1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set bs; 152 struct bio_set io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 /* 162 * Bio-based DM's mempools' reserved IOs set by the user. 163 */ 164 #define RESERVED_BIO_BASED_IOS 16 165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 166 167 static int __dm_get_module_param_int(int *module_param, int min, int max) 168 { 169 int param = READ_ONCE(*module_param); 170 int modified_param = 0; 171 bool modified = true; 172 173 if (param < min) 174 modified_param = min; 175 else if (param > max) 176 modified_param = max; 177 else 178 modified = false; 179 180 if (modified) { 181 (void)cmpxchg(module_param, param, modified_param); 182 param = modified_param; 183 } 184 185 return param; 186 } 187 188 unsigned __dm_get_module_param(unsigned *module_param, 189 unsigned def, unsigned max) 190 { 191 unsigned param = READ_ONCE(*module_param); 192 unsigned modified_param = 0; 193 194 if (!param) 195 modified_param = def; 196 else if (param > max) 197 modified_param = max; 198 199 if (modified_param) { 200 (void)cmpxchg(module_param, param, modified_param); 201 param = modified_param; 202 } 203 204 return param; 205 } 206 207 unsigned dm_get_reserved_bio_based_ios(void) 208 { 209 return __dm_get_module_param(&reserved_bio_based_ios, 210 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 211 } 212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 213 214 static unsigned dm_get_numa_node(void) 215 { 216 return __dm_get_module_param_int(&dm_numa_node, 217 DM_NUMA_NODE, num_online_nodes() - 1); 218 } 219 220 static int __init local_init(void) 221 { 222 int r; 223 224 r = dm_uevent_init(); 225 if (r) 226 return r; 227 228 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 229 if (!deferred_remove_workqueue) { 230 r = -ENOMEM; 231 goto out_uevent_exit; 232 } 233 234 _major = major; 235 r = register_blkdev(_major, _name); 236 if (r < 0) 237 goto out_free_workqueue; 238 239 if (!_major) 240 _major = r; 241 242 return 0; 243 244 out_free_workqueue: 245 destroy_workqueue(deferred_remove_workqueue); 246 out_uevent_exit: 247 dm_uevent_exit(); 248 249 return r; 250 } 251 252 static void local_exit(void) 253 { 254 flush_scheduled_work(); 255 destroy_workqueue(deferred_remove_workqueue); 256 257 unregister_blkdev(_major, _name); 258 dm_uevent_exit(); 259 260 _major = 0; 261 262 DMINFO("cleaned up"); 263 } 264 265 static int (*_inits[])(void) __initdata = { 266 local_init, 267 dm_target_init, 268 dm_linear_init, 269 dm_stripe_init, 270 dm_io_init, 271 dm_kcopyd_init, 272 dm_interface_init, 273 dm_statistics_init, 274 }; 275 276 static void (*_exits[])(void) = { 277 local_exit, 278 dm_target_exit, 279 dm_linear_exit, 280 dm_stripe_exit, 281 dm_io_exit, 282 dm_kcopyd_exit, 283 dm_interface_exit, 284 dm_statistics_exit, 285 }; 286 287 static int __init dm_init(void) 288 { 289 const int count = ARRAY_SIZE(_inits); 290 291 int r, i; 292 293 for (i = 0; i < count; i++) { 294 r = _inits[i](); 295 if (r) 296 goto bad; 297 } 298 299 return 0; 300 301 bad: 302 while (i--) 303 _exits[i](); 304 305 return r; 306 } 307 308 static void __exit dm_exit(void) 309 { 310 int i = ARRAY_SIZE(_exits); 311 312 while (i--) 313 _exits[i](); 314 315 /* 316 * Should be empty by this point. 317 */ 318 idr_destroy(&_minor_idr); 319 } 320 321 /* 322 * Block device functions 323 */ 324 int dm_deleting_md(struct mapped_device *md) 325 { 326 return test_bit(DMF_DELETING, &md->flags); 327 } 328 329 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 330 { 331 struct mapped_device *md; 332 333 spin_lock(&_minor_lock); 334 335 md = bdev->bd_disk->private_data; 336 if (!md) 337 goto out; 338 339 if (test_bit(DMF_FREEING, &md->flags) || 340 dm_deleting_md(md)) { 341 md = NULL; 342 goto out; 343 } 344 345 dm_get(md); 346 atomic_inc(&md->open_count); 347 out: 348 spin_unlock(&_minor_lock); 349 350 return md ? 0 : -ENXIO; 351 } 352 353 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 354 { 355 struct mapped_device *md; 356 357 spin_lock(&_minor_lock); 358 359 md = disk->private_data; 360 if (WARN_ON(!md)) 361 goto out; 362 363 if (atomic_dec_and_test(&md->open_count) && 364 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 365 queue_work(deferred_remove_workqueue, &deferred_remove_work); 366 367 dm_put(md); 368 out: 369 spin_unlock(&_minor_lock); 370 } 371 372 int dm_open_count(struct mapped_device *md) 373 { 374 return atomic_read(&md->open_count); 375 } 376 377 /* 378 * Guarantees nothing is using the device before it's deleted. 379 */ 380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 381 { 382 int r = 0; 383 384 spin_lock(&_minor_lock); 385 386 if (dm_open_count(md)) { 387 r = -EBUSY; 388 if (mark_deferred) 389 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 390 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 391 r = -EEXIST; 392 else 393 set_bit(DMF_DELETING, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 int dm_cancel_deferred_remove(struct mapped_device *md) 401 { 402 int r = 0; 403 404 spin_lock(&_minor_lock); 405 406 if (test_bit(DMF_DELETING, &md->flags)) 407 r = -EBUSY; 408 else 409 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 410 411 spin_unlock(&_minor_lock); 412 413 return r; 414 } 415 416 static void do_deferred_remove(struct work_struct *w) 417 { 418 dm_deferred_remove(); 419 } 420 421 sector_t dm_get_size(struct mapped_device *md) 422 { 423 return get_capacity(md->disk); 424 } 425 426 struct request_queue *dm_get_md_queue(struct mapped_device *md) 427 { 428 return md->queue; 429 } 430 431 struct dm_stats *dm_get_stats(struct mapped_device *md) 432 { 433 return &md->stats; 434 } 435 436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 437 { 438 struct mapped_device *md = bdev->bd_disk->private_data; 439 440 return dm_get_geometry(md, geo); 441 } 442 443 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 444 struct blk_zone *zones, unsigned int *nr_zones, 445 gfp_t gfp_mask) 446 { 447 #ifdef CONFIG_BLK_DEV_ZONED 448 struct mapped_device *md = disk->private_data; 449 struct dm_target *tgt; 450 struct dm_table *map; 451 int srcu_idx, ret; 452 453 if (dm_suspended_md(md)) 454 return -EAGAIN; 455 456 map = dm_get_live_table(md, &srcu_idx); 457 if (!map) 458 return -EIO; 459 460 tgt = dm_table_find_target(map, sector); 461 if (!dm_target_is_valid(tgt)) { 462 ret = -EIO; 463 goto out; 464 } 465 466 /* 467 * If we are executing this, we already know that the block device 468 * is a zoned device and so each target should have support for that 469 * type of drive. A missing report_zones method means that the target 470 * driver has a problem. 471 */ 472 if (WARN_ON(!tgt->type->report_zones)) { 473 ret = -EIO; 474 goto out; 475 } 476 477 /* 478 * blkdev_report_zones() will loop and call this again to cover all the 479 * zones of the target, eventually moving on to the next target. 480 * So there is no need to loop here trying to fill the entire array 481 * of zones. 482 */ 483 ret = tgt->type->report_zones(tgt, sector, zones, 484 nr_zones, gfp_mask); 485 486 out: 487 dm_put_live_table(md, srcu_idx); 488 return ret; 489 #else 490 return -ENOTSUPP; 491 #endif 492 } 493 494 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 495 struct block_device **bdev) 496 __acquires(md->io_barrier) 497 { 498 struct dm_target *tgt; 499 struct dm_table *map; 500 int r; 501 502 retry: 503 r = -ENOTTY; 504 map = dm_get_live_table(md, srcu_idx); 505 if (!map || !dm_table_get_size(map)) 506 return r; 507 508 /* We only support devices that have a single target */ 509 if (dm_table_get_num_targets(map) != 1) 510 return r; 511 512 tgt = dm_table_get_target(map, 0); 513 if (!tgt->type->prepare_ioctl) 514 return r; 515 516 if (dm_suspended_md(md)) 517 return -EAGAIN; 518 519 r = tgt->type->prepare_ioctl(tgt, bdev); 520 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 521 dm_put_live_table(md, *srcu_idx); 522 msleep(10); 523 goto retry; 524 } 525 526 return r; 527 } 528 529 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 530 __releases(md->io_barrier) 531 { 532 dm_put_live_table(md, srcu_idx); 533 } 534 535 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 536 unsigned int cmd, unsigned long arg) 537 { 538 struct mapped_device *md = bdev->bd_disk->private_data; 539 int r, srcu_idx; 540 541 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 542 if (r < 0) 543 goto out; 544 545 if (r > 0) { 546 /* 547 * Target determined this ioctl is being issued against a 548 * subset of the parent bdev; require extra privileges. 549 */ 550 if (!capable(CAP_SYS_RAWIO)) { 551 DMWARN_LIMIT( 552 "%s: sending ioctl %x to DM device without required privilege.", 553 current->comm, cmd); 554 r = -ENOIOCTLCMD; 555 goto out; 556 } 557 } 558 559 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 560 out: 561 dm_unprepare_ioctl(md, srcu_idx); 562 return r; 563 } 564 565 static void start_io_acct(struct dm_io *io); 566 567 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 568 { 569 struct dm_io *io; 570 struct dm_target_io *tio; 571 struct bio *clone; 572 573 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 574 if (!clone) 575 return NULL; 576 577 tio = container_of(clone, struct dm_target_io, clone); 578 tio->inside_dm_io = true; 579 tio->io = NULL; 580 581 io = container_of(tio, struct dm_io, tio); 582 io->magic = DM_IO_MAGIC; 583 io->status = 0; 584 atomic_set(&io->io_count, 1); 585 io->orig_bio = bio; 586 io->md = md; 587 spin_lock_init(&io->endio_lock); 588 589 start_io_acct(io); 590 591 return io; 592 } 593 594 static void free_io(struct mapped_device *md, struct dm_io *io) 595 { 596 bio_put(&io->tio.clone); 597 } 598 599 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 600 unsigned target_bio_nr, gfp_t gfp_mask) 601 { 602 struct dm_target_io *tio; 603 604 if (!ci->io->tio.io) { 605 /* the dm_target_io embedded in ci->io is available */ 606 tio = &ci->io->tio; 607 } else { 608 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 609 if (!clone) 610 return NULL; 611 612 tio = container_of(clone, struct dm_target_io, clone); 613 tio->inside_dm_io = false; 614 } 615 616 tio->magic = DM_TIO_MAGIC; 617 tio->io = ci->io; 618 tio->ti = ti; 619 tio->target_bio_nr = target_bio_nr; 620 621 return tio; 622 } 623 624 static void free_tio(struct dm_target_io *tio) 625 { 626 if (tio->inside_dm_io) 627 return; 628 bio_put(&tio->clone); 629 } 630 631 static bool md_in_flight_bios(struct mapped_device *md) 632 { 633 int cpu; 634 struct hd_struct *part = &dm_disk(md)->part0; 635 long sum = 0; 636 637 for_each_possible_cpu(cpu) { 638 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 639 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 640 } 641 642 return sum != 0; 643 } 644 645 static bool md_in_flight(struct mapped_device *md) 646 { 647 if (queue_is_mq(md->queue)) 648 return blk_mq_queue_inflight(md->queue); 649 else 650 return md_in_flight_bios(md); 651 } 652 653 static void start_io_acct(struct dm_io *io) 654 { 655 struct mapped_device *md = io->md; 656 struct bio *bio = io->orig_bio; 657 658 io->start_time = jiffies; 659 660 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio), 661 &dm_disk(md)->part0); 662 663 if (unlikely(dm_stats_used(&md->stats))) 664 dm_stats_account_io(&md->stats, bio_data_dir(bio), 665 bio->bi_iter.bi_sector, bio_sectors(bio), 666 false, 0, &io->stats_aux); 667 } 668 669 static void end_io_acct(struct dm_io *io) 670 { 671 struct mapped_device *md = io->md; 672 struct bio *bio = io->orig_bio; 673 unsigned long duration = jiffies - io->start_time; 674 675 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0, 676 io->start_time); 677 678 if (unlikely(dm_stats_used(&md->stats))) 679 dm_stats_account_io(&md->stats, bio_data_dir(bio), 680 bio->bi_iter.bi_sector, bio_sectors(bio), 681 true, duration, &io->stats_aux); 682 683 /* nudge anyone waiting on suspend queue */ 684 if (unlikely(wq_has_sleeper(&md->wait))) 685 wake_up(&md->wait); 686 } 687 688 /* 689 * Add the bio to the list of deferred io. 690 */ 691 static void queue_io(struct mapped_device *md, struct bio *bio) 692 { 693 unsigned long flags; 694 695 spin_lock_irqsave(&md->deferred_lock, flags); 696 bio_list_add(&md->deferred, bio); 697 spin_unlock_irqrestore(&md->deferred_lock, flags); 698 queue_work(md->wq, &md->work); 699 } 700 701 /* 702 * Everyone (including functions in this file), should use this 703 * function to access the md->map field, and make sure they call 704 * dm_put_live_table() when finished. 705 */ 706 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 707 { 708 *srcu_idx = srcu_read_lock(&md->io_barrier); 709 710 return srcu_dereference(md->map, &md->io_barrier); 711 } 712 713 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 714 { 715 srcu_read_unlock(&md->io_barrier, srcu_idx); 716 } 717 718 void dm_sync_table(struct mapped_device *md) 719 { 720 synchronize_srcu(&md->io_barrier); 721 synchronize_rcu_expedited(); 722 } 723 724 /* 725 * A fast alternative to dm_get_live_table/dm_put_live_table. 726 * The caller must not block between these two functions. 727 */ 728 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 729 { 730 rcu_read_lock(); 731 return rcu_dereference(md->map); 732 } 733 734 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 735 { 736 rcu_read_unlock(); 737 } 738 739 static char *_dm_claim_ptr = "I belong to device-mapper"; 740 741 /* 742 * Open a table device so we can use it as a map destination. 743 */ 744 static int open_table_device(struct table_device *td, dev_t dev, 745 struct mapped_device *md) 746 { 747 struct block_device *bdev; 748 749 int r; 750 751 BUG_ON(td->dm_dev.bdev); 752 753 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 754 if (IS_ERR(bdev)) 755 return PTR_ERR(bdev); 756 757 r = bd_link_disk_holder(bdev, dm_disk(md)); 758 if (r) { 759 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 760 return r; 761 } 762 763 td->dm_dev.bdev = bdev; 764 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 765 return 0; 766 } 767 768 /* 769 * Close a table device that we've been using. 770 */ 771 static void close_table_device(struct table_device *td, struct mapped_device *md) 772 { 773 if (!td->dm_dev.bdev) 774 return; 775 776 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 777 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 778 put_dax(td->dm_dev.dax_dev); 779 td->dm_dev.bdev = NULL; 780 td->dm_dev.dax_dev = NULL; 781 } 782 783 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 784 fmode_t mode) { 785 struct table_device *td; 786 787 list_for_each_entry(td, l, list) 788 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 789 return td; 790 791 return NULL; 792 } 793 794 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 795 struct dm_dev **result) { 796 int r; 797 struct table_device *td; 798 799 mutex_lock(&md->table_devices_lock); 800 td = find_table_device(&md->table_devices, dev, mode); 801 if (!td) { 802 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 803 if (!td) { 804 mutex_unlock(&md->table_devices_lock); 805 return -ENOMEM; 806 } 807 808 td->dm_dev.mode = mode; 809 td->dm_dev.bdev = NULL; 810 811 if ((r = open_table_device(td, dev, md))) { 812 mutex_unlock(&md->table_devices_lock); 813 kfree(td); 814 return r; 815 } 816 817 format_dev_t(td->dm_dev.name, dev); 818 819 refcount_set(&td->count, 1); 820 list_add(&td->list, &md->table_devices); 821 } else { 822 refcount_inc(&td->count); 823 } 824 mutex_unlock(&md->table_devices_lock); 825 826 *result = &td->dm_dev; 827 return 0; 828 } 829 EXPORT_SYMBOL_GPL(dm_get_table_device); 830 831 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 832 { 833 struct table_device *td = container_of(d, struct table_device, dm_dev); 834 835 mutex_lock(&md->table_devices_lock); 836 if (refcount_dec_and_test(&td->count)) { 837 close_table_device(td, md); 838 list_del(&td->list); 839 kfree(td); 840 } 841 mutex_unlock(&md->table_devices_lock); 842 } 843 EXPORT_SYMBOL(dm_put_table_device); 844 845 static void free_table_devices(struct list_head *devices) 846 { 847 struct list_head *tmp, *next; 848 849 list_for_each_safe(tmp, next, devices) { 850 struct table_device *td = list_entry(tmp, struct table_device, list); 851 852 DMWARN("dm_destroy: %s still exists with %d references", 853 td->dm_dev.name, refcount_read(&td->count)); 854 kfree(td); 855 } 856 } 857 858 /* 859 * Get the geometry associated with a dm device 860 */ 861 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 862 { 863 *geo = md->geometry; 864 865 return 0; 866 } 867 868 /* 869 * Set the geometry of a device. 870 */ 871 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 872 { 873 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 874 875 if (geo->start > sz) { 876 DMWARN("Start sector is beyond the geometry limits."); 877 return -EINVAL; 878 } 879 880 md->geometry = *geo; 881 882 return 0; 883 } 884 885 static int __noflush_suspending(struct mapped_device *md) 886 { 887 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 888 } 889 890 /* 891 * Decrements the number of outstanding ios that a bio has been 892 * cloned into, completing the original io if necc. 893 */ 894 static void dec_pending(struct dm_io *io, blk_status_t error) 895 { 896 unsigned long flags; 897 blk_status_t io_error; 898 struct bio *bio; 899 struct mapped_device *md = io->md; 900 901 /* Push-back supersedes any I/O errors */ 902 if (unlikely(error)) { 903 spin_lock_irqsave(&io->endio_lock, flags); 904 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 905 io->status = error; 906 spin_unlock_irqrestore(&io->endio_lock, flags); 907 } 908 909 if (atomic_dec_and_test(&io->io_count)) { 910 if (io->status == BLK_STS_DM_REQUEUE) { 911 /* 912 * Target requested pushing back the I/O. 913 */ 914 spin_lock_irqsave(&md->deferred_lock, flags); 915 if (__noflush_suspending(md)) 916 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 917 bio_list_add_head(&md->deferred, io->orig_bio); 918 else 919 /* noflush suspend was interrupted. */ 920 io->status = BLK_STS_IOERR; 921 spin_unlock_irqrestore(&md->deferred_lock, flags); 922 } 923 924 io_error = io->status; 925 bio = io->orig_bio; 926 end_io_acct(io); 927 free_io(md, io); 928 929 if (io_error == BLK_STS_DM_REQUEUE) 930 return; 931 932 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 933 /* 934 * Preflush done for flush with data, reissue 935 * without REQ_PREFLUSH. 936 */ 937 bio->bi_opf &= ~REQ_PREFLUSH; 938 queue_io(md, bio); 939 } else { 940 /* done with normal IO or empty flush */ 941 if (io_error) 942 bio->bi_status = io_error; 943 bio_endio(bio); 944 } 945 } 946 } 947 948 void disable_write_same(struct mapped_device *md) 949 { 950 struct queue_limits *limits = dm_get_queue_limits(md); 951 952 /* device doesn't really support WRITE SAME, disable it */ 953 limits->max_write_same_sectors = 0; 954 } 955 956 void disable_write_zeroes(struct mapped_device *md) 957 { 958 struct queue_limits *limits = dm_get_queue_limits(md); 959 960 /* device doesn't really support WRITE ZEROES, disable it */ 961 limits->max_write_zeroes_sectors = 0; 962 } 963 964 static void clone_endio(struct bio *bio) 965 { 966 blk_status_t error = bio->bi_status; 967 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 968 struct dm_io *io = tio->io; 969 struct mapped_device *md = tio->io->md; 970 dm_endio_fn endio = tio->ti->type->end_io; 971 972 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 973 if (bio_op(bio) == REQ_OP_WRITE_SAME && 974 !bio->bi_disk->queue->limits.max_write_same_sectors) 975 disable_write_same(md); 976 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 977 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 978 disable_write_zeroes(md); 979 } 980 981 if (endio) { 982 int r = endio(tio->ti, bio, &error); 983 switch (r) { 984 case DM_ENDIO_REQUEUE: 985 error = BLK_STS_DM_REQUEUE; 986 /*FALLTHRU*/ 987 case DM_ENDIO_DONE: 988 break; 989 case DM_ENDIO_INCOMPLETE: 990 /* The target will handle the io */ 991 return; 992 default: 993 DMWARN("unimplemented target endio return value: %d", r); 994 BUG(); 995 } 996 } 997 998 free_tio(tio); 999 dec_pending(io, error); 1000 } 1001 1002 /* 1003 * Return maximum size of I/O possible at the supplied sector up to the current 1004 * target boundary. 1005 */ 1006 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1007 { 1008 sector_t target_offset = dm_target_offset(ti, sector); 1009 1010 return ti->len - target_offset; 1011 } 1012 1013 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1014 { 1015 sector_t len = max_io_len_target_boundary(sector, ti); 1016 sector_t offset, max_len; 1017 1018 /* 1019 * Does the target need to split even further? 1020 */ 1021 if (ti->max_io_len) { 1022 offset = dm_target_offset(ti, sector); 1023 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1024 max_len = sector_div(offset, ti->max_io_len); 1025 else 1026 max_len = offset & (ti->max_io_len - 1); 1027 max_len = ti->max_io_len - max_len; 1028 1029 if (len > max_len) 1030 len = max_len; 1031 } 1032 1033 return len; 1034 } 1035 1036 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1037 { 1038 if (len > UINT_MAX) { 1039 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1040 (unsigned long long)len, UINT_MAX); 1041 ti->error = "Maximum size of target IO is too large"; 1042 return -EINVAL; 1043 } 1044 1045 /* 1046 * BIO based queue uses its own splitting. When multipage bvecs 1047 * is switched on, size of the incoming bio may be too big to 1048 * be handled in some targets, such as crypt. 1049 * 1050 * When these targets are ready for the big bio, we can remove 1051 * the limit. 1052 */ 1053 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE); 1054 1055 return 0; 1056 } 1057 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1058 1059 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1060 sector_t sector, int *srcu_idx) 1061 __acquires(md->io_barrier) 1062 { 1063 struct dm_table *map; 1064 struct dm_target *ti; 1065 1066 map = dm_get_live_table(md, srcu_idx); 1067 if (!map) 1068 return NULL; 1069 1070 ti = dm_table_find_target(map, sector); 1071 if (!dm_target_is_valid(ti)) 1072 return NULL; 1073 1074 return ti; 1075 } 1076 1077 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1078 long nr_pages, void **kaddr, pfn_t *pfn) 1079 { 1080 struct mapped_device *md = dax_get_private(dax_dev); 1081 sector_t sector = pgoff * PAGE_SECTORS; 1082 struct dm_target *ti; 1083 long len, ret = -EIO; 1084 int srcu_idx; 1085 1086 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1087 1088 if (!ti) 1089 goto out; 1090 if (!ti->type->direct_access) 1091 goto out; 1092 len = max_io_len(sector, ti) / PAGE_SECTORS; 1093 if (len < 1) 1094 goto out; 1095 nr_pages = min(len, nr_pages); 1096 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1097 1098 out: 1099 dm_put_live_table(md, srcu_idx); 1100 1101 return ret; 1102 } 1103 1104 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1105 void *addr, size_t bytes, struct iov_iter *i) 1106 { 1107 struct mapped_device *md = dax_get_private(dax_dev); 1108 sector_t sector = pgoff * PAGE_SECTORS; 1109 struct dm_target *ti; 1110 long ret = 0; 1111 int srcu_idx; 1112 1113 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1114 1115 if (!ti) 1116 goto out; 1117 if (!ti->type->dax_copy_from_iter) { 1118 ret = copy_from_iter(addr, bytes, i); 1119 goto out; 1120 } 1121 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1122 out: 1123 dm_put_live_table(md, srcu_idx); 1124 1125 return ret; 1126 } 1127 1128 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1129 void *addr, size_t bytes, struct iov_iter *i) 1130 { 1131 struct mapped_device *md = dax_get_private(dax_dev); 1132 sector_t sector = pgoff * PAGE_SECTORS; 1133 struct dm_target *ti; 1134 long ret = 0; 1135 int srcu_idx; 1136 1137 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1138 1139 if (!ti) 1140 goto out; 1141 if (!ti->type->dax_copy_to_iter) { 1142 ret = copy_to_iter(addr, bytes, i); 1143 goto out; 1144 } 1145 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1146 out: 1147 dm_put_live_table(md, srcu_idx); 1148 1149 return ret; 1150 } 1151 1152 /* 1153 * A target may call dm_accept_partial_bio only from the map routine. It is 1154 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1155 * 1156 * dm_accept_partial_bio informs the dm that the target only wants to process 1157 * additional n_sectors sectors of the bio and the rest of the data should be 1158 * sent in a next bio. 1159 * 1160 * A diagram that explains the arithmetics: 1161 * +--------------------+---------------+-------+ 1162 * | 1 | 2 | 3 | 1163 * +--------------------+---------------+-------+ 1164 * 1165 * <-------------- *tio->len_ptr ---------------> 1166 * <------- bi_size -------> 1167 * <-- n_sectors --> 1168 * 1169 * Region 1 was already iterated over with bio_advance or similar function. 1170 * (it may be empty if the target doesn't use bio_advance) 1171 * Region 2 is the remaining bio size that the target wants to process. 1172 * (it may be empty if region 1 is non-empty, although there is no reason 1173 * to make it empty) 1174 * The target requires that region 3 is to be sent in the next bio. 1175 * 1176 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1177 * the partially processed part (the sum of regions 1+2) must be the same for all 1178 * copies of the bio. 1179 */ 1180 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1181 { 1182 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1183 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1184 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1185 BUG_ON(bi_size > *tio->len_ptr); 1186 BUG_ON(n_sectors > bi_size); 1187 *tio->len_ptr -= bi_size - n_sectors; 1188 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1189 } 1190 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1191 1192 /* 1193 * The zone descriptors obtained with a zone report indicate 1194 * zone positions within the underlying device of the target. The zone 1195 * descriptors must be remapped to match their position within the dm device. 1196 * The caller target should obtain the zones information using 1197 * blkdev_report_zones() to ensure that remapping for partition offset is 1198 * already handled. 1199 */ 1200 void dm_remap_zone_report(struct dm_target *ti, sector_t start, 1201 struct blk_zone *zones, unsigned int *nr_zones) 1202 { 1203 #ifdef CONFIG_BLK_DEV_ZONED 1204 struct blk_zone *zone; 1205 unsigned int nrz = *nr_zones; 1206 int i; 1207 1208 /* 1209 * Remap the start sector and write pointer position of the zones in 1210 * the array. Since we may have obtained from the target underlying 1211 * device more zones that the target size, also adjust the number 1212 * of zones. 1213 */ 1214 for (i = 0; i < nrz; i++) { 1215 zone = zones + i; 1216 if (zone->start >= start + ti->len) { 1217 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i)); 1218 break; 1219 } 1220 1221 zone->start = zone->start + ti->begin - start; 1222 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 1223 continue; 1224 1225 if (zone->cond == BLK_ZONE_COND_FULL) 1226 zone->wp = zone->start + zone->len; 1227 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1228 zone->wp = zone->start; 1229 else 1230 zone->wp = zone->wp + ti->begin - start; 1231 } 1232 1233 *nr_zones = i; 1234 #else /* !CONFIG_BLK_DEV_ZONED */ 1235 *nr_zones = 0; 1236 #endif 1237 } 1238 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1239 1240 static blk_qc_t __map_bio(struct dm_target_io *tio) 1241 { 1242 int r; 1243 sector_t sector; 1244 struct bio *clone = &tio->clone; 1245 struct dm_io *io = tio->io; 1246 struct mapped_device *md = io->md; 1247 struct dm_target *ti = tio->ti; 1248 blk_qc_t ret = BLK_QC_T_NONE; 1249 1250 clone->bi_end_io = clone_endio; 1251 1252 /* 1253 * Map the clone. If r == 0 we don't need to do 1254 * anything, the target has assumed ownership of 1255 * this io. 1256 */ 1257 atomic_inc(&io->io_count); 1258 sector = clone->bi_iter.bi_sector; 1259 1260 r = ti->type->map(ti, clone); 1261 switch (r) { 1262 case DM_MAPIO_SUBMITTED: 1263 break; 1264 case DM_MAPIO_REMAPPED: 1265 /* the bio has been remapped so dispatch it */ 1266 trace_block_bio_remap(clone->bi_disk->queue, clone, 1267 bio_dev(io->orig_bio), sector); 1268 if (md->type == DM_TYPE_NVME_BIO_BASED) 1269 ret = direct_make_request(clone); 1270 else 1271 ret = generic_make_request(clone); 1272 break; 1273 case DM_MAPIO_KILL: 1274 free_tio(tio); 1275 dec_pending(io, BLK_STS_IOERR); 1276 break; 1277 case DM_MAPIO_REQUEUE: 1278 free_tio(tio); 1279 dec_pending(io, BLK_STS_DM_REQUEUE); 1280 break; 1281 default: 1282 DMWARN("unimplemented target map return value: %d", r); 1283 BUG(); 1284 } 1285 1286 return ret; 1287 } 1288 1289 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1290 { 1291 bio->bi_iter.bi_sector = sector; 1292 bio->bi_iter.bi_size = to_bytes(len); 1293 } 1294 1295 /* 1296 * Creates a bio that consists of range of complete bvecs. 1297 */ 1298 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1299 sector_t sector, unsigned len) 1300 { 1301 struct bio *clone = &tio->clone; 1302 1303 __bio_clone_fast(clone, bio); 1304 1305 if (bio_integrity(bio)) { 1306 int r; 1307 1308 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1309 !dm_target_passes_integrity(tio->ti->type))) { 1310 DMWARN("%s: the target %s doesn't support integrity data.", 1311 dm_device_name(tio->io->md), 1312 tio->ti->type->name); 1313 return -EIO; 1314 } 1315 1316 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1317 if (r < 0) 1318 return r; 1319 } 1320 1321 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1322 clone->bi_iter.bi_size = to_bytes(len); 1323 1324 if (bio_integrity(bio)) 1325 bio_integrity_trim(clone); 1326 1327 return 0; 1328 } 1329 1330 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1331 struct dm_target *ti, unsigned num_bios) 1332 { 1333 struct dm_target_io *tio; 1334 int try; 1335 1336 if (!num_bios) 1337 return; 1338 1339 if (num_bios == 1) { 1340 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1341 bio_list_add(blist, &tio->clone); 1342 return; 1343 } 1344 1345 for (try = 0; try < 2; try++) { 1346 int bio_nr; 1347 struct bio *bio; 1348 1349 if (try) 1350 mutex_lock(&ci->io->md->table_devices_lock); 1351 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1352 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1353 if (!tio) 1354 break; 1355 1356 bio_list_add(blist, &tio->clone); 1357 } 1358 if (try) 1359 mutex_unlock(&ci->io->md->table_devices_lock); 1360 if (bio_nr == num_bios) 1361 return; 1362 1363 while ((bio = bio_list_pop(blist))) { 1364 tio = container_of(bio, struct dm_target_io, clone); 1365 free_tio(tio); 1366 } 1367 } 1368 } 1369 1370 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1371 struct dm_target_io *tio, unsigned *len) 1372 { 1373 struct bio *clone = &tio->clone; 1374 1375 tio->len_ptr = len; 1376 1377 __bio_clone_fast(clone, ci->bio); 1378 if (len) 1379 bio_setup_sector(clone, ci->sector, *len); 1380 1381 return __map_bio(tio); 1382 } 1383 1384 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1385 unsigned num_bios, unsigned *len) 1386 { 1387 struct bio_list blist = BIO_EMPTY_LIST; 1388 struct bio *bio; 1389 struct dm_target_io *tio; 1390 1391 alloc_multiple_bios(&blist, ci, ti, num_bios); 1392 1393 while ((bio = bio_list_pop(&blist))) { 1394 tio = container_of(bio, struct dm_target_io, clone); 1395 (void) __clone_and_map_simple_bio(ci, tio, len); 1396 } 1397 } 1398 1399 static int __send_empty_flush(struct clone_info *ci) 1400 { 1401 unsigned target_nr = 0; 1402 struct dm_target *ti; 1403 1404 /* 1405 * Empty flush uses a statically initialized bio, as the base for 1406 * cloning. However, blkg association requires that a bdev is 1407 * associated with a gendisk, which doesn't happen until the bdev is 1408 * opened. So, blkg association is done at issue time of the flush 1409 * rather than when the device is created in alloc_dev(). 1410 */ 1411 bio_set_dev(ci->bio, ci->io->md->bdev); 1412 1413 BUG_ON(bio_has_data(ci->bio)); 1414 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1415 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1416 1417 bio_disassociate_blkg(ci->bio); 1418 1419 return 0; 1420 } 1421 1422 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1423 sector_t sector, unsigned *len) 1424 { 1425 struct bio *bio = ci->bio; 1426 struct dm_target_io *tio; 1427 int r; 1428 1429 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1430 tio->len_ptr = len; 1431 r = clone_bio(tio, bio, sector, *len); 1432 if (r < 0) { 1433 free_tio(tio); 1434 return r; 1435 } 1436 (void) __map_bio(tio); 1437 1438 return 0; 1439 } 1440 1441 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1442 1443 static unsigned get_num_discard_bios(struct dm_target *ti) 1444 { 1445 return ti->num_discard_bios; 1446 } 1447 1448 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1449 { 1450 return ti->num_secure_erase_bios; 1451 } 1452 1453 static unsigned get_num_write_same_bios(struct dm_target *ti) 1454 { 1455 return ti->num_write_same_bios; 1456 } 1457 1458 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1459 { 1460 return ti->num_write_zeroes_bios; 1461 } 1462 1463 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1464 unsigned num_bios) 1465 { 1466 unsigned len = ci->sector_count; 1467 1468 /* 1469 * Even though the device advertised support for this type of 1470 * request, that does not mean every target supports it, and 1471 * reconfiguration might also have changed that since the 1472 * check was performed. 1473 */ 1474 if (!num_bios) 1475 return -EOPNOTSUPP; 1476 1477 __send_duplicate_bios(ci, ti, num_bios, &len); 1478 1479 ci->sector += len; 1480 ci->sector_count -= len; 1481 1482 return 0; 1483 } 1484 1485 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1486 { 1487 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1488 } 1489 1490 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1491 { 1492 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1493 } 1494 1495 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1496 { 1497 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1498 } 1499 1500 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1501 { 1502 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1503 } 1504 1505 static bool is_abnormal_io(struct bio *bio) 1506 { 1507 bool r = false; 1508 1509 switch (bio_op(bio)) { 1510 case REQ_OP_DISCARD: 1511 case REQ_OP_SECURE_ERASE: 1512 case REQ_OP_WRITE_SAME: 1513 case REQ_OP_WRITE_ZEROES: 1514 r = true; 1515 break; 1516 } 1517 1518 return r; 1519 } 1520 1521 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1522 int *result) 1523 { 1524 struct bio *bio = ci->bio; 1525 1526 if (bio_op(bio) == REQ_OP_DISCARD) 1527 *result = __send_discard(ci, ti); 1528 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1529 *result = __send_secure_erase(ci, ti); 1530 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1531 *result = __send_write_same(ci, ti); 1532 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1533 *result = __send_write_zeroes(ci, ti); 1534 else 1535 return false; 1536 1537 return true; 1538 } 1539 1540 /* 1541 * Select the correct strategy for processing a non-flush bio. 1542 */ 1543 static int __split_and_process_non_flush(struct clone_info *ci) 1544 { 1545 struct dm_target *ti; 1546 unsigned len; 1547 int r; 1548 1549 ti = dm_table_find_target(ci->map, ci->sector); 1550 if (!dm_target_is_valid(ti)) 1551 return -EIO; 1552 1553 if (__process_abnormal_io(ci, ti, &r)) 1554 return r; 1555 1556 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1557 1558 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1559 if (r < 0) 1560 return r; 1561 1562 ci->sector += len; 1563 ci->sector_count -= len; 1564 1565 return 0; 1566 } 1567 1568 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1569 struct dm_table *map, struct bio *bio) 1570 { 1571 ci->map = map; 1572 ci->io = alloc_io(md, bio); 1573 ci->sector = bio->bi_iter.bi_sector; 1574 } 1575 1576 #define __dm_part_stat_sub(part, field, subnd) \ 1577 (part_stat_get(part, field) -= (subnd)) 1578 1579 /* 1580 * Entry point to split a bio into clones and submit them to the targets. 1581 */ 1582 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1583 struct dm_table *map, struct bio *bio) 1584 { 1585 struct clone_info ci; 1586 blk_qc_t ret = BLK_QC_T_NONE; 1587 int error = 0; 1588 1589 init_clone_info(&ci, md, map, bio); 1590 1591 if (bio->bi_opf & REQ_PREFLUSH) { 1592 struct bio flush_bio; 1593 1594 /* 1595 * Use an on-stack bio for this, it's safe since we don't 1596 * need to reference it after submit. It's just used as 1597 * the basis for the clone(s). 1598 */ 1599 bio_init(&flush_bio, NULL, 0); 1600 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1601 ci.bio = &flush_bio; 1602 ci.sector_count = 0; 1603 error = __send_empty_flush(&ci); 1604 /* dec_pending submits any data associated with flush */ 1605 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1606 ci.bio = bio; 1607 ci.sector_count = 0; 1608 error = __split_and_process_non_flush(&ci); 1609 } else { 1610 ci.bio = bio; 1611 ci.sector_count = bio_sectors(bio); 1612 while (ci.sector_count && !error) { 1613 error = __split_and_process_non_flush(&ci); 1614 if (current->bio_list && ci.sector_count && !error) { 1615 /* 1616 * Remainder must be passed to generic_make_request() 1617 * so that it gets handled *after* bios already submitted 1618 * have been completely processed. 1619 * We take a clone of the original to store in 1620 * ci.io->orig_bio to be used by end_io_acct() and 1621 * for dec_pending to use for completion handling. 1622 */ 1623 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1624 GFP_NOIO, &md->queue->bio_split); 1625 ci.io->orig_bio = b; 1626 1627 /* 1628 * Adjust IO stats for each split, otherwise upon queue 1629 * reentry there will be redundant IO accounting. 1630 * NOTE: this is a stop-gap fix, a proper fix involves 1631 * significant refactoring of DM core's bio splitting 1632 * (by eliminating DM's splitting and just using bio_split) 1633 */ 1634 part_stat_lock(); 1635 __dm_part_stat_sub(&dm_disk(md)->part0, 1636 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1637 part_stat_unlock(); 1638 1639 bio_chain(b, bio); 1640 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1641 ret = generic_make_request(bio); 1642 break; 1643 } 1644 } 1645 } 1646 1647 /* drop the extra reference count */ 1648 dec_pending(ci.io, errno_to_blk_status(error)); 1649 return ret; 1650 } 1651 1652 /* 1653 * Optimized variant of __split_and_process_bio that leverages the 1654 * fact that targets that use it do _not_ have a need to split bios. 1655 */ 1656 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1657 struct bio *bio, struct dm_target *ti) 1658 { 1659 struct clone_info ci; 1660 blk_qc_t ret = BLK_QC_T_NONE; 1661 int error = 0; 1662 1663 init_clone_info(&ci, md, map, bio); 1664 1665 if (bio->bi_opf & REQ_PREFLUSH) { 1666 struct bio flush_bio; 1667 1668 /* 1669 * Use an on-stack bio for this, it's safe since we don't 1670 * need to reference it after submit. It's just used as 1671 * the basis for the clone(s). 1672 */ 1673 bio_init(&flush_bio, NULL, 0); 1674 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1675 ci.bio = &flush_bio; 1676 ci.sector_count = 0; 1677 error = __send_empty_flush(&ci); 1678 /* dec_pending submits any data associated with flush */ 1679 } else { 1680 struct dm_target_io *tio; 1681 1682 ci.bio = bio; 1683 ci.sector_count = bio_sectors(bio); 1684 if (__process_abnormal_io(&ci, ti, &error)) 1685 goto out; 1686 1687 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1688 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1689 } 1690 out: 1691 /* drop the extra reference count */ 1692 dec_pending(ci.io, errno_to_blk_status(error)); 1693 return ret; 1694 } 1695 1696 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1697 { 1698 unsigned len, sector_count; 1699 1700 sector_count = bio_sectors(*bio); 1701 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1702 1703 if (sector_count > len) { 1704 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1705 1706 bio_chain(split, *bio); 1707 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1708 generic_make_request(*bio); 1709 *bio = split; 1710 } 1711 } 1712 1713 static blk_qc_t dm_process_bio(struct mapped_device *md, 1714 struct dm_table *map, struct bio *bio) 1715 { 1716 blk_qc_t ret = BLK_QC_T_NONE; 1717 struct dm_target *ti = md->immutable_target; 1718 1719 if (unlikely(!map)) { 1720 bio_io_error(bio); 1721 return ret; 1722 } 1723 1724 if (!ti) { 1725 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1726 if (unlikely(!ti || !dm_target_is_valid(ti))) { 1727 bio_io_error(bio); 1728 return ret; 1729 } 1730 } 1731 1732 /* 1733 * If in ->make_request_fn we need to use blk_queue_split(), otherwise 1734 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1735 * won't be imposed. 1736 */ 1737 if (current->bio_list) { 1738 blk_queue_split(md->queue, &bio); 1739 if (!is_abnormal_io(bio)) 1740 dm_queue_split(md, ti, &bio); 1741 } 1742 1743 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1744 return __process_bio(md, map, bio, ti); 1745 else 1746 return __split_and_process_bio(md, map, bio); 1747 } 1748 1749 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1750 { 1751 struct mapped_device *md = q->queuedata; 1752 blk_qc_t ret = BLK_QC_T_NONE; 1753 int srcu_idx; 1754 struct dm_table *map; 1755 1756 map = dm_get_live_table(md, &srcu_idx); 1757 1758 /* if we're suspended, we have to queue this io for later */ 1759 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1760 dm_put_live_table(md, srcu_idx); 1761 1762 if (!(bio->bi_opf & REQ_RAHEAD)) 1763 queue_io(md, bio); 1764 else 1765 bio_io_error(bio); 1766 return ret; 1767 } 1768 1769 ret = dm_process_bio(md, map, bio); 1770 1771 dm_put_live_table(md, srcu_idx); 1772 return ret; 1773 } 1774 1775 static int dm_any_congested(void *congested_data, int bdi_bits) 1776 { 1777 int r = bdi_bits; 1778 struct mapped_device *md = congested_data; 1779 struct dm_table *map; 1780 1781 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1782 if (dm_request_based(md)) { 1783 /* 1784 * With request-based DM we only need to check the 1785 * top-level queue for congestion. 1786 */ 1787 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1788 } else { 1789 map = dm_get_live_table_fast(md); 1790 if (map) 1791 r = dm_table_any_congested(map, bdi_bits); 1792 dm_put_live_table_fast(md); 1793 } 1794 } 1795 1796 return r; 1797 } 1798 1799 /*----------------------------------------------------------------- 1800 * An IDR is used to keep track of allocated minor numbers. 1801 *---------------------------------------------------------------*/ 1802 static void free_minor(int minor) 1803 { 1804 spin_lock(&_minor_lock); 1805 idr_remove(&_minor_idr, minor); 1806 spin_unlock(&_minor_lock); 1807 } 1808 1809 /* 1810 * See if the device with a specific minor # is free. 1811 */ 1812 static int specific_minor(int minor) 1813 { 1814 int r; 1815 1816 if (minor >= (1 << MINORBITS)) 1817 return -EINVAL; 1818 1819 idr_preload(GFP_KERNEL); 1820 spin_lock(&_minor_lock); 1821 1822 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1823 1824 spin_unlock(&_minor_lock); 1825 idr_preload_end(); 1826 if (r < 0) 1827 return r == -ENOSPC ? -EBUSY : r; 1828 return 0; 1829 } 1830 1831 static int next_free_minor(int *minor) 1832 { 1833 int r; 1834 1835 idr_preload(GFP_KERNEL); 1836 spin_lock(&_minor_lock); 1837 1838 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1839 1840 spin_unlock(&_minor_lock); 1841 idr_preload_end(); 1842 if (r < 0) 1843 return r; 1844 *minor = r; 1845 return 0; 1846 } 1847 1848 static const struct block_device_operations dm_blk_dops; 1849 static const struct dax_operations dm_dax_ops; 1850 1851 static void dm_wq_work(struct work_struct *work); 1852 1853 static void dm_init_normal_md_queue(struct mapped_device *md) 1854 { 1855 /* 1856 * Initialize aspects of queue that aren't relevant for blk-mq 1857 */ 1858 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1859 } 1860 1861 static void cleanup_mapped_device(struct mapped_device *md) 1862 { 1863 if (md->wq) 1864 destroy_workqueue(md->wq); 1865 bioset_exit(&md->bs); 1866 bioset_exit(&md->io_bs); 1867 1868 if (md->dax_dev) { 1869 kill_dax(md->dax_dev); 1870 put_dax(md->dax_dev); 1871 md->dax_dev = NULL; 1872 } 1873 1874 if (md->disk) { 1875 spin_lock(&_minor_lock); 1876 md->disk->private_data = NULL; 1877 spin_unlock(&_minor_lock); 1878 del_gendisk(md->disk); 1879 put_disk(md->disk); 1880 } 1881 1882 if (md->queue) 1883 blk_cleanup_queue(md->queue); 1884 1885 cleanup_srcu_struct(&md->io_barrier); 1886 1887 if (md->bdev) { 1888 bdput(md->bdev); 1889 md->bdev = NULL; 1890 } 1891 1892 mutex_destroy(&md->suspend_lock); 1893 mutex_destroy(&md->type_lock); 1894 mutex_destroy(&md->table_devices_lock); 1895 1896 dm_mq_cleanup_mapped_device(md); 1897 } 1898 1899 /* 1900 * Allocate and initialise a blank device with a given minor. 1901 */ 1902 static struct mapped_device *alloc_dev(int minor) 1903 { 1904 int r, numa_node_id = dm_get_numa_node(); 1905 struct dax_device *dax_dev = NULL; 1906 struct mapped_device *md; 1907 void *old_md; 1908 1909 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1910 if (!md) { 1911 DMWARN("unable to allocate device, out of memory."); 1912 return NULL; 1913 } 1914 1915 if (!try_module_get(THIS_MODULE)) 1916 goto bad_module_get; 1917 1918 /* get a minor number for the dev */ 1919 if (minor == DM_ANY_MINOR) 1920 r = next_free_minor(&minor); 1921 else 1922 r = specific_minor(minor); 1923 if (r < 0) 1924 goto bad_minor; 1925 1926 r = init_srcu_struct(&md->io_barrier); 1927 if (r < 0) 1928 goto bad_io_barrier; 1929 1930 md->numa_node_id = numa_node_id; 1931 md->init_tio_pdu = false; 1932 md->type = DM_TYPE_NONE; 1933 mutex_init(&md->suspend_lock); 1934 mutex_init(&md->type_lock); 1935 mutex_init(&md->table_devices_lock); 1936 spin_lock_init(&md->deferred_lock); 1937 atomic_set(&md->holders, 1); 1938 atomic_set(&md->open_count, 0); 1939 atomic_set(&md->event_nr, 0); 1940 atomic_set(&md->uevent_seq, 0); 1941 INIT_LIST_HEAD(&md->uevent_list); 1942 INIT_LIST_HEAD(&md->table_devices); 1943 spin_lock_init(&md->uevent_lock); 1944 1945 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1946 if (!md->queue) 1947 goto bad; 1948 md->queue->queuedata = md; 1949 md->queue->backing_dev_info->congested_data = md; 1950 1951 md->disk = alloc_disk_node(1, md->numa_node_id); 1952 if (!md->disk) 1953 goto bad; 1954 1955 init_waitqueue_head(&md->wait); 1956 INIT_WORK(&md->work, dm_wq_work); 1957 init_waitqueue_head(&md->eventq); 1958 init_completion(&md->kobj_holder.completion); 1959 1960 md->disk->major = _major; 1961 md->disk->first_minor = minor; 1962 md->disk->fops = &dm_blk_dops; 1963 md->disk->queue = md->queue; 1964 md->disk->private_data = md; 1965 sprintf(md->disk->disk_name, "dm-%d", minor); 1966 1967 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1968 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1969 if (!dax_dev) 1970 goto bad; 1971 } 1972 md->dax_dev = dax_dev; 1973 1974 add_disk_no_queue_reg(md->disk); 1975 format_dev_t(md->name, MKDEV(_major, minor)); 1976 1977 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1978 if (!md->wq) 1979 goto bad; 1980 1981 md->bdev = bdget_disk(md->disk, 0); 1982 if (!md->bdev) 1983 goto bad; 1984 1985 dm_stats_init(&md->stats); 1986 1987 /* Populate the mapping, nobody knows we exist yet */ 1988 spin_lock(&_minor_lock); 1989 old_md = idr_replace(&_minor_idr, md, minor); 1990 spin_unlock(&_minor_lock); 1991 1992 BUG_ON(old_md != MINOR_ALLOCED); 1993 1994 return md; 1995 1996 bad: 1997 cleanup_mapped_device(md); 1998 bad_io_barrier: 1999 free_minor(minor); 2000 bad_minor: 2001 module_put(THIS_MODULE); 2002 bad_module_get: 2003 kvfree(md); 2004 return NULL; 2005 } 2006 2007 static void unlock_fs(struct mapped_device *md); 2008 2009 static void free_dev(struct mapped_device *md) 2010 { 2011 int minor = MINOR(disk_devt(md->disk)); 2012 2013 unlock_fs(md); 2014 2015 cleanup_mapped_device(md); 2016 2017 free_table_devices(&md->table_devices); 2018 dm_stats_cleanup(&md->stats); 2019 free_minor(minor); 2020 2021 module_put(THIS_MODULE); 2022 kvfree(md); 2023 } 2024 2025 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2026 { 2027 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2028 int ret = 0; 2029 2030 if (dm_table_bio_based(t)) { 2031 /* 2032 * The md may already have mempools that need changing. 2033 * If so, reload bioset because front_pad may have changed 2034 * because a different table was loaded. 2035 */ 2036 bioset_exit(&md->bs); 2037 bioset_exit(&md->io_bs); 2038 2039 } else if (bioset_initialized(&md->bs)) { 2040 /* 2041 * There's no need to reload with request-based dm 2042 * because the size of front_pad doesn't change. 2043 * Note for future: If you are to reload bioset, 2044 * prep-ed requests in the queue may refer 2045 * to bio from the old bioset, so you must walk 2046 * through the queue to unprep. 2047 */ 2048 goto out; 2049 } 2050 2051 BUG_ON(!p || 2052 bioset_initialized(&md->bs) || 2053 bioset_initialized(&md->io_bs)); 2054 2055 ret = bioset_init_from_src(&md->bs, &p->bs); 2056 if (ret) 2057 goto out; 2058 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2059 if (ret) 2060 bioset_exit(&md->bs); 2061 out: 2062 /* mempool bind completed, no longer need any mempools in the table */ 2063 dm_table_free_md_mempools(t); 2064 return ret; 2065 } 2066 2067 /* 2068 * Bind a table to the device. 2069 */ 2070 static void event_callback(void *context) 2071 { 2072 unsigned long flags; 2073 LIST_HEAD(uevents); 2074 struct mapped_device *md = (struct mapped_device *) context; 2075 2076 spin_lock_irqsave(&md->uevent_lock, flags); 2077 list_splice_init(&md->uevent_list, &uevents); 2078 spin_unlock_irqrestore(&md->uevent_lock, flags); 2079 2080 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2081 2082 atomic_inc(&md->event_nr); 2083 wake_up(&md->eventq); 2084 dm_issue_global_event(); 2085 } 2086 2087 /* 2088 * Protected by md->suspend_lock obtained by dm_swap_table(). 2089 */ 2090 static void __set_size(struct mapped_device *md, sector_t size) 2091 { 2092 lockdep_assert_held(&md->suspend_lock); 2093 2094 set_capacity(md->disk, size); 2095 2096 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2097 } 2098 2099 /* 2100 * Returns old map, which caller must destroy. 2101 */ 2102 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2103 struct queue_limits *limits) 2104 { 2105 struct dm_table *old_map; 2106 struct request_queue *q = md->queue; 2107 bool request_based = dm_table_request_based(t); 2108 sector_t size; 2109 int ret; 2110 2111 lockdep_assert_held(&md->suspend_lock); 2112 2113 size = dm_table_get_size(t); 2114 2115 /* 2116 * Wipe any geometry if the size of the table changed. 2117 */ 2118 if (size != dm_get_size(md)) 2119 memset(&md->geometry, 0, sizeof(md->geometry)); 2120 2121 __set_size(md, size); 2122 2123 dm_table_event_callback(t, event_callback, md); 2124 2125 /* 2126 * The queue hasn't been stopped yet, if the old table type wasn't 2127 * for request-based during suspension. So stop it to prevent 2128 * I/O mapping before resume. 2129 * This must be done before setting the queue restrictions, 2130 * because request-based dm may be run just after the setting. 2131 */ 2132 if (request_based) 2133 dm_stop_queue(q); 2134 2135 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2136 /* 2137 * Leverage the fact that request-based DM targets and 2138 * NVMe bio based targets are immutable singletons 2139 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2140 * and __process_bio. 2141 */ 2142 md->immutable_target = dm_table_get_immutable_target(t); 2143 } 2144 2145 ret = __bind_mempools(md, t); 2146 if (ret) { 2147 old_map = ERR_PTR(ret); 2148 goto out; 2149 } 2150 2151 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2152 rcu_assign_pointer(md->map, (void *)t); 2153 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2154 2155 dm_table_set_restrictions(t, q, limits); 2156 if (old_map) 2157 dm_sync_table(md); 2158 2159 out: 2160 return old_map; 2161 } 2162 2163 /* 2164 * Returns unbound table for the caller to free. 2165 */ 2166 static struct dm_table *__unbind(struct mapped_device *md) 2167 { 2168 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2169 2170 if (!map) 2171 return NULL; 2172 2173 dm_table_event_callback(map, NULL, NULL); 2174 RCU_INIT_POINTER(md->map, NULL); 2175 dm_sync_table(md); 2176 2177 return map; 2178 } 2179 2180 /* 2181 * Constructor for a new device. 2182 */ 2183 int dm_create(int minor, struct mapped_device **result) 2184 { 2185 int r; 2186 struct mapped_device *md; 2187 2188 md = alloc_dev(minor); 2189 if (!md) 2190 return -ENXIO; 2191 2192 r = dm_sysfs_init(md); 2193 if (r) { 2194 free_dev(md); 2195 return r; 2196 } 2197 2198 *result = md; 2199 return 0; 2200 } 2201 2202 /* 2203 * Functions to manage md->type. 2204 * All are required to hold md->type_lock. 2205 */ 2206 void dm_lock_md_type(struct mapped_device *md) 2207 { 2208 mutex_lock(&md->type_lock); 2209 } 2210 2211 void dm_unlock_md_type(struct mapped_device *md) 2212 { 2213 mutex_unlock(&md->type_lock); 2214 } 2215 2216 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2217 { 2218 BUG_ON(!mutex_is_locked(&md->type_lock)); 2219 md->type = type; 2220 } 2221 2222 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2223 { 2224 return md->type; 2225 } 2226 2227 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2228 { 2229 return md->immutable_target_type; 2230 } 2231 2232 /* 2233 * The queue_limits are only valid as long as you have a reference 2234 * count on 'md'. 2235 */ 2236 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2237 { 2238 BUG_ON(!atomic_read(&md->holders)); 2239 return &md->queue->limits; 2240 } 2241 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2242 2243 /* 2244 * Setup the DM device's queue based on md's type 2245 */ 2246 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2247 { 2248 int r; 2249 struct queue_limits limits; 2250 enum dm_queue_mode type = dm_get_md_type(md); 2251 2252 switch (type) { 2253 case DM_TYPE_REQUEST_BASED: 2254 r = dm_mq_init_request_queue(md, t); 2255 if (r) { 2256 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2257 return r; 2258 } 2259 break; 2260 case DM_TYPE_BIO_BASED: 2261 case DM_TYPE_DAX_BIO_BASED: 2262 case DM_TYPE_NVME_BIO_BASED: 2263 dm_init_normal_md_queue(md); 2264 blk_queue_make_request(md->queue, dm_make_request); 2265 break; 2266 case DM_TYPE_NONE: 2267 WARN_ON_ONCE(true); 2268 break; 2269 } 2270 2271 r = dm_calculate_queue_limits(t, &limits); 2272 if (r) { 2273 DMERR("Cannot calculate initial queue limits"); 2274 return r; 2275 } 2276 dm_table_set_restrictions(t, md->queue, &limits); 2277 blk_register_queue(md->disk); 2278 2279 return 0; 2280 } 2281 2282 struct mapped_device *dm_get_md(dev_t dev) 2283 { 2284 struct mapped_device *md; 2285 unsigned minor = MINOR(dev); 2286 2287 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2288 return NULL; 2289 2290 spin_lock(&_minor_lock); 2291 2292 md = idr_find(&_minor_idr, minor); 2293 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2294 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2295 md = NULL; 2296 goto out; 2297 } 2298 dm_get(md); 2299 out: 2300 spin_unlock(&_minor_lock); 2301 2302 return md; 2303 } 2304 EXPORT_SYMBOL_GPL(dm_get_md); 2305 2306 void *dm_get_mdptr(struct mapped_device *md) 2307 { 2308 return md->interface_ptr; 2309 } 2310 2311 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2312 { 2313 md->interface_ptr = ptr; 2314 } 2315 2316 void dm_get(struct mapped_device *md) 2317 { 2318 atomic_inc(&md->holders); 2319 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2320 } 2321 2322 int dm_hold(struct mapped_device *md) 2323 { 2324 spin_lock(&_minor_lock); 2325 if (test_bit(DMF_FREEING, &md->flags)) { 2326 spin_unlock(&_minor_lock); 2327 return -EBUSY; 2328 } 2329 dm_get(md); 2330 spin_unlock(&_minor_lock); 2331 return 0; 2332 } 2333 EXPORT_SYMBOL_GPL(dm_hold); 2334 2335 const char *dm_device_name(struct mapped_device *md) 2336 { 2337 return md->name; 2338 } 2339 EXPORT_SYMBOL_GPL(dm_device_name); 2340 2341 static void __dm_destroy(struct mapped_device *md, bool wait) 2342 { 2343 struct dm_table *map; 2344 int srcu_idx; 2345 2346 might_sleep(); 2347 2348 spin_lock(&_minor_lock); 2349 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2350 set_bit(DMF_FREEING, &md->flags); 2351 spin_unlock(&_minor_lock); 2352 2353 blk_set_queue_dying(md->queue); 2354 2355 /* 2356 * Take suspend_lock so that presuspend and postsuspend methods 2357 * do not race with internal suspend. 2358 */ 2359 mutex_lock(&md->suspend_lock); 2360 map = dm_get_live_table(md, &srcu_idx); 2361 if (!dm_suspended_md(md)) { 2362 dm_table_presuspend_targets(map); 2363 dm_table_postsuspend_targets(map); 2364 } 2365 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2366 dm_put_live_table(md, srcu_idx); 2367 mutex_unlock(&md->suspend_lock); 2368 2369 /* 2370 * Rare, but there may be I/O requests still going to complete, 2371 * for example. Wait for all references to disappear. 2372 * No one should increment the reference count of the mapped_device, 2373 * after the mapped_device state becomes DMF_FREEING. 2374 */ 2375 if (wait) 2376 while (atomic_read(&md->holders)) 2377 msleep(1); 2378 else if (atomic_read(&md->holders)) 2379 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2380 dm_device_name(md), atomic_read(&md->holders)); 2381 2382 dm_sysfs_exit(md); 2383 dm_table_destroy(__unbind(md)); 2384 free_dev(md); 2385 } 2386 2387 void dm_destroy(struct mapped_device *md) 2388 { 2389 __dm_destroy(md, true); 2390 } 2391 2392 void dm_destroy_immediate(struct mapped_device *md) 2393 { 2394 __dm_destroy(md, false); 2395 } 2396 2397 void dm_put(struct mapped_device *md) 2398 { 2399 atomic_dec(&md->holders); 2400 } 2401 EXPORT_SYMBOL_GPL(dm_put); 2402 2403 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2404 { 2405 int r = 0; 2406 DEFINE_WAIT(wait); 2407 2408 while (1) { 2409 prepare_to_wait(&md->wait, &wait, task_state); 2410 2411 if (!md_in_flight(md)) 2412 break; 2413 2414 if (signal_pending_state(task_state, current)) { 2415 r = -EINTR; 2416 break; 2417 } 2418 2419 io_schedule(); 2420 } 2421 finish_wait(&md->wait, &wait); 2422 2423 return r; 2424 } 2425 2426 /* 2427 * Process the deferred bios 2428 */ 2429 static void dm_wq_work(struct work_struct *work) 2430 { 2431 struct mapped_device *md = container_of(work, struct mapped_device, 2432 work); 2433 struct bio *c; 2434 int srcu_idx; 2435 struct dm_table *map; 2436 2437 map = dm_get_live_table(md, &srcu_idx); 2438 2439 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2440 spin_lock_irq(&md->deferred_lock); 2441 c = bio_list_pop(&md->deferred); 2442 spin_unlock_irq(&md->deferred_lock); 2443 2444 if (!c) 2445 break; 2446 2447 if (dm_request_based(md)) 2448 (void) generic_make_request(c); 2449 else 2450 (void) dm_process_bio(md, map, c); 2451 } 2452 2453 dm_put_live_table(md, srcu_idx); 2454 } 2455 2456 static void dm_queue_flush(struct mapped_device *md) 2457 { 2458 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2459 smp_mb__after_atomic(); 2460 queue_work(md->wq, &md->work); 2461 } 2462 2463 /* 2464 * Swap in a new table, returning the old one for the caller to destroy. 2465 */ 2466 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2467 { 2468 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2469 struct queue_limits limits; 2470 int r; 2471 2472 mutex_lock(&md->suspend_lock); 2473 2474 /* device must be suspended */ 2475 if (!dm_suspended_md(md)) 2476 goto out; 2477 2478 /* 2479 * If the new table has no data devices, retain the existing limits. 2480 * This helps multipath with queue_if_no_path if all paths disappear, 2481 * then new I/O is queued based on these limits, and then some paths 2482 * reappear. 2483 */ 2484 if (dm_table_has_no_data_devices(table)) { 2485 live_map = dm_get_live_table_fast(md); 2486 if (live_map) 2487 limits = md->queue->limits; 2488 dm_put_live_table_fast(md); 2489 } 2490 2491 if (!live_map) { 2492 r = dm_calculate_queue_limits(table, &limits); 2493 if (r) { 2494 map = ERR_PTR(r); 2495 goto out; 2496 } 2497 } 2498 2499 map = __bind(md, table, &limits); 2500 dm_issue_global_event(); 2501 2502 out: 2503 mutex_unlock(&md->suspend_lock); 2504 return map; 2505 } 2506 2507 /* 2508 * Functions to lock and unlock any filesystem running on the 2509 * device. 2510 */ 2511 static int lock_fs(struct mapped_device *md) 2512 { 2513 int r; 2514 2515 WARN_ON(md->frozen_sb); 2516 2517 md->frozen_sb = freeze_bdev(md->bdev); 2518 if (IS_ERR(md->frozen_sb)) { 2519 r = PTR_ERR(md->frozen_sb); 2520 md->frozen_sb = NULL; 2521 return r; 2522 } 2523 2524 set_bit(DMF_FROZEN, &md->flags); 2525 2526 return 0; 2527 } 2528 2529 static void unlock_fs(struct mapped_device *md) 2530 { 2531 if (!test_bit(DMF_FROZEN, &md->flags)) 2532 return; 2533 2534 thaw_bdev(md->bdev, md->frozen_sb); 2535 md->frozen_sb = NULL; 2536 clear_bit(DMF_FROZEN, &md->flags); 2537 } 2538 2539 /* 2540 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2541 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2542 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2543 * 2544 * If __dm_suspend returns 0, the device is completely quiescent 2545 * now. There is no request-processing activity. All new requests 2546 * are being added to md->deferred list. 2547 */ 2548 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2549 unsigned suspend_flags, long task_state, 2550 int dmf_suspended_flag) 2551 { 2552 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2553 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2554 int r; 2555 2556 lockdep_assert_held(&md->suspend_lock); 2557 2558 /* 2559 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2560 * This flag is cleared before dm_suspend returns. 2561 */ 2562 if (noflush) 2563 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2564 else 2565 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2566 2567 /* 2568 * This gets reverted if there's an error later and the targets 2569 * provide the .presuspend_undo hook. 2570 */ 2571 dm_table_presuspend_targets(map); 2572 2573 /* 2574 * Flush I/O to the device. 2575 * Any I/O submitted after lock_fs() may not be flushed. 2576 * noflush takes precedence over do_lockfs. 2577 * (lock_fs() flushes I/Os and waits for them to complete.) 2578 */ 2579 if (!noflush && do_lockfs) { 2580 r = lock_fs(md); 2581 if (r) { 2582 dm_table_presuspend_undo_targets(map); 2583 return r; 2584 } 2585 } 2586 2587 /* 2588 * Here we must make sure that no processes are submitting requests 2589 * to target drivers i.e. no one may be executing 2590 * __split_and_process_bio. This is called from dm_request and 2591 * dm_wq_work. 2592 * 2593 * To get all processes out of __split_and_process_bio in dm_request, 2594 * we take the write lock. To prevent any process from reentering 2595 * __split_and_process_bio from dm_request and quiesce the thread 2596 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2597 * flush_workqueue(md->wq). 2598 */ 2599 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2600 if (map) 2601 synchronize_srcu(&md->io_barrier); 2602 2603 /* 2604 * Stop md->queue before flushing md->wq in case request-based 2605 * dm defers requests to md->wq from md->queue. 2606 */ 2607 if (dm_request_based(md)) 2608 dm_stop_queue(md->queue); 2609 2610 flush_workqueue(md->wq); 2611 2612 /* 2613 * At this point no more requests are entering target request routines. 2614 * We call dm_wait_for_completion to wait for all existing requests 2615 * to finish. 2616 */ 2617 r = dm_wait_for_completion(md, task_state); 2618 if (!r) 2619 set_bit(dmf_suspended_flag, &md->flags); 2620 2621 if (noflush) 2622 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2623 if (map) 2624 synchronize_srcu(&md->io_barrier); 2625 2626 /* were we interrupted ? */ 2627 if (r < 0) { 2628 dm_queue_flush(md); 2629 2630 if (dm_request_based(md)) 2631 dm_start_queue(md->queue); 2632 2633 unlock_fs(md); 2634 dm_table_presuspend_undo_targets(map); 2635 /* pushback list is already flushed, so skip flush */ 2636 } 2637 2638 return r; 2639 } 2640 2641 /* 2642 * We need to be able to change a mapping table under a mounted 2643 * filesystem. For example we might want to move some data in 2644 * the background. Before the table can be swapped with 2645 * dm_bind_table, dm_suspend must be called to flush any in 2646 * flight bios and ensure that any further io gets deferred. 2647 */ 2648 /* 2649 * Suspend mechanism in request-based dm. 2650 * 2651 * 1. Flush all I/Os by lock_fs() if needed. 2652 * 2. Stop dispatching any I/O by stopping the request_queue. 2653 * 3. Wait for all in-flight I/Os to be completed or requeued. 2654 * 2655 * To abort suspend, start the request_queue. 2656 */ 2657 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2658 { 2659 struct dm_table *map = NULL; 2660 int r = 0; 2661 2662 retry: 2663 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2664 2665 if (dm_suspended_md(md)) { 2666 r = -EINVAL; 2667 goto out_unlock; 2668 } 2669 2670 if (dm_suspended_internally_md(md)) { 2671 /* already internally suspended, wait for internal resume */ 2672 mutex_unlock(&md->suspend_lock); 2673 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2674 if (r) 2675 return r; 2676 goto retry; 2677 } 2678 2679 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2680 2681 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2682 if (r) 2683 goto out_unlock; 2684 2685 dm_table_postsuspend_targets(map); 2686 2687 out_unlock: 2688 mutex_unlock(&md->suspend_lock); 2689 return r; 2690 } 2691 2692 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2693 { 2694 if (map) { 2695 int r = dm_table_resume_targets(map); 2696 if (r) 2697 return r; 2698 } 2699 2700 dm_queue_flush(md); 2701 2702 /* 2703 * Flushing deferred I/Os must be done after targets are resumed 2704 * so that mapping of targets can work correctly. 2705 * Request-based dm is queueing the deferred I/Os in its request_queue. 2706 */ 2707 if (dm_request_based(md)) 2708 dm_start_queue(md->queue); 2709 2710 unlock_fs(md); 2711 2712 return 0; 2713 } 2714 2715 int dm_resume(struct mapped_device *md) 2716 { 2717 int r; 2718 struct dm_table *map = NULL; 2719 2720 retry: 2721 r = -EINVAL; 2722 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2723 2724 if (!dm_suspended_md(md)) 2725 goto out; 2726 2727 if (dm_suspended_internally_md(md)) { 2728 /* already internally suspended, wait for internal resume */ 2729 mutex_unlock(&md->suspend_lock); 2730 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2731 if (r) 2732 return r; 2733 goto retry; 2734 } 2735 2736 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2737 if (!map || !dm_table_get_size(map)) 2738 goto out; 2739 2740 r = __dm_resume(md, map); 2741 if (r) 2742 goto out; 2743 2744 clear_bit(DMF_SUSPENDED, &md->flags); 2745 out: 2746 mutex_unlock(&md->suspend_lock); 2747 2748 return r; 2749 } 2750 2751 /* 2752 * Internal suspend/resume works like userspace-driven suspend. It waits 2753 * until all bios finish and prevents issuing new bios to the target drivers. 2754 * It may be used only from the kernel. 2755 */ 2756 2757 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2758 { 2759 struct dm_table *map = NULL; 2760 2761 lockdep_assert_held(&md->suspend_lock); 2762 2763 if (md->internal_suspend_count++) 2764 return; /* nested internal suspend */ 2765 2766 if (dm_suspended_md(md)) { 2767 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2768 return; /* nest suspend */ 2769 } 2770 2771 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2772 2773 /* 2774 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2775 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2776 * would require changing .presuspend to return an error -- avoid this 2777 * until there is a need for more elaborate variants of internal suspend. 2778 */ 2779 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2780 DMF_SUSPENDED_INTERNALLY); 2781 2782 dm_table_postsuspend_targets(map); 2783 } 2784 2785 static void __dm_internal_resume(struct mapped_device *md) 2786 { 2787 BUG_ON(!md->internal_suspend_count); 2788 2789 if (--md->internal_suspend_count) 2790 return; /* resume from nested internal suspend */ 2791 2792 if (dm_suspended_md(md)) 2793 goto done; /* resume from nested suspend */ 2794 2795 /* 2796 * NOTE: existing callers don't need to call dm_table_resume_targets 2797 * (which may fail -- so best to avoid it for now by passing NULL map) 2798 */ 2799 (void) __dm_resume(md, NULL); 2800 2801 done: 2802 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2803 smp_mb__after_atomic(); 2804 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2805 } 2806 2807 void dm_internal_suspend_noflush(struct mapped_device *md) 2808 { 2809 mutex_lock(&md->suspend_lock); 2810 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2811 mutex_unlock(&md->suspend_lock); 2812 } 2813 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2814 2815 void dm_internal_resume(struct mapped_device *md) 2816 { 2817 mutex_lock(&md->suspend_lock); 2818 __dm_internal_resume(md); 2819 mutex_unlock(&md->suspend_lock); 2820 } 2821 EXPORT_SYMBOL_GPL(dm_internal_resume); 2822 2823 /* 2824 * Fast variants of internal suspend/resume hold md->suspend_lock, 2825 * which prevents interaction with userspace-driven suspend. 2826 */ 2827 2828 void dm_internal_suspend_fast(struct mapped_device *md) 2829 { 2830 mutex_lock(&md->suspend_lock); 2831 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2832 return; 2833 2834 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2835 synchronize_srcu(&md->io_barrier); 2836 flush_workqueue(md->wq); 2837 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2838 } 2839 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2840 2841 void dm_internal_resume_fast(struct mapped_device *md) 2842 { 2843 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2844 goto done; 2845 2846 dm_queue_flush(md); 2847 2848 done: 2849 mutex_unlock(&md->suspend_lock); 2850 } 2851 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2852 2853 /*----------------------------------------------------------------- 2854 * Event notification. 2855 *---------------------------------------------------------------*/ 2856 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2857 unsigned cookie) 2858 { 2859 char udev_cookie[DM_COOKIE_LENGTH]; 2860 char *envp[] = { udev_cookie, NULL }; 2861 2862 if (!cookie) 2863 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2864 else { 2865 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2866 DM_COOKIE_ENV_VAR_NAME, cookie); 2867 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2868 action, envp); 2869 } 2870 } 2871 2872 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2873 { 2874 return atomic_add_return(1, &md->uevent_seq); 2875 } 2876 2877 uint32_t dm_get_event_nr(struct mapped_device *md) 2878 { 2879 return atomic_read(&md->event_nr); 2880 } 2881 2882 int dm_wait_event(struct mapped_device *md, int event_nr) 2883 { 2884 return wait_event_interruptible(md->eventq, 2885 (event_nr != atomic_read(&md->event_nr))); 2886 } 2887 2888 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2889 { 2890 unsigned long flags; 2891 2892 spin_lock_irqsave(&md->uevent_lock, flags); 2893 list_add(elist, &md->uevent_list); 2894 spin_unlock_irqrestore(&md->uevent_lock, flags); 2895 } 2896 2897 /* 2898 * The gendisk is only valid as long as you have a reference 2899 * count on 'md'. 2900 */ 2901 struct gendisk *dm_disk(struct mapped_device *md) 2902 { 2903 return md->disk; 2904 } 2905 EXPORT_SYMBOL_GPL(dm_disk); 2906 2907 struct kobject *dm_kobject(struct mapped_device *md) 2908 { 2909 return &md->kobj_holder.kobj; 2910 } 2911 2912 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2913 { 2914 struct mapped_device *md; 2915 2916 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2917 2918 spin_lock(&_minor_lock); 2919 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2920 md = NULL; 2921 goto out; 2922 } 2923 dm_get(md); 2924 out: 2925 spin_unlock(&_minor_lock); 2926 2927 return md; 2928 } 2929 2930 int dm_suspended_md(struct mapped_device *md) 2931 { 2932 return test_bit(DMF_SUSPENDED, &md->flags); 2933 } 2934 2935 int dm_suspended_internally_md(struct mapped_device *md) 2936 { 2937 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2938 } 2939 2940 int dm_test_deferred_remove_flag(struct mapped_device *md) 2941 { 2942 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2943 } 2944 2945 int dm_suspended(struct dm_target *ti) 2946 { 2947 return dm_suspended_md(dm_table_get_md(ti->table)); 2948 } 2949 EXPORT_SYMBOL_GPL(dm_suspended); 2950 2951 int dm_noflush_suspending(struct dm_target *ti) 2952 { 2953 return __noflush_suspending(dm_table_get_md(ti->table)); 2954 } 2955 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2956 2957 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2958 unsigned integrity, unsigned per_io_data_size, 2959 unsigned min_pool_size) 2960 { 2961 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2962 unsigned int pool_size = 0; 2963 unsigned int front_pad, io_front_pad; 2964 int ret; 2965 2966 if (!pools) 2967 return NULL; 2968 2969 switch (type) { 2970 case DM_TYPE_BIO_BASED: 2971 case DM_TYPE_DAX_BIO_BASED: 2972 case DM_TYPE_NVME_BIO_BASED: 2973 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2974 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2975 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2976 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2977 if (ret) 2978 goto out; 2979 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2980 goto out; 2981 break; 2982 case DM_TYPE_REQUEST_BASED: 2983 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2984 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2985 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2986 break; 2987 default: 2988 BUG(); 2989 } 2990 2991 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2992 if (ret) 2993 goto out; 2994 2995 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2996 goto out; 2997 2998 return pools; 2999 3000 out: 3001 dm_free_md_mempools(pools); 3002 3003 return NULL; 3004 } 3005 3006 void dm_free_md_mempools(struct dm_md_mempools *pools) 3007 { 3008 if (!pools) 3009 return; 3010 3011 bioset_exit(&pools->bs); 3012 bioset_exit(&pools->io_bs); 3013 3014 kfree(pools); 3015 } 3016 3017 struct dm_pr { 3018 u64 old_key; 3019 u64 new_key; 3020 u32 flags; 3021 bool fail_early; 3022 }; 3023 3024 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3025 void *data) 3026 { 3027 struct mapped_device *md = bdev->bd_disk->private_data; 3028 struct dm_table *table; 3029 struct dm_target *ti; 3030 int ret = -ENOTTY, srcu_idx; 3031 3032 table = dm_get_live_table(md, &srcu_idx); 3033 if (!table || !dm_table_get_size(table)) 3034 goto out; 3035 3036 /* We only support devices that have a single target */ 3037 if (dm_table_get_num_targets(table) != 1) 3038 goto out; 3039 ti = dm_table_get_target(table, 0); 3040 3041 ret = -EINVAL; 3042 if (!ti->type->iterate_devices) 3043 goto out; 3044 3045 ret = ti->type->iterate_devices(ti, fn, data); 3046 out: 3047 dm_put_live_table(md, srcu_idx); 3048 return ret; 3049 } 3050 3051 /* 3052 * For register / unregister we need to manually call out to every path. 3053 */ 3054 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3055 sector_t start, sector_t len, void *data) 3056 { 3057 struct dm_pr *pr = data; 3058 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3059 3060 if (!ops || !ops->pr_register) 3061 return -EOPNOTSUPP; 3062 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3063 } 3064 3065 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3066 u32 flags) 3067 { 3068 struct dm_pr pr = { 3069 .old_key = old_key, 3070 .new_key = new_key, 3071 .flags = flags, 3072 .fail_early = true, 3073 }; 3074 int ret; 3075 3076 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3077 if (ret && new_key) { 3078 /* unregister all paths if we failed to register any path */ 3079 pr.old_key = new_key; 3080 pr.new_key = 0; 3081 pr.flags = 0; 3082 pr.fail_early = false; 3083 dm_call_pr(bdev, __dm_pr_register, &pr); 3084 } 3085 3086 return ret; 3087 } 3088 3089 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3090 u32 flags) 3091 { 3092 struct mapped_device *md = bdev->bd_disk->private_data; 3093 const struct pr_ops *ops; 3094 int r, srcu_idx; 3095 3096 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3097 if (r < 0) 3098 goto out; 3099 3100 ops = bdev->bd_disk->fops->pr_ops; 3101 if (ops && ops->pr_reserve) 3102 r = ops->pr_reserve(bdev, key, type, flags); 3103 else 3104 r = -EOPNOTSUPP; 3105 out: 3106 dm_unprepare_ioctl(md, srcu_idx); 3107 return r; 3108 } 3109 3110 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3111 { 3112 struct mapped_device *md = bdev->bd_disk->private_data; 3113 const struct pr_ops *ops; 3114 int r, srcu_idx; 3115 3116 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3117 if (r < 0) 3118 goto out; 3119 3120 ops = bdev->bd_disk->fops->pr_ops; 3121 if (ops && ops->pr_release) 3122 r = ops->pr_release(bdev, key, type); 3123 else 3124 r = -EOPNOTSUPP; 3125 out: 3126 dm_unprepare_ioctl(md, srcu_idx); 3127 return r; 3128 } 3129 3130 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3131 enum pr_type type, bool abort) 3132 { 3133 struct mapped_device *md = bdev->bd_disk->private_data; 3134 const struct pr_ops *ops; 3135 int r, srcu_idx; 3136 3137 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3138 if (r < 0) 3139 goto out; 3140 3141 ops = bdev->bd_disk->fops->pr_ops; 3142 if (ops && ops->pr_preempt) 3143 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3144 else 3145 r = -EOPNOTSUPP; 3146 out: 3147 dm_unprepare_ioctl(md, srcu_idx); 3148 return r; 3149 } 3150 3151 static int dm_pr_clear(struct block_device *bdev, u64 key) 3152 { 3153 struct mapped_device *md = bdev->bd_disk->private_data; 3154 const struct pr_ops *ops; 3155 int r, srcu_idx; 3156 3157 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3158 if (r < 0) 3159 goto out; 3160 3161 ops = bdev->bd_disk->fops->pr_ops; 3162 if (ops && ops->pr_clear) 3163 r = ops->pr_clear(bdev, key); 3164 else 3165 r = -EOPNOTSUPP; 3166 out: 3167 dm_unprepare_ioctl(md, srcu_idx); 3168 return r; 3169 } 3170 3171 static const struct pr_ops dm_pr_ops = { 3172 .pr_register = dm_pr_register, 3173 .pr_reserve = dm_pr_reserve, 3174 .pr_release = dm_pr_release, 3175 .pr_preempt = dm_pr_preempt, 3176 .pr_clear = dm_pr_clear, 3177 }; 3178 3179 static const struct block_device_operations dm_blk_dops = { 3180 .open = dm_blk_open, 3181 .release = dm_blk_close, 3182 .ioctl = dm_blk_ioctl, 3183 .getgeo = dm_blk_getgeo, 3184 .report_zones = dm_blk_report_zones, 3185 .pr_ops = &dm_pr_ops, 3186 .owner = THIS_MODULE 3187 }; 3188 3189 static const struct dax_operations dm_dax_ops = { 3190 .direct_access = dm_dax_direct_access, 3191 .copy_from_iter = dm_dax_copy_from_iter, 3192 .copy_to_iter = dm_dax_copy_to_iter, 3193 }; 3194 3195 /* 3196 * module hooks 3197 */ 3198 module_init(dm_init); 3199 module_exit(dm_exit); 3200 3201 module_param(major, uint, 0); 3202 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3203 3204 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3205 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3206 3207 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3208 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3209 3210 MODULE_DESCRIPTION(DM_NAME " driver"); 3211 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3212 MODULE_LICENSE("GPL"); 3213