xref: /openbmc/linux/drivers/md/dm.c (revision d3402925)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/signal.h>
19 #include <linux/blkpg.h>
20 #include <linux/bio.h>
21 #include <linux/mempool.h>
22 #include <linux/dax.h>
23 #include <linux/slab.h>
24 #include <linux/idr.h>
25 #include <linux/uio.h>
26 #include <linux/hdreg.h>
27 #include <linux/delay.h>
28 #include <linux/wait.h>
29 #include <linux/pr.h>
30 #include <linux/refcount.h>
31 #include <linux/part_stat.h>
32 #include <linux/blk-crypto.h>
33 #include <linux/blk-crypto-profile.h>
34 
35 #define DM_MSG_PREFIX "core"
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 /*
45  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46  * dm_io into one list, and reuse bio->bi_private as the list head. Before
47  * ending this fs bio, we will recover its ->bi_private.
48  */
49 #define REQ_DM_POLL_LIST	REQ_DRV
50 
51 static const char *_name = DM_NAME;
52 
53 static unsigned int major;
54 static unsigned int _major;
55 
56 static DEFINE_IDR(_minor_idr);
57 
58 static DEFINE_SPINLOCK(_minor_lock);
59 
60 static void do_deferred_remove(struct work_struct *w);
61 
62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63 
64 static struct workqueue_struct *deferred_remove_workqueue;
65 
66 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68 
69 void dm_issue_global_event(void)
70 {
71 	atomic_inc(&dm_global_event_nr);
72 	wake_up(&dm_global_eventq);
73 }
74 
75 DEFINE_STATIC_KEY_FALSE(stats_enabled);
76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78 
79 /*
80  * One of these is allocated (on-stack) per original bio.
81  */
82 struct clone_info {
83 	struct dm_table *map;
84 	struct bio *bio;
85 	struct dm_io *io;
86 	sector_t sector;
87 	unsigned int sector_count;
88 	bool is_abnormal_io:1;
89 	bool submit_as_polled:1;
90 };
91 
92 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93 {
94 	return container_of(clone, struct dm_target_io, clone);
95 }
96 
97 void *dm_per_bio_data(struct bio *bio, size_t data_size)
98 {
99 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102 }
103 EXPORT_SYMBOL_GPL(dm_per_bio_data);
104 
105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106 {
107 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108 
109 	if (io->magic == DM_IO_MAGIC)
110 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111 	BUG_ON(io->magic != DM_TIO_MAGIC);
112 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113 }
114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115 
116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117 {
118 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119 }
120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121 
122 #define MINOR_ALLOCED ((void *)-1)
123 
124 #define DM_NUMA_NODE NUMA_NO_NODE
125 static int dm_numa_node = DM_NUMA_NODE;
126 
127 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128 static int swap_bios = DEFAULT_SWAP_BIOS;
129 static int get_swap_bios(void)
130 {
131 	int latch = READ_ONCE(swap_bios);
132 
133 	if (unlikely(latch <= 0))
134 		latch = DEFAULT_SWAP_BIOS;
135 	return latch;
136 }
137 
138 struct table_device {
139 	struct list_head list;
140 	refcount_t count;
141 	struct dm_dev dm_dev;
142 };
143 
144 /*
145  * Bio-based DM's mempools' reserved IOs set by the user.
146  */
147 #define RESERVED_BIO_BASED_IOS		16
148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149 
150 static int __dm_get_module_param_int(int *module_param, int min, int max)
151 {
152 	int param = READ_ONCE(*module_param);
153 	int modified_param = 0;
154 	bool modified = true;
155 
156 	if (param < min)
157 		modified_param = min;
158 	else if (param > max)
159 		modified_param = max;
160 	else
161 		modified = false;
162 
163 	if (modified) {
164 		(void)cmpxchg(module_param, param, modified_param);
165 		param = modified_param;
166 	}
167 
168 	return param;
169 }
170 
171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172 {
173 	unsigned int param = READ_ONCE(*module_param);
174 	unsigned int modified_param = 0;
175 
176 	if (!param)
177 		modified_param = def;
178 	else if (param > max)
179 		modified_param = max;
180 
181 	if (modified_param) {
182 		(void)cmpxchg(module_param, param, modified_param);
183 		param = modified_param;
184 	}
185 
186 	return param;
187 }
188 
189 unsigned int dm_get_reserved_bio_based_ios(void)
190 {
191 	return __dm_get_module_param(&reserved_bio_based_ios,
192 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193 }
194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195 
196 static unsigned int dm_get_numa_node(void)
197 {
198 	return __dm_get_module_param_int(&dm_numa_node,
199 					 DM_NUMA_NODE, num_online_nodes() - 1);
200 }
201 
202 static int __init local_init(void)
203 {
204 	int r;
205 
206 	r = dm_uevent_init();
207 	if (r)
208 		return r;
209 
210 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
211 	if (!deferred_remove_workqueue) {
212 		r = -ENOMEM;
213 		goto out_uevent_exit;
214 	}
215 
216 	_major = major;
217 	r = register_blkdev(_major, _name);
218 	if (r < 0)
219 		goto out_free_workqueue;
220 
221 	if (!_major)
222 		_major = r;
223 
224 	return 0;
225 
226 out_free_workqueue:
227 	destroy_workqueue(deferred_remove_workqueue);
228 out_uevent_exit:
229 	dm_uevent_exit();
230 
231 	return r;
232 }
233 
234 static void local_exit(void)
235 {
236 	destroy_workqueue(deferred_remove_workqueue);
237 
238 	unregister_blkdev(_major, _name);
239 	dm_uevent_exit();
240 
241 	_major = 0;
242 
243 	DMINFO("cleaned up");
244 }
245 
246 static int (*_inits[])(void) __initdata = {
247 	local_init,
248 	dm_target_init,
249 	dm_linear_init,
250 	dm_stripe_init,
251 	dm_io_init,
252 	dm_kcopyd_init,
253 	dm_interface_init,
254 	dm_statistics_init,
255 };
256 
257 static void (*_exits[])(void) = {
258 	local_exit,
259 	dm_target_exit,
260 	dm_linear_exit,
261 	dm_stripe_exit,
262 	dm_io_exit,
263 	dm_kcopyd_exit,
264 	dm_interface_exit,
265 	dm_statistics_exit,
266 };
267 
268 static int __init dm_init(void)
269 {
270 	const int count = ARRAY_SIZE(_inits);
271 	int r, i;
272 
273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276 #endif
277 
278 	for (i = 0; i < count; i++) {
279 		r = _inits[i]();
280 		if (r)
281 			goto bad;
282 	}
283 
284 	return 0;
285 bad:
286 	while (i--)
287 		_exits[i]();
288 
289 	return r;
290 }
291 
292 static void __exit dm_exit(void)
293 {
294 	int i = ARRAY_SIZE(_exits);
295 
296 	while (i--)
297 		_exits[i]();
298 
299 	/*
300 	 * Should be empty by this point.
301 	 */
302 	idr_destroy(&_minor_idr);
303 }
304 
305 /*
306  * Block device functions
307  */
308 int dm_deleting_md(struct mapped_device *md)
309 {
310 	return test_bit(DMF_DELETING, &md->flags);
311 }
312 
313 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
314 {
315 	struct mapped_device *md;
316 
317 	spin_lock(&_minor_lock);
318 
319 	md = bdev->bd_disk->private_data;
320 	if (!md)
321 		goto out;
322 
323 	if (test_bit(DMF_FREEING, &md->flags) ||
324 	    dm_deleting_md(md)) {
325 		md = NULL;
326 		goto out;
327 	}
328 
329 	dm_get(md);
330 	atomic_inc(&md->open_count);
331 out:
332 	spin_unlock(&_minor_lock);
333 
334 	return md ? 0 : -ENXIO;
335 }
336 
337 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
338 {
339 	struct mapped_device *md;
340 
341 	spin_lock(&_minor_lock);
342 
343 	md = disk->private_data;
344 	if (WARN_ON(!md))
345 		goto out;
346 
347 	if (atomic_dec_and_test(&md->open_count) &&
348 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350 
351 	dm_put(md);
352 out:
353 	spin_unlock(&_minor_lock);
354 }
355 
356 int dm_open_count(struct mapped_device *md)
357 {
358 	return atomic_read(&md->open_count);
359 }
360 
361 /*
362  * Guarantees nothing is using the device before it's deleted.
363  */
364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365 {
366 	int r = 0;
367 
368 	spin_lock(&_minor_lock);
369 
370 	if (dm_open_count(md)) {
371 		r = -EBUSY;
372 		if (mark_deferred)
373 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375 		r = -EEXIST;
376 	else
377 		set_bit(DMF_DELETING, &md->flags);
378 
379 	spin_unlock(&_minor_lock);
380 
381 	return r;
382 }
383 
384 int dm_cancel_deferred_remove(struct mapped_device *md)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (test_bit(DMF_DELETING, &md->flags))
391 		r = -EBUSY;
392 	else
393 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 static void do_deferred_remove(struct work_struct *w)
401 {
402 	dm_deferred_remove();
403 }
404 
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 {
407 	struct mapped_device *md = bdev->bd_disk->private_data;
408 
409 	return dm_get_geometry(md, geo);
410 }
411 
412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413 			    struct block_device **bdev)
414 {
415 	struct dm_target *ti;
416 	struct dm_table *map;
417 	int r;
418 
419 retry:
420 	r = -ENOTTY;
421 	map = dm_get_live_table(md, srcu_idx);
422 	if (!map || !dm_table_get_size(map))
423 		return r;
424 
425 	/* We only support devices that have a single target */
426 	if (map->num_targets != 1)
427 		return r;
428 
429 	ti = dm_table_get_target(map, 0);
430 	if (!ti->type->prepare_ioctl)
431 		return r;
432 
433 	if (dm_suspended_md(md))
434 		return -EAGAIN;
435 
436 	r = ti->type->prepare_ioctl(ti, bdev);
437 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438 		dm_put_live_table(md, *srcu_idx);
439 		fsleep(10000);
440 		goto retry;
441 	}
442 
443 	return r;
444 }
445 
446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447 {
448 	dm_put_live_table(md, srcu_idx);
449 }
450 
451 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
452 			unsigned int cmd, unsigned long arg)
453 {
454 	struct mapped_device *md = bdev->bd_disk->private_data;
455 	int r, srcu_idx;
456 
457 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458 	if (r < 0)
459 		goto out;
460 
461 	if (r > 0) {
462 		/*
463 		 * Target determined this ioctl is being issued against a
464 		 * subset of the parent bdev; require extra privileges.
465 		 */
466 		if (!capable(CAP_SYS_RAWIO)) {
467 			DMDEBUG_LIMIT(
468 	"%s: sending ioctl %x to DM device without required privilege.",
469 				current->comm, cmd);
470 			r = -ENOIOCTLCMD;
471 			goto out;
472 		}
473 	}
474 
475 	if (!bdev->bd_disk->fops->ioctl)
476 		r = -ENOTTY;
477 	else
478 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479 out:
480 	dm_unprepare_ioctl(md, srcu_idx);
481 	return r;
482 }
483 
484 u64 dm_start_time_ns_from_clone(struct bio *bio)
485 {
486 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487 }
488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489 
490 static bool bio_is_flush_with_data(struct bio *bio)
491 {
492 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493 }
494 
495 static void dm_io_acct(struct dm_io *io, bool end)
496 {
497 	struct dm_stats_aux *stats_aux = &io->stats_aux;
498 	unsigned long start_time = io->start_time;
499 	struct mapped_device *md = io->md;
500 	struct bio *bio = io->orig_bio;
501 	unsigned int sectors;
502 
503 	/*
504 	 * If REQ_PREFLUSH set, don't account payload, it will be
505 	 * submitted (and accounted) after this flush completes.
506 	 */
507 	if (bio_is_flush_with_data(bio))
508 		sectors = 0;
509 	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
510 		sectors = bio_sectors(bio);
511 	else
512 		sectors = io->sectors;
513 
514 	if (!end)
515 		bdev_start_io_acct(bio->bi_bdev, bio_op(bio), start_time);
516 	else
517 		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), sectors,
518 				 start_time);
519 
520 	if (static_branch_unlikely(&stats_enabled) &&
521 	    unlikely(dm_stats_used(&md->stats))) {
522 		sector_t sector;
523 
524 		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
525 			sector = bio->bi_iter.bi_sector;
526 		else
527 			sector = bio_end_sector(bio) - io->sector_offset;
528 
529 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
530 				    sector, sectors,
531 				    end, start_time, stats_aux);
532 	}
533 }
534 
535 static void __dm_start_io_acct(struct dm_io *io)
536 {
537 	dm_io_acct(io, false);
538 }
539 
540 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
541 {
542 	/*
543 	 * Ensure IO accounting is only ever started once.
544 	 */
545 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
546 		return;
547 
548 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
549 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
550 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
551 	} else {
552 		unsigned long flags;
553 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
554 		spin_lock_irqsave(&io->lock, flags);
555 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
556 			spin_unlock_irqrestore(&io->lock, flags);
557 			return;
558 		}
559 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
560 		spin_unlock_irqrestore(&io->lock, flags);
561 	}
562 
563 	__dm_start_io_acct(io);
564 }
565 
566 static void dm_end_io_acct(struct dm_io *io)
567 {
568 	dm_io_acct(io, true);
569 }
570 
571 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
572 {
573 	struct dm_io *io;
574 	struct dm_target_io *tio;
575 	struct bio *clone;
576 
577 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
578 	tio = clone_to_tio(clone);
579 	tio->flags = 0;
580 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
581 	tio->io = NULL;
582 
583 	io = container_of(tio, struct dm_io, tio);
584 	io->magic = DM_IO_MAGIC;
585 	io->status = BLK_STS_OK;
586 
587 	/* one ref is for submission, the other is for completion */
588 	atomic_set(&io->io_count, 2);
589 	this_cpu_inc(*md->pending_io);
590 	io->orig_bio = bio;
591 	io->md = md;
592 	spin_lock_init(&io->lock);
593 	io->start_time = jiffies;
594 	io->flags = 0;
595 
596 	if (static_branch_unlikely(&stats_enabled))
597 		dm_stats_record_start(&md->stats, &io->stats_aux);
598 
599 	return io;
600 }
601 
602 static void free_io(struct dm_io *io)
603 {
604 	bio_put(&io->tio.clone);
605 }
606 
607 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
608 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
609 {
610 	struct mapped_device *md = ci->io->md;
611 	struct dm_target_io *tio;
612 	struct bio *clone;
613 
614 	if (!ci->io->tio.io) {
615 		/* the dm_target_io embedded in ci->io is available */
616 		tio = &ci->io->tio;
617 		/* alloc_io() already initialized embedded clone */
618 		clone = &tio->clone;
619 	} else {
620 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
621 					&md->mempools->bs);
622 		if (!clone)
623 			return NULL;
624 
625 		/* REQ_DM_POLL_LIST shouldn't be inherited */
626 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
627 
628 		tio = clone_to_tio(clone);
629 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
630 	}
631 
632 	tio->magic = DM_TIO_MAGIC;
633 	tio->io = ci->io;
634 	tio->ti = ti;
635 	tio->target_bio_nr = target_bio_nr;
636 	tio->len_ptr = len;
637 	tio->old_sector = 0;
638 
639 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
640 	clone->bi_bdev = md->disk->part0;
641 	if (unlikely(ti->needs_bio_set_dev))
642 		bio_set_dev(clone, md->disk->part0);
643 
644 	if (len) {
645 		clone->bi_iter.bi_size = to_bytes(*len);
646 		if (bio_integrity(clone))
647 			bio_integrity_trim(clone);
648 	}
649 
650 	return clone;
651 }
652 
653 static void free_tio(struct bio *clone)
654 {
655 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
656 		return;
657 	bio_put(clone);
658 }
659 
660 /*
661  * Add the bio to the list of deferred io.
662  */
663 static void queue_io(struct mapped_device *md, struct bio *bio)
664 {
665 	unsigned long flags;
666 
667 	spin_lock_irqsave(&md->deferred_lock, flags);
668 	bio_list_add(&md->deferred, bio);
669 	spin_unlock_irqrestore(&md->deferred_lock, flags);
670 	queue_work(md->wq, &md->work);
671 }
672 
673 /*
674  * Everyone (including functions in this file), should use this
675  * function to access the md->map field, and make sure they call
676  * dm_put_live_table() when finished.
677  */
678 struct dm_table *dm_get_live_table(struct mapped_device *md,
679 				   int *srcu_idx) __acquires(md->io_barrier)
680 {
681 	*srcu_idx = srcu_read_lock(&md->io_barrier);
682 
683 	return srcu_dereference(md->map, &md->io_barrier);
684 }
685 
686 void dm_put_live_table(struct mapped_device *md,
687 		       int srcu_idx) __releases(md->io_barrier)
688 {
689 	srcu_read_unlock(&md->io_barrier, srcu_idx);
690 }
691 
692 void dm_sync_table(struct mapped_device *md)
693 {
694 	synchronize_srcu(&md->io_barrier);
695 	synchronize_rcu_expedited();
696 }
697 
698 /*
699  * A fast alternative to dm_get_live_table/dm_put_live_table.
700  * The caller must not block between these two functions.
701  */
702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
703 {
704 	rcu_read_lock();
705 	return rcu_dereference(md->map);
706 }
707 
708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
709 {
710 	rcu_read_unlock();
711 }
712 
713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
714 					int *srcu_idx, blk_opf_t bio_opf)
715 {
716 	if (bio_opf & REQ_NOWAIT)
717 		return dm_get_live_table_fast(md);
718 	else
719 		return dm_get_live_table(md, srcu_idx);
720 }
721 
722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
723 					 blk_opf_t bio_opf)
724 {
725 	if (bio_opf & REQ_NOWAIT)
726 		dm_put_live_table_fast(md);
727 	else
728 		dm_put_live_table(md, srcu_idx);
729 }
730 
731 static char *_dm_claim_ptr = "I belong to device-mapper";
732 
733 /*
734  * Open a table device so we can use it as a map destination.
735  */
736 static struct table_device *open_table_device(struct mapped_device *md,
737 		dev_t dev, fmode_t mode)
738 {
739 	struct table_device *td;
740 	struct block_device *bdev;
741 	u64 part_off;
742 	int r;
743 
744 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
745 	if (!td)
746 		return ERR_PTR(-ENOMEM);
747 	refcount_set(&td->count, 1);
748 
749 	bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
750 	if (IS_ERR(bdev)) {
751 		r = PTR_ERR(bdev);
752 		goto out_free_td;
753 	}
754 
755 	/*
756 	 * We can be called before the dm disk is added.  In that case we can't
757 	 * register the holder relation here.  It will be done once add_disk was
758 	 * called.
759 	 */
760 	if (md->disk->slave_dir) {
761 		r = bd_link_disk_holder(bdev, md->disk);
762 		if (r)
763 			goto out_blkdev_put;
764 	}
765 
766 	td->dm_dev.mode = mode;
767 	td->dm_dev.bdev = bdev;
768 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
769 	format_dev_t(td->dm_dev.name, dev);
770 	list_add(&td->list, &md->table_devices);
771 	return td;
772 
773 out_blkdev_put:
774 	blkdev_put(bdev, mode | FMODE_EXCL);
775 out_free_td:
776 	kfree(td);
777 	return ERR_PTR(r);
778 }
779 
780 /*
781  * Close a table device that we've been using.
782  */
783 static void close_table_device(struct table_device *td, struct mapped_device *md)
784 {
785 	if (md->disk->slave_dir)
786 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
787 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
788 	put_dax(td->dm_dev.dax_dev);
789 	list_del(&td->list);
790 	kfree(td);
791 }
792 
793 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
794 					      fmode_t mode)
795 {
796 	struct table_device *td;
797 
798 	list_for_each_entry(td, l, list)
799 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
800 			return td;
801 
802 	return NULL;
803 }
804 
805 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
806 			struct dm_dev **result)
807 {
808 	struct table_device *td;
809 
810 	mutex_lock(&md->table_devices_lock);
811 	td = find_table_device(&md->table_devices, dev, mode);
812 	if (!td) {
813 		td = open_table_device(md, dev, mode);
814 		if (IS_ERR(td)) {
815 			mutex_unlock(&md->table_devices_lock);
816 			return PTR_ERR(td);
817 		}
818 	} else {
819 		refcount_inc(&td->count);
820 	}
821 	mutex_unlock(&md->table_devices_lock);
822 
823 	*result = &td->dm_dev;
824 	return 0;
825 }
826 
827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 	struct table_device *td = container_of(d, struct table_device, dm_dev);
830 
831 	mutex_lock(&md->table_devices_lock);
832 	if (refcount_dec_and_test(&td->count))
833 		close_table_device(td, md);
834 	mutex_unlock(&md->table_devices_lock);
835 }
836 
837 /*
838  * Get the geometry associated with a dm device
839  */
840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
841 {
842 	*geo = md->geometry;
843 
844 	return 0;
845 }
846 
847 /*
848  * Set the geometry of a device.
849  */
850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
851 {
852 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
853 
854 	if (geo->start > sz) {
855 		DMERR("Start sector is beyond the geometry limits.");
856 		return -EINVAL;
857 	}
858 
859 	md->geometry = *geo;
860 
861 	return 0;
862 }
863 
864 static int __noflush_suspending(struct mapped_device *md)
865 {
866 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
867 }
868 
869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
870 {
871 	struct mapped_device *md = io->md;
872 
873 	if (first_stage) {
874 		struct dm_io *next = md->requeue_list;
875 
876 		md->requeue_list = io;
877 		io->next = next;
878 	} else {
879 		bio_list_add_head(&md->deferred, io->orig_bio);
880 	}
881 }
882 
883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
884 {
885 	if (first_stage)
886 		queue_work(md->wq, &md->requeue_work);
887 	else
888 		queue_work(md->wq, &md->work);
889 }
890 
891 /*
892  * Return true if the dm_io's original bio is requeued.
893  * io->status is updated with error if requeue disallowed.
894  */
895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
896 {
897 	struct bio *bio = io->orig_bio;
898 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
899 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
900 				     (bio->bi_opf & REQ_POLLED));
901 	struct mapped_device *md = io->md;
902 	bool requeued = false;
903 
904 	if (handle_requeue || handle_polled_eagain) {
905 		unsigned long flags;
906 
907 		if (bio->bi_opf & REQ_POLLED) {
908 			/*
909 			 * Upper layer won't help us poll split bio
910 			 * (io->orig_bio may only reflect a subset of the
911 			 * pre-split original) so clear REQ_POLLED.
912 			 */
913 			bio_clear_polled(bio);
914 		}
915 
916 		/*
917 		 * Target requested pushing back the I/O or
918 		 * polled IO hit BLK_STS_AGAIN.
919 		 */
920 		spin_lock_irqsave(&md->deferred_lock, flags);
921 		if ((__noflush_suspending(md) &&
922 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
923 		    handle_polled_eagain || first_stage) {
924 			dm_requeue_add_io(io, first_stage);
925 			requeued = true;
926 		} else {
927 			/*
928 			 * noflush suspend was interrupted or this is
929 			 * a write to a zoned target.
930 			 */
931 			io->status = BLK_STS_IOERR;
932 		}
933 		spin_unlock_irqrestore(&md->deferred_lock, flags);
934 	}
935 
936 	if (requeued)
937 		dm_kick_requeue(md, first_stage);
938 
939 	return requeued;
940 }
941 
942 static void __dm_io_complete(struct dm_io *io, bool first_stage)
943 {
944 	struct bio *bio = io->orig_bio;
945 	struct mapped_device *md = io->md;
946 	blk_status_t io_error;
947 	bool requeued;
948 
949 	requeued = dm_handle_requeue(io, first_stage);
950 	if (requeued && first_stage)
951 		return;
952 
953 	io_error = io->status;
954 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
955 		dm_end_io_acct(io);
956 	else if (!io_error) {
957 		/*
958 		 * Must handle target that DM_MAPIO_SUBMITTED only to
959 		 * then bio_endio() rather than dm_submit_bio_remap()
960 		 */
961 		__dm_start_io_acct(io);
962 		dm_end_io_acct(io);
963 	}
964 	free_io(io);
965 	smp_wmb();
966 	this_cpu_dec(*md->pending_io);
967 
968 	/* nudge anyone waiting on suspend queue */
969 	if (unlikely(wq_has_sleeper(&md->wait)))
970 		wake_up(&md->wait);
971 
972 	/* Return early if the original bio was requeued */
973 	if (requeued)
974 		return;
975 
976 	if (bio_is_flush_with_data(bio)) {
977 		/*
978 		 * Preflush done for flush with data, reissue
979 		 * without REQ_PREFLUSH.
980 		 */
981 		bio->bi_opf &= ~REQ_PREFLUSH;
982 		queue_io(md, bio);
983 	} else {
984 		/* done with normal IO or empty flush */
985 		if (io_error)
986 			bio->bi_status = io_error;
987 		bio_endio(bio);
988 	}
989 }
990 
991 static void dm_wq_requeue_work(struct work_struct *work)
992 {
993 	struct mapped_device *md = container_of(work, struct mapped_device,
994 						requeue_work);
995 	unsigned long flags;
996 	struct dm_io *io;
997 
998 	/* reuse deferred lock to simplify dm_handle_requeue */
999 	spin_lock_irqsave(&md->deferred_lock, flags);
1000 	io = md->requeue_list;
1001 	md->requeue_list = NULL;
1002 	spin_unlock_irqrestore(&md->deferred_lock, flags);
1003 
1004 	while (io) {
1005 		struct dm_io *next = io->next;
1006 
1007 		dm_io_rewind(io, &md->disk->bio_split);
1008 
1009 		io->next = NULL;
1010 		__dm_io_complete(io, false);
1011 		io = next;
1012 		cond_resched();
1013 	}
1014 }
1015 
1016 /*
1017  * Two staged requeue:
1018  *
1019  * 1) io->orig_bio points to the real original bio, and the part mapped to
1020  *    this io must be requeued, instead of other parts of the original bio.
1021  *
1022  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1023  */
1024 static void dm_io_complete(struct dm_io *io)
1025 {
1026 	bool first_requeue;
1027 
1028 	/*
1029 	 * Only dm_io that has been split needs two stage requeue, otherwise
1030 	 * we may run into long bio clone chain during suspend and OOM could
1031 	 * be triggered.
1032 	 *
1033 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1034 	 * also aren't handled via the first stage requeue.
1035 	 */
1036 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1037 		first_requeue = true;
1038 	else
1039 		first_requeue = false;
1040 
1041 	__dm_io_complete(io, first_requeue);
1042 }
1043 
1044 /*
1045  * Decrements the number of outstanding ios that a bio has been
1046  * cloned into, completing the original io if necc.
1047  */
1048 static inline void __dm_io_dec_pending(struct dm_io *io)
1049 {
1050 	if (atomic_dec_and_test(&io->io_count))
1051 		dm_io_complete(io);
1052 }
1053 
1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1055 {
1056 	unsigned long flags;
1057 
1058 	/* Push-back supersedes any I/O errors */
1059 	spin_lock_irqsave(&io->lock, flags);
1060 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1061 	      __noflush_suspending(io->md))) {
1062 		io->status = error;
1063 	}
1064 	spin_unlock_irqrestore(&io->lock, flags);
1065 }
1066 
1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1068 {
1069 	if (unlikely(error))
1070 		dm_io_set_error(io, error);
1071 
1072 	__dm_io_dec_pending(io);
1073 }
1074 
1075 void disable_discard(struct mapped_device *md)
1076 {
1077 	struct queue_limits *limits = dm_get_queue_limits(md);
1078 
1079 	/* device doesn't really support DISCARD, disable it */
1080 	limits->max_discard_sectors = 0;
1081 }
1082 
1083 void disable_write_zeroes(struct mapped_device *md)
1084 {
1085 	struct queue_limits *limits = dm_get_queue_limits(md);
1086 
1087 	/* device doesn't really support WRITE ZEROES, disable it */
1088 	limits->max_write_zeroes_sectors = 0;
1089 }
1090 
1091 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1092 {
1093 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1094 }
1095 
1096 static void clone_endio(struct bio *bio)
1097 {
1098 	blk_status_t error = bio->bi_status;
1099 	struct dm_target_io *tio = clone_to_tio(bio);
1100 	struct dm_target *ti = tio->ti;
1101 	dm_endio_fn endio = ti->type->end_io;
1102 	struct dm_io *io = tio->io;
1103 	struct mapped_device *md = io->md;
1104 
1105 	if (unlikely(error == BLK_STS_TARGET)) {
1106 		if (bio_op(bio) == REQ_OP_DISCARD &&
1107 		    !bdev_max_discard_sectors(bio->bi_bdev))
1108 			disable_discard(md);
1109 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1110 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1111 			disable_write_zeroes(md);
1112 	}
1113 
1114 	if (static_branch_unlikely(&zoned_enabled) &&
1115 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1116 		dm_zone_endio(io, bio);
1117 
1118 	if (endio) {
1119 		int r = endio(ti, bio, &error);
1120 
1121 		switch (r) {
1122 		case DM_ENDIO_REQUEUE:
1123 			if (static_branch_unlikely(&zoned_enabled)) {
1124 				/*
1125 				 * Requeuing writes to a sequential zone of a zoned
1126 				 * target will break the sequential write pattern:
1127 				 * fail such IO.
1128 				 */
1129 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1130 					error = BLK_STS_IOERR;
1131 				else
1132 					error = BLK_STS_DM_REQUEUE;
1133 			} else
1134 				error = BLK_STS_DM_REQUEUE;
1135 			fallthrough;
1136 		case DM_ENDIO_DONE:
1137 			break;
1138 		case DM_ENDIO_INCOMPLETE:
1139 			/* The target will handle the io */
1140 			return;
1141 		default:
1142 			DMCRIT("unimplemented target endio return value: %d", r);
1143 			BUG();
1144 		}
1145 	}
1146 
1147 	if (static_branch_unlikely(&swap_bios_enabled) &&
1148 	    unlikely(swap_bios_limit(ti, bio)))
1149 		up(&md->swap_bios_semaphore);
1150 
1151 	free_tio(bio);
1152 	dm_io_dec_pending(io, error);
1153 }
1154 
1155 /*
1156  * Return maximum size of I/O possible at the supplied sector up to the current
1157  * target boundary.
1158  */
1159 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1160 						  sector_t target_offset)
1161 {
1162 	return ti->len - target_offset;
1163 }
1164 
1165 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1166 {
1167 	sector_t target_offset = dm_target_offset(ti, sector);
1168 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1169 
1170 	/*
1171 	 * Does the target need to split IO even further?
1172 	 * - varied (per target) IO splitting is a tenet of DM; this
1173 	 *   explains why stacked chunk_sectors based splitting via
1174 	 *   bio_split_to_limits() isn't possible here.
1175 	 */
1176 	if (!ti->max_io_len)
1177 		return len;
1178 	return min_t(sector_t, len,
1179 		min(queue_max_sectors(ti->table->md->queue),
1180 		    blk_chunk_sectors_left(target_offset, ti->max_io_len)));
1181 }
1182 
1183 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1184 {
1185 	if (len > UINT_MAX) {
1186 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1187 		      (unsigned long long)len, UINT_MAX);
1188 		ti->error = "Maximum size of target IO is too large";
1189 		return -EINVAL;
1190 	}
1191 
1192 	ti->max_io_len = (uint32_t) len;
1193 
1194 	return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1197 
1198 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1199 						sector_t sector, int *srcu_idx)
1200 	__acquires(md->io_barrier)
1201 {
1202 	struct dm_table *map;
1203 	struct dm_target *ti;
1204 
1205 	map = dm_get_live_table(md, srcu_idx);
1206 	if (!map)
1207 		return NULL;
1208 
1209 	ti = dm_table_find_target(map, sector);
1210 	if (!ti)
1211 		return NULL;
1212 
1213 	return ti;
1214 }
1215 
1216 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1217 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1218 		pfn_t *pfn)
1219 {
1220 	struct mapped_device *md = dax_get_private(dax_dev);
1221 	sector_t sector = pgoff * PAGE_SECTORS;
1222 	struct dm_target *ti;
1223 	long len, ret = -EIO;
1224 	int srcu_idx;
1225 
1226 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1227 
1228 	if (!ti)
1229 		goto out;
1230 	if (!ti->type->direct_access)
1231 		goto out;
1232 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1233 	if (len < 1)
1234 		goto out;
1235 	nr_pages = min(len, nr_pages);
1236 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1237 
1238  out:
1239 	dm_put_live_table(md, srcu_idx);
1240 
1241 	return ret;
1242 }
1243 
1244 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1245 				  size_t nr_pages)
1246 {
1247 	struct mapped_device *md = dax_get_private(dax_dev);
1248 	sector_t sector = pgoff * PAGE_SECTORS;
1249 	struct dm_target *ti;
1250 	int ret = -EIO;
1251 	int srcu_idx;
1252 
1253 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1254 
1255 	if (!ti)
1256 		goto out;
1257 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1258 		/*
1259 		 * ->zero_page_range() is mandatory dax operation. If we are
1260 		 *  here, something is wrong.
1261 		 */
1262 		goto out;
1263 	}
1264 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1265  out:
1266 	dm_put_live_table(md, srcu_idx);
1267 
1268 	return ret;
1269 }
1270 
1271 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1272 		void *addr, size_t bytes, struct iov_iter *i)
1273 {
1274 	struct mapped_device *md = dax_get_private(dax_dev);
1275 	sector_t sector = pgoff * PAGE_SECTORS;
1276 	struct dm_target *ti;
1277 	int srcu_idx;
1278 	long ret = 0;
1279 
1280 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1281 	if (!ti || !ti->type->dax_recovery_write)
1282 		goto out;
1283 
1284 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1285 out:
1286 	dm_put_live_table(md, srcu_idx);
1287 	return ret;
1288 }
1289 
1290 /*
1291  * A target may call dm_accept_partial_bio only from the map routine.  It is
1292  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1293  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1294  * __send_duplicate_bios().
1295  *
1296  * dm_accept_partial_bio informs the dm that the target only wants to process
1297  * additional n_sectors sectors of the bio and the rest of the data should be
1298  * sent in a next bio.
1299  *
1300  * A diagram that explains the arithmetics:
1301  * +--------------------+---------------+-------+
1302  * |         1          |       2       |   3   |
1303  * +--------------------+---------------+-------+
1304  *
1305  * <-------------- *tio->len_ptr --------------->
1306  *                      <----- bio_sectors ----->
1307  *                      <-- n_sectors -->
1308  *
1309  * Region 1 was already iterated over with bio_advance or similar function.
1310  *	(it may be empty if the target doesn't use bio_advance)
1311  * Region 2 is the remaining bio size that the target wants to process.
1312  *	(it may be empty if region 1 is non-empty, although there is no reason
1313  *	 to make it empty)
1314  * The target requires that region 3 is to be sent in the next bio.
1315  *
1316  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1317  * the partially processed part (the sum of regions 1+2) must be the same for all
1318  * copies of the bio.
1319  */
1320 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1321 {
1322 	struct dm_target_io *tio = clone_to_tio(bio);
1323 	struct dm_io *io = tio->io;
1324 	unsigned int bio_sectors = bio_sectors(bio);
1325 
1326 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1327 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1328 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1329 	BUG_ON(bio_sectors > *tio->len_ptr);
1330 	BUG_ON(n_sectors > bio_sectors);
1331 
1332 	*tio->len_ptr -= bio_sectors - n_sectors;
1333 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1334 
1335 	/*
1336 	 * __split_and_process_bio() may have already saved mapped part
1337 	 * for accounting but it is being reduced so update accordingly.
1338 	 */
1339 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1340 	io->sectors = n_sectors;
1341 	io->sector_offset = bio_sectors(io->orig_bio);
1342 }
1343 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1344 
1345 /*
1346  * @clone: clone bio that DM core passed to target's .map function
1347  * @tgt_clone: clone of @clone bio that target needs submitted
1348  *
1349  * Targets should use this interface to submit bios they take
1350  * ownership of when returning DM_MAPIO_SUBMITTED.
1351  *
1352  * Target should also enable ti->accounts_remapped_io
1353  */
1354 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1355 {
1356 	struct dm_target_io *tio = clone_to_tio(clone);
1357 	struct dm_io *io = tio->io;
1358 
1359 	/* establish bio that will get submitted */
1360 	if (!tgt_clone)
1361 		tgt_clone = clone;
1362 
1363 	/*
1364 	 * Account io->origin_bio to DM dev on behalf of target
1365 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1366 	 */
1367 	dm_start_io_acct(io, clone);
1368 
1369 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1370 			      tio->old_sector);
1371 	submit_bio_noacct(tgt_clone);
1372 }
1373 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1374 
1375 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1376 {
1377 	mutex_lock(&md->swap_bios_lock);
1378 	while (latch < md->swap_bios) {
1379 		cond_resched();
1380 		down(&md->swap_bios_semaphore);
1381 		md->swap_bios--;
1382 	}
1383 	while (latch > md->swap_bios) {
1384 		cond_resched();
1385 		up(&md->swap_bios_semaphore);
1386 		md->swap_bios++;
1387 	}
1388 	mutex_unlock(&md->swap_bios_lock);
1389 }
1390 
1391 static void __map_bio(struct bio *clone)
1392 {
1393 	struct dm_target_io *tio = clone_to_tio(clone);
1394 	struct dm_target *ti = tio->ti;
1395 	struct dm_io *io = tio->io;
1396 	struct mapped_device *md = io->md;
1397 	int r;
1398 
1399 	clone->bi_end_io = clone_endio;
1400 
1401 	/*
1402 	 * Map the clone.
1403 	 */
1404 	tio->old_sector = clone->bi_iter.bi_sector;
1405 
1406 	if (static_branch_unlikely(&swap_bios_enabled) &&
1407 	    unlikely(swap_bios_limit(ti, clone))) {
1408 		int latch = get_swap_bios();
1409 
1410 		if (unlikely(latch != md->swap_bios))
1411 			__set_swap_bios_limit(md, latch);
1412 		down(&md->swap_bios_semaphore);
1413 	}
1414 
1415 	if (static_branch_unlikely(&zoned_enabled)) {
1416 		/*
1417 		 * Check if the IO needs a special mapping due to zone append
1418 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1419 		 * calls the target map operation.
1420 		 */
1421 		if (unlikely(dm_emulate_zone_append(md)))
1422 			r = dm_zone_map_bio(tio);
1423 		else
1424 			r = ti->type->map(ti, clone);
1425 	} else
1426 		r = ti->type->map(ti, clone);
1427 
1428 	switch (r) {
1429 	case DM_MAPIO_SUBMITTED:
1430 		/* target has assumed ownership of this io */
1431 		if (!ti->accounts_remapped_io)
1432 			dm_start_io_acct(io, clone);
1433 		break;
1434 	case DM_MAPIO_REMAPPED:
1435 		dm_submit_bio_remap(clone, NULL);
1436 		break;
1437 	case DM_MAPIO_KILL:
1438 	case DM_MAPIO_REQUEUE:
1439 		if (static_branch_unlikely(&swap_bios_enabled) &&
1440 		    unlikely(swap_bios_limit(ti, clone)))
1441 			up(&md->swap_bios_semaphore);
1442 		free_tio(clone);
1443 		if (r == DM_MAPIO_KILL)
1444 			dm_io_dec_pending(io, BLK_STS_IOERR);
1445 		else
1446 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1447 		break;
1448 	default:
1449 		DMCRIT("unimplemented target map return value: %d", r);
1450 		BUG();
1451 	}
1452 }
1453 
1454 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1455 {
1456 	struct dm_io *io = ci->io;
1457 
1458 	if (ci->sector_count > len) {
1459 		/*
1460 		 * Split needed, save the mapped part for accounting.
1461 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1462 		 */
1463 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1464 		io->sectors = len;
1465 		io->sector_offset = bio_sectors(ci->bio);
1466 	}
1467 }
1468 
1469 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1470 				struct dm_target *ti, unsigned int num_bios)
1471 {
1472 	struct bio *bio;
1473 	int try;
1474 
1475 	for (try = 0; try < 2; try++) {
1476 		int bio_nr;
1477 
1478 		if (try)
1479 			mutex_lock(&ci->io->md->table_devices_lock);
1480 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1481 			bio = alloc_tio(ci, ti, bio_nr, NULL,
1482 					try ? GFP_NOIO : GFP_NOWAIT);
1483 			if (!bio)
1484 				break;
1485 
1486 			bio_list_add(blist, bio);
1487 		}
1488 		if (try)
1489 			mutex_unlock(&ci->io->md->table_devices_lock);
1490 		if (bio_nr == num_bios)
1491 			return;
1492 
1493 		while ((bio = bio_list_pop(blist)))
1494 			free_tio(bio);
1495 	}
1496 }
1497 
1498 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1499 				 unsigned int num_bios, unsigned int *len)
1500 {
1501 	struct bio_list blist = BIO_EMPTY_LIST;
1502 	struct bio *clone;
1503 	unsigned int ret = 0;
1504 
1505 	switch (num_bios) {
1506 	case 0:
1507 		break;
1508 	case 1:
1509 		if (len)
1510 			setup_split_accounting(ci, *len);
1511 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1512 		__map_bio(clone);
1513 		ret = 1;
1514 		break;
1515 	default:
1516 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1517 		alloc_multiple_bios(&blist, ci, ti, num_bios);
1518 		while ((clone = bio_list_pop(&blist))) {
1519 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1520 			__map_bio(clone);
1521 			ret += 1;
1522 		}
1523 		break;
1524 	}
1525 
1526 	return ret;
1527 }
1528 
1529 static void __send_empty_flush(struct clone_info *ci)
1530 {
1531 	struct dm_table *t = ci->map;
1532 	struct bio flush_bio;
1533 
1534 	/*
1535 	 * Use an on-stack bio for this, it's safe since we don't
1536 	 * need to reference it after submit. It's just used as
1537 	 * the basis for the clone(s).
1538 	 */
1539 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1540 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1541 
1542 	ci->bio = &flush_bio;
1543 	ci->sector_count = 0;
1544 	ci->io->tio.clone.bi_iter.bi_size = 0;
1545 
1546 	for (unsigned int i = 0; i < t->num_targets; i++) {
1547 		unsigned int bios;
1548 		struct dm_target *ti = dm_table_get_target(t, i);
1549 
1550 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1551 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1552 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1553 	}
1554 
1555 	/*
1556 	 * alloc_io() takes one extra reference for submission, so the
1557 	 * reference won't reach 0 without the following subtraction
1558 	 */
1559 	atomic_sub(1, &ci->io->io_count);
1560 
1561 	bio_uninit(ci->bio);
1562 }
1563 
1564 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1565 					unsigned int num_bios)
1566 {
1567 	unsigned int len, bios;
1568 
1569 	len = min_t(sector_t, ci->sector_count,
1570 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1571 
1572 	atomic_add(num_bios, &ci->io->io_count);
1573 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1574 	/*
1575 	 * alloc_io() takes one extra reference for submission, so the
1576 	 * reference won't reach 0 without the following (+1) subtraction
1577 	 */
1578 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1579 
1580 	ci->sector += len;
1581 	ci->sector_count -= len;
1582 }
1583 
1584 static bool is_abnormal_io(struct bio *bio)
1585 {
1586 	enum req_op op = bio_op(bio);
1587 
1588 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1589 		switch (op) {
1590 		case REQ_OP_DISCARD:
1591 		case REQ_OP_SECURE_ERASE:
1592 		case REQ_OP_WRITE_ZEROES:
1593 			return true;
1594 		default:
1595 			break;
1596 		}
1597 	}
1598 
1599 	return false;
1600 }
1601 
1602 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1603 					  struct dm_target *ti)
1604 {
1605 	unsigned int num_bios = 0;
1606 
1607 	switch (bio_op(ci->bio)) {
1608 	case REQ_OP_DISCARD:
1609 		num_bios = ti->num_discard_bios;
1610 		break;
1611 	case REQ_OP_SECURE_ERASE:
1612 		num_bios = ti->num_secure_erase_bios;
1613 		break;
1614 	case REQ_OP_WRITE_ZEROES:
1615 		num_bios = ti->num_write_zeroes_bios;
1616 		break;
1617 	default:
1618 		break;
1619 	}
1620 
1621 	/*
1622 	 * Even though the device advertised support for this type of
1623 	 * request, that does not mean every target supports it, and
1624 	 * reconfiguration might also have changed that since the
1625 	 * check was performed.
1626 	 */
1627 	if (unlikely(!num_bios))
1628 		return BLK_STS_NOTSUPP;
1629 
1630 	__send_changing_extent_only(ci, ti, num_bios);
1631 	return BLK_STS_OK;
1632 }
1633 
1634 /*
1635  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1636  * associated with this bio, and this bio's bi_private needs to be
1637  * stored in dm_io->data before the reuse.
1638  *
1639  * bio->bi_private is owned by fs or upper layer, so block layer won't
1640  * touch it after splitting. Meantime it won't be changed by anyone after
1641  * bio is submitted. So this reuse is safe.
1642  */
1643 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1644 {
1645 	return (struct dm_io **)&bio->bi_private;
1646 }
1647 
1648 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1649 {
1650 	struct dm_io **head = dm_poll_list_head(bio);
1651 
1652 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1653 		bio->bi_opf |= REQ_DM_POLL_LIST;
1654 		/*
1655 		 * Save .bi_private into dm_io, so that we can reuse
1656 		 * .bi_private as dm_io list head for storing dm_io list
1657 		 */
1658 		io->data = bio->bi_private;
1659 
1660 		/* tell block layer to poll for completion */
1661 		bio->bi_cookie = ~BLK_QC_T_NONE;
1662 
1663 		io->next = NULL;
1664 	} else {
1665 		/*
1666 		 * bio recursed due to split, reuse original poll list,
1667 		 * and save bio->bi_private too.
1668 		 */
1669 		io->data = (*head)->data;
1670 		io->next = *head;
1671 	}
1672 
1673 	*head = io;
1674 }
1675 
1676 /*
1677  * Select the correct strategy for processing a non-flush bio.
1678  */
1679 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1680 {
1681 	struct bio *clone;
1682 	struct dm_target *ti;
1683 	unsigned int len;
1684 
1685 	ti = dm_table_find_target(ci->map, ci->sector);
1686 	if (unlikely(!ti))
1687 		return BLK_STS_IOERR;
1688 
1689 	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1690 	    unlikely(!dm_target_supports_nowait(ti->type)))
1691 		return BLK_STS_NOTSUPP;
1692 
1693 	if (unlikely(ci->is_abnormal_io))
1694 		return __process_abnormal_io(ci, ti);
1695 
1696 	/*
1697 	 * Only support bio polling for normal IO, and the target io is
1698 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1699 	 */
1700 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1701 
1702 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1703 	setup_split_accounting(ci, len);
1704 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1705 	__map_bio(clone);
1706 
1707 	ci->sector += len;
1708 	ci->sector_count -= len;
1709 
1710 	return BLK_STS_OK;
1711 }
1712 
1713 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1714 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1715 {
1716 	ci->map = map;
1717 	ci->io = alloc_io(md, bio);
1718 	ci->bio = bio;
1719 	ci->is_abnormal_io = is_abnormal;
1720 	ci->submit_as_polled = false;
1721 	ci->sector = bio->bi_iter.bi_sector;
1722 	ci->sector_count = bio_sectors(bio);
1723 
1724 	/* Shouldn't happen but sector_count was being set to 0 so... */
1725 	if (static_branch_unlikely(&zoned_enabled) &&
1726 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1727 		ci->sector_count = 0;
1728 }
1729 
1730 /*
1731  * Entry point to split a bio into clones and submit them to the targets.
1732  */
1733 static void dm_split_and_process_bio(struct mapped_device *md,
1734 				     struct dm_table *map, struct bio *bio)
1735 {
1736 	struct clone_info ci;
1737 	struct dm_io *io;
1738 	blk_status_t error = BLK_STS_OK;
1739 	bool is_abnormal;
1740 
1741 	is_abnormal = is_abnormal_io(bio);
1742 	if (unlikely(is_abnormal)) {
1743 		/*
1744 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1745 		 * otherwise associated queue_limits won't be imposed.
1746 		 */
1747 		bio = bio_split_to_limits(bio);
1748 		if (!bio)
1749 			return;
1750 	}
1751 
1752 	init_clone_info(&ci, md, map, bio, is_abnormal);
1753 	io = ci.io;
1754 
1755 	if (bio->bi_opf & REQ_PREFLUSH) {
1756 		__send_empty_flush(&ci);
1757 		/* dm_io_complete submits any data associated with flush */
1758 		goto out;
1759 	}
1760 
1761 	error = __split_and_process_bio(&ci);
1762 	if (error || !ci.sector_count)
1763 		goto out;
1764 	/*
1765 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1766 	 * *after* bios already submitted have been completely processed.
1767 	 */
1768 	bio_trim(bio, io->sectors, ci.sector_count);
1769 	trace_block_split(bio, bio->bi_iter.bi_sector);
1770 	bio_inc_remaining(bio);
1771 	submit_bio_noacct(bio);
1772 out:
1773 	/*
1774 	 * Drop the extra reference count for non-POLLED bio, and hold one
1775 	 * reference for POLLED bio, which will be released in dm_poll_bio
1776 	 *
1777 	 * Add every dm_io instance into the dm_io list head which is stored
1778 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1779 	 */
1780 	if (error || !ci.submit_as_polled) {
1781 		/*
1782 		 * In case of submission failure, the extra reference for
1783 		 * submitting io isn't consumed yet
1784 		 */
1785 		if (error)
1786 			atomic_dec(&io->io_count);
1787 		dm_io_dec_pending(io, error);
1788 	} else
1789 		dm_queue_poll_io(bio, io);
1790 }
1791 
1792 static void dm_submit_bio(struct bio *bio)
1793 {
1794 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1795 	int srcu_idx;
1796 	struct dm_table *map;
1797 	blk_opf_t bio_opf = bio->bi_opf;
1798 
1799 	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1800 
1801 	/* If suspended, or map not yet available, queue this IO for later */
1802 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1803 	    unlikely(!map)) {
1804 		if (bio->bi_opf & REQ_NOWAIT)
1805 			bio_wouldblock_error(bio);
1806 		else if (bio->bi_opf & REQ_RAHEAD)
1807 			bio_io_error(bio);
1808 		else
1809 			queue_io(md, bio);
1810 		goto out;
1811 	}
1812 
1813 	dm_split_and_process_bio(md, map, bio);
1814 out:
1815 	dm_put_live_table_bio(md, srcu_idx, bio_opf);
1816 }
1817 
1818 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1819 			  unsigned int flags)
1820 {
1821 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1822 
1823 	/* don't poll if the mapped io is done */
1824 	if (atomic_read(&io->io_count) > 1)
1825 		bio_poll(&io->tio.clone, iob, flags);
1826 
1827 	/* bio_poll holds the last reference */
1828 	return atomic_read(&io->io_count) == 1;
1829 }
1830 
1831 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1832 		       unsigned int flags)
1833 {
1834 	struct dm_io **head = dm_poll_list_head(bio);
1835 	struct dm_io *list = *head;
1836 	struct dm_io *tmp = NULL;
1837 	struct dm_io *curr, *next;
1838 
1839 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1840 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1841 		return 0;
1842 
1843 	WARN_ON_ONCE(!list);
1844 
1845 	/*
1846 	 * Restore .bi_private before possibly completing dm_io.
1847 	 *
1848 	 * bio_poll() is only possible once @bio has been completely
1849 	 * submitted via submit_bio_noacct()'s depth-first submission.
1850 	 * So there is no dm_queue_poll_io() race associated with
1851 	 * clearing REQ_DM_POLL_LIST here.
1852 	 */
1853 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1854 	bio->bi_private = list->data;
1855 
1856 	for (curr = list, next = curr->next; curr; curr = next, next =
1857 			curr ? curr->next : NULL) {
1858 		if (dm_poll_dm_io(curr, iob, flags)) {
1859 			/*
1860 			 * clone_endio() has already occurred, so no
1861 			 * error handling is needed here.
1862 			 */
1863 			__dm_io_dec_pending(curr);
1864 		} else {
1865 			curr->next = tmp;
1866 			tmp = curr;
1867 		}
1868 	}
1869 
1870 	/* Not done? */
1871 	if (tmp) {
1872 		bio->bi_opf |= REQ_DM_POLL_LIST;
1873 		/* Reset bio->bi_private to dm_io list head */
1874 		*head = tmp;
1875 		return 0;
1876 	}
1877 	return 1;
1878 }
1879 
1880 /*
1881  *---------------------------------------------------------------
1882  * An IDR is used to keep track of allocated minor numbers.
1883  *---------------------------------------------------------------
1884  */
1885 static void free_minor(int minor)
1886 {
1887 	spin_lock(&_minor_lock);
1888 	idr_remove(&_minor_idr, minor);
1889 	spin_unlock(&_minor_lock);
1890 }
1891 
1892 /*
1893  * See if the device with a specific minor # is free.
1894  */
1895 static int specific_minor(int minor)
1896 {
1897 	int r;
1898 
1899 	if (minor >= (1 << MINORBITS))
1900 		return -EINVAL;
1901 
1902 	idr_preload(GFP_KERNEL);
1903 	spin_lock(&_minor_lock);
1904 
1905 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1906 
1907 	spin_unlock(&_minor_lock);
1908 	idr_preload_end();
1909 	if (r < 0)
1910 		return r == -ENOSPC ? -EBUSY : r;
1911 	return 0;
1912 }
1913 
1914 static int next_free_minor(int *minor)
1915 {
1916 	int r;
1917 
1918 	idr_preload(GFP_KERNEL);
1919 	spin_lock(&_minor_lock);
1920 
1921 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1922 
1923 	spin_unlock(&_minor_lock);
1924 	idr_preload_end();
1925 	if (r < 0)
1926 		return r;
1927 	*minor = r;
1928 	return 0;
1929 }
1930 
1931 static const struct block_device_operations dm_blk_dops;
1932 static const struct block_device_operations dm_rq_blk_dops;
1933 static const struct dax_operations dm_dax_ops;
1934 
1935 static void dm_wq_work(struct work_struct *work);
1936 
1937 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1938 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1939 {
1940 	dm_destroy_crypto_profile(q->crypto_profile);
1941 }
1942 
1943 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1944 
1945 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1946 {
1947 }
1948 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1949 
1950 static void cleanup_mapped_device(struct mapped_device *md)
1951 {
1952 	if (md->wq)
1953 		destroy_workqueue(md->wq);
1954 	dm_free_md_mempools(md->mempools);
1955 
1956 	if (md->dax_dev) {
1957 		dax_remove_host(md->disk);
1958 		kill_dax(md->dax_dev);
1959 		put_dax(md->dax_dev);
1960 		md->dax_dev = NULL;
1961 	}
1962 
1963 	dm_cleanup_zoned_dev(md);
1964 	if (md->disk) {
1965 		spin_lock(&_minor_lock);
1966 		md->disk->private_data = NULL;
1967 		spin_unlock(&_minor_lock);
1968 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1969 			struct table_device *td;
1970 
1971 			dm_sysfs_exit(md);
1972 			list_for_each_entry(td, &md->table_devices, list) {
1973 				bd_unlink_disk_holder(td->dm_dev.bdev,
1974 						      md->disk);
1975 			}
1976 
1977 			/*
1978 			 * Hold lock to make sure del_gendisk() won't concurrent
1979 			 * with open/close_table_device().
1980 			 */
1981 			mutex_lock(&md->table_devices_lock);
1982 			del_gendisk(md->disk);
1983 			mutex_unlock(&md->table_devices_lock);
1984 		}
1985 		dm_queue_destroy_crypto_profile(md->queue);
1986 		put_disk(md->disk);
1987 	}
1988 
1989 	if (md->pending_io) {
1990 		free_percpu(md->pending_io);
1991 		md->pending_io = NULL;
1992 	}
1993 
1994 	cleanup_srcu_struct(&md->io_barrier);
1995 
1996 	mutex_destroy(&md->suspend_lock);
1997 	mutex_destroy(&md->type_lock);
1998 	mutex_destroy(&md->table_devices_lock);
1999 	mutex_destroy(&md->swap_bios_lock);
2000 
2001 	dm_mq_cleanup_mapped_device(md);
2002 }
2003 
2004 /*
2005  * Allocate and initialise a blank device with a given minor.
2006  */
2007 static struct mapped_device *alloc_dev(int minor)
2008 {
2009 	int r, numa_node_id = dm_get_numa_node();
2010 	struct mapped_device *md;
2011 	void *old_md;
2012 
2013 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2014 	if (!md) {
2015 		DMERR("unable to allocate device, out of memory.");
2016 		return NULL;
2017 	}
2018 
2019 	if (!try_module_get(THIS_MODULE))
2020 		goto bad_module_get;
2021 
2022 	/* get a minor number for the dev */
2023 	if (minor == DM_ANY_MINOR)
2024 		r = next_free_minor(&minor);
2025 	else
2026 		r = specific_minor(minor);
2027 	if (r < 0)
2028 		goto bad_minor;
2029 
2030 	r = init_srcu_struct(&md->io_barrier);
2031 	if (r < 0)
2032 		goto bad_io_barrier;
2033 
2034 	md->numa_node_id = numa_node_id;
2035 	md->init_tio_pdu = false;
2036 	md->type = DM_TYPE_NONE;
2037 	mutex_init(&md->suspend_lock);
2038 	mutex_init(&md->type_lock);
2039 	mutex_init(&md->table_devices_lock);
2040 	spin_lock_init(&md->deferred_lock);
2041 	atomic_set(&md->holders, 1);
2042 	atomic_set(&md->open_count, 0);
2043 	atomic_set(&md->event_nr, 0);
2044 	atomic_set(&md->uevent_seq, 0);
2045 	INIT_LIST_HEAD(&md->uevent_list);
2046 	INIT_LIST_HEAD(&md->table_devices);
2047 	spin_lock_init(&md->uevent_lock);
2048 
2049 	/*
2050 	 * default to bio-based until DM table is loaded and md->type
2051 	 * established. If request-based table is loaded: blk-mq will
2052 	 * override accordingly.
2053 	 */
2054 	md->disk = blk_alloc_disk(md->numa_node_id);
2055 	if (!md->disk)
2056 		goto bad;
2057 	md->queue = md->disk->queue;
2058 
2059 	init_waitqueue_head(&md->wait);
2060 	INIT_WORK(&md->work, dm_wq_work);
2061 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2062 	init_waitqueue_head(&md->eventq);
2063 	init_completion(&md->kobj_holder.completion);
2064 
2065 	md->requeue_list = NULL;
2066 	md->swap_bios = get_swap_bios();
2067 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2068 	mutex_init(&md->swap_bios_lock);
2069 
2070 	md->disk->major = _major;
2071 	md->disk->first_minor = minor;
2072 	md->disk->minors = 1;
2073 	md->disk->flags |= GENHD_FL_NO_PART;
2074 	md->disk->fops = &dm_blk_dops;
2075 	md->disk->private_data = md;
2076 	sprintf(md->disk->disk_name, "dm-%d", minor);
2077 
2078 	if (IS_ENABLED(CONFIG_FS_DAX)) {
2079 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2080 		if (IS_ERR(md->dax_dev)) {
2081 			md->dax_dev = NULL;
2082 			goto bad;
2083 		}
2084 		set_dax_nocache(md->dax_dev);
2085 		set_dax_nomc(md->dax_dev);
2086 		if (dax_add_host(md->dax_dev, md->disk))
2087 			goto bad;
2088 	}
2089 
2090 	format_dev_t(md->name, MKDEV(_major, minor));
2091 
2092 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2093 	if (!md->wq)
2094 		goto bad;
2095 
2096 	md->pending_io = alloc_percpu(unsigned long);
2097 	if (!md->pending_io)
2098 		goto bad;
2099 
2100 	r = dm_stats_init(&md->stats);
2101 	if (r < 0)
2102 		goto bad;
2103 
2104 	/* Populate the mapping, nobody knows we exist yet */
2105 	spin_lock(&_minor_lock);
2106 	old_md = idr_replace(&_minor_idr, md, minor);
2107 	spin_unlock(&_minor_lock);
2108 
2109 	BUG_ON(old_md != MINOR_ALLOCED);
2110 
2111 	return md;
2112 
2113 bad:
2114 	cleanup_mapped_device(md);
2115 bad_io_barrier:
2116 	free_minor(minor);
2117 bad_minor:
2118 	module_put(THIS_MODULE);
2119 bad_module_get:
2120 	kvfree(md);
2121 	return NULL;
2122 }
2123 
2124 static void unlock_fs(struct mapped_device *md);
2125 
2126 static void free_dev(struct mapped_device *md)
2127 {
2128 	int minor = MINOR(disk_devt(md->disk));
2129 
2130 	unlock_fs(md);
2131 
2132 	cleanup_mapped_device(md);
2133 
2134 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2135 	dm_stats_cleanup(&md->stats);
2136 	free_minor(minor);
2137 
2138 	module_put(THIS_MODULE);
2139 	kvfree(md);
2140 }
2141 
2142 /*
2143  * Bind a table to the device.
2144  */
2145 static void event_callback(void *context)
2146 {
2147 	unsigned long flags;
2148 	LIST_HEAD(uevents);
2149 	struct mapped_device *md = context;
2150 
2151 	spin_lock_irqsave(&md->uevent_lock, flags);
2152 	list_splice_init(&md->uevent_list, &uevents);
2153 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2154 
2155 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2156 
2157 	atomic_inc(&md->event_nr);
2158 	wake_up(&md->eventq);
2159 	dm_issue_global_event();
2160 }
2161 
2162 /*
2163  * Returns old map, which caller must destroy.
2164  */
2165 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2166 			       struct queue_limits *limits)
2167 {
2168 	struct dm_table *old_map;
2169 	sector_t size;
2170 	int ret;
2171 
2172 	lockdep_assert_held(&md->suspend_lock);
2173 
2174 	size = dm_table_get_size(t);
2175 
2176 	/*
2177 	 * Wipe any geometry if the size of the table changed.
2178 	 */
2179 	if (size != dm_get_size(md))
2180 		memset(&md->geometry, 0, sizeof(md->geometry));
2181 
2182 	set_capacity(md->disk, size);
2183 
2184 	dm_table_event_callback(t, event_callback, md);
2185 
2186 	if (dm_table_request_based(t)) {
2187 		/*
2188 		 * Leverage the fact that request-based DM targets are
2189 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2190 		 */
2191 		md->immutable_target = dm_table_get_immutable_target(t);
2192 
2193 		/*
2194 		 * There is no need to reload with request-based dm because the
2195 		 * size of front_pad doesn't change.
2196 		 *
2197 		 * Note for future: If you are to reload bioset, prep-ed
2198 		 * requests in the queue may refer to bio from the old bioset,
2199 		 * so you must walk through the queue to unprep.
2200 		 */
2201 		if (!md->mempools) {
2202 			md->mempools = t->mempools;
2203 			t->mempools = NULL;
2204 		}
2205 	} else {
2206 		/*
2207 		 * The md may already have mempools that need changing.
2208 		 * If so, reload bioset because front_pad may have changed
2209 		 * because a different table was loaded.
2210 		 */
2211 		dm_free_md_mempools(md->mempools);
2212 		md->mempools = t->mempools;
2213 		t->mempools = NULL;
2214 	}
2215 
2216 	ret = dm_table_set_restrictions(t, md->queue, limits);
2217 	if (ret) {
2218 		old_map = ERR_PTR(ret);
2219 		goto out;
2220 	}
2221 
2222 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2223 	rcu_assign_pointer(md->map, (void *)t);
2224 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2225 
2226 	if (old_map)
2227 		dm_sync_table(md);
2228 out:
2229 	return old_map;
2230 }
2231 
2232 /*
2233  * Returns unbound table for the caller to free.
2234  */
2235 static struct dm_table *__unbind(struct mapped_device *md)
2236 {
2237 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2238 
2239 	if (!map)
2240 		return NULL;
2241 
2242 	dm_table_event_callback(map, NULL, NULL);
2243 	RCU_INIT_POINTER(md->map, NULL);
2244 	dm_sync_table(md);
2245 
2246 	return map;
2247 }
2248 
2249 /*
2250  * Constructor for a new device.
2251  */
2252 int dm_create(int minor, struct mapped_device **result)
2253 {
2254 	struct mapped_device *md;
2255 
2256 	md = alloc_dev(minor);
2257 	if (!md)
2258 		return -ENXIO;
2259 
2260 	dm_ima_reset_data(md);
2261 
2262 	*result = md;
2263 	return 0;
2264 }
2265 
2266 /*
2267  * Functions to manage md->type.
2268  * All are required to hold md->type_lock.
2269  */
2270 void dm_lock_md_type(struct mapped_device *md)
2271 {
2272 	mutex_lock(&md->type_lock);
2273 }
2274 
2275 void dm_unlock_md_type(struct mapped_device *md)
2276 {
2277 	mutex_unlock(&md->type_lock);
2278 }
2279 
2280 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2281 {
2282 	BUG_ON(!mutex_is_locked(&md->type_lock));
2283 	md->type = type;
2284 }
2285 
2286 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2287 {
2288 	return md->type;
2289 }
2290 
2291 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2292 {
2293 	return md->immutable_target_type;
2294 }
2295 
2296 /*
2297  * The queue_limits are only valid as long as you have a reference
2298  * count on 'md'.
2299  */
2300 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2301 {
2302 	BUG_ON(!atomic_read(&md->holders));
2303 	return &md->queue->limits;
2304 }
2305 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2306 
2307 /*
2308  * Setup the DM device's queue based on md's type
2309  */
2310 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2311 {
2312 	enum dm_queue_mode type = dm_table_get_type(t);
2313 	struct queue_limits limits;
2314 	struct table_device *td;
2315 	int r;
2316 
2317 	switch (type) {
2318 	case DM_TYPE_REQUEST_BASED:
2319 		md->disk->fops = &dm_rq_blk_dops;
2320 		r = dm_mq_init_request_queue(md, t);
2321 		if (r) {
2322 			DMERR("Cannot initialize queue for request-based dm mapped device");
2323 			return r;
2324 		}
2325 		break;
2326 	case DM_TYPE_BIO_BASED:
2327 	case DM_TYPE_DAX_BIO_BASED:
2328 		break;
2329 	case DM_TYPE_NONE:
2330 		WARN_ON_ONCE(true);
2331 		break;
2332 	}
2333 
2334 	r = dm_calculate_queue_limits(t, &limits);
2335 	if (r) {
2336 		DMERR("Cannot calculate initial queue limits");
2337 		return r;
2338 	}
2339 	r = dm_table_set_restrictions(t, md->queue, &limits);
2340 	if (r)
2341 		return r;
2342 
2343 	/*
2344 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2345 	 * with open_table_device() and close_table_device().
2346 	 */
2347 	mutex_lock(&md->table_devices_lock);
2348 	r = add_disk(md->disk);
2349 	mutex_unlock(&md->table_devices_lock);
2350 	if (r)
2351 		return r;
2352 
2353 	/*
2354 	 * Register the holder relationship for devices added before the disk
2355 	 * was live.
2356 	 */
2357 	list_for_each_entry(td, &md->table_devices, list) {
2358 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2359 		if (r)
2360 			goto out_undo_holders;
2361 	}
2362 
2363 	r = dm_sysfs_init(md);
2364 	if (r)
2365 		goto out_undo_holders;
2366 
2367 	md->type = type;
2368 	return 0;
2369 
2370 out_undo_holders:
2371 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2372 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2373 	mutex_lock(&md->table_devices_lock);
2374 	del_gendisk(md->disk);
2375 	mutex_unlock(&md->table_devices_lock);
2376 	return r;
2377 }
2378 
2379 struct mapped_device *dm_get_md(dev_t dev)
2380 {
2381 	struct mapped_device *md;
2382 	unsigned int minor = MINOR(dev);
2383 
2384 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2385 		return NULL;
2386 
2387 	spin_lock(&_minor_lock);
2388 
2389 	md = idr_find(&_minor_idr, minor);
2390 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2391 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2392 		md = NULL;
2393 		goto out;
2394 	}
2395 	dm_get(md);
2396 out:
2397 	spin_unlock(&_minor_lock);
2398 
2399 	return md;
2400 }
2401 EXPORT_SYMBOL_GPL(dm_get_md);
2402 
2403 void *dm_get_mdptr(struct mapped_device *md)
2404 {
2405 	return md->interface_ptr;
2406 }
2407 
2408 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2409 {
2410 	md->interface_ptr = ptr;
2411 }
2412 
2413 void dm_get(struct mapped_device *md)
2414 {
2415 	atomic_inc(&md->holders);
2416 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2417 }
2418 
2419 int dm_hold(struct mapped_device *md)
2420 {
2421 	spin_lock(&_minor_lock);
2422 	if (test_bit(DMF_FREEING, &md->flags)) {
2423 		spin_unlock(&_minor_lock);
2424 		return -EBUSY;
2425 	}
2426 	dm_get(md);
2427 	spin_unlock(&_minor_lock);
2428 	return 0;
2429 }
2430 EXPORT_SYMBOL_GPL(dm_hold);
2431 
2432 const char *dm_device_name(struct mapped_device *md)
2433 {
2434 	return md->name;
2435 }
2436 EXPORT_SYMBOL_GPL(dm_device_name);
2437 
2438 static void __dm_destroy(struct mapped_device *md, bool wait)
2439 {
2440 	struct dm_table *map;
2441 	int srcu_idx;
2442 
2443 	might_sleep();
2444 
2445 	spin_lock(&_minor_lock);
2446 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2447 	set_bit(DMF_FREEING, &md->flags);
2448 	spin_unlock(&_minor_lock);
2449 
2450 	blk_mark_disk_dead(md->disk);
2451 
2452 	/*
2453 	 * Take suspend_lock so that presuspend and postsuspend methods
2454 	 * do not race with internal suspend.
2455 	 */
2456 	mutex_lock(&md->suspend_lock);
2457 	map = dm_get_live_table(md, &srcu_idx);
2458 	if (!dm_suspended_md(md)) {
2459 		dm_table_presuspend_targets(map);
2460 		set_bit(DMF_SUSPENDED, &md->flags);
2461 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2462 		dm_table_postsuspend_targets(map);
2463 	}
2464 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2465 	dm_put_live_table(md, srcu_idx);
2466 	mutex_unlock(&md->suspend_lock);
2467 
2468 	/*
2469 	 * Rare, but there may be I/O requests still going to complete,
2470 	 * for example.  Wait for all references to disappear.
2471 	 * No one should increment the reference count of the mapped_device,
2472 	 * after the mapped_device state becomes DMF_FREEING.
2473 	 */
2474 	if (wait)
2475 		while (atomic_read(&md->holders))
2476 			fsleep(1000);
2477 	else if (atomic_read(&md->holders))
2478 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2479 		       dm_device_name(md), atomic_read(&md->holders));
2480 
2481 	dm_table_destroy(__unbind(md));
2482 	free_dev(md);
2483 }
2484 
2485 void dm_destroy(struct mapped_device *md)
2486 {
2487 	__dm_destroy(md, true);
2488 }
2489 
2490 void dm_destroy_immediate(struct mapped_device *md)
2491 {
2492 	__dm_destroy(md, false);
2493 }
2494 
2495 void dm_put(struct mapped_device *md)
2496 {
2497 	atomic_dec(&md->holders);
2498 }
2499 EXPORT_SYMBOL_GPL(dm_put);
2500 
2501 static bool dm_in_flight_bios(struct mapped_device *md)
2502 {
2503 	int cpu;
2504 	unsigned long sum = 0;
2505 
2506 	for_each_possible_cpu(cpu)
2507 		sum += *per_cpu_ptr(md->pending_io, cpu);
2508 
2509 	return sum != 0;
2510 }
2511 
2512 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2513 {
2514 	int r = 0;
2515 	DEFINE_WAIT(wait);
2516 
2517 	while (true) {
2518 		prepare_to_wait(&md->wait, &wait, task_state);
2519 
2520 		if (!dm_in_flight_bios(md))
2521 			break;
2522 
2523 		if (signal_pending_state(task_state, current)) {
2524 			r = -EINTR;
2525 			break;
2526 		}
2527 
2528 		io_schedule();
2529 	}
2530 	finish_wait(&md->wait, &wait);
2531 
2532 	smp_rmb();
2533 
2534 	return r;
2535 }
2536 
2537 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2538 {
2539 	int r = 0;
2540 
2541 	if (!queue_is_mq(md->queue))
2542 		return dm_wait_for_bios_completion(md, task_state);
2543 
2544 	while (true) {
2545 		if (!blk_mq_queue_inflight(md->queue))
2546 			break;
2547 
2548 		if (signal_pending_state(task_state, current)) {
2549 			r = -EINTR;
2550 			break;
2551 		}
2552 
2553 		fsleep(5000);
2554 	}
2555 
2556 	return r;
2557 }
2558 
2559 /*
2560  * Process the deferred bios
2561  */
2562 static void dm_wq_work(struct work_struct *work)
2563 {
2564 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2565 	struct bio *bio;
2566 
2567 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2568 		spin_lock_irq(&md->deferred_lock);
2569 		bio = bio_list_pop(&md->deferred);
2570 		spin_unlock_irq(&md->deferred_lock);
2571 
2572 		if (!bio)
2573 			break;
2574 
2575 		submit_bio_noacct(bio);
2576 		cond_resched();
2577 	}
2578 }
2579 
2580 static void dm_queue_flush(struct mapped_device *md)
2581 {
2582 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2583 	smp_mb__after_atomic();
2584 	queue_work(md->wq, &md->work);
2585 }
2586 
2587 /*
2588  * Swap in a new table, returning the old one for the caller to destroy.
2589  */
2590 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2591 {
2592 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2593 	struct queue_limits limits;
2594 	int r;
2595 
2596 	mutex_lock(&md->suspend_lock);
2597 
2598 	/* device must be suspended */
2599 	if (!dm_suspended_md(md))
2600 		goto out;
2601 
2602 	/*
2603 	 * If the new table has no data devices, retain the existing limits.
2604 	 * This helps multipath with queue_if_no_path if all paths disappear,
2605 	 * then new I/O is queued based on these limits, and then some paths
2606 	 * reappear.
2607 	 */
2608 	if (dm_table_has_no_data_devices(table)) {
2609 		live_map = dm_get_live_table_fast(md);
2610 		if (live_map)
2611 			limits = md->queue->limits;
2612 		dm_put_live_table_fast(md);
2613 	}
2614 
2615 	if (!live_map) {
2616 		r = dm_calculate_queue_limits(table, &limits);
2617 		if (r) {
2618 			map = ERR_PTR(r);
2619 			goto out;
2620 		}
2621 	}
2622 
2623 	map = __bind(md, table, &limits);
2624 	dm_issue_global_event();
2625 
2626 out:
2627 	mutex_unlock(&md->suspend_lock);
2628 	return map;
2629 }
2630 
2631 /*
2632  * Functions to lock and unlock any filesystem running on the
2633  * device.
2634  */
2635 static int lock_fs(struct mapped_device *md)
2636 {
2637 	int r;
2638 
2639 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2640 
2641 	r = freeze_bdev(md->disk->part0);
2642 	if (!r)
2643 		set_bit(DMF_FROZEN, &md->flags);
2644 	return r;
2645 }
2646 
2647 static void unlock_fs(struct mapped_device *md)
2648 {
2649 	if (!test_bit(DMF_FROZEN, &md->flags))
2650 		return;
2651 	thaw_bdev(md->disk->part0);
2652 	clear_bit(DMF_FROZEN, &md->flags);
2653 }
2654 
2655 /*
2656  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2657  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2658  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2659  *
2660  * If __dm_suspend returns 0, the device is completely quiescent
2661  * now. There is no request-processing activity. All new requests
2662  * are being added to md->deferred list.
2663  */
2664 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2665 			unsigned int suspend_flags, unsigned int task_state,
2666 			int dmf_suspended_flag)
2667 {
2668 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2669 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2670 	int r;
2671 
2672 	lockdep_assert_held(&md->suspend_lock);
2673 
2674 	/*
2675 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2676 	 * This flag is cleared before dm_suspend returns.
2677 	 */
2678 	if (noflush)
2679 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2680 	else
2681 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2682 
2683 	/*
2684 	 * This gets reverted if there's an error later and the targets
2685 	 * provide the .presuspend_undo hook.
2686 	 */
2687 	dm_table_presuspend_targets(map);
2688 
2689 	/*
2690 	 * Flush I/O to the device.
2691 	 * Any I/O submitted after lock_fs() may not be flushed.
2692 	 * noflush takes precedence over do_lockfs.
2693 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2694 	 */
2695 	if (!noflush && do_lockfs) {
2696 		r = lock_fs(md);
2697 		if (r) {
2698 			dm_table_presuspend_undo_targets(map);
2699 			return r;
2700 		}
2701 	}
2702 
2703 	/*
2704 	 * Here we must make sure that no processes are submitting requests
2705 	 * to target drivers i.e. no one may be executing
2706 	 * dm_split_and_process_bio from dm_submit_bio.
2707 	 *
2708 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2709 	 * we take the write lock. To prevent any process from reentering
2710 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2711 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2712 	 * flush_workqueue(md->wq).
2713 	 */
2714 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2715 	if (map)
2716 		synchronize_srcu(&md->io_barrier);
2717 
2718 	/*
2719 	 * Stop md->queue before flushing md->wq in case request-based
2720 	 * dm defers requests to md->wq from md->queue.
2721 	 */
2722 	if (dm_request_based(md))
2723 		dm_stop_queue(md->queue);
2724 
2725 	flush_workqueue(md->wq);
2726 
2727 	/*
2728 	 * At this point no more requests are entering target request routines.
2729 	 * We call dm_wait_for_completion to wait for all existing requests
2730 	 * to finish.
2731 	 */
2732 	r = dm_wait_for_completion(md, task_state);
2733 	if (!r)
2734 		set_bit(dmf_suspended_flag, &md->flags);
2735 
2736 	if (noflush)
2737 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2738 	if (map)
2739 		synchronize_srcu(&md->io_barrier);
2740 
2741 	/* were we interrupted ? */
2742 	if (r < 0) {
2743 		dm_queue_flush(md);
2744 
2745 		if (dm_request_based(md))
2746 			dm_start_queue(md->queue);
2747 
2748 		unlock_fs(md);
2749 		dm_table_presuspend_undo_targets(map);
2750 		/* pushback list is already flushed, so skip flush */
2751 	}
2752 
2753 	return r;
2754 }
2755 
2756 /*
2757  * We need to be able to change a mapping table under a mounted
2758  * filesystem.  For example we might want to move some data in
2759  * the background.  Before the table can be swapped with
2760  * dm_bind_table, dm_suspend must be called to flush any in
2761  * flight bios and ensure that any further io gets deferred.
2762  */
2763 /*
2764  * Suspend mechanism in request-based dm.
2765  *
2766  * 1. Flush all I/Os by lock_fs() if needed.
2767  * 2. Stop dispatching any I/O by stopping the request_queue.
2768  * 3. Wait for all in-flight I/Os to be completed or requeued.
2769  *
2770  * To abort suspend, start the request_queue.
2771  */
2772 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2773 {
2774 	struct dm_table *map = NULL;
2775 	int r = 0;
2776 
2777 retry:
2778 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2779 
2780 	if (dm_suspended_md(md)) {
2781 		r = -EINVAL;
2782 		goto out_unlock;
2783 	}
2784 
2785 	if (dm_suspended_internally_md(md)) {
2786 		/* already internally suspended, wait for internal resume */
2787 		mutex_unlock(&md->suspend_lock);
2788 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2789 		if (r)
2790 			return r;
2791 		goto retry;
2792 	}
2793 
2794 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2795 
2796 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2797 	if (r)
2798 		goto out_unlock;
2799 
2800 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2801 	dm_table_postsuspend_targets(map);
2802 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2803 
2804 out_unlock:
2805 	mutex_unlock(&md->suspend_lock);
2806 	return r;
2807 }
2808 
2809 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2810 {
2811 	if (map) {
2812 		int r = dm_table_resume_targets(map);
2813 
2814 		if (r)
2815 			return r;
2816 	}
2817 
2818 	dm_queue_flush(md);
2819 
2820 	/*
2821 	 * Flushing deferred I/Os must be done after targets are resumed
2822 	 * so that mapping of targets can work correctly.
2823 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2824 	 */
2825 	if (dm_request_based(md))
2826 		dm_start_queue(md->queue);
2827 
2828 	unlock_fs(md);
2829 
2830 	return 0;
2831 }
2832 
2833 int dm_resume(struct mapped_device *md)
2834 {
2835 	int r;
2836 	struct dm_table *map = NULL;
2837 
2838 retry:
2839 	r = -EINVAL;
2840 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2841 
2842 	if (!dm_suspended_md(md))
2843 		goto out;
2844 
2845 	if (dm_suspended_internally_md(md)) {
2846 		/* already internally suspended, wait for internal resume */
2847 		mutex_unlock(&md->suspend_lock);
2848 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2849 		if (r)
2850 			return r;
2851 		goto retry;
2852 	}
2853 
2854 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2855 	if (!map || !dm_table_get_size(map))
2856 		goto out;
2857 
2858 	r = __dm_resume(md, map);
2859 	if (r)
2860 		goto out;
2861 
2862 	clear_bit(DMF_SUSPENDED, &md->flags);
2863 out:
2864 	mutex_unlock(&md->suspend_lock);
2865 
2866 	return r;
2867 }
2868 
2869 /*
2870  * Internal suspend/resume works like userspace-driven suspend. It waits
2871  * until all bios finish and prevents issuing new bios to the target drivers.
2872  * It may be used only from the kernel.
2873  */
2874 
2875 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2876 {
2877 	struct dm_table *map = NULL;
2878 
2879 	lockdep_assert_held(&md->suspend_lock);
2880 
2881 	if (md->internal_suspend_count++)
2882 		return; /* nested internal suspend */
2883 
2884 	if (dm_suspended_md(md)) {
2885 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2886 		return; /* nest suspend */
2887 	}
2888 
2889 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2890 
2891 	/*
2892 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2893 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2894 	 * would require changing .presuspend to return an error -- avoid this
2895 	 * until there is a need for more elaborate variants of internal suspend.
2896 	 */
2897 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2898 			    DMF_SUSPENDED_INTERNALLY);
2899 
2900 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2901 	dm_table_postsuspend_targets(map);
2902 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2903 }
2904 
2905 static void __dm_internal_resume(struct mapped_device *md)
2906 {
2907 	BUG_ON(!md->internal_suspend_count);
2908 
2909 	if (--md->internal_suspend_count)
2910 		return; /* resume from nested internal suspend */
2911 
2912 	if (dm_suspended_md(md))
2913 		goto done; /* resume from nested suspend */
2914 
2915 	/*
2916 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2917 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2918 	 */
2919 	(void) __dm_resume(md, NULL);
2920 
2921 done:
2922 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2923 	smp_mb__after_atomic();
2924 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2925 }
2926 
2927 void dm_internal_suspend_noflush(struct mapped_device *md)
2928 {
2929 	mutex_lock(&md->suspend_lock);
2930 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2931 	mutex_unlock(&md->suspend_lock);
2932 }
2933 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2934 
2935 void dm_internal_resume(struct mapped_device *md)
2936 {
2937 	mutex_lock(&md->suspend_lock);
2938 	__dm_internal_resume(md);
2939 	mutex_unlock(&md->suspend_lock);
2940 }
2941 EXPORT_SYMBOL_GPL(dm_internal_resume);
2942 
2943 /*
2944  * Fast variants of internal suspend/resume hold md->suspend_lock,
2945  * which prevents interaction with userspace-driven suspend.
2946  */
2947 
2948 void dm_internal_suspend_fast(struct mapped_device *md)
2949 {
2950 	mutex_lock(&md->suspend_lock);
2951 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2952 		return;
2953 
2954 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2955 	synchronize_srcu(&md->io_barrier);
2956 	flush_workqueue(md->wq);
2957 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2958 }
2959 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2960 
2961 void dm_internal_resume_fast(struct mapped_device *md)
2962 {
2963 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2964 		goto done;
2965 
2966 	dm_queue_flush(md);
2967 
2968 done:
2969 	mutex_unlock(&md->suspend_lock);
2970 }
2971 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2972 
2973 /*
2974  *---------------------------------------------------------------
2975  * Event notification.
2976  *---------------------------------------------------------------
2977  */
2978 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2979 		      unsigned int cookie, bool need_resize_uevent)
2980 {
2981 	int r;
2982 	unsigned int noio_flag;
2983 	char udev_cookie[DM_COOKIE_LENGTH];
2984 	char *envp[3] = { NULL, NULL, NULL };
2985 	char **envpp = envp;
2986 	if (cookie) {
2987 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2988 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2989 		*envpp++ = udev_cookie;
2990 	}
2991 	if (need_resize_uevent) {
2992 		*envpp++ = "RESIZE=1";
2993 	}
2994 
2995 	noio_flag = memalloc_noio_save();
2996 
2997 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2998 
2999 	memalloc_noio_restore(noio_flag);
3000 
3001 	return r;
3002 }
3003 
3004 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3005 {
3006 	return atomic_add_return(1, &md->uevent_seq);
3007 }
3008 
3009 uint32_t dm_get_event_nr(struct mapped_device *md)
3010 {
3011 	return atomic_read(&md->event_nr);
3012 }
3013 
3014 int dm_wait_event(struct mapped_device *md, int event_nr)
3015 {
3016 	return wait_event_interruptible(md->eventq,
3017 			(event_nr != atomic_read(&md->event_nr)));
3018 }
3019 
3020 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3021 {
3022 	unsigned long flags;
3023 
3024 	spin_lock_irqsave(&md->uevent_lock, flags);
3025 	list_add(elist, &md->uevent_list);
3026 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3027 }
3028 
3029 /*
3030  * The gendisk is only valid as long as you have a reference
3031  * count on 'md'.
3032  */
3033 struct gendisk *dm_disk(struct mapped_device *md)
3034 {
3035 	return md->disk;
3036 }
3037 EXPORT_SYMBOL_GPL(dm_disk);
3038 
3039 struct kobject *dm_kobject(struct mapped_device *md)
3040 {
3041 	return &md->kobj_holder.kobj;
3042 }
3043 
3044 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3045 {
3046 	struct mapped_device *md;
3047 
3048 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3049 
3050 	spin_lock(&_minor_lock);
3051 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3052 		md = NULL;
3053 		goto out;
3054 	}
3055 	dm_get(md);
3056 out:
3057 	spin_unlock(&_minor_lock);
3058 
3059 	return md;
3060 }
3061 
3062 int dm_suspended_md(struct mapped_device *md)
3063 {
3064 	return test_bit(DMF_SUSPENDED, &md->flags);
3065 }
3066 
3067 static int dm_post_suspending_md(struct mapped_device *md)
3068 {
3069 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3070 }
3071 
3072 int dm_suspended_internally_md(struct mapped_device *md)
3073 {
3074 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3075 }
3076 
3077 int dm_test_deferred_remove_flag(struct mapped_device *md)
3078 {
3079 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3080 }
3081 
3082 int dm_suspended(struct dm_target *ti)
3083 {
3084 	return dm_suspended_md(ti->table->md);
3085 }
3086 EXPORT_SYMBOL_GPL(dm_suspended);
3087 
3088 int dm_post_suspending(struct dm_target *ti)
3089 {
3090 	return dm_post_suspending_md(ti->table->md);
3091 }
3092 EXPORT_SYMBOL_GPL(dm_post_suspending);
3093 
3094 int dm_noflush_suspending(struct dm_target *ti)
3095 {
3096 	return __noflush_suspending(ti->table->md);
3097 }
3098 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3099 
3100 void dm_free_md_mempools(struct dm_md_mempools *pools)
3101 {
3102 	if (!pools)
3103 		return;
3104 
3105 	bioset_exit(&pools->bs);
3106 	bioset_exit(&pools->io_bs);
3107 
3108 	kfree(pools);
3109 }
3110 
3111 struct dm_pr {
3112 	u64	old_key;
3113 	u64	new_key;
3114 	u32	flags;
3115 	bool	abort;
3116 	bool	fail_early;
3117 	int	ret;
3118 	enum pr_type type;
3119 };
3120 
3121 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3122 		      struct dm_pr *pr)
3123 {
3124 	struct mapped_device *md = bdev->bd_disk->private_data;
3125 	struct dm_table *table;
3126 	struct dm_target *ti;
3127 	int ret = -ENOTTY, srcu_idx;
3128 
3129 	table = dm_get_live_table(md, &srcu_idx);
3130 	if (!table || !dm_table_get_size(table))
3131 		goto out;
3132 
3133 	/* We only support devices that have a single target */
3134 	if (table->num_targets != 1)
3135 		goto out;
3136 	ti = dm_table_get_target(table, 0);
3137 
3138 	if (dm_suspended_md(md)) {
3139 		ret = -EAGAIN;
3140 		goto out;
3141 	}
3142 
3143 	ret = -EINVAL;
3144 	if (!ti->type->iterate_devices)
3145 		goto out;
3146 
3147 	ti->type->iterate_devices(ti, fn, pr);
3148 	ret = 0;
3149 out:
3150 	dm_put_live_table(md, srcu_idx);
3151 	return ret;
3152 }
3153 
3154 /*
3155  * For register / unregister we need to manually call out to every path.
3156  */
3157 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3158 			    sector_t start, sector_t len, void *data)
3159 {
3160 	struct dm_pr *pr = data;
3161 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3162 	int ret;
3163 
3164 	if (!ops || !ops->pr_register) {
3165 		pr->ret = -EOPNOTSUPP;
3166 		return -1;
3167 	}
3168 
3169 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3170 	if (!ret)
3171 		return 0;
3172 
3173 	if (!pr->ret)
3174 		pr->ret = ret;
3175 
3176 	if (pr->fail_early)
3177 		return -1;
3178 
3179 	return 0;
3180 }
3181 
3182 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3183 			  u32 flags)
3184 {
3185 	struct dm_pr pr = {
3186 		.old_key	= old_key,
3187 		.new_key	= new_key,
3188 		.flags		= flags,
3189 		.fail_early	= true,
3190 		.ret		= 0,
3191 	};
3192 	int ret;
3193 
3194 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3195 	if (ret) {
3196 		/* Didn't even get to register a path */
3197 		return ret;
3198 	}
3199 
3200 	if (!pr.ret)
3201 		return 0;
3202 	ret = pr.ret;
3203 
3204 	if (!new_key)
3205 		return ret;
3206 
3207 	/* unregister all paths if we failed to register any path */
3208 	pr.old_key = new_key;
3209 	pr.new_key = 0;
3210 	pr.flags = 0;
3211 	pr.fail_early = false;
3212 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3213 	return ret;
3214 }
3215 
3216 
3217 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3218 			   sector_t start, sector_t len, void *data)
3219 {
3220 	struct dm_pr *pr = data;
3221 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3222 
3223 	if (!ops || !ops->pr_reserve) {
3224 		pr->ret = -EOPNOTSUPP;
3225 		return -1;
3226 	}
3227 
3228 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3229 	if (!pr->ret)
3230 		return -1;
3231 
3232 	return 0;
3233 }
3234 
3235 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3236 			 u32 flags)
3237 {
3238 	struct dm_pr pr = {
3239 		.old_key	= key,
3240 		.flags		= flags,
3241 		.type		= type,
3242 		.fail_early	= false,
3243 		.ret		= 0,
3244 	};
3245 	int ret;
3246 
3247 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3248 	if (ret)
3249 		return ret;
3250 
3251 	return pr.ret;
3252 }
3253 
3254 /*
3255  * If there is a non-All Registrants type of reservation, the release must be
3256  * sent down the holding path. For the cases where there is no reservation or
3257  * the path is not the holder the device will also return success, so we must
3258  * try each path to make sure we got the correct path.
3259  */
3260 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3261 			   sector_t start, sector_t len, void *data)
3262 {
3263 	struct dm_pr *pr = data;
3264 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3265 
3266 	if (!ops || !ops->pr_release) {
3267 		pr->ret = -EOPNOTSUPP;
3268 		return -1;
3269 	}
3270 
3271 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3272 	if (pr->ret)
3273 		return -1;
3274 
3275 	return 0;
3276 }
3277 
3278 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3279 {
3280 	struct dm_pr pr = {
3281 		.old_key	= key,
3282 		.type		= type,
3283 		.fail_early	= false,
3284 	};
3285 	int ret;
3286 
3287 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3288 	if (ret)
3289 		return ret;
3290 
3291 	return pr.ret;
3292 }
3293 
3294 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3295 			   sector_t start, sector_t len, void *data)
3296 {
3297 	struct dm_pr *pr = data;
3298 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3299 
3300 	if (!ops || !ops->pr_preempt) {
3301 		pr->ret = -EOPNOTSUPP;
3302 		return -1;
3303 	}
3304 
3305 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3306 				  pr->abort);
3307 	if (!pr->ret)
3308 		return -1;
3309 
3310 	return 0;
3311 }
3312 
3313 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3314 			 enum pr_type type, bool abort)
3315 {
3316 	struct dm_pr pr = {
3317 		.new_key	= new_key,
3318 		.old_key	= old_key,
3319 		.type		= type,
3320 		.fail_early	= false,
3321 	};
3322 	int ret;
3323 
3324 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3325 	if (ret)
3326 		return ret;
3327 
3328 	return pr.ret;
3329 }
3330 
3331 static int dm_pr_clear(struct block_device *bdev, u64 key)
3332 {
3333 	struct mapped_device *md = bdev->bd_disk->private_data;
3334 	const struct pr_ops *ops;
3335 	int r, srcu_idx;
3336 
3337 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3338 	if (r < 0)
3339 		goto out;
3340 
3341 	ops = bdev->bd_disk->fops->pr_ops;
3342 	if (ops && ops->pr_clear)
3343 		r = ops->pr_clear(bdev, key);
3344 	else
3345 		r = -EOPNOTSUPP;
3346 out:
3347 	dm_unprepare_ioctl(md, srcu_idx);
3348 	return r;
3349 }
3350 
3351 static const struct pr_ops dm_pr_ops = {
3352 	.pr_register	= dm_pr_register,
3353 	.pr_reserve	= dm_pr_reserve,
3354 	.pr_release	= dm_pr_release,
3355 	.pr_preempt	= dm_pr_preempt,
3356 	.pr_clear	= dm_pr_clear,
3357 };
3358 
3359 static const struct block_device_operations dm_blk_dops = {
3360 	.submit_bio = dm_submit_bio,
3361 	.poll_bio = dm_poll_bio,
3362 	.open = dm_blk_open,
3363 	.release = dm_blk_close,
3364 	.ioctl = dm_blk_ioctl,
3365 	.getgeo = dm_blk_getgeo,
3366 	.report_zones = dm_blk_report_zones,
3367 	.pr_ops = &dm_pr_ops,
3368 	.owner = THIS_MODULE
3369 };
3370 
3371 static const struct block_device_operations dm_rq_blk_dops = {
3372 	.open = dm_blk_open,
3373 	.release = dm_blk_close,
3374 	.ioctl = dm_blk_ioctl,
3375 	.getgeo = dm_blk_getgeo,
3376 	.pr_ops = &dm_pr_ops,
3377 	.owner = THIS_MODULE
3378 };
3379 
3380 static const struct dax_operations dm_dax_ops = {
3381 	.direct_access = dm_dax_direct_access,
3382 	.zero_page_range = dm_dax_zero_page_range,
3383 	.recovery_write = dm_dax_recovery_write,
3384 };
3385 
3386 /*
3387  * module hooks
3388  */
3389 module_init(dm_init);
3390 module_exit(dm_exit);
3391 
3392 module_param(major, uint, 0);
3393 MODULE_PARM_DESC(major, "The major number of the device mapper");
3394 
3395 module_param(reserved_bio_based_ios, uint, 0644);
3396 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3397 
3398 module_param(dm_numa_node, int, 0644);
3399 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3400 
3401 module_param(swap_bios, int, 0644);
3402 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3403 
3404 MODULE_DESCRIPTION(DM_NAME " driver");
3405 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3406 MODULE_LICENSE("GPL");
3407