1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/signal.h> 19 #include <linux/blkpg.h> 20 #include <linux/bio.h> 21 #include <linux/mempool.h> 22 #include <linux/dax.h> 23 #include <linux/slab.h> 24 #include <linux/idr.h> 25 #include <linux/uio.h> 26 #include <linux/hdreg.h> 27 #include <linux/delay.h> 28 #include <linux/wait.h> 29 #include <linux/pr.h> 30 #include <linux/refcount.h> 31 #include <linux/part_stat.h> 32 #include <linux/blk-crypto.h> 33 #include <linux/blk-crypto-profile.h> 34 35 #define DM_MSG_PREFIX "core" 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 /* 45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 46 * dm_io into one list, and reuse bio->bi_private as the list head. Before 47 * ending this fs bio, we will recover its ->bi_private. 48 */ 49 #define REQ_DM_POLL_LIST REQ_DRV 50 51 static const char *_name = DM_NAME; 52 53 static unsigned int major; 54 static unsigned int _major; 55 56 static DEFINE_IDR(_minor_idr); 57 58 static DEFINE_SPINLOCK(_minor_lock); 59 60 static void do_deferred_remove(struct work_struct *w); 61 62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 63 64 static struct workqueue_struct *deferred_remove_workqueue; 65 66 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 68 69 void dm_issue_global_event(void) 70 { 71 atomic_inc(&dm_global_event_nr); 72 wake_up(&dm_global_eventq); 73 } 74 75 DEFINE_STATIC_KEY_FALSE(stats_enabled); 76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 77 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 78 79 /* 80 * One of these is allocated (on-stack) per original bio. 81 */ 82 struct clone_info { 83 struct dm_table *map; 84 struct bio *bio; 85 struct dm_io *io; 86 sector_t sector; 87 unsigned int sector_count; 88 bool is_abnormal_io:1; 89 bool submit_as_polled:1; 90 }; 91 92 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 93 { 94 return container_of(clone, struct dm_target_io, clone); 95 } 96 97 void *dm_per_bio_data(struct bio *bio, size_t data_size) 98 { 99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 101 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 102 } 103 EXPORT_SYMBOL_GPL(dm_per_bio_data); 104 105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 106 { 107 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 108 109 if (io->magic == DM_IO_MAGIC) 110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 111 BUG_ON(io->magic != DM_TIO_MAGIC); 112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 113 } 114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 115 116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 117 { 118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 119 } 120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 121 122 #define MINOR_ALLOCED ((void *)-1) 123 124 #define DM_NUMA_NODE NUMA_NO_NODE 125 static int dm_numa_node = DM_NUMA_NODE; 126 127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 128 static int swap_bios = DEFAULT_SWAP_BIOS; 129 static int get_swap_bios(void) 130 { 131 int latch = READ_ONCE(swap_bios); 132 133 if (unlikely(latch <= 0)) 134 latch = DEFAULT_SWAP_BIOS; 135 return latch; 136 } 137 138 struct table_device { 139 struct list_head list; 140 refcount_t count; 141 struct dm_dev dm_dev; 142 }; 143 144 /* 145 * Bio-based DM's mempools' reserved IOs set by the user. 146 */ 147 #define RESERVED_BIO_BASED_IOS 16 148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 149 150 static int __dm_get_module_param_int(int *module_param, int min, int max) 151 { 152 int param = READ_ONCE(*module_param); 153 int modified_param = 0; 154 bool modified = true; 155 156 if (param < min) 157 modified_param = min; 158 else if (param > max) 159 modified_param = max; 160 else 161 modified = false; 162 163 if (modified) { 164 (void)cmpxchg(module_param, param, modified_param); 165 param = modified_param; 166 } 167 168 return param; 169 } 170 171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 172 { 173 unsigned int param = READ_ONCE(*module_param); 174 unsigned int modified_param = 0; 175 176 if (!param) 177 modified_param = def; 178 else if (param > max) 179 modified_param = max; 180 181 if (modified_param) { 182 (void)cmpxchg(module_param, param, modified_param); 183 param = modified_param; 184 } 185 186 return param; 187 } 188 189 unsigned int dm_get_reserved_bio_based_ios(void) 190 { 191 return __dm_get_module_param(&reserved_bio_based_ios, 192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 193 } 194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 195 196 static unsigned int dm_get_numa_node(void) 197 { 198 return __dm_get_module_param_int(&dm_numa_node, 199 DM_NUMA_NODE, num_online_nodes() - 1); 200 } 201 202 static int __init local_init(void) 203 { 204 int r; 205 206 r = dm_uevent_init(); 207 if (r) 208 return r; 209 210 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 211 if (!deferred_remove_workqueue) { 212 r = -ENOMEM; 213 goto out_uevent_exit; 214 } 215 216 _major = major; 217 r = register_blkdev(_major, _name); 218 if (r < 0) 219 goto out_free_workqueue; 220 221 if (!_major) 222 _major = r; 223 224 return 0; 225 226 out_free_workqueue: 227 destroy_workqueue(deferred_remove_workqueue); 228 out_uevent_exit: 229 dm_uevent_exit(); 230 231 return r; 232 } 233 234 static void local_exit(void) 235 { 236 destroy_workqueue(deferred_remove_workqueue); 237 238 unregister_blkdev(_major, _name); 239 dm_uevent_exit(); 240 241 _major = 0; 242 243 DMINFO("cleaned up"); 244 } 245 246 static int (*_inits[])(void) __initdata = { 247 local_init, 248 dm_target_init, 249 dm_linear_init, 250 dm_stripe_init, 251 dm_io_init, 252 dm_kcopyd_init, 253 dm_interface_init, 254 dm_statistics_init, 255 }; 256 257 static void (*_exits[])(void) = { 258 local_exit, 259 dm_target_exit, 260 dm_linear_exit, 261 dm_stripe_exit, 262 dm_io_exit, 263 dm_kcopyd_exit, 264 dm_interface_exit, 265 dm_statistics_exit, 266 }; 267 268 static int __init dm_init(void) 269 { 270 const int count = ARRAY_SIZE(_inits); 271 int r, i; 272 273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 275 " Duplicate IMA measurements will not be recorded in the IMA log."); 276 #endif 277 278 for (i = 0; i < count; i++) { 279 r = _inits[i](); 280 if (r) 281 goto bad; 282 } 283 284 return 0; 285 bad: 286 while (i--) 287 _exits[i](); 288 289 return r; 290 } 291 292 static void __exit dm_exit(void) 293 { 294 int i = ARRAY_SIZE(_exits); 295 296 while (i--) 297 _exits[i](); 298 299 /* 300 * Should be empty by this point. 301 */ 302 idr_destroy(&_minor_idr); 303 } 304 305 /* 306 * Block device functions 307 */ 308 int dm_deleting_md(struct mapped_device *md) 309 { 310 return test_bit(DMF_DELETING, &md->flags); 311 } 312 313 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 314 { 315 struct mapped_device *md; 316 317 spin_lock(&_minor_lock); 318 319 md = bdev->bd_disk->private_data; 320 if (!md) 321 goto out; 322 323 if (test_bit(DMF_FREEING, &md->flags) || 324 dm_deleting_md(md)) { 325 md = NULL; 326 goto out; 327 } 328 329 dm_get(md); 330 atomic_inc(&md->open_count); 331 out: 332 spin_unlock(&_minor_lock); 333 334 return md ? 0 : -ENXIO; 335 } 336 337 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 338 { 339 struct mapped_device *md; 340 341 spin_lock(&_minor_lock); 342 343 md = disk->private_data; 344 if (WARN_ON(!md)) 345 goto out; 346 347 if (atomic_dec_and_test(&md->open_count) && 348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 349 queue_work(deferred_remove_workqueue, &deferred_remove_work); 350 351 dm_put(md); 352 out: 353 spin_unlock(&_minor_lock); 354 } 355 356 int dm_open_count(struct mapped_device *md) 357 { 358 return atomic_read(&md->open_count); 359 } 360 361 /* 362 * Guarantees nothing is using the device before it's deleted. 363 */ 364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 365 { 366 int r = 0; 367 368 spin_lock(&_minor_lock); 369 370 if (dm_open_count(md)) { 371 r = -EBUSY; 372 if (mark_deferred) 373 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 375 r = -EEXIST; 376 else 377 set_bit(DMF_DELETING, &md->flags); 378 379 spin_unlock(&_minor_lock); 380 381 return r; 382 } 383 384 int dm_cancel_deferred_remove(struct mapped_device *md) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (test_bit(DMF_DELETING, &md->flags)) 391 r = -EBUSY; 392 else 393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 static void do_deferred_remove(struct work_struct *w) 401 { 402 dm_deferred_remove(); 403 } 404 405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 406 { 407 struct mapped_device *md = bdev->bd_disk->private_data; 408 409 return dm_get_geometry(md, geo); 410 } 411 412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 413 struct block_device **bdev) 414 { 415 struct dm_target *ti; 416 struct dm_table *map; 417 int r; 418 419 retry: 420 r = -ENOTTY; 421 map = dm_get_live_table(md, srcu_idx); 422 if (!map || !dm_table_get_size(map)) 423 return r; 424 425 /* We only support devices that have a single target */ 426 if (map->num_targets != 1) 427 return r; 428 429 ti = dm_table_get_target(map, 0); 430 if (!ti->type->prepare_ioctl) 431 return r; 432 433 if (dm_suspended_md(md)) 434 return -EAGAIN; 435 436 r = ti->type->prepare_ioctl(ti, bdev); 437 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 438 dm_put_live_table(md, *srcu_idx); 439 fsleep(10000); 440 goto retry; 441 } 442 443 return r; 444 } 445 446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 447 { 448 dm_put_live_table(md, srcu_idx); 449 } 450 451 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 452 unsigned int cmd, unsigned long arg) 453 { 454 struct mapped_device *md = bdev->bd_disk->private_data; 455 int r, srcu_idx; 456 457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 458 if (r < 0) 459 goto out; 460 461 if (r > 0) { 462 /* 463 * Target determined this ioctl is being issued against a 464 * subset of the parent bdev; require extra privileges. 465 */ 466 if (!capable(CAP_SYS_RAWIO)) { 467 DMDEBUG_LIMIT( 468 "%s: sending ioctl %x to DM device without required privilege.", 469 current->comm, cmd); 470 r = -ENOIOCTLCMD; 471 goto out; 472 } 473 } 474 475 if (!bdev->bd_disk->fops->ioctl) 476 r = -ENOTTY; 477 else 478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 479 out: 480 dm_unprepare_ioctl(md, srcu_idx); 481 return r; 482 } 483 484 u64 dm_start_time_ns_from_clone(struct bio *bio) 485 { 486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 487 } 488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 489 490 static bool bio_is_flush_with_data(struct bio *bio) 491 { 492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 493 } 494 495 static void dm_io_acct(struct dm_io *io, bool end) 496 { 497 struct dm_stats_aux *stats_aux = &io->stats_aux; 498 unsigned long start_time = io->start_time; 499 struct mapped_device *md = io->md; 500 struct bio *bio = io->orig_bio; 501 unsigned int sectors; 502 503 /* 504 * If REQ_PREFLUSH set, don't account payload, it will be 505 * submitted (and accounted) after this flush completes. 506 */ 507 if (bio_is_flush_with_data(bio)) 508 sectors = 0; 509 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT)))) 510 sectors = bio_sectors(bio); 511 else 512 sectors = io->sectors; 513 514 if (!end) 515 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), start_time); 516 else 517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), sectors, 518 start_time); 519 520 if (static_branch_unlikely(&stats_enabled) && 521 unlikely(dm_stats_used(&md->stats))) { 522 sector_t sector; 523 524 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT))) 525 sector = bio->bi_iter.bi_sector; 526 else 527 sector = bio_end_sector(bio) - io->sector_offset; 528 529 dm_stats_account_io(&md->stats, bio_data_dir(bio), 530 sector, sectors, 531 end, start_time, stats_aux); 532 } 533 } 534 535 static void __dm_start_io_acct(struct dm_io *io) 536 { 537 dm_io_acct(io, false); 538 } 539 540 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 541 { 542 /* 543 * Ensure IO accounting is only ever started once. 544 */ 545 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 546 return; 547 548 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 549 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 550 dm_io_set_flag(io, DM_IO_ACCOUNTED); 551 } else { 552 unsigned long flags; 553 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 554 spin_lock_irqsave(&io->lock, flags); 555 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 556 spin_unlock_irqrestore(&io->lock, flags); 557 return; 558 } 559 dm_io_set_flag(io, DM_IO_ACCOUNTED); 560 spin_unlock_irqrestore(&io->lock, flags); 561 } 562 563 __dm_start_io_acct(io); 564 } 565 566 static void dm_end_io_acct(struct dm_io *io) 567 { 568 dm_io_acct(io, true); 569 } 570 571 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 572 { 573 struct dm_io *io; 574 struct dm_target_io *tio; 575 struct bio *clone; 576 577 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); 578 tio = clone_to_tio(clone); 579 tio->flags = 0; 580 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 581 tio->io = NULL; 582 583 io = container_of(tio, struct dm_io, tio); 584 io->magic = DM_IO_MAGIC; 585 io->status = BLK_STS_OK; 586 587 /* one ref is for submission, the other is for completion */ 588 atomic_set(&io->io_count, 2); 589 this_cpu_inc(*md->pending_io); 590 io->orig_bio = bio; 591 io->md = md; 592 spin_lock_init(&io->lock); 593 io->start_time = jiffies; 594 io->flags = 0; 595 596 if (static_branch_unlikely(&stats_enabled)) 597 dm_stats_record_start(&md->stats, &io->stats_aux); 598 599 return io; 600 } 601 602 static void free_io(struct dm_io *io) 603 { 604 bio_put(&io->tio.clone); 605 } 606 607 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 608 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 609 { 610 struct mapped_device *md = ci->io->md; 611 struct dm_target_io *tio; 612 struct bio *clone; 613 614 if (!ci->io->tio.io) { 615 /* the dm_target_io embedded in ci->io is available */ 616 tio = &ci->io->tio; 617 /* alloc_io() already initialized embedded clone */ 618 clone = &tio->clone; 619 } else { 620 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 621 &md->mempools->bs); 622 if (!clone) 623 return NULL; 624 625 /* REQ_DM_POLL_LIST shouldn't be inherited */ 626 clone->bi_opf &= ~REQ_DM_POLL_LIST; 627 628 tio = clone_to_tio(clone); 629 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 630 } 631 632 tio->magic = DM_TIO_MAGIC; 633 tio->io = ci->io; 634 tio->ti = ti; 635 tio->target_bio_nr = target_bio_nr; 636 tio->len_ptr = len; 637 tio->old_sector = 0; 638 639 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 640 clone->bi_bdev = md->disk->part0; 641 if (unlikely(ti->needs_bio_set_dev)) 642 bio_set_dev(clone, md->disk->part0); 643 644 if (len) { 645 clone->bi_iter.bi_size = to_bytes(*len); 646 if (bio_integrity(clone)) 647 bio_integrity_trim(clone); 648 } 649 650 return clone; 651 } 652 653 static void free_tio(struct bio *clone) 654 { 655 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 656 return; 657 bio_put(clone); 658 } 659 660 /* 661 * Add the bio to the list of deferred io. 662 */ 663 static void queue_io(struct mapped_device *md, struct bio *bio) 664 { 665 unsigned long flags; 666 667 spin_lock_irqsave(&md->deferred_lock, flags); 668 bio_list_add(&md->deferred, bio); 669 spin_unlock_irqrestore(&md->deferred_lock, flags); 670 queue_work(md->wq, &md->work); 671 } 672 673 /* 674 * Everyone (including functions in this file), should use this 675 * function to access the md->map field, and make sure they call 676 * dm_put_live_table() when finished. 677 */ 678 struct dm_table *dm_get_live_table(struct mapped_device *md, 679 int *srcu_idx) __acquires(md->io_barrier) 680 { 681 *srcu_idx = srcu_read_lock(&md->io_barrier); 682 683 return srcu_dereference(md->map, &md->io_barrier); 684 } 685 686 void dm_put_live_table(struct mapped_device *md, 687 int srcu_idx) __releases(md->io_barrier) 688 { 689 srcu_read_unlock(&md->io_barrier, srcu_idx); 690 } 691 692 void dm_sync_table(struct mapped_device *md) 693 { 694 synchronize_srcu(&md->io_barrier); 695 synchronize_rcu_expedited(); 696 } 697 698 /* 699 * A fast alternative to dm_get_live_table/dm_put_live_table. 700 * The caller must not block between these two functions. 701 */ 702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 703 { 704 rcu_read_lock(); 705 return rcu_dereference(md->map); 706 } 707 708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 709 { 710 rcu_read_unlock(); 711 } 712 713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md, 714 int *srcu_idx, blk_opf_t bio_opf) 715 { 716 if (bio_opf & REQ_NOWAIT) 717 return dm_get_live_table_fast(md); 718 else 719 return dm_get_live_table(md, srcu_idx); 720 } 721 722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx, 723 blk_opf_t bio_opf) 724 { 725 if (bio_opf & REQ_NOWAIT) 726 dm_put_live_table_fast(md); 727 else 728 dm_put_live_table(md, srcu_idx); 729 } 730 731 static char *_dm_claim_ptr = "I belong to device-mapper"; 732 733 /* 734 * Open a table device so we can use it as a map destination. 735 */ 736 static struct table_device *open_table_device(struct mapped_device *md, 737 dev_t dev, fmode_t mode) 738 { 739 struct table_device *td; 740 struct block_device *bdev; 741 u64 part_off; 742 int r; 743 744 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 745 if (!td) 746 return ERR_PTR(-ENOMEM); 747 refcount_set(&td->count, 1); 748 749 bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr); 750 if (IS_ERR(bdev)) { 751 r = PTR_ERR(bdev); 752 goto out_free_td; 753 } 754 755 /* 756 * We can be called before the dm disk is added. In that case we can't 757 * register the holder relation here. It will be done once add_disk was 758 * called. 759 */ 760 if (md->disk->slave_dir) { 761 r = bd_link_disk_holder(bdev, md->disk); 762 if (r) 763 goto out_blkdev_put; 764 } 765 766 td->dm_dev.mode = mode; 767 td->dm_dev.bdev = bdev; 768 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL); 769 format_dev_t(td->dm_dev.name, dev); 770 list_add(&td->list, &md->table_devices); 771 return td; 772 773 out_blkdev_put: 774 blkdev_put(bdev, mode | FMODE_EXCL); 775 out_free_td: 776 kfree(td); 777 return ERR_PTR(r); 778 } 779 780 /* 781 * Close a table device that we've been using. 782 */ 783 static void close_table_device(struct table_device *td, struct mapped_device *md) 784 { 785 if (md->disk->slave_dir) 786 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 787 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 788 put_dax(td->dm_dev.dax_dev); 789 list_del(&td->list); 790 kfree(td); 791 } 792 793 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 794 fmode_t mode) 795 { 796 struct table_device *td; 797 798 list_for_each_entry(td, l, list) 799 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 800 return td; 801 802 return NULL; 803 } 804 805 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 806 struct dm_dev **result) 807 { 808 struct table_device *td; 809 810 mutex_lock(&md->table_devices_lock); 811 td = find_table_device(&md->table_devices, dev, mode); 812 if (!td) { 813 td = open_table_device(md, dev, mode); 814 if (IS_ERR(td)) { 815 mutex_unlock(&md->table_devices_lock); 816 return PTR_ERR(td); 817 } 818 } else { 819 refcount_inc(&td->count); 820 } 821 mutex_unlock(&md->table_devices_lock); 822 823 *result = &td->dm_dev; 824 return 0; 825 } 826 827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 828 { 829 struct table_device *td = container_of(d, struct table_device, dm_dev); 830 831 mutex_lock(&md->table_devices_lock); 832 if (refcount_dec_and_test(&td->count)) 833 close_table_device(td, md); 834 mutex_unlock(&md->table_devices_lock); 835 } 836 837 /* 838 * Get the geometry associated with a dm device 839 */ 840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 841 { 842 *geo = md->geometry; 843 844 return 0; 845 } 846 847 /* 848 * Set the geometry of a device. 849 */ 850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 851 { 852 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 853 854 if (geo->start > sz) { 855 DMERR("Start sector is beyond the geometry limits."); 856 return -EINVAL; 857 } 858 859 md->geometry = *geo; 860 861 return 0; 862 } 863 864 static int __noflush_suspending(struct mapped_device *md) 865 { 866 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 867 } 868 869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 870 { 871 struct mapped_device *md = io->md; 872 873 if (first_stage) { 874 struct dm_io *next = md->requeue_list; 875 876 md->requeue_list = io; 877 io->next = next; 878 } else { 879 bio_list_add_head(&md->deferred, io->orig_bio); 880 } 881 } 882 883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 884 { 885 if (first_stage) 886 queue_work(md->wq, &md->requeue_work); 887 else 888 queue_work(md->wq, &md->work); 889 } 890 891 /* 892 * Return true if the dm_io's original bio is requeued. 893 * io->status is updated with error if requeue disallowed. 894 */ 895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 896 { 897 struct bio *bio = io->orig_bio; 898 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 899 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 900 (bio->bi_opf & REQ_POLLED)); 901 struct mapped_device *md = io->md; 902 bool requeued = false; 903 904 if (handle_requeue || handle_polled_eagain) { 905 unsigned long flags; 906 907 if (bio->bi_opf & REQ_POLLED) { 908 /* 909 * Upper layer won't help us poll split bio 910 * (io->orig_bio may only reflect a subset of the 911 * pre-split original) so clear REQ_POLLED. 912 */ 913 bio_clear_polled(bio); 914 } 915 916 /* 917 * Target requested pushing back the I/O or 918 * polled IO hit BLK_STS_AGAIN. 919 */ 920 spin_lock_irqsave(&md->deferred_lock, flags); 921 if ((__noflush_suspending(md) && 922 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 923 handle_polled_eagain || first_stage) { 924 dm_requeue_add_io(io, first_stage); 925 requeued = true; 926 } else { 927 /* 928 * noflush suspend was interrupted or this is 929 * a write to a zoned target. 930 */ 931 io->status = BLK_STS_IOERR; 932 } 933 spin_unlock_irqrestore(&md->deferred_lock, flags); 934 } 935 936 if (requeued) 937 dm_kick_requeue(md, first_stage); 938 939 return requeued; 940 } 941 942 static void __dm_io_complete(struct dm_io *io, bool first_stage) 943 { 944 struct bio *bio = io->orig_bio; 945 struct mapped_device *md = io->md; 946 blk_status_t io_error; 947 bool requeued; 948 949 requeued = dm_handle_requeue(io, first_stage); 950 if (requeued && first_stage) 951 return; 952 953 io_error = io->status; 954 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 955 dm_end_io_acct(io); 956 else if (!io_error) { 957 /* 958 * Must handle target that DM_MAPIO_SUBMITTED only to 959 * then bio_endio() rather than dm_submit_bio_remap() 960 */ 961 __dm_start_io_acct(io); 962 dm_end_io_acct(io); 963 } 964 free_io(io); 965 smp_wmb(); 966 this_cpu_dec(*md->pending_io); 967 968 /* nudge anyone waiting on suspend queue */ 969 if (unlikely(wq_has_sleeper(&md->wait))) 970 wake_up(&md->wait); 971 972 /* Return early if the original bio was requeued */ 973 if (requeued) 974 return; 975 976 if (bio_is_flush_with_data(bio)) { 977 /* 978 * Preflush done for flush with data, reissue 979 * without REQ_PREFLUSH. 980 */ 981 bio->bi_opf &= ~REQ_PREFLUSH; 982 queue_io(md, bio); 983 } else { 984 /* done with normal IO or empty flush */ 985 if (io_error) 986 bio->bi_status = io_error; 987 bio_endio(bio); 988 } 989 } 990 991 static void dm_wq_requeue_work(struct work_struct *work) 992 { 993 struct mapped_device *md = container_of(work, struct mapped_device, 994 requeue_work); 995 unsigned long flags; 996 struct dm_io *io; 997 998 /* reuse deferred lock to simplify dm_handle_requeue */ 999 spin_lock_irqsave(&md->deferred_lock, flags); 1000 io = md->requeue_list; 1001 md->requeue_list = NULL; 1002 spin_unlock_irqrestore(&md->deferred_lock, flags); 1003 1004 while (io) { 1005 struct dm_io *next = io->next; 1006 1007 dm_io_rewind(io, &md->disk->bio_split); 1008 1009 io->next = NULL; 1010 __dm_io_complete(io, false); 1011 io = next; 1012 cond_resched(); 1013 } 1014 } 1015 1016 /* 1017 * Two staged requeue: 1018 * 1019 * 1) io->orig_bio points to the real original bio, and the part mapped to 1020 * this io must be requeued, instead of other parts of the original bio. 1021 * 1022 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1023 */ 1024 static void dm_io_complete(struct dm_io *io) 1025 { 1026 bool first_requeue; 1027 1028 /* 1029 * Only dm_io that has been split needs two stage requeue, otherwise 1030 * we may run into long bio clone chain during suspend and OOM could 1031 * be triggered. 1032 * 1033 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1034 * also aren't handled via the first stage requeue. 1035 */ 1036 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1037 first_requeue = true; 1038 else 1039 first_requeue = false; 1040 1041 __dm_io_complete(io, first_requeue); 1042 } 1043 1044 /* 1045 * Decrements the number of outstanding ios that a bio has been 1046 * cloned into, completing the original io if necc. 1047 */ 1048 static inline void __dm_io_dec_pending(struct dm_io *io) 1049 { 1050 if (atomic_dec_and_test(&io->io_count)) 1051 dm_io_complete(io); 1052 } 1053 1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1055 { 1056 unsigned long flags; 1057 1058 /* Push-back supersedes any I/O errors */ 1059 spin_lock_irqsave(&io->lock, flags); 1060 if (!(io->status == BLK_STS_DM_REQUEUE && 1061 __noflush_suspending(io->md))) { 1062 io->status = error; 1063 } 1064 spin_unlock_irqrestore(&io->lock, flags); 1065 } 1066 1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1068 { 1069 if (unlikely(error)) 1070 dm_io_set_error(io, error); 1071 1072 __dm_io_dec_pending(io); 1073 } 1074 1075 void disable_discard(struct mapped_device *md) 1076 { 1077 struct queue_limits *limits = dm_get_queue_limits(md); 1078 1079 /* device doesn't really support DISCARD, disable it */ 1080 limits->max_discard_sectors = 0; 1081 } 1082 1083 void disable_write_zeroes(struct mapped_device *md) 1084 { 1085 struct queue_limits *limits = dm_get_queue_limits(md); 1086 1087 /* device doesn't really support WRITE ZEROES, disable it */ 1088 limits->max_write_zeroes_sectors = 0; 1089 } 1090 1091 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1092 { 1093 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1094 } 1095 1096 static void clone_endio(struct bio *bio) 1097 { 1098 blk_status_t error = bio->bi_status; 1099 struct dm_target_io *tio = clone_to_tio(bio); 1100 struct dm_target *ti = tio->ti; 1101 dm_endio_fn endio = ti->type->end_io; 1102 struct dm_io *io = tio->io; 1103 struct mapped_device *md = io->md; 1104 1105 if (unlikely(error == BLK_STS_TARGET)) { 1106 if (bio_op(bio) == REQ_OP_DISCARD && 1107 !bdev_max_discard_sectors(bio->bi_bdev)) 1108 disable_discard(md); 1109 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1110 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1111 disable_write_zeroes(md); 1112 } 1113 1114 if (static_branch_unlikely(&zoned_enabled) && 1115 unlikely(bdev_is_zoned(bio->bi_bdev))) 1116 dm_zone_endio(io, bio); 1117 1118 if (endio) { 1119 int r = endio(ti, bio, &error); 1120 1121 switch (r) { 1122 case DM_ENDIO_REQUEUE: 1123 if (static_branch_unlikely(&zoned_enabled)) { 1124 /* 1125 * Requeuing writes to a sequential zone of a zoned 1126 * target will break the sequential write pattern: 1127 * fail such IO. 1128 */ 1129 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1130 error = BLK_STS_IOERR; 1131 else 1132 error = BLK_STS_DM_REQUEUE; 1133 } else 1134 error = BLK_STS_DM_REQUEUE; 1135 fallthrough; 1136 case DM_ENDIO_DONE: 1137 break; 1138 case DM_ENDIO_INCOMPLETE: 1139 /* The target will handle the io */ 1140 return; 1141 default: 1142 DMCRIT("unimplemented target endio return value: %d", r); 1143 BUG(); 1144 } 1145 } 1146 1147 if (static_branch_unlikely(&swap_bios_enabled) && 1148 unlikely(swap_bios_limit(ti, bio))) 1149 up(&md->swap_bios_semaphore); 1150 1151 free_tio(bio); 1152 dm_io_dec_pending(io, error); 1153 } 1154 1155 /* 1156 * Return maximum size of I/O possible at the supplied sector up to the current 1157 * target boundary. 1158 */ 1159 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1160 sector_t target_offset) 1161 { 1162 return ti->len - target_offset; 1163 } 1164 1165 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 1166 { 1167 sector_t target_offset = dm_target_offset(ti, sector); 1168 sector_t len = max_io_len_target_boundary(ti, target_offset); 1169 1170 /* 1171 * Does the target need to split IO even further? 1172 * - varied (per target) IO splitting is a tenet of DM; this 1173 * explains why stacked chunk_sectors based splitting via 1174 * bio_split_to_limits() isn't possible here. 1175 */ 1176 if (!ti->max_io_len) 1177 return len; 1178 return min_t(sector_t, len, 1179 min(queue_max_sectors(ti->table->md->queue), 1180 blk_chunk_sectors_left(target_offset, ti->max_io_len))); 1181 } 1182 1183 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1184 { 1185 if (len > UINT_MAX) { 1186 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1187 (unsigned long long)len, UINT_MAX); 1188 ti->error = "Maximum size of target IO is too large"; 1189 return -EINVAL; 1190 } 1191 1192 ti->max_io_len = (uint32_t) len; 1193 1194 return 0; 1195 } 1196 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1197 1198 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1199 sector_t sector, int *srcu_idx) 1200 __acquires(md->io_barrier) 1201 { 1202 struct dm_table *map; 1203 struct dm_target *ti; 1204 1205 map = dm_get_live_table(md, srcu_idx); 1206 if (!map) 1207 return NULL; 1208 1209 ti = dm_table_find_target(map, sector); 1210 if (!ti) 1211 return NULL; 1212 1213 return ti; 1214 } 1215 1216 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1217 long nr_pages, enum dax_access_mode mode, void **kaddr, 1218 pfn_t *pfn) 1219 { 1220 struct mapped_device *md = dax_get_private(dax_dev); 1221 sector_t sector = pgoff * PAGE_SECTORS; 1222 struct dm_target *ti; 1223 long len, ret = -EIO; 1224 int srcu_idx; 1225 1226 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1227 1228 if (!ti) 1229 goto out; 1230 if (!ti->type->direct_access) 1231 goto out; 1232 len = max_io_len(ti, sector) / PAGE_SECTORS; 1233 if (len < 1) 1234 goto out; 1235 nr_pages = min(len, nr_pages); 1236 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1237 1238 out: 1239 dm_put_live_table(md, srcu_idx); 1240 1241 return ret; 1242 } 1243 1244 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1245 size_t nr_pages) 1246 { 1247 struct mapped_device *md = dax_get_private(dax_dev); 1248 sector_t sector = pgoff * PAGE_SECTORS; 1249 struct dm_target *ti; 1250 int ret = -EIO; 1251 int srcu_idx; 1252 1253 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1254 1255 if (!ti) 1256 goto out; 1257 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1258 /* 1259 * ->zero_page_range() is mandatory dax operation. If we are 1260 * here, something is wrong. 1261 */ 1262 goto out; 1263 } 1264 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1265 out: 1266 dm_put_live_table(md, srcu_idx); 1267 1268 return ret; 1269 } 1270 1271 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1272 void *addr, size_t bytes, struct iov_iter *i) 1273 { 1274 struct mapped_device *md = dax_get_private(dax_dev); 1275 sector_t sector = pgoff * PAGE_SECTORS; 1276 struct dm_target *ti; 1277 int srcu_idx; 1278 long ret = 0; 1279 1280 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1281 if (!ti || !ti->type->dax_recovery_write) 1282 goto out; 1283 1284 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1285 out: 1286 dm_put_live_table(md, srcu_idx); 1287 return ret; 1288 } 1289 1290 /* 1291 * A target may call dm_accept_partial_bio only from the map routine. It is 1292 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1293 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1294 * __send_duplicate_bios(). 1295 * 1296 * dm_accept_partial_bio informs the dm that the target only wants to process 1297 * additional n_sectors sectors of the bio and the rest of the data should be 1298 * sent in a next bio. 1299 * 1300 * A diagram that explains the arithmetics: 1301 * +--------------------+---------------+-------+ 1302 * | 1 | 2 | 3 | 1303 * +--------------------+---------------+-------+ 1304 * 1305 * <-------------- *tio->len_ptr ---------------> 1306 * <----- bio_sectors -----> 1307 * <-- n_sectors --> 1308 * 1309 * Region 1 was already iterated over with bio_advance or similar function. 1310 * (it may be empty if the target doesn't use bio_advance) 1311 * Region 2 is the remaining bio size that the target wants to process. 1312 * (it may be empty if region 1 is non-empty, although there is no reason 1313 * to make it empty) 1314 * The target requires that region 3 is to be sent in the next bio. 1315 * 1316 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1317 * the partially processed part (the sum of regions 1+2) must be the same for all 1318 * copies of the bio. 1319 */ 1320 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1321 { 1322 struct dm_target_io *tio = clone_to_tio(bio); 1323 struct dm_io *io = tio->io; 1324 unsigned int bio_sectors = bio_sectors(bio); 1325 1326 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1327 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1328 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1329 BUG_ON(bio_sectors > *tio->len_ptr); 1330 BUG_ON(n_sectors > bio_sectors); 1331 1332 *tio->len_ptr -= bio_sectors - n_sectors; 1333 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1334 1335 /* 1336 * __split_and_process_bio() may have already saved mapped part 1337 * for accounting but it is being reduced so update accordingly. 1338 */ 1339 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1340 io->sectors = n_sectors; 1341 io->sector_offset = bio_sectors(io->orig_bio); 1342 } 1343 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1344 1345 /* 1346 * @clone: clone bio that DM core passed to target's .map function 1347 * @tgt_clone: clone of @clone bio that target needs submitted 1348 * 1349 * Targets should use this interface to submit bios they take 1350 * ownership of when returning DM_MAPIO_SUBMITTED. 1351 * 1352 * Target should also enable ti->accounts_remapped_io 1353 */ 1354 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1355 { 1356 struct dm_target_io *tio = clone_to_tio(clone); 1357 struct dm_io *io = tio->io; 1358 1359 /* establish bio that will get submitted */ 1360 if (!tgt_clone) 1361 tgt_clone = clone; 1362 1363 /* 1364 * Account io->origin_bio to DM dev on behalf of target 1365 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1366 */ 1367 dm_start_io_acct(io, clone); 1368 1369 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1370 tio->old_sector); 1371 submit_bio_noacct(tgt_clone); 1372 } 1373 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1374 1375 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1376 { 1377 mutex_lock(&md->swap_bios_lock); 1378 while (latch < md->swap_bios) { 1379 cond_resched(); 1380 down(&md->swap_bios_semaphore); 1381 md->swap_bios--; 1382 } 1383 while (latch > md->swap_bios) { 1384 cond_resched(); 1385 up(&md->swap_bios_semaphore); 1386 md->swap_bios++; 1387 } 1388 mutex_unlock(&md->swap_bios_lock); 1389 } 1390 1391 static void __map_bio(struct bio *clone) 1392 { 1393 struct dm_target_io *tio = clone_to_tio(clone); 1394 struct dm_target *ti = tio->ti; 1395 struct dm_io *io = tio->io; 1396 struct mapped_device *md = io->md; 1397 int r; 1398 1399 clone->bi_end_io = clone_endio; 1400 1401 /* 1402 * Map the clone. 1403 */ 1404 tio->old_sector = clone->bi_iter.bi_sector; 1405 1406 if (static_branch_unlikely(&swap_bios_enabled) && 1407 unlikely(swap_bios_limit(ti, clone))) { 1408 int latch = get_swap_bios(); 1409 1410 if (unlikely(latch != md->swap_bios)) 1411 __set_swap_bios_limit(md, latch); 1412 down(&md->swap_bios_semaphore); 1413 } 1414 1415 if (static_branch_unlikely(&zoned_enabled)) { 1416 /* 1417 * Check if the IO needs a special mapping due to zone append 1418 * emulation on zoned target. In this case, dm_zone_map_bio() 1419 * calls the target map operation. 1420 */ 1421 if (unlikely(dm_emulate_zone_append(md))) 1422 r = dm_zone_map_bio(tio); 1423 else 1424 r = ti->type->map(ti, clone); 1425 } else 1426 r = ti->type->map(ti, clone); 1427 1428 switch (r) { 1429 case DM_MAPIO_SUBMITTED: 1430 /* target has assumed ownership of this io */ 1431 if (!ti->accounts_remapped_io) 1432 dm_start_io_acct(io, clone); 1433 break; 1434 case DM_MAPIO_REMAPPED: 1435 dm_submit_bio_remap(clone, NULL); 1436 break; 1437 case DM_MAPIO_KILL: 1438 case DM_MAPIO_REQUEUE: 1439 if (static_branch_unlikely(&swap_bios_enabled) && 1440 unlikely(swap_bios_limit(ti, clone))) 1441 up(&md->swap_bios_semaphore); 1442 free_tio(clone); 1443 if (r == DM_MAPIO_KILL) 1444 dm_io_dec_pending(io, BLK_STS_IOERR); 1445 else 1446 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1447 break; 1448 default: 1449 DMCRIT("unimplemented target map return value: %d", r); 1450 BUG(); 1451 } 1452 } 1453 1454 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1455 { 1456 struct dm_io *io = ci->io; 1457 1458 if (ci->sector_count > len) { 1459 /* 1460 * Split needed, save the mapped part for accounting. 1461 * NOTE: dm_accept_partial_bio() will update accordingly. 1462 */ 1463 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1464 io->sectors = len; 1465 io->sector_offset = bio_sectors(ci->bio); 1466 } 1467 } 1468 1469 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1470 struct dm_target *ti, unsigned int num_bios) 1471 { 1472 struct bio *bio; 1473 int try; 1474 1475 for (try = 0; try < 2; try++) { 1476 int bio_nr; 1477 1478 if (try) 1479 mutex_lock(&ci->io->md->table_devices_lock); 1480 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1481 bio = alloc_tio(ci, ti, bio_nr, NULL, 1482 try ? GFP_NOIO : GFP_NOWAIT); 1483 if (!bio) 1484 break; 1485 1486 bio_list_add(blist, bio); 1487 } 1488 if (try) 1489 mutex_unlock(&ci->io->md->table_devices_lock); 1490 if (bio_nr == num_bios) 1491 return; 1492 1493 while ((bio = bio_list_pop(blist))) 1494 free_tio(bio); 1495 } 1496 } 1497 1498 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1499 unsigned int num_bios, unsigned int *len) 1500 { 1501 struct bio_list blist = BIO_EMPTY_LIST; 1502 struct bio *clone; 1503 unsigned int ret = 0; 1504 1505 switch (num_bios) { 1506 case 0: 1507 break; 1508 case 1: 1509 if (len) 1510 setup_split_accounting(ci, *len); 1511 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1512 __map_bio(clone); 1513 ret = 1; 1514 break; 1515 default: 1516 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1517 alloc_multiple_bios(&blist, ci, ti, num_bios); 1518 while ((clone = bio_list_pop(&blist))) { 1519 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1520 __map_bio(clone); 1521 ret += 1; 1522 } 1523 break; 1524 } 1525 1526 return ret; 1527 } 1528 1529 static void __send_empty_flush(struct clone_info *ci) 1530 { 1531 struct dm_table *t = ci->map; 1532 struct bio flush_bio; 1533 1534 /* 1535 * Use an on-stack bio for this, it's safe since we don't 1536 * need to reference it after submit. It's just used as 1537 * the basis for the clone(s). 1538 */ 1539 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1540 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1541 1542 ci->bio = &flush_bio; 1543 ci->sector_count = 0; 1544 ci->io->tio.clone.bi_iter.bi_size = 0; 1545 1546 for (unsigned int i = 0; i < t->num_targets; i++) { 1547 unsigned int bios; 1548 struct dm_target *ti = dm_table_get_target(t, i); 1549 1550 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1551 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1552 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1553 } 1554 1555 /* 1556 * alloc_io() takes one extra reference for submission, so the 1557 * reference won't reach 0 without the following subtraction 1558 */ 1559 atomic_sub(1, &ci->io->io_count); 1560 1561 bio_uninit(ci->bio); 1562 } 1563 1564 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1565 unsigned int num_bios) 1566 { 1567 unsigned int len, bios; 1568 1569 len = min_t(sector_t, ci->sector_count, 1570 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1571 1572 atomic_add(num_bios, &ci->io->io_count); 1573 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1574 /* 1575 * alloc_io() takes one extra reference for submission, so the 1576 * reference won't reach 0 without the following (+1) subtraction 1577 */ 1578 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1579 1580 ci->sector += len; 1581 ci->sector_count -= len; 1582 } 1583 1584 static bool is_abnormal_io(struct bio *bio) 1585 { 1586 enum req_op op = bio_op(bio); 1587 1588 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1589 switch (op) { 1590 case REQ_OP_DISCARD: 1591 case REQ_OP_SECURE_ERASE: 1592 case REQ_OP_WRITE_ZEROES: 1593 return true; 1594 default: 1595 break; 1596 } 1597 } 1598 1599 return false; 1600 } 1601 1602 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1603 struct dm_target *ti) 1604 { 1605 unsigned int num_bios = 0; 1606 1607 switch (bio_op(ci->bio)) { 1608 case REQ_OP_DISCARD: 1609 num_bios = ti->num_discard_bios; 1610 break; 1611 case REQ_OP_SECURE_ERASE: 1612 num_bios = ti->num_secure_erase_bios; 1613 break; 1614 case REQ_OP_WRITE_ZEROES: 1615 num_bios = ti->num_write_zeroes_bios; 1616 break; 1617 default: 1618 break; 1619 } 1620 1621 /* 1622 * Even though the device advertised support for this type of 1623 * request, that does not mean every target supports it, and 1624 * reconfiguration might also have changed that since the 1625 * check was performed. 1626 */ 1627 if (unlikely(!num_bios)) 1628 return BLK_STS_NOTSUPP; 1629 1630 __send_changing_extent_only(ci, ti, num_bios); 1631 return BLK_STS_OK; 1632 } 1633 1634 /* 1635 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1636 * associated with this bio, and this bio's bi_private needs to be 1637 * stored in dm_io->data before the reuse. 1638 * 1639 * bio->bi_private is owned by fs or upper layer, so block layer won't 1640 * touch it after splitting. Meantime it won't be changed by anyone after 1641 * bio is submitted. So this reuse is safe. 1642 */ 1643 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1644 { 1645 return (struct dm_io **)&bio->bi_private; 1646 } 1647 1648 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1649 { 1650 struct dm_io **head = dm_poll_list_head(bio); 1651 1652 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1653 bio->bi_opf |= REQ_DM_POLL_LIST; 1654 /* 1655 * Save .bi_private into dm_io, so that we can reuse 1656 * .bi_private as dm_io list head for storing dm_io list 1657 */ 1658 io->data = bio->bi_private; 1659 1660 /* tell block layer to poll for completion */ 1661 bio->bi_cookie = ~BLK_QC_T_NONE; 1662 1663 io->next = NULL; 1664 } else { 1665 /* 1666 * bio recursed due to split, reuse original poll list, 1667 * and save bio->bi_private too. 1668 */ 1669 io->data = (*head)->data; 1670 io->next = *head; 1671 } 1672 1673 *head = io; 1674 } 1675 1676 /* 1677 * Select the correct strategy for processing a non-flush bio. 1678 */ 1679 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1680 { 1681 struct bio *clone; 1682 struct dm_target *ti; 1683 unsigned int len; 1684 1685 ti = dm_table_find_target(ci->map, ci->sector); 1686 if (unlikely(!ti)) 1687 return BLK_STS_IOERR; 1688 1689 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) && 1690 unlikely(!dm_target_supports_nowait(ti->type))) 1691 return BLK_STS_NOTSUPP; 1692 1693 if (unlikely(ci->is_abnormal_io)) 1694 return __process_abnormal_io(ci, ti); 1695 1696 /* 1697 * Only support bio polling for normal IO, and the target io is 1698 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1699 */ 1700 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1701 1702 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1703 setup_split_accounting(ci, len); 1704 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1705 __map_bio(clone); 1706 1707 ci->sector += len; 1708 ci->sector_count -= len; 1709 1710 return BLK_STS_OK; 1711 } 1712 1713 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1714 struct dm_table *map, struct bio *bio, bool is_abnormal) 1715 { 1716 ci->map = map; 1717 ci->io = alloc_io(md, bio); 1718 ci->bio = bio; 1719 ci->is_abnormal_io = is_abnormal; 1720 ci->submit_as_polled = false; 1721 ci->sector = bio->bi_iter.bi_sector; 1722 ci->sector_count = bio_sectors(bio); 1723 1724 /* Shouldn't happen but sector_count was being set to 0 so... */ 1725 if (static_branch_unlikely(&zoned_enabled) && 1726 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1727 ci->sector_count = 0; 1728 } 1729 1730 /* 1731 * Entry point to split a bio into clones and submit them to the targets. 1732 */ 1733 static void dm_split_and_process_bio(struct mapped_device *md, 1734 struct dm_table *map, struct bio *bio) 1735 { 1736 struct clone_info ci; 1737 struct dm_io *io; 1738 blk_status_t error = BLK_STS_OK; 1739 bool is_abnormal; 1740 1741 is_abnormal = is_abnormal_io(bio); 1742 if (unlikely(is_abnormal)) { 1743 /* 1744 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1745 * otherwise associated queue_limits won't be imposed. 1746 */ 1747 bio = bio_split_to_limits(bio); 1748 if (!bio) 1749 return; 1750 } 1751 1752 init_clone_info(&ci, md, map, bio, is_abnormal); 1753 io = ci.io; 1754 1755 if (bio->bi_opf & REQ_PREFLUSH) { 1756 __send_empty_flush(&ci); 1757 /* dm_io_complete submits any data associated with flush */ 1758 goto out; 1759 } 1760 1761 error = __split_and_process_bio(&ci); 1762 if (error || !ci.sector_count) 1763 goto out; 1764 /* 1765 * Remainder must be passed to submit_bio_noacct() so it gets handled 1766 * *after* bios already submitted have been completely processed. 1767 */ 1768 bio_trim(bio, io->sectors, ci.sector_count); 1769 trace_block_split(bio, bio->bi_iter.bi_sector); 1770 bio_inc_remaining(bio); 1771 submit_bio_noacct(bio); 1772 out: 1773 /* 1774 * Drop the extra reference count for non-POLLED bio, and hold one 1775 * reference for POLLED bio, which will be released in dm_poll_bio 1776 * 1777 * Add every dm_io instance into the dm_io list head which is stored 1778 * in bio->bi_private, so that dm_poll_bio can poll them all. 1779 */ 1780 if (error || !ci.submit_as_polled) { 1781 /* 1782 * In case of submission failure, the extra reference for 1783 * submitting io isn't consumed yet 1784 */ 1785 if (error) 1786 atomic_dec(&io->io_count); 1787 dm_io_dec_pending(io, error); 1788 } else 1789 dm_queue_poll_io(bio, io); 1790 } 1791 1792 static void dm_submit_bio(struct bio *bio) 1793 { 1794 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1795 int srcu_idx; 1796 struct dm_table *map; 1797 blk_opf_t bio_opf = bio->bi_opf; 1798 1799 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf); 1800 1801 /* If suspended, or map not yet available, queue this IO for later */ 1802 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1803 unlikely(!map)) { 1804 if (bio->bi_opf & REQ_NOWAIT) 1805 bio_wouldblock_error(bio); 1806 else if (bio->bi_opf & REQ_RAHEAD) 1807 bio_io_error(bio); 1808 else 1809 queue_io(md, bio); 1810 goto out; 1811 } 1812 1813 dm_split_and_process_bio(md, map, bio); 1814 out: 1815 dm_put_live_table_bio(md, srcu_idx, bio_opf); 1816 } 1817 1818 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1819 unsigned int flags) 1820 { 1821 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1822 1823 /* don't poll if the mapped io is done */ 1824 if (atomic_read(&io->io_count) > 1) 1825 bio_poll(&io->tio.clone, iob, flags); 1826 1827 /* bio_poll holds the last reference */ 1828 return atomic_read(&io->io_count) == 1; 1829 } 1830 1831 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1832 unsigned int flags) 1833 { 1834 struct dm_io **head = dm_poll_list_head(bio); 1835 struct dm_io *list = *head; 1836 struct dm_io *tmp = NULL; 1837 struct dm_io *curr, *next; 1838 1839 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1840 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1841 return 0; 1842 1843 WARN_ON_ONCE(!list); 1844 1845 /* 1846 * Restore .bi_private before possibly completing dm_io. 1847 * 1848 * bio_poll() is only possible once @bio has been completely 1849 * submitted via submit_bio_noacct()'s depth-first submission. 1850 * So there is no dm_queue_poll_io() race associated with 1851 * clearing REQ_DM_POLL_LIST here. 1852 */ 1853 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1854 bio->bi_private = list->data; 1855 1856 for (curr = list, next = curr->next; curr; curr = next, next = 1857 curr ? curr->next : NULL) { 1858 if (dm_poll_dm_io(curr, iob, flags)) { 1859 /* 1860 * clone_endio() has already occurred, so no 1861 * error handling is needed here. 1862 */ 1863 __dm_io_dec_pending(curr); 1864 } else { 1865 curr->next = tmp; 1866 tmp = curr; 1867 } 1868 } 1869 1870 /* Not done? */ 1871 if (tmp) { 1872 bio->bi_opf |= REQ_DM_POLL_LIST; 1873 /* Reset bio->bi_private to dm_io list head */ 1874 *head = tmp; 1875 return 0; 1876 } 1877 return 1; 1878 } 1879 1880 /* 1881 *--------------------------------------------------------------- 1882 * An IDR is used to keep track of allocated minor numbers. 1883 *--------------------------------------------------------------- 1884 */ 1885 static void free_minor(int minor) 1886 { 1887 spin_lock(&_minor_lock); 1888 idr_remove(&_minor_idr, minor); 1889 spin_unlock(&_minor_lock); 1890 } 1891 1892 /* 1893 * See if the device with a specific minor # is free. 1894 */ 1895 static int specific_minor(int minor) 1896 { 1897 int r; 1898 1899 if (minor >= (1 << MINORBITS)) 1900 return -EINVAL; 1901 1902 idr_preload(GFP_KERNEL); 1903 spin_lock(&_minor_lock); 1904 1905 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1906 1907 spin_unlock(&_minor_lock); 1908 idr_preload_end(); 1909 if (r < 0) 1910 return r == -ENOSPC ? -EBUSY : r; 1911 return 0; 1912 } 1913 1914 static int next_free_minor(int *minor) 1915 { 1916 int r; 1917 1918 idr_preload(GFP_KERNEL); 1919 spin_lock(&_minor_lock); 1920 1921 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1922 1923 spin_unlock(&_minor_lock); 1924 idr_preload_end(); 1925 if (r < 0) 1926 return r; 1927 *minor = r; 1928 return 0; 1929 } 1930 1931 static const struct block_device_operations dm_blk_dops; 1932 static const struct block_device_operations dm_rq_blk_dops; 1933 static const struct dax_operations dm_dax_ops; 1934 1935 static void dm_wq_work(struct work_struct *work); 1936 1937 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1938 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1939 { 1940 dm_destroy_crypto_profile(q->crypto_profile); 1941 } 1942 1943 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1944 1945 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1946 { 1947 } 1948 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1949 1950 static void cleanup_mapped_device(struct mapped_device *md) 1951 { 1952 if (md->wq) 1953 destroy_workqueue(md->wq); 1954 dm_free_md_mempools(md->mempools); 1955 1956 if (md->dax_dev) { 1957 dax_remove_host(md->disk); 1958 kill_dax(md->dax_dev); 1959 put_dax(md->dax_dev); 1960 md->dax_dev = NULL; 1961 } 1962 1963 dm_cleanup_zoned_dev(md); 1964 if (md->disk) { 1965 spin_lock(&_minor_lock); 1966 md->disk->private_data = NULL; 1967 spin_unlock(&_minor_lock); 1968 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1969 struct table_device *td; 1970 1971 dm_sysfs_exit(md); 1972 list_for_each_entry(td, &md->table_devices, list) { 1973 bd_unlink_disk_holder(td->dm_dev.bdev, 1974 md->disk); 1975 } 1976 1977 /* 1978 * Hold lock to make sure del_gendisk() won't concurrent 1979 * with open/close_table_device(). 1980 */ 1981 mutex_lock(&md->table_devices_lock); 1982 del_gendisk(md->disk); 1983 mutex_unlock(&md->table_devices_lock); 1984 } 1985 dm_queue_destroy_crypto_profile(md->queue); 1986 put_disk(md->disk); 1987 } 1988 1989 if (md->pending_io) { 1990 free_percpu(md->pending_io); 1991 md->pending_io = NULL; 1992 } 1993 1994 cleanup_srcu_struct(&md->io_barrier); 1995 1996 mutex_destroy(&md->suspend_lock); 1997 mutex_destroy(&md->type_lock); 1998 mutex_destroy(&md->table_devices_lock); 1999 mutex_destroy(&md->swap_bios_lock); 2000 2001 dm_mq_cleanup_mapped_device(md); 2002 } 2003 2004 /* 2005 * Allocate and initialise a blank device with a given minor. 2006 */ 2007 static struct mapped_device *alloc_dev(int minor) 2008 { 2009 int r, numa_node_id = dm_get_numa_node(); 2010 struct mapped_device *md; 2011 void *old_md; 2012 2013 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2014 if (!md) { 2015 DMERR("unable to allocate device, out of memory."); 2016 return NULL; 2017 } 2018 2019 if (!try_module_get(THIS_MODULE)) 2020 goto bad_module_get; 2021 2022 /* get a minor number for the dev */ 2023 if (minor == DM_ANY_MINOR) 2024 r = next_free_minor(&minor); 2025 else 2026 r = specific_minor(minor); 2027 if (r < 0) 2028 goto bad_minor; 2029 2030 r = init_srcu_struct(&md->io_barrier); 2031 if (r < 0) 2032 goto bad_io_barrier; 2033 2034 md->numa_node_id = numa_node_id; 2035 md->init_tio_pdu = false; 2036 md->type = DM_TYPE_NONE; 2037 mutex_init(&md->suspend_lock); 2038 mutex_init(&md->type_lock); 2039 mutex_init(&md->table_devices_lock); 2040 spin_lock_init(&md->deferred_lock); 2041 atomic_set(&md->holders, 1); 2042 atomic_set(&md->open_count, 0); 2043 atomic_set(&md->event_nr, 0); 2044 atomic_set(&md->uevent_seq, 0); 2045 INIT_LIST_HEAD(&md->uevent_list); 2046 INIT_LIST_HEAD(&md->table_devices); 2047 spin_lock_init(&md->uevent_lock); 2048 2049 /* 2050 * default to bio-based until DM table is loaded and md->type 2051 * established. If request-based table is loaded: blk-mq will 2052 * override accordingly. 2053 */ 2054 md->disk = blk_alloc_disk(md->numa_node_id); 2055 if (!md->disk) 2056 goto bad; 2057 md->queue = md->disk->queue; 2058 2059 init_waitqueue_head(&md->wait); 2060 INIT_WORK(&md->work, dm_wq_work); 2061 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2062 init_waitqueue_head(&md->eventq); 2063 init_completion(&md->kobj_holder.completion); 2064 2065 md->requeue_list = NULL; 2066 md->swap_bios = get_swap_bios(); 2067 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2068 mutex_init(&md->swap_bios_lock); 2069 2070 md->disk->major = _major; 2071 md->disk->first_minor = minor; 2072 md->disk->minors = 1; 2073 md->disk->flags |= GENHD_FL_NO_PART; 2074 md->disk->fops = &dm_blk_dops; 2075 md->disk->private_data = md; 2076 sprintf(md->disk->disk_name, "dm-%d", minor); 2077 2078 if (IS_ENABLED(CONFIG_FS_DAX)) { 2079 md->dax_dev = alloc_dax(md, &dm_dax_ops); 2080 if (IS_ERR(md->dax_dev)) { 2081 md->dax_dev = NULL; 2082 goto bad; 2083 } 2084 set_dax_nocache(md->dax_dev); 2085 set_dax_nomc(md->dax_dev); 2086 if (dax_add_host(md->dax_dev, md->disk)) 2087 goto bad; 2088 } 2089 2090 format_dev_t(md->name, MKDEV(_major, minor)); 2091 2092 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2093 if (!md->wq) 2094 goto bad; 2095 2096 md->pending_io = alloc_percpu(unsigned long); 2097 if (!md->pending_io) 2098 goto bad; 2099 2100 r = dm_stats_init(&md->stats); 2101 if (r < 0) 2102 goto bad; 2103 2104 /* Populate the mapping, nobody knows we exist yet */ 2105 spin_lock(&_minor_lock); 2106 old_md = idr_replace(&_minor_idr, md, minor); 2107 spin_unlock(&_minor_lock); 2108 2109 BUG_ON(old_md != MINOR_ALLOCED); 2110 2111 return md; 2112 2113 bad: 2114 cleanup_mapped_device(md); 2115 bad_io_barrier: 2116 free_minor(minor); 2117 bad_minor: 2118 module_put(THIS_MODULE); 2119 bad_module_get: 2120 kvfree(md); 2121 return NULL; 2122 } 2123 2124 static void unlock_fs(struct mapped_device *md); 2125 2126 static void free_dev(struct mapped_device *md) 2127 { 2128 int minor = MINOR(disk_devt(md->disk)); 2129 2130 unlock_fs(md); 2131 2132 cleanup_mapped_device(md); 2133 2134 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2135 dm_stats_cleanup(&md->stats); 2136 free_minor(minor); 2137 2138 module_put(THIS_MODULE); 2139 kvfree(md); 2140 } 2141 2142 /* 2143 * Bind a table to the device. 2144 */ 2145 static void event_callback(void *context) 2146 { 2147 unsigned long flags; 2148 LIST_HEAD(uevents); 2149 struct mapped_device *md = context; 2150 2151 spin_lock_irqsave(&md->uevent_lock, flags); 2152 list_splice_init(&md->uevent_list, &uevents); 2153 spin_unlock_irqrestore(&md->uevent_lock, flags); 2154 2155 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2156 2157 atomic_inc(&md->event_nr); 2158 wake_up(&md->eventq); 2159 dm_issue_global_event(); 2160 } 2161 2162 /* 2163 * Returns old map, which caller must destroy. 2164 */ 2165 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2166 struct queue_limits *limits) 2167 { 2168 struct dm_table *old_map; 2169 sector_t size; 2170 int ret; 2171 2172 lockdep_assert_held(&md->suspend_lock); 2173 2174 size = dm_table_get_size(t); 2175 2176 /* 2177 * Wipe any geometry if the size of the table changed. 2178 */ 2179 if (size != dm_get_size(md)) 2180 memset(&md->geometry, 0, sizeof(md->geometry)); 2181 2182 set_capacity(md->disk, size); 2183 2184 dm_table_event_callback(t, event_callback, md); 2185 2186 if (dm_table_request_based(t)) { 2187 /* 2188 * Leverage the fact that request-based DM targets are 2189 * immutable singletons - used to optimize dm_mq_queue_rq. 2190 */ 2191 md->immutable_target = dm_table_get_immutable_target(t); 2192 2193 /* 2194 * There is no need to reload with request-based dm because the 2195 * size of front_pad doesn't change. 2196 * 2197 * Note for future: If you are to reload bioset, prep-ed 2198 * requests in the queue may refer to bio from the old bioset, 2199 * so you must walk through the queue to unprep. 2200 */ 2201 if (!md->mempools) { 2202 md->mempools = t->mempools; 2203 t->mempools = NULL; 2204 } 2205 } else { 2206 /* 2207 * The md may already have mempools that need changing. 2208 * If so, reload bioset because front_pad may have changed 2209 * because a different table was loaded. 2210 */ 2211 dm_free_md_mempools(md->mempools); 2212 md->mempools = t->mempools; 2213 t->mempools = NULL; 2214 } 2215 2216 ret = dm_table_set_restrictions(t, md->queue, limits); 2217 if (ret) { 2218 old_map = ERR_PTR(ret); 2219 goto out; 2220 } 2221 2222 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2223 rcu_assign_pointer(md->map, (void *)t); 2224 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2225 2226 if (old_map) 2227 dm_sync_table(md); 2228 out: 2229 return old_map; 2230 } 2231 2232 /* 2233 * Returns unbound table for the caller to free. 2234 */ 2235 static struct dm_table *__unbind(struct mapped_device *md) 2236 { 2237 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2238 2239 if (!map) 2240 return NULL; 2241 2242 dm_table_event_callback(map, NULL, NULL); 2243 RCU_INIT_POINTER(md->map, NULL); 2244 dm_sync_table(md); 2245 2246 return map; 2247 } 2248 2249 /* 2250 * Constructor for a new device. 2251 */ 2252 int dm_create(int minor, struct mapped_device **result) 2253 { 2254 struct mapped_device *md; 2255 2256 md = alloc_dev(minor); 2257 if (!md) 2258 return -ENXIO; 2259 2260 dm_ima_reset_data(md); 2261 2262 *result = md; 2263 return 0; 2264 } 2265 2266 /* 2267 * Functions to manage md->type. 2268 * All are required to hold md->type_lock. 2269 */ 2270 void dm_lock_md_type(struct mapped_device *md) 2271 { 2272 mutex_lock(&md->type_lock); 2273 } 2274 2275 void dm_unlock_md_type(struct mapped_device *md) 2276 { 2277 mutex_unlock(&md->type_lock); 2278 } 2279 2280 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2281 { 2282 BUG_ON(!mutex_is_locked(&md->type_lock)); 2283 md->type = type; 2284 } 2285 2286 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2287 { 2288 return md->type; 2289 } 2290 2291 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2292 { 2293 return md->immutable_target_type; 2294 } 2295 2296 /* 2297 * The queue_limits are only valid as long as you have a reference 2298 * count on 'md'. 2299 */ 2300 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2301 { 2302 BUG_ON(!atomic_read(&md->holders)); 2303 return &md->queue->limits; 2304 } 2305 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2306 2307 /* 2308 * Setup the DM device's queue based on md's type 2309 */ 2310 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2311 { 2312 enum dm_queue_mode type = dm_table_get_type(t); 2313 struct queue_limits limits; 2314 struct table_device *td; 2315 int r; 2316 2317 switch (type) { 2318 case DM_TYPE_REQUEST_BASED: 2319 md->disk->fops = &dm_rq_blk_dops; 2320 r = dm_mq_init_request_queue(md, t); 2321 if (r) { 2322 DMERR("Cannot initialize queue for request-based dm mapped device"); 2323 return r; 2324 } 2325 break; 2326 case DM_TYPE_BIO_BASED: 2327 case DM_TYPE_DAX_BIO_BASED: 2328 break; 2329 case DM_TYPE_NONE: 2330 WARN_ON_ONCE(true); 2331 break; 2332 } 2333 2334 r = dm_calculate_queue_limits(t, &limits); 2335 if (r) { 2336 DMERR("Cannot calculate initial queue limits"); 2337 return r; 2338 } 2339 r = dm_table_set_restrictions(t, md->queue, &limits); 2340 if (r) 2341 return r; 2342 2343 /* 2344 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2345 * with open_table_device() and close_table_device(). 2346 */ 2347 mutex_lock(&md->table_devices_lock); 2348 r = add_disk(md->disk); 2349 mutex_unlock(&md->table_devices_lock); 2350 if (r) 2351 return r; 2352 2353 /* 2354 * Register the holder relationship for devices added before the disk 2355 * was live. 2356 */ 2357 list_for_each_entry(td, &md->table_devices, list) { 2358 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2359 if (r) 2360 goto out_undo_holders; 2361 } 2362 2363 r = dm_sysfs_init(md); 2364 if (r) 2365 goto out_undo_holders; 2366 2367 md->type = type; 2368 return 0; 2369 2370 out_undo_holders: 2371 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2372 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2373 mutex_lock(&md->table_devices_lock); 2374 del_gendisk(md->disk); 2375 mutex_unlock(&md->table_devices_lock); 2376 return r; 2377 } 2378 2379 struct mapped_device *dm_get_md(dev_t dev) 2380 { 2381 struct mapped_device *md; 2382 unsigned int minor = MINOR(dev); 2383 2384 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2385 return NULL; 2386 2387 spin_lock(&_minor_lock); 2388 2389 md = idr_find(&_minor_idr, minor); 2390 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2391 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2392 md = NULL; 2393 goto out; 2394 } 2395 dm_get(md); 2396 out: 2397 spin_unlock(&_minor_lock); 2398 2399 return md; 2400 } 2401 EXPORT_SYMBOL_GPL(dm_get_md); 2402 2403 void *dm_get_mdptr(struct mapped_device *md) 2404 { 2405 return md->interface_ptr; 2406 } 2407 2408 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2409 { 2410 md->interface_ptr = ptr; 2411 } 2412 2413 void dm_get(struct mapped_device *md) 2414 { 2415 atomic_inc(&md->holders); 2416 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2417 } 2418 2419 int dm_hold(struct mapped_device *md) 2420 { 2421 spin_lock(&_minor_lock); 2422 if (test_bit(DMF_FREEING, &md->flags)) { 2423 spin_unlock(&_minor_lock); 2424 return -EBUSY; 2425 } 2426 dm_get(md); 2427 spin_unlock(&_minor_lock); 2428 return 0; 2429 } 2430 EXPORT_SYMBOL_GPL(dm_hold); 2431 2432 const char *dm_device_name(struct mapped_device *md) 2433 { 2434 return md->name; 2435 } 2436 EXPORT_SYMBOL_GPL(dm_device_name); 2437 2438 static void __dm_destroy(struct mapped_device *md, bool wait) 2439 { 2440 struct dm_table *map; 2441 int srcu_idx; 2442 2443 might_sleep(); 2444 2445 spin_lock(&_minor_lock); 2446 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2447 set_bit(DMF_FREEING, &md->flags); 2448 spin_unlock(&_minor_lock); 2449 2450 blk_mark_disk_dead(md->disk); 2451 2452 /* 2453 * Take suspend_lock so that presuspend and postsuspend methods 2454 * do not race with internal suspend. 2455 */ 2456 mutex_lock(&md->suspend_lock); 2457 map = dm_get_live_table(md, &srcu_idx); 2458 if (!dm_suspended_md(md)) { 2459 dm_table_presuspend_targets(map); 2460 set_bit(DMF_SUSPENDED, &md->flags); 2461 set_bit(DMF_POST_SUSPENDING, &md->flags); 2462 dm_table_postsuspend_targets(map); 2463 } 2464 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2465 dm_put_live_table(md, srcu_idx); 2466 mutex_unlock(&md->suspend_lock); 2467 2468 /* 2469 * Rare, but there may be I/O requests still going to complete, 2470 * for example. Wait for all references to disappear. 2471 * No one should increment the reference count of the mapped_device, 2472 * after the mapped_device state becomes DMF_FREEING. 2473 */ 2474 if (wait) 2475 while (atomic_read(&md->holders)) 2476 fsleep(1000); 2477 else if (atomic_read(&md->holders)) 2478 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2479 dm_device_name(md), atomic_read(&md->holders)); 2480 2481 dm_table_destroy(__unbind(md)); 2482 free_dev(md); 2483 } 2484 2485 void dm_destroy(struct mapped_device *md) 2486 { 2487 __dm_destroy(md, true); 2488 } 2489 2490 void dm_destroy_immediate(struct mapped_device *md) 2491 { 2492 __dm_destroy(md, false); 2493 } 2494 2495 void dm_put(struct mapped_device *md) 2496 { 2497 atomic_dec(&md->holders); 2498 } 2499 EXPORT_SYMBOL_GPL(dm_put); 2500 2501 static bool dm_in_flight_bios(struct mapped_device *md) 2502 { 2503 int cpu; 2504 unsigned long sum = 0; 2505 2506 for_each_possible_cpu(cpu) 2507 sum += *per_cpu_ptr(md->pending_io, cpu); 2508 2509 return sum != 0; 2510 } 2511 2512 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2513 { 2514 int r = 0; 2515 DEFINE_WAIT(wait); 2516 2517 while (true) { 2518 prepare_to_wait(&md->wait, &wait, task_state); 2519 2520 if (!dm_in_flight_bios(md)) 2521 break; 2522 2523 if (signal_pending_state(task_state, current)) { 2524 r = -EINTR; 2525 break; 2526 } 2527 2528 io_schedule(); 2529 } 2530 finish_wait(&md->wait, &wait); 2531 2532 smp_rmb(); 2533 2534 return r; 2535 } 2536 2537 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2538 { 2539 int r = 0; 2540 2541 if (!queue_is_mq(md->queue)) 2542 return dm_wait_for_bios_completion(md, task_state); 2543 2544 while (true) { 2545 if (!blk_mq_queue_inflight(md->queue)) 2546 break; 2547 2548 if (signal_pending_state(task_state, current)) { 2549 r = -EINTR; 2550 break; 2551 } 2552 2553 fsleep(5000); 2554 } 2555 2556 return r; 2557 } 2558 2559 /* 2560 * Process the deferred bios 2561 */ 2562 static void dm_wq_work(struct work_struct *work) 2563 { 2564 struct mapped_device *md = container_of(work, struct mapped_device, work); 2565 struct bio *bio; 2566 2567 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2568 spin_lock_irq(&md->deferred_lock); 2569 bio = bio_list_pop(&md->deferred); 2570 spin_unlock_irq(&md->deferred_lock); 2571 2572 if (!bio) 2573 break; 2574 2575 submit_bio_noacct(bio); 2576 cond_resched(); 2577 } 2578 } 2579 2580 static void dm_queue_flush(struct mapped_device *md) 2581 { 2582 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2583 smp_mb__after_atomic(); 2584 queue_work(md->wq, &md->work); 2585 } 2586 2587 /* 2588 * Swap in a new table, returning the old one for the caller to destroy. 2589 */ 2590 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2591 { 2592 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2593 struct queue_limits limits; 2594 int r; 2595 2596 mutex_lock(&md->suspend_lock); 2597 2598 /* device must be suspended */ 2599 if (!dm_suspended_md(md)) 2600 goto out; 2601 2602 /* 2603 * If the new table has no data devices, retain the existing limits. 2604 * This helps multipath with queue_if_no_path if all paths disappear, 2605 * then new I/O is queued based on these limits, and then some paths 2606 * reappear. 2607 */ 2608 if (dm_table_has_no_data_devices(table)) { 2609 live_map = dm_get_live_table_fast(md); 2610 if (live_map) 2611 limits = md->queue->limits; 2612 dm_put_live_table_fast(md); 2613 } 2614 2615 if (!live_map) { 2616 r = dm_calculate_queue_limits(table, &limits); 2617 if (r) { 2618 map = ERR_PTR(r); 2619 goto out; 2620 } 2621 } 2622 2623 map = __bind(md, table, &limits); 2624 dm_issue_global_event(); 2625 2626 out: 2627 mutex_unlock(&md->suspend_lock); 2628 return map; 2629 } 2630 2631 /* 2632 * Functions to lock and unlock any filesystem running on the 2633 * device. 2634 */ 2635 static int lock_fs(struct mapped_device *md) 2636 { 2637 int r; 2638 2639 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2640 2641 r = freeze_bdev(md->disk->part0); 2642 if (!r) 2643 set_bit(DMF_FROZEN, &md->flags); 2644 return r; 2645 } 2646 2647 static void unlock_fs(struct mapped_device *md) 2648 { 2649 if (!test_bit(DMF_FROZEN, &md->flags)) 2650 return; 2651 thaw_bdev(md->disk->part0); 2652 clear_bit(DMF_FROZEN, &md->flags); 2653 } 2654 2655 /* 2656 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2657 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2658 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2659 * 2660 * If __dm_suspend returns 0, the device is completely quiescent 2661 * now. There is no request-processing activity. All new requests 2662 * are being added to md->deferred list. 2663 */ 2664 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2665 unsigned int suspend_flags, unsigned int task_state, 2666 int dmf_suspended_flag) 2667 { 2668 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2669 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2670 int r; 2671 2672 lockdep_assert_held(&md->suspend_lock); 2673 2674 /* 2675 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2676 * This flag is cleared before dm_suspend returns. 2677 */ 2678 if (noflush) 2679 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2680 else 2681 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2682 2683 /* 2684 * This gets reverted if there's an error later and the targets 2685 * provide the .presuspend_undo hook. 2686 */ 2687 dm_table_presuspend_targets(map); 2688 2689 /* 2690 * Flush I/O to the device. 2691 * Any I/O submitted after lock_fs() may not be flushed. 2692 * noflush takes precedence over do_lockfs. 2693 * (lock_fs() flushes I/Os and waits for them to complete.) 2694 */ 2695 if (!noflush && do_lockfs) { 2696 r = lock_fs(md); 2697 if (r) { 2698 dm_table_presuspend_undo_targets(map); 2699 return r; 2700 } 2701 } 2702 2703 /* 2704 * Here we must make sure that no processes are submitting requests 2705 * to target drivers i.e. no one may be executing 2706 * dm_split_and_process_bio from dm_submit_bio. 2707 * 2708 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2709 * we take the write lock. To prevent any process from reentering 2710 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2711 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2712 * flush_workqueue(md->wq). 2713 */ 2714 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2715 if (map) 2716 synchronize_srcu(&md->io_barrier); 2717 2718 /* 2719 * Stop md->queue before flushing md->wq in case request-based 2720 * dm defers requests to md->wq from md->queue. 2721 */ 2722 if (dm_request_based(md)) 2723 dm_stop_queue(md->queue); 2724 2725 flush_workqueue(md->wq); 2726 2727 /* 2728 * At this point no more requests are entering target request routines. 2729 * We call dm_wait_for_completion to wait for all existing requests 2730 * to finish. 2731 */ 2732 r = dm_wait_for_completion(md, task_state); 2733 if (!r) 2734 set_bit(dmf_suspended_flag, &md->flags); 2735 2736 if (noflush) 2737 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2738 if (map) 2739 synchronize_srcu(&md->io_barrier); 2740 2741 /* were we interrupted ? */ 2742 if (r < 0) { 2743 dm_queue_flush(md); 2744 2745 if (dm_request_based(md)) 2746 dm_start_queue(md->queue); 2747 2748 unlock_fs(md); 2749 dm_table_presuspend_undo_targets(map); 2750 /* pushback list is already flushed, so skip flush */ 2751 } 2752 2753 return r; 2754 } 2755 2756 /* 2757 * We need to be able to change a mapping table under a mounted 2758 * filesystem. For example we might want to move some data in 2759 * the background. Before the table can be swapped with 2760 * dm_bind_table, dm_suspend must be called to flush any in 2761 * flight bios and ensure that any further io gets deferred. 2762 */ 2763 /* 2764 * Suspend mechanism in request-based dm. 2765 * 2766 * 1. Flush all I/Os by lock_fs() if needed. 2767 * 2. Stop dispatching any I/O by stopping the request_queue. 2768 * 3. Wait for all in-flight I/Os to be completed or requeued. 2769 * 2770 * To abort suspend, start the request_queue. 2771 */ 2772 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 2773 { 2774 struct dm_table *map = NULL; 2775 int r = 0; 2776 2777 retry: 2778 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2779 2780 if (dm_suspended_md(md)) { 2781 r = -EINVAL; 2782 goto out_unlock; 2783 } 2784 2785 if (dm_suspended_internally_md(md)) { 2786 /* already internally suspended, wait for internal resume */ 2787 mutex_unlock(&md->suspend_lock); 2788 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2789 if (r) 2790 return r; 2791 goto retry; 2792 } 2793 2794 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2795 2796 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2797 if (r) 2798 goto out_unlock; 2799 2800 set_bit(DMF_POST_SUSPENDING, &md->flags); 2801 dm_table_postsuspend_targets(map); 2802 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2803 2804 out_unlock: 2805 mutex_unlock(&md->suspend_lock); 2806 return r; 2807 } 2808 2809 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2810 { 2811 if (map) { 2812 int r = dm_table_resume_targets(map); 2813 2814 if (r) 2815 return r; 2816 } 2817 2818 dm_queue_flush(md); 2819 2820 /* 2821 * Flushing deferred I/Os must be done after targets are resumed 2822 * so that mapping of targets can work correctly. 2823 * Request-based dm is queueing the deferred I/Os in its request_queue. 2824 */ 2825 if (dm_request_based(md)) 2826 dm_start_queue(md->queue); 2827 2828 unlock_fs(md); 2829 2830 return 0; 2831 } 2832 2833 int dm_resume(struct mapped_device *md) 2834 { 2835 int r; 2836 struct dm_table *map = NULL; 2837 2838 retry: 2839 r = -EINVAL; 2840 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2841 2842 if (!dm_suspended_md(md)) 2843 goto out; 2844 2845 if (dm_suspended_internally_md(md)) { 2846 /* already internally suspended, wait for internal resume */ 2847 mutex_unlock(&md->suspend_lock); 2848 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2849 if (r) 2850 return r; 2851 goto retry; 2852 } 2853 2854 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2855 if (!map || !dm_table_get_size(map)) 2856 goto out; 2857 2858 r = __dm_resume(md, map); 2859 if (r) 2860 goto out; 2861 2862 clear_bit(DMF_SUSPENDED, &md->flags); 2863 out: 2864 mutex_unlock(&md->suspend_lock); 2865 2866 return r; 2867 } 2868 2869 /* 2870 * Internal suspend/resume works like userspace-driven suspend. It waits 2871 * until all bios finish and prevents issuing new bios to the target drivers. 2872 * It may be used only from the kernel. 2873 */ 2874 2875 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 2876 { 2877 struct dm_table *map = NULL; 2878 2879 lockdep_assert_held(&md->suspend_lock); 2880 2881 if (md->internal_suspend_count++) 2882 return; /* nested internal suspend */ 2883 2884 if (dm_suspended_md(md)) { 2885 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2886 return; /* nest suspend */ 2887 } 2888 2889 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2890 2891 /* 2892 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2893 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2894 * would require changing .presuspend to return an error -- avoid this 2895 * until there is a need for more elaborate variants of internal suspend. 2896 */ 2897 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2898 DMF_SUSPENDED_INTERNALLY); 2899 2900 set_bit(DMF_POST_SUSPENDING, &md->flags); 2901 dm_table_postsuspend_targets(map); 2902 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2903 } 2904 2905 static void __dm_internal_resume(struct mapped_device *md) 2906 { 2907 BUG_ON(!md->internal_suspend_count); 2908 2909 if (--md->internal_suspend_count) 2910 return; /* resume from nested internal suspend */ 2911 2912 if (dm_suspended_md(md)) 2913 goto done; /* resume from nested suspend */ 2914 2915 /* 2916 * NOTE: existing callers don't need to call dm_table_resume_targets 2917 * (which may fail -- so best to avoid it for now by passing NULL map) 2918 */ 2919 (void) __dm_resume(md, NULL); 2920 2921 done: 2922 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2923 smp_mb__after_atomic(); 2924 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2925 } 2926 2927 void dm_internal_suspend_noflush(struct mapped_device *md) 2928 { 2929 mutex_lock(&md->suspend_lock); 2930 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2931 mutex_unlock(&md->suspend_lock); 2932 } 2933 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2934 2935 void dm_internal_resume(struct mapped_device *md) 2936 { 2937 mutex_lock(&md->suspend_lock); 2938 __dm_internal_resume(md); 2939 mutex_unlock(&md->suspend_lock); 2940 } 2941 EXPORT_SYMBOL_GPL(dm_internal_resume); 2942 2943 /* 2944 * Fast variants of internal suspend/resume hold md->suspend_lock, 2945 * which prevents interaction with userspace-driven suspend. 2946 */ 2947 2948 void dm_internal_suspend_fast(struct mapped_device *md) 2949 { 2950 mutex_lock(&md->suspend_lock); 2951 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2952 return; 2953 2954 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2955 synchronize_srcu(&md->io_barrier); 2956 flush_workqueue(md->wq); 2957 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2958 } 2959 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2960 2961 void dm_internal_resume_fast(struct mapped_device *md) 2962 { 2963 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2964 goto done; 2965 2966 dm_queue_flush(md); 2967 2968 done: 2969 mutex_unlock(&md->suspend_lock); 2970 } 2971 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2972 2973 /* 2974 *--------------------------------------------------------------- 2975 * Event notification. 2976 *--------------------------------------------------------------- 2977 */ 2978 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2979 unsigned int cookie, bool need_resize_uevent) 2980 { 2981 int r; 2982 unsigned int noio_flag; 2983 char udev_cookie[DM_COOKIE_LENGTH]; 2984 char *envp[3] = { NULL, NULL, NULL }; 2985 char **envpp = envp; 2986 if (cookie) { 2987 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2988 DM_COOKIE_ENV_VAR_NAME, cookie); 2989 *envpp++ = udev_cookie; 2990 } 2991 if (need_resize_uevent) { 2992 *envpp++ = "RESIZE=1"; 2993 } 2994 2995 noio_flag = memalloc_noio_save(); 2996 2997 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 2998 2999 memalloc_noio_restore(noio_flag); 3000 3001 return r; 3002 } 3003 3004 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3005 { 3006 return atomic_add_return(1, &md->uevent_seq); 3007 } 3008 3009 uint32_t dm_get_event_nr(struct mapped_device *md) 3010 { 3011 return atomic_read(&md->event_nr); 3012 } 3013 3014 int dm_wait_event(struct mapped_device *md, int event_nr) 3015 { 3016 return wait_event_interruptible(md->eventq, 3017 (event_nr != atomic_read(&md->event_nr))); 3018 } 3019 3020 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3021 { 3022 unsigned long flags; 3023 3024 spin_lock_irqsave(&md->uevent_lock, flags); 3025 list_add(elist, &md->uevent_list); 3026 spin_unlock_irqrestore(&md->uevent_lock, flags); 3027 } 3028 3029 /* 3030 * The gendisk is only valid as long as you have a reference 3031 * count on 'md'. 3032 */ 3033 struct gendisk *dm_disk(struct mapped_device *md) 3034 { 3035 return md->disk; 3036 } 3037 EXPORT_SYMBOL_GPL(dm_disk); 3038 3039 struct kobject *dm_kobject(struct mapped_device *md) 3040 { 3041 return &md->kobj_holder.kobj; 3042 } 3043 3044 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3045 { 3046 struct mapped_device *md; 3047 3048 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3049 3050 spin_lock(&_minor_lock); 3051 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3052 md = NULL; 3053 goto out; 3054 } 3055 dm_get(md); 3056 out: 3057 spin_unlock(&_minor_lock); 3058 3059 return md; 3060 } 3061 3062 int dm_suspended_md(struct mapped_device *md) 3063 { 3064 return test_bit(DMF_SUSPENDED, &md->flags); 3065 } 3066 3067 static int dm_post_suspending_md(struct mapped_device *md) 3068 { 3069 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3070 } 3071 3072 int dm_suspended_internally_md(struct mapped_device *md) 3073 { 3074 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3075 } 3076 3077 int dm_test_deferred_remove_flag(struct mapped_device *md) 3078 { 3079 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3080 } 3081 3082 int dm_suspended(struct dm_target *ti) 3083 { 3084 return dm_suspended_md(ti->table->md); 3085 } 3086 EXPORT_SYMBOL_GPL(dm_suspended); 3087 3088 int dm_post_suspending(struct dm_target *ti) 3089 { 3090 return dm_post_suspending_md(ti->table->md); 3091 } 3092 EXPORT_SYMBOL_GPL(dm_post_suspending); 3093 3094 int dm_noflush_suspending(struct dm_target *ti) 3095 { 3096 return __noflush_suspending(ti->table->md); 3097 } 3098 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3099 3100 void dm_free_md_mempools(struct dm_md_mempools *pools) 3101 { 3102 if (!pools) 3103 return; 3104 3105 bioset_exit(&pools->bs); 3106 bioset_exit(&pools->io_bs); 3107 3108 kfree(pools); 3109 } 3110 3111 struct dm_pr { 3112 u64 old_key; 3113 u64 new_key; 3114 u32 flags; 3115 bool abort; 3116 bool fail_early; 3117 int ret; 3118 enum pr_type type; 3119 }; 3120 3121 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3122 struct dm_pr *pr) 3123 { 3124 struct mapped_device *md = bdev->bd_disk->private_data; 3125 struct dm_table *table; 3126 struct dm_target *ti; 3127 int ret = -ENOTTY, srcu_idx; 3128 3129 table = dm_get_live_table(md, &srcu_idx); 3130 if (!table || !dm_table_get_size(table)) 3131 goto out; 3132 3133 /* We only support devices that have a single target */ 3134 if (table->num_targets != 1) 3135 goto out; 3136 ti = dm_table_get_target(table, 0); 3137 3138 if (dm_suspended_md(md)) { 3139 ret = -EAGAIN; 3140 goto out; 3141 } 3142 3143 ret = -EINVAL; 3144 if (!ti->type->iterate_devices) 3145 goto out; 3146 3147 ti->type->iterate_devices(ti, fn, pr); 3148 ret = 0; 3149 out: 3150 dm_put_live_table(md, srcu_idx); 3151 return ret; 3152 } 3153 3154 /* 3155 * For register / unregister we need to manually call out to every path. 3156 */ 3157 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3158 sector_t start, sector_t len, void *data) 3159 { 3160 struct dm_pr *pr = data; 3161 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3162 int ret; 3163 3164 if (!ops || !ops->pr_register) { 3165 pr->ret = -EOPNOTSUPP; 3166 return -1; 3167 } 3168 3169 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3170 if (!ret) 3171 return 0; 3172 3173 if (!pr->ret) 3174 pr->ret = ret; 3175 3176 if (pr->fail_early) 3177 return -1; 3178 3179 return 0; 3180 } 3181 3182 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3183 u32 flags) 3184 { 3185 struct dm_pr pr = { 3186 .old_key = old_key, 3187 .new_key = new_key, 3188 .flags = flags, 3189 .fail_early = true, 3190 .ret = 0, 3191 }; 3192 int ret; 3193 3194 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3195 if (ret) { 3196 /* Didn't even get to register a path */ 3197 return ret; 3198 } 3199 3200 if (!pr.ret) 3201 return 0; 3202 ret = pr.ret; 3203 3204 if (!new_key) 3205 return ret; 3206 3207 /* unregister all paths if we failed to register any path */ 3208 pr.old_key = new_key; 3209 pr.new_key = 0; 3210 pr.flags = 0; 3211 pr.fail_early = false; 3212 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3213 return ret; 3214 } 3215 3216 3217 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3218 sector_t start, sector_t len, void *data) 3219 { 3220 struct dm_pr *pr = data; 3221 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3222 3223 if (!ops || !ops->pr_reserve) { 3224 pr->ret = -EOPNOTSUPP; 3225 return -1; 3226 } 3227 3228 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3229 if (!pr->ret) 3230 return -1; 3231 3232 return 0; 3233 } 3234 3235 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3236 u32 flags) 3237 { 3238 struct dm_pr pr = { 3239 .old_key = key, 3240 .flags = flags, 3241 .type = type, 3242 .fail_early = false, 3243 .ret = 0, 3244 }; 3245 int ret; 3246 3247 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3248 if (ret) 3249 return ret; 3250 3251 return pr.ret; 3252 } 3253 3254 /* 3255 * If there is a non-All Registrants type of reservation, the release must be 3256 * sent down the holding path. For the cases where there is no reservation or 3257 * the path is not the holder the device will also return success, so we must 3258 * try each path to make sure we got the correct path. 3259 */ 3260 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3261 sector_t start, sector_t len, void *data) 3262 { 3263 struct dm_pr *pr = data; 3264 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3265 3266 if (!ops || !ops->pr_release) { 3267 pr->ret = -EOPNOTSUPP; 3268 return -1; 3269 } 3270 3271 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3272 if (pr->ret) 3273 return -1; 3274 3275 return 0; 3276 } 3277 3278 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3279 { 3280 struct dm_pr pr = { 3281 .old_key = key, 3282 .type = type, 3283 .fail_early = false, 3284 }; 3285 int ret; 3286 3287 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3288 if (ret) 3289 return ret; 3290 3291 return pr.ret; 3292 } 3293 3294 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3295 sector_t start, sector_t len, void *data) 3296 { 3297 struct dm_pr *pr = data; 3298 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3299 3300 if (!ops || !ops->pr_preempt) { 3301 pr->ret = -EOPNOTSUPP; 3302 return -1; 3303 } 3304 3305 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3306 pr->abort); 3307 if (!pr->ret) 3308 return -1; 3309 3310 return 0; 3311 } 3312 3313 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3314 enum pr_type type, bool abort) 3315 { 3316 struct dm_pr pr = { 3317 .new_key = new_key, 3318 .old_key = old_key, 3319 .type = type, 3320 .fail_early = false, 3321 }; 3322 int ret; 3323 3324 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3325 if (ret) 3326 return ret; 3327 3328 return pr.ret; 3329 } 3330 3331 static int dm_pr_clear(struct block_device *bdev, u64 key) 3332 { 3333 struct mapped_device *md = bdev->bd_disk->private_data; 3334 const struct pr_ops *ops; 3335 int r, srcu_idx; 3336 3337 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3338 if (r < 0) 3339 goto out; 3340 3341 ops = bdev->bd_disk->fops->pr_ops; 3342 if (ops && ops->pr_clear) 3343 r = ops->pr_clear(bdev, key); 3344 else 3345 r = -EOPNOTSUPP; 3346 out: 3347 dm_unprepare_ioctl(md, srcu_idx); 3348 return r; 3349 } 3350 3351 static const struct pr_ops dm_pr_ops = { 3352 .pr_register = dm_pr_register, 3353 .pr_reserve = dm_pr_reserve, 3354 .pr_release = dm_pr_release, 3355 .pr_preempt = dm_pr_preempt, 3356 .pr_clear = dm_pr_clear, 3357 }; 3358 3359 static const struct block_device_operations dm_blk_dops = { 3360 .submit_bio = dm_submit_bio, 3361 .poll_bio = dm_poll_bio, 3362 .open = dm_blk_open, 3363 .release = dm_blk_close, 3364 .ioctl = dm_blk_ioctl, 3365 .getgeo = dm_blk_getgeo, 3366 .report_zones = dm_blk_report_zones, 3367 .pr_ops = &dm_pr_ops, 3368 .owner = THIS_MODULE 3369 }; 3370 3371 static const struct block_device_operations dm_rq_blk_dops = { 3372 .open = dm_blk_open, 3373 .release = dm_blk_close, 3374 .ioctl = dm_blk_ioctl, 3375 .getgeo = dm_blk_getgeo, 3376 .pr_ops = &dm_pr_ops, 3377 .owner = THIS_MODULE 3378 }; 3379 3380 static const struct dax_operations dm_dax_ops = { 3381 .direct_access = dm_dax_direct_access, 3382 .zero_page_range = dm_dax_zero_page_range, 3383 .recovery_write = dm_dax_recovery_write, 3384 }; 3385 3386 /* 3387 * module hooks 3388 */ 3389 module_init(dm_init); 3390 module_exit(dm_exit); 3391 3392 module_param(major, uint, 0); 3393 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3394 3395 module_param(reserved_bio_based_ios, uint, 0644); 3396 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3397 3398 module_param(dm_numa_node, int, 0644); 3399 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3400 3401 module_param(swap_bios, int, 0644); 3402 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3403 3404 MODULE_DESCRIPTION(DM_NAME " driver"); 3405 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3406 MODULE_LICENSE("GPL"); 3407