xref: /openbmc/linux/drivers/md/dm.c (revision d3597236)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 
28 #include <trace/events/block.h>
29 
30 #define DM_MSG_PREFIX "core"
31 
32 #ifdef CONFIG_PRINTK
33 /*
34  * ratelimit state to be used in DMXXX_LIMIT().
35  */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 		       DEFAULT_RATELIMIT_INTERVAL,
38 		       DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41 
42 /*
43  * Cookies are numeric values sent with CHANGE and REMOVE
44  * uevents while resuming, removing or renaming the device.
45  */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48 
49 static const char *_name = DM_NAME;
50 
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53 
54 static DEFINE_IDR(_minor_idr);
55 
56 static DEFINE_SPINLOCK(_minor_lock);
57 
58 static void do_deferred_remove(struct work_struct *w);
59 
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61 
62 static struct workqueue_struct *deferred_remove_workqueue;
63 
64 /*
65  * For bio-based dm.
66  * One of these is allocated per bio.
67  */
68 struct dm_io {
69 	struct mapped_device *md;
70 	int error;
71 	atomic_t io_count;
72 	struct bio *bio;
73 	unsigned long start_time;
74 	spinlock_t endio_lock;
75 	struct dm_stats_aux stats_aux;
76 };
77 
78 /*
79  * For request-based dm.
80  * One of these is allocated per request.
81  */
82 struct dm_rq_target_io {
83 	struct mapped_device *md;
84 	struct dm_target *ti;
85 	struct request *orig, *clone;
86 	struct kthread_work work;
87 	int error;
88 	union map_info info;
89 	struct dm_stats_aux stats_aux;
90 	unsigned long duration_jiffies;
91 	unsigned n_sectors;
92 };
93 
94 /*
95  * For request-based dm - the bio clones we allocate are embedded in these
96  * structs.
97  *
98  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
99  * the bioset is created - this means the bio has to come at the end of the
100  * struct.
101  */
102 struct dm_rq_clone_bio_info {
103 	struct bio *orig;
104 	struct dm_rq_target_io *tio;
105 	struct bio clone;
106 };
107 
108 union map_info *dm_get_rq_mapinfo(struct request *rq)
109 {
110 	if (rq && rq->end_io_data)
111 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
112 	return NULL;
113 }
114 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
115 
116 #define MINOR_ALLOCED ((void *)-1)
117 
118 /*
119  * Bits for the md->flags field.
120  */
121 #define DMF_BLOCK_IO_FOR_SUSPEND 0
122 #define DMF_SUSPENDED 1
123 #define DMF_FROZEN 2
124 #define DMF_FREEING 3
125 #define DMF_DELETING 4
126 #define DMF_NOFLUSH_SUSPENDING 5
127 #define DMF_MERGE_IS_OPTIONAL 6
128 #define DMF_DEFERRED_REMOVE 7
129 #define DMF_SUSPENDED_INTERNALLY 8
130 
131 /*
132  * A dummy definition to make RCU happy.
133  * struct dm_table should never be dereferenced in this file.
134  */
135 struct dm_table {
136 	int undefined__;
137 };
138 
139 /*
140  * Work processed by per-device workqueue.
141  */
142 struct mapped_device {
143 	struct srcu_struct io_barrier;
144 	struct mutex suspend_lock;
145 	atomic_t holders;
146 	atomic_t open_count;
147 
148 	/*
149 	 * The current mapping.
150 	 * Use dm_get_live_table{_fast} or take suspend_lock for
151 	 * dereference.
152 	 */
153 	struct dm_table __rcu *map;
154 
155 	struct list_head table_devices;
156 	struct mutex table_devices_lock;
157 
158 	unsigned long flags;
159 
160 	struct request_queue *queue;
161 	unsigned type;
162 	/* Protect queue and type against concurrent access. */
163 	struct mutex type_lock;
164 
165 	struct target_type *immutable_target_type;
166 
167 	struct gendisk *disk;
168 	char name[16];
169 
170 	void *interface_ptr;
171 
172 	/*
173 	 * A list of ios that arrived while we were suspended.
174 	 */
175 	atomic_t pending[2];
176 	wait_queue_head_t wait;
177 	struct work_struct work;
178 	struct bio_list deferred;
179 	spinlock_t deferred_lock;
180 
181 	/*
182 	 * Processing queue (flush)
183 	 */
184 	struct workqueue_struct *wq;
185 
186 	/*
187 	 * io objects are allocated from here.
188 	 */
189 	mempool_t *io_pool;
190 	mempool_t *rq_pool;
191 
192 	struct bio_set *bs;
193 
194 	/*
195 	 * Event handling.
196 	 */
197 	atomic_t event_nr;
198 	wait_queue_head_t eventq;
199 	atomic_t uevent_seq;
200 	struct list_head uevent_list;
201 	spinlock_t uevent_lock; /* Protect access to uevent_list */
202 
203 	/*
204 	 * freeze/thaw support require holding onto a super block
205 	 */
206 	struct super_block *frozen_sb;
207 	struct block_device *bdev;
208 
209 	/* forced geometry settings */
210 	struct hd_geometry geometry;
211 
212 	/* kobject and completion */
213 	struct dm_kobject_holder kobj_holder;
214 
215 	/* zero-length flush that will be cloned and submitted to targets */
216 	struct bio flush_bio;
217 
218 	/* the number of internal suspends */
219 	unsigned internal_suspend_count;
220 
221 	struct dm_stats stats;
222 
223 	struct kthread_worker kworker;
224 	struct task_struct *kworker_task;
225 
226 	/* for request-based merge heuristic in dm_request_fn() */
227 	unsigned seq_rq_merge_deadline_usecs;
228 	int last_rq_rw;
229 	sector_t last_rq_pos;
230 	ktime_t last_rq_start_time;
231 
232 	/* for blk-mq request-based DM support */
233 	struct blk_mq_tag_set tag_set;
234 	bool use_blk_mq;
235 };
236 
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq = true;
239 #else
240 static bool use_blk_mq = false;
241 #endif
242 
243 bool dm_use_blk_mq(struct mapped_device *md)
244 {
245 	return md->use_blk_mq;
246 }
247 
248 /*
249  * For mempools pre-allocation at the table loading time.
250  */
251 struct dm_md_mempools {
252 	mempool_t *io_pool;
253 	mempool_t *rq_pool;
254 	struct bio_set *bs;
255 };
256 
257 struct table_device {
258 	struct list_head list;
259 	atomic_t count;
260 	struct dm_dev dm_dev;
261 };
262 
263 #define RESERVED_BIO_BASED_IOS		16
264 #define RESERVED_REQUEST_BASED_IOS	256
265 #define RESERVED_MAX_IOS		1024
266 static struct kmem_cache *_io_cache;
267 static struct kmem_cache *_rq_tio_cache;
268 static struct kmem_cache *_rq_cache;
269 
270 /*
271  * Bio-based DM's mempools' reserved IOs set by the user.
272  */
273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
274 
275 /*
276  * Request-based DM's mempools' reserved IOs set by the user.
277  */
278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
279 
280 static unsigned __dm_get_module_param(unsigned *module_param,
281 				      unsigned def, unsigned max)
282 {
283 	unsigned param = ACCESS_ONCE(*module_param);
284 	unsigned modified_param = 0;
285 
286 	if (!param)
287 		modified_param = def;
288 	else if (param > max)
289 		modified_param = max;
290 
291 	if (modified_param) {
292 		(void)cmpxchg(module_param, param, modified_param);
293 		param = modified_param;
294 	}
295 
296 	return param;
297 }
298 
299 unsigned dm_get_reserved_bio_based_ios(void)
300 {
301 	return __dm_get_module_param(&reserved_bio_based_ios,
302 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
303 }
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
305 
306 unsigned dm_get_reserved_rq_based_ios(void)
307 {
308 	return __dm_get_module_param(&reserved_rq_based_ios,
309 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
310 }
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
312 
313 static int __init local_init(void)
314 {
315 	int r = -ENOMEM;
316 
317 	/* allocate a slab for the dm_ios */
318 	_io_cache = KMEM_CACHE(dm_io, 0);
319 	if (!_io_cache)
320 		return r;
321 
322 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
323 	if (!_rq_tio_cache)
324 		goto out_free_io_cache;
325 
326 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
327 				      __alignof__(struct request), 0, NULL);
328 	if (!_rq_cache)
329 		goto out_free_rq_tio_cache;
330 
331 	r = dm_uevent_init();
332 	if (r)
333 		goto out_free_rq_cache;
334 
335 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
336 	if (!deferred_remove_workqueue) {
337 		r = -ENOMEM;
338 		goto out_uevent_exit;
339 	}
340 
341 	_major = major;
342 	r = register_blkdev(_major, _name);
343 	if (r < 0)
344 		goto out_free_workqueue;
345 
346 	if (!_major)
347 		_major = r;
348 
349 	return 0;
350 
351 out_free_workqueue:
352 	destroy_workqueue(deferred_remove_workqueue);
353 out_uevent_exit:
354 	dm_uevent_exit();
355 out_free_rq_cache:
356 	kmem_cache_destroy(_rq_cache);
357 out_free_rq_tio_cache:
358 	kmem_cache_destroy(_rq_tio_cache);
359 out_free_io_cache:
360 	kmem_cache_destroy(_io_cache);
361 
362 	return r;
363 }
364 
365 static void local_exit(void)
366 {
367 	flush_scheduled_work();
368 	destroy_workqueue(deferred_remove_workqueue);
369 
370 	kmem_cache_destroy(_rq_cache);
371 	kmem_cache_destroy(_rq_tio_cache);
372 	kmem_cache_destroy(_io_cache);
373 	unregister_blkdev(_major, _name);
374 	dm_uevent_exit();
375 
376 	_major = 0;
377 
378 	DMINFO("cleaned up");
379 }
380 
381 static int (*_inits[])(void) __initdata = {
382 	local_init,
383 	dm_target_init,
384 	dm_linear_init,
385 	dm_stripe_init,
386 	dm_io_init,
387 	dm_kcopyd_init,
388 	dm_interface_init,
389 	dm_statistics_init,
390 };
391 
392 static void (*_exits[])(void) = {
393 	local_exit,
394 	dm_target_exit,
395 	dm_linear_exit,
396 	dm_stripe_exit,
397 	dm_io_exit,
398 	dm_kcopyd_exit,
399 	dm_interface_exit,
400 	dm_statistics_exit,
401 };
402 
403 static int __init dm_init(void)
404 {
405 	const int count = ARRAY_SIZE(_inits);
406 
407 	int r, i;
408 
409 	for (i = 0; i < count; i++) {
410 		r = _inits[i]();
411 		if (r)
412 			goto bad;
413 	}
414 
415 	return 0;
416 
417       bad:
418 	while (i--)
419 		_exits[i]();
420 
421 	return r;
422 }
423 
424 static void __exit dm_exit(void)
425 {
426 	int i = ARRAY_SIZE(_exits);
427 
428 	while (i--)
429 		_exits[i]();
430 
431 	/*
432 	 * Should be empty by this point.
433 	 */
434 	idr_destroy(&_minor_idr);
435 }
436 
437 /*
438  * Block device functions
439  */
440 int dm_deleting_md(struct mapped_device *md)
441 {
442 	return test_bit(DMF_DELETING, &md->flags);
443 }
444 
445 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
446 {
447 	struct mapped_device *md;
448 
449 	spin_lock(&_minor_lock);
450 
451 	md = bdev->bd_disk->private_data;
452 	if (!md)
453 		goto out;
454 
455 	if (test_bit(DMF_FREEING, &md->flags) ||
456 	    dm_deleting_md(md)) {
457 		md = NULL;
458 		goto out;
459 	}
460 
461 	dm_get(md);
462 	atomic_inc(&md->open_count);
463 out:
464 	spin_unlock(&_minor_lock);
465 
466 	return md ? 0 : -ENXIO;
467 }
468 
469 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
470 {
471 	struct mapped_device *md;
472 
473 	spin_lock(&_minor_lock);
474 
475 	md = disk->private_data;
476 	if (WARN_ON(!md))
477 		goto out;
478 
479 	if (atomic_dec_and_test(&md->open_count) &&
480 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
481 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
482 
483 	dm_put(md);
484 out:
485 	spin_unlock(&_minor_lock);
486 }
487 
488 int dm_open_count(struct mapped_device *md)
489 {
490 	return atomic_read(&md->open_count);
491 }
492 
493 /*
494  * Guarantees nothing is using the device before it's deleted.
495  */
496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 {
498 	int r = 0;
499 
500 	spin_lock(&_minor_lock);
501 
502 	if (dm_open_count(md)) {
503 		r = -EBUSY;
504 		if (mark_deferred)
505 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
506 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
507 		r = -EEXIST;
508 	else
509 		set_bit(DMF_DELETING, &md->flags);
510 
511 	spin_unlock(&_minor_lock);
512 
513 	return r;
514 }
515 
516 int dm_cancel_deferred_remove(struct mapped_device *md)
517 {
518 	int r = 0;
519 
520 	spin_lock(&_minor_lock);
521 
522 	if (test_bit(DMF_DELETING, &md->flags))
523 		r = -EBUSY;
524 	else
525 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
526 
527 	spin_unlock(&_minor_lock);
528 
529 	return r;
530 }
531 
532 static void do_deferred_remove(struct work_struct *w)
533 {
534 	dm_deferred_remove();
535 }
536 
537 sector_t dm_get_size(struct mapped_device *md)
538 {
539 	return get_capacity(md->disk);
540 }
541 
542 struct request_queue *dm_get_md_queue(struct mapped_device *md)
543 {
544 	return md->queue;
545 }
546 
547 struct dm_stats *dm_get_stats(struct mapped_device *md)
548 {
549 	return &md->stats;
550 }
551 
552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 	struct mapped_device *md = bdev->bd_disk->private_data;
555 
556 	return dm_get_geometry(md, geo);
557 }
558 
559 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
560 			unsigned int cmd, unsigned long arg)
561 {
562 	struct mapped_device *md = bdev->bd_disk->private_data;
563 	int srcu_idx;
564 	struct dm_table *map;
565 	struct dm_target *tgt;
566 	int r = -ENOTTY;
567 
568 retry:
569 	map = dm_get_live_table(md, &srcu_idx);
570 
571 	if (!map || !dm_table_get_size(map))
572 		goto out;
573 
574 	/* We only support devices that have a single target */
575 	if (dm_table_get_num_targets(map) != 1)
576 		goto out;
577 
578 	tgt = dm_table_get_target(map, 0);
579 	if (!tgt->type->ioctl)
580 		goto out;
581 
582 	if (dm_suspended_md(md)) {
583 		r = -EAGAIN;
584 		goto out;
585 	}
586 
587 	r = tgt->type->ioctl(tgt, cmd, arg);
588 
589 out:
590 	dm_put_live_table(md, srcu_idx);
591 
592 	if (r == -ENOTCONN) {
593 		msleep(10);
594 		goto retry;
595 	}
596 
597 	return r;
598 }
599 
600 static struct dm_io *alloc_io(struct mapped_device *md)
601 {
602 	return mempool_alloc(md->io_pool, GFP_NOIO);
603 }
604 
605 static void free_io(struct mapped_device *md, struct dm_io *io)
606 {
607 	mempool_free(io, md->io_pool);
608 }
609 
610 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
611 {
612 	bio_put(&tio->clone);
613 }
614 
615 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
616 					    gfp_t gfp_mask)
617 {
618 	return mempool_alloc(md->io_pool, gfp_mask);
619 }
620 
621 static void free_rq_tio(struct dm_rq_target_io *tio)
622 {
623 	mempool_free(tio, tio->md->io_pool);
624 }
625 
626 static struct request *alloc_clone_request(struct mapped_device *md,
627 					   gfp_t gfp_mask)
628 {
629 	return mempool_alloc(md->rq_pool, gfp_mask);
630 }
631 
632 static void free_clone_request(struct mapped_device *md, struct request *rq)
633 {
634 	mempool_free(rq, md->rq_pool);
635 }
636 
637 static int md_in_flight(struct mapped_device *md)
638 {
639 	return atomic_read(&md->pending[READ]) +
640 	       atomic_read(&md->pending[WRITE]);
641 }
642 
643 static void start_io_acct(struct dm_io *io)
644 {
645 	struct mapped_device *md = io->md;
646 	struct bio *bio = io->bio;
647 	int cpu;
648 	int rw = bio_data_dir(bio);
649 
650 	io->start_time = jiffies;
651 
652 	cpu = part_stat_lock();
653 	part_round_stats(cpu, &dm_disk(md)->part0);
654 	part_stat_unlock();
655 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
656 		atomic_inc_return(&md->pending[rw]));
657 
658 	if (unlikely(dm_stats_used(&md->stats)))
659 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
660 				    bio_sectors(bio), false, 0, &io->stats_aux);
661 }
662 
663 static void end_io_acct(struct dm_io *io)
664 {
665 	struct mapped_device *md = io->md;
666 	struct bio *bio = io->bio;
667 	unsigned long duration = jiffies - io->start_time;
668 	int pending;
669 	int rw = bio_data_dir(bio);
670 
671 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
672 
673 	if (unlikely(dm_stats_used(&md->stats)))
674 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
675 				    bio_sectors(bio), true, duration, &io->stats_aux);
676 
677 	/*
678 	 * After this is decremented the bio must not be touched if it is
679 	 * a flush.
680 	 */
681 	pending = atomic_dec_return(&md->pending[rw]);
682 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
683 	pending += atomic_read(&md->pending[rw^0x1]);
684 
685 	/* nudge anyone waiting on suspend queue */
686 	if (!pending)
687 		wake_up(&md->wait);
688 }
689 
690 /*
691  * Add the bio to the list of deferred io.
692  */
693 static void queue_io(struct mapped_device *md, struct bio *bio)
694 {
695 	unsigned long flags;
696 
697 	spin_lock_irqsave(&md->deferred_lock, flags);
698 	bio_list_add(&md->deferred, bio);
699 	spin_unlock_irqrestore(&md->deferred_lock, flags);
700 	queue_work(md->wq, &md->work);
701 }
702 
703 /*
704  * Everyone (including functions in this file), should use this
705  * function to access the md->map field, and make sure they call
706  * dm_put_live_table() when finished.
707  */
708 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
709 {
710 	*srcu_idx = srcu_read_lock(&md->io_barrier);
711 
712 	return srcu_dereference(md->map, &md->io_barrier);
713 }
714 
715 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
716 {
717 	srcu_read_unlock(&md->io_barrier, srcu_idx);
718 }
719 
720 void dm_sync_table(struct mapped_device *md)
721 {
722 	synchronize_srcu(&md->io_barrier);
723 	synchronize_rcu_expedited();
724 }
725 
726 /*
727  * A fast alternative to dm_get_live_table/dm_put_live_table.
728  * The caller must not block between these two functions.
729  */
730 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
731 {
732 	rcu_read_lock();
733 	return rcu_dereference(md->map);
734 }
735 
736 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
737 {
738 	rcu_read_unlock();
739 }
740 
741 /*
742  * Open a table device so we can use it as a map destination.
743  */
744 static int open_table_device(struct table_device *td, dev_t dev,
745 			     struct mapped_device *md)
746 {
747 	static char *_claim_ptr = "I belong to device-mapper";
748 	struct block_device *bdev;
749 
750 	int r;
751 
752 	BUG_ON(td->dm_dev.bdev);
753 
754 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
755 	if (IS_ERR(bdev))
756 		return PTR_ERR(bdev);
757 
758 	r = bd_link_disk_holder(bdev, dm_disk(md));
759 	if (r) {
760 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
761 		return r;
762 	}
763 
764 	td->dm_dev.bdev = bdev;
765 	return 0;
766 }
767 
768 /*
769  * Close a table device that we've been using.
770  */
771 static void close_table_device(struct table_device *td, struct mapped_device *md)
772 {
773 	if (!td->dm_dev.bdev)
774 		return;
775 
776 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
777 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
778 	td->dm_dev.bdev = NULL;
779 }
780 
781 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
782 					      fmode_t mode) {
783 	struct table_device *td;
784 
785 	list_for_each_entry(td, l, list)
786 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
787 			return td;
788 
789 	return NULL;
790 }
791 
792 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
793 			struct dm_dev **result) {
794 	int r;
795 	struct table_device *td;
796 
797 	mutex_lock(&md->table_devices_lock);
798 	td = find_table_device(&md->table_devices, dev, mode);
799 	if (!td) {
800 		td = kmalloc(sizeof(*td), GFP_KERNEL);
801 		if (!td) {
802 			mutex_unlock(&md->table_devices_lock);
803 			return -ENOMEM;
804 		}
805 
806 		td->dm_dev.mode = mode;
807 		td->dm_dev.bdev = NULL;
808 
809 		if ((r = open_table_device(td, dev, md))) {
810 			mutex_unlock(&md->table_devices_lock);
811 			kfree(td);
812 			return r;
813 		}
814 
815 		format_dev_t(td->dm_dev.name, dev);
816 
817 		atomic_set(&td->count, 0);
818 		list_add(&td->list, &md->table_devices);
819 	}
820 	atomic_inc(&td->count);
821 	mutex_unlock(&md->table_devices_lock);
822 
823 	*result = &td->dm_dev;
824 	return 0;
825 }
826 EXPORT_SYMBOL_GPL(dm_get_table_device);
827 
828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
829 {
830 	struct table_device *td = container_of(d, struct table_device, dm_dev);
831 
832 	mutex_lock(&md->table_devices_lock);
833 	if (atomic_dec_and_test(&td->count)) {
834 		close_table_device(td, md);
835 		list_del(&td->list);
836 		kfree(td);
837 	}
838 	mutex_unlock(&md->table_devices_lock);
839 }
840 EXPORT_SYMBOL(dm_put_table_device);
841 
842 static void free_table_devices(struct list_head *devices)
843 {
844 	struct list_head *tmp, *next;
845 
846 	list_for_each_safe(tmp, next, devices) {
847 		struct table_device *td = list_entry(tmp, struct table_device, list);
848 
849 		DMWARN("dm_destroy: %s still exists with %d references",
850 		       td->dm_dev.name, atomic_read(&td->count));
851 		kfree(td);
852 	}
853 }
854 
855 /*
856  * Get the geometry associated with a dm device
857  */
858 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
859 {
860 	*geo = md->geometry;
861 
862 	return 0;
863 }
864 
865 /*
866  * Set the geometry of a device.
867  */
868 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
869 {
870 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
871 
872 	if (geo->start > sz) {
873 		DMWARN("Start sector is beyond the geometry limits.");
874 		return -EINVAL;
875 	}
876 
877 	md->geometry = *geo;
878 
879 	return 0;
880 }
881 
882 /*-----------------------------------------------------------------
883  * CRUD START:
884  *   A more elegant soln is in the works that uses the queue
885  *   merge fn, unfortunately there are a couple of changes to
886  *   the block layer that I want to make for this.  So in the
887  *   interests of getting something for people to use I give
888  *   you this clearly demarcated crap.
889  *---------------------------------------------------------------*/
890 
891 static int __noflush_suspending(struct mapped_device *md)
892 {
893 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
894 }
895 
896 /*
897  * Decrements the number of outstanding ios that a bio has been
898  * cloned into, completing the original io if necc.
899  */
900 static void dec_pending(struct dm_io *io, int error)
901 {
902 	unsigned long flags;
903 	int io_error;
904 	struct bio *bio;
905 	struct mapped_device *md = io->md;
906 
907 	/* Push-back supersedes any I/O errors */
908 	if (unlikely(error)) {
909 		spin_lock_irqsave(&io->endio_lock, flags);
910 		if (!(io->error > 0 && __noflush_suspending(md)))
911 			io->error = error;
912 		spin_unlock_irqrestore(&io->endio_lock, flags);
913 	}
914 
915 	if (atomic_dec_and_test(&io->io_count)) {
916 		if (io->error == DM_ENDIO_REQUEUE) {
917 			/*
918 			 * Target requested pushing back the I/O.
919 			 */
920 			spin_lock_irqsave(&md->deferred_lock, flags);
921 			if (__noflush_suspending(md))
922 				bio_list_add_head(&md->deferred, io->bio);
923 			else
924 				/* noflush suspend was interrupted. */
925 				io->error = -EIO;
926 			spin_unlock_irqrestore(&md->deferred_lock, flags);
927 		}
928 
929 		io_error = io->error;
930 		bio = io->bio;
931 		end_io_acct(io);
932 		free_io(md, io);
933 
934 		if (io_error == DM_ENDIO_REQUEUE)
935 			return;
936 
937 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
938 			/*
939 			 * Preflush done for flush with data, reissue
940 			 * without REQ_FLUSH.
941 			 */
942 			bio->bi_rw &= ~REQ_FLUSH;
943 			queue_io(md, bio);
944 		} else {
945 			/* done with normal IO or empty flush */
946 			trace_block_bio_complete(md->queue, bio, io_error);
947 			bio_endio(bio, io_error);
948 		}
949 	}
950 }
951 
952 static void disable_write_same(struct mapped_device *md)
953 {
954 	struct queue_limits *limits = dm_get_queue_limits(md);
955 
956 	/* device doesn't really support WRITE SAME, disable it */
957 	limits->max_write_same_sectors = 0;
958 }
959 
960 static void clone_endio(struct bio *bio, int error)
961 {
962 	int r = error;
963 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
964 	struct dm_io *io = tio->io;
965 	struct mapped_device *md = tio->io->md;
966 	dm_endio_fn endio = tio->ti->type->end_io;
967 
968 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
969 		error = -EIO;
970 
971 	if (endio) {
972 		r = endio(tio->ti, bio, error);
973 		if (r < 0 || r == DM_ENDIO_REQUEUE)
974 			/*
975 			 * error and requeue request are handled
976 			 * in dec_pending().
977 			 */
978 			error = r;
979 		else if (r == DM_ENDIO_INCOMPLETE)
980 			/* The target will handle the io */
981 			return;
982 		else if (r) {
983 			DMWARN("unimplemented target endio return value: %d", r);
984 			BUG();
985 		}
986 	}
987 
988 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
989 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
990 		disable_write_same(md);
991 
992 	free_tio(md, tio);
993 	dec_pending(io, error);
994 }
995 
996 /*
997  * Partial completion handling for request-based dm
998  */
999 static void end_clone_bio(struct bio *clone, int error)
1000 {
1001 	struct dm_rq_clone_bio_info *info =
1002 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1003 	struct dm_rq_target_io *tio = info->tio;
1004 	struct bio *bio = info->orig;
1005 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1006 
1007 	bio_put(clone);
1008 
1009 	if (tio->error)
1010 		/*
1011 		 * An error has already been detected on the request.
1012 		 * Once error occurred, just let clone->end_io() handle
1013 		 * the remainder.
1014 		 */
1015 		return;
1016 	else if (error) {
1017 		/*
1018 		 * Don't notice the error to the upper layer yet.
1019 		 * The error handling decision is made by the target driver,
1020 		 * when the request is completed.
1021 		 */
1022 		tio->error = error;
1023 		return;
1024 	}
1025 
1026 	/*
1027 	 * I/O for the bio successfully completed.
1028 	 * Notice the data completion to the upper layer.
1029 	 */
1030 
1031 	/*
1032 	 * bios are processed from the head of the list.
1033 	 * So the completing bio should always be rq->bio.
1034 	 * If it's not, something wrong is happening.
1035 	 */
1036 	if (tio->orig->bio != bio)
1037 		DMERR("bio completion is going in the middle of the request");
1038 
1039 	/*
1040 	 * Update the original request.
1041 	 * Do not use blk_end_request() here, because it may complete
1042 	 * the original request before the clone, and break the ordering.
1043 	 */
1044 	blk_update_request(tio->orig, 0, nr_bytes);
1045 }
1046 
1047 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1048 {
1049 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1050 }
1051 
1052 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1053 {
1054 	if (unlikely(dm_stats_used(&md->stats))) {
1055 		struct dm_rq_target_io *tio = tio_from_request(orig);
1056 		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1057 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1058 				    tio->n_sectors, true, tio->duration_jiffies,
1059 				    &tio->stats_aux);
1060 	}
1061 }
1062 
1063 /*
1064  * Don't touch any member of the md after calling this function because
1065  * the md may be freed in dm_put() at the end of this function.
1066  * Or do dm_get() before calling this function and dm_put() later.
1067  */
1068 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1069 {
1070 	int nr_requests_pending;
1071 
1072 	atomic_dec(&md->pending[rw]);
1073 
1074 	/* nudge anyone waiting on suspend queue */
1075 	nr_requests_pending = md_in_flight(md);
1076 	if (!nr_requests_pending)
1077 		wake_up(&md->wait);
1078 
1079 	/*
1080 	 * Run this off this callpath, as drivers could invoke end_io while
1081 	 * inside their request_fn (and holding the queue lock). Calling
1082 	 * back into ->request_fn() could deadlock attempting to grab the
1083 	 * queue lock again.
1084 	 */
1085 	if (run_queue) {
1086 		if (md->queue->mq_ops)
1087 			blk_mq_run_hw_queues(md->queue, true);
1088 		else if (!nr_requests_pending ||
1089 			 (nr_requests_pending >= md->queue->nr_congestion_on))
1090 			blk_run_queue_async(md->queue);
1091 	}
1092 
1093 	/*
1094 	 * dm_put() must be at the end of this function. See the comment above
1095 	 */
1096 	dm_put(md);
1097 }
1098 
1099 static void free_rq_clone(struct request *clone)
1100 {
1101 	struct dm_rq_target_io *tio = clone->end_io_data;
1102 	struct mapped_device *md = tio->md;
1103 
1104 	blk_rq_unprep_clone(clone);
1105 
1106 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1107 		/* stacked on blk-mq queue(s) */
1108 		tio->ti->type->release_clone_rq(clone);
1109 	else if (!md->queue->mq_ops)
1110 		/* request_fn queue stacked on request_fn queue(s) */
1111 		free_clone_request(md, clone);
1112 	/*
1113 	 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1114 	 * no need to call free_clone_request() because we leverage blk-mq by
1115 	 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1116 	 */
1117 
1118 	if (!md->queue->mq_ops)
1119 		free_rq_tio(tio);
1120 }
1121 
1122 /*
1123  * Complete the clone and the original request.
1124  * Must be called without clone's queue lock held,
1125  * see end_clone_request() for more details.
1126  */
1127 static void dm_end_request(struct request *clone, int error)
1128 {
1129 	int rw = rq_data_dir(clone);
1130 	struct dm_rq_target_io *tio = clone->end_io_data;
1131 	struct mapped_device *md = tio->md;
1132 	struct request *rq = tio->orig;
1133 
1134 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1135 		rq->errors = clone->errors;
1136 		rq->resid_len = clone->resid_len;
1137 
1138 		if (rq->sense)
1139 			/*
1140 			 * We are using the sense buffer of the original
1141 			 * request.
1142 			 * So setting the length of the sense data is enough.
1143 			 */
1144 			rq->sense_len = clone->sense_len;
1145 	}
1146 
1147 	free_rq_clone(clone);
1148 	rq_end_stats(md, rq);
1149 	if (!rq->q->mq_ops)
1150 		blk_end_request_all(rq, error);
1151 	else
1152 		blk_mq_end_request(rq, error);
1153 	rq_completed(md, rw, true);
1154 }
1155 
1156 static void dm_unprep_request(struct request *rq)
1157 {
1158 	struct dm_rq_target_io *tio = tio_from_request(rq);
1159 	struct request *clone = tio->clone;
1160 
1161 	if (!rq->q->mq_ops) {
1162 		rq->special = NULL;
1163 		rq->cmd_flags &= ~REQ_DONTPREP;
1164 	}
1165 
1166 	if (clone)
1167 		free_rq_clone(clone);
1168 }
1169 
1170 /*
1171  * Requeue the original request of a clone.
1172  */
1173 static void old_requeue_request(struct request *rq)
1174 {
1175 	struct request_queue *q = rq->q;
1176 	unsigned long flags;
1177 
1178 	spin_lock_irqsave(q->queue_lock, flags);
1179 	blk_requeue_request(q, rq);
1180 	blk_run_queue_async(q);
1181 	spin_unlock_irqrestore(q->queue_lock, flags);
1182 }
1183 
1184 static void dm_requeue_original_request(struct mapped_device *md,
1185 					struct request *rq)
1186 {
1187 	int rw = rq_data_dir(rq);
1188 
1189 	dm_unprep_request(rq);
1190 
1191 	rq_end_stats(md, rq);
1192 	if (!rq->q->mq_ops)
1193 		old_requeue_request(rq);
1194 	else {
1195 		blk_mq_requeue_request(rq);
1196 		blk_mq_kick_requeue_list(rq->q);
1197 	}
1198 
1199 	rq_completed(md, rw, false);
1200 }
1201 
1202 static void old_stop_queue(struct request_queue *q)
1203 {
1204 	unsigned long flags;
1205 
1206 	if (blk_queue_stopped(q))
1207 		return;
1208 
1209 	spin_lock_irqsave(q->queue_lock, flags);
1210 	blk_stop_queue(q);
1211 	spin_unlock_irqrestore(q->queue_lock, flags);
1212 }
1213 
1214 static void stop_queue(struct request_queue *q)
1215 {
1216 	if (!q->mq_ops)
1217 		old_stop_queue(q);
1218 	else
1219 		blk_mq_stop_hw_queues(q);
1220 }
1221 
1222 static void old_start_queue(struct request_queue *q)
1223 {
1224 	unsigned long flags;
1225 
1226 	spin_lock_irqsave(q->queue_lock, flags);
1227 	if (blk_queue_stopped(q))
1228 		blk_start_queue(q);
1229 	spin_unlock_irqrestore(q->queue_lock, flags);
1230 }
1231 
1232 static void start_queue(struct request_queue *q)
1233 {
1234 	if (!q->mq_ops)
1235 		old_start_queue(q);
1236 	else
1237 		blk_mq_start_stopped_hw_queues(q, true);
1238 }
1239 
1240 static void dm_done(struct request *clone, int error, bool mapped)
1241 {
1242 	int r = error;
1243 	struct dm_rq_target_io *tio = clone->end_io_data;
1244 	dm_request_endio_fn rq_end_io = NULL;
1245 
1246 	if (tio->ti) {
1247 		rq_end_io = tio->ti->type->rq_end_io;
1248 
1249 		if (mapped && rq_end_io)
1250 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1251 	}
1252 
1253 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1254 		     !clone->q->limits.max_write_same_sectors))
1255 		disable_write_same(tio->md);
1256 
1257 	if (r <= 0)
1258 		/* The target wants to complete the I/O */
1259 		dm_end_request(clone, r);
1260 	else if (r == DM_ENDIO_INCOMPLETE)
1261 		/* The target will handle the I/O */
1262 		return;
1263 	else if (r == DM_ENDIO_REQUEUE)
1264 		/* The target wants to requeue the I/O */
1265 		dm_requeue_original_request(tio->md, tio->orig);
1266 	else {
1267 		DMWARN("unimplemented target endio return value: %d", r);
1268 		BUG();
1269 	}
1270 }
1271 
1272 /*
1273  * Request completion handler for request-based dm
1274  */
1275 static void dm_softirq_done(struct request *rq)
1276 {
1277 	bool mapped = true;
1278 	struct dm_rq_target_io *tio = tio_from_request(rq);
1279 	struct request *clone = tio->clone;
1280 	int rw;
1281 
1282 	if (!clone) {
1283 		rq_end_stats(tio->md, rq);
1284 		rw = rq_data_dir(rq);
1285 		if (!rq->q->mq_ops) {
1286 			blk_end_request_all(rq, tio->error);
1287 			rq_completed(tio->md, rw, false);
1288 			free_rq_tio(tio);
1289 		} else {
1290 			blk_mq_end_request(rq, tio->error);
1291 			rq_completed(tio->md, rw, false);
1292 		}
1293 		return;
1294 	}
1295 
1296 	if (rq->cmd_flags & REQ_FAILED)
1297 		mapped = false;
1298 
1299 	dm_done(clone, tio->error, mapped);
1300 }
1301 
1302 /*
1303  * Complete the clone and the original request with the error status
1304  * through softirq context.
1305  */
1306 static void dm_complete_request(struct request *rq, int error)
1307 {
1308 	struct dm_rq_target_io *tio = tio_from_request(rq);
1309 
1310 	tio->error = error;
1311 	blk_complete_request(rq);
1312 }
1313 
1314 /*
1315  * Complete the not-mapped clone and the original request with the error status
1316  * through softirq context.
1317  * Target's rq_end_io() function isn't called.
1318  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1319  */
1320 static void dm_kill_unmapped_request(struct request *rq, int error)
1321 {
1322 	rq->cmd_flags |= REQ_FAILED;
1323 	dm_complete_request(rq, error);
1324 }
1325 
1326 /*
1327  * Called with the clone's queue lock held (for non-blk-mq)
1328  */
1329 static void end_clone_request(struct request *clone, int error)
1330 {
1331 	struct dm_rq_target_io *tio = clone->end_io_data;
1332 
1333 	if (!clone->q->mq_ops) {
1334 		/*
1335 		 * For just cleaning up the information of the queue in which
1336 		 * the clone was dispatched.
1337 		 * The clone is *NOT* freed actually here because it is alloced
1338 		 * from dm own mempool (REQ_ALLOCED isn't set).
1339 		 */
1340 		__blk_put_request(clone->q, clone);
1341 	}
1342 
1343 	/*
1344 	 * Actual request completion is done in a softirq context which doesn't
1345 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1346 	 *     - another request may be submitted by the upper level driver
1347 	 *       of the stacking during the completion
1348 	 *     - the submission which requires queue lock may be done
1349 	 *       against this clone's queue
1350 	 */
1351 	dm_complete_request(tio->orig, error);
1352 }
1353 
1354 /*
1355  * Return maximum size of I/O possible at the supplied sector up to the current
1356  * target boundary.
1357  */
1358 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1359 {
1360 	sector_t target_offset = dm_target_offset(ti, sector);
1361 
1362 	return ti->len - target_offset;
1363 }
1364 
1365 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1366 {
1367 	sector_t len = max_io_len_target_boundary(sector, ti);
1368 	sector_t offset, max_len;
1369 
1370 	/*
1371 	 * Does the target need to split even further?
1372 	 */
1373 	if (ti->max_io_len) {
1374 		offset = dm_target_offset(ti, sector);
1375 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1376 			max_len = sector_div(offset, ti->max_io_len);
1377 		else
1378 			max_len = offset & (ti->max_io_len - 1);
1379 		max_len = ti->max_io_len - max_len;
1380 
1381 		if (len > max_len)
1382 			len = max_len;
1383 	}
1384 
1385 	return len;
1386 }
1387 
1388 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1389 {
1390 	if (len > UINT_MAX) {
1391 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1392 		      (unsigned long long)len, UINT_MAX);
1393 		ti->error = "Maximum size of target IO is too large";
1394 		return -EINVAL;
1395 	}
1396 
1397 	ti->max_io_len = (uint32_t) len;
1398 
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1402 
1403 /*
1404  * A target may call dm_accept_partial_bio only from the map routine.  It is
1405  * allowed for all bio types except REQ_FLUSH.
1406  *
1407  * dm_accept_partial_bio informs the dm that the target only wants to process
1408  * additional n_sectors sectors of the bio and the rest of the data should be
1409  * sent in a next bio.
1410  *
1411  * A diagram that explains the arithmetics:
1412  * +--------------------+---------------+-------+
1413  * |         1          |       2       |   3   |
1414  * +--------------------+---------------+-------+
1415  *
1416  * <-------------- *tio->len_ptr --------------->
1417  *                      <------- bi_size ------->
1418  *                      <-- n_sectors -->
1419  *
1420  * Region 1 was already iterated over with bio_advance or similar function.
1421  *	(it may be empty if the target doesn't use bio_advance)
1422  * Region 2 is the remaining bio size that the target wants to process.
1423  *	(it may be empty if region 1 is non-empty, although there is no reason
1424  *	 to make it empty)
1425  * The target requires that region 3 is to be sent in the next bio.
1426  *
1427  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1428  * the partially processed part (the sum of regions 1+2) must be the same for all
1429  * copies of the bio.
1430  */
1431 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1432 {
1433 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1434 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1435 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1436 	BUG_ON(bi_size > *tio->len_ptr);
1437 	BUG_ON(n_sectors > bi_size);
1438 	*tio->len_ptr -= bi_size - n_sectors;
1439 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1440 }
1441 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1442 
1443 static void __map_bio(struct dm_target_io *tio)
1444 {
1445 	int r;
1446 	sector_t sector;
1447 	struct mapped_device *md;
1448 	struct bio *clone = &tio->clone;
1449 	struct dm_target *ti = tio->ti;
1450 
1451 	clone->bi_end_io = clone_endio;
1452 
1453 	/*
1454 	 * Map the clone.  If r == 0 we don't need to do
1455 	 * anything, the target has assumed ownership of
1456 	 * this io.
1457 	 */
1458 	atomic_inc(&tio->io->io_count);
1459 	sector = clone->bi_iter.bi_sector;
1460 	r = ti->type->map(ti, clone);
1461 	if (r == DM_MAPIO_REMAPPED) {
1462 		/* the bio has been remapped so dispatch it */
1463 
1464 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1465 				      tio->io->bio->bi_bdev->bd_dev, sector);
1466 
1467 		generic_make_request(clone);
1468 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1469 		/* error the io and bail out, or requeue it if needed */
1470 		md = tio->io->md;
1471 		dec_pending(tio->io, r);
1472 		free_tio(md, tio);
1473 	} else if (r) {
1474 		DMWARN("unimplemented target map return value: %d", r);
1475 		BUG();
1476 	}
1477 }
1478 
1479 struct clone_info {
1480 	struct mapped_device *md;
1481 	struct dm_table *map;
1482 	struct bio *bio;
1483 	struct dm_io *io;
1484 	sector_t sector;
1485 	unsigned sector_count;
1486 };
1487 
1488 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1489 {
1490 	bio->bi_iter.bi_sector = sector;
1491 	bio->bi_iter.bi_size = to_bytes(len);
1492 }
1493 
1494 /*
1495  * Creates a bio that consists of range of complete bvecs.
1496  */
1497 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1498 		      sector_t sector, unsigned len)
1499 {
1500 	struct bio *clone = &tio->clone;
1501 
1502 	__bio_clone_fast(clone, bio);
1503 
1504 	if (bio_integrity(bio))
1505 		bio_integrity_clone(clone, bio, GFP_NOIO);
1506 
1507 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1508 	clone->bi_iter.bi_size = to_bytes(len);
1509 
1510 	if (bio_integrity(bio))
1511 		bio_integrity_trim(clone, 0, len);
1512 }
1513 
1514 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1515 				      struct dm_target *ti,
1516 				      unsigned target_bio_nr)
1517 {
1518 	struct dm_target_io *tio;
1519 	struct bio *clone;
1520 
1521 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1522 	tio = container_of(clone, struct dm_target_io, clone);
1523 
1524 	tio->io = ci->io;
1525 	tio->ti = ti;
1526 	tio->target_bio_nr = target_bio_nr;
1527 
1528 	return tio;
1529 }
1530 
1531 static void __clone_and_map_simple_bio(struct clone_info *ci,
1532 				       struct dm_target *ti,
1533 				       unsigned target_bio_nr, unsigned *len)
1534 {
1535 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1536 	struct bio *clone = &tio->clone;
1537 
1538 	tio->len_ptr = len;
1539 
1540 	__bio_clone_fast(clone, ci->bio);
1541 	if (len)
1542 		bio_setup_sector(clone, ci->sector, *len);
1543 
1544 	__map_bio(tio);
1545 }
1546 
1547 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1548 				  unsigned num_bios, unsigned *len)
1549 {
1550 	unsigned target_bio_nr;
1551 
1552 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1553 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1554 }
1555 
1556 static int __send_empty_flush(struct clone_info *ci)
1557 {
1558 	unsigned target_nr = 0;
1559 	struct dm_target *ti;
1560 
1561 	BUG_ON(bio_has_data(ci->bio));
1562 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1563 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1564 
1565 	return 0;
1566 }
1567 
1568 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1569 				     sector_t sector, unsigned *len)
1570 {
1571 	struct bio *bio = ci->bio;
1572 	struct dm_target_io *tio;
1573 	unsigned target_bio_nr;
1574 	unsigned num_target_bios = 1;
1575 
1576 	/*
1577 	 * Does the target want to receive duplicate copies of the bio?
1578 	 */
1579 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1580 		num_target_bios = ti->num_write_bios(ti, bio);
1581 
1582 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1583 		tio = alloc_tio(ci, ti, target_bio_nr);
1584 		tio->len_ptr = len;
1585 		clone_bio(tio, bio, sector, *len);
1586 		__map_bio(tio);
1587 	}
1588 }
1589 
1590 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1591 
1592 static unsigned get_num_discard_bios(struct dm_target *ti)
1593 {
1594 	return ti->num_discard_bios;
1595 }
1596 
1597 static unsigned get_num_write_same_bios(struct dm_target *ti)
1598 {
1599 	return ti->num_write_same_bios;
1600 }
1601 
1602 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1603 
1604 static bool is_split_required_for_discard(struct dm_target *ti)
1605 {
1606 	return ti->split_discard_bios;
1607 }
1608 
1609 static int __send_changing_extent_only(struct clone_info *ci,
1610 				       get_num_bios_fn get_num_bios,
1611 				       is_split_required_fn is_split_required)
1612 {
1613 	struct dm_target *ti;
1614 	unsigned len;
1615 	unsigned num_bios;
1616 
1617 	do {
1618 		ti = dm_table_find_target(ci->map, ci->sector);
1619 		if (!dm_target_is_valid(ti))
1620 			return -EIO;
1621 
1622 		/*
1623 		 * Even though the device advertised support for this type of
1624 		 * request, that does not mean every target supports it, and
1625 		 * reconfiguration might also have changed that since the
1626 		 * check was performed.
1627 		 */
1628 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1629 		if (!num_bios)
1630 			return -EOPNOTSUPP;
1631 
1632 		if (is_split_required && !is_split_required(ti))
1633 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1634 		else
1635 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1636 
1637 		__send_duplicate_bios(ci, ti, num_bios, &len);
1638 
1639 		ci->sector += len;
1640 	} while (ci->sector_count -= len);
1641 
1642 	return 0;
1643 }
1644 
1645 static int __send_discard(struct clone_info *ci)
1646 {
1647 	return __send_changing_extent_only(ci, get_num_discard_bios,
1648 					   is_split_required_for_discard);
1649 }
1650 
1651 static int __send_write_same(struct clone_info *ci)
1652 {
1653 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1654 }
1655 
1656 /*
1657  * Select the correct strategy for processing a non-flush bio.
1658  */
1659 static int __split_and_process_non_flush(struct clone_info *ci)
1660 {
1661 	struct bio *bio = ci->bio;
1662 	struct dm_target *ti;
1663 	unsigned len;
1664 
1665 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1666 		return __send_discard(ci);
1667 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1668 		return __send_write_same(ci);
1669 
1670 	ti = dm_table_find_target(ci->map, ci->sector);
1671 	if (!dm_target_is_valid(ti))
1672 		return -EIO;
1673 
1674 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1675 
1676 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1677 
1678 	ci->sector += len;
1679 	ci->sector_count -= len;
1680 
1681 	return 0;
1682 }
1683 
1684 /*
1685  * Entry point to split a bio into clones and submit them to the targets.
1686  */
1687 static void __split_and_process_bio(struct mapped_device *md,
1688 				    struct dm_table *map, struct bio *bio)
1689 {
1690 	struct clone_info ci;
1691 	int error = 0;
1692 
1693 	if (unlikely(!map)) {
1694 		bio_io_error(bio);
1695 		return;
1696 	}
1697 
1698 	ci.map = map;
1699 	ci.md = md;
1700 	ci.io = alloc_io(md);
1701 	ci.io->error = 0;
1702 	atomic_set(&ci.io->io_count, 1);
1703 	ci.io->bio = bio;
1704 	ci.io->md = md;
1705 	spin_lock_init(&ci.io->endio_lock);
1706 	ci.sector = bio->bi_iter.bi_sector;
1707 
1708 	start_io_acct(ci.io);
1709 
1710 	if (bio->bi_rw & REQ_FLUSH) {
1711 		ci.bio = &ci.md->flush_bio;
1712 		ci.sector_count = 0;
1713 		error = __send_empty_flush(&ci);
1714 		/* dec_pending submits any data associated with flush */
1715 	} else {
1716 		ci.bio = bio;
1717 		ci.sector_count = bio_sectors(bio);
1718 		while (ci.sector_count && !error)
1719 			error = __split_and_process_non_flush(&ci);
1720 	}
1721 
1722 	/* drop the extra reference count */
1723 	dec_pending(ci.io, error);
1724 }
1725 /*-----------------------------------------------------------------
1726  * CRUD END
1727  *---------------------------------------------------------------*/
1728 
1729 static int dm_merge_bvec(struct request_queue *q,
1730 			 struct bvec_merge_data *bvm,
1731 			 struct bio_vec *biovec)
1732 {
1733 	struct mapped_device *md = q->queuedata;
1734 	struct dm_table *map = dm_get_live_table_fast(md);
1735 	struct dm_target *ti;
1736 	sector_t max_sectors, max_size = 0;
1737 
1738 	if (unlikely(!map))
1739 		goto out;
1740 
1741 	ti = dm_table_find_target(map, bvm->bi_sector);
1742 	if (!dm_target_is_valid(ti))
1743 		goto out;
1744 
1745 	/*
1746 	 * Find maximum amount of I/O that won't need splitting
1747 	 */
1748 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1749 			  (sector_t) queue_max_sectors(q));
1750 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1751 
1752 	/*
1753 	 * FIXME: this stop-gap fix _must_ be cleaned up (by passing a sector_t
1754 	 * to the targets' merge function since it holds sectors not bytes).
1755 	 * Just doing this as an interim fix for stable@ because the more
1756 	 * comprehensive cleanup of switching to sector_t will impact every
1757 	 * DM target that implements a ->merge hook.
1758 	 */
1759 	if (max_size > INT_MAX)
1760 		max_size = INT_MAX;
1761 
1762 	/*
1763 	 * merge_bvec_fn() returns number of bytes
1764 	 * it can accept at this offset
1765 	 * max is precomputed maximal io size
1766 	 */
1767 	if (max_size && ti->type->merge)
1768 		max_size = ti->type->merge(ti, bvm, biovec, (int) max_size);
1769 	/*
1770 	 * If the target doesn't support merge method and some of the devices
1771 	 * provided their merge_bvec method (we know this by looking for the
1772 	 * max_hw_sectors that dm_set_device_limits may set), then we can't
1773 	 * allow bios with multiple vector entries.  So always set max_size
1774 	 * to 0, and the code below allows just one page.
1775 	 */
1776 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1777 		max_size = 0;
1778 
1779 out:
1780 	dm_put_live_table_fast(md);
1781 	/*
1782 	 * Always allow an entire first page
1783 	 */
1784 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1785 		max_size = biovec->bv_len;
1786 
1787 	return max_size;
1788 }
1789 
1790 /*
1791  * The request function that just remaps the bio built up by
1792  * dm_merge_bvec.
1793  */
1794 static void dm_make_request(struct request_queue *q, struct bio *bio)
1795 {
1796 	int rw = bio_data_dir(bio);
1797 	struct mapped_device *md = q->queuedata;
1798 	int srcu_idx;
1799 	struct dm_table *map;
1800 
1801 	map = dm_get_live_table(md, &srcu_idx);
1802 
1803 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1804 
1805 	/* if we're suspended, we have to queue this io for later */
1806 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1807 		dm_put_live_table(md, srcu_idx);
1808 
1809 		if (bio_rw(bio) != READA)
1810 			queue_io(md, bio);
1811 		else
1812 			bio_io_error(bio);
1813 		return;
1814 	}
1815 
1816 	__split_and_process_bio(md, map, bio);
1817 	dm_put_live_table(md, srcu_idx);
1818 	return;
1819 }
1820 
1821 int dm_request_based(struct mapped_device *md)
1822 {
1823 	return blk_queue_stackable(md->queue);
1824 }
1825 
1826 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1827 {
1828 	int r;
1829 
1830 	if (blk_queue_io_stat(clone->q))
1831 		clone->cmd_flags |= REQ_IO_STAT;
1832 
1833 	clone->start_time = jiffies;
1834 	r = blk_insert_cloned_request(clone->q, clone);
1835 	if (r)
1836 		/* must complete clone in terms of original request */
1837 		dm_complete_request(rq, r);
1838 }
1839 
1840 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1841 				 void *data)
1842 {
1843 	struct dm_rq_target_io *tio = data;
1844 	struct dm_rq_clone_bio_info *info =
1845 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1846 
1847 	info->orig = bio_orig;
1848 	info->tio = tio;
1849 	bio->bi_end_io = end_clone_bio;
1850 
1851 	return 0;
1852 }
1853 
1854 static int setup_clone(struct request *clone, struct request *rq,
1855 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1856 {
1857 	int r;
1858 
1859 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1860 			      dm_rq_bio_constructor, tio);
1861 	if (r)
1862 		return r;
1863 
1864 	clone->cmd = rq->cmd;
1865 	clone->cmd_len = rq->cmd_len;
1866 	clone->sense = rq->sense;
1867 	clone->end_io = end_clone_request;
1868 	clone->end_io_data = tio;
1869 
1870 	tio->clone = clone;
1871 
1872 	return 0;
1873 }
1874 
1875 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1876 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1877 {
1878 	/*
1879 	 * Do not allocate a clone if tio->clone was already set
1880 	 * (see: dm_mq_queue_rq).
1881 	 */
1882 	bool alloc_clone = !tio->clone;
1883 	struct request *clone;
1884 
1885 	if (alloc_clone) {
1886 		clone = alloc_clone_request(md, gfp_mask);
1887 		if (!clone)
1888 			return NULL;
1889 	} else
1890 		clone = tio->clone;
1891 
1892 	blk_rq_init(NULL, clone);
1893 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1894 		/* -ENOMEM */
1895 		if (alloc_clone)
1896 			free_clone_request(md, clone);
1897 		return NULL;
1898 	}
1899 
1900 	return clone;
1901 }
1902 
1903 static void map_tio_request(struct kthread_work *work);
1904 
1905 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1906 		     struct mapped_device *md)
1907 {
1908 	tio->md = md;
1909 	tio->ti = NULL;
1910 	tio->clone = NULL;
1911 	tio->orig = rq;
1912 	tio->error = 0;
1913 	memset(&tio->info, 0, sizeof(tio->info));
1914 	if (md->kworker_task)
1915 		init_kthread_work(&tio->work, map_tio_request);
1916 }
1917 
1918 static struct dm_rq_target_io *prep_tio(struct request *rq,
1919 					struct mapped_device *md, gfp_t gfp_mask)
1920 {
1921 	struct dm_rq_target_io *tio;
1922 	int srcu_idx;
1923 	struct dm_table *table;
1924 
1925 	tio = alloc_rq_tio(md, gfp_mask);
1926 	if (!tio)
1927 		return NULL;
1928 
1929 	init_tio(tio, rq, md);
1930 
1931 	table = dm_get_live_table(md, &srcu_idx);
1932 	if (!dm_table_mq_request_based(table)) {
1933 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1934 			dm_put_live_table(md, srcu_idx);
1935 			free_rq_tio(tio);
1936 			return NULL;
1937 		}
1938 	}
1939 	dm_put_live_table(md, srcu_idx);
1940 
1941 	return tio;
1942 }
1943 
1944 /*
1945  * Called with the queue lock held.
1946  */
1947 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1948 {
1949 	struct mapped_device *md = q->queuedata;
1950 	struct dm_rq_target_io *tio;
1951 
1952 	if (unlikely(rq->special)) {
1953 		DMWARN("Already has something in rq->special.");
1954 		return BLKPREP_KILL;
1955 	}
1956 
1957 	tio = prep_tio(rq, md, GFP_ATOMIC);
1958 	if (!tio)
1959 		return BLKPREP_DEFER;
1960 
1961 	rq->special = tio;
1962 	rq->cmd_flags |= REQ_DONTPREP;
1963 
1964 	return BLKPREP_OK;
1965 }
1966 
1967 /*
1968  * Returns:
1969  * 0                : the request has been processed
1970  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1971  * < 0              : the request was completed due to failure
1972  */
1973 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1974 		       struct mapped_device *md)
1975 {
1976 	int r;
1977 	struct dm_target *ti = tio->ti;
1978 	struct request *clone = NULL;
1979 
1980 	if (tio->clone) {
1981 		clone = tio->clone;
1982 		r = ti->type->map_rq(ti, clone, &tio->info);
1983 	} else {
1984 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1985 		if (r < 0) {
1986 			/* The target wants to complete the I/O */
1987 			dm_kill_unmapped_request(rq, r);
1988 			return r;
1989 		}
1990 		if (r != DM_MAPIO_REMAPPED)
1991 			return r;
1992 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1993 			/* -ENOMEM */
1994 			ti->type->release_clone_rq(clone);
1995 			return DM_MAPIO_REQUEUE;
1996 		}
1997 	}
1998 
1999 	switch (r) {
2000 	case DM_MAPIO_SUBMITTED:
2001 		/* The target has taken the I/O to submit by itself later */
2002 		break;
2003 	case DM_MAPIO_REMAPPED:
2004 		/* The target has remapped the I/O so dispatch it */
2005 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
2006 				     blk_rq_pos(rq));
2007 		dm_dispatch_clone_request(clone, rq);
2008 		break;
2009 	case DM_MAPIO_REQUEUE:
2010 		/* The target wants to requeue the I/O */
2011 		dm_requeue_original_request(md, tio->orig);
2012 		break;
2013 	default:
2014 		if (r > 0) {
2015 			DMWARN("unimplemented target map return value: %d", r);
2016 			BUG();
2017 		}
2018 
2019 		/* The target wants to complete the I/O */
2020 		dm_kill_unmapped_request(rq, r);
2021 		return r;
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 static void map_tio_request(struct kthread_work *work)
2028 {
2029 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2030 	struct request *rq = tio->orig;
2031 	struct mapped_device *md = tio->md;
2032 
2033 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2034 		dm_requeue_original_request(md, rq);
2035 }
2036 
2037 static void dm_start_request(struct mapped_device *md, struct request *orig)
2038 {
2039 	if (!orig->q->mq_ops)
2040 		blk_start_request(orig);
2041 	else
2042 		blk_mq_start_request(orig);
2043 	atomic_inc(&md->pending[rq_data_dir(orig)]);
2044 
2045 	if (md->seq_rq_merge_deadline_usecs) {
2046 		md->last_rq_pos = rq_end_sector(orig);
2047 		md->last_rq_rw = rq_data_dir(orig);
2048 		md->last_rq_start_time = ktime_get();
2049 	}
2050 
2051 	if (unlikely(dm_stats_used(&md->stats))) {
2052 		struct dm_rq_target_io *tio = tio_from_request(orig);
2053 		tio->duration_jiffies = jiffies;
2054 		tio->n_sectors = blk_rq_sectors(orig);
2055 		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2056 				    tio->n_sectors, false, 0, &tio->stats_aux);
2057 	}
2058 
2059 	/*
2060 	 * Hold the md reference here for the in-flight I/O.
2061 	 * We can't rely on the reference count by device opener,
2062 	 * because the device may be closed during the request completion
2063 	 * when all bios are completed.
2064 	 * See the comment in rq_completed() too.
2065 	 */
2066 	dm_get(md);
2067 }
2068 
2069 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2070 
2071 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2072 {
2073 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2074 }
2075 
2076 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2077 						     const char *buf, size_t count)
2078 {
2079 	unsigned deadline;
2080 
2081 	if (!dm_request_based(md) || md->use_blk_mq)
2082 		return count;
2083 
2084 	if (kstrtouint(buf, 10, &deadline))
2085 		return -EINVAL;
2086 
2087 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2088 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2089 
2090 	md->seq_rq_merge_deadline_usecs = deadline;
2091 
2092 	return count;
2093 }
2094 
2095 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2096 {
2097 	ktime_t kt_deadline;
2098 
2099 	if (!md->seq_rq_merge_deadline_usecs)
2100 		return false;
2101 
2102 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2103 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2104 
2105 	return !ktime_after(ktime_get(), kt_deadline);
2106 }
2107 
2108 /*
2109  * q->request_fn for request-based dm.
2110  * Called with the queue lock held.
2111  */
2112 static void dm_request_fn(struct request_queue *q)
2113 {
2114 	struct mapped_device *md = q->queuedata;
2115 	int srcu_idx;
2116 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2117 	struct dm_target *ti;
2118 	struct request *rq;
2119 	struct dm_rq_target_io *tio;
2120 	sector_t pos;
2121 
2122 	/*
2123 	 * For suspend, check blk_queue_stopped() and increment
2124 	 * ->pending within a single queue_lock not to increment the
2125 	 * number of in-flight I/Os after the queue is stopped in
2126 	 * dm_suspend().
2127 	 */
2128 	while (!blk_queue_stopped(q)) {
2129 		rq = blk_peek_request(q);
2130 		if (!rq)
2131 			goto out;
2132 
2133 		/* always use block 0 to find the target for flushes for now */
2134 		pos = 0;
2135 		if (!(rq->cmd_flags & REQ_FLUSH))
2136 			pos = blk_rq_pos(rq);
2137 
2138 		ti = dm_table_find_target(map, pos);
2139 		if (!dm_target_is_valid(ti)) {
2140 			/*
2141 			 * Must perform setup, that rq_completed() requires,
2142 			 * before calling dm_kill_unmapped_request
2143 			 */
2144 			DMERR_LIMIT("request attempted access beyond the end of device");
2145 			dm_start_request(md, rq);
2146 			dm_kill_unmapped_request(rq, -EIO);
2147 			continue;
2148 		}
2149 
2150 		if (dm_request_peeked_before_merge_deadline(md) &&
2151 		    md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2152 		    md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2153 			goto delay_and_out;
2154 
2155 		if (ti->type->busy && ti->type->busy(ti))
2156 			goto delay_and_out;
2157 
2158 		dm_start_request(md, rq);
2159 
2160 		tio = tio_from_request(rq);
2161 		/* Establish tio->ti before queuing work (map_tio_request) */
2162 		tio->ti = ti;
2163 		queue_kthread_work(&md->kworker, &tio->work);
2164 		BUG_ON(!irqs_disabled());
2165 	}
2166 
2167 	goto out;
2168 
2169 delay_and_out:
2170 	blk_delay_queue(q, HZ / 100);
2171 out:
2172 	dm_put_live_table(md, srcu_idx);
2173 }
2174 
2175 static int dm_any_congested(void *congested_data, int bdi_bits)
2176 {
2177 	int r = bdi_bits;
2178 	struct mapped_device *md = congested_data;
2179 	struct dm_table *map;
2180 
2181 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2182 		map = dm_get_live_table_fast(md);
2183 		if (map) {
2184 			/*
2185 			 * Request-based dm cares about only own queue for
2186 			 * the query about congestion status of request_queue
2187 			 */
2188 			if (dm_request_based(md))
2189 				r = md->queue->backing_dev_info.wb.state &
2190 				    bdi_bits;
2191 			else
2192 				r = dm_table_any_congested(map, bdi_bits);
2193 		}
2194 		dm_put_live_table_fast(md);
2195 	}
2196 
2197 	return r;
2198 }
2199 
2200 /*-----------------------------------------------------------------
2201  * An IDR is used to keep track of allocated minor numbers.
2202  *---------------------------------------------------------------*/
2203 static void free_minor(int minor)
2204 {
2205 	spin_lock(&_minor_lock);
2206 	idr_remove(&_minor_idr, minor);
2207 	spin_unlock(&_minor_lock);
2208 }
2209 
2210 /*
2211  * See if the device with a specific minor # is free.
2212  */
2213 static int specific_minor(int minor)
2214 {
2215 	int r;
2216 
2217 	if (minor >= (1 << MINORBITS))
2218 		return -EINVAL;
2219 
2220 	idr_preload(GFP_KERNEL);
2221 	spin_lock(&_minor_lock);
2222 
2223 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2224 
2225 	spin_unlock(&_minor_lock);
2226 	idr_preload_end();
2227 	if (r < 0)
2228 		return r == -ENOSPC ? -EBUSY : r;
2229 	return 0;
2230 }
2231 
2232 static int next_free_minor(int *minor)
2233 {
2234 	int r;
2235 
2236 	idr_preload(GFP_KERNEL);
2237 	spin_lock(&_minor_lock);
2238 
2239 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2240 
2241 	spin_unlock(&_minor_lock);
2242 	idr_preload_end();
2243 	if (r < 0)
2244 		return r;
2245 	*minor = r;
2246 	return 0;
2247 }
2248 
2249 static const struct block_device_operations dm_blk_dops;
2250 
2251 static void dm_wq_work(struct work_struct *work);
2252 
2253 static void dm_init_md_queue(struct mapped_device *md)
2254 {
2255 	/*
2256 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2257 	 * devices.  The type of this dm device may not have been decided yet.
2258 	 * The type is decided at the first table loading time.
2259 	 * To prevent problematic device stacking, clear the queue flag
2260 	 * for request stacking support until then.
2261 	 *
2262 	 * This queue is new, so no concurrency on the queue_flags.
2263 	 */
2264 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2265 }
2266 
2267 static void dm_init_old_md_queue(struct mapped_device *md)
2268 {
2269 	md->use_blk_mq = false;
2270 	dm_init_md_queue(md);
2271 
2272 	/*
2273 	 * Initialize aspects of queue that aren't relevant for blk-mq
2274 	 */
2275 	md->queue->queuedata = md;
2276 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2277 	md->queue->backing_dev_info.congested_data = md;
2278 
2279 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2280 }
2281 
2282 static void cleanup_mapped_device(struct mapped_device *md)
2283 {
2284 	cleanup_srcu_struct(&md->io_barrier);
2285 
2286 	if (md->wq)
2287 		destroy_workqueue(md->wq);
2288 	if (md->kworker_task)
2289 		kthread_stop(md->kworker_task);
2290 	if (md->io_pool)
2291 		mempool_destroy(md->io_pool);
2292 	if (md->rq_pool)
2293 		mempool_destroy(md->rq_pool);
2294 	if (md->bs)
2295 		bioset_free(md->bs);
2296 
2297 	if (md->disk) {
2298 		spin_lock(&_minor_lock);
2299 		md->disk->private_data = NULL;
2300 		spin_unlock(&_minor_lock);
2301 		if (blk_get_integrity(md->disk))
2302 			blk_integrity_unregister(md->disk);
2303 		del_gendisk(md->disk);
2304 		put_disk(md->disk);
2305 	}
2306 
2307 	if (md->queue)
2308 		blk_cleanup_queue(md->queue);
2309 
2310 	if (md->bdev) {
2311 		bdput(md->bdev);
2312 		md->bdev = NULL;
2313 	}
2314 }
2315 
2316 /*
2317  * Allocate and initialise a blank device with a given minor.
2318  */
2319 static struct mapped_device *alloc_dev(int minor)
2320 {
2321 	int r;
2322 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2323 	void *old_md;
2324 
2325 	if (!md) {
2326 		DMWARN("unable to allocate device, out of memory.");
2327 		return NULL;
2328 	}
2329 
2330 	if (!try_module_get(THIS_MODULE))
2331 		goto bad_module_get;
2332 
2333 	/* get a minor number for the dev */
2334 	if (minor == DM_ANY_MINOR)
2335 		r = next_free_minor(&minor);
2336 	else
2337 		r = specific_minor(minor);
2338 	if (r < 0)
2339 		goto bad_minor;
2340 
2341 	r = init_srcu_struct(&md->io_barrier);
2342 	if (r < 0)
2343 		goto bad_io_barrier;
2344 
2345 	md->use_blk_mq = use_blk_mq;
2346 	md->type = DM_TYPE_NONE;
2347 	mutex_init(&md->suspend_lock);
2348 	mutex_init(&md->type_lock);
2349 	mutex_init(&md->table_devices_lock);
2350 	spin_lock_init(&md->deferred_lock);
2351 	atomic_set(&md->holders, 1);
2352 	atomic_set(&md->open_count, 0);
2353 	atomic_set(&md->event_nr, 0);
2354 	atomic_set(&md->uevent_seq, 0);
2355 	INIT_LIST_HEAD(&md->uevent_list);
2356 	INIT_LIST_HEAD(&md->table_devices);
2357 	spin_lock_init(&md->uevent_lock);
2358 
2359 	md->queue = blk_alloc_queue(GFP_KERNEL);
2360 	if (!md->queue)
2361 		goto bad;
2362 
2363 	dm_init_md_queue(md);
2364 
2365 	md->disk = alloc_disk(1);
2366 	if (!md->disk)
2367 		goto bad;
2368 
2369 	atomic_set(&md->pending[0], 0);
2370 	atomic_set(&md->pending[1], 0);
2371 	init_waitqueue_head(&md->wait);
2372 	INIT_WORK(&md->work, dm_wq_work);
2373 	init_waitqueue_head(&md->eventq);
2374 	init_completion(&md->kobj_holder.completion);
2375 	md->kworker_task = NULL;
2376 
2377 	md->disk->major = _major;
2378 	md->disk->first_minor = minor;
2379 	md->disk->fops = &dm_blk_dops;
2380 	md->disk->queue = md->queue;
2381 	md->disk->private_data = md;
2382 	sprintf(md->disk->disk_name, "dm-%d", minor);
2383 	add_disk(md->disk);
2384 	format_dev_t(md->name, MKDEV(_major, minor));
2385 
2386 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2387 	if (!md->wq)
2388 		goto bad;
2389 
2390 	md->bdev = bdget_disk(md->disk, 0);
2391 	if (!md->bdev)
2392 		goto bad;
2393 
2394 	bio_init(&md->flush_bio);
2395 	md->flush_bio.bi_bdev = md->bdev;
2396 	md->flush_bio.bi_rw = WRITE_FLUSH;
2397 
2398 	dm_stats_init(&md->stats);
2399 
2400 	/* Populate the mapping, nobody knows we exist yet */
2401 	spin_lock(&_minor_lock);
2402 	old_md = idr_replace(&_minor_idr, md, minor);
2403 	spin_unlock(&_minor_lock);
2404 
2405 	BUG_ON(old_md != MINOR_ALLOCED);
2406 
2407 	return md;
2408 
2409 bad:
2410 	cleanup_mapped_device(md);
2411 bad_io_barrier:
2412 	free_minor(minor);
2413 bad_minor:
2414 	module_put(THIS_MODULE);
2415 bad_module_get:
2416 	kfree(md);
2417 	return NULL;
2418 }
2419 
2420 static void unlock_fs(struct mapped_device *md);
2421 
2422 static void free_dev(struct mapped_device *md)
2423 {
2424 	int minor = MINOR(disk_devt(md->disk));
2425 
2426 	unlock_fs(md);
2427 
2428 	cleanup_mapped_device(md);
2429 	if (md->use_blk_mq)
2430 		blk_mq_free_tag_set(&md->tag_set);
2431 
2432 	free_table_devices(&md->table_devices);
2433 	dm_stats_cleanup(&md->stats);
2434 	free_minor(minor);
2435 
2436 	module_put(THIS_MODULE);
2437 	kfree(md);
2438 }
2439 
2440 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2441 {
2442 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2443 
2444 	if (md->bs) {
2445 		/* The md already has necessary mempools. */
2446 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2447 			/*
2448 			 * Reload bioset because front_pad may have changed
2449 			 * because a different table was loaded.
2450 			 */
2451 			bioset_free(md->bs);
2452 			md->bs = p->bs;
2453 			p->bs = NULL;
2454 		}
2455 		/*
2456 		 * There's no need to reload with request-based dm
2457 		 * because the size of front_pad doesn't change.
2458 		 * Note for future: If you are to reload bioset,
2459 		 * prep-ed requests in the queue may refer
2460 		 * to bio from the old bioset, so you must walk
2461 		 * through the queue to unprep.
2462 		 */
2463 		goto out;
2464 	}
2465 
2466 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2467 
2468 	md->io_pool = p->io_pool;
2469 	p->io_pool = NULL;
2470 	md->rq_pool = p->rq_pool;
2471 	p->rq_pool = NULL;
2472 	md->bs = p->bs;
2473 	p->bs = NULL;
2474 
2475 out:
2476 	/* mempool bind completed, no longer need any mempools in the table */
2477 	dm_table_free_md_mempools(t);
2478 }
2479 
2480 /*
2481  * Bind a table to the device.
2482  */
2483 static void event_callback(void *context)
2484 {
2485 	unsigned long flags;
2486 	LIST_HEAD(uevents);
2487 	struct mapped_device *md = (struct mapped_device *) context;
2488 
2489 	spin_lock_irqsave(&md->uevent_lock, flags);
2490 	list_splice_init(&md->uevent_list, &uevents);
2491 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2492 
2493 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2494 
2495 	atomic_inc(&md->event_nr);
2496 	wake_up(&md->eventq);
2497 }
2498 
2499 /*
2500  * Protected by md->suspend_lock obtained by dm_swap_table().
2501  */
2502 static void __set_size(struct mapped_device *md, sector_t size)
2503 {
2504 	set_capacity(md->disk, size);
2505 
2506 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2507 }
2508 
2509 /*
2510  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2511  *
2512  * If this function returns 0, then the device is either a non-dm
2513  * device without a merge_bvec_fn, or it is a dm device that is
2514  * able to split any bios it receives that are too big.
2515  */
2516 int dm_queue_merge_is_compulsory(struct request_queue *q)
2517 {
2518 	struct mapped_device *dev_md;
2519 
2520 	if (!q->merge_bvec_fn)
2521 		return 0;
2522 
2523 	if (q->make_request_fn == dm_make_request) {
2524 		dev_md = q->queuedata;
2525 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2526 			return 0;
2527 	}
2528 
2529 	return 1;
2530 }
2531 
2532 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2533 					 struct dm_dev *dev, sector_t start,
2534 					 sector_t len, void *data)
2535 {
2536 	struct block_device *bdev = dev->bdev;
2537 	struct request_queue *q = bdev_get_queue(bdev);
2538 
2539 	return dm_queue_merge_is_compulsory(q);
2540 }
2541 
2542 /*
2543  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2544  * on the properties of the underlying devices.
2545  */
2546 static int dm_table_merge_is_optional(struct dm_table *table)
2547 {
2548 	unsigned i = 0;
2549 	struct dm_target *ti;
2550 
2551 	while (i < dm_table_get_num_targets(table)) {
2552 		ti = dm_table_get_target(table, i++);
2553 
2554 		if (ti->type->iterate_devices &&
2555 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2556 			return 0;
2557 	}
2558 
2559 	return 1;
2560 }
2561 
2562 /*
2563  * Returns old map, which caller must destroy.
2564  */
2565 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2566 			       struct queue_limits *limits)
2567 {
2568 	struct dm_table *old_map;
2569 	struct request_queue *q = md->queue;
2570 	sector_t size;
2571 	int merge_is_optional;
2572 
2573 	size = dm_table_get_size(t);
2574 
2575 	/*
2576 	 * Wipe any geometry if the size of the table changed.
2577 	 */
2578 	if (size != dm_get_size(md))
2579 		memset(&md->geometry, 0, sizeof(md->geometry));
2580 
2581 	__set_size(md, size);
2582 
2583 	dm_table_event_callback(t, event_callback, md);
2584 
2585 	/*
2586 	 * The queue hasn't been stopped yet, if the old table type wasn't
2587 	 * for request-based during suspension.  So stop it to prevent
2588 	 * I/O mapping before resume.
2589 	 * This must be done before setting the queue restrictions,
2590 	 * because request-based dm may be run just after the setting.
2591 	 */
2592 	if (dm_table_request_based(t))
2593 		stop_queue(q);
2594 
2595 	__bind_mempools(md, t);
2596 
2597 	merge_is_optional = dm_table_merge_is_optional(t);
2598 
2599 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2600 	rcu_assign_pointer(md->map, t);
2601 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2602 
2603 	dm_table_set_restrictions(t, q, limits);
2604 	if (merge_is_optional)
2605 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2606 	else
2607 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2608 	if (old_map)
2609 		dm_sync_table(md);
2610 
2611 	return old_map;
2612 }
2613 
2614 /*
2615  * Returns unbound table for the caller to free.
2616  */
2617 static struct dm_table *__unbind(struct mapped_device *md)
2618 {
2619 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2620 
2621 	if (!map)
2622 		return NULL;
2623 
2624 	dm_table_event_callback(map, NULL, NULL);
2625 	RCU_INIT_POINTER(md->map, NULL);
2626 	dm_sync_table(md);
2627 
2628 	return map;
2629 }
2630 
2631 /*
2632  * Constructor for a new device.
2633  */
2634 int dm_create(int minor, struct mapped_device **result)
2635 {
2636 	struct mapped_device *md;
2637 
2638 	md = alloc_dev(minor);
2639 	if (!md)
2640 		return -ENXIO;
2641 
2642 	dm_sysfs_init(md);
2643 
2644 	*result = md;
2645 	return 0;
2646 }
2647 
2648 /*
2649  * Functions to manage md->type.
2650  * All are required to hold md->type_lock.
2651  */
2652 void dm_lock_md_type(struct mapped_device *md)
2653 {
2654 	mutex_lock(&md->type_lock);
2655 }
2656 
2657 void dm_unlock_md_type(struct mapped_device *md)
2658 {
2659 	mutex_unlock(&md->type_lock);
2660 }
2661 
2662 void dm_set_md_type(struct mapped_device *md, unsigned type)
2663 {
2664 	BUG_ON(!mutex_is_locked(&md->type_lock));
2665 	md->type = type;
2666 }
2667 
2668 unsigned dm_get_md_type(struct mapped_device *md)
2669 {
2670 	BUG_ON(!mutex_is_locked(&md->type_lock));
2671 	return md->type;
2672 }
2673 
2674 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2675 {
2676 	return md->immutable_target_type;
2677 }
2678 
2679 /*
2680  * The queue_limits are only valid as long as you have a reference
2681  * count on 'md'.
2682  */
2683 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2684 {
2685 	BUG_ON(!atomic_read(&md->holders));
2686 	return &md->queue->limits;
2687 }
2688 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2689 
2690 static void init_rq_based_worker_thread(struct mapped_device *md)
2691 {
2692 	/* Initialize the request-based DM worker thread */
2693 	init_kthread_worker(&md->kworker);
2694 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2695 				       "kdmwork-%s", dm_device_name(md));
2696 }
2697 
2698 /*
2699  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2700  */
2701 static int dm_init_request_based_queue(struct mapped_device *md)
2702 {
2703 	struct request_queue *q = NULL;
2704 
2705 	/* Fully initialize the queue */
2706 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2707 	if (!q)
2708 		return -EINVAL;
2709 
2710 	/* disable dm_request_fn's merge heuristic by default */
2711 	md->seq_rq_merge_deadline_usecs = 0;
2712 
2713 	md->queue = q;
2714 	dm_init_old_md_queue(md);
2715 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2716 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2717 
2718 	init_rq_based_worker_thread(md);
2719 
2720 	elv_register_queue(md->queue);
2721 
2722 	return 0;
2723 }
2724 
2725 static int dm_mq_init_request(void *data, struct request *rq,
2726 			      unsigned int hctx_idx, unsigned int request_idx,
2727 			      unsigned int numa_node)
2728 {
2729 	struct mapped_device *md = data;
2730 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2731 
2732 	/*
2733 	 * Must initialize md member of tio, otherwise it won't
2734 	 * be available in dm_mq_queue_rq.
2735 	 */
2736 	tio->md = md;
2737 
2738 	return 0;
2739 }
2740 
2741 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2742 			  const struct blk_mq_queue_data *bd)
2743 {
2744 	struct request *rq = bd->rq;
2745 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2746 	struct mapped_device *md = tio->md;
2747 	int srcu_idx;
2748 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2749 	struct dm_target *ti;
2750 	sector_t pos;
2751 
2752 	/* always use block 0 to find the target for flushes for now */
2753 	pos = 0;
2754 	if (!(rq->cmd_flags & REQ_FLUSH))
2755 		pos = blk_rq_pos(rq);
2756 
2757 	ti = dm_table_find_target(map, pos);
2758 	if (!dm_target_is_valid(ti)) {
2759 		dm_put_live_table(md, srcu_idx);
2760 		DMERR_LIMIT("request attempted access beyond the end of device");
2761 		/*
2762 		 * Must perform setup, that rq_completed() requires,
2763 		 * before returning BLK_MQ_RQ_QUEUE_ERROR
2764 		 */
2765 		dm_start_request(md, rq);
2766 		return BLK_MQ_RQ_QUEUE_ERROR;
2767 	}
2768 	dm_put_live_table(md, srcu_idx);
2769 
2770 	if (ti->type->busy && ti->type->busy(ti))
2771 		return BLK_MQ_RQ_QUEUE_BUSY;
2772 
2773 	dm_start_request(md, rq);
2774 
2775 	/* Init tio using md established in .init_request */
2776 	init_tio(tio, rq, md);
2777 
2778 	/*
2779 	 * Establish tio->ti before queuing work (map_tio_request)
2780 	 * or making direct call to map_request().
2781 	 */
2782 	tio->ti = ti;
2783 
2784 	/* Clone the request if underlying devices aren't blk-mq */
2785 	if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2786 		/* clone request is allocated at the end of the pdu */
2787 		tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2788 		(void) clone_rq(rq, md, tio, GFP_ATOMIC);
2789 		queue_kthread_work(&md->kworker, &tio->work);
2790 	} else {
2791 		/* Direct call is fine since .queue_rq allows allocations */
2792 		if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2793 			/* Undo dm_start_request() before requeuing */
2794 			rq_end_stats(md, rq);
2795 			rq_completed(md, rq_data_dir(rq), false);
2796 			return BLK_MQ_RQ_QUEUE_BUSY;
2797 		}
2798 	}
2799 
2800 	return BLK_MQ_RQ_QUEUE_OK;
2801 }
2802 
2803 static struct blk_mq_ops dm_mq_ops = {
2804 	.queue_rq = dm_mq_queue_rq,
2805 	.map_queue = blk_mq_map_queue,
2806 	.complete = dm_softirq_done,
2807 	.init_request = dm_mq_init_request,
2808 };
2809 
2810 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2811 {
2812 	unsigned md_type = dm_get_md_type(md);
2813 	struct request_queue *q;
2814 	int err;
2815 
2816 	memset(&md->tag_set, 0, sizeof(md->tag_set));
2817 	md->tag_set.ops = &dm_mq_ops;
2818 	md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2819 	md->tag_set.numa_node = NUMA_NO_NODE;
2820 	md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2821 	md->tag_set.nr_hw_queues = 1;
2822 	if (md_type == DM_TYPE_REQUEST_BASED) {
2823 		/* make the memory for non-blk-mq clone part of the pdu */
2824 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2825 	} else
2826 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2827 	md->tag_set.driver_data = md;
2828 
2829 	err = blk_mq_alloc_tag_set(&md->tag_set);
2830 	if (err)
2831 		return err;
2832 
2833 	q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2834 	if (IS_ERR(q)) {
2835 		err = PTR_ERR(q);
2836 		goto out_tag_set;
2837 	}
2838 	md->queue = q;
2839 	dm_init_md_queue(md);
2840 
2841 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2842 	blk_mq_register_disk(md->disk);
2843 
2844 	if (md_type == DM_TYPE_REQUEST_BASED)
2845 		init_rq_based_worker_thread(md);
2846 
2847 	return 0;
2848 
2849 out_tag_set:
2850 	blk_mq_free_tag_set(&md->tag_set);
2851 	return err;
2852 }
2853 
2854 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2855 {
2856 	if (type == DM_TYPE_BIO_BASED)
2857 		return type;
2858 
2859 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2860 }
2861 
2862 /*
2863  * Setup the DM device's queue based on md's type
2864  */
2865 int dm_setup_md_queue(struct mapped_device *md)
2866 {
2867 	int r;
2868 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2869 
2870 	switch (md_type) {
2871 	case DM_TYPE_REQUEST_BASED:
2872 		r = dm_init_request_based_queue(md);
2873 		if (r) {
2874 			DMWARN("Cannot initialize queue for request-based mapped device");
2875 			return r;
2876 		}
2877 		break;
2878 	case DM_TYPE_MQ_REQUEST_BASED:
2879 		r = dm_init_request_based_blk_mq_queue(md);
2880 		if (r) {
2881 			DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2882 			return r;
2883 		}
2884 		break;
2885 	case DM_TYPE_BIO_BASED:
2886 		dm_init_old_md_queue(md);
2887 		blk_queue_make_request(md->queue, dm_make_request);
2888 		blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2889 		break;
2890 	}
2891 
2892 	return 0;
2893 }
2894 
2895 struct mapped_device *dm_get_md(dev_t dev)
2896 {
2897 	struct mapped_device *md;
2898 	unsigned minor = MINOR(dev);
2899 
2900 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2901 		return NULL;
2902 
2903 	spin_lock(&_minor_lock);
2904 
2905 	md = idr_find(&_minor_idr, minor);
2906 	if (md) {
2907 		if ((md == MINOR_ALLOCED ||
2908 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2909 		     dm_deleting_md(md) ||
2910 		     test_bit(DMF_FREEING, &md->flags))) {
2911 			md = NULL;
2912 			goto out;
2913 		}
2914 		dm_get(md);
2915 	}
2916 
2917 out:
2918 	spin_unlock(&_minor_lock);
2919 
2920 	return md;
2921 }
2922 EXPORT_SYMBOL_GPL(dm_get_md);
2923 
2924 void *dm_get_mdptr(struct mapped_device *md)
2925 {
2926 	return md->interface_ptr;
2927 }
2928 
2929 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2930 {
2931 	md->interface_ptr = ptr;
2932 }
2933 
2934 void dm_get(struct mapped_device *md)
2935 {
2936 	atomic_inc(&md->holders);
2937 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2938 }
2939 
2940 int dm_hold(struct mapped_device *md)
2941 {
2942 	spin_lock(&_minor_lock);
2943 	if (test_bit(DMF_FREEING, &md->flags)) {
2944 		spin_unlock(&_minor_lock);
2945 		return -EBUSY;
2946 	}
2947 	dm_get(md);
2948 	spin_unlock(&_minor_lock);
2949 	return 0;
2950 }
2951 EXPORT_SYMBOL_GPL(dm_hold);
2952 
2953 const char *dm_device_name(struct mapped_device *md)
2954 {
2955 	return md->name;
2956 }
2957 EXPORT_SYMBOL_GPL(dm_device_name);
2958 
2959 static void __dm_destroy(struct mapped_device *md, bool wait)
2960 {
2961 	struct dm_table *map;
2962 	int srcu_idx;
2963 
2964 	might_sleep();
2965 
2966 	map = dm_get_live_table(md, &srcu_idx);
2967 
2968 	spin_lock(&_minor_lock);
2969 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2970 	set_bit(DMF_FREEING, &md->flags);
2971 	spin_unlock(&_minor_lock);
2972 
2973 	if (dm_request_based(md) && md->kworker_task)
2974 		flush_kthread_worker(&md->kworker);
2975 
2976 	/*
2977 	 * Take suspend_lock so that presuspend and postsuspend methods
2978 	 * do not race with internal suspend.
2979 	 */
2980 	mutex_lock(&md->suspend_lock);
2981 	if (!dm_suspended_md(md)) {
2982 		dm_table_presuspend_targets(map);
2983 		dm_table_postsuspend_targets(map);
2984 	}
2985 	mutex_unlock(&md->suspend_lock);
2986 
2987 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2988 	dm_put_live_table(md, srcu_idx);
2989 
2990 	/*
2991 	 * Rare, but there may be I/O requests still going to complete,
2992 	 * for example.  Wait for all references to disappear.
2993 	 * No one should increment the reference count of the mapped_device,
2994 	 * after the mapped_device state becomes DMF_FREEING.
2995 	 */
2996 	if (wait)
2997 		while (atomic_read(&md->holders))
2998 			msleep(1);
2999 	else if (atomic_read(&md->holders))
3000 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
3001 		       dm_device_name(md), atomic_read(&md->holders));
3002 
3003 	dm_sysfs_exit(md);
3004 	dm_table_destroy(__unbind(md));
3005 	free_dev(md);
3006 }
3007 
3008 void dm_destroy(struct mapped_device *md)
3009 {
3010 	__dm_destroy(md, true);
3011 }
3012 
3013 void dm_destroy_immediate(struct mapped_device *md)
3014 {
3015 	__dm_destroy(md, false);
3016 }
3017 
3018 void dm_put(struct mapped_device *md)
3019 {
3020 	atomic_dec(&md->holders);
3021 }
3022 EXPORT_SYMBOL_GPL(dm_put);
3023 
3024 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
3025 {
3026 	int r = 0;
3027 	DECLARE_WAITQUEUE(wait, current);
3028 
3029 	add_wait_queue(&md->wait, &wait);
3030 
3031 	while (1) {
3032 		set_current_state(interruptible);
3033 
3034 		if (!md_in_flight(md))
3035 			break;
3036 
3037 		if (interruptible == TASK_INTERRUPTIBLE &&
3038 		    signal_pending(current)) {
3039 			r = -EINTR;
3040 			break;
3041 		}
3042 
3043 		io_schedule();
3044 	}
3045 	set_current_state(TASK_RUNNING);
3046 
3047 	remove_wait_queue(&md->wait, &wait);
3048 
3049 	return r;
3050 }
3051 
3052 /*
3053  * Process the deferred bios
3054  */
3055 static void dm_wq_work(struct work_struct *work)
3056 {
3057 	struct mapped_device *md = container_of(work, struct mapped_device,
3058 						work);
3059 	struct bio *c;
3060 	int srcu_idx;
3061 	struct dm_table *map;
3062 
3063 	map = dm_get_live_table(md, &srcu_idx);
3064 
3065 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3066 		spin_lock_irq(&md->deferred_lock);
3067 		c = bio_list_pop(&md->deferred);
3068 		spin_unlock_irq(&md->deferred_lock);
3069 
3070 		if (!c)
3071 			break;
3072 
3073 		if (dm_request_based(md))
3074 			generic_make_request(c);
3075 		else
3076 			__split_and_process_bio(md, map, c);
3077 	}
3078 
3079 	dm_put_live_table(md, srcu_idx);
3080 }
3081 
3082 static void dm_queue_flush(struct mapped_device *md)
3083 {
3084 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3085 	smp_mb__after_atomic();
3086 	queue_work(md->wq, &md->work);
3087 }
3088 
3089 /*
3090  * Swap in a new table, returning the old one for the caller to destroy.
3091  */
3092 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3093 {
3094 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3095 	struct queue_limits limits;
3096 	int r;
3097 
3098 	mutex_lock(&md->suspend_lock);
3099 
3100 	/* device must be suspended */
3101 	if (!dm_suspended_md(md))
3102 		goto out;
3103 
3104 	/*
3105 	 * If the new table has no data devices, retain the existing limits.
3106 	 * This helps multipath with queue_if_no_path if all paths disappear,
3107 	 * then new I/O is queued based on these limits, and then some paths
3108 	 * reappear.
3109 	 */
3110 	if (dm_table_has_no_data_devices(table)) {
3111 		live_map = dm_get_live_table_fast(md);
3112 		if (live_map)
3113 			limits = md->queue->limits;
3114 		dm_put_live_table_fast(md);
3115 	}
3116 
3117 	if (!live_map) {
3118 		r = dm_calculate_queue_limits(table, &limits);
3119 		if (r) {
3120 			map = ERR_PTR(r);
3121 			goto out;
3122 		}
3123 	}
3124 
3125 	map = __bind(md, table, &limits);
3126 
3127 out:
3128 	mutex_unlock(&md->suspend_lock);
3129 	return map;
3130 }
3131 
3132 /*
3133  * Functions to lock and unlock any filesystem running on the
3134  * device.
3135  */
3136 static int lock_fs(struct mapped_device *md)
3137 {
3138 	int r;
3139 
3140 	WARN_ON(md->frozen_sb);
3141 
3142 	md->frozen_sb = freeze_bdev(md->bdev);
3143 	if (IS_ERR(md->frozen_sb)) {
3144 		r = PTR_ERR(md->frozen_sb);
3145 		md->frozen_sb = NULL;
3146 		return r;
3147 	}
3148 
3149 	set_bit(DMF_FROZEN, &md->flags);
3150 
3151 	return 0;
3152 }
3153 
3154 static void unlock_fs(struct mapped_device *md)
3155 {
3156 	if (!test_bit(DMF_FROZEN, &md->flags))
3157 		return;
3158 
3159 	thaw_bdev(md->bdev, md->frozen_sb);
3160 	md->frozen_sb = NULL;
3161 	clear_bit(DMF_FROZEN, &md->flags);
3162 }
3163 
3164 /*
3165  * If __dm_suspend returns 0, the device is completely quiescent
3166  * now. There is no request-processing activity. All new requests
3167  * are being added to md->deferred list.
3168  *
3169  * Caller must hold md->suspend_lock
3170  */
3171 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3172 			unsigned suspend_flags, int interruptible)
3173 {
3174 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3175 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3176 	int r;
3177 
3178 	/*
3179 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3180 	 * This flag is cleared before dm_suspend returns.
3181 	 */
3182 	if (noflush)
3183 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3184 
3185 	/*
3186 	 * This gets reverted if there's an error later and the targets
3187 	 * provide the .presuspend_undo hook.
3188 	 */
3189 	dm_table_presuspend_targets(map);
3190 
3191 	/*
3192 	 * Flush I/O to the device.
3193 	 * Any I/O submitted after lock_fs() may not be flushed.
3194 	 * noflush takes precedence over do_lockfs.
3195 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3196 	 */
3197 	if (!noflush && do_lockfs) {
3198 		r = lock_fs(md);
3199 		if (r) {
3200 			dm_table_presuspend_undo_targets(map);
3201 			return r;
3202 		}
3203 	}
3204 
3205 	/*
3206 	 * Here we must make sure that no processes are submitting requests
3207 	 * to target drivers i.e. no one may be executing
3208 	 * __split_and_process_bio. This is called from dm_request and
3209 	 * dm_wq_work.
3210 	 *
3211 	 * To get all processes out of __split_and_process_bio in dm_request,
3212 	 * we take the write lock. To prevent any process from reentering
3213 	 * __split_and_process_bio from dm_request and quiesce the thread
3214 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3215 	 * flush_workqueue(md->wq).
3216 	 */
3217 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3218 	if (map)
3219 		synchronize_srcu(&md->io_barrier);
3220 
3221 	/*
3222 	 * Stop md->queue before flushing md->wq in case request-based
3223 	 * dm defers requests to md->wq from md->queue.
3224 	 */
3225 	if (dm_request_based(md)) {
3226 		stop_queue(md->queue);
3227 		if (md->kworker_task)
3228 			flush_kthread_worker(&md->kworker);
3229 	}
3230 
3231 	flush_workqueue(md->wq);
3232 
3233 	/*
3234 	 * At this point no more requests are entering target request routines.
3235 	 * We call dm_wait_for_completion to wait for all existing requests
3236 	 * to finish.
3237 	 */
3238 	r = dm_wait_for_completion(md, interruptible);
3239 
3240 	if (noflush)
3241 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3242 	if (map)
3243 		synchronize_srcu(&md->io_barrier);
3244 
3245 	/* were we interrupted ? */
3246 	if (r < 0) {
3247 		dm_queue_flush(md);
3248 
3249 		if (dm_request_based(md))
3250 			start_queue(md->queue);
3251 
3252 		unlock_fs(md);
3253 		dm_table_presuspend_undo_targets(map);
3254 		/* pushback list is already flushed, so skip flush */
3255 	}
3256 
3257 	return r;
3258 }
3259 
3260 /*
3261  * We need to be able to change a mapping table under a mounted
3262  * filesystem.  For example we might want to move some data in
3263  * the background.  Before the table can be swapped with
3264  * dm_bind_table, dm_suspend must be called to flush any in
3265  * flight bios and ensure that any further io gets deferred.
3266  */
3267 /*
3268  * Suspend mechanism in request-based dm.
3269  *
3270  * 1. Flush all I/Os by lock_fs() if needed.
3271  * 2. Stop dispatching any I/O by stopping the request_queue.
3272  * 3. Wait for all in-flight I/Os to be completed or requeued.
3273  *
3274  * To abort suspend, start the request_queue.
3275  */
3276 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3277 {
3278 	struct dm_table *map = NULL;
3279 	int r = 0;
3280 
3281 retry:
3282 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3283 
3284 	if (dm_suspended_md(md)) {
3285 		r = -EINVAL;
3286 		goto out_unlock;
3287 	}
3288 
3289 	if (dm_suspended_internally_md(md)) {
3290 		/* already internally suspended, wait for internal resume */
3291 		mutex_unlock(&md->suspend_lock);
3292 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3293 		if (r)
3294 			return r;
3295 		goto retry;
3296 	}
3297 
3298 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3299 
3300 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3301 	if (r)
3302 		goto out_unlock;
3303 
3304 	set_bit(DMF_SUSPENDED, &md->flags);
3305 
3306 	dm_table_postsuspend_targets(map);
3307 
3308 out_unlock:
3309 	mutex_unlock(&md->suspend_lock);
3310 	return r;
3311 }
3312 
3313 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3314 {
3315 	if (map) {
3316 		int r = dm_table_resume_targets(map);
3317 		if (r)
3318 			return r;
3319 	}
3320 
3321 	dm_queue_flush(md);
3322 
3323 	/*
3324 	 * Flushing deferred I/Os must be done after targets are resumed
3325 	 * so that mapping of targets can work correctly.
3326 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3327 	 */
3328 	if (dm_request_based(md))
3329 		start_queue(md->queue);
3330 
3331 	unlock_fs(md);
3332 
3333 	return 0;
3334 }
3335 
3336 int dm_resume(struct mapped_device *md)
3337 {
3338 	int r = -EINVAL;
3339 	struct dm_table *map = NULL;
3340 
3341 retry:
3342 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3343 
3344 	if (!dm_suspended_md(md))
3345 		goto out;
3346 
3347 	if (dm_suspended_internally_md(md)) {
3348 		/* already internally suspended, wait for internal resume */
3349 		mutex_unlock(&md->suspend_lock);
3350 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3351 		if (r)
3352 			return r;
3353 		goto retry;
3354 	}
3355 
3356 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3357 	if (!map || !dm_table_get_size(map))
3358 		goto out;
3359 
3360 	r = __dm_resume(md, map);
3361 	if (r)
3362 		goto out;
3363 
3364 	clear_bit(DMF_SUSPENDED, &md->flags);
3365 
3366 	r = 0;
3367 out:
3368 	mutex_unlock(&md->suspend_lock);
3369 
3370 	return r;
3371 }
3372 
3373 /*
3374  * Internal suspend/resume works like userspace-driven suspend. It waits
3375  * until all bios finish and prevents issuing new bios to the target drivers.
3376  * It may be used only from the kernel.
3377  */
3378 
3379 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3380 {
3381 	struct dm_table *map = NULL;
3382 
3383 	if (md->internal_suspend_count++)
3384 		return; /* nested internal suspend */
3385 
3386 	if (dm_suspended_md(md)) {
3387 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3388 		return; /* nest suspend */
3389 	}
3390 
3391 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3392 
3393 	/*
3394 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3395 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3396 	 * would require changing .presuspend to return an error -- avoid this
3397 	 * until there is a need for more elaborate variants of internal suspend.
3398 	 */
3399 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3400 
3401 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3402 
3403 	dm_table_postsuspend_targets(map);
3404 }
3405 
3406 static void __dm_internal_resume(struct mapped_device *md)
3407 {
3408 	BUG_ON(!md->internal_suspend_count);
3409 
3410 	if (--md->internal_suspend_count)
3411 		return; /* resume from nested internal suspend */
3412 
3413 	if (dm_suspended_md(md))
3414 		goto done; /* resume from nested suspend */
3415 
3416 	/*
3417 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3418 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3419 	 */
3420 	(void) __dm_resume(md, NULL);
3421 
3422 done:
3423 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3424 	smp_mb__after_atomic();
3425 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3426 }
3427 
3428 void dm_internal_suspend_noflush(struct mapped_device *md)
3429 {
3430 	mutex_lock(&md->suspend_lock);
3431 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3432 	mutex_unlock(&md->suspend_lock);
3433 }
3434 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3435 
3436 void dm_internal_resume(struct mapped_device *md)
3437 {
3438 	mutex_lock(&md->suspend_lock);
3439 	__dm_internal_resume(md);
3440 	mutex_unlock(&md->suspend_lock);
3441 }
3442 EXPORT_SYMBOL_GPL(dm_internal_resume);
3443 
3444 /*
3445  * Fast variants of internal suspend/resume hold md->suspend_lock,
3446  * which prevents interaction with userspace-driven suspend.
3447  */
3448 
3449 void dm_internal_suspend_fast(struct mapped_device *md)
3450 {
3451 	mutex_lock(&md->suspend_lock);
3452 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3453 		return;
3454 
3455 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3456 	synchronize_srcu(&md->io_barrier);
3457 	flush_workqueue(md->wq);
3458 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3459 }
3460 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3461 
3462 void dm_internal_resume_fast(struct mapped_device *md)
3463 {
3464 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3465 		goto done;
3466 
3467 	dm_queue_flush(md);
3468 
3469 done:
3470 	mutex_unlock(&md->suspend_lock);
3471 }
3472 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3473 
3474 /*-----------------------------------------------------------------
3475  * Event notification.
3476  *---------------------------------------------------------------*/
3477 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3478 		       unsigned cookie)
3479 {
3480 	char udev_cookie[DM_COOKIE_LENGTH];
3481 	char *envp[] = { udev_cookie, NULL };
3482 
3483 	if (!cookie)
3484 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3485 	else {
3486 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3487 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3488 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3489 					  action, envp);
3490 	}
3491 }
3492 
3493 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3494 {
3495 	return atomic_add_return(1, &md->uevent_seq);
3496 }
3497 
3498 uint32_t dm_get_event_nr(struct mapped_device *md)
3499 {
3500 	return atomic_read(&md->event_nr);
3501 }
3502 
3503 int dm_wait_event(struct mapped_device *md, int event_nr)
3504 {
3505 	return wait_event_interruptible(md->eventq,
3506 			(event_nr != atomic_read(&md->event_nr)));
3507 }
3508 
3509 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3510 {
3511 	unsigned long flags;
3512 
3513 	spin_lock_irqsave(&md->uevent_lock, flags);
3514 	list_add(elist, &md->uevent_list);
3515 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3516 }
3517 
3518 /*
3519  * The gendisk is only valid as long as you have a reference
3520  * count on 'md'.
3521  */
3522 struct gendisk *dm_disk(struct mapped_device *md)
3523 {
3524 	return md->disk;
3525 }
3526 EXPORT_SYMBOL_GPL(dm_disk);
3527 
3528 struct kobject *dm_kobject(struct mapped_device *md)
3529 {
3530 	return &md->kobj_holder.kobj;
3531 }
3532 
3533 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3534 {
3535 	struct mapped_device *md;
3536 
3537 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3538 
3539 	if (test_bit(DMF_FREEING, &md->flags) ||
3540 	    dm_deleting_md(md))
3541 		return NULL;
3542 
3543 	dm_get(md);
3544 	return md;
3545 }
3546 
3547 int dm_suspended_md(struct mapped_device *md)
3548 {
3549 	return test_bit(DMF_SUSPENDED, &md->flags);
3550 }
3551 
3552 int dm_suspended_internally_md(struct mapped_device *md)
3553 {
3554 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3555 }
3556 
3557 int dm_test_deferred_remove_flag(struct mapped_device *md)
3558 {
3559 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3560 }
3561 
3562 int dm_suspended(struct dm_target *ti)
3563 {
3564 	return dm_suspended_md(dm_table_get_md(ti->table));
3565 }
3566 EXPORT_SYMBOL_GPL(dm_suspended);
3567 
3568 int dm_noflush_suspending(struct dm_target *ti)
3569 {
3570 	return __noflush_suspending(dm_table_get_md(ti->table));
3571 }
3572 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3573 
3574 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3575 					    unsigned integrity, unsigned per_bio_data_size)
3576 {
3577 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3578 	struct kmem_cache *cachep = NULL;
3579 	unsigned int pool_size = 0;
3580 	unsigned int front_pad;
3581 
3582 	if (!pools)
3583 		return NULL;
3584 
3585 	type = filter_md_type(type, md);
3586 
3587 	switch (type) {
3588 	case DM_TYPE_BIO_BASED:
3589 		cachep = _io_cache;
3590 		pool_size = dm_get_reserved_bio_based_ios();
3591 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3592 		break;
3593 	case DM_TYPE_REQUEST_BASED:
3594 		cachep = _rq_tio_cache;
3595 		pool_size = dm_get_reserved_rq_based_ios();
3596 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3597 		if (!pools->rq_pool)
3598 			goto out;
3599 		/* fall through to setup remaining rq-based pools */
3600 	case DM_TYPE_MQ_REQUEST_BASED:
3601 		if (!pool_size)
3602 			pool_size = dm_get_reserved_rq_based_ios();
3603 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3604 		/* per_bio_data_size is not used. See __bind_mempools(). */
3605 		WARN_ON(per_bio_data_size != 0);
3606 		break;
3607 	default:
3608 		BUG();
3609 	}
3610 
3611 	if (cachep) {
3612 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3613 		if (!pools->io_pool)
3614 			goto out;
3615 	}
3616 
3617 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3618 	if (!pools->bs)
3619 		goto out;
3620 
3621 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3622 		goto out;
3623 
3624 	return pools;
3625 
3626 out:
3627 	dm_free_md_mempools(pools);
3628 
3629 	return NULL;
3630 }
3631 
3632 void dm_free_md_mempools(struct dm_md_mempools *pools)
3633 {
3634 	if (!pools)
3635 		return;
3636 
3637 	if (pools->io_pool)
3638 		mempool_destroy(pools->io_pool);
3639 
3640 	if (pools->rq_pool)
3641 		mempool_destroy(pools->rq_pool);
3642 
3643 	if (pools->bs)
3644 		bioset_free(pools->bs);
3645 
3646 	kfree(pools);
3647 }
3648 
3649 static const struct block_device_operations dm_blk_dops = {
3650 	.open = dm_blk_open,
3651 	.release = dm_blk_close,
3652 	.ioctl = dm_blk_ioctl,
3653 	.getgeo = dm_blk_getgeo,
3654 	.owner = THIS_MODULE
3655 };
3656 
3657 /*
3658  * module hooks
3659  */
3660 module_init(dm_init);
3661 module_exit(dm_exit);
3662 
3663 module_param(major, uint, 0);
3664 MODULE_PARM_DESC(major, "The major number of the device mapper");
3665 
3666 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3667 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3668 
3669 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3670 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3671 
3672 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3673 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3674 
3675 MODULE_DESCRIPTION(DM_NAME " driver");
3676 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3677 MODULE_LICENSE("GPL");
3678