx; 1174 1175 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1176 1177 if (!ti) 1178 goto out; 1179 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1180 /* 1181 * ->zero_page_range() is mandatory dax operation. If we are 1182 * here, something is wrong. 1183 */ 1184 goto out; 1185 } 1186 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1187 out: 1188 dm_put_live_table(md, srcu_idx); 1189 1190 return ret; 1191 } 1192 1193 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1194 void *addr, size_t bytes, struct iov_iter *i) 1195 { 1196 struct mapped_device *md = dax_get_private(dax_dev); 1197 sector_t sector = pgoff * PAGE_SECTORS; 1198 struct dm_target *ti; 1199 int srcu_idx; 1200 long ret = 0; 1201 1202 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1203 if (!ti || !ti->type->dax_recovery_write) 1204 goto out; 1205 1206 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1207 out: 1208 dm_put_live_table(md, srcu_idx); 1209 return ret; 1210 } 1211 1212 /* 1213 * A target may call dm_accept_partial_bio only from the map routine. It is 1214 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1215 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1216 * __send_duplicate_bios(). 1217 * 1218 * dm_accept_partial_bio informs the dm that the target only wants to process 1219 * additional n_sectors sectors of the bio and the rest of the data should be 1220 * sent in a next bio. 1221 * 1222 * A diagram that explains the arithmetics: 1223 * +--------------------+---------------+-------+ 1224 * | 1 | 2 | 3 | 1225 * +--------------------+---------------+-------+ 1226 * 1227 * <-------------- *tio->len_ptr ---------------> 1228 * <----- bio_sectors -----> 1229 * <-- n_sectors --> 1230 * 1231 * Region 1 was already iterated over with bio_advance or similar function. 1232 * (it may be empty if the target doesn't use bio_advance) 1233 * Region 2 is the remaining bio size that the target wants to process. 1234 * (it may be empty if region 1 is non-empty, although there is no reason 1235 * to make it empty) 1236 * The target requires that region 3 is to be sent in the next bio. 1237 * 1238 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1239 * the partially processed part (the sum of regions 1+2) must be the same for all 1240 * copies of the bio. 1241 */ 1242 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1243 { 1244 struct dm_target_io *tio = clone_to_tio(bio); 1245 unsigned bio_sectors = bio_sectors(bio); 1246 1247 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1248 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1249 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1250 BUG_ON(bio_sectors > *tio->len_ptr); 1251 BUG_ON(n_sectors > bio_sectors); 1252 1253 *tio->len_ptr -= bio_sectors - n_sectors; 1254 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1255 1256 /* 1257 * __split_and_process_bio() may have already saved mapped part 1258 * for accounting but it is being reduced so update accordingly. 1259 */ 1260 dm_io_set_flag(tio->io, DM_IO_WAS_SPLIT); 1261 tio->io->sectors = n_sectors; 1262 } 1263 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1264 1265 /* 1266 * @clone: clone bio that DM core passed to target's .map function 1267 * @tgt_clone: clone of @clone bio that target needs submitted 1268 * 1269 * Targets should use this interface to submit bios they take 1270 * ownership of when returning DM_MAPIO_SUBMITTED. 1271 * 1272 * Target should also enable ti->accounts_remapped_io 1273 */ 1274 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1275 { 1276 struct dm_target_io *tio = clone_to_tio(clone); 1277 struct dm_io *io = tio->io; 1278 1279 /* establish bio that will get submitted */ 1280 if (!tgt_clone) 1281 tgt_clone = clone; 1282 1283 /* 1284 * Account io->origin_bio to DM dev on behalf of target 1285 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1286 */ 1287 dm_start_io_acct(io, clone); 1288 1289 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1290 tio->old_sector); 1291 submit_bio_noacct(tgt_clone); 1292 } 1293 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1294 1295 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1296 { 1297 mutex_lock(&md->swap_bios_lock); 1298 while (latch < md->swap_bios) { 1299 cond_resched(); 1300 down(&md->swap_bios_semaphore); 1301 md->swap_bios--; 1302 } 1303 while (latch > md->swap_bios) { 1304 cond_resched(); 1305 up(&md->swap_bios_semaphore); 1306 md->swap_bios++; 1307 } 1308 mutex_unlock(&md->swap_bios_lock); 1309 } 1310 1311 static void __map_bio(struct bio *clone) 1312 { 1313 struct dm_target_io *tio = clone_to_tio(clone); 1314 struct dm_target *ti = tio->ti; 1315 struct dm_io *io = tio->io; 1316 struct mapped_device *md = io->md; 1317 int r; 1318 1319 clone->bi_end_io = clone_endio; 1320 1321 /* 1322 * Map the clone. 1323 */ 1324 tio->old_sector = clone->bi_iter.bi_sector; 1325 1326 if (static_branch_unlikely(&swap_bios_enabled) && 1327 unlikely(swap_bios_limit(ti, clone))) { 1328 int latch = get_swap_bios(); 1329 if (unlikely(latch != md->swap_bios)) 1330 __set_swap_bios_limit(md, latch); 1331 down(&md->swap_bios_semaphore); 1332 } 1333 1334 if (static_branch_unlikely(&zoned_enabled)) { 1335 /* 1336 * Check if the IO needs a special mapping due to zone append 1337 * emulation on zoned target. In this case, dm_zone_map_bio() 1338 * calls the target map operation. 1339 */ 1340 if (unlikely(dm_emulate_zone_append(md))) 1341 r = dm_zone_map_bio(tio); 1342 else 1343 r = ti->type->map(ti, clone); 1344 } else 1345 r = ti->type->map(ti, clone); 1346 1347 switch (r) { 1348 case DM_MAPIO_SUBMITTED: 1349 /* target has assumed ownership of this io */ 1350 if (!ti->accounts_remapped_io) 1351 dm_start_io_acct(io, clone); 1352 break; 1353 case DM_MAPIO_REMAPPED: 1354 dm_submit_bio_remap(clone, NULL); 1355 break; 1356 case DM_MAPIO_KILL: 1357 case DM_MAPIO_REQUEUE: 1358 if (static_branch_unlikely(&swap_bios_enabled) && 1359 unlikely(swap_bios_limit(ti, clone))) 1360 up(&md->swap_bios_semaphore); 1361 free_tio(clone); 1362 if (r == DM_MAPIO_KILL) 1363 dm_io_dec_pending(io, BLK_STS_IOERR); 1364 else 1365 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1366 break; 1367 default: 1368 DMWARN("unimplemented target map return value: %d", r); 1369 BUG(); 1370 } 1371 } 1372 1373 static void setup_split_accounting(struct clone_info *ci, unsigned len) 1374 { 1375 struct dm_io *io = ci->io; 1376 1377 if (ci->sector_count > len) { 1378 /* 1379 * Split needed, save the mapped part for accounting. 1380 * NOTE: dm_accept_partial_bio() will update accordingly. 1381 */ 1382 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1383 io->sectors = len; 1384 } 1385 1386 if (static_branch_unlikely(&stats_enabled) && 1387 unlikely(dm_stats_used(&io->md->stats))) { 1388 /* 1389 * Save bi_sector in terms of its offset from end of 1390 * original bio, only needed for DM-stats' benefit. 1391 * - saved regardless of whether split needed so that 1392 * dm_accept_partial_bio() doesn't need to. 1393 */ 1394 io->sector_offset = bio_end_sector(ci->bio) - ci->sector; 1395 } 1396 } 1397 1398 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1399 struct dm_target *ti, unsigned num_bios) 1400 { 1401 struct bio *bio; 1402 int try; 1403 1404 for (try = 0; try < 2; try++) { 1405 int bio_nr; 1406 1407 if (try) 1408 mutex_lock(&ci->io->md->table_devices_lock); 1409 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1410 bio = alloc_tio(ci, ti, bio_nr, NULL, 1411 try ? GFP_NOIO : GFP_NOWAIT); 1412 if (!bio) 1413 break; 1414 1415 bio_list_add(blist, bio); 1416 } 1417 if (try) 1418 mutex_unlock(&ci->io->md->table_devices_lock); 1419 if (bio_nr == num_bios) 1420 return; 1421 1422 while ((bio = bio_list_pop(blist))) 1423 free_tio(bio); 1424 } 1425 } 1426 1427 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1428 unsigned num_bios, unsigned *len) 1429 { 1430 struct bio_list blist = BIO_EMPTY_LIST; 1431 struct bio *clone; 1432 int ret = 0; 1433 1434 switch (num_bios) { 1435 case 0: 1436 break; 1437 case 1: 1438 if (len) 1439 setup_split_accounting(ci, *len); 1440 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1441 __map_bio(clone); 1442 ret = 1; 1443 break; 1444 default: 1445 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1446 alloc_multiple_bios(&blist, ci, ti, num_bios); 1447 while ((clone = bio_list_pop(&blist))) { 1448 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1449 __map_bio(clone); 1450 ret += 1; 1451 } 1452 break; 1453 } 1454 1455 return ret; 1456 } 1457 1458 static void __send_empty_flush(struct clone_info *ci) 1459 { 1460 unsigned target_nr = 0; 1461 struct dm_target *ti; 1462 struct bio flush_bio; 1463 1464 /* 1465 * Use an on-stack bio for this, it's safe since we don't 1466 * need to reference it after submit. It's just used as 1467 * the basis for the clone(s). 1468 */ 1469 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1470 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1471 1472 ci->bio = &flush_bio; 1473 ci->sector_count = 0; 1474 ci->io->tio.clone.bi_iter.bi_size = 0; 1475 1476 while ((ti = dm_table_get_target(ci->map, target_nr++))) { 1477 int bios; 1478 1479 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1480 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1481 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1482 } 1483 1484 /* 1485 * alloc_io() takes one extra reference for submission, so the 1486 * reference won't reach 0 without the following subtraction 1487 */ 1488 atomic_sub(1, &ci->io->io_count); 1489 1490 bio_uninit(ci->bio); 1491 } 1492 1493 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1494 unsigned num_bios) 1495 { 1496 unsigned len; 1497 int bios; 1498 1499 len = min_t(sector_t, ci->sector_count, 1500 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1501 1502 atomic_add(num_bios, &ci->io->io_count); 1503 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1504 /* 1505 * alloc_io() takes one extra reference for submission, so the 1506 * reference won't reach 0 without the following (+1) subtraction 1507 */ 1508 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1509 1510 ci->sector += len; 1511 ci->sector_count -= len; 1512 } 1513 1514 static bool is_abnormal_io(struct bio *bio) 1515 { 1516 unsigned int op = bio_op(bio); 1517 1518 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1519 switch (op) { 1520 case REQ_OP_DISCARD: 1521 case REQ_OP_SECURE_ERASE: 1522 case REQ_OP_WRITE_ZEROES: 1523 return true; 1524 default: 1525 break; 1526 } 1527 } 1528 1529 return false; 1530 } 1531 1532 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1533 struct dm_target *ti) 1534 { 1535 unsigned num_bios = 0; 1536 1537 switch (bio_op(ci->bio)) { 1538 case REQ_OP_DISCARD: 1539 num_bios = ti->num_discard_bios; 1540 break; 1541 case REQ_OP_SECURE_ERASE: 1542 num_bios = ti->num_secure_erase_bios; 1543 break; 1544 case REQ_OP_WRITE_ZEROES: 1545 num_bios = ti->num_write_zeroes_bios; 1546 break; 1547 } 1548 1549 /* 1550 * Even though the device advertised support for this type of 1551 * request, that does not mean every target supports it, and 1552 * reconfiguration might also have changed that since the 1553 * check was performed. 1554 */ 1555 if (unlikely(!num_bios)) 1556 return BLK_STS_NOTSUPP; 1557 1558 __send_changing_extent_only(ci, ti, num_bios); 1559 return BLK_STS_OK; 1560 } 1561 1562 /* 1563 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1564 * associated with this bio, and this bio's bi_private needs to be 1565 * stored in dm_io->data before the reuse. 1566 * 1567 * bio->bi_private is owned by fs or upper layer, so block layer won't 1568 * touch it after splitting. Meantime it won't be changed by anyone after 1569 * bio is submitted. So this reuse is safe. 1570 */ 1571 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1572 { 1573 return (struct dm_io **)&bio->bi_private; 1574 } 1575 1576 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1577 { 1578 struct dm_io **head = dm_poll_list_head(bio); 1579 1580 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1581 bio->bi_opf |= REQ_DM_POLL_LIST; 1582 /* 1583 * Save .bi_private into dm_io, so that we can reuse 1584 * .bi_private as dm_io list head for storing dm_io list 1585 */ 1586 io->data = bio->bi_private; 1587 1588 /* tell block layer to poll for completion */ 1589 bio->bi_cookie = ~BLK_QC_T_NONE; 1590 1591 io->next = NULL; 1592 } else { 1593 /* 1594 * bio recursed due to split, reuse original poll list, 1595 * and save bio->bi_private too. 1596 */ 1597 io->data = (*head)->data; 1598 io->next = *head; 1599 } 1600 1601 *head = io; 1602 } 1603 1604 /* 1605 * Select the correct strategy for processing a non-flush bio. 1606 */ 1607 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1608 { 1609 struct bio *clone; 1610 struct dm_target *ti; 1611 unsigned len; 1612 1613 ti = dm_table_find_target(ci->map, ci->sector); 1614 if (unlikely(!ti)) 1615 return BLK_STS_IOERR; 1616 1617 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) && 1618 unlikely(!dm_target_supports_nowait(ti->type))) 1619 return BLK_STS_NOTSUPP; 1620 1621 if (unlikely(ci->is_abnormal_io)) 1622 return __process_abnormal_io(ci, ti); 1623 1624 /* 1625 * Only support bio polling for normal IO, and the target io is 1626 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1627 */ 1628 ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED; 1629 1630 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1631 setup_split_accounting(ci, len); 1632 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1633 __map_bio(clone); 1634 1635 ci->sector += len; 1636 ci->sector_count -= len; 1637 1638 return BLK_STS_OK; 1639 } 1640 1641 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1642 struct dm_table *map, struct bio *bio, bool is_abnormal) 1643 { 1644 ci->map = map; 1645 ci->io = alloc_io(md, bio); 1646 ci->bio = bio; 1647 ci->is_abnormal_io = is_abnormal; 1648 ci->submit_as_polled = false; 1649 ci->sector = bio->bi_iter.bi_sector; 1650 ci->sector_count = bio_sectors(bio); 1651 1652 /* Shouldn't happen but sector_count was being set to 0 so... */ 1653 if (static_branch_unlikely(&zoned_enabled) && 1654 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1655 ci->sector_count = 0; 1656 } 1657 1658 /* 1659 * Entry point to split a bio into clones and submit them to the targets. 1660 */ 1661 static void dm_split_and_process_bio(struct mapped_device *md, 1662 struct dm_table *map, struct bio *bio) 1663 { 1664 struct clone_info ci; 1665 struct dm_io *io; 1666 blk_status_t error = BLK_STS_OK; 1667 bool is_abnormal; 1668 1669 is_abnormal = is_abnormal_io(bio); 1670 if (unlikely(is_abnormal)) { 1671 /* 1672 * Use blk_queue_split() for abnormal IO (e.g. discard, etc) 1673 * otherwise associated queue_limits won't be imposed. 1674 */ 1675 blk_queue_split(&bio); 1676 } 1677 1678 init_clone_info(&ci, md, map, bio, is_abnormal); 1679 io = ci.io; 1680 1681 if (bio->bi_opf & REQ_PREFLUSH) { 1682 __send_empty_flush(&ci); 1683 /* dm_io_complete submits any data associated with flush */ 1684 goto out; 1685 } 1686 1687 error = __split_and_process_bio(&ci); 1688 if (error || !ci.sector_count) 1689 goto out; 1690 /* 1691 * Remainder must be passed to submit_bio_noacct() so it gets handled 1692 * *after* bios already submitted have been completely processed. 1693 */ 1694 bio_trim(bio, io->sectors, ci.sector_count); 1695 trace_block_split(bio, bio->bi_iter.bi_sector); 1696 bio_inc_remaining(bio); 1697 submit_bio_noacct(bio); 1698 out: 1699 /* 1700 * Drop the extra reference count for non-POLLED bio, and hold one 1701 * reference for POLLED bio, which will be released in dm_poll_bio 1702 * 1703 * Add every dm_io instance into the dm_io list head which is stored 1704 * in bio->bi_private, so that dm_poll_bio can poll them all. 1705 */ 1706 if (error || !ci.submit_as_polled) { 1707 /* 1708 * In case of submission failure, the extra reference for 1709 * submitting io isn't consumed yet 1710 */ 1711 if (error) 1712 atomic_dec(&io->io_count); 1713 dm_io_dec_pending(io, error); 1714 } else 1715 dm_queue_poll_io(bio, io); 1716 } 1717 1718 static void dm_submit_bio(struct bio *bio) 1719 { 1720 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1721 int srcu_idx; 1722 struct dm_table *map; 1723 unsigned bio_opf = bio->bi_opf; 1724 1725 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf); 1726 1727 /* If suspended, or map not yet available, queue this IO for later */ 1728 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1729 unlikely(!map)) { 1730 if (bio->bi_opf & REQ_NOWAIT) 1731 bio_wouldblock_error(bio); 1732 else if (bio->bi_opf & REQ_RAHEAD) 1733 bio_io_error(bio); 1734 else 1735 queue_io(md, bio); 1736 goto out; 1737 } 1738 1739 dm_split_and_process_bio(md, map, bio); 1740 out: 1741 dm_put_live_table_bio(md, srcu_idx, bio_opf); 1742 } 1743 1744 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1745 unsigned int flags) 1746 { 1747 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1748 1749 /* don't poll if the mapped io is done */ 1750 if (atomic_read(&io->io_count) > 1) 1751 bio_poll(&io->tio.clone, iob, flags); 1752 1753 /* bio_poll holds the last reference */ 1754 return atomic_read(&io->io_count) == 1; 1755 } 1756 1757 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1758 unsigned int flags) 1759 { 1760 struct dm_io **head = dm_poll_list_head(bio); 1761 struct dm_io *list = *head; 1762 struct dm_io *tmp = NULL; 1763 struct dm_io *curr, *next; 1764 1765 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1766 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1767 return 0; 1768 1769 WARN_ON_ONCE(!list); 1770 1771 /* 1772 * Restore .bi_private before possibly completing dm_io. 1773 * 1774 * bio_poll() is only possible once @bio has been completely 1775 * submitted via submit_bio_noacct()'s depth-first submission. 1776 * So there is no dm_queue_poll_io() race associated with 1777 * clearing REQ_DM_POLL_LIST here. 1778 */ 1779 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1780 bio->bi_private = list->data; 1781 1782 for (curr = list, next = curr->next; curr; curr = next, next = 1783 curr ? curr->next : NULL) { 1784 if (dm_poll_dm_io(curr, iob, flags)) { 1785 /* 1786 * clone_endio() has already occurred, so no 1787 * error handling is needed here. 1788 */ 1789 __dm_io_dec_pending(curr); 1790 } else { 1791 curr->next = tmp; 1792 tmp = curr; 1793 } 1794 } 1795 1796 /* Not done? */ 1797 if (tmp) { 1798 bio->bi_opf |= REQ_DM_POLL_LIST; 1799 /* Reset bio->bi_private to dm_io list head */ 1800 *head = tmp; 1801 return 0; 1802 } 1803 return 1; 1804 } 1805 1806 /*----------------------------------------------------------------- 1807 * An IDR is used to keep track of allocated minor numbers. 1808 *---------------------------------------------------------------*/ 1809 static void free_minor(int minor) 1810 { 1811 spin_lock(&_minor_lock); 1812 idr_remove(&_minor_idr, minor); 1813 spin_unlock(&_minor_lock); 1814 } 1815 1816 /* 1817 * See if the device with a specific minor # is free. 1818 */ 1819 static int specific_minor(int minor) 1820 { 1821 int r; 1822 1823 if (minor >= (1 << MINORBITS)) 1824 return -EINVAL; 1825 1826 idr_preload(GFP_KERNEL); 1827 spin_lock(&_minor_lock); 1828 1829 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1830 1831 spin_unlock(&_minor_lock); 1832 idr_preload_end(); 1833 if (r < 0) 1834 return r == -ENOSPC ? -EBUSY : r; 1835 return 0; 1836 } 1837 1838 static int next_free_minor(int *minor) 1839 { 1840 int r; 1841 1842 idr_preload(GFP_KERNEL); 1843 spin_lock(&_minor_lock); 1844 1845 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1846 1847 spin_unlock(&_minor_lock); 1848 idr_preload_end(); 1849 if (r < 0) 1850 return r; 1851 *minor = r; 1852 return 0; 1853 } 1854 1855 static const struct block_device_operations dm_blk_dops; 1856 static const struct block_device_operations dm_rq_blk_dops; 1857 static const struct dax_operations dm_dax_ops; 1858 1859 static void dm_wq_work(struct work_struct *work); 1860 1861 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1862 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1863 { 1864 dm_destroy_crypto_profile(q->crypto_profile); 1865 } 1866 1867 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1868 1869 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1870 { 1871 } 1872 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1873 1874 static void cleanup_mapped_device(struct mapped_device *md) 1875 { 1876 if (md->wq) 1877 destroy_workqueue(md->wq); 1878 dm_free_md_mempools(md->mempools); 1879 1880 if (md->dax_dev) { 1881 dax_remove_host(md->disk); 1882 kill_dax(md->dax_dev); 1883 put_dax(md->dax_dev); 1884 md->dax_dev = NULL; 1885 } 1886 1887 dm_cleanup_zoned_dev(md); 1888 if (md->disk) { 1889 spin_lock(&_minor_lock); 1890 md->disk->private_data = NULL; 1891 spin_unlock(&_minor_lock); 1892 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1893 dm_sysfs_exit(md); 1894 del_gendisk(md->disk); 1895 } 1896 dm_queue_destroy_crypto_profile(md->queue); 1897 blk_cleanup_disk(md->disk); 1898 } 1899 1900 if (md->pending_io) { 1901 free_percpu(md->pending_io); 1902 md->pending_io = NULL; 1903 } 1904 1905 cleanup_srcu_struct(&md->io_barrier); 1906 1907 mutex_destroy(&md->suspend_lock); 1908 mutex_destroy(&md->type_lock); 1909 mutex_destroy(&md->table_devices_lock); 1910 mutex_destroy(&md->swap_bios_lock); 1911 1912 dm_mq_cleanup_mapped_device(md); 1913 } 1914 1915 /* 1916 * Allocate and initialise a blank device with a given minor. 1917 */ 1918 static struct mapped_device *alloc_dev(int minor) 1919 { 1920 int r, numa_node_id = dm_get_numa_node(); 1921 struct mapped_device *md; 1922 void *old_md; 1923 1924 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1925 if (!md) { 1926 DMWARN("unable to allocate device, out of memory."); 1927 return NULL; 1928 } 1929 1930 if (!try_module_get(THIS_MODULE)) 1931 goto bad_module_get; 1932 1933 /* get a minor number for the dev */ 1934 if (minor == DM_ANY_MINOR) 1935 r = next_free_minor(&minor); 1936 else 1937 r = specific_minor(minor); 1938 if (r < 0) 1939 goto bad_minor; 1940 1941 r = init_srcu_struct(&md->io_barrier); 1942 if (r < 0) 1943 goto bad_io_barrier; 1944 1945 md->numa_node_id = numa_node_id; 1946 md->init_tio_pdu = false; 1947 md->type = DM_TYPE_NONE; 1948 mutex_init(&md->suspend_lock); 1949 mutex_init(&md->type_lock); 1950 mutex_init(&md->table_devices_lock); 1951 spin_lock_init(&md->deferred_lock); 1952 atomic_set(&md->holders, 1); 1953 atomic_set(&md->open_count, 0); 1954 atomic_set(&md->event_nr, 0); 1955 atomic_set(&md->uevent_seq, 0); 1956 INIT_LIST_HEAD(&md->uevent_list); 1957 INIT_LIST_HEAD(&md->table_devices); 1958 spin_lock_init(&md->uevent_lock); 1959 1960 /* 1961 * default to bio-based until DM table is loaded and md->type 1962 * established. If request-based table is loaded: blk-mq will 1963 * override accordingly. 1964 */ 1965 md->disk = blk_alloc_disk(md->numa_node_id); 1966 if (!md->disk) 1967 goto bad; 1968 md->queue = md->disk->queue; 1969 1970 init_waitqueue_head(&md->wait); 1971 INIT_WORK(&md->work, dm_wq_work); 1972 init_waitqueue_head(&md->eventq); 1973 init_completion(&md->kobj_holder.completion); 1974 1975 md->swap_bios = get_swap_bios(); 1976 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1977 mutex_init(&md->swap_bios_lock); 1978 1979 md->disk->major = _major; 1980 md->disk->first_minor = minor; 1981 md->disk->minors = 1; 1982 md->disk->flags |= GENHD_FL_NO_PART; 1983 md->disk->fops = &dm_blk_dops; 1984 md->disk->queue = md->queue; 1985 md->disk->private_data = md; 1986 sprintf(md->disk->disk_name, "dm-%d", minor); 1987 1988 if (IS_ENABLED(CONFIG_FS_DAX)) { 1989 md->dax_dev = alloc_dax(md, &dm_dax_ops); 1990 if (IS_ERR(md->dax_dev)) { 1991 md->dax_dev = NULL; 1992 goto bad; 1993 } 1994 set_dax_nocache(md->dax_dev); 1995 set_dax_nomc(md->dax_dev); 1996 if (dax_add_host(md->dax_dev, md->disk)) 1997 goto bad; 1998 } 1999 2000 format_dev_t(md->name, MKDEV(_major, minor)); 2001 2002 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2003 if (!md->wq) 2004 goto bad; 2005 2006 md->pending_io = alloc_percpu(unsigned long); 2007 if (!md->pending_io) 2008 goto bad; 2009 2010 dm_stats_init(&md->stats); 2011 2012 /* Populate the mapping, nobody knows we exist yet */ 2013 spin_lock(&_minor_lock); 2014 old_md = idr_replace(&_minor_idr, md, minor); 2015 spin_unlock(&_minor_lock); 2016 2017 BUG_ON(old_md != MINOR_ALLOCED); 2018 2019 return md; 2020 2021 bad: 2022 cleanup_mapped_device(md); 2023 bad_io_barrier: 2024 free_minor(minor); 2025 bad_minor: 2026 module_put(THIS_MODULE); 2027 bad_module_get: 2028 kvfree(md); 2029 return NULL; 2030 } 2031 2032 static void unlock_fs(struct mapped_device *md); 2033 2034 static void free_dev(struct mapped_device *md) 2035 { 2036 int minor = MINOR(disk_devt(md->disk)); 2037 2038 unlock_fs(md); 2039 2040 cleanup_mapped_device(md); 2041 2042 free_table_devices(&md->table_devices); 2043 dm_stats_cleanup(&md->stats); 2044 free_minor(minor); 2045 2046 module_put(THIS_MODULE); 2047 kvfree(md); 2048 } 2049 2050 /* 2051 * Bind a table to the device. 2052 */ 2053 static void event_callback(void *context) 2054 { 2055 unsigned long flags; 2056 LIST_HEAD(uevents); 2057 struct mapped_device *md = (struct mapped_device *) context; 2058 2059 spin_lock_irqsave(&md->uevent_lock, flags); 2060 list_splice_init(&md->uevent_list, &uevents); 2061 spin_unlock_irqrestore(&md->uevent_lock, flags); 2062 2063 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2064 2065 atomic_inc(&md->event_nr); 2066 wake_up(&md->eventq); 2067 dm_issue_global_event(); 2068 } 2069 2070 /* 2071 * Returns old map, which caller must destroy. 2072 */ 2073 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2074 struct queue_limits *limits) 2075 { 2076 struct dm_table *old_map; 2077 sector_t size; 2078 int ret; 2079 2080 lockdep_assert_held(&md->suspend_lock); 2081 2082 size = dm_table_get_size(t); 2083 2084 /* 2085 * Wipe any geometry if the size of the table changed. 2086 */ 2087 if (size != dm_get_size(md)) 2088 memset(&md->geometry, 0, sizeof(md->geometry)); 2089 2090 if (!get_capacity(md->disk)) 2091 set_capacity(md->disk, size); 2092 else 2093 set_capacity_and_notify(md->disk, size); 2094 2095 dm_table_event_callback(t, event_callback, md); 2096 2097 if (dm_table_request_based(t)) { 2098 /* 2099 * Leverage the fact that request-based DM targets are 2100 * immutable singletons - used to optimize dm_mq_queue_rq. 2101 */ 2102 md->immutable_target = dm_table_get_immutable_target(t); 2103 2104 /* 2105 * There is no need to reload with request-based dm because the 2106 * size of front_pad doesn't change. 2107 * 2108 * Note for future: If you are to reload bioset, prep-ed 2109 * requests in the queue may refer to bio from the old bioset, 2110 * so you must walk through the queue to unprep. 2111 */ 2112 if (!md->mempools) { 2113 md->mempools = t->mempools; 2114 t->mempools = NULL; 2115 } 2116 } else { 2117 /* 2118 * The md may already have mempools that need changing. 2119 * If so, reload bioset because front_pad may have changed 2120 * because a different table was loaded. 2121 */ 2122 dm_free_md_mempools(md->mempools); 2123 md->mempools = t->mempools; 2124 t->mempools = NULL; 2125 } 2126 2127 ret = dm_table_set_restrictions(t, md->queue, limits); 2128 if (ret) { 2129 old_map = ERR_PTR(ret); 2130 goto out; 2131 } 2132 2133 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2134 rcu_assign_pointer(md->map, (void *)t); 2135 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2136 2137 if (old_map) 2138 dm_sync_table(md); 2139 out: 2140 return old_map; 2141 } 2142 2143 /* 2144 * Returns unbound table for the caller to free. 2145 */ 2146 static struct dm_table *__unbind(struct mapped_device *md) 2147 { 2148 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2149 2150 if (!map) 2151 return NULL; 2152 2153 dm_table_event_callback(map, NULL, NULL); 2154 RCU_INIT_POINTER(md->map, NULL); 2155 dm_sync_table(md); 2156 2157 return map; 2158 } 2159 2160 /* 2161 * Constructor for a new device. 2162 */ 2163 int dm_create(int minor, struct mapped_device **result) 2164 { 2165 struct mapped_device *md; 2166 2167 md = alloc_dev(minor); 2168 if (!md) 2169 return -ENXIO; 2170 2171 dm_ima_reset_data(md); 2172 2173 *result = md; 2174 return 0; 2175 } 2176 2177 /* 2178 * Functions to manage md->type. 2179 * All are required to hold md->type_lock. 2180 */ 2181 void dm_lock_md_type(struct mapped_device *md) 2182 { 2183 mutex_lock(&md->type_lock); 2184 } 2185 2186 void dm_unlock_md_type(struct mapped_device *md) 2187 { 2188 mutex_unlock(&md->type_lock); 2189 } 2190 2191 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2192 { 2193 BUG_ON(!mutex_is_locked(&md->type_lock)); 2194 md->type = type; 2195 } 2196 2197 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2198 { 2199 return md->type; 2200 } 2201 2202 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2203 { 2204 return md->immutable_target_type; 2205 } 2206 2207 /* 2208 * The queue_limits are only valid as long as you have a reference 2209 * count on 'md'. 2210 */ 2211 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2212 { 2213 BUG_ON(!atomic_read(&md->holders)); 2214 return &md->queue->limits; 2215 } 2216 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2217 2218 /* 2219 * Setup the DM device's queue based on md's type 2220 */ 2221 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2222 { 2223 enum dm_queue_mode type = dm_table_get_type(t); 2224 struct queue_limits limits; 2225 int r; 2226 2227 switch (type) { 2228 case DM_TYPE_REQUEST_BASED: 2229 md->disk->fops = &dm_rq_blk_dops; 2230 r = dm_mq_init_request_queue(md, t); 2231 if (r) { 2232 DMERR("Cannot initialize queue for request-based dm mapped device"); 2233 return r; 2234 } 2235 break; 2236 case DM_TYPE_BIO_BASED: 2237 case DM_TYPE_DAX_BIO_BASED: 2238 break; 2239 case DM_TYPE_NONE: 2240 WARN_ON_ONCE(true); 2241 break; 2242 } 2243 2244 r = dm_calculate_queue_limits(t, &limits); 2245 if (r) { 2246 DMERR("Cannot calculate initial queue limits"); 2247 return r; 2248 } 2249 r = dm_table_set_restrictions(t, md->queue, &limits); 2250 if (r) 2251 return r; 2252 2253 r = add_disk(md->disk); 2254 if (r) 2255 return r; 2256 2257 r = dm_sysfs_init(md); 2258 if (r) { 2259 del_gendisk(md->disk); 2260 return r; 2261 } 2262 md->type = type; 2263 return 0; 2264 } 2265 2266 struct mapped_device *dm_get_md(dev_t dev) 2267 { 2268 struct mapped_device *md; 2269 unsigned minor = MINOR(dev); 2270 2271 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2272 return NULL; 2273 2274 spin_lock(&_minor_lock); 2275 2276 md = idr_find(&_minor_idr, minor); 2277 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2278 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2279 md = NULL; 2280 goto out; 2281 } 2282 dm_get(md); 2283 out: 2284 spin_unlock(&_minor_lock); 2285 2286 return md; 2287 } 2288 EXPORT_SYMBOL_GPL(dm_get_md); 2289 2290 void *dm_get_mdptr(struct mapped_device *md) 2291 { 2292 return md->interface_ptr; 2293 } 2294 2295 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2296 { 2297 md->interface_ptr = ptr; 2298 } 2299 2300 void dm_get(struct mapped_device *md) 2301 { 2302 atomic_inc(&md->holders); 2303 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2304 } 2305 2306 int dm_hold(struct mapped_device *md) 2307 { 2308 spin_lock(&_minor_lock); 2309 if (test_bit(DMF_FREEING, &md->flags)) { 2310 spin_unlock(&_minor_lock); 2311 return -EBUSY; 2312 } 2313 dm_get(md); 2314 spin_unlock(&_minor_lock); 2315 return 0; 2316 } 2317 EXPORT_SYMBOL_GPL(dm_hold); 2318 2319 const char *dm_device_name(struct mapped_device *md) 2320 { 2321 return md->name; 2322 } 2323 EXPORT_SYMBOL_GPL(dm_device_name); 2324 2325 static void __dm_destroy(struct mapped_device *md, bool wait) 2326 { 2327 struct dm_table *map; 2328 int srcu_idx; 2329 2330 might_sleep(); 2331 2332 spin_lock(&_minor_lock); 2333 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2334 set_bit(DMF_FREEING, &md->flags); 2335 spin_unlock(&_minor_lock); 2336 2337 blk_mark_disk_dead(md->disk); 2338 2339 /* 2340 * Take suspend_lock so that presuspend and postsuspend methods 2341 * do not race with internal suspend. 2342 */ 2343 mutex_lock(&md->suspend_lock); 2344 map = dm_get_live_table(md, &srcu_idx); 2345 if (!dm_suspended_md(md)) { 2346 dm_table_presuspend_targets(map); 2347 set_bit(DMF_SUSPENDED, &md->flags); 2348 set_bit(DMF_POST_SUSPENDING, &md->flags); 2349 dm_table_postsuspend_targets(map); 2350 } 2351 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2352 dm_put_live_table(md, srcu_idx); 2353 mutex_unlock(&md->suspend_lock); 2354 2355 /* 2356 * Rare, but there may be I/O requests still going to complete, 2357 * for example. Wait for all references to disappear. 2358 * No one should increment the reference count of the mapped_device, 2359 * after the mapped_device state becomes DMF_FREEING. 2360 */ 2361 if (wait) 2362 while (atomic_read(&md->holders)) 2363 msleep(1); 2364 else if (atomic_read(&md->holders)) 2365 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2366 dm_device_name(md), atomic_read(&md->holders)); 2367 2368 dm_table_destroy(__unbind(md)); 2369 free_dev(md); 2370 } 2371 2372 void dm_destroy(struct mapped_device *md) 2373 { 2374 __dm_destroy(md, true); 2375 } 2376 2377 void dm_destroy_immediate(struct mapped_device *md) 2378 { 2379 __dm_destroy(md, false); 2380 } 2381 2382 void dm_put(struct mapped_device *md) 2383 { 2384 atomic_dec(&md->holders); 2385 } 2386 EXPORT_SYMBOL_GPL(dm_put); 2387 2388 static bool dm_in_flight_bios(struct mapped_device *md) 2389 { 2390 int cpu; 2391 unsigned long sum = 0; 2392 2393 for_each_possible_cpu(cpu) 2394 sum += *per_cpu_ptr(md->pending_io, cpu); 2395 2396 return sum != 0; 2397 } 2398 2399 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2400 { 2401 int r = 0; 2402 DEFINE_WAIT(wait); 2403 2404 while (true) { 2405 prepare_to_wait(&md->wait, &wait, task_state); 2406 2407 if (!dm_in_flight_bios(md)) 2408 break; 2409 2410 if (signal_pending_state(task_state, current)) { 2411 r = -EINTR; 2412 break; 2413 } 2414 2415 io_schedule(); 2416 } 2417 finish_wait(&md->wait, &wait); 2418 2419 smp_rmb(); 2420 2421 return r; 2422 } 2423 2424 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2425 { 2426 int r = 0; 2427 2428 if (!queue_is_mq(md->queue)) 2429 return dm_wait_for_bios_completion(md, task_state); 2430 2431 while (true) { 2432 if (!blk_mq_queue_inflight(md->queue)) 2433 break; 2434 2435 if (signal_pending_state(task_state, current)) { 2436 r = -EINTR; 2437 break; 2438 } 2439 2440 msleep(5); 2441 } 2442 2443 return r; 2444 } 2445 2446 /* 2447 * Process the deferred bios 2448 */ 2449 static void dm_wq_work(struct work_struct *work) 2450 { 2451 struct mapped_device *md = container_of(work, struct mapped_device, work); 2452 struct bio *bio; 2453 2454 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2455 spin_lock_irq(&md->deferred_lock); 2456 bio = bio_list_pop(&md->deferred); 2457 spin_unlock_irq(&md->deferred_lock); 2458 2459 if (!bio) 2460 break; 2461 2462 submit_bio_noacct(bio); 2463 } 2464 } 2465 2466 static void dm_queue_flush(struct mapped_device *md) 2467 { 2468 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2469 smp_mb__after_atomic(); 2470 queue_work(md->wq, &md->work); 2471 } 2472 2473 /* 2474 * Swap in a new table, returning the old one for the caller to destroy. 2475 */ 2476 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2477 { 2478 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2479 struct queue_limits limits; 2480 int r; 2481 2482 mutex_lock(&md->suspend_lock); 2483 2484 /* device must be suspended */ 2485 if (!dm_suspended_md(md)) 2486 goto out; 2487 2488 /* 2489 * If the new table has no data devices, retain the existing limits. 2490 * This helps multipath with queue_if_no_path if all paths disappear, 2491 * then new I/O is queued based on these limits, and then some paths 2492 * reappear. 2493 */ 2494 if (dm_table_has_no_data_devices(table)) { 2495 live_map = dm_get_live_table_fast(md); 2496 if (live_map) 2497 limits = md->queue->limits; 2498 dm_put_live_table_fast(md); 2499 } 2500 2501 if (!live_map) { 2502 r = dm_calculate_queue_limits(table, &limits); 2503 if (r) { 2504 map = ERR_PTR(r); 2505 goto out; 2506 } 2507 } 2508 2509 map = __bind(md, table, &limits); 2510 dm_issue_global_event(); 2511 2512 out: 2513 mutex_unlock(&md->suspend_lock); 2514 return map; 2515 } 2516 2517 /* 2518 * Functions to lock and unlock any filesystem running on the 2519 * device. 2520 */ 2521 static int lock_fs(struct mapped_device *md) 2522 { 2523 int r; 2524 2525 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2526 2527 r = freeze_bdev(md->disk->part0); 2528 if (!r) 2529 set_bit(DMF_FROZEN, &md->flags); 2530 return r; 2531 } 2532 2533 static void unlock_fs(struct mapped_device *md) 2534 { 2535 if (!test_bit(DMF_FROZEN, &md->flags)) 2536 return; 2537 thaw_bdev(md->disk->part0); 2538 clear_bit(DMF_FROZEN, &md->flags); 2539 } 2540 2541 /* 2542 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2543 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2544 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2545 * 2546 * If __dm_suspend returns 0, the device is completely quiescent 2547 * now. There is no request-processing activity. All new requests 2548 * are being added to md->deferred list. 2549 */ 2550 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2551 unsigned suspend_flags, unsigned int task_state, 2552 int dmf_suspended_flag) 2553 { 2554 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2555 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2556 int r; 2557 2558 lockdep_assert_held(&md->suspend_lock); 2559 2560 /* 2561 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2562 * This flag is cleared before dm_suspend returns. 2563 */ 2564 if (noflush) 2565 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2566 else 2567 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2568 2569 /* 2570 * This gets reverted if there's an error later and the targets 2571 * provide the .presuspend_undo hook. 2572 */ 2573 dm_table_presuspend_targets(map); 2574 2575 /* 2576 * Flush I/O to the device. 2577 * Any I/O submitted after lock_fs() may not be flushed. 2578 * noflush takes precedence over do_lockfs. 2579 * (lock_fs() flushes I/Os and waits for them to complete.) 2580 */ 2581 if (!noflush && do_lockfs) { 2582 r = lock_fs(md); 2583 if (r) { 2584 dm_table_presuspend_undo_targets(map); 2585 return r; 2586 } 2587 } 2588 2589 /* 2590 * Here we must make sure that no processes are submitting requests 2591 * to target drivers i.e. no one may be executing 2592 * dm_split_and_process_bio from dm_submit_bio. 2593 * 2594 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2595 * we take the write lock. To prevent any process from reentering 2596 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2597 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2598 * flush_workqueue(md->wq). 2599 */ 2600 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2601 if (map) 2602 synchronize_srcu(&md->io_barrier); 2603 2604 /* 2605 * Stop md->queue before flushing md->wq in case request-based 2606 * dm defers requests to md->wq from md->queue. 2607 */ 2608 if (dm_request_based(md)) 2609 dm_stop_queue(md->queue); 2610 2611 flush_workqueue(md->wq); 2612 2613 /* 2614 * At this point no more requests are entering target request routines. 2615 * We call dm_wait_for_completion to wait for all existing requests 2616 * to finish. 2617 */ 2618 r = dm_wait_for_completion(md, task_state); 2619 if (!r) 2620 set_bit(dmf_suspended_flag, &md->flags); 2621 2622 if (noflush) 2623 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2624 if (map) 2625 synchronize_srcu(&md->io_barrier); 2626 2627 /* were we interrupted ? */ 2628 if (r < 0) { 2629 dm_queue_flush(md); 2630 2631 if (dm_request_based(md)) 2632 dm_start_queue(md->queue); 2633 2634 unlock_fs(md); 2635 dm_table_presuspend_undo_targets(map); 2636 /* pushback list is already flushed, so skip flush */ 2637 } 2638 2639 return r; 2640 } 2641 2642 /* 2643 * We need to be able to change a mapping table under a mounted 2644 * filesystem. For example we might want to move some data in 2645 * the background. Before the table can be swapped with 2646 * dm_bind_table, dm_suspend must be called to flush any in 2647 * flight bios and ensure that any further io gets deferred. 2648 */ 2649 /* 2650 * Suspend mechanism in request-based dm. 2651 * 2652 * 1. Flush all I/Os by lock_fs() if needed. 2653 * 2. Stop dispatching any I/O by stopping the request_queue. 2654 * 3. Wait for all in-flight I/Os to be completed or requeued. 2655 * 2656 * To abort suspend, start the request_queue. 2657 */ 2658 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2659 { 2660 struct dm_table *map = NULL; 2661 int r = 0; 2662 2663 retry: 2664 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2665 2666 if (dm_suspended_md(md)) { 2667 r = -EINVAL; 2668 goto out_unlock; 2669 } 2670 2671 if (dm_suspended_internally_md(md)) { 2672 /* already internally suspended, wait for internal resume */ 2673 mutex_unlock(&md->suspend_lock); 2674 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2675 if (r) 2676 return r; 2677 goto retry; 2678 } 2679 2680 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2681 2682 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2683 if (r) 2684 goto out_unlock; 2685 2686 set_bit(DMF_POST_SUSPENDING, &md->flags); 2687 dm_table_postsuspend_targets(map); 2688 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2689 2690 out_unlock: 2691 mutex_unlock(&md->suspend_lock); 2692 return r; 2693 } 2694 2695 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2696 { 2697 if (map) { 2698 int r = dm_table_resume_targets(map); 2699 if (r) 2700 return r; 2701 } 2702 2703 dm_queue_flush(md); 2704 2705 /* 2706 * Flushing deferred I/Os must be done after targets are resumed 2707 * so that mapping of targets can work correctly. 2708 * Request-based dm is queueing the deferred I/Os in its request_queue. 2709 */ 2710 if (dm_request_based(md)) 2711 dm_start_queue(md->queue); 2712 2713 unlock_fs(md); 2714 2715 return 0; 2716 } 2717 2718 int dm_resume(struct mapped_device *md) 2719 { 2720 int r; 2721 struct dm_table *map = NULL; 2722 2723 retry: 2724 r = -EINVAL; 2725 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2726 2727 if (!dm_suspended_md(md)) 2728 goto out; 2729 2730 if (dm_suspended_internally_md(md)) { 2731 /* already internally suspended, wait for internal resume */ 2732 mutex_unlock(&md->suspend_lock); 2733 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2734 if (r) 2735 return r; 2736 goto retry; 2737 } 2738 2739 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2740 if (!map || !dm_table_get_size(map)) 2741 goto out; 2742 2743 r = __dm_resume(md, map); 2744 if (r) 2745 goto out; 2746 2747 clear_bit(DMF_SUSPENDED, &md->flags); 2748 out: 2749 mutex_unlock(&md->suspend_lock); 2750 2751 return r; 2752 } 2753 2754 /* 2755 * Internal suspend/resume works like userspace-driven suspend. It waits 2756 * until all bios finish and prevents issuing new bios to the target drivers. 2757 * It may be used only from the kernel. 2758 */ 2759 2760 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2761 { 2762 struct dm_table *map = NULL; 2763 2764 lockdep_assert_held(&md->suspend_lock); 2765 2766 if (md->internal_suspend_count++) 2767 return; /* nested internal suspend */ 2768 2769 if (dm_suspended_md(md)) { 2770 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2771 return; /* nest suspend */ 2772 } 2773 2774 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2775 2776 /* 2777 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2778 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2779 * would require changing .presuspend to return an error -- avoid this 2780 * until there is a need for more elaborate variants of internal suspend. 2781 */ 2782 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2783 DMF_SUSPENDED_INTERNALLY); 2784 2785 set_bit(DMF_POST_SUSPENDING, &md->flags); 2786 dm_table_postsuspend_targets(map); 2787 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2788 } 2789 2790 static void __dm_internal_resume(struct mapped_device *md) 2791 { 2792 BUG_ON(!md->internal_suspend_count); 2793 2794 if (--md->internal_suspend_count) 2795 return; /* resume from nested internal suspend */ 2796 2797 if (dm_suspended_md(md)) 2798 goto done; /* resume from nested suspend */ 2799 2800 /* 2801 * NOTE: existing callers don't need to call dm_table_resume_targets 2802 * (which may fail -- so best to avoid it for now by passing NULL map) 2803 */ 2804 (void) __dm_resume(md, NULL); 2805 2806 done: 2807 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2808 smp_mb__after_atomic(); 2809 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2810 } 2811 2812 void dm_internal_suspend_noflush(struct mapped_device *md) 2813 { 2814 mutex_lock(&md->suspend_lock); 2815 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2816 mutex_unlock(&md->suspend_lock); 2817 } 2818 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2819 2820 void dm_internal_resume(struct mapped_device *md) 2821 { 2822 mutex_lock(&md->suspend_lock); 2823 __dm_internal_resume(md); 2824 mutex_unlock(&md->suspend_lock); 2825 } 2826 EXPORT_SYMBOL_GPL(dm_internal_resume); 2827 2828 /* 2829 * Fast variants of internal suspend/resume hold md->suspend_lock, 2830 * which prevents interaction with userspace-driven suspend. 2831 */ 2832 2833 void dm_internal_suspend_fast(struct mapped_device *md) 2834 { 2835 mutex_lock(&md->suspend_lock); 2836 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2837 return; 2838 2839 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2840 synchronize_srcu(&md->io_barrier); 2841 flush_workqueue(md->wq); 2842 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2843 } 2844 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2845 2846 void dm_internal_resume_fast(struct mapped_device *md) 2847 { 2848 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2849 goto done; 2850 2851 dm_queue_flush(md); 2852 2853 done: 2854 mutex_unlock(&md->suspend_lock); 2855 } 2856 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2857 2858 /*----------------------------------------------------------------- 2859 * Event notification. 2860 *---------------------------------------------------------------*/ 2861 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2862 unsigned cookie) 2863 { 2864 int r; 2865 unsigned noio_flag; 2866 char udev_cookie[DM_COOKIE_LENGTH]; 2867 char *envp[] = { udev_cookie, NULL }; 2868 2869 noio_flag = memalloc_noio_save(); 2870 2871 if (!cookie) 2872 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2873 else { 2874 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2875 DM_COOKIE_ENV_VAR_NAME, cookie); 2876 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2877 action, envp); 2878 } 2879 2880 memalloc_noio_restore(noio_flag); 2881 2882 return r; 2883 } 2884 2885 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2886 { 2887 return atomic_add_return(1, &md->uevent_seq); 2888 } 2889 2890 uint32_t dm_get_event_nr(struct mapped_device *md) 2891 { 2892 return atomic_read(&md->event_nr); 2893 } 2894 2895 int dm_wait_event(struct mapped_device *md, int event_nr) 2896 { 2897 return wait_event_interruptible(md->eventq, 2898 (event_nr != atomic_read(&md->event_nr))); 2899 } 2900 2901 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2902 { 2903 unsigned long flags; 2904 2905 spin_lock_irqsave(&md->uevent_lock, flags); 2906 list_add(elist, &md->uevent_list); 2907 spin_unlock_irqrestore(&md->uevent_lock, flags); 2908 } 2909 2910 /* 2911 * The gendisk is only valid as long as you have a reference 2912 * count on 'md'. 2913 */ 2914 struct gendisk *dm_disk(struct mapped_device *md) 2915 { 2916 return md->disk; 2917 } 2918 EXPORT_SYMBOL_GPL(dm_disk); 2919 2920 struct kobject *dm_kobject(struct mapped_device *md) 2921 { 2922 return &md->kobj_holder.kobj; 2923 } 2924 2925 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2926 { 2927 struct mapped_device *md; 2928 2929 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2930 2931 spin_lock(&_minor_lock); 2932 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2933 md = NULL; 2934 goto out; 2935 } 2936 dm_get(md); 2937 out: 2938 spin_unlock(&_minor_lock); 2939 2940 return md; 2941 } 2942 2943 int dm_suspended_md(struct mapped_device *md) 2944 { 2945 return test_bit(DMF_SUSPENDED, &md->flags); 2946 } 2947 2948 static int dm_post_suspending_md(struct mapped_device *md) 2949 { 2950 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2951 } 2952 2953 int dm_suspended_internally_md(struct mapped_device *md) 2954 { 2955 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2956 } 2957 2958 int dm_test_deferred_remove_flag(struct mapped_device *md) 2959 { 2960 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2961 } 2962 2963 int dm_suspended(struct dm_target *ti) 2964 { 2965 return dm_suspended_md(ti->table->md); 2966 } 2967 EXPORT_SYMBOL_GPL(dm_suspended); 2968 2969 int dm_post_suspending(struct dm_target *ti) 2970 { 2971 return dm_post_suspending_md(ti->table->md); 2972 } 2973 EXPORT_SYMBOL_GPL(dm_post_suspending); 2974 2975 int dm_noflush_suspending(struct dm_target *ti) 2976 { 2977 return __noflush_suspending(ti->table->md); 2978 } 2979 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2980 2981 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2982 unsigned per_io_data_size, unsigned min_pool_size, 2983 bool integrity, bool poll) 2984 { 2985 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2986 unsigned int pool_size = 0; 2987 unsigned int front_pad, io_front_pad; 2988 int ret; 2989 2990 if (!pools) 2991 return NULL; 2992 2993 switch (type) { 2994 case DM_TYPE_BIO_BASED: 2995 case DM_TYPE_DAX_BIO_BASED: 2996 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2997 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2998 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2999 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, poll ? BIOSET_PERCPU_CACHE : 0); 3000 if (ret) 3001 goto out; 3002 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3003 goto out; 3004 break; 3005 case DM_TYPE_REQUEST_BASED: 3006 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3007 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3008 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3009 break; 3010 default: 3011 BUG(); 3012 } 3013 3014 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3015 if (ret) 3016 goto out; 3017 3018 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3019 goto out; 3020 3021 return pools; 3022 3023 out: 3024 dm_free_md_mempools(pools); 3025 3026 return NULL; 3027 } 3028 3029 void dm_free_md_mempools(struct dm_md_mempools *pools) 3030 { 3031 if (!pools) 3032 return; 3033 3034 bioset_exit(&pools->bs); 3035 bioset_exit(&pools->io_bs); 3036 3037 kfree(pools); 3038 } 3039 3040 struct dm_pr { 3041 u64 old_key; 3042 u64 new_key; 3043 u32 flags; 3044 bool fail_early; 3045 }; 3046 3047 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3048 void *data) 3049 { 3050 struct mapped_device *md = bdev->bd_disk->private_data; 3051 struct dm_table *table; 3052 struct dm_target *ti; 3053 int ret = -ENOTTY, srcu_idx; 3054 3055 table = dm_get_live_table(md, &srcu_idx); 3056 if (!table || !dm_table_get_size(table)) 3057 goto out; 3058 3059 /* We only support devices that have a single target */ 3060 if (dm_table_get_num_targets(table) != 1) 3061 goto out; 3062 ti = dm_table_get_target(table, 0); 3063 3064 ret = -EINVAL; 3065 if (!ti->type->iterate_devices) 3066 goto out; 3067 3068 ret = ti->type->iterate_devices(ti, fn, data); 3069 out: 3070 dm_put_live_table(md, srcu_idx); 3071 return ret; 3072 } 3073 3074 /* 3075 * For register / unregister we need to manually call out to every path. 3076 */ 3077 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3078 sector_t start, sector_t len, void *data) 3079 { 3080 struct dm_pr *pr = data; 3081 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3082 3083 if (!ops || !ops->pr_register) 3084 return -EOPNOTSUPP; 3085 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3086 } 3087 3088 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3089 u32 flags) 3090 { 3091 struct dm_pr pr = { 3092 .old_key = old_key, 3093 .new_key = new_key, 3094 .flags = flags, 3095 .fail_early = true, 3096 }; 3097 int ret; 3098 3099 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3100 if (ret && new_key) { 3101 /* unregister all paths if we failed to register any path */ 3102 pr.old_key = new_key; 3103 pr.new_key = 0; 3104 pr.flags = 0; 3105 pr.fail_early = false; 3106 dm_call_pr(bdev, __dm_pr_register, &pr); 3107 } 3108 3109 return ret; 3110 } 3111 3112 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3113 u32 flags) 3114 { 3115 struct mapped_device *md = bdev->bd_disk->private_data; 3116 const struct pr_ops *ops; 3117 int r, srcu_idx; 3118 3119 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3120 if (r < 0) 3121 goto out; 3122 3123 ops = bdev->bd_disk->fops->pr_ops; 3124 if (ops && ops->pr_reserve) 3125 r = ops->pr_reserve(bdev, key, type, flags); 3126 else 3127 r = -EOPNOTSUPP; 3128 out: 3129 dm_unprepare_ioctl(md, srcu_idx); 3130 return r; 3131 } 3132 3133 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3134 { 3135 struct mapped_device *md = bdev->bd_disk->private_data; 3136 const struct pr_ops *ops; 3137 int r, srcu_idx; 3138 3139 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3140 if (r < 0) 3141 goto out; 3142 3143 ops = bdev->bd_disk->fops->pr_ops; 3144 if (ops && ops->pr_release) 3145 r = ops->pr_release(bdev, key, type); 3146 else 3147 r = -EOPNOTSUPP; 3148 out: 3149 dm_unprepare_ioctl(md, srcu_idx); 3150 return r; 3151 } 3152 3153 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3154 enum pr_type type, bool abort) 3155 { 3156 struct mapped_device *md = bdev->bd_disk->private_data; 3157 const struct pr_ops *ops; 3158 int r, srcu_idx; 3159 3160 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3161 if (r < 0) 3162 goto out; 3163 3164 ops = bdev->bd_disk->fops->pr_ops; 3165 if (ops && ops->pr_preempt) 3166 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3167 else 3168 r = -EOPNOTSUPP; 3169 out: 3170 dm_unprepare_ioctl(md, srcu_idx); 3171 return r; 3172 } 3173 3174 static int dm_pr_clear(struct block_device *bdev, u64 key) 3175 { 3176 struct mapped_device *md = bdev->bd_disk->private_data; 3177 const struct pr_ops *ops; 3178 int r, srcu_idx; 3179 3180 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3181 if (r < 0) 3182 goto out; 3183 3184 ops = bdev->bd_disk->fops->pr_ops; 3185 if (ops && ops->pr_clear) 3186 r = ops->pr_clear(bdev, key); 3187 else 3188 r = -EOPNOTSUPP; 3189 out: 3190 dm_unprepare_ioctl(md, srcu_idx); 3191 return r; 3192 } 3193 3194 static const struct pr_ops dm_pr_ops = { 3195 .pr_register = dm_pr_register, 3196 .pr_reserve = dm_pr_reserve, 3197 .pr_release = dm_pr_release, 3198 .pr_preempt = dm_pr_preempt, 3199 .pr_clear = dm_pr_clear, 3200 }; 3201 3202 static const struct block_device_operations dm_blk_dops = { 3203 .submit_bio = dm_submit_bio, 3204 .poll_bio = dm_poll_bio, 3205 .open = dm_blk_open, 3206 .release = dm_blk_close, 3207 .ioctl = dm_blk_ioctl, 3208 .getgeo = dm_blk_getgeo, 3209 .report_zones = dm_blk_report_zones, 3210 .pr_ops = &dm_pr_ops, 3211 .owner = THIS_MODULE 3212 }; 3213 3214 static const struct block_device_operations dm_rq_blk_dops = { 3215 .open = dm_blk_open, 3216 .release = dm_blk_close, 3217 .ioctl = dm_blk_ioctl, 3218 .getgeo = dm_blk_getgeo, 3219 .pr_ops = &dm_pr_ops, 3220 .owner = THIS_MODULE 3221 }; 3222 3223 static const struct dax_operations dm_dax_ops = { 3224 .direct_access = dm_dax_direct_access, 3225 .zero_page_range = dm_dax_zero_page_range, 3226 .recovery_write = dm_dax_recovery_write, 3227 }; 3228 3229 /* 3230 * module hooks 3231 */ 3232 module_init(dm_init); 3233 module_exit(dm_exit); 3234 3235 module_param(major, uint, 0); 3236 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3237 3238 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3239 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3240 3241 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3242 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3243 3244 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 3245 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3246 3247 MODULE_DESCRIPTION(DM_NAME " driver"); 3248 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3249 MODULE_LICENSE("GPL"); 3250