xref: /openbmc/linux/drivers/md/dm.c (revision db30dc1a)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 /*
44  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45  * dm_io into one list, and reuse bio->bi_private as the list head. Before
46  * ending this fs bio, we will recover its ->bi_private.
47  */
48 #define REQ_DM_POLL_LIST	REQ_DRV
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67 
68 void dm_issue_global_event(void)
69 {
70 	atomic_inc(&dm_global_event_nr);
71 	wake_up(&dm_global_eventq);
72 }
73 
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
77 
78 /*
79  * One of these is allocated (on-stack) per original bio.
80  */
81 struct clone_info {
82 	struct dm_table *map;
83 	struct bio *bio;
84 	struct dm_io *io;
85 	sector_t sector;
86 	unsigned sector_count;
87 	bool is_abnormal_io:1;
88 	bool submit_as_polled:1;
89 };
90 
91 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
92 #define DM_IO_BIO_OFFSET \
93 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
94 
95 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
96 {
97 	return container_of(clone, struct dm_target_io, clone);
98 }
99 
100 void *dm_per_bio_data(struct bio *bio, size_t data_size)
101 {
102 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
103 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
104 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
105 }
106 EXPORT_SYMBOL_GPL(dm_per_bio_data);
107 
108 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
109 {
110 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
111 	if (io->magic == DM_IO_MAGIC)
112 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
113 	BUG_ON(io->magic != DM_TIO_MAGIC);
114 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
115 }
116 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
117 
118 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
119 {
120 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
123 
124 #define MINOR_ALLOCED ((void *)-1)
125 
126 #define DM_NUMA_NODE NUMA_NO_NODE
127 static int dm_numa_node = DM_NUMA_NODE;
128 
129 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
130 static int swap_bios = DEFAULT_SWAP_BIOS;
131 static int get_swap_bios(void)
132 {
133 	int latch = READ_ONCE(swap_bios);
134 	if (unlikely(latch <= 0))
135 		latch = DEFAULT_SWAP_BIOS;
136 	return latch;
137 }
138 
139 struct table_device {
140 	struct list_head list;
141 	refcount_t count;
142 	struct dm_dev dm_dev;
143 };
144 
145 /*
146  * Bio-based DM's mempools' reserved IOs set by the user.
147  */
148 #define RESERVED_BIO_BASED_IOS		16
149 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150 
151 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 {
153 	int param = READ_ONCE(*module_param);
154 	int modified_param = 0;
155 	bool modified = true;
156 
157 	if (param < min)
158 		modified_param = min;
159 	else if (param > max)
160 		modified_param = max;
161 	else
162 		modified = false;
163 
164 	if (modified) {
165 		(void)cmpxchg(module_param, param, modified_param);
166 		param = modified_param;
167 	}
168 
169 	return param;
170 }
171 
172 unsigned __dm_get_module_param(unsigned *module_param,
173 			       unsigned def, unsigned max)
174 {
175 	unsigned param = READ_ONCE(*module_param);
176 	unsigned modified_param = 0;
177 
178 	if (!param)
179 		modified_param = def;
180 	else if (param > max)
181 		modified_param = max;
182 
183 	if (modified_param) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned dm_get_reserved_bio_based_ios(void)
192 {
193 	return __dm_get_module_param(&reserved_bio_based_ios,
194 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
195 }
196 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
197 
198 static unsigned dm_get_numa_node(void)
199 {
200 	return __dm_get_module_param_int(&dm_numa_node,
201 					 DM_NUMA_NODE, num_online_nodes() - 1);
202 }
203 
204 static int __init local_init(void)
205 {
206 	int r;
207 
208 	r = dm_uevent_init();
209 	if (r)
210 		return r;
211 
212 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
213 	if (!deferred_remove_workqueue) {
214 		r = -ENOMEM;
215 		goto out_uevent_exit;
216 	}
217 
218 	_major = major;
219 	r = register_blkdev(_major, _name);
220 	if (r < 0)
221 		goto out_free_workqueue;
222 
223 	if (!_major)
224 		_major = r;
225 
226 	return 0;
227 
228 out_free_workqueue:
229 	destroy_workqueue(deferred_remove_workqueue);
230 out_uevent_exit:
231 	dm_uevent_exit();
232 
233 	return r;
234 }
235 
236 static void local_exit(void)
237 {
238 	flush_scheduled_work();
239 	destroy_workqueue(deferred_remove_workqueue);
240 
241 	unregister_blkdev(_major, _name);
242 	dm_uevent_exit();
243 
244 	_major = 0;
245 
246 	DMINFO("cleaned up");
247 }
248 
249 static int (*_inits[])(void) __initdata = {
250 	local_init,
251 	dm_target_init,
252 	dm_linear_init,
253 	dm_stripe_init,
254 	dm_io_init,
255 	dm_kcopyd_init,
256 	dm_interface_init,
257 	dm_statistics_init,
258 };
259 
260 static void (*_exits[])(void) = {
261 	local_exit,
262 	dm_target_exit,
263 	dm_linear_exit,
264 	dm_stripe_exit,
265 	dm_io_exit,
266 	dm_kcopyd_exit,
267 	dm_interface_exit,
268 	dm_statistics_exit,
269 };
270 
271 static int __init dm_init(void)
272 {
273 	const int count = ARRAY_SIZE(_inits);
274 	int r, i;
275 
276 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
277 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
278 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
279 #endif
280 
281 	for (i = 0; i < count; i++) {
282 		r = _inits[i]();
283 		if (r)
284 			goto bad;
285 	}
286 
287 	return 0;
288 bad:
289 	while (i--)
290 		_exits[i]();
291 
292 	return r;
293 }
294 
295 static void __exit dm_exit(void)
296 {
297 	int i = ARRAY_SIZE(_exits);
298 
299 	while (i--)
300 		_exits[i]();
301 
302 	/*
303 	 * Should be empty by this point.
304 	 */
305 	idr_destroy(&_minor_idr);
306 }
307 
308 /*
309  * Block device functions
310  */
311 int dm_deleting_md(struct mapped_device *md)
312 {
313 	return test_bit(DMF_DELETING, &md->flags);
314 }
315 
316 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
317 {
318 	struct mapped_device *md;
319 
320 	spin_lock(&_minor_lock);
321 
322 	md = bdev->bd_disk->private_data;
323 	if (!md)
324 		goto out;
325 
326 	if (test_bit(DMF_FREEING, &md->flags) ||
327 	    dm_deleting_md(md)) {
328 		md = NULL;
329 		goto out;
330 	}
331 
332 	dm_get(md);
333 	atomic_inc(&md->open_count);
334 out:
335 	spin_unlock(&_minor_lock);
336 
337 	return md ? 0 : -ENXIO;
338 }
339 
340 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
341 {
342 	struct mapped_device *md;
343 
344 	spin_lock(&_minor_lock);
345 
346 	md = disk->private_data;
347 	if (WARN_ON(!md))
348 		goto out;
349 
350 	if (atomic_dec_and_test(&md->open_count) &&
351 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
352 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
353 
354 	dm_put(md);
355 out:
356 	spin_unlock(&_minor_lock);
357 }
358 
359 int dm_open_count(struct mapped_device *md)
360 {
361 	return atomic_read(&md->open_count);
362 }
363 
364 /*
365  * Guarantees nothing is using the device before it's deleted.
366  */
367 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
368 {
369 	int r = 0;
370 
371 	spin_lock(&_minor_lock);
372 
373 	if (dm_open_count(md)) {
374 		r = -EBUSY;
375 		if (mark_deferred)
376 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
377 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
378 		r = -EEXIST;
379 	else
380 		set_bit(DMF_DELETING, &md->flags);
381 
382 	spin_unlock(&_minor_lock);
383 
384 	return r;
385 }
386 
387 int dm_cancel_deferred_remove(struct mapped_device *md)
388 {
389 	int r = 0;
390 
391 	spin_lock(&_minor_lock);
392 
393 	if (test_bit(DMF_DELETING, &md->flags))
394 		r = -EBUSY;
395 	else
396 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
397 
398 	spin_unlock(&_minor_lock);
399 
400 	return r;
401 }
402 
403 static void do_deferred_remove(struct work_struct *w)
404 {
405 	dm_deferred_remove();
406 }
407 
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 	struct mapped_device *md = bdev->bd_disk->private_data;
411 
412 	return dm_get_geometry(md, geo);
413 }
414 
415 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
416 			    struct block_device **bdev)
417 {
418 	struct dm_target *tgt;
419 	struct dm_table *map;
420 	int r;
421 
422 retry:
423 	r = -ENOTTY;
424 	map = dm_get_live_table(md, srcu_idx);
425 	if (!map || !dm_table_get_size(map))
426 		return r;
427 
428 	/* We only support devices that have a single target */
429 	if (dm_table_get_num_targets(map) != 1)
430 		return r;
431 
432 	tgt = dm_table_get_target(map, 0);
433 	if (!tgt->type->prepare_ioctl)
434 		return r;
435 
436 	if (dm_suspended_md(md))
437 		return -EAGAIN;
438 
439 	r = tgt->type->prepare_ioctl(tgt, bdev);
440 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
441 		dm_put_live_table(md, *srcu_idx);
442 		msleep(10);
443 		goto retry;
444 	}
445 
446 	return r;
447 }
448 
449 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
450 {
451 	dm_put_live_table(md, srcu_idx);
452 }
453 
454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
455 			unsigned int cmd, unsigned long arg)
456 {
457 	struct mapped_device *md = bdev->bd_disk->private_data;
458 	int r, srcu_idx;
459 
460 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
461 	if (r < 0)
462 		goto out;
463 
464 	if (r > 0) {
465 		/*
466 		 * Target determined this ioctl is being issued against a
467 		 * subset of the parent bdev; require extra privileges.
468 		 */
469 		if (!capable(CAP_SYS_RAWIO)) {
470 			DMDEBUG_LIMIT(
471 	"%s: sending ioctl %x to DM device without required privilege.",
472 				current->comm, cmd);
473 			r = -ENOIOCTLCMD;
474 			goto out;
475 		}
476 	}
477 
478 	if (!bdev->bd_disk->fops->ioctl)
479 		r = -ENOTTY;
480 	else
481 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
482 out:
483 	dm_unprepare_ioctl(md, srcu_idx);
484 	return r;
485 }
486 
487 u64 dm_start_time_ns_from_clone(struct bio *bio)
488 {
489 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
490 }
491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
492 
493 static bool bio_is_flush_with_data(struct bio *bio)
494 {
495 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
496 }
497 
498 static void dm_io_acct(struct dm_io *io, bool end)
499 {
500 	struct dm_stats_aux *stats_aux = &io->stats_aux;
501 	unsigned long start_time = io->start_time;
502 	struct mapped_device *md = io->md;
503 	struct bio *bio = io->orig_bio;
504 	unsigned int sectors;
505 
506 	/*
507 	 * If REQ_PREFLUSH set, don't account payload, it will be
508 	 * submitted (and accounted) after this flush completes.
509 	 */
510 	if (bio_is_flush_with_data(bio))
511 		sectors = 0;
512 	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
513 		sectors = bio_sectors(bio);
514 	else
515 		sectors = io->sectors;
516 
517 	if (!end)
518 		bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
519 				   start_time);
520 	else
521 		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
522 
523 	if (static_branch_unlikely(&stats_enabled) &&
524 	    unlikely(dm_stats_used(&md->stats))) {
525 		sector_t sector;
526 
527 		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
528 			sector = bio->bi_iter.bi_sector;
529 		else
530 			sector = bio_end_sector(bio) - io->sector_offset;
531 
532 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
533 				    sector, sectors,
534 				    end, start_time, stats_aux);
535 	}
536 }
537 
538 static void __dm_start_io_acct(struct dm_io *io)
539 {
540 	dm_io_acct(io, false);
541 }
542 
543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
544 {
545 	/*
546 	 * Ensure IO accounting is only ever started once.
547 	 */
548 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
549 		return;
550 
551 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
552 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
553 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
554 	} else {
555 		unsigned long flags;
556 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
557 		spin_lock_irqsave(&io->lock, flags);
558 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
559 			spin_unlock_irqrestore(&io->lock, flags);
560 			return;
561 		}
562 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
563 		spin_unlock_irqrestore(&io->lock, flags);
564 	}
565 
566 	__dm_start_io_acct(io);
567 }
568 
569 static void dm_end_io_acct(struct dm_io *io)
570 {
571 	dm_io_acct(io, true);
572 }
573 
574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
575 {
576 	struct dm_io *io;
577 	struct dm_target_io *tio;
578 	struct bio *clone;
579 
580 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
581 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
582 	clone->bi_bdev = md->disk->part0;
583 
584 	tio = clone_to_tio(clone);
585 	tio->flags = 0;
586 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
587 	tio->io = NULL;
588 
589 	io = container_of(tio, struct dm_io, tio);
590 	io->magic = DM_IO_MAGIC;
591 	io->status = BLK_STS_OK;
592 
593 	/* one ref is for submission, the other is for completion */
594 	atomic_set(&io->io_count, 2);
595 	this_cpu_inc(*md->pending_io);
596 	io->orig_bio = bio;
597 	io->md = md;
598 	spin_lock_init(&io->lock);
599 	io->start_time = jiffies;
600 	io->flags = 0;
601 
602 	if (static_branch_unlikely(&stats_enabled))
603 		dm_stats_record_start(&md->stats, &io->stats_aux);
604 
605 	return io;
606 }
607 
608 static void free_io(struct dm_io *io)
609 {
610 	bio_put(&io->tio.clone);
611 }
612 
613 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
614 			     unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
615 {
616 	struct dm_target_io *tio;
617 	struct bio *clone;
618 
619 	if (!ci->io->tio.io) {
620 		/* the dm_target_io embedded in ci->io is available */
621 		tio = &ci->io->tio;
622 		/* alloc_io() already initialized embedded clone */
623 		clone = &tio->clone;
624 	} else {
625 		struct mapped_device *md = ci->io->md;
626 
627 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
628 					&md->mempools->bs);
629 		if (!clone)
630 			return NULL;
631 		/* Set default bdev, but target must bio_set_dev() before issuing IO */
632 		clone->bi_bdev = md->disk->part0;
633 
634 		/* REQ_DM_POLL_LIST shouldn't be inherited */
635 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
636 
637 		tio = clone_to_tio(clone);
638 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
639 	}
640 
641 	tio->magic = DM_TIO_MAGIC;
642 	tio->io = ci->io;
643 	tio->ti = ti;
644 	tio->target_bio_nr = target_bio_nr;
645 	tio->len_ptr = len;
646 	tio->old_sector = 0;
647 
648 	if (len) {
649 		clone->bi_iter.bi_size = to_bytes(*len);
650 		if (bio_integrity(clone))
651 			bio_integrity_trim(clone);
652 	}
653 
654 	return clone;
655 }
656 
657 static void free_tio(struct bio *clone)
658 {
659 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
660 		return;
661 	bio_put(clone);
662 }
663 
664 /*
665  * Add the bio to the list of deferred io.
666  */
667 static void queue_io(struct mapped_device *md, struct bio *bio)
668 {
669 	unsigned long flags;
670 
671 	spin_lock_irqsave(&md->deferred_lock, flags);
672 	bio_list_add(&md->deferred, bio);
673 	spin_unlock_irqrestore(&md->deferred_lock, flags);
674 	queue_work(md->wq, &md->work);
675 }
676 
677 /*
678  * Everyone (including functions in this file), should use this
679  * function to access the md->map field, and make sure they call
680  * dm_put_live_table() when finished.
681  */
682 struct dm_table *dm_get_live_table(struct mapped_device *md,
683 				   int *srcu_idx) __acquires(md->io_barrier)
684 {
685 	*srcu_idx = srcu_read_lock(&md->io_barrier);
686 
687 	return srcu_dereference(md->map, &md->io_barrier);
688 }
689 
690 void dm_put_live_table(struct mapped_device *md,
691 		       int srcu_idx) __releases(md->io_barrier)
692 {
693 	srcu_read_unlock(&md->io_barrier, srcu_idx);
694 }
695 
696 void dm_sync_table(struct mapped_device *md)
697 {
698 	synchronize_srcu(&md->io_barrier);
699 	synchronize_rcu_expedited();
700 }
701 
702 /*
703  * A fast alternative to dm_get_live_table/dm_put_live_table.
704  * The caller must not block between these two functions.
705  */
706 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
707 {
708 	rcu_read_lock();
709 	return rcu_dereference(md->map);
710 }
711 
712 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
713 {
714 	rcu_read_unlock();
715 }
716 
717 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
718 						     int *srcu_idx, unsigned bio_opf)
719 {
720 	if (bio_opf & REQ_NOWAIT)
721 		return dm_get_live_table_fast(md);
722 	else
723 		return dm_get_live_table(md, srcu_idx);
724 }
725 
726 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
727 					 unsigned bio_opf)
728 {
729 	if (bio_opf & REQ_NOWAIT)
730 		dm_put_live_table_fast(md);
731 	else
732 		dm_put_live_table(md, srcu_idx);
733 }
734 
735 static char *_dm_claim_ptr = "I belong to device-mapper";
736 
737 /*
738  * Open a table device so we can use it as a map destination.
739  */
740 static int open_table_device(struct table_device *td, dev_t dev,
741 			     struct mapped_device *md)
742 {
743 	struct block_device *bdev;
744 	u64 part_off;
745 	int r;
746 
747 	BUG_ON(td->dm_dev.bdev);
748 
749 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
750 	if (IS_ERR(bdev))
751 		return PTR_ERR(bdev);
752 
753 	r = bd_link_disk_holder(bdev, dm_disk(md));
754 	if (r) {
755 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
756 		return r;
757 	}
758 
759 	td->dm_dev.bdev = bdev;
760 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
761 	return 0;
762 }
763 
764 /*
765  * Close a table device that we've been using.
766  */
767 static void close_table_device(struct table_device *td, struct mapped_device *md)
768 {
769 	if (!td->dm_dev.bdev)
770 		return;
771 
772 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
773 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
774 	put_dax(td->dm_dev.dax_dev);
775 	td->dm_dev.bdev = NULL;
776 	td->dm_dev.dax_dev = NULL;
777 }
778 
779 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
780 					      fmode_t mode)
781 {
782 	struct table_device *td;
783 
784 	list_for_each_entry(td, l, list)
785 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
786 			return td;
787 
788 	return NULL;
789 }
790 
791 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
792 			struct dm_dev **result)
793 {
794 	int r;
795 	struct table_device *td;
796 
797 	mutex_lock(&md->table_devices_lock);
798 	td = find_table_device(&md->table_devices, dev, mode);
799 	if (!td) {
800 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
801 		if (!td) {
802 			mutex_unlock(&md->table_devices_lock);
803 			return -ENOMEM;
804 		}
805 
806 		td->dm_dev.mode = mode;
807 		td->dm_dev.bdev = NULL;
808 
809 		if ((r = open_table_device(td, dev, md))) {
810 			mutex_unlock(&md->table_devices_lock);
811 			kfree(td);
812 			return r;
813 		}
814 
815 		format_dev_t(td->dm_dev.name, dev);
816 
817 		refcount_set(&td->count, 1);
818 		list_add(&td->list, &md->table_devices);
819 	} else {
820 		refcount_inc(&td->count);
821 	}
822 	mutex_unlock(&md->table_devices_lock);
823 
824 	*result = &td->dm_dev;
825 	return 0;
826 }
827 
828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
829 {
830 	struct table_device *td = container_of(d, struct table_device, dm_dev);
831 
832 	mutex_lock(&md->table_devices_lock);
833 	if (refcount_dec_and_test(&td->count)) {
834 		close_table_device(td, md);
835 		list_del(&td->list);
836 		kfree(td);
837 	}
838 	mutex_unlock(&md->table_devices_lock);
839 }
840 
841 static void free_table_devices(struct list_head *devices)
842 {
843 	struct list_head *tmp, *next;
844 
845 	list_for_each_safe(tmp, next, devices) {
846 		struct table_device *td = list_entry(tmp, struct table_device, list);
847 
848 		DMWARN("dm_destroy: %s still exists with %d references",
849 		       td->dm_dev.name, refcount_read(&td->count));
850 		kfree(td);
851 	}
852 }
853 
854 /*
855  * Get the geometry associated with a dm device
856  */
857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
858 {
859 	*geo = md->geometry;
860 
861 	return 0;
862 }
863 
864 /*
865  * Set the geometry of a device.
866  */
867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
868 {
869 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
870 
871 	if (geo->start > sz) {
872 		DMWARN("Start sector is beyond the geometry limits.");
873 		return -EINVAL;
874 	}
875 
876 	md->geometry = *geo;
877 
878 	return 0;
879 }
880 
881 static int __noflush_suspending(struct mapped_device *md)
882 {
883 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
884 }
885 
886 static void dm_io_complete(struct dm_io *io)
887 {
888 	blk_status_t io_error;
889 	struct mapped_device *md = io->md;
890 	struct bio *bio = io->orig_bio;
891 
892 	if (io->status == BLK_STS_DM_REQUEUE) {
893 		unsigned long flags;
894 		/*
895 		 * Target requested pushing back the I/O.
896 		 */
897 		spin_lock_irqsave(&md->deferred_lock, flags);
898 		if (__noflush_suspending(md) &&
899 		    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
900 			/* NOTE early return due to BLK_STS_DM_REQUEUE below */
901 			bio_list_add_head(&md->deferred, bio);
902 		} else {
903 			/*
904 			 * noflush suspend was interrupted or this is
905 			 * a write to a zoned target.
906 			 */
907 			io->status = BLK_STS_IOERR;
908 		}
909 		spin_unlock_irqrestore(&md->deferred_lock, flags);
910 	}
911 
912 	io_error = io->status;
913 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
914 		dm_end_io_acct(io);
915 	else if (!io_error) {
916 		/*
917 		 * Must handle target that DM_MAPIO_SUBMITTED only to
918 		 * then bio_endio() rather than dm_submit_bio_remap()
919 		 */
920 		__dm_start_io_acct(io);
921 		dm_end_io_acct(io);
922 	}
923 	free_io(io);
924 	smp_wmb();
925 	this_cpu_dec(*md->pending_io);
926 
927 	/* nudge anyone waiting on suspend queue */
928 	if (unlikely(wq_has_sleeper(&md->wait)))
929 		wake_up(&md->wait);
930 
931 	if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) {
932 		if (bio->bi_opf & REQ_POLLED) {
933 			/*
934 			 * Upper layer won't help us poll split bio (io->orig_bio
935 			 * may only reflect a subset of the pre-split original)
936 			 * so clear REQ_POLLED in case of requeue.
937 			 */
938 			bio_clear_polled(bio);
939 			if (io_error == BLK_STS_AGAIN) {
940 				/* io_uring doesn't handle BLK_STS_AGAIN (yet) */
941 				queue_io(md, bio);
942 			}
943 		}
944 		return;
945 	}
946 
947 	if (bio_is_flush_with_data(bio)) {
948 		/*
949 		 * Preflush done for flush with data, reissue
950 		 * without REQ_PREFLUSH.
951 		 */
952 		bio->bi_opf &= ~REQ_PREFLUSH;
953 		queue_io(md, bio);
954 	} else {
955 		/* done with normal IO or empty flush */
956 		if (io_error)
957 			bio->bi_status = io_error;
958 		bio_endio(bio);
959 	}
960 }
961 
962 /*
963  * Decrements the number of outstanding ios that a bio has been
964  * cloned into, completing the original io if necc.
965  */
966 static inline void __dm_io_dec_pending(struct dm_io *io)
967 {
968 	if (atomic_dec_and_test(&io->io_count))
969 		dm_io_complete(io);
970 }
971 
972 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
973 {
974 	unsigned long flags;
975 
976 	/* Push-back supersedes any I/O errors */
977 	spin_lock_irqsave(&io->lock, flags);
978 	if (!(io->status == BLK_STS_DM_REQUEUE &&
979 	      __noflush_suspending(io->md))) {
980 		io->status = error;
981 	}
982 	spin_unlock_irqrestore(&io->lock, flags);
983 }
984 
985 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
986 {
987 	if (unlikely(error))
988 		dm_io_set_error(io, error);
989 
990 	__dm_io_dec_pending(io);
991 }
992 
993 void disable_discard(struct mapped_device *md)
994 {
995 	struct queue_limits *limits = dm_get_queue_limits(md);
996 
997 	/* device doesn't really support DISCARD, disable it */
998 	limits->max_discard_sectors = 0;
999 }
1000 
1001 void disable_write_zeroes(struct mapped_device *md)
1002 {
1003 	struct queue_limits *limits = dm_get_queue_limits(md);
1004 
1005 	/* device doesn't really support WRITE ZEROES, disable it */
1006 	limits->max_write_zeroes_sectors = 0;
1007 }
1008 
1009 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1010 {
1011 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1012 }
1013 
1014 static void clone_endio(struct bio *bio)
1015 {
1016 	blk_status_t error = bio->bi_status;
1017 	struct dm_target_io *tio = clone_to_tio(bio);
1018 	struct dm_target *ti = tio->ti;
1019 	dm_endio_fn endio = ti->type->end_io;
1020 	struct dm_io *io = tio->io;
1021 	struct mapped_device *md = io->md;
1022 
1023 	if (unlikely(error == BLK_STS_TARGET)) {
1024 		if (bio_op(bio) == REQ_OP_DISCARD &&
1025 		    !bdev_max_discard_sectors(bio->bi_bdev))
1026 			disable_discard(md);
1027 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1028 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1029 			disable_write_zeroes(md);
1030 	}
1031 
1032 	if (static_branch_unlikely(&zoned_enabled) &&
1033 	    unlikely(blk_queue_is_zoned(bdev_get_queue(bio->bi_bdev))))
1034 		dm_zone_endio(io, bio);
1035 
1036 	if (endio) {
1037 		int r = endio(ti, bio, &error);
1038 		switch (r) {
1039 		case DM_ENDIO_REQUEUE:
1040 			if (static_branch_unlikely(&zoned_enabled)) {
1041 				/*
1042 				 * Requeuing writes to a sequential zone of a zoned
1043 				 * target will break the sequential write pattern:
1044 				 * fail such IO.
1045 				 */
1046 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1047 					error = BLK_STS_IOERR;
1048 				else
1049 					error = BLK_STS_DM_REQUEUE;
1050 			} else
1051 				error = BLK_STS_DM_REQUEUE;
1052 			fallthrough;
1053 		case DM_ENDIO_DONE:
1054 			break;
1055 		case DM_ENDIO_INCOMPLETE:
1056 			/* The target will handle the io */
1057 			return;
1058 		default:
1059 			DMWARN("unimplemented target endio return value: %d", r);
1060 			BUG();
1061 		}
1062 	}
1063 
1064 	if (static_branch_unlikely(&swap_bios_enabled) &&
1065 	    unlikely(swap_bios_limit(ti, bio)))
1066 		up(&md->swap_bios_semaphore);
1067 
1068 	free_tio(bio);
1069 	dm_io_dec_pending(io, error);
1070 }
1071 
1072 /*
1073  * Return maximum size of I/O possible at the supplied sector up to the current
1074  * target boundary.
1075  */
1076 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1077 						  sector_t target_offset)
1078 {
1079 	return ti->len - target_offset;
1080 }
1081 
1082 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1083 {
1084 	sector_t target_offset = dm_target_offset(ti, sector);
1085 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1086 	sector_t max_len;
1087 
1088 	/*
1089 	 * Does the target need to split IO even further?
1090 	 * - varied (per target) IO splitting is a tenet of DM; this
1091 	 *   explains why stacked chunk_sectors based splitting via
1092 	 *   blk_max_size_offset() isn't possible here. So pass in
1093 	 *   ti->max_io_len to override stacked chunk_sectors.
1094 	 */
1095 	if (ti->max_io_len) {
1096 		max_len = blk_max_size_offset(ti->table->md->queue,
1097 					      target_offset, ti->max_io_len);
1098 		if (len > max_len)
1099 			len = max_len;
1100 	}
1101 
1102 	return len;
1103 }
1104 
1105 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1106 {
1107 	if (len > UINT_MAX) {
1108 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1109 		      (unsigned long long)len, UINT_MAX);
1110 		ti->error = "Maximum size of target IO is too large";
1111 		return -EINVAL;
1112 	}
1113 
1114 	ti->max_io_len = (uint32_t) len;
1115 
1116 	return 0;
1117 }
1118 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1119 
1120 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1121 						sector_t sector, int *srcu_idx)
1122 	__acquires(md->io_barrier)
1123 {
1124 	struct dm_table *map;
1125 	struct dm_target *ti;
1126 
1127 	map = dm_get_live_table(md, srcu_idx);
1128 	if (!map)
1129 		return NULL;
1130 
1131 	ti = dm_table_find_target(map, sector);
1132 	if (!ti)
1133 		return NULL;
1134 
1135 	return ti;
1136 }
1137 
1138 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1139 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1140 		pfn_t *pfn)
1141 {
1142 	struct mapped_device *md = dax_get_private(dax_dev);
1143 	sector_t sector = pgoff * PAGE_SECTORS;
1144 	struct dm_target *ti;
1145 	long len, ret = -EIO;
1146 	int srcu_idx;
1147 
1148 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1149 
1150 	if (!ti)
1151 		goto out;
1152 	if (!ti->type->direct_access)
1153 		goto out;
1154 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1155 	if (len < 1)
1156 		goto out;
1157 	nr_pages = min(len, nr_pages);
1158 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1159 
1160  out:
1161 	dm_put_live_table(md, srcu_idx);
1162 
1163 	return ret;
1164 }
1165 
1166 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1167 				  size_t nr_pages)
1168 {
1169 	struct mapped_device *md = dax_get_private(dax_dev);
1170 	sector_t sector = pgoff * PAGE_SECTORS;
1171 	struct dm_target *ti;
1172 	int ret = -EIO;
1173 	int srcu_idx;
1174 
1175 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1176 
1177 	if (!ti)
1178 		goto out;
1179 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1180 		/*
1181 		 * ->zero_page_range() is mandatory dax operation. If we are
1182 		 *  here, something is wrong.
1183 		 */
1184 		goto out;
1185 	}
1186 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1187  out:
1188 	dm_put_live_table(md, srcu_idx);
1189 
1190 	return ret;
1191 }
1192 
1193 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1194 		void *addr, size_t bytes, struct iov_iter *i)
1195 {
1196 	struct mapped_device *md = dax_get_private(dax_dev);
1197 	sector_t sector = pgoff * PAGE_SECTORS;
1198 	struct dm_target *ti;
1199 	int srcu_idx;
1200 	long ret = 0;
1201 
1202 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1203 	if (!ti || !ti->type->dax_recovery_write)
1204 		goto out;
1205 
1206 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1207 out:
1208 	dm_put_live_table(md, srcu_idx);
1209 	return ret;
1210 }
1211 
1212 /*
1213  * A target may call dm_accept_partial_bio only from the map routine.  It is
1214  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1215  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1216  * __send_duplicate_bios().
1217  *
1218  * dm_accept_partial_bio informs the dm that the target only wants to process
1219  * additional n_sectors sectors of the bio and the rest of the data should be
1220  * sent in a next bio.
1221  *
1222  * A diagram that explains the arithmetics:
1223  * +--------------------+---------------+-------+
1224  * |         1          |       2       |   3   |
1225  * +--------------------+---------------+-------+
1226  *
1227  * <-------------- *tio->len_ptr --------------->
1228  *                      <----- bio_sectors ----->
1229  *                      <-- n_sectors -->
1230  *
1231  * Region 1 was already iterated over with bio_advance or similar function.
1232  *	(it may be empty if the target doesn't use bio_advance)
1233  * Region 2 is the remaining bio size that the target wants to process.
1234  *	(it may be empty if region 1 is non-empty, although there is no reason
1235  *	 to make it empty)
1236  * The target requires that region 3 is to be sent in the next bio.
1237  *
1238  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1239  * the partially processed part (the sum of regions 1+2) must be the same for all
1240  * copies of the bio.
1241  */
1242 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1243 {
1244 	struct dm_target_io *tio = clone_to_tio(bio);
1245 	unsigned bio_sectors = bio_sectors(bio);
1246 
1247 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1248 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1249 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1250 	BUG_ON(bio_sectors > *tio->len_ptr);
1251 	BUG_ON(n_sectors > bio_sectors);
1252 
1253 	*tio->len_ptr -= bio_sectors - n_sectors;
1254 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1255 
1256 	/*
1257 	 * __split_and_process_bio() may have already saved mapped part
1258 	 * for accounting but it is being reduced so update accordingly.
1259 	 */
1260 	dm_io_set_flag(tio->io, DM_IO_WAS_SPLIT);
1261 	tio->io->sectors = n_sectors;
1262 }
1263 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1264 
1265 /*
1266  * @clone: clone bio that DM core passed to target's .map function
1267  * @tgt_clone: clone of @clone bio that target needs submitted
1268  *
1269  * Targets should use this interface to submit bios they take
1270  * ownership of when returning DM_MAPIO_SUBMITTED.
1271  *
1272  * Target should also enable ti->accounts_remapped_io
1273  */
1274 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1275 {
1276 	struct dm_target_io *tio = clone_to_tio(clone);
1277 	struct dm_io *io = tio->io;
1278 
1279 	/* establish bio that will get submitted */
1280 	if (!tgt_clone)
1281 		tgt_clone = clone;
1282 
1283 	/*
1284 	 * Account io->origin_bio to DM dev on behalf of target
1285 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1286 	 */
1287 	dm_start_io_acct(io, clone);
1288 
1289 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1290 			      tio->old_sector);
1291 	submit_bio_noacct(tgt_clone);
1292 }
1293 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1294 
1295 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1296 {
1297 	mutex_lock(&md->swap_bios_lock);
1298 	while (latch < md->swap_bios) {
1299 		cond_resched();
1300 		down(&md->swap_bios_semaphore);
1301 		md->swap_bios--;
1302 	}
1303 	while (latch > md->swap_bios) {
1304 		cond_resched();
1305 		up(&md->swap_bios_semaphore);
1306 		md->swap_bios++;
1307 	}
1308 	mutex_unlock(&md->swap_bios_lock);
1309 }
1310 
1311 static void __map_bio(struct bio *clone)
1312 {
1313 	struct dm_target_io *tio = clone_to_tio(clone);
1314 	struct dm_target *ti = tio->ti;
1315 	struct dm_io *io = tio->io;
1316 	struct mapped_device *md = io->md;
1317 	int r;
1318 
1319 	clone->bi_end_io = clone_endio;
1320 
1321 	/*
1322 	 * Map the clone.
1323 	 */
1324 	tio->old_sector = clone->bi_iter.bi_sector;
1325 
1326 	if (static_branch_unlikely(&swap_bios_enabled) &&
1327 	    unlikely(swap_bios_limit(ti, clone))) {
1328 		int latch = get_swap_bios();
1329 		if (unlikely(latch != md->swap_bios))
1330 			__set_swap_bios_limit(md, latch);
1331 		down(&md->swap_bios_semaphore);
1332 	}
1333 
1334 	if (static_branch_unlikely(&zoned_enabled)) {
1335 		/*
1336 		 * Check if the IO needs a special mapping due to zone append
1337 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1338 		 * calls the target map operation.
1339 		 */
1340 		if (unlikely(dm_emulate_zone_append(md)))
1341 			r = dm_zone_map_bio(tio);
1342 		else
1343 			r = ti->type->map(ti, clone);
1344 	} else
1345 		r = ti->type->map(ti, clone);
1346 
1347 	switch (r) {
1348 	case DM_MAPIO_SUBMITTED:
1349 		/* target has assumed ownership of this io */
1350 		if (!ti->accounts_remapped_io)
1351 			dm_start_io_acct(io, clone);
1352 		break;
1353 	case DM_MAPIO_REMAPPED:
1354 		dm_submit_bio_remap(clone, NULL);
1355 		break;
1356 	case DM_MAPIO_KILL:
1357 	case DM_MAPIO_REQUEUE:
1358 		if (static_branch_unlikely(&swap_bios_enabled) &&
1359 		    unlikely(swap_bios_limit(ti, clone)))
1360 			up(&md->swap_bios_semaphore);
1361 		free_tio(clone);
1362 		if (r == DM_MAPIO_KILL)
1363 			dm_io_dec_pending(io, BLK_STS_IOERR);
1364 		else
1365 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1366 		break;
1367 	default:
1368 		DMWARN("unimplemented target map return value: %d", r);
1369 		BUG();
1370 	}
1371 }
1372 
1373 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1374 {
1375 	struct dm_io *io = ci->io;
1376 
1377 	if (ci->sector_count > len) {
1378 		/*
1379 		 * Split needed, save the mapped part for accounting.
1380 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1381 		 */
1382 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1383 		io->sectors = len;
1384 	}
1385 
1386 	if (static_branch_unlikely(&stats_enabled) &&
1387 	    unlikely(dm_stats_used(&io->md->stats))) {
1388 		/*
1389 		 * Save bi_sector in terms of its offset from end of
1390 		 * original bio, only needed for DM-stats' benefit.
1391 		 * - saved regardless of whether split needed so that
1392 		 *   dm_accept_partial_bio() doesn't need to.
1393 		 */
1394 		io->sector_offset = bio_end_sector(ci->bio) - ci->sector;
1395 	}
1396 }
1397 
1398 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1399 				struct dm_target *ti, unsigned num_bios)
1400 {
1401 	struct bio *bio;
1402 	int try;
1403 
1404 	for (try = 0; try < 2; try++) {
1405 		int bio_nr;
1406 
1407 		if (try)
1408 			mutex_lock(&ci->io->md->table_devices_lock);
1409 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1410 			bio = alloc_tio(ci, ti, bio_nr, NULL,
1411 					try ? GFP_NOIO : GFP_NOWAIT);
1412 			if (!bio)
1413 				break;
1414 
1415 			bio_list_add(blist, bio);
1416 		}
1417 		if (try)
1418 			mutex_unlock(&ci->io->md->table_devices_lock);
1419 		if (bio_nr == num_bios)
1420 			return;
1421 
1422 		while ((bio = bio_list_pop(blist)))
1423 			free_tio(bio);
1424 	}
1425 }
1426 
1427 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1428 				  unsigned num_bios, unsigned *len)
1429 {
1430 	struct bio_list blist = BIO_EMPTY_LIST;
1431 	struct bio *clone;
1432 	int ret = 0;
1433 
1434 	switch (num_bios) {
1435 	case 0:
1436 		break;
1437 	case 1:
1438 		if (len)
1439 			setup_split_accounting(ci, *len);
1440 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1441 		__map_bio(clone);
1442 		ret = 1;
1443 		break;
1444 	default:
1445 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1446 		alloc_multiple_bios(&blist, ci, ti, num_bios);
1447 		while ((clone = bio_list_pop(&blist))) {
1448 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1449 			__map_bio(clone);
1450 			ret += 1;
1451 		}
1452 		break;
1453 	}
1454 
1455 	return ret;
1456 }
1457 
1458 static void __send_empty_flush(struct clone_info *ci)
1459 {
1460 	unsigned target_nr = 0;
1461 	struct dm_target *ti;
1462 	struct bio flush_bio;
1463 
1464 	/*
1465 	 * Use an on-stack bio for this, it's safe since we don't
1466 	 * need to reference it after submit. It's just used as
1467 	 * the basis for the clone(s).
1468 	 */
1469 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1470 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1471 
1472 	ci->bio = &flush_bio;
1473 	ci->sector_count = 0;
1474 	ci->io->tio.clone.bi_iter.bi_size = 0;
1475 
1476 	while ((ti = dm_table_get_target(ci->map, target_nr++))) {
1477 		int bios;
1478 
1479 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1480 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1481 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1482 	}
1483 
1484 	/*
1485 	 * alloc_io() takes one extra reference for submission, so the
1486 	 * reference won't reach 0 without the following subtraction
1487 	 */
1488 	atomic_sub(1, &ci->io->io_count);
1489 
1490 	bio_uninit(ci->bio);
1491 }
1492 
1493 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1494 					unsigned num_bios)
1495 {
1496 	unsigned len;
1497 	int bios;
1498 
1499 	len = min_t(sector_t, ci->sector_count,
1500 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1501 
1502 	atomic_add(num_bios, &ci->io->io_count);
1503 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1504 	/*
1505 	 * alloc_io() takes one extra reference for submission, so the
1506 	 * reference won't reach 0 without the following (+1) subtraction
1507 	 */
1508 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1509 
1510 	ci->sector += len;
1511 	ci->sector_count -= len;
1512 }
1513 
1514 static bool is_abnormal_io(struct bio *bio)
1515 {
1516 	unsigned int op = bio_op(bio);
1517 
1518 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1519 		switch (op) {
1520 		case REQ_OP_DISCARD:
1521 		case REQ_OP_SECURE_ERASE:
1522 		case REQ_OP_WRITE_ZEROES:
1523 			return true;
1524 		default:
1525 			break;
1526 		}
1527 	}
1528 
1529 	return false;
1530 }
1531 
1532 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1533 					  struct dm_target *ti)
1534 {
1535 	unsigned num_bios = 0;
1536 
1537 	switch (bio_op(ci->bio)) {
1538 	case REQ_OP_DISCARD:
1539 		num_bios = ti->num_discard_bios;
1540 		break;
1541 	case REQ_OP_SECURE_ERASE:
1542 		num_bios = ti->num_secure_erase_bios;
1543 		break;
1544 	case REQ_OP_WRITE_ZEROES:
1545 		num_bios = ti->num_write_zeroes_bios;
1546 		break;
1547 	}
1548 
1549 	/*
1550 	 * Even though the device advertised support for this type of
1551 	 * request, that does not mean every target supports it, and
1552 	 * reconfiguration might also have changed that since the
1553 	 * check was performed.
1554 	 */
1555 	if (unlikely(!num_bios))
1556 		return BLK_STS_NOTSUPP;
1557 
1558 	__send_changing_extent_only(ci, ti, num_bios);
1559 	return BLK_STS_OK;
1560 }
1561 
1562 /*
1563  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1564  * associated with this bio, and this bio's bi_private needs to be
1565  * stored in dm_io->data before the reuse.
1566  *
1567  * bio->bi_private is owned by fs or upper layer, so block layer won't
1568  * touch it after splitting. Meantime it won't be changed by anyone after
1569  * bio is submitted. So this reuse is safe.
1570  */
1571 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1572 {
1573 	return (struct dm_io **)&bio->bi_private;
1574 }
1575 
1576 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1577 {
1578 	struct dm_io **head = dm_poll_list_head(bio);
1579 
1580 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1581 		bio->bi_opf |= REQ_DM_POLL_LIST;
1582 		/*
1583 		 * Save .bi_private into dm_io, so that we can reuse
1584 		 * .bi_private as dm_io list head for storing dm_io list
1585 		 */
1586 		io->data = bio->bi_private;
1587 
1588 		/* tell block layer to poll for completion */
1589 		bio->bi_cookie = ~BLK_QC_T_NONE;
1590 
1591 		io->next = NULL;
1592 	} else {
1593 		/*
1594 		 * bio recursed due to split, reuse original poll list,
1595 		 * and save bio->bi_private too.
1596 		 */
1597 		io->data = (*head)->data;
1598 		io->next = *head;
1599 	}
1600 
1601 	*head = io;
1602 }
1603 
1604 /*
1605  * Select the correct strategy for processing a non-flush bio.
1606  */
1607 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1608 {
1609 	struct bio *clone;
1610 	struct dm_target *ti;
1611 	unsigned len;
1612 
1613 	ti = dm_table_find_target(ci->map, ci->sector);
1614 	if (unlikely(!ti))
1615 		return BLK_STS_IOERR;
1616 
1617 	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1618 	    unlikely(!dm_target_supports_nowait(ti->type)))
1619 		return BLK_STS_NOTSUPP;
1620 
1621 	if (unlikely(ci->is_abnormal_io))
1622 		return __process_abnormal_io(ci, ti);
1623 
1624 	/*
1625 	 * Only support bio polling for normal IO, and the target io is
1626 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1627 	 */
1628 	ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1629 
1630 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1631 	setup_split_accounting(ci, len);
1632 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1633 	__map_bio(clone);
1634 
1635 	ci->sector += len;
1636 	ci->sector_count -= len;
1637 
1638 	return BLK_STS_OK;
1639 }
1640 
1641 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1642 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1643 {
1644 	ci->map = map;
1645 	ci->io = alloc_io(md, bio);
1646 	ci->bio = bio;
1647 	ci->is_abnormal_io = is_abnormal;
1648 	ci->submit_as_polled = false;
1649 	ci->sector = bio->bi_iter.bi_sector;
1650 	ci->sector_count = bio_sectors(bio);
1651 
1652 	/* Shouldn't happen but sector_count was being set to 0 so... */
1653 	if (static_branch_unlikely(&zoned_enabled) &&
1654 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1655 		ci->sector_count = 0;
1656 }
1657 
1658 /*
1659  * Entry point to split a bio into clones and submit them to the targets.
1660  */
1661 static void dm_split_and_process_bio(struct mapped_device *md,
1662 				     struct dm_table *map, struct bio *bio)
1663 {
1664 	struct clone_info ci;
1665 	struct dm_io *io;
1666 	blk_status_t error = BLK_STS_OK;
1667 	bool is_abnormal;
1668 
1669 	is_abnormal = is_abnormal_io(bio);
1670 	if (unlikely(is_abnormal)) {
1671 		/*
1672 		 * Use blk_queue_split() for abnormal IO (e.g. discard, etc)
1673 		 * otherwise associated queue_limits won't be imposed.
1674 		 */
1675 		blk_queue_split(&bio);
1676 	}
1677 
1678 	init_clone_info(&ci, md, map, bio, is_abnormal);
1679 	io = ci.io;
1680 
1681 	if (bio->bi_opf & REQ_PREFLUSH) {
1682 		__send_empty_flush(&ci);
1683 		/* dm_io_complete submits any data associated with flush */
1684 		goto out;
1685 	}
1686 
1687 	error = __split_and_process_bio(&ci);
1688 	if (error || !ci.sector_count)
1689 		goto out;
1690 	/*
1691 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1692 	 * *after* bios already submitted have been completely processed.
1693 	 */
1694 	bio_trim(bio, io->sectors, ci.sector_count);
1695 	trace_block_split(bio, bio->bi_iter.bi_sector);
1696 	bio_inc_remaining(bio);
1697 	submit_bio_noacct(bio);
1698 out:
1699 	/*
1700 	 * Drop the extra reference count for non-POLLED bio, and hold one
1701 	 * reference for POLLED bio, which will be released in dm_poll_bio
1702 	 *
1703 	 * Add every dm_io instance into the dm_io list head which is stored
1704 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1705 	 */
1706 	if (error || !ci.submit_as_polled) {
1707 		/*
1708 		 * In case of submission failure, the extra reference for
1709 		 * submitting io isn't consumed yet
1710 		 */
1711 		if (error)
1712 			atomic_dec(&io->io_count);
1713 		dm_io_dec_pending(io, error);
1714 	} else
1715 		dm_queue_poll_io(bio, io);
1716 }
1717 
1718 static void dm_submit_bio(struct bio *bio)
1719 {
1720 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1721 	int srcu_idx;
1722 	struct dm_table *map;
1723 	unsigned bio_opf = bio->bi_opf;
1724 
1725 	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1726 
1727 	/* If suspended, or map not yet available, queue this IO for later */
1728 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1729 	    unlikely(!map)) {
1730 		if (bio->bi_opf & REQ_NOWAIT)
1731 			bio_wouldblock_error(bio);
1732 		else if (bio->bi_opf & REQ_RAHEAD)
1733 			bio_io_error(bio);
1734 		else
1735 			queue_io(md, bio);
1736 		goto out;
1737 	}
1738 
1739 	dm_split_and_process_bio(md, map, bio);
1740 out:
1741 	dm_put_live_table_bio(md, srcu_idx, bio_opf);
1742 }
1743 
1744 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1745 			  unsigned int flags)
1746 {
1747 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1748 
1749 	/* don't poll if the mapped io is done */
1750 	if (atomic_read(&io->io_count) > 1)
1751 		bio_poll(&io->tio.clone, iob, flags);
1752 
1753 	/* bio_poll holds the last reference */
1754 	return atomic_read(&io->io_count) == 1;
1755 }
1756 
1757 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1758 		       unsigned int flags)
1759 {
1760 	struct dm_io **head = dm_poll_list_head(bio);
1761 	struct dm_io *list = *head;
1762 	struct dm_io *tmp = NULL;
1763 	struct dm_io *curr, *next;
1764 
1765 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1766 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1767 		return 0;
1768 
1769 	WARN_ON_ONCE(!list);
1770 
1771 	/*
1772 	 * Restore .bi_private before possibly completing dm_io.
1773 	 *
1774 	 * bio_poll() is only possible once @bio has been completely
1775 	 * submitted via submit_bio_noacct()'s depth-first submission.
1776 	 * So there is no dm_queue_poll_io() race associated with
1777 	 * clearing REQ_DM_POLL_LIST here.
1778 	 */
1779 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1780 	bio->bi_private = list->data;
1781 
1782 	for (curr = list, next = curr->next; curr; curr = next, next =
1783 			curr ? curr->next : NULL) {
1784 		if (dm_poll_dm_io(curr, iob, flags)) {
1785 			/*
1786 			 * clone_endio() has already occurred, so no
1787 			 * error handling is needed here.
1788 			 */
1789 			__dm_io_dec_pending(curr);
1790 		} else {
1791 			curr->next = tmp;
1792 			tmp = curr;
1793 		}
1794 	}
1795 
1796 	/* Not done? */
1797 	if (tmp) {
1798 		bio->bi_opf |= REQ_DM_POLL_LIST;
1799 		/* Reset bio->bi_private to dm_io list head */
1800 		*head = tmp;
1801 		return 0;
1802 	}
1803 	return 1;
1804 }
1805 
1806 /*-----------------------------------------------------------------
1807  * An IDR is used to keep track of allocated minor numbers.
1808  *---------------------------------------------------------------*/
1809 static void free_minor(int minor)
1810 {
1811 	spin_lock(&_minor_lock);
1812 	idr_remove(&_minor_idr, minor);
1813 	spin_unlock(&_minor_lock);
1814 }
1815 
1816 /*
1817  * See if the device with a specific minor # is free.
1818  */
1819 static int specific_minor(int minor)
1820 {
1821 	int r;
1822 
1823 	if (minor >= (1 << MINORBITS))
1824 		return -EINVAL;
1825 
1826 	idr_preload(GFP_KERNEL);
1827 	spin_lock(&_minor_lock);
1828 
1829 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1830 
1831 	spin_unlock(&_minor_lock);
1832 	idr_preload_end();
1833 	if (r < 0)
1834 		return r == -ENOSPC ? -EBUSY : r;
1835 	return 0;
1836 }
1837 
1838 static int next_free_minor(int *minor)
1839 {
1840 	int r;
1841 
1842 	idr_preload(GFP_KERNEL);
1843 	spin_lock(&_minor_lock);
1844 
1845 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1846 
1847 	spin_unlock(&_minor_lock);
1848 	idr_preload_end();
1849 	if (r < 0)
1850 		return r;
1851 	*minor = r;
1852 	return 0;
1853 }
1854 
1855 static const struct block_device_operations dm_blk_dops;
1856 static const struct block_device_operations dm_rq_blk_dops;
1857 static const struct dax_operations dm_dax_ops;
1858 
1859 static void dm_wq_work(struct work_struct *work);
1860 
1861 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1862 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1863 {
1864 	dm_destroy_crypto_profile(q->crypto_profile);
1865 }
1866 
1867 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1868 
1869 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1870 {
1871 }
1872 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1873 
1874 static void cleanup_mapped_device(struct mapped_device *md)
1875 {
1876 	if (md->wq)
1877 		destroy_workqueue(md->wq);
1878 	dm_free_md_mempools(md->mempools);
1879 
1880 	if (md->dax_dev) {
1881 		dax_remove_host(md->disk);
1882 		kill_dax(md->dax_dev);
1883 		put_dax(md->dax_dev);
1884 		md->dax_dev = NULL;
1885 	}
1886 
1887 	dm_cleanup_zoned_dev(md);
1888 	if (md->disk) {
1889 		spin_lock(&_minor_lock);
1890 		md->disk->private_data = NULL;
1891 		spin_unlock(&_minor_lock);
1892 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1893 			dm_sysfs_exit(md);
1894 			del_gendisk(md->disk);
1895 		}
1896 		dm_queue_destroy_crypto_profile(md->queue);
1897 		blk_cleanup_disk(md->disk);
1898 	}
1899 
1900 	if (md->pending_io) {
1901 		free_percpu(md->pending_io);
1902 		md->pending_io = NULL;
1903 	}
1904 
1905 	cleanup_srcu_struct(&md->io_barrier);
1906 
1907 	mutex_destroy(&md->suspend_lock);
1908 	mutex_destroy(&md->type_lock);
1909 	mutex_destroy(&md->table_devices_lock);
1910 	mutex_destroy(&md->swap_bios_lock);
1911 
1912 	dm_mq_cleanup_mapped_device(md);
1913 }
1914 
1915 /*
1916  * Allocate and initialise a blank device with a given minor.
1917  */
1918 static struct mapped_device *alloc_dev(int minor)
1919 {
1920 	int r, numa_node_id = dm_get_numa_node();
1921 	struct mapped_device *md;
1922 	void *old_md;
1923 
1924 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1925 	if (!md) {
1926 		DMWARN("unable to allocate device, out of memory.");
1927 		return NULL;
1928 	}
1929 
1930 	if (!try_module_get(THIS_MODULE))
1931 		goto bad_module_get;
1932 
1933 	/* get a minor number for the dev */
1934 	if (minor == DM_ANY_MINOR)
1935 		r = next_free_minor(&minor);
1936 	else
1937 		r = specific_minor(minor);
1938 	if (r < 0)
1939 		goto bad_minor;
1940 
1941 	r = init_srcu_struct(&md->io_barrier);
1942 	if (r < 0)
1943 		goto bad_io_barrier;
1944 
1945 	md->numa_node_id = numa_node_id;
1946 	md->init_tio_pdu = false;
1947 	md->type = DM_TYPE_NONE;
1948 	mutex_init(&md->suspend_lock);
1949 	mutex_init(&md->type_lock);
1950 	mutex_init(&md->table_devices_lock);
1951 	spin_lock_init(&md->deferred_lock);
1952 	atomic_set(&md->holders, 1);
1953 	atomic_set(&md->open_count, 0);
1954 	atomic_set(&md->event_nr, 0);
1955 	atomic_set(&md->uevent_seq, 0);
1956 	INIT_LIST_HEAD(&md->uevent_list);
1957 	INIT_LIST_HEAD(&md->table_devices);
1958 	spin_lock_init(&md->uevent_lock);
1959 
1960 	/*
1961 	 * default to bio-based until DM table is loaded and md->type
1962 	 * established. If request-based table is loaded: blk-mq will
1963 	 * override accordingly.
1964 	 */
1965 	md->disk = blk_alloc_disk(md->numa_node_id);
1966 	if (!md->disk)
1967 		goto bad;
1968 	md->queue = md->disk->queue;
1969 
1970 	init_waitqueue_head(&md->wait);
1971 	INIT_WORK(&md->work, dm_wq_work);
1972 	init_waitqueue_head(&md->eventq);
1973 	init_completion(&md->kobj_holder.completion);
1974 
1975 	md->swap_bios = get_swap_bios();
1976 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1977 	mutex_init(&md->swap_bios_lock);
1978 
1979 	md->disk->major = _major;
1980 	md->disk->first_minor = minor;
1981 	md->disk->minors = 1;
1982 	md->disk->flags |= GENHD_FL_NO_PART;
1983 	md->disk->fops = &dm_blk_dops;
1984 	md->disk->queue = md->queue;
1985 	md->disk->private_data = md;
1986 	sprintf(md->disk->disk_name, "dm-%d", minor);
1987 
1988 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1989 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1990 		if (IS_ERR(md->dax_dev)) {
1991 			md->dax_dev = NULL;
1992 			goto bad;
1993 		}
1994 		set_dax_nocache(md->dax_dev);
1995 		set_dax_nomc(md->dax_dev);
1996 		if (dax_add_host(md->dax_dev, md->disk))
1997 			goto bad;
1998 	}
1999 
2000 	format_dev_t(md->name, MKDEV(_major, minor));
2001 
2002 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2003 	if (!md->wq)
2004 		goto bad;
2005 
2006 	md->pending_io = alloc_percpu(unsigned long);
2007 	if (!md->pending_io)
2008 		goto bad;
2009 
2010 	dm_stats_init(&md->stats);
2011 
2012 	/* Populate the mapping, nobody knows we exist yet */
2013 	spin_lock(&_minor_lock);
2014 	old_md = idr_replace(&_minor_idr, md, minor);
2015 	spin_unlock(&_minor_lock);
2016 
2017 	BUG_ON(old_md != MINOR_ALLOCED);
2018 
2019 	return md;
2020 
2021 bad:
2022 	cleanup_mapped_device(md);
2023 bad_io_barrier:
2024 	free_minor(minor);
2025 bad_minor:
2026 	module_put(THIS_MODULE);
2027 bad_module_get:
2028 	kvfree(md);
2029 	return NULL;
2030 }
2031 
2032 static void unlock_fs(struct mapped_device *md);
2033 
2034 static void free_dev(struct mapped_device *md)
2035 {
2036 	int minor = MINOR(disk_devt(md->disk));
2037 
2038 	unlock_fs(md);
2039 
2040 	cleanup_mapped_device(md);
2041 
2042 	free_table_devices(&md->table_devices);
2043 	dm_stats_cleanup(&md->stats);
2044 	free_minor(minor);
2045 
2046 	module_put(THIS_MODULE);
2047 	kvfree(md);
2048 }
2049 
2050 /*
2051  * Bind a table to the device.
2052  */
2053 static void event_callback(void *context)
2054 {
2055 	unsigned long flags;
2056 	LIST_HEAD(uevents);
2057 	struct mapped_device *md = (struct mapped_device *) context;
2058 
2059 	spin_lock_irqsave(&md->uevent_lock, flags);
2060 	list_splice_init(&md->uevent_list, &uevents);
2061 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2062 
2063 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2064 
2065 	atomic_inc(&md->event_nr);
2066 	wake_up(&md->eventq);
2067 	dm_issue_global_event();
2068 }
2069 
2070 /*
2071  * Returns old map, which caller must destroy.
2072  */
2073 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2074 			       struct queue_limits *limits)
2075 {
2076 	struct dm_table *old_map;
2077 	sector_t size;
2078 	int ret;
2079 
2080 	lockdep_assert_held(&md->suspend_lock);
2081 
2082 	size = dm_table_get_size(t);
2083 
2084 	/*
2085 	 * Wipe any geometry if the size of the table changed.
2086 	 */
2087 	if (size != dm_get_size(md))
2088 		memset(&md->geometry, 0, sizeof(md->geometry));
2089 
2090 	if (!get_capacity(md->disk))
2091 		set_capacity(md->disk, size);
2092 	else
2093 		set_capacity_and_notify(md->disk, size);
2094 
2095 	dm_table_event_callback(t, event_callback, md);
2096 
2097 	if (dm_table_request_based(t)) {
2098 		/*
2099 		 * Leverage the fact that request-based DM targets are
2100 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2101 		 */
2102 		md->immutable_target = dm_table_get_immutable_target(t);
2103 
2104 		/*
2105 		 * There is no need to reload with request-based dm because the
2106 		 * size of front_pad doesn't change.
2107 		 *
2108 		 * Note for future: If you are to reload bioset, prep-ed
2109 		 * requests in the queue may refer to bio from the old bioset,
2110 		 * so you must walk through the queue to unprep.
2111 		 */
2112 		if (!md->mempools) {
2113 			md->mempools = t->mempools;
2114 			t->mempools = NULL;
2115 		}
2116 	} else {
2117 		/*
2118 		 * The md may already have mempools that need changing.
2119 		 * If so, reload bioset because front_pad may have changed
2120 		 * because a different table was loaded.
2121 		 */
2122 		dm_free_md_mempools(md->mempools);
2123 		md->mempools = t->mempools;
2124 		t->mempools = NULL;
2125 	}
2126 
2127 	ret = dm_table_set_restrictions(t, md->queue, limits);
2128 	if (ret) {
2129 		old_map = ERR_PTR(ret);
2130 		goto out;
2131 	}
2132 
2133 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2134 	rcu_assign_pointer(md->map, (void *)t);
2135 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2136 
2137 	if (old_map)
2138 		dm_sync_table(md);
2139 out:
2140 	return old_map;
2141 }
2142 
2143 /*
2144  * Returns unbound table for the caller to free.
2145  */
2146 static struct dm_table *__unbind(struct mapped_device *md)
2147 {
2148 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2149 
2150 	if (!map)
2151 		return NULL;
2152 
2153 	dm_table_event_callback(map, NULL, NULL);
2154 	RCU_INIT_POINTER(md->map, NULL);
2155 	dm_sync_table(md);
2156 
2157 	return map;
2158 }
2159 
2160 /*
2161  * Constructor for a new device.
2162  */
2163 int dm_create(int minor, struct mapped_device **result)
2164 {
2165 	struct mapped_device *md;
2166 
2167 	md = alloc_dev(minor);
2168 	if (!md)
2169 		return -ENXIO;
2170 
2171 	dm_ima_reset_data(md);
2172 
2173 	*result = md;
2174 	return 0;
2175 }
2176 
2177 /*
2178  * Functions to manage md->type.
2179  * All are required to hold md->type_lock.
2180  */
2181 void dm_lock_md_type(struct mapped_device *md)
2182 {
2183 	mutex_lock(&md->type_lock);
2184 }
2185 
2186 void dm_unlock_md_type(struct mapped_device *md)
2187 {
2188 	mutex_unlock(&md->type_lock);
2189 }
2190 
2191 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2192 {
2193 	BUG_ON(!mutex_is_locked(&md->type_lock));
2194 	md->type = type;
2195 }
2196 
2197 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2198 {
2199 	return md->type;
2200 }
2201 
2202 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2203 {
2204 	return md->immutable_target_type;
2205 }
2206 
2207 /*
2208  * The queue_limits are only valid as long as you have a reference
2209  * count on 'md'.
2210  */
2211 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2212 {
2213 	BUG_ON(!atomic_read(&md->holders));
2214 	return &md->queue->limits;
2215 }
2216 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2217 
2218 /*
2219  * Setup the DM device's queue based on md's type
2220  */
2221 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2222 {
2223 	enum dm_queue_mode type = dm_table_get_type(t);
2224 	struct queue_limits limits;
2225 	int r;
2226 
2227 	switch (type) {
2228 	case DM_TYPE_REQUEST_BASED:
2229 		md->disk->fops = &dm_rq_blk_dops;
2230 		r = dm_mq_init_request_queue(md, t);
2231 		if (r) {
2232 			DMERR("Cannot initialize queue for request-based dm mapped device");
2233 			return r;
2234 		}
2235 		break;
2236 	case DM_TYPE_BIO_BASED:
2237 	case DM_TYPE_DAX_BIO_BASED:
2238 		break;
2239 	case DM_TYPE_NONE:
2240 		WARN_ON_ONCE(true);
2241 		break;
2242 	}
2243 
2244 	r = dm_calculate_queue_limits(t, &limits);
2245 	if (r) {
2246 		DMERR("Cannot calculate initial queue limits");
2247 		return r;
2248 	}
2249 	r = dm_table_set_restrictions(t, md->queue, &limits);
2250 	if (r)
2251 		return r;
2252 
2253 	r = add_disk(md->disk);
2254 	if (r)
2255 		return r;
2256 
2257 	r = dm_sysfs_init(md);
2258 	if (r) {
2259 		del_gendisk(md->disk);
2260 		return r;
2261 	}
2262 	md->type = type;
2263 	return 0;
2264 }
2265 
2266 struct mapped_device *dm_get_md(dev_t dev)
2267 {
2268 	struct mapped_device *md;
2269 	unsigned minor = MINOR(dev);
2270 
2271 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2272 		return NULL;
2273 
2274 	spin_lock(&_minor_lock);
2275 
2276 	md = idr_find(&_minor_idr, minor);
2277 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2278 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2279 		md = NULL;
2280 		goto out;
2281 	}
2282 	dm_get(md);
2283 out:
2284 	spin_unlock(&_minor_lock);
2285 
2286 	return md;
2287 }
2288 EXPORT_SYMBOL_GPL(dm_get_md);
2289 
2290 void *dm_get_mdptr(struct mapped_device *md)
2291 {
2292 	return md->interface_ptr;
2293 }
2294 
2295 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2296 {
2297 	md->interface_ptr = ptr;
2298 }
2299 
2300 void dm_get(struct mapped_device *md)
2301 {
2302 	atomic_inc(&md->holders);
2303 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2304 }
2305 
2306 int dm_hold(struct mapped_device *md)
2307 {
2308 	spin_lock(&_minor_lock);
2309 	if (test_bit(DMF_FREEING, &md->flags)) {
2310 		spin_unlock(&_minor_lock);
2311 		return -EBUSY;
2312 	}
2313 	dm_get(md);
2314 	spin_unlock(&_minor_lock);
2315 	return 0;
2316 }
2317 EXPORT_SYMBOL_GPL(dm_hold);
2318 
2319 const char *dm_device_name(struct mapped_device *md)
2320 {
2321 	return md->name;
2322 }
2323 EXPORT_SYMBOL_GPL(dm_device_name);
2324 
2325 static void __dm_destroy(struct mapped_device *md, bool wait)
2326 {
2327 	struct dm_table *map;
2328 	int srcu_idx;
2329 
2330 	might_sleep();
2331 
2332 	spin_lock(&_minor_lock);
2333 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2334 	set_bit(DMF_FREEING, &md->flags);
2335 	spin_unlock(&_minor_lock);
2336 
2337 	blk_mark_disk_dead(md->disk);
2338 
2339 	/*
2340 	 * Take suspend_lock so that presuspend and postsuspend methods
2341 	 * do not race with internal suspend.
2342 	 */
2343 	mutex_lock(&md->suspend_lock);
2344 	map = dm_get_live_table(md, &srcu_idx);
2345 	if (!dm_suspended_md(md)) {
2346 		dm_table_presuspend_targets(map);
2347 		set_bit(DMF_SUSPENDED, &md->flags);
2348 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2349 		dm_table_postsuspend_targets(map);
2350 	}
2351 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2352 	dm_put_live_table(md, srcu_idx);
2353 	mutex_unlock(&md->suspend_lock);
2354 
2355 	/*
2356 	 * Rare, but there may be I/O requests still going to complete,
2357 	 * for example.  Wait for all references to disappear.
2358 	 * No one should increment the reference count of the mapped_device,
2359 	 * after the mapped_device state becomes DMF_FREEING.
2360 	 */
2361 	if (wait)
2362 		while (atomic_read(&md->holders))
2363 			msleep(1);
2364 	else if (atomic_read(&md->holders))
2365 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2366 		       dm_device_name(md), atomic_read(&md->holders));
2367 
2368 	dm_table_destroy(__unbind(md));
2369 	free_dev(md);
2370 }
2371 
2372 void dm_destroy(struct mapped_device *md)
2373 {
2374 	__dm_destroy(md, true);
2375 }
2376 
2377 void dm_destroy_immediate(struct mapped_device *md)
2378 {
2379 	__dm_destroy(md, false);
2380 }
2381 
2382 void dm_put(struct mapped_device *md)
2383 {
2384 	atomic_dec(&md->holders);
2385 }
2386 EXPORT_SYMBOL_GPL(dm_put);
2387 
2388 static bool dm_in_flight_bios(struct mapped_device *md)
2389 {
2390 	int cpu;
2391 	unsigned long sum = 0;
2392 
2393 	for_each_possible_cpu(cpu)
2394 		sum += *per_cpu_ptr(md->pending_io, cpu);
2395 
2396 	return sum != 0;
2397 }
2398 
2399 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2400 {
2401 	int r = 0;
2402 	DEFINE_WAIT(wait);
2403 
2404 	while (true) {
2405 		prepare_to_wait(&md->wait, &wait, task_state);
2406 
2407 		if (!dm_in_flight_bios(md))
2408 			break;
2409 
2410 		if (signal_pending_state(task_state, current)) {
2411 			r = -EINTR;
2412 			break;
2413 		}
2414 
2415 		io_schedule();
2416 	}
2417 	finish_wait(&md->wait, &wait);
2418 
2419 	smp_rmb();
2420 
2421 	return r;
2422 }
2423 
2424 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2425 {
2426 	int r = 0;
2427 
2428 	if (!queue_is_mq(md->queue))
2429 		return dm_wait_for_bios_completion(md, task_state);
2430 
2431 	while (true) {
2432 		if (!blk_mq_queue_inflight(md->queue))
2433 			break;
2434 
2435 		if (signal_pending_state(task_state, current)) {
2436 			r = -EINTR;
2437 			break;
2438 		}
2439 
2440 		msleep(5);
2441 	}
2442 
2443 	return r;
2444 }
2445 
2446 /*
2447  * Process the deferred bios
2448  */
2449 static void dm_wq_work(struct work_struct *work)
2450 {
2451 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2452 	struct bio *bio;
2453 
2454 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2455 		spin_lock_irq(&md->deferred_lock);
2456 		bio = bio_list_pop(&md->deferred);
2457 		spin_unlock_irq(&md->deferred_lock);
2458 
2459 		if (!bio)
2460 			break;
2461 
2462 		submit_bio_noacct(bio);
2463 	}
2464 }
2465 
2466 static void dm_queue_flush(struct mapped_device *md)
2467 {
2468 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2469 	smp_mb__after_atomic();
2470 	queue_work(md->wq, &md->work);
2471 }
2472 
2473 /*
2474  * Swap in a new table, returning the old one for the caller to destroy.
2475  */
2476 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2477 {
2478 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2479 	struct queue_limits limits;
2480 	int r;
2481 
2482 	mutex_lock(&md->suspend_lock);
2483 
2484 	/* device must be suspended */
2485 	if (!dm_suspended_md(md))
2486 		goto out;
2487 
2488 	/*
2489 	 * If the new table has no data devices, retain the existing limits.
2490 	 * This helps multipath with queue_if_no_path if all paths disappear,
2491 	 * then new I/O is queued based on these limits, and then some paths
2492 	 * reappear.
2493 	 */
2494 	if (dm_table_has_no_data_devices(table)) {
2495 		live_map = dm_get_live_table_fast(md);
2496 		if (live_map)
2497 			limits = md->queue->limits;
2498 		dm_put_live_table_fast(md);
2499 	}
2500 
2501 	if (!live_map) {
2502 		r = dm_calculate_queue_limits(table, &limits);
2503 		if (r) {
2504 			map = ERR_PTR(r);
2505 			goto out;
2506 		}
2507 	}
2508 
2509 	map = __bind(md, table, &limits);
2510 	dm_issue_global_event();
2511 
2512 out:
2513 	mutex_unlock(&md->suspend_lock);
2514 	return map;
2515 }
2516 
2517 /*
2518  * Functions to lock and unlock any filesystem running on the
2519  * device.
2520  */
2521 static int lock_fs(struct mapped_device *md)
2522 {
2523 	int r;
2524 
2525 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2526 
2527 	r = freeze_bdev(md->disk->part0);
2528 	if (!r)
2529 		set_bit(DMF_FROZEN, &md->flags);
2530 	return r;
2531 }
2532 
2533 static void unlock_fs(struct mapped_device *md)
2534 {
2535 	if (!test_bit(DMF_FROZEN, &md->flags))
2536 		return;
2537 	thaw_bdev(md->disk->part0);
2538 	clear_bit(DMF_FROZEN, &md->flags);
2539 }
2540 
2541 /*
2542  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2543  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2544  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2545  *
2546  * If __dm_suspend returns 0, the device is completely quiescent
2547  * now. There is no request-processing activity. All new requests
2548  * are being added to md->deferred list.
2549  */
2550 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2551 			unsigned suspend_flags, unsigned int task_state,
2552 			int dmf_suspended_flag)
2553 {
2554 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2555 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2556 	int r;
2557 
2558 	lockdep_assert_held(&md->suspend_lock);
2559 
2560 	/*
2561 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2562 	 * This flag is cleared before dm_suspend returns.
2563 	 */
2564 	if (noflush)
2565 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2566 	else
2567 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2568 
2569 	/*
2570 	 * This gets reverted if there's an error later and the targets
2571 	 * provide the .presuspend_undo hook.
2572 	 */
2573 	dm_table_presuspend_targets(map);
2574 
2575 	/*
2576 	 * Flush I/O to the device.
2577 	 * Any I/O submitted after lock_fs() may not be flushed.
2578 	 * noflush takes precedence over do_lockfs.
2579 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2580 	 */
2581 	if (!noflush && do_lockfs) {
2582 		r = lock_fs(md);
2583 		if (r) {
2584 			dm_table_presuspend_undo_targets(map);
2585 			return r;
2586 		}
2587 	}
2588 
2589 	/*
2590 	 * Here we must make sure that no processes are submitting requests
2591 	 * to target drivers i.e. no one may be executing
2592 	 * dm_split_and_process_bio from dm_submit_bio.
2593 	 *
2594 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2595 	 * we take the write lock. To prevent any process from reentering
2596 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2597 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2598 	 * flush_workqueue(md->wq).
2599 	 */
2600 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2601 	if (map)
2602 		synchronize_srcu(&md->io_barrier);
2603 
2604 	/*
2605 	 * Stop md->queue before flushing md->wq in case request-based
2606 	 * dm defers requests to md->wq from md->queue.
2607 	 */
2608 	if (dm_request_based(md))
2609 		dm_stop_queue(md->queue);
2610 
2611 	flush_workqueue(md->wq);
2612 
2613 	/*
2614 	 * At this point no more requests are entering target request routines.
2615 	 * We call dm_wait_for_completion to wait for all existing requests
2616 	 * to finish.
2617 	 */
2618 	r = dm_wait_for_completion(md, task_state);
2619 	if (!r)
2620 		set_bit(dmf_suspended_flag, &md->flags);
2621 
2622 	if (noflush)
2623 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2624 	if (map)
2625 		synchronize_srcu(&md->io_barrier);
2626 
2627 	/* were we interrupted ? */
2628 	if (r < 0) {
2629 		dm_queue_flush(md);
2630 
2631 		if (dm_request_based(md))
2632 			dm_start_queue(md->queue);
2633 
2634 		unlock_fs(md);
2635 		dm_table_presuspend_undo_targets(map);
2636 		/* pushback list is already flushed, so skip flush */
2637 	}
2638 
2639 	return r;
2640 }
2641 
2642 /*
2643  * We need to be able to change a mapping table under a mounted
2644  * filesystem.  For example we might want to move some data in
2645  * the background.  Before the table can be swapped with
2646  * dm_bind_table, dm_suspend must be called to flush any in
2647  * flight bios and ensure that any further io gets deferred.
2648  */
2649 /*
2650  * Suspend mechanism in request-based dm.
2651  *
2652  * 1. Flush all I/Os by lock_fs() if needed.
2653  * 2. Stop dispatching any I/O by stopping the request_queue.
2654  * 3. Wait for all in-flight I/Os to be completed or requeued.
2655  *
2656  * To abort suspend, start the request_queue.
2657  */
2658 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2659 {
2660 	struct dm_table *map = NULL;
2661 	int r = 0;
2662 
2663 retry:
2664 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2665 
2666 	if (dm_suspended_md(md)) {
2667 		r = -EINVAL;
2668 		goto out_unlock;
2669 	}
2670 
2671 	if (dm_suspended_internally_md(md)) {
2672 		/* already internally suspended, wait for internal resume */
2673 		mutex_unlock(&md->suspend_lock);
2674 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2675 		if (r)
2676 			return r;
2677 		goto retry;
2678 	}
2679 
2680 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2681 
2682 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2683 	if (r)
2684 		goto out_unlock;
2685 
2686 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2687 	dm_table_postsuspend_targets(map);
2688 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2689 
2690 out_unlock:
2691 	mutex_unlock(&md->suspend_lock);
2692 	return r;
2693 }
2694 
2695 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2696 {
2697 	if (map) {
2698 		int r = dm_table_resume_targets(map);
2699 		if (r)
2700 			return r;
2701 	}
2702 
2703 	dm_queue_flush(md);
2704 
2705 	/*
2706 	 * Flushing deferred I/Os must be done after targets are resumed
2707 	 * so that mapping of targets can work correctly.
2708 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2709 	 */
2710 	if (dm_request_based(md))
2711 		dm_start_queue(md->queue);
2712 
2713 	unlock_fs(md);
2714 
2715 	return 0;
2716 }
2717 
2718 int dm_resume(struct mapped_device *md)
2719 {
2720 	int r;
2721 	struct dm_table *map = NULL;
2722 
2723 retry:
2724 	r = -EINVAL;
2725 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2726 
2727 	if (!dm_suspended_md(md))
2728 		goto out;
2729 
2730 	if (dm_suspended_internally_md(md)) {
2731 		/* already internally suspended, wait for internal resume */
2732 		mutex_unlock(&md->suspend_lock);
2733 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2734 		if (r)
2735 			return r;
2736 		goto retry;
2737 	}
2738 
2739 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2740 	if (!map || !dm_table_get_size(map))
2741 		goto out;
2742 
2743 	r = __dm_resume(md, map);
2744 	if (r)
2745 		goto out;
2746 
2747 	clear_bit(DMF_SUSPENDED, &md->flags);
2748 out:
2749 	mutex_unlock(&md->suspend_lock);
2750 
2751 	return r;
2752 }
2753 
2754 /*
2755  * Internal suspend/resume works like userspace-driven suspend. It waits
2756  * until all bios finish and prevents issuing new bios to the target drivers.
2757  * It may be used only from the kernel.
2758  */
2759 
2760 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2761 {
2762 	struct dm_table *map = NULL;
2763 
2764 	lockdep_assert_held(&md->suspend_lock);
2765 
2766 	if (md->internal_suspend_count++)
2767 		return; /* nested internal suspend */
2768 
2769 	if (dm_suspended_md(md)) {
2770 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2771 		return; /* nest suspend */
2772 	}
2773 
2774 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2775 
2776 	/*
2777 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2778 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2779 	 * would require changing .presuspend to return an error -- avoid this
2780 	 * until there is a need for more elaborate variants of internal suspend.
2781 	 */
2782 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2783 			    DMF_SUSPENDED_INTERNALLY);
2784 
2785 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2786 	dm_table_postsuspend_targets(map);
2787 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2788 }
2789 
2790 static void __dm_internal_resume(struct mapped_device *md)
2791 {
2792 	BUG_ON(!md->internal_suspend_count);
2793 
2794 	if (--md->internal_suspend_count)
2795 		return; /* resume from nested internal suspend */
2796 
2797 	if (dm_suspended_md(md))
2798 		goto done; /* resume from nested suspend */
2799 
2800 	/*
2801 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2802 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2803 	 */
2804 	(void) __dm_resume(md, NULL);
2805 
2806 done:
2807 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2808 	smp_mb__after_atomic();
2809 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2810 }
2811 
2812 void dm_internal_suspend_noflush(struct mapped_device *md)
2813 {
2814 	mutex_lock(&md->suspend_lock);
2815 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2816 	mutex_unlock(&md->suspend_lock);
2817 }
2818 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2819 
2820 void dm_internal_resume(struct mapped_device *md)
2821 {
2822 	mutex_lock(&md->suspend_lock);
2823 	__dm_internal_resume(md);
2824 	mutex_unlock(&md->suspend_lock);
2825 }
2826 EXPORT_SYMBOL_GPL(dm_internal_resume);
2827 
2828 /*
2829  * Fast variants of internal suspend/resume hold md->suspend_lock,
2830  * which prevents interaction with userspace-driven suspend.
2831  */
2832 
2833 void dm_internal_suspend_fast(struct mapped_device *md)
2834 {
2835 	mutex_lock(&md->suspend_lock);
2836 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2837 		return;
2838 
2839 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2840 	synchronize_srcu(&md->io_barrier);
2841 	flush_workqueue(md->wq);
2842 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2843 }
2844 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2845 
2846 void dm_internal_resume_fast(struct mapped_device *md)
2847 {
2848 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2849 		goto done;
2850 
2851 	dm_queue_flush(md);
2852 
2853 done:
2854 	mutex_unlock(&md->suspend_lock);
2855 }
2856 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2857 
2858 /*-----------------------------------------------------------------
2859  * Event notification.
2860  *---------------------------------------------------------------*/
2861 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2862 		       unsigned cookie)
2863 {
2864 	int r;
2865 	unsigned noio_flag;
2866 	char udev_cookie[DM_COOKIE_LENGTH];
2867 	char *envp[] = { udev_cookie, NULL };
2868 
2869 	noio_flag = memalloc_noio_save();
2870 
2871 	if (!cookie)
2872 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2873 	else {
2874 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2875 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2876 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2877 				       action, envp);
2878 	}
2879 
2880 	memalloc_noio_restore(noio_flag);
2881 
2882 	return r;
2883 }
2884 
2885 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2886 {
2887 	return atomic_add_return(1, &md->uevent_seq);
2888 }
2889 
2890 uint32_t dm_get_event_nr(struct mapped_device *md)
2891 {
2892 	return atomic_read(&md->event_nr);
2893 }
2894 
2895 int dm_wait_event(struct mapped_device *md, int event_nr)
2896 {
2897 	return wait_event_interruptible(md->eventq,
2898 			(event_nr != atomic_read(&md->event_nr)));
2899 }
2900 
2901 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2902 {
2903 	unsigned long flags;
2904 
2905 	spin_lock_irqsave(&md->uevent_lock, flags);
2906 	list_add(elist, &md->uevent_list);
2907 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2908 }
2909 
2910 /*
2911  * The gendisk is only valid as long as you have a reference
2912  * count on 'md'.
2913  */
2914 struct gendisk *dm_disk(struct mapped_device *md)
2915 {
2916 	return md->disk;
2917 }
2918 EXPORT_SYMBOL_GPL(dm_disk);
2919 
2920 struct kobject *dm_kobject(struct mapped_device *md)
2921 {
2922 	return &md->kobj_holder.kobj;
2923 }
2924 
2925 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2926 {
2927 	struct mapped_device *md;
2928 
2929 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2930 
2931 	spin_lock(&_minor_lock);
2932 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2933 		md = NULL;
2934 		goto out;
2935 	}
2936 	dm_get(md);
2937 out:
2938 	spin_unlock(&_minor_lock);
2939 
2940 	return md;
2941 }
2942 
2943 int dm_suspended_md(struct mapped_device *md)
2944 {
2945 	return test_bit(DMF_SUSPENDED, &md->flags);
2946 }
2947 
2948 static int dm_post_suspending_md(struct mapped_device *md)
2949 {
2950 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2951 }
2952 
2953 int dm_suspended_internally_md(struct mapped_device *md)
2954 {
2955 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2956 }
2957 
2958 int dm_test_deferred_remove_flag(struct mapped_device *md)
2959 {
2960 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2961 }
2962 
2963 int dm_suspended(struct dm_target *ti)
2964 {
2965 	return dm_suspended_md(ti->table->md);
2966 }
2967 EXPORT_SYMBOL_GPL(dm_suspended);
2968 
2969 int dm_post_suspending(struct dm_target *ti)
2970 {
2971 	return dm_post_suspending_md(ti->table->md);
2972 }
2973 EXPORT_SYMBOL_GPL(dm_post_suspending);
2974 
2975 int dm_noflush_suspending(struct dm_target *ti)
2976 {
2977 	return __noflush_suspending(ti->table->md);
2978 }
2979 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2980 
2981 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2982 					    unsigned per_io_data_size, unsigned min_pool_size,
2983 					    bool integrity, bool poll)
2984 {
2985 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2986 	unsigned int pool_size = 0;
2987 	unsigned int front_pad, io_front_pad;
2988 	int ret;
2989 
2990 	if (!pools)
2991 		return NULL;
2992 
2993 	switch (type) {
2994 	case DM_TYPE_BIO_BASED:
2995 	case DM_TYPE_DAX_BIO_BASED:
2996 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2997 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2998 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2999 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, poll ? BIOSET_PERCPU_CACHE : 0);
3000 		if (ret)
3001 			goto out;
3002 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3003 			goto out;
3004 		break;
3005 	case DM_TYPE_REQUEST_BASED:
3006 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3007 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3008 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3009 		break;
3010 	default:
3011 		BUG();
3012 	}
3013 
3014 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3015 	if (ret)
3016 		goto out;
3017 
3018 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3019 		goto out;
3020 
3021 	return pools;
3022 
3023 out:
3024 	dm_free_md_mempools(pools);
3025 
3026 	return NULL;
3027 }
3028 
3029 void dm_free_md_mempools(struct dm_md_mempools *pools)
3030 {
3031 	if (!pools)
3032 		return;
3033 
3034 	bioset_exit(&pools->bs);
3035 	bioset_exit(&pools->io_bs);
3036 
3037 	kfree(pools);
3038 }
3039 
3040 struct dm_pr {
3041 	u64	old_key;
3042 	u64	new_key;
3043 	u32	flags;
3044 	bool	fail_early;
3045 };
3046 
3047 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3048 		      void *data)
3049 {
3050 	struct mapped_device *md = bdev->bd_disk->private_data;
3051 	struct dm_table *table;
3052 	struct dm_target *ti;
3053 	int ret = -ENOTTY, srcu_idx;
3054 
3055 	table = dm_get_live_table(md, &srcu_idx);
3056 	if (!table || !dm_table_get_size(table))
3057 		goto out;
3058 
3059 	/* We only support devices that have a single target */
3060 	if (dm_table_get_num_targets(table) != 1)
3061 		goto out;
3062 	ti = dm_table_get_target(table, 0);
3063 
3064 	ret = -EINVAL;
3065 	if (!ti->type->iterate_devices)
3066 		goto out;
3067 
3068 	ret = ti->type->iterate_devices(ti, fn, data);
3069 out:
3070 	dm_put_live_table(md, srcu_idx);
3071 	return ret;
3072 }
3073 
3074 /*
3075  * For register / unregister we need to manually call out to every path.
3076  */
3077 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3078 			    sector_t start, sector_t len, void *data)
3079 {
3080 	struct dm_pr *pr = data;
3081 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3082 
3083 	if (!ops || !ops->pr_register)
3084 		return -EOPNOTSUPP;
3085 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3086 }
3087 
3088 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3089 			  u32 flags)
3090 {
3091 	struct dm_pr pr = {
3092 		.old_key	= old_key,
3093 		.new_key	= new_key,
3094 		.flags		= flags,
3095 		.fail_early	= true,
3096 	};
3097 	int ret;
3098 
3099 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3100 	if (ret && new_key) {
3101 		/* unregister all paths if we failed to register any path */
3102 		pr.old_key = new_key;
3103 		pr.new_key = 0;
3104 		pr.flags = 0;
3105 		pr.fail_early = false;
3106 		dm_call_pr(bdev, __dm_pr_register, &pr);
3107 	}
3108 
3109 	return ret;
3110 }
3111 
3112 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3113 			 u32 flags)
3114 {
3115 	struct mapped_device *md = bdev->bd_disk->private_data;
3116 	const struct pr_ops *ops;
3117 	int r, srcu_idx;
3118 
3119 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3120 	if (r < 0)
3121 		goto out;
3122 
3123 	ops = bdev->bd_disk->fops->pr_ops;
3124 	if (ops && ops->pr_reserve)
3125 		r = ops->pr_reserve(bdev, key, type, flags);
3126 	else
3127 		r = -EOPNOTSUPP;
3128 out:
3129 	dm_unprepare_ioctl(md, srcu_idx);
3130 	return r;
3131 }
3132 
3133 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3134 {
3135 	struct mapped_device *md = bdev->bd_disk->private_data;
3136 	const struct pr_ops *ops;
3137 	int r, srcu_idx;
3138 
3139 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3140 	if (r < 0)
3141 		goto out;
3142 
3143 	ops = bdev->bd_disk->fops->pr_ops;
3144 	if (ops && ops->pr_release)
3145 		r = ops->pr_release(bdev, key, type);
3146 	else
3147 		r = -EOPNOTSUPP;
3148 out:
3149 	dm_unprepare_ioctl(md, srcu_idx);
3150 	return r;
3151 }
3152 
3153 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3154 			 enum pr_type type, bool abort)
3155 {
3156 	struct mapped_device *md = bdev->bd_disk->private_data;
3157 	const struct pr_ops *ops;
3158 	int r, srcu_idx;
3159 
3160 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3161 	if (r < 0)
3162 		goto out;
3163 
3164 	ops = bdev->bd_disk->fops->pr_ops;
3165 	if (ops && ops->pr_preempt)
3166 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3167 	else
3168 		r = -EOPNOTSUPP;
3169 out:
3170 	dm_unprepare_ioctl(md, srcu_idx);
3171 	return r;
3172 }
3173 
3174 static int dm_pr_clear(struct block_device *bdev, u64 key)
3175 {
3176 	struct mapped_device *md = bdev->bd_disk->private_data;
3177 	const struct pr_ops *ops;
3178 	int r, srcu_idx;
3179 
3180 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3181 	if (r < 0)
3182 		goto out;
3183 
3184 	ops = bdev->bd_disk->fops->pr_ops;
3185 	if (ops && ops->pr_clear)
3186 		r = ops->pr_clear(bdev, key);
3187 	else
3188 		r = -EOPNOTSUPP;
3189 out:
3190 	dm_unprepare_ioctl(md, srcu_idx);
3191 	return r;
3192 }
3193 
3194 static const struct pr_ops dm_pr_ops = {
3195 	.pr_register	= dm_pr_register,
3196 	.pr_reserve	= dm_pr_reserve,
3197 	.pr_release	= dm_pr_release,
3198 	.pr_preempt	= dm_pr_preempt,
3199 	.pr_clear	= dm_pr_clear,
3200 };
3201 
3202 static const struct block_device_operations dm_blk_dops = {
3203 	.submit_bio = dm_submit_bio,
3204 	.poll_bio = dm_poll_bio,
3205 	.open = dm_blk_open,
3206 	.release = dm_blk_close,
3207 	.ioctl = dm_blk_ioctl,
3208 	.getgeo = dm_blk_getgeo,
3209 	.report_zones = dm_blk_report_zones,
3210 	.pr_ops = &dm_pr_ops,
3211 	.owner = THIS_MODULE
3212 };
3213 
3214 static const struct block_device_operations dm_rq_blk_dops = {
3215 	.open = dm_blk_open,
3216 	.release = dm_blk_close,
3217 	.ioctl = dm_blk_ioctl,
3218 	.getgeo = dm_blk_getgeo,
3219 	.pr_ops = &dm_pr_ops,
3220 	.owner = THIS_MODULE
3221 };
3222 
3223 static const struct dax_operations dm_dax_ops = {
3224 	.direct_access = dm_dax_direct_access,
3225 	.zero_page_range = dm_dax_zero_page_range,
3226 	.recovery_write = dm_dax_recovery_write,
3227 };
3228 
3229 /*
3230  * module hooks
3231  */
3232 module_init(dm_init);
3233 module_exit(dm_exit);
3234 
3235 module_param(major, uint, 0);
3236 MODULE_PARM_DESC(major, "The major number of the device mapper");
3237 
3238 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3239 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3240 
3241 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3242 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3243 
3244 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3245 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3246 
3247 MODULE_DESCRIPTION(DM_NAME " driver");
3248 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3249 MODULE_LICENSE("GPL");
3250