xref: /openbmc/linux/drivers/md/dm.c (revision d8bcaabe)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 
28 #define DM_MSG_PREFIX "core"
29 
30 /*
31  * Cookies are numeric values sent with CHANGE and REMOVE
32  * uevents while resuming, removing or renaming the device.
33  */
34 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
35 #define DM_COOKIE_LENGTH 24
36 
37 static const char *_name = DM_NAME;
38 
39 static unsigned int major = 0;
40 static unsigned int _major = 0;
41 
42 static DEFINE_IDR(_minor_idr);
43 
44 static DEFINE_SPINLOCK(_minor_lock);
45 
46 static void do_deferred_remove(struct work_struct *w);
47 
48 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
49 
50 static struct workqueue_struct *deferred_remove_workqueue;
51 
52 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
53 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
54 
55 void dm_issue_global_event(void)
56 {
57 	atomic_inc(&dm_global_event_nr);
58 	wake_up(&dm_global_eventq);
59 }
60 
61 /*
62  * One of these is allocated per bio.
63  */
64 struct dm_io {
65 	struct mapped_device *md;
66 	blk_status_t status;
67 	atomic_t io_count;
68 	struct bio *bio;
69 	unsigned long start_time;
70 	spinlock_t endio_lock;
71 	struct dm_stats_aux stats_aux;
72 };
73 
74 #define MINOR_ALLOCED ((void *)-1)
75 
76 /*
77  * Bits for the md->flags field.
78  */
79 #define DMF_BLOCK_IO_FOR_SUSPEND 0
80 #define DMF_SUSPENDED 1
81 #define DMF_FROZEN 2
82 #define DMF_FREEING 3
83 #define DMF_DELETING 4
84 #define DMF_NOFLUSH_SUSPENDING 5
85 #define DMF_DEFERRED_REMOVE 6
86 #define DMF_SUSPENDED_INTERNALLY 7
87 
88 #define DM_NUMA_NODE NUMA_NO_NODE
89 static int dm_numa_node = DM_NUMA_NODE;
90 
91 /*
92  * For mempools pre-allocation at the table loading time.
93  */
94 struct dm_md_mempools {
95 	mempool_t *io_pool;
96 	struct bio_set *bs;
97 };
98 
99 struct table_device {
100 	struct list_head list;
101 	atomic_t count;
102 	struct dm_dev dm_dev;
103 };
104 
105 static struct kmem_cache *_io_cache;
106 static struct kmem_cache *_rq_tio_cache;
107 static struct kmem_cache *_rq_cache;
108 
109 /*
110  * Bio-based DM's mempools' reserved IOs set by the user.
111  */
112 #define RESERVED_BIO_BASED_IOS		16
113 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
114 
115 static int __dm_get_module_param_int(int *module_param, int min, int max)
116 {
117 	int param = ACCESS_ONCE(*module_param);
118 	int modified_param = 0;
119 	bool modified = true;
120 
121 	if (param < min)
122 		modified_param = min;
123 	else if (param > max)
124 		modified_param = max;
125 	else
126 		modified = false;
127 
128 	if (modified) {
129 		(void)cmpxchg(module_param, param, modified_param);
130 		param = modified_param;
131 	}
132 
133 	return param;
134 }
135 
136 unsigned __dm_get_module_param(unsigned *module_param,
137 			       unsigned def, unsigned max)
138 {
139 	unsigned param = ACCESS_ONCE(*module_param);
140 	unsigned modified_param = 0;
141 
142 	if (!param)
143 		modified_param = def;
144 	else if (param > max)
145 		modified_param = max;
146 
147 	if (modified_param) {
148 		(void)cmpxchg(module_param, param, modified_param);
149 		param = modified_param;
150 	}
151 
152 	return param;
153 }
154 
155 unsigned dm_get_reserved_bio_based_ios(void)
156 {
157 	return __dm_get_module_param(&reserved_bio_based_ios,
158 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
159 }
160 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
161 
162 static unsigned dm_get_numa_node(void)
163 {
164 	return __dm_get_module_param_int(&dm_numa_node,
165 					 DM_NUMA_NODE, num_online_nodes() - 1);
166 }
167 
168 static int __init local_init(void)
169 {
170 	int r = -ENOMEM;
171 
172 	/* allocate a slab for the dm_ios */
173 	_io_cache = KMEM_CACHE(dm_io, 0);
174 	if (!_io_cache)
175 		return r;
176 
177 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
178 	if (!_rq_tio_cache)
179 		goto out_free_io_cache;
180 
181 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
182 				      __alignof__(struct request), 0, NULL);
183 	if (!_rq_cache)
184 		goto out_free_rq_tio_cache;
185 
186 	r = dm_uevent_init();
187 	if (r)
188 		goto out_free_rq_cache;
189 
190 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
191 	if (!deferred_remove_workqueue) {
192 		r = -ENOMEM;
193 		goto out_uevent_exit;
194 	}
195 
196 	_major = major;
197 	r = register_blkdev(_major, _name);
198 	if (r < 0)
199 		goto out_free_workqueue;
200 
201 	if (!_major)
202 		_major = r;
203 
204 	return 0;
205 
206 out_free_workqueue:
207 	destroy_workqueue(deferred_remove_workqueue);
208 out_uevent_exit:
209 	dm_uevent_exit();
210 out_free_rq_cache:
211 	kmem_cache_destroy(_rq_cache);
212 out_free_rq_tio_cache:
213 	kmem_cache_destroy(_rq_tio_cache);
214 out_free_io_cache:
215 	kmem_cache_destroy(_io_cache);
216 
217 	return r;
218 }
219 
220 static void local_exit(void)
221 {
222 	flush_scheduled_work();
223 	destroy_workqueue(deferred_remove_workqueue);
224 
225 	kmem_cache_destroy(_rq_cache);
226 	kmem_cache_destroy(_rq_tio_cache);
227 	kmem_cache_destroy(_io_cache);
228 	unregister_blkdev(_major, _name);
229 	dm_uevent_exit();
230 
231 	_major = 0;
232 
233 	DMINFO("cleaned up");
234 }
235 
236 static int (*_inits[])(void) __initdata = {
237 	local_init,
238 	dm_target_init,
239 	dm_linear_init,
240 	dm_stripe_init,
241 	dm_io_init,
242 	dm_kcopyd_init,
243 	dm_interface_init,
244 	dm_statistics_init,
245 };
246 
247 static void (*_exits[])(void) = {
248 	local_exit,
249 	dm_target_exit,
250 	dm_linear_exit,
251 	dm_stripe_exit,
252 	dm_io_exit,
253 	dm_kcopyd_exit,
254 	dm_interface_exit,
255 	dm_statistics_exit,
256 };
257 
258 static int __init dm_init(void)
259 {
260 	const int count = ARRAY_SIZE(_inits);
261 
262 	int r, i;
263 
264 	for (i = 0; i < count; i++) {
265 		r = _inits[i]();
266 		if (r)
267 			goto bad;
268 	}
269 
270 	return 0;
271 
272       bad:
273 	while (i--)
274 		_exits[i]();
275 
276 	return r;
277 }
278 
279 static void __exit dm_exit(void)
280 {
281 	int i = ARRAY_SIZE(_exits);
282 
283 	while (i--)
284 		_exits[i]();
285 
286 	/*
287 	 * Should be empty by this point.
288 	 */
289 	idr_destroy(&_minor_idr);
290 }
291 
292 /*
293  * Block device functions
294  */
295 int dm_deleting_md(struct mapped_device *md)
296 {
297 	return test_bit(DMF_DELETING, &md->flags);
298 }
299 
300 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
301 {
302 	struct mapped_device *md;
303 
304 	spin_lock(&_minor_lock);
305 
306 	md = bdev->bd_disk->private_data;
307 	if (!md)
308 		goto out;
309 
310 	if (test_bit(DMF_FREEING, &md->flags) ||
311 	    dm_deleting_md(md)) {
312 		md = NULL;
313 		goto out;
314 	}
315 
316 	dm_get(md);
317 	atomic_inc(&md->open_count);
318 out:
319 	spin_unlock(&_minor_lock);
320 
321 	return md ? 0 : -ENXIO;
322 }
323 
324 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
325 {
326 	struct mapped_device *md;
327 
328 	spin_lock(&_minor_lock);
329 
330 	md = disk->private_data;
331 	if (WARN_ON(!md))
332 		goto out;
333 
334 	if (atomic_dec_and_test(&md->open_count) &&
335 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
336 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
337 
338 	dm_put(md);
339 out:
340 	spin_unlock(&_minor_lock);
341 }
342 
343 int dm_open_count(struct mapped_device *md)
344 {
345 	return atomic_read(&md->open_count);
346 }
347 
348 /*
349  * Guarantees nothing is using the device before it's deleted.
350  */
351 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
352 {
353 	int r = 0;
354 
355 	spin_lock(&_minor_lock);
356 
357 	if (dm_open_count(md)) {
358 		r = -EBUSY;
359 		if (mark_deferred)
360 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
361 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
362 		r = -EEXIST;
363 	else
364 		set_bit(DMF_DELETING, &md->flags);
365 
366 	spin_unlock(&_minor_lock);
367 
368 	return r;
369 }
370 
371 int dm_cancel_deferred_remove(struct mapped_device *md)
372 {
373 	int r = 0;
374 
375 	spin_lock(&_minor_lock);
376 
377 	if (test_bit(DMF_DELETING, &md->flags))
378 		r = -EBUSY;
379 	else
380 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
381 
382 	spin_unlock(&_minor_lock);
383 
384 	return r;
385 }
386 
387 static void do_deferred_remove(struct work_struct *w)
388 {
389 	dm_deferred_remove();
390 }
391 
392 sector_t dm_get_size(struct mapped_device *md)
393 {
394 	return get_capacity(md->disk);
395 }
396 
397 struct request_queue *dm_get_md_queue(struct mapped_device *md)
398 {
399 	return md->queue;
400 }
401 
402 struct dm_stats *dm_get_stats(struct mapped_device *md)
403 {
404 	return &md->stats;
405 }
406 
407 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
408 {
409 	struct mapped_device *md = bdev->bd_disk->private_data;
410 
411 	return dm_get_geometry(md, geo);
412 }
413 
414 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
415 				  struct block_device **bdev,
416 				  fmode_t *mode)
417 {
418 	struct dm_target *tgt;
419 	struct dm_table *map;
420 	int srcu_idx, r;
421 
422 retry:
423 	r = -ENOTTY;
424 	map = dm_get_live_table(md, &srcu_idx);
425 	if (!map || !dm_table_get_size(map))
426 		goto out;
427 
428 	/* We only support devices that have a single target */
429 	if (dm_table_get_num_targets(map) != 1)
430 		goto out;
431 
432 	tgt = dm_table_get_target(map, 0);
433 	if (!tgt->type->prepare_ioctl)
434 		goto out;
435 
436 	if (dm_suspended_md(md)) {
437 		r = -EAGAIN;
438 		goto out;
439 	}
440 
441 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
442 	if (r < 0)
443 		goto out;
444 
445 	bdgrab(*bdev);
446 	dm_put_live_table(md, srcu_idx);
447 	return r;
448 
449 out:
450 	dm_put_live_table(md, srcu_idx);
451 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
452 		msleep(10);
453 		goto retry;
454 	}
455 	return r;
456 }
457 
458 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
459 			unsigned int cmd, unsigned long arg)
460 {
461 	struct mapped_device *md = bdev->bd_disk->private_data;
462 	int r;
463 
464 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
465 	if (r < 0)
466 		return r;
467 
468 	if (r > 0) {
469 		/*
470 		 * Target determined this ioctl is being issued against a
471 		 * subset of the parent bdev; require extra privileges.
472 		 */
473 		if (!capable(CAP_SYS_RAWIO)) {
474 			DMWARN_LIMIT(
475 	"%s: sending ioctl %x to DM device without required privilege.",
476 				current->comm, cmd);
477 			r = -ENOIOCTLCMD;
478 			goto out;
479 		}
480 	}
481 
482 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
483 out:
484 	bdput(bdev);
485 	return r;
486 }
487 
488 static struct dm_io *alloc_io(struct mapped_device *md)
489 {
490 	return mempool_alloc(md->io_pool, GFP_NOIO);
491 }
492 
493 static void free_io(struct mapped_device *md, struct dm_io *io)
494 {
495 	mempool_free(io, md->io_pool);
496 }
497 
498 static void free_tio(struct dm_target_io *tio)
499 {
500 	bio_put(&tio->clone);
501 }
502 
503 int md_in_flight(struct mapped_device *md)
504 {
505 	return atomic_read(&md->pending[READ]) +
506 	       atomic_read(&md->pending[WRITE]);
507 }
508 
509 static void start_io_acct(struct dm_io *io)
510 {
511 	struct mapped_device *md = io->md;
512 	struct bio *bio = io->bio;
513 	int cpu;
514 	int rw = bio_data_dir(bio);
515 
516 	io->start_time = jiffies;
517 
518 	cpu = part_stat_lock();
519 	part_round_stats(md->queue, cpu, &dm_disk(md)->part0);
520 	part_stat_unlock();
521 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
522 		atomic_inc_return(&md->pending[rw]));
523 
524 	if (unlikely(dm_stats_used(&md->stats)))
525 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
526 				    bio->bi_iter.bi_sector, bio_sectors(bio),
527 				    false, 0, &io->stats_aux);
528 }
529 
530 static void end_io_acct(struct dm_io *io)
531 {
532 	struct mapped_device *md = io->md;
533 	struct bio *bio = io->bio;
534 	unsigned long duration = jiffies - io->start_time;
535 	int pending;
536 	int rw = bio_data_dir(bio);
537 
538 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
539 
540 	if (unlikely(dm_stats_used(&md->stats)))
541 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
542 				    bio->bi_iter.bi_sector, bio_sectors(bio),
543 				    true, duration, &io->stats_aux);
544 
545 	/*
546 	 * After this is decremented the bio must not be touched if it is
547 	 * a flush.
548 	 */
549 	pending = atomic_dec_return(&md->pending[rw]);
550 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
551 	pending += atomic_read(&md->pending[rw^0x1]);
552 
553 	/* nudge anyone waiting on suspend queue */
554 	if (!pending)
555 		wake_up(&md->wait);
556 }
557 
558 /*
559  * Add the bio to the list of deferred io.
560  */
561 static void queue_io(struct mapped_device *md, struct bio *bio)
562 {
563 	unsigned long flags;
564 
565 	spin_lock_irqsave(&md->deferred_lock, flags);
566 	bio_list_add(&md->deferred, bio);
567 	spin_unlock_irqrestore(&md->deferred_lock, flags);
568 	queue_work(md->wq, &md->work);
569 }
570 
571 /*
572  * Everyone (including functions in this file), should use this
573  * function to access the md->map field, and make sure they call
574  * dm_put_live_table() when finished.
575  */
576 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
577 {
578 	*srcu_idx = srcu_read_lock(&md->io_barrier);
579 
580 	return srcu_dereference(md->map, &md->io_barrier);
581 }
582 
583 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
584 {
585 	srcu_read_unlock(&md->io_barrier, srcu_idx);
586 }
587 
588 void dm_sync_table(struct mapped_device *md)
589 {
590 	synchronize_srcu(&md->io_barrier);
591 	synchronize_rcu_expedited();
592 }
593 
594 /*
595  * A fast alternative to dm_get_live_table/dm_put_live_table.
596  * The caller must not block between these two functions.
597  */
598 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
599 {
600 	rcu_read_lock();
601 	return rcu_dereference(md->map);
602 }
603 
604 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
605 {
606 	rcu_read_unlock();
607 }
608 
609 /*
610  * Open a table device so we can use it as a map destination.
611  */
612 static int open_table_device(struct table_device *td, dev_t dev,
613 			     struct mapped_device *md)
614 {
615 	static char *_claim_ptr = "I belong to device-mapper";
616 	struct block_device *bdev;
617 
618 	int r;
619 
620 	BUG_ON(td->dm_dev.bdev);
621 
622 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
623 	if (IS_ERR(bdev))
624 		return PTR_ERR(bdev);
625 
626 	r = bd_link_disk_holder(bdev, dm_disk(md));
627 	if (r) {
628 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
629 		return r;
630 	}
631 
632 	td->dm_dev.bdev = bdev;
633 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
634 	return 0;
635 }
636 
637 /*
638  * Close a table device that we've been using.
639  */
640 static void close_table_device(struct table_device *td, struct mapped_device *md)
641 {
642 	if (!td->dm_dev.bdev)
643 		return;
644 
645 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
646 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
647 	put_dax(td->dm_dev.dax_dev);
648 	td->dm_dev.bdev = NULL;
649 	td->dm_dev.dax_dev = NULL;
650 }
651 
652 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
653 					      fmode_t mode) {
654 	struct table_device *td;
655 
656 	list_for_each_entry(td, l, list)
657 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
658 			return td;
659 
660 	return NULL;
661 }
662 
663 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
664 			struct dm_dev **result) {
665 	int r;
666 	struct table_device *td;
667 
668 	mutex_lock(&md->table_devices_lock);
669 	td = find_table_device(&md->table_devices, dev, mode);
670 	if (!td) {
671 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
672 		if (!td) {
673 			mutex_unlock(&md->table_devices_lock);
674 			return -ENOMEM;
675 		}
676 
677 		td->dm_dev.mode = mode;
678 		td->dm_dev.bdev = NULL;
679 
680 		if ((r = open_table_device(td, dev, md))) {
681 			mutex_unlock(&md->table_devices_lock);
682 			kfree(td);
683 			return r;
684 		}
685 
686 		format_dev_t(td->dm_dev.name, dev);
687 
688 		atomic_set(&td->count, 0);
689 		list_add(&td->list, &md->table_devices);
690 	}
691 	atomic_inc(&td->count);
692 	mutex_unlock(&md->table_devices_lock);
693 
694 	*result = &td->dm_dev;
695 	return 0;
696 }
697 EXPORT_SYMBOL_GPL(dm_get_table_device);
698 
699 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
700 {
701 	struct table_device *td = container_of(d, struct table_device, dm_dev);
702 
703 	mutex_lock(&md->table_devices_lock);
704 	if (atomic_dec_and_test(&td->count)) {
705 		close_table_device(td, md);
706 		list_del(&td->list);
707 		kfree(td);
708 	}
709 	mutex_unlock(&md->table_devices_lock);
710 }
711 EXPORT_SYMBOL(dm_put_table_device);
712 
713 static void free_table_devices(struct list_head *devices)
714 {
715 	struct list_head *tmp, *next;
716 
717 	list_for_each_safe(tmp, next, devices) {
718 		struct table_device *td = list_entry(tmp, struct table_device, list);
719 
720 		DMWARN("dm_destroy: %s still exists with %d references",
721 		       td->dm_dev.name, atomic_read(&td->count));
722 		kfree(td);
723 	}
724 }
725 
726 /*
727  * Get the geometry associated with a dm device
728  */
729 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
730 {
731 	*geo = md->geometry;
732 
733 	return 0;
734 }
735 
736 /*
737  * Set the geometry of a device.
738  */
739 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
740 {
741 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
742 
743 	if (geo->start > sz) {
744 		DMWARN("Start sector is beyond the geometry limits.");
745 		return -EINVAL;
746 	}
747 
748 	md->geometry = *geo;
749 
750 	return 0;
751 }
752 
753 /*-----------------------------------------------------------------
754  * CRUD START:
755  *   A more elegant soln is in the works that uses the queue
756  *   merge fn, unfortunately there are a couple of changes to
757  *   the block layer that I want to make for this.  So in the
758  *   interests of getting something for people to use I give
759  *   you this clearly demarcated crap.
760  *---------------------------------------------------------------*/
761 
762 static int __noflush_suspending(struct mapped_device *md)
763 {
764 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
765 }
766 
767 /*
768  * Decrements the number of outstanding ios that a bio has been
769  * cloned into, completing the original io if necc.
770  */
771 static void dec_pending(struct dm_io *io, blk_status_t error)
772 {
773 	unsigned long flags;
774 	blk_status_t io_error;
775 	struct bio *bio;
776 	struct mapped_device *md = io->md;
777 
778 	/* Push-back supersedes any I/O errors */
779 	if (unlikely(error)) {
780 		spin_lock_irqsave(&io->endio_lock, flags);
781 		if (!(io->status == BLK_STS_DM_REQUEUE &&
782 				__noflush_suspending(md)))
783 			io->status = error;
784 		spin_unlock_irqrestore(&io->endio_lock, flags);
785 	}
786 
787 	if (atomic_dec_and_test(&io->io_count)) {
788 		if (io->status == BLK_STS_DM_REQUEUE) {
789 			/*
790 			 * Target requested pushing back the I/O.
791 			 */
792 			spin_lock_irqsave(&md->deferred_lock, flags);
793 			if (__noflush_suspending(md))
794 				bio_list_add_head(&md->deferred, io->bio);
795 			else
796 				/* noflush suspend was interrupted. */
797 				io->status = BLK_STS_IOERR;
798 			spin_unlock_irqrestore(&md->deferred_lock, flags);
799 		}
800 
801 		io_error = io->status;
802 		bio = io->bio;
803 		end_io_acct(io);
804 		free_io(md, io);
805 
806 		if (io_error == BLK_STS_DM_REQUEUE)
807 			return;
808 
809 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
810 			/*
811 			 * Preflush done for flush with data, reissue
812 			 * without REQ_PREFLUSH.
813 			 */
814 			bio->bi_opf &= ~REQ_PREFLUSH;
815 			queue_io(md, bio);
816 		} else {
817 			/* done with normal IO or empty flush */
818 			bio->bi_status = io_error;
819 			bio_endio(bio);
820 		}
821 	}
822 }
823 
824 void disable_write_same(struct mapped_device *md)
825 {
826 	struct queue_limits *limits = dm_get_queue_limits(md);
827 
828 	/* device doesn't really support WRITE SAME, disable it */
829 	limits->max_write_same_sectors = 0;
830 }
831 
832 void disable_write_zeroes(struct mapped_device *md)
833 {
834 	struct queue_limits *limits = dm_get_queue_limits(md);
835 
836 	/* device doesn't really support WRITE ZEROES, disable it */
837 	limits->max_write_zeroes_sectors = 0;
838 }
839 
840 static void clone_endio(struct bio *bio)
841 {
842 	blk_status_t error = bio->bi_status;
843 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
844 	struct dm_io *io = tio->io;
845 	struct mapped_device *md = tio->io->md;
846 	dm_endio_fn endio = tio->ti->type->end_io;
847 
848 	if (unlikely(error == BLK_STS_TARGET)) {
849 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
850 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
851 			disable_write_same(md);
852 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
853 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
854 			disable_write_zeroes(md);
855 	}
856 
857 	if (endio) {
858 		int r = endio(tio->ti, bio, &error);
859 		switch (r) {
860 		case DM_ENDIO_REQUEUE:
861 			error = BLK_STS_DM_REQUEUE;
862 			/*FALLTHRU*/
863 		case DM_ENDIO_DONE:
864 			break;
865 		case DM_ENDIO_INCOMPLETE:
866 			/* The target will handle the io */
867 			return;
868 		default:
869 			DMWARN("unimplemented target endio return value: %d", r);
870 			BUG();
871 		}
872 	}
873 
874 	free_tio(tio);
875 	dec_pending(io, error);
876 }
877 
878 /*
879  * Return maximum size of I/O possible at the supplied sector up to the current
880  * target boundary.
881  */
882 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
883 {
884 	sector_t target_offset = dm_target_offset(ti, sector);
885 
886 	return ti->len - target_offset;
887 }
888 
889 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
890 {
891 	sector_t len = max_io_len_target_boundary(sector, ti);
892 	sector_t offset, max_len;
893 
894 	/*
895 	 * Does the target need to split even further?
896 	 */
897 	if (ti->max_io_len) {
898 		offset = dm_target_offset(ti, sector);
899 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
900 			max_len = sector_div(offset, ti->max_io_len);
901 		else
902 			max_len = offset & (ti->max_io_len - 1);
903 		max_len = ti->max_io_len - max_len;
904 
905 		if (len > max_len)
906 			len = max_len;
907 	}
908 
909 	return len;
910 }
911 
912 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
913 {
914 	if (len > UINT_MAX) {
915 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
916 		      (unsigned long long)len, UINT_MAX);
917 		ti->error = "Maximum size of target IO is too large";
918 		return -EINVAL;
919 	}
920 
921 	ti->max_io_len = (uint32_t) len;
922 
923 	return 0;
924 }
925 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
926 
927 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
928 		sector_t sector, int *srcu_idx)
929 {
930 	struct dm_table *map;
931 	struct dm_target *ti;
932 
933 	map = dm_get_live_table(md, srcu_idx);
934 	if (!map)
935 		return NULL;
936 
937 	ti = dm_table_find_target(map, sector);
938 	if (!dm_target_is_valid(ti))
939 		return NULL;
940 
941 	return ti;
942 }
943 
944 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
945 		long nr_pages, void **kaddr, pfn_t *pfn)
946 {
947 	struct mapped_device *md = dax_get_private(dax_dev);
948 	sector_t sector = pgoff * PAGE_SECTORS;
949 	struct dm_target *ti;
950 	long len, ret = -EIO;
951 	int srcu_idx;
952 
953 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
954 
955 	if (!ti)
956 		goto out;
957 	if (!ti->type->direct_access)
958 		goto out;
959 	len = max_io_len(sector, ti) / PAGE_SECTORS;
960 	if (len < 1)
961 		goto out;
962 	nr_pages = min(len, nr_pages);
963 	if (ti->type->direct_access)
964 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
965 
966  out:
967 	dm_put_live_table(md, srcu_idx);
968 
969 	return ret;
970 }
971 
972 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
973 		void *addr, size_t bytes, struct iov_iter *i)
974 {
975 	struct mapped_device *md = dax_get_private(dax_dev);
976 	sector_t sector = pgoff * PAGE_SECTORS;
977 	struct dm_target *ti;
978 	long ret = 0;
979 	int srcu_idx;
980 
981 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
982 
983 	if (!ti)
984 		goto out;
985 	if (!ti->type->dax_copy_from_iter) {
986 		ret = copy_from_iter(addr, bytes, i);
987 		goto out;
988 	}
989 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
990  out:
991 	dm_put_live_table(md, srcu_idx);
992 
993 	return ret;
994 }
995 
996 /*
997  * A target may call dm_accept_partial_bio only from the map routine.  It is
998  * allowed for all bio types except REQ_PREFLUSH.
999  *
1000  * dm_accept_partial_bio informs the dm that the target only wants to process
1001  * additional n_sectors sectors of the bio and the rest of the data should be
1002  * sent in a next bio.
1003  *
1004  * A diagram that explains the arithmetics:
1005  * +--------------------+---------------+-------+
1006  * |         1          |       2       |   3   |
1007  * +--------------------+---------------+-------+
1008  *
1009  * <-------------- *tio->len_ptr --------------->
1010  *                      <------- bi_size ------->
1011  *                      <-- n_sectors -->
1012  *
1013  * Region 1 was already iterated over with bio_advance or similar function.
1014  *	(it may be empty if the target doesn't use bio_advance)
1015  * Region 2 is the remaining bio size that the target wants to process.
1016  *	(it may be empty if region 1 is non-empty, although there is no reason
1017  *	 to make it empty)
1018  * The target requires that region 3 is to be sent in the next bio.
1019  *
1020  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1021  * the partially processed part (the sum of regions 1+2) must be the same for all
1022  * copies of the bio.
1023  */
1024 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1025 {
1026 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1027 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1028 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1029 	BUG_ON(bi_size > *tio->len_ptr);
1030 	BUG_ON(n_sectors > bi_size);
1031 	*tio->len_ptr -= bi_size - n_sectors;
1032 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1033 }
1034 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1035 
1036 /*
1037  * The zone descriptors obtained with a zone report indicate
1038  * zone positions within the target device. The zone descriptors
1039  * must be remapped to match their position within the dm device.
1040  * A target may call dm_remap_zone_report after completion of a
1041  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1042  * from the target device mapping to the dm device.
1043  */
1044 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1045 {
1046 #ifdef CONFIG_BLK_DEV_ZONED
1047 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1048 	struct bio *report_bio = tio->io->bio;
1049 	struct blk_zone_report_hdr *hdr = NULL;
1050 	struct blk_zone *zone;
1051 	unsigned int nr_rep = 0;
1052 	unsigned int ofst;
1053 	struct bio_vec bvec;
1054 	struct bvec_iter iter;
1055 	void *addr;
1056 
1057 	if (bio->bi_status)
1058 		return;
1059 
1060 	/*
1061 	 * Remap the start sector of the reported zones. For sequential zones,
1062 	 * also remap the write pointer position.
1063 	 */
1064 	bio_for_each_segment(bvec, report_bio, iter) {
1065 		addr = kmap_atomic(bvec.bv_page);
1066 
1067 		/* Remember the report header in the first page */
1068 		if (!hdr) {
1069 			hdr = addr;
1070 			ofst = sizeof(struct blk_zone_report_hdr);
1071 		} else
1072 			ofst = 0;
1073 
1074 		/* Set zones start sector */
1075 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1076 			zone = addr + ofst;
1077 			if (zone->start >= start + ti->len) {
1078 				hdr->nr_zones = 0;
1079 				break;
1080 			}
1081 			zone->start = zone->start + ti->begin - start;
1082 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1083 				if (zone->cond == BLK_ZONE_COND_FULL)
1084 					zone->wp = zone->start + zone->len;
1085 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1086 					zone->wp = zone->start;
1087 				else
1088 					zone->wp = zone->wp + ti->begin - start;
1089 			}
1090 			ofst += sizeof(struct blk_zone);
1091 			hdr->nr_zones--;
1092 			nr_rep++;
1093 		}
1094 
1095 		if (addr != hdr)
1096 			kunmap_atomic(addr);
1097 
1098 		if (!hdr->nr_zones)
1099 			break;
1100 	}
1101 
1102 	if (hdr) {
1103 		hdr->nr_zones = nr_rep;
1104 		kunmap_atomic(hdr);
1105 	}
1106 
1107 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1108 
1109 #else /* !CONFIG_BLK_DEV_ZONED */
1110 	bio->bi_status = BLK_STS_NOTSUPP;
1111 #endif
1112 }
1113 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1114 
1115 /*
1116  * Flush current->bio_list when the target map method blocks.
1117  * This fixes deadlocks in snapshot and possibly in other targets.
1118  */
1119 struct dm_offload {
1120 	struct blk_plug plug;
1121 	struct blk_plug_cb cb;
1122 };
1123 
1124 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1125 {
1126 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1127 	struct bio_list list;
1128 	struct bio *bio;
1129 	int i;
1130 
1131 	INIT_LIST_HEAD(&o->cb.list);
1132 
1133 	if (unlikely(!current->bio_list))
1134 		return;
1135 
1136 	for (i = 0; i < 2; i++) {
1137 		list = current->bio_list[i];
1138 		bio_list_init(&current->bio_list[i]);
1139 
1140 		while ((bio = bio_list_pop(&list))) {
1141 			struct bio_set *bs = bio->bi_pool;
1142 			if (unlikely(!bs) || bs == fs_bio_set ||
1143 			    !bs->rescue_workqueue) {
1144 				bio_list_add(&current->bio_list[i], bio);
1145 				continue;
1146 			}
1147 
1148 			spin_lock(&bs->rescue_lock);
1149 			bio_list_add(&bs->rescue_list, bio);
1150 			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1151 			spin_unlock(&bs->rescue_lock);
1152 		}
1153 	}
1154 }
1155 
1156 static void dm_offload_start(struct dm_offload *o)
1157 {
1158 	blk_start_plug(&o->plug);
1159 	o->cb.callback = flush_current_bio_list;
1160 	list_add(&o->cb.list, &current->plug->cb_list);
1161 }
1162 
1163 static void dm_offload_end(struct dm_offload *o)
1164 {
1165 	list_del(&o->cb.list);
1166 	blk_finish_plug(&o->plug);
1167 }
1168 
1169 static void __map_bio(struct dm_target_io *tio)
1170 {
1171 	int r;
1172 	sector_t sector;
1173 	struct dm_offload o;
1174 	struct bio *clone = &tio->clone;
1175 	struct dm_target *ti = tio->ti;
1176 
1177 	clone->bi_end_io = clone_endio;
1178 
1179 	/*
1180 	 * Map the clone.  If r == 0 we don't need to do
1181 	 * anything, the target has assumed ownership of
1182 	 * this io.
1183 	 */
1184 	atomic_inc(&tio->io->io_count);
1185 	sector = clone->bi_iter.bi_sector;
1186 
1187 	dm_offload_start(&o);
1188 	r = ti->type->map(ti, clone);
1189 	dm_offload_end(&o);
1190 
1191 	switch (r) {
1192 	case DM_MAPIO_SUBMITTED:
1193 		break;
1194 	case DM_MAPIO_REMAPPED:
1195 		/* the bio has been remapped so dispatch it */
1196 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1197 				      bio_dev(tio->io->bio), sector);
1198 		generic_make_request(clone);
1199 		break;
1200 	case DM_MAPIO_KILL:
1201 		dec_pending(tio->io, BLK_STS_IOERR);
1202 		free_tio(tio);
1203 		break;
1204 	case DM_MAPIO_REQUEUE:
1205 		dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1206 		free_tio(tio);
1207 		break;
1208 	default:
1209 		DMWARN("unimplemented target map return value: %d", r);
1210 		BUG();
1211 	}
1212 }
1213 
1214 struct clone_info {
1215 	struct mapped_device *md;
1216 	struct dm_table *map;
1217 	struct bio *bio;
1218 	struct dm_io *io;
1219 	sector_t sector;
1220 	unsigned sector_count;
1221 };
1222 
1223 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1224 {
1225 	bio->bi_iter.bi_sector = sector;
1226 	bio->bi_iter.bi_size = to_bytes(len);
1227 }
1228 
1229 /*
1230  * Creates a bio that consists of range of complete bvecs.
1231  */
1232 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1233 		     sector_t sector, unsigned len)
1234 {
1235 	struct bio *clone = &tio->clone;
1236 
1237 	__bio_clone_fast(clone, bio);
1238 
1239 	if (unlikely(bio_integrity(bio) != NULL)) {
1240 		int r;
1241 
1242 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1243 			     !dm_target_passes_integrity(tio->ti->type))) {
1244 			DMWARN("%s: the target %s doesn't support integrity data.",
1245 				dm_device_name(tio->io->md),
1246 				tio->ti->type->name);
1247 			return -EIO;
1248 		}
1249 
1250 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1251 		if (r < 0)
1252 			return r;
1253 	}
1254 
1255 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1256 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1257 	clone->bi_iter.bi_size = to_bytes(len);
1258 
1259 	if (unlikely(bio_integrity(bio) != NULL))
1260 		bio_integrity_trim(clone);
1261 
1262 	return 0;
1263 }
1264 
1265 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1266 				      struct dm_target *ti,
1267 				      unsigned target_bio_nr)
1268 {
1269 	struct dm_target_io *tio;
1270 	struct bio *clone;
1271 
1272 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1273 	tio = container_of(clone, struct dm_target_io, clone);
1274 
1275 	tio->io = ci->io;
1276 	tio->ti = ti;
1277 	tio->target_bio_nr = target_bio_nr;
1278 
1279 	return tio;
1280 }
1281 
1282 static void __clone_and_map_simple_bio(struct clone_info *ci,
1283 				       struct dm_target *ti,
1284 				       unsigned target_bio_nr, unsigned *len)
1285 {
1286 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1287 	struct bio *clone = &tio->clone;
1288 
1289 	tio->len_ptr = len;
1290 
1291 	__bio_clone_fast(clone, ci->bio);
1292 	if (len)
1293 		bio_setup_sector(clone, ci->sector, *len);
1294 
1295 	__map_bio(tio);
1296 }
1297 
1298 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1299 				  unsigned num_bios, unsigned *len)
1300 {
1301 	unsigned target_bio_nr;
1302 
1303 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1304 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1305 }
1306 
1307 static int __send_empty_flush(struct clone_info *ci)
1308 {
1309 	unsigned target_nr = 0;
1310 	struct dm_target *ti;
1311 
1312 	BUG_ON(bio_has_data(ci->bio));
1313 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1314 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1315 
1316 	return 0;
1317 }
1318 
1319 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1320 				     sector_t sector, unsigned *len)
1321 {
1322 	struct bio *bio = ci->bio;
1323 	struct dm_target_io *tio;
1324 	unsigned target_bio_nr;
1325 	unsigned num_target_bios = 1;
1326 	int r = 0;
1327 
1328 	/*
1329 	 * Does the target want to receive duplicate copies of the bio?
1330 	 */
1331 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1332 		num_target_bios = ti->num_write_bios(ti, bio);
1333 
1334 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1335 		tio = alloc_tio(ci, ti, target_bio_nr);
1336 		tio->len_ptr = len;
1337 		r = clone_bio(tio, bio, sector, *len);
1338 		if (r < 0) {
1339 			free_tio(tio);
1340 			break;
1341 		}
1342 		__map_bio(tio);
1343 	}
1344 
1345 	return r;
1346 }
1347 
1348 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1349 
1350 static unsigned get_num_discard_bios(struct dm_target *ti)
1351 {
1352 	return ti->num_discard_bios;
1353 }
1354 
1355 static unsigned get_num_write_same_bios(struct dm_target *ti)
1356 {
1357 	return ti->num_write_same_bios;
1358 }
1359 
1360 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1361 {
1362 	return ti->num_write_zeroes_bios;
1363 }
1364 
1365 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1366 
1367 static bool is_split_required_for_discard(struct dm_target *ti)
1368 {
1369 	return ti->split_discard_bios;
1370 }
1371 
1372 static int __send_changing_extent_only(struct clone_info *ci,
1373 				       get_num_bios_fn get_num_bios,
1374 				       is_split_required_fn is_split_required)
1375 {
1376 	struct dm_target *ti;
1377 	unsigned len;
1378 	unsigned num_bios;
1379 
1380 	do {
1381 		ti = dm_table_find_target(ci->map, ci->sector);
1382 		if (!dm_target_is_valid(ti))
1383 			return -EIO;
1384 
1385 		/*
1386 		 * Even though the device advertised support for this type of
1387 		 * request, that does not mean every target supports it, and
1388 		 * reconfiguration might also have changed that since the
1389 		 * check was performed.
1390 		 */
1391 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1392 		if (!num_bios)
1393 			return -EOPNOTSUPP;
1394 
1395 		if (is_split_required && !is_split_required(ti))
1396 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1397 		else
1398 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1399 
1400 		__send_duplicate_bios(ci, ti, num_bios, &len);
1401 
1402 		ci->sector += len;
1403 	} while (ci->sector_count -= len);
1404 
1405 	return 0;
1406 }
1407 
1408 static int __send_discard(struct clone_info *ci)
1409 {
1410 	return __send_changing_extent_only(ci, get_num_discard_bios,
1411 					   is_split_required_for_discard);
1412 }
1413 
1414 static int __send_write_same(struct clone_info *ci)
1415 {
1416 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1417 }
1418 
1419 static int __send_write_zeroes(struct clone_info *ci)
1420 {
1421 	return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1422 }
1423 
1424 /*
1425  * Select the correct strategy for processing a non-flush bio.
1426  */
1427 static int __split_and_process_non_flush(struct clone_info *ci)
1428 {
1429 	struct bio *bio = ci->bio;
1430 	struct dm_target *ti;
1431 	unsigned len;
1432 	int r;
1433 
1434 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1435 		return __send_discard(ci);
1436 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1437 		return __send_write_same(ci);
1438 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1439 		return __send_write_zeroes(ci);
1440 
1441 	ti = dm_table_find_target(ci->map, ci->sector);
1442 	if (!dm_target_is_valid(ti))
1443 		return -EIO;
1444 
1445 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1446 		len = ci->sector_count;
1447 	else
1448 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1449 			    ci->sector_count);
1450 
1451 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1452 	if (r < 0)
1453 		return r;
1454 
1455 	ci->sector += len;
1456 	ci->sector_count -= len;
1457 
1458 	return 0;
1459 }
1460 
1461 /*
1462  * Entry point to split a bio into clones and submit them to the targets.
1463  */
1464 static void __split_and_process_bio(struct mapped_device *md,
1465 				    struct dm_table *map, struct bio *bio)
1466 {
1467 	struct clone_info ci;
1468 	int error = 0;
1469 
1470 	if (unlikely(!map)) {
1471 		bio_io_error(bio);
1472 		return;
1473 	}
1474 
1475 	ci.map = map;
1476 	ci.md = md;
1477 	ci.io = alloc_io(md);
1478 	ci.io->status = 0;
1479 	atomic_set(&ci.io->io_count, 1);
1480 	ci.io->bio = bio;
1481 	ci.io->md = md;
1482 	spin_lock_init(&ci.io->endio_lock);
1483 	ci.sector = bio->bi_iter.bi_sector;
1484 
1485 	start_io_acct(ci.io);
1486 
1487 	if (bio->bi_opf & REQ_PREFLUSH) {
1488 		ci.bio = &ci.md->flush_bio;
1489 		ci.sector_count = 0;
1490 		error = __send_empty_flush(&ci);
1491 		/* dec_pending submits any data associated with flush */
1492 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1493 		ci.bio = bio;
1494 		ci.sector_count = 0;
1495 		error = __split_and_process_non_flush(&ci);
1496 	} else {
1497 		ci.bio = bio;
1498 		ci.sector_count = bio_sectors(bio);
1499 		while (ci.sector_count && !error)
1500 			error = __split_and_process_non_flush(&ci);
1501 	}
1502 
1503 	/* drop the extra reference count */
1504 	dec_pending(ci.io, errno_to_blk_status(error));
1505 }
1506 /*-----------------------------------------------------------------
1507  * CRUD END
1508  *---------------------------------------------------------------*/
1509 
1510 /*
1511  * The request function that just remaps the bio built up by
1512  * dm_merge_bvec.
1513  */
1514 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1515 {
1516 	int rw = bio_data_dir(bio);
1517 	struct mapped_device *md = q->queuedata;
1518 	int srcu_idx;
1519 	struct dm_table *map;
1520 
1521 	map = dm_get_live_table(md, &srcu_idx);
1522 
1523 	generic_start_io_acct(q, rw, bio_sectors(bio), &dm_disk(md)->part0);
1524 
1525 	/* if we're suspended, we have to queue this io for later */
1526 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1527 		dm_put_live_table(md, srcu_idx);
1528 
1529 		if (!(bio->bi_opf & REQ_RAHEAD))
1530 			queue_io(md, bio);
1531 		else
1532 			bio_io_error(bio);
1533 		return BLK_QC_T_NONE;
1534 	}
1535 
1536 	__split_and_process_bio(md, map, bio);
1537 	dm_put_live_table(md, srcu_idx);
1538 	return BLK_QC_T_NONE;
1539 }
1540 
1541 static int dm_any_congested(void *congested_data, int bdi_bits)
1542 {
1543 	int r = bdi_bits;
1544 	struct mapped_device *md = congested_data;
1545 	struct dm_table *map;
1546 
1547 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1548 		if (dm_request_based(md)) {
1549 			/*
1550 			 * With request-based DM we only need to check the
1551 			 * top-level queue for congestion.
1552 			 */
1553 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1554 		} else {
1555 			map = dm_get_live_table_fast(md);
1556 			if (map)
1557 				r = dm_table_any_congested(map, bdi_bits);
1558 			dm_put_live_table_fast(md);
1559 		}
1560 	}
1561 
1562 	return r;
1563 }
1564 
1565 /*-----------------------------------------------------------------
1566  * An IDR is used to keep track of allocated minor numbers.
1567  *---------------------------------------------------------------*/
1568 static void free_minor(int minor)
1569 {
1570 	spin_lock(&_minor_lock);
1571 	idr_remove(&_minor_idr, minor);
1572 	spin_unlock(&_minor_lock);
1573 }
1574 
1575 /*
1576  * See if the device with a specific minor # is free.
1577  */
1578 static int specific_minor(int minor)
1579 {
1580 	int r;
1581 
1582 	if (minor >= (1 << MINORBITS))
1583 		return -EINVAL;
1584 
1585 	idr_preload(GFP_KERNEL);
1586 	spin_lock(&_minor_lock);
1587 
1588 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1589 
1590 	spin_unlock(&_minor_lock);
1591 	idr_preload_end();
1592 	if (r < 0)
1593 		return r == -ENOSPC ? -EBUSY : r;
1594 	return 0;
1595 }
1596 
1597 static int next_free_minor(int *minor)
1598 {
1599 	int r;
1600 
1601 	idr_preload(GFP_KERNEL);
1602 	spin_lock(&_minor_lock);
1603 
1604 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1605 
1606 	spin_unlock(&_minor_lock);
1607 	idr_preload_end();
1608 	if (r < 0)
1609 		return r;
1610 	*minor = r;
1611 	return 0;
1612 }
1613 
1614 static const struct block_device_operations dm_blk_dops;
1615 static const struct dax_operations dm_dax_ops;
1616 
1617 static void dm_wq_work(struct work_struct *work);
1618 
1619 void dm_init_md_queue(struct mapped_device *md)
1620 {
1621 	/*
1622 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1623 	 * devices.  The type of this dm device may not have been decided yet.
1624 	 * The type is decided at the first table loading time.
1625 	 * To prevent problematic device stacking, clear the queue flag
1626 	 * for request stacking support until then.
1627 	 *
1628 	 * This queue is new, so no concurrency on the queue_flags.
1629 	 */
1630 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1631 
1632 	/*
1633 	 * Initialize data that will only be used by a non-blk-mq DM queue
1634 	 * - must do so here (in alloc_dev callchain) before queue is used
1635 	 */
1636 	md->queue->queuedata = md;
1637 	md->queue->backing_dev_info->congested_data = md;
1638 }
1639 
1640 void dm_init_normal_md_queue(struct mapped_device *md)
1641 {
1642 	md->use_blk_mq = false;
1643 	dm_init_md_queue(md);
1644 
1645 	/*
1646 	 * Initialize aspects of queue that aren't relevant for blk-mq
1647 	 */
1648 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1649 }
1650 
1651 static void cleanup_mapped_device(struct mapped_device *md)
1652 {
1653 	if (md->wq)
1654 		destroy_workqueue(md->wq);
1655 	if (md->kworker_task)
1656 		kthread_stop(md->kworker_task);
1657 	mempool_destroy(md->io_pool);
1658 	if (md->bs)
1659 		bioset_free(md->bs);
1660 
1661 	if (md->dax_dev) {
1662 		kill_dax(md->dax_dev);
1663 		put_dax(md->dax_dev);
1664 		md->dax_dev = NULL;
1665 	}
1666 
1667 	if (md->disk) {
1668 		spin_lock(&_minor_lock);
1669 		md->disk->private_data = NULL;
1670 		spin_unlock(&_minor_lock);
1671 		del_gendisk(md->disk);
1672 		put_disk(md->disk);
1673 	}
1674 
1675 	if (md->queue)
1676 		blk_cleanup_queue(md->queue);
1677 
1678 	cleanup_srcu_struct(&md->io_barrier);
1679 
1680 	if (md->bdev) {
1681 		bdput(md->bdev);
1682 		md->bdev = NULL;
1683 	}
1684 
1685 	dm_mq_cleanup_mapped_device(md);
1686 }
1687 
1688 /*
1689  * Allocate and initialise a blank device with a given minor.
1690  */
1691 static struct mapped_device *alloc_dev(int minor)
1692 {
1693 	int r, numa_node_id = dm_get_numa_node();
1694 	struct dax_device *dax_dev;
1695 	struct mapped_device *md;
1696 	void *old_md;
1697 
1698 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1699 	if (!md) {
1700 		DMWARN("unable to allocate device, out of memory.");
1701 		return NULL;
1702 	}
1703 
1704 	if (!try_module_get(THIS_MODULE))
1705 		goto bad_module_get;
1706 
1707 	/* get a minor number for the dev */
1708 	if (minor == DM_ANY_MINOR)
1709 		r = next_free_minor(&minor);
1710 	else
1711 		r = specific_minor(minor);
1712 	if (r < 0)
1713 		goto bad_minor;
1714 
1715 	r = init_srcu_struct(&md->io_barrier);
1716 	if (r < 0)
1717 		goto bad_io_barrier;
1718 
1719 	md->numa_node_id = numa_node_id;
1720 	md->use_blk_mq = dm_use_blk_mq_default();
1721 	md->init_tio_pdu = false;
1722 	md->type = DM_TYPE_NONE;
1723 	mutex_init(&md->suspend_lock);
1724 	mutex_init(&md->type_lock);
1725 	mutex_init(&md->table_devices_lock);
1726 	spin_lock_init(&md->deferred_lock);
1727 	atomic_set(&md->holders, 1);
1728 	atomic_set(&md->open_count, 0);
1729 	atomic_set(&md->event_nr, 0);
1730 	atomic_set(&md->uevent_seq, 0);
1731 	INIT_LIST_HEAD(&md->uevent_list);
1732 	INIT_LIST_HEAD(&md->table_devices);
1733 	spin_lock_init(&md->uevent_lock);
1734 
1735 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1736 	if (!md->queue)
1737 		goto bad;
1738 
1739 	dm_init_md_queue(md);
1740 
1741 	md->disk = alloc_disk_node(1, numa_node_id);
1742 	if (!md->disk)
1743 		goto bad;
1744 
1745 	atomic_set(&md->pending[0], 0);
1746 	atomic_set(&md->pending[1], 0);
1747 	init_waitqueue_head(&md->wait);
1748 	INIT_WORK(&md->work, dm_wq_work);
1749 	init_waitqueue_head(&md->eventq);
1750 	init_completion(&md->kobj_holder.completion);
1751 	md->kworker_task = NULL;
1752 
1753 	md->disk->major = _major;
1754 	md->disk->first_minor = minor;
1755 	md->disk->fops = &dm_blk_dops;
1756 	md->disk->queue = md->queue;
1757 	md->disk->private_data = md;
1758 	sprintf(md->disk->disk_name, "dm-%d", minor);
1759 
1760 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1761 	if (!dax_dev)
1762 		goto bad;
1763 	md->dax_dev = dax_dev;
1764 
1765 	add_disk(md->disk);
1766 	format_dev_t(md->name, MKDEV(_major, minor));
1767 
1768 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1769 	if (!md->wq)
1770 		goto bad;
1771 
1772 	md->bdev = bdget_disk(md->disk, 0);
1773 	if (!md->bdev)
1774 		goto bad;
1775 
1776 	bio_init(&md->flush_bio, NULL, 0);
1777 	bio_set_dev(&md->flush_bio, md->bdev);
1778 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1779 
1780 	dm_stats_init(&md->stats);
1781 
1782 	/* Populate the mapping, nobody knows we exist yet */
1783 	spin_lock(&_minor_lock);
1784 	old_md = idr_replace(&_minor_idr, md, minor);
1785 	spin_unlock(&_minor_lock);
1786 
1787 	BUG_ON(old_md != MINOR_ALLOCED);
1788 
1789 	return md;
1790 
1791 bad:
1792 	cleanup_mapped_device(md);
1793 bad_io_barrier:
1794 	free_minor(minor);
1795 bad_minor:
1796 	module_put(THIS_MODULE);
1797 bad_module_get:
1798 	kfree(md);
1799 	return NULL;
1800 }
1801 
1802 static void unlock_fs(struct mapped_device *md);
1803 
1804 static void free_dev(struct mapped_device *md)
1805 {
1806 	int minor = MINOR(disk_devt(md->disk));
1807 
1808 	unlock_fs(md);
1809 
1810 	cleanup_mapped_device(md);
1811 
1812 	free_table_devices(&md->table_devices);
1813 	dm_stats_cleanup(&md->stats);
1814 	free_minor(minor);
1815 
1816 	module_put(THIS_MODULE);
1817 	kfree(md);
1818 }
1819 
1820 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1821 {
1822 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1823 
1824 	if (md->bs) {
1825 		/* The md already has necessary mempools. */
1826 		if (dm_table_bio_based(t)) {
1827 			/*
1828 			 * Reload bioset because front_pad may have changed
1829 			 * because a different table was loaded.
1830 			 */
1831 			bioset_free(md->bs);
1832 			md->bs = p->bs;
1833 			p->bs = NULL;
1834 		}
1835 		/*
1836 		 * There's no need to reload with request-based dm
1837 		 * because the size of front_pad doesn't change.
1838 		 * Note for future: If you are to reload bioset,
1839 		 * prep-ed requests in the queue may refer
1840 		 * to bio from the old bioset, so you must walk
1841 		 * through the queue to unprep.
1842 		 */
1843 		goto out;
1844 	}
1845 
1846 	BUG_ON(!p || md->io_pool || md->bs);
1847 
1848 	md->io_pool = p->io_pool;
1849 	p->io_pool = NULL;
1850 	md->bs = p->bs;
1851 	p->bs = NULL;
1852 
1853 out:
1854 	/* mempool bind completed, no longer need any mempools in the table */
1855 	dm_table_free_md_mempools(t);
1856 }
1857 
1858 /*
1859  * Bind a table to the device.
1860  */
1861 static void event_callback(void *context)
1862 {
1863 	unsigned long flags;
1864 	LIST_HEAD(uevents);
1865 	struct mapped_device *md = (struct mapped_device *) context;
1866 
1867 	spin_lock_irqsave(&md->uevent_lock, flags);
1868 	list_splice_init(&md->uevent_list, &uevents);
1869 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1870 
1871 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1872 
1873 	atomic_inc(&md->event_nr);
1874 	wake_up(&md->eventq);
1875 	dm_issue_global_event();
1876 }
1877 
1878 /*
1879  * Protected by md->suspend_lock obtained by dm_swap_table().
1880  */
1881 static void __set_size(struct mapped_device *md, sector_t size)
1882 {
1883 	lockdep_assert_held(&md->suspend_lock);
1884 
1885 	set_capacity(md->disk, size);
1886 
1887 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1888 }
1889 
1890 /*
1891  * Returns old map, which caller must destroy.
1892  */
1893 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1894 			       struct queue_limits *limits)
1895 {
1896 	struct dm_table *old_map;
1897 	struct request_queue *q = md->queue;
1898 	sector_t size;
1899 
1900 	lockdep_assert_held(&md->suspend_lock);
1901 
1902 	size = dm_table_get_size(t);
1903 
1904 	/*
1905 	 * Wipe any geometry if the size of the table changed.
1906 	 */
1907 	if (size != dm_get_size(md))
1908 		memset(&md->geometry, 0, sizeof(md->geometry));
1909 
1910 	__set_size(md, size);
1911 
1912 	dm_table_event_callback(t, event_callback, md);
1913 
1914 	/*
1915 	 * The queue hasn't been stopped yet, if the old table type wasn't
1916 	 * for request-based during suspension.  So stop it to prevent
1917 	 * I/O mapping before resume.
1918 	 * This must be done before setting the queue restrictions,
1919 	 * because request-based dm may be run just after the setting.
1920 	 */
1921 	if (dm_table_request_based(t)) {
1922 		dm_stop_queue(q);
1923 		/*
1924 		 * Leverage the fact that request-based DM targets are
1925 		 * immutable singletons and establish md->immutable_target
1926 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1927 		 */
1928 		md->immutable_target = dm_table_get_immutable_target(t);
1929 	}
1930 
1931 	__bind_mempools(md, t);
1932 
1933 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1934 	rcu_assign_pointer(md->map, (void *)t);
1935 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1936 
1937 	dm_table_set_restrictions(t, q, limits);
1938 	if (old_map)
1939 		dm_sync_table(md);
1940 
1941 	return old_map;
1942 }
1943 
1944 /*
1945  * Returns unbound table for the caller to free.
1946  */
1947 static struct dm_table *__unbind(struct mapped_device *md)
1948 {
1949 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1950 
1951 	if (!map)
1952 		return NULL;
1953 
1954 	dm_table_event_callback(map, NULL, NULL);
1955 	RCU_INIT_POINTER(md->map, NULL);
1956 	dm_sync_table(md);
1957 
1958 	return map;
1959 }
1960 
1961 /*
1962  * Constructor for a new device.
1963  */
1964 int dm_create(int minor, struct mapped_device **result)
1965 {
1966 	struct mapped_device *md;
1967 
1968 	md = alloc_dev(minor);
1969 	if (!md)
1970 		return -ENXIO;
1971 
1972 	dm_sysfs_init(md);
1973 
1974 	*result = md;
1975 	return 0;
1976 }
1977 
1978 /*
1979  * Functions to manage md->type.
1980  * All are required to hold md->type_lock.
1981  */
1982 void dm_lock_md_type(struct mapped_device *md)
1983 {
1984 	mutex_lock(&md->type_lock);
1985 }
1986 
1987 void dm_unlock_md_type(struct mapped_device *md)
1988 {
1989 	mutex_unlock(&md->type_lock);
1990 }
1991 
1992 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
1993 {
1994 	BUG_ON(!mutex_is_locked(&md->type_lock));
1995 	md->type = type;
1996 }
1997 
1998 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
1999 {
2000 	return md->type;
2001 }
2002 
2003 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2004 {
2005 	return md->immutable_target_type;
2006 }
2007 
2008 /*
2009  * The queue_limits are only valid as long as you have a reference
2010  * count on 'md'.
2011  */
2012 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2013 {
2014 	BUG_ON(!atomic_read(&md->holders));
2015 	return &md->queue->limits;
2016 }
2017 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2018 
2019 /*
2020  * Setup the DM device's queue based on md's type
2021  */
2022 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2023 {
2024 	int r;
2025 	enum dm_queue_mode type = dm_get_md_type(md);
2026 
2027 	switch (type) {
2028 	case DM_TYPE_REQUEST_BASED:
2029 		r = dm_old_init_request_queue(md, t);
2030 		if (r) {
2031 			DMERR("Cannot initialize queue for request-based mapped device");
2032 			return r;
2033 		}
2034 		break;
2035 	case DM_TYPE_MQ_REQUEST_BASED:
2036 		r = dm_mq_init_request_queue(md, t);
2037 		if (r) {
2038 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2039 			return r;
2040 		}
2041 		break;
2042 	case DM_TYPE_BIO_BASED:
2043 	case DM_TYPE_DAX_BIO_BASED:
2044 		dm_init_normal_md_queue(md);
2045 		blk_queue_make_request(md->queue, dm_make_request);
2046 		/*
2047 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2048 		 * since it won't be used (saves 1 process per bio-based DM device).
2049 		 */
2050 		bioset_free(md->queue->bio_split);
2051 		md->queue->bio_split = NULL;
2052 
2053 		if (type == DM_TYPE_DAX_BIO_BASED)
2054 			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
2055 		break;
2056 	case DM_TYPE_NONE:
2057 		WARN_ON_ONCE(true);
2058 		break;
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 struct mapped_device *dm_get_md(dev_t dev)
2065 {
2066 	struct mapped_device *md;
2067 	unsigned minor = MINOR(dev);
2068 
2069 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2070 		return NULL;
2071 
2072 	spin_lock(&_minor_lock);
2073 
2074 	md = idr_find(&_minor_idr, minor);
2075 	if (md) {
2076 		if ((md == MINOR_ALLOCED ||
2077 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2078 		     dm_deleting_md(md) ||
2079 		     test_bit(DMF_FREEING, &md->flags))) {
2080 			md = NULL;
2081 			goto out;
2082 		}
2083 		dm_get(md);
2084 	}
2085 
2086 out:
2087 	spin_unlock(&_minor_lock);
2088 
2089 	return md;
2090 }
2091 EXPORT_SYMBOL_GPL(dm_get_md);
2092 
2093 void *dm_get_mdptr(struct mapped_device *md)
2094 {
2095 	return md->interface_ptr;
2096 }
2097 
2098 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2099 {
2100 	md->interface_ptr = ptr;
2101 }
2102 
2103 void dm_get(struct mapped_device *md)
2104 {
2105 	atomic_inc(&md->holders);
2106 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2107 }
2108 
2109 int dm_hold(struct mapped_device *md)
2110 {
2111 	spin_lock(&_minor_lock);
2112 	if (test_bit(DMF_FREEING, &md->flags)) {
2113 		spin_unlock(&_minor_lock);
2114 		return -EBUSY;
2115 	}
2116 	dm_get(md);
2117 	spin_unlock(&_minor_lock);
2118 	return 0;
2119 }
2120 EXPORT_SYMBOL_GPL(dm_hold);
2121 
2122 const char *dm_device_name(struct mapped_device *md)
2123 {
2124 	return md->name;
2125 }
2126 EXPORT_SYMBOL_GPL(dm_device_name);
2127 
2128 static void __dm_destroy(struct mapped_device *md, bool wait)
2129 {
2130 	struct request_queue *q = dm_get_md_queue(md);
2131 	struct dm_table *map;
2132 	int srcu_idx;
2133 
2134 	might_sleep();
2135 
2136 	spin_lock(&_minor_lock);
2137 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2138 	set_bit(DMF_FREEING, &md->flags);
2139 	spin_unlock(&_minor_lock);
2140 
2141 	blk_set_queue_dying(q);
2142 
2143 	if (dm_request_based(md) && md->kworker_task)
2144 		kthread_flush_worker(&md->kworker);
2145 
2146 	/*
2147 	 * Take suspend_lock so that presuspend and postsuspend methods
2148 	 * do not race with internal suspend.
2149 	 */
2150 	mutex_lock(&md->suspend_lock);
2151 	map = dm_get_live_table(md, &srcu_idx);
2152 	if (!dm_suspended_md(md)) {
2153 		dm_table_presuspend_targets(map);
2154 		dm_table_postsuspend_targets(map);
2155 	}
2156 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2157 	dm_put_live_table(md, srcu_idx);
2158 	mutex_unlock(&md->suspend_lock);
2159 
2160 	/*
2161 	 * Rare, but there may be I/O requests still going to complete,
2162 	 * for example.  Wait for all references to disappear.
2163 	 * No one should increment the reference count of the mapped_device,
2164 	 * after the mapped_device state becomes DMF_FREEING.
2165 	 */
2166 	if (wait)
2167 		while (atomic_read(&md->holders))
2168 			msleep(1);
2169 	else if (atomic_read(&md->holders))
2170 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2171 		       dm_device_name(md), atomic_read(&md->holders));
2172 
2173 	dm_sysfs_exit(md);
2174 	dm_table_destroy(__unbind(md));
2175 	free_dev(md);
2176 }
2177 
2178 void dm_destroy(struct mapped_device *md)
2179 {
2180 	__dm_destroy(md, true);
2181 }
2182 
2183 void dm_destroy_immediate(struct mapped_device *md)
2184 {
2185 	__dm_destroy(md, false);
2186 }
2187 
2188 void dm_put(struct mapped_device *md)
2189 {
2190 	atomic_dec(&md->holders);
2191 }
2192 EXPORT_SYMBOL_GPL(dm_put);
2193 
2194 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2195 {
2196 	int r = 0;
2197 	DEFINE_WAIT(wait);
2198 
2199 	while (1) {
2200 		prepare_to_wait(&md->wait, &wait, task_state);
2201 
2202 		if (!md_in_flight(md))
2203 			break;
2204 
2205 		if (signal_pending_state(task_state, current)) {
2206 			r = -EINTR;
2207 			break;
2208 		}
2209 
2210 		io_schedule();
2211 	}
2212 	finish_wait(&md->wait, &wait);
2213 
2214 	return r;
2215 }
2216 
2217 /*
2218  * Process the deferred bios
2219  */
2220 static void dm_wq_work(struct work_struct *work)
2221 {
2222 	struct mapped_device *md = container_of(work, struct mapped_device,
2223 						work);
2224 	struct bio *c;
2225 	int srcu_idx;
2226 	struct dm_table *map;
2227 
2228 	map = dm_get_live_table(md, &srcu_idx);
2229 
2230 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2231 		spin_lock_irq(&md->deferred_lock);
2232 		c = bio_list_pop(&md->deferred);
2233 		spin_unlock_irq(&md->deferred_lock);
2234 
2235 		if (!c)
2236 			break;
2237 
2238 		if (dm_request_based(md))
2239 			generic_make_request(c);
2240 		else
2241 			__split_and_process_bio(md, map, c);
2242 	}
2243 
2244 	dm_put_live_table(md, srcu_idx);
2245 }
2246 
2247 static void dm_queue_flush(struct mapped_device *md)
2248 {
2249 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2250 	smp_mb__after_atomic();
2251 	queue_work(md->wq, &md->work);
2252 }
2253 
2254 /*
2255  * Swap in a new table, returning the old one for the caller to destroy.
2256  */
2257 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2258 {
2259 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2260 	struct queue_limits limits;
2261 	int r;
2262 
2263 	mutex_lock(&md->suspend_lock);
2264 
2265 	/* device must be suspended */
2266 	if (!dm_suspended_md(md))
2267 		goto out;
2268 
2269 	/*
2270 	 * If the new table has no data devices, retain the existing limits.
2271 	 * This helps multipath with queue_if_no_path if all paths disappear,
2272 	 * then new I/O is queued based on these limits, and then some paths
2273 	 * reappear.
2274 	 */
2275 	if (dm_table_has_no_data_devices(table)) {
2276 		live_map = dm_get_live_table_fast(md);
2277 		if (live_map)
2278 			limits = md->queue->limits;
2279 		dm_put_live_table_fast(md);
2280 	}
2281 
2282 	if (!live_map) {
2283 		r = dm_calculate_queue_limits(table, &limits);
2284 		if (r) {
2285 			map = ERR_PTR(r);
2286 			goto out;
2287 		}
2288 	}
2289 
2290 	map = __bind(md, table, &limits);
2291 	dm_issue_global_event();
2292 
2293 out:
2294 	mutex_unlock(&md->suspend_lock);
2295 	return map;
2296 }
2297 
2298 /*
2299  * Functions to lock and unlock any filesystem running on the
2300  * device.
2301  */
2302 static int lock_fs(struct mapped_device *md)
2303 {
2304 	int r;
2305 
2306 	WARN_ON(md->frozen_sb);
2307 
2308 	md->frozen_sb = freeze_bdev(md->bdev);
2309 	if (IS_ERR(md->frozen_sb)) {
2310 		r = PTR_ERR(md->frozen_sb);
2311 		md->frozen_sb = NULL;
2312 		return r;
2313 	}
2314 
2315 	set_bit(DMF_FROZEN, &md->flags);
2316 
2317 	return 0;
2318 }
2319 
2320 static void unlock_fs(struct mapped_device *md)
2321 {
2322 	if (!test_bit(DMF_FROZEN, &md->flags))
2323 		return;
2324 
2325 	thaw_bdev(md->bdev, md->frozen_sb);
2326 	md->frozen_sb = NULL;
2327 	clear_bit(DMF_FROZEN, &md->flags);
2328 }
2329 
2330 /*
2331  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2332  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2333  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2334  *
2335  * If __dm_suspend returns 0, the device is completely quiescent
2336  * now. There is no request-processing activity. All new requests
2337  * are being added to md->deferred list.
2338  */
2339 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2340 			unsigned suspend_flags, long task_state,
2341 			int dmf_suspended_flag)
2342 {
2343 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2344 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2345 	int r;
2346 
2347 	lockdep_assert_held(&md->suspend_lock);
2348 
2349 	/*
2350 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2351 	 * This flag is cleared before dm_suspend returns.
2352 	 */
2353 	if (noflush)
2354 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2355 	else
2356 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2357 
2358 	/*
2359 	 * This gets reverted if there's an error later and the targets
2360 	 * provide the .presuspend_undo hook.
2361 	 */
2362 	dm_table_presuspend_targets(map);
2363 
2364 	/*
2365 	 * Flush I/O to the device.
2366 	 * Any I/O submitted after lock_fs() may not be flushed.
2367 	 * noflush takes precedence over do_lockfs.
2368 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2369 	 */
2370 	if (!noflush && do_lockfs) {
2371 		r = lock_fs(md);
2372 		if (r) {
2373 			dm_table_presuspend_undo_targets(map);
2374 			return r;
2375 		}
2376 	}
2377 
2378 	/*
2379 	 * Here we must make sure that no processes are submitting requests
2380 	 * to target drivers i.e. no one may be executing
2381 	 * __split_and_process_bio. This is called from dm_request and
2382 	 * dm_wq_work.
2383 	 *
2384 	 * To get all processes out of __split_and_process_bio in dm_request,
2385 	 * we take the write lock. To prevent any process from reentering
2386 	 * __split_and_process_bio from dm_request and quiesce the thread
2387 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2388 	 * flush_workqueue(md->wq).
2389 	 */
2390 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2391 	if (map)
2392 		synchronize_srcu(&md->io_barrier);
2393 
2394 	/*
2395 	 * Stop md->queue before flushing md->wq in case request-based
2396 	 * dm defers requests to md->wq from md->queue.
2397 	 */
2398 	if (dm_request_based(md)) {
2399 		dm_stop_queue(md->queue);
2400 		if (md->kworker_task)
2401 			kthread_flush_worker(&md->kworker);
2402 	}
2403 
2404 	flush_workqueue(md->wq);
2405 
2406 	/*
2407 	 * At this point no more requests are entering target request routines.
2408 	 * We call dm_wait_for_completion to wait for all existing requests
2409 	 * to finish.
2410 	 */
2411 	r = dm_wait_for_completion(md, task_state);
2412 	if (!r)
2413 		set_bit(dmf_suspended_flag, &md->flags);
2414 
2415 	if (noflush)
2416 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2417 	if (map)
2418 		synchronize_srcu(&md->io_barrier);
2419 
2420 	/* were we interrupted ? */
2421 	if (r < 0) {
2422 		dm_queue_flush(md);
2423 
2424 		if (dm_request_based(md))
2425 			dm_start_queue(md->queue);
2426 
2427 		unlock_fs(md);
2428 		dm_table_presuspend_undo_targets(map);
2429 		/* pushback list is already flushed, so skip flush */
2430 	}
2431 
2432 	return r;
2433 }
2434 
2435 /*
2436  * We need to be able to change a mapping table under a mounted
2437  * filesystem.  For example we might want to move some data in
2438  * the background.  Before the table can be swapped with
2439  * dm_bind_table, dm_suspend must be called to flush any in
2440  * flight bios and ensure that any further io gets deferred.
2441  */
2442 /*
2443  * Suspend mechanism in request-based dm.
2444  *
2445  * 1. Flush all I/Os by lock_fs() if needed.
2446  * 2. Stop dispatching any I/O by stopping the request_queue.
2447  * 3. Wait for all in-flight I/Os to be completed or requeued.
2448  *
2449  * To abort suspend, start the request_queue.
2450  */
2451 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2452 {
2453 	struct dm_table *map = NULL;
2454 	int r = 0;
2455 
2456 retry:
2457 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2458 
2459 	if (dm_suspended_md(md)) {
2460 		r = -EINVAL;
2461 		goto out_unlock;
2462 	}
2463 
2464 	if (dm_suspended_internally_md(md)) {
2465 		/* already internally suspended, wait for internal resume */
2466 		mutex_unlock(&md->suspend_lock);
2467 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2468 		if (r)
2469 			return r;
2470 		goto retry;
2471 	}
2472 
2473 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2474 
2475 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2476 	if (r)
2477 		goto out_unlock;
2478 
2479 	dm_table_postsuspend_targets(map);
2480 
2481 out_unlock:
2482 	mutex_unlock(&md->suspend_lock);
2483 	return r;
2484 }
2485 
2486 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2487 {
2488 	if (map) {
2489 		int r = dm_table_resume_targets(map);
2490 		if (r)
2491 			return r;
2492 	}
2493 
2494 	dm_queue_flush(md);
2495 
2496 	/*
2497 	 * Flushing deferred I/Os must be done after targets are resumed
2498 	 * so that mapping of targets can work correctly.
2499 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2500 	 */
2501 	if (dm_request_based(md))
2502 		dm_start_queue(md->queue);
2503 
2504 	unlock_fs(md);
2505 
2506 	return 0;
2507 }
2508 
2509 int dm_resume(struct mapped_device *md)
2510 {
2511 	int r;
2512 	struct dm_table *map = NULL;
2513 
2514 retry:
2515 	r = -EINVAL;
2516 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2517 
2518 	if (!dm_suspended_md(md))
2519 		goto out;
2520 
2521 	if (dm_suspended_internally_md(md)) {
2522 		/* already internally suspended, wait for internal resume */
2523 		mutex_unlock(&md->suspend_lock);
2524 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2525 		if (r)
2526 			return r;
2527 		goto retry;
2528 	}
2529 
2530 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2531 	if (!map || !dm_table_get_size(map))
2532 		goto out;
2533 
2534 	r = __dm_resume(md, map);
2535 	if (r)
2536 		goto out;
2537 
2538 	clear_bit(DMF_SUSPENDED, &md->flags);
2539 out:
2540 	mutex_unlock(&md->suspend_lock);
2541 
2542 	return r;
2543 }
2544 
2545 /*
2546  * Internal suspend/resume works like userspace-driven suspend. It waits
2547  * until all bios finish and prevents issuing new bios to the target drivers.
2548  * It may be used only from the kernel.
2549  */
2550 
2551 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2552 {
2553 	struct dm_table *map = NULL;
2554 
2555 	lockdep_assert_held(&md->suspend_lock);
2556 
2557 	if (md->internal_suspend_count++)
2558 		return; /* nested internal suspend */
2559 
2560 	if (dm_suspended_md(md)) {
2561 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2562 		return; /* nest suspend */
2563 	}
2564 
2565 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2566 
2567 	/*
2568 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2569 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2570 	 * would require changing .presuspend to return an error -- avoid this
2571 	 * until there is a need for more elaborate variants of internal suspend.
2572 	 */
2573 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2574 			    DMF_SUSPENDED_INTERNALLY);
2575 
2576 	dm_table_postsuspend_targets(map);
2577 }
2578 
2579 static void __dm_internal_resume(struct mapped_device *md)
2580 {
2581 	BUG_ON(!md->internal_suspend_count);
2582 
2583 	if (--md->internal_suspend_count)
2584 		return; /* resume from nested internal suspend */
2585 
2586 	if (dm_suspended_md(md))
2587 		goto done; /* resume from nested suspend */
2588 
2589 	/*
2590 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2591 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2592 	 */
2593 	(void) __dm_resume(md, NULL);
2594 
2595 done:
2596 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2597 	smp_mb__after_atomic();
2598 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2599 }
2600 
2601 void dm_internal_suspend_noflush(struct mapped_device *md)
2602 {
2603 	mutex_lock(&md->suspend_lock);
2604 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2605 	mutex_unlock(&md->suspend_lock);
2606 }
2607 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2608 
2609 void dm_internal_resume(struct mapped_device *md)
2610 {
2611 	mutex_lock(&md->suspend_lock);
2612 	__dm_internal_resume(md);
2613 	mutex_unlock(&md->suspend_lock);
2614 }
2615 EXPORT_SYMBOL_GPL(dm_internal_resume);
2616 
2617 /*
2618  * Fast variants of internal suspend/resume hold md->suspend_lock,
2619  * which prevents interaction with userspace-driven suspend.
2620  */
2621 
2622 void dm_internal_suspend_fast(struct mapped_device *md)
2623 {
2624 	mutex_lock(&md->suspend_lock);
2625 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2626 		return;
2627 
2628 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2629 	synchronize_srcu(&md->io_barrier);
2630 	flush_workqueue(md->wq);
2631 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2632 }
2633 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2634 
2635 void dm_internal_resume_fast(struct mapped_device *md)
2636 {
2637 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2638 		goto done;
2639 
2640 	dm_queue_flush(md);
2641 
2642 done:
2643 	mutex_unlock(&md->suspend_lock);
2644 }
2645 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2646 
2647 /*-----------------------------------------------------------------
2648  * Event notification.
2649  *---------------------------------------------------------------*/
2650 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2651 		       unsigned cookie)
2652 {
2653 	char udev_cookie[DM_COOKIE_LENGTH];
2654 	char *envp[] = { udev_cookie, NULL };
2655 
2656 	if (!cookie)
2657 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2658 	else {
2659 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2660 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2661 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2662 					  action, envp);
2663 	}
2664 }
2665 
2666 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2667 {
2668 	return atomic_add_return(1, &md->uevent_seq);
2669 }
2670 
2671 uint32_t dm_get_event_nr(struct mapped_device *md)
2672 {
2673 	return atomic_read(&md->event_nr);
2674 }
2675 
2676 int dm_wait_event(struct mapped_device *md, int event_nr)
2677 {
2678 	return wait_event_interruptible(md->eventq,
2679 			(event_nr != atomic_read(&md->event_nr)));
2680 }
2681 
2682 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2683 {
2684 	unsigned long flags;
2685 
2686 	spin_lock_irqsave(&md->uevent_lock, flags);
2687 	list_add(elist, &md->uevent_list);
2688 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2689 }
2690 
2691 /*
2692  * The gendisk is only valid as long as you have a reference
2693  * count on 'md'.
2694  */
2695 struct gendisk *dm_disk(struct mapped_device *md)
2696 {
2697 	return md->disk;
2698 }
2699 EXPORT_SYMBOL_GPL(dm_disk);
2700 
2701 struct kobject *dm_kobject(struct mapped_device *md)
2702 {
2703 	return &md->kobj_holder.kobj;
2704 }
2705 
2706 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2707 {
2708 	struct mapped_device *md;
2709 
2710 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2711 
2712 	if (test_bit(DMF_FREEING, &md->flags) ||
2713 	    dm_deleting_md(md))
2714 		return NULL;
2715 
2716 	dm_get(md);
2717 	return md;
2718 }
2719 
2720 int dm_suspended_md(struct mapped_device *md)
2721 {
2722 	return test_bit(DMF_SUSPENDED, &md->flags);
2723 }
2724 
2725 int dm_suspended_internally_md(struct mapped_device *md)
2726 {
2727 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2728 }
2729 
2730 int dm_test_deferred_remove_flag(struct mapped_device *md)
2731 {
2732 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2733 }
2734 
2735 int dm_suspended(struct dm_target *ti)
2736 {
2737 	return dm_suspended_md(dm_table_get_md(ti->table));
2738 }
2739 EXPORT_SYMBOL_GPL(dm_suspended);
2740 
2741 int dm_noflush_suspending(struct dm_target *ti)
2742 {
2743 	return __noflush_suspending(dm_table_get_md(ti->table));
2744 }
2745 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2746 
2747 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2748 					    unsigned integrity, unsigned per_io_data_size)
2749 {
2750 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2751 	unsigned int pool_size = 0;
2752 	unsigned int front_pad;
2753 
2754 	if (!pools)
2755 		return NULL;
2756 
2757 	switch (type) {
2758 	case DM_TYPE_BIO_BASED:
2759 	case DM_TYPE_DAX_BIO_BASED:
2760 		pool_size = dm_get_reserved_bio_based_ios();
2761 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2762 
2763 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2764 		if (!pools->io_pool)
2765 			goto out;
2766 		break;
2767 	case DM_TYPE_REQUEST_BASED:
2768 	case DM_TYPE_MQ_REQUEST_BASED:
2769 		pool_size = dm_get_reserved_rq_based_ios();
2770 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2771 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2772 		break;
2773 	default:
2774 		BUG();
2775 	}
2776 
2777 	pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2778 	if (!pools->bs)
2779 		goto out;
2780 
2781 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2782 		goto out;
2783 
2784 	return pools;
2785 
2786 out:
2787 	dm_free_md_mempools(pools);
2788 
2789 	return NULL;
2790 }
2791 
2792 void dm_free_md_mempools(struct dm_md_mempools *pools)
2793 {
2794 	if (!pools)
2795 		return;
2796 
2797 	mempool_destroy(pools->io_pool);
2798 
2799 	if (pools->bs)
2800 		bioset_free(pools->bs);
2801 
2802 	kfree(pools);
2803 }
2804 
2805 struct dm_pr {
2806 	u64	old_key;
2807 	u64	new_key;
2808 	u32	flags;
2809 	bool	fail_early;
2810 };
2811 
2812 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2813 		      void *data)
2814 {
2815 	struct mapped_device *md = bdev->bd_disk->private_data;
2816 	struct dm_table *table;
2817 	struct dm_target *ti;
2818 	int ret = -ENOTTY, srcu_idx;
2819 
2820 	table = dm_get_live_table(md, &srcu_idx);
2821 	if (!table || !dm_table_get_size(table))
2822 		goto out;
2823 
2824 	/* We only support devices that have a single target */
2825 	if (dm_table_get_num_targets(table) != 1)
2826 		goto out;
2827 	ti = dm_table_get_target(table, 0);
2828 
2829 	ret = -EINVAL;
2830 	if (!ti->type->iterate_devices)
2831 		goto out;
2832 
2833 	ret = ti->type->iterate_devices(ti, fn, data);
2834 out:
2835 	dm_put_live_table(md, srcu_idx);
2836 	return ret;
2837 }
2838 
2839 /*
2840  * For register / unregister we need to manually call out to every path.
2841  */
2842 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2843 			    sector_t start, sector_t len, void *data)
2844 {
2845 	struct dm_pr *pr = data;
2846 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2847 
2848 	if (!ops || !ops->pr_register)
2849 		return -EOPNOTSUPP;
2850 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2851 }
2852 
2853 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2854 			  u32 flags)
2855 {
2856 	struct dm_pr pr = {
2857 		.old_key	= old_key,
2858 		.new_key	= new_key,
2859 		.flags		= flags,
2860 		.fail_early	= true,
2861 	};
2862 	int ret;
2863 
2864 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2865 	if (ret && new_key) {
2866 		/* unregister all paths if we failed to register any path */
2867 		pr.old_key = new_key;
2868 		pr.new_key = 0;
2869 		pr.flags = 0;
2870 		pr.fail_early = false;
2871 		dm_call_pr(bdev, __dm_pr_register, &pr);
2872 	}
2873 
2874 	return ret;
2875 }
2876 
2877 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2878 			 u32 flags)
2879 {
2880 	struct mapped_device *md = bdev->bd_disk->private_data;
2881 	const struct pr_ops *ops;
2882 	fmode_t mode;
2883 	int r;
2884 
2885 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2886 	if (r < 0)
2887 		return r;
2888 
2889 	ops = bdev->bd_disk->fops->pr_ops;
2890 	if (ops && ops->pr_reserve)
2891 		r = ops->pr_reserve(bdev, key, type, flags);
2892 	else
2893 		r = -EOPNOTSUPP;
2894 
2895 	bdput(bdev);
2896 	return r;
2897 }
2898 
2899 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2900 {
2901 	struct mapped_device *md = bdev->bd_disk->private_data;
2902 	const struct pr_ops *ops;
2903 	fmode_t mode;
2904 	int r;
2905 
2906 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2907 	if (r < 0)
2908 		return r;
2909 
2910 	ops = bdev->bd_disk->fops->pr_ops;
2911 	if (ops && ops->pr_release)
2912 		r = ops->pr_release(bdev, key, type);
2913 	else
2914 		r = -EOPNOTSUPP;
2915 
2916 	bdput(bdev);
2917 	return r;
2918 }
2919 
2920 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2921 			 enum pr_type type, bool abort)
2922 {
2923 	struct mapped_device *md = bdev->bd_disk->private_data;
2924 	const struct pr_ops *ops;
2925 	fmode_t mode;
2926 	int r;
2927 
2928 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2929 	if (r < 0)
2930 		return r;
2931 
2932 	ops = bdev->bd_disk->fops->pr_ops;
2933 	if (ops && ops->pr_preempt)
2934 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2935 	else
2936 		r = -EOPNOTSUPP;
2937 
2938 	bdput(bdev);
2939 	return r;
2940 }
2941 
2942 static int dm_pr_clear(struct block_device *bdev, u64 key)
2943 {
2944 	struct mapped_device *md = bdev->bd_disk->private_data;
2945 	const struct pr_ops *ops;
2946 	fmode_t mode;
2947 	int r;
2948 
2949 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2950 	if (r < 0)
2951 		return r;
2952 
2953 	ops = bdev->bd_disk->fops->pr_ops;
2954 	if (ops && ops->pr_clear)
2955 		r = ops->pr_clear(bdev, key);
2956 	else
2957 		r = -EOPNOTSUPP;
2958 
2959 	bdput(bdev);
2960 	return r;
2961 }
2962 
2963 static const struct pr_ops dm_pr_ops = {
2964 	.pr_register	= dm_pr_register,
2965 	.pr_reserve	= dm_pr_reserve,
2966 	.pr_release	= dm_pr_release,
2967 	.pr_preempt	= dm_pr_preempt,
2968 	.pr_clear	= dm_pr_clear,
2969 };
2970 
2971 static const struct block_device_operations dm_blk_dops = {
2972 	.open = dm_blk_open,
2973 	.release = dm_blk_close,
2974 	.ioctl = dm_blk_ioctl,
2975 	.getgeo = dm_blk_getgeo,
2976 	.pr_ops = &dm_pr_ops,
2977 	.owner = THIS_MODULE
2978 };
2979 
2980 static const struct dax_operations dm_dax_ops = {
2981 	.direct_access = dm_dax_direct_access,
2982 	.copy_from_iter = dm_dax_copy_from_iter,
2983 };
2984 
2985 /*
2986  * module hooks
2987  */
2988 module_init(dm_init);
2989 module_exit(dm_exit);
2990 
2991 module_param(major, uint, 0);
2992 MODULE_PARM_DESC(major, "The major number of the device mapper");
2993 
2994 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2995 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2996 
2997 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2998 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2999 
3000 MODULE_DESCRIPTION(DM_NAME " driver");
3001 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3002 MODULE_LICENSE("GPL");
3003