xref: /openbmc/linux/drivers/md/dm.c (revision d0b73b48)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57 	struct mapped_device *md;
58 	int error;
59 	atomic_t io_count;
60 	struct bio *bio;
61 	unsigned long start_time;
62 	spinlock_t endio_lock;
63 };
64 
65 /*
66  * For request-based dm.
67  * One of these is allocated per request.
68  */
69 struct dm_rq_target_io {
70 	struct mapped_device *md;
71 	struct dm_target *ti;
72 	struct request *orig, clone;
73 	int error;
74 	union map_info info;
75 };
76 
77 /*
78  * For request-based dm - the bio clones we allocate are embedded in these
79  * structs.
80  *
81  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82  * the bioset is created - this means the bio has to come at the end of the
83  * struct.
84  */
85 struct dm_rq_clone_bio_info {
86 	struct bio *orig;
87 	struct dm_rq_target_io *tio;
88 	struct bio clone;
89 };
90 
91 union map_info *dm_get_mapinfo(struct bio *bio)
92 {
93 	if (bio && bio->bi_private)
94 		return &((struct dm_target_io *)bio->bi_private)->info;
95 	return NULL;
96 }
97 
98 union map_info *dm_get_rq_mapinfo(struct request *rq)
99 {
100 	if (rq && rq->end_io_data)
101 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
102 	return NULL;
103 }
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
105 
106 #define MINOR_ALLOCED ((void *)-1)
107 
108 /*
109  * Bits for the md->flags field.
110  */
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
113 #define DMF_FROZEN 2
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
118 
119 /*
120  * Work processed by per-device workqueue.
121  */
122 struct mapped_device {
123 	struct rw_semaphore io_lock;
124 	struct mutex suspend_lock;
125 	rwlock_t map_lock;
126 	atomic_t holders;
127 	atomic_t open_count;
128 
129 	unsigned long flags;
130 
131 	struct request_queue *queue;
132 	unsigned type;
133 	/* Protect queue and type against concurrent access. */
134 	struct mutex type_lock;
135 
136 	struct target_type *immutable_target_type;
137 
138 	struct gendisk *disk;
139 	char name[16];
140 
141 	void *interface_ptr;
142 
143 	/*
144 	 * A list of ios that arrived while we were suspended.
145 	 */
146 	atomic_t pending[2];
147 	wait_queue_head_t wait;
148 	struct work_struct work;
149 	struct bio_list deferred;
150 	spinlock_t deferred_lock;
151 
152 	/*
153 	 * Processing queue (flush)
154 	 */
155 	struct workqueue_struct *wq;
156 
157 	/*
158 	 * The current mapping.
159 	 */
160 	struct dm_table *map;
161 
162 	/*
163 	 * io objects are allocated from here.
164 	 */
165 	mempool_t *io_pool;
166 	mempool_t *tio_pool;
167 
168 	struct bio_set *bs;
169 
170 	/*
171 	 * Event handling.
172 	 */
173 	atomic_t event_nr;
174 	wait_queue_head_t eventq;
175 	atomic_t uevent_seq;
176 	struct list_head uevent_list;
177 	spinlock_t uevent_lock; /* Protect access to uevent_list */
178 
179 	/*
180 	 * freeze/thaw support require holding onto a super block
181 	 */
182 	struct super_block *frozen_sb;
183 	struct block_device *bdev;
184 
185 	/* forced geometry settings */
186 	struct hd_geometry geometry;
187 
188 	/* sysfs handle */
189 	struct kobject kobj;
190 
191 	/* zero-length flush that will be cloned and submitted to targets */
192 	struct bio flush_bio;
193 };
194 
195 /*
196  * For mempools pre-allocation at the table loading time.
197  */
198 struct dm_md_mempools {
199 	mempool_t *io_pool;
200 	mempool_t *tio_pool;
201 	struct bio_set *bs;
202 };
203 
204 #define MIN_IOS 256
205 static struct kmem_cache *_io_cache;
206 static struct kmem_cache *_rq_tio_cache;
207 
208 /*
209  * Unused now, and needs to be deleted. But since io_pool is overloaded and it's
210  * still used for _io_cache, I'm leaving this for a later cleanup
211  */
212 static struct kmem_cache *_rq_bio_info_cache;
213 
214 static int __init local_init(void)
215 {
216 	int r = -ENOMEM;
217 
218 	/* allocate a slab for the dm_ios */
219 	_io_cache = KMEM_CACHE(dm_io, 0);
220 	if (!_io_cache)
221 		return r;
222 
223 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
224 	if (!_rq_tio_cache)
225 		goto out_free_io_cache;
226 
227 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
228 	if (!_rq_bio_info_cache)
229 		goto out_free_rq_tio_cache;
230 
231 	r = dm_uevent_init();
232 	if (r)
233 		goto out_free_rq_bio_info_cache;
234 
235 	_major = major;
236 	r = register_blkdev(_major, _name);
237 	if (r < 0)
238 		goto out_uevent_exit;
239 
240 	if (!_major)
241 		_major = r;
242 
243 	return 0;
244 
245 out_uevent_exit:
246 	dm_uevent_exit();
247 out_free_rq_bio_info_cache:
248 	kmem_cache_destroy(_rq_bio_info_cache);
249 out_free_rq_tio_cache:
250 	kmem_cache_destroy(_rq_tio_cache);
251 out_free_io_cache:
252 	kmem_cache_destroy(_io_cache);
253 
254 	return r;
255 }
256 
257 static void local_exit(void)
258 {
259 	kmem_cache_destroy(_rq_bio_info_cache);
260 	kmem_cache_destroy(_rq_tio_cache);
261 	kmem_cache_destroy(_io_cache);
262 	unregister_blkdev(_major, _name);
263 	dm_uevent_exit();
264 
265 	_major = 0;
266 
267 	DMINFO("cleaned up");
268 }
269 
270 static int (*_inits[])(void) __initdata = {
271 	local_init,
272 	dm_target_init,
273 	dm_linear_init,
274 	dm_stripe_init,
275 	dm_io_init,
276 	dm_kcopyd_init,
277 	dm_interface_init,
278 };
279 
280 static void (*_exits[])(void) = {
281 	local_exit,
282 	dm_target_exit,
283 	dm_linear_exit,
284 	dm_stripe_exit,
285 	dm_io_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 };
289 
290 static int __init dm_init(void)
291 {
292 	const int count = ARRAY_SIZE(_inits);
293 
294 	int r, i;
295 
296 	for (i = 0; i < count; i++) {
297 		r = _inits[i]();
298 		if (r)
299 			goto bad;
300 	}
301 
302 	return 0;
303 
304       bad:
305 	while (i--)
306 		_exits[i]();
307 
308 	return r;
309 }
310 
311 static void __exit dm_exit(void)
312 {
313 	int i = ARRAY_SIZE(_exits);
314 
315 	while (i--)
316 		_exits[i]();
317 
318 	/*
319 	 * Should be empty by this point.
320 	 */
321 	idr_remove_all(&_minor_idr);
322 	idr_destroy(&_minor_idr);
323 }
324 
325 /*
326  * Block device functions
327  */
328 int dm_deleting_md(struct mapped_device *md)
329 {
330 	return test_bit(DMF_DELETING, &md->flags);
331 }
332 
333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
334 {
335 	struct mapped_device *md;
336 
337 	spin_lock(&_minor_lock);
338 
339 	md = bdev->bd_disk->private_data;
340 	if (!md)
341 		goto out;
342 
343 	if (test_bit(DMF_FREEING, &md->flags) ||
344 	    dm_deleting_md(md)) {
345 		md = NULL;
346 		goto out;
347 	}
348 
349 	dm_get(md);
350 	atomic_inc(&md->open_count);
351 
352 out:
353 	spin_unlock(&_minor_lock);
354 
355 	return md ? 0 : -ENXIO;
356 }
357 
358 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
359 {
360 	struct mapped_device *md = disk->private_data;
361 
362 	spin_lock(&_minor_lock);
363 
364 	atomic_dec(&md->open_count);
365 	dm_put(md);
366 
367 	spin_unlock(&_minor_lock);
368 
369 	return 0;
370 }
371 
372 int dm_open_count(struct mapped_device *md)
373 {
374 	return atomic_read(&md->open_count);
375 }
376 
377 /*
378  * Guarantees nothing is using the device before it's deleted.
379  */
380 int dm_lock_for_deletion(struct mapped_device *md)
381 {
382 	int r = 0;
383 
384 	spin_lock(&_minor_lock);
385 
386 	if (dm_open_count(md))
387 		r = -EBUSY;
388 	else
389 		set_bit(DMF_DELETING, &md->flags);
390 
391 	spin_unlock(&_minor_lock);
392 
393 	return r;
394 }
395 
396 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
397 {
398 	struct mapped_device *md = bdev->bd_disk->private_data;
399 
400 	return dm_get_geometry(md, geo);
401 }
402 
403 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
404 			unsigned int cmd, unsigned long arg)
405 {
406 	struct mapped_device *md = bdev->bd_disk->private_data;
407 	struct dm_table *map = dm_get_live_table(md);
408 	struct dm_target *tgt;
409 	int r = -ENOTTY;
410 
411 	if (!map || !dm_table_get_size(map))
412 		goto out;
413 
414 	/* We only support devices that have a single target */
415 	if (dm_table_get_num_targets(map) != 1)
416 		goto out;
417 
418 	tgt = dm_table_get_target(map, 0);
419 
420 	if (dm_suspended_md(md)) {
421 		r = -EAGAIN;
422 		goto out;
423 	}
424 
425 	if (tgt->type->ioctl)
426 		r = tgt->type->ioctl(tgt, cmd, arg);
427 
428 out:
429 	dm_table_put(map);
430 
431 	return r;
432 }
433 
434 static struct dm_io *alloc_io(struct mapped_device *md)
435 {
436 	return mempool_alloc(md->io_pool, GFP_NOIO);
437 }
438 
439 static void free_io(struct mapped_device *md, struct dm_io *io)
440 {
441 	mempool_free(io, md->io_pool);
442 }
443 
444 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
445 {
446 	bio_put(&tio->clone);
447 }
448 
449 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
450 					    gfp_t gfp_mask)
451 {
452 	return mempool_alloc(md->tio_pool, gfp_mask);
453 }
454 
455 static void free_rq_tio(struct dm_rq_target_io *tio)
456 {
457 	mempool_free(tio, tio->md->tio_pool);
458 }
459 
460 static int md_in_flight(struct mapped_device *md)
461 {
462 	return atomic_read(&md->pending[READ]) +
463 	       atomic_read(&md->pending[WRITE]);
464 }
465 
466 static void start_io_acct(struct dm_io *io)
467 {
468 	struct mapped_device *md = io->md;
469 	int cpu;
470 	int rw = bio_data_dir(io->bio);
471 
472 	io->start_time = jiffies;
473 
474 	cpu = part_stat_lock();
475 	part_round_stats(cpu, &dm_disk(md)->part0);
476 	part_stat_unlock();
477 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
478 		atomic_inc_return(&md->pending[rw]));
479 }
480 
481 static void end_io_acct(struct dm_io *io)
482 {
483 	struct mapped_device *md = io->md;
484 	struct bio *bio = io->bio;
485 	unsigned long duration = jiffies - io->start_time;
486 	int pending, cpu;
487 	int rw = bio_data_dir(bio);
488 
489 	cpu = part_stat_lock();
490 	part_round_stats(cpu, &dm_disk(md)->part0);
491 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
492 	part_stat_unlock();
493 
494 	/*
495 	 * After this is decremented the bio must not be touched if it is
496 	 * a flush.
497 	 */
498 	pending = atomic_dec_return(&md->pending[rw]);
499 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
500 	pending += atomic_read(&md->pending[rw^0x1]);
501 
502 	/* nudge anyone waiting on suspend queue */
503 	if (!pending)
504 		wake_up(&md->wait);
505 }
506 
507 /*
508  * Add the bio to the list of deferred io.
509  */
510 static void queue_io(struct mapped_device *md, struct bio *bio)
511 {
512 	unsigned long flags;
513 
514 	spin_lock_irqsave(&md->deferred_lock, flags);
515 	bio_list_add(&md->deferred, bio);
516 	spin_unlock_irqrestore(&md->deferred_lock, flags);
517 	queue_work(md->wq, &md->work);
518 }
519 
520 /*
521  * Everyone (including functions in this file), should use this
522  * function to access the md->map field, and make sure they call
523  * dm_table_put() when finished.
524  */
525 struct dm_table *dm_get_live_table(struct mapped_device *md)
526 {
527 	struct dm_table *t;
528 	unsigned long flags;
529 
530 	read_lock_irqsave(&md->map_lock, flags);
531 	t = md->map;
532 	if (t)
533 		dm_table_get(t);
534 	read_unlock_irqrestore(&md->map_lock, flags);
535 
536 	return t;
537 }
538 
539 /*
540  * Get the geometry associated with a dm device
541  */
542 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
543 {
544 	*geo = md->geometry;
545 
546 	return 0;
547 }
548 
549 /*
550  * Set the geometry of a device.
551  */
552 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
553 {
554 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
555 
556 	if (geo->start > sz) {
557 		DMWARN("Start sector is beyond the geometry limits.");
558 		return -EINVAL;
559 	}
560 
561 	md->geometry = *geo;
562 
563 	return 0;
564 }
565 
566 /*-----------------------------------------------------------------
567  * CRUD START:
568  *   A more elegant soln is in the works that uses the queue
569  *   merge fn, unfortunately there are a couple of changes to
570  *   the block layer that I want to make for this.  So in the
571  *   interests of getting something for people to use I give
572  *   you this clearly demarcated crap.
573  *---------------------------------------------------------------*/
574 
575 static int __noflush_suspending(struct mapped_device *md)
576 {
577 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
578 }
579 
580 /*
581  * Decrements the number of outstanding ios that a bio has been
582  * cloned into, completing the original io if necc.
583  */
584 static void dec_pending(struct dm_io *io, int error)
585 {
586 	unsigned long flags;
587 	int io_error;
588 	struct bio *bio;
589 	struct mapped_device *md = io->md;
590 
591 	/* Push-back supersedes any I/O errors */
592 	if (unlikely(error)) {
593 		spin_lock_irqsave(&io->endio_lock, flags);
594 		if (!(io->error > 0 && __noflush_suspending(md)))
595 			io->error = error;
596 		spin_unlock_irqrestore(&io->endio_lock, flags);
597 	}
598 
599 	if (atomic_dec_and_test(&io->io_count)) {
600 		if (io->error == DM_ENDIO_REQUEUE) {
601 			/*
602 			 * Target requested pushing back the I/O.
603 			 */
604 			spin_lock_irqsave(&md->deferred_lock, flags);
605 			if (__noflush_suspending(md))
606 				bio_list_add_head(&md->deferred, io->bio);
607 			else
608 				/* noflush suspend was interrupted. */
609 				io->error = -EIO;
610 			spin_unlock_irqrestore(&md->deferred_lock, flags);
611 		}
612 
613 		io_error = io->error;
614 		bio = io->bio;
615 		end_io_acct(io);
616 		free_io(md, io);
617 
618 		if (io_error == DM_ENDIO_REQUEUE)
619 			return;
620 
621 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
622 			/*
623 			 * Preflush done for flush with data, reissue
624 			 * without REQ_FLUSH.
625 			 */
626 			bio->bi_rw &= ~REQ_FLUSH;
627 			queue_io(md, bio);
628 		} else {
629 			/* done with normal IO or empty flush */
630 			trace_block_bio_complete(md->queue, bio, io_error);
631 			bio_endio(bio, io_error);
632 		}
633 	}
634 }
635 
636 static void clone_endio(struct bio *bio, int error)
637 {
638 	int r = 0;
639 	struct dm_target_io *tio = bio->bi_private;
640 	struct dm_io *io = tio->io;
641 	struct mapped_device *md = tio->io->md;
642 	dm_endio_fn endio = tio->ti->type->end_io;
643 
644 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
645 		error = -EIO;
646 
647 	if (endio) {
648 		r = endio(tio->ti, bio, error);
649 		if (r < 0 || r == DM_ENDIO_REQUEUE)
650 			/*
651 			 * error and requeue request are handled
652 			 * in dec_pending().
653 			 */
654 			error = r;
655 		else if (r == DM_ENDIO_INCOMPLETE)
656 			/* The target will handle the io */
657 			return;
658 		else if (r) {
659 			DMWARN("unimplemented target endio return value: %d", r);
660 			BUG();
661 		}
662 	}
663 
664 	free_tio(md, tio);
665 	dec_pending(io, error);
666 }
667 
668 /*
669  * Partial completion handling for request-based dm
670  */
671 static void end_clone_bio(struct bio *clone, int error)
672 {
673 	struct dm_rq_clone_bio_info *info = clone->bi_private;
674 	struct dm_rq_target_io *tio = info->tio;
675 	struct bio *bio = info->orig;
676 	unsigned int nr_bytes = info->orig->bi_size;
677 
678 	bio_put(clone);
679 
680 	if (tio->error)
681 		/*
682 		 * An error has already been detected on the request.
683 		 * Once error occurred, just let clone->end_io() handle
684 		 * the remainder.
685 		 */
686 		return;
687 	else if (error) {
688 		/*
689 		 * Don't notice the error to the upper layer yet.
690 		 * The error handling decision is made by the target driver,
691 		 * when the request is completed.
692 		 */
693 		tio->error = error;
694 		return;
695 	}
696 
697 	/*
698 	 * I/O for the bio successfully completed.
699 	 * Notice the data completion to the upper layer.
700 	 */
701 
702 	/*
703 	 * bios are processed from the head of the list.
704 	 * So the completing bio should always be rq->bio.
705 	 * If it's not, something wrong is happening.
706 	 */
707 	if (tio->orig->bio != bio)
708 		DMERR("bio completion is going in the middle of the request");
709 
710 	/*
711 	 * Update the original request.
712 	 * Do not use blk_end_request() here, because it may complete
713 	 * the original request before the clone, and break the ordering.
714 	 */
715 	blk_update_request(tio->orig, 0, nr_bytes);
716 }
717 
718 /*
719  * Don't touch any member of the md after calling this function because
720  * the md may be freed in dm_put() at the end of this function.
721  * Or do dm_get() before calling this function and dm_put() later.
722  */
723 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
724 {
725 	atomic_dec(&md->pending[rw]);
726 
727 	/* nudge anyone waiting on suspend queue */
728 	if (!md_in_flight(md))
729 		wake_up(&md->wait);
730 
731 	/*
732 	 * Run this off this callpath, as drivers could invoke end_io while
733 	 * inside their request_fn (and holding the queue lock). Calling
734 	 * back into ->request_fn() could deadlock attempting to grab the
735 	 * queue lock again.
736 	 */
737 	if (run_queue)
738 		blk_run_queue_async(md->queue);
739 
740 	/*
741 	 * dm_put() must be at the end of this function. See the comment above
742 	 */
743 	dm_put(md);
744 }
745 
746 static void free_rq_clone(struct request *clone)
747 {
748 	struct dm_rq_target_io *tio = clone->end_io_data;
749 
750 	blk_rq_unprep_clone(clone);
751 	free_rq_tio(tio);
752 }
753 
754 /*
755  * Complete the clone and the original request.
756  * Must be called without queue lock.
757  */
758 static void dm_end_request(struct request *clone, int error)
759 {
760 	int rw = rq_data_dir(clone);
761 	struct dm_rq_target_io *tio = clone->end_io_data;
762 	struct mapped_device *md = tio->md;
763 	struct request *rq = tio->orig;
764 
765 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
766 		rq->errors = clone->errors;
767 		rq->resid_len = clone->resid_len;
768 
769 		if (rq->sense)
770 			/*
771 			 * We are using the sense buffer of the original
772 			 * request.
773 			 * So setting the length of the sense data is enough.
774 			 */
775 			rq->sense_len = clone->sense_len;
776 	}
777 
778 	free_rq_clone(clone);
779 	blk_end_request_all(rq, error);
780 	rq_completed(md, rw, true);
781 }
782 
783 static void dm_unprep_request(struct request *rq)
784 {
785 	struct request *clone = rq->special;
786 
787 	rq->special = NULL;
788 	rq->cmd_flags &= ~REQ_DONTPREP;
789 
790 	free_rq_clone(clone);
791 }
792 
793 /*
794  * Requeue the original request of a clone.
795  */
796 void dm_requeue_unmapped_request(struct request *clone)
797 {
798 	int rw = rq_data_dir(clone);
799 	struct dm_rq_target_io *tio = clone->end_io_data;
800 	struct mapped_device *md = tio->md;
801 	struct request *rq = tio->orig;
802 	struct request_queue *q = rq->q;
803 	unsigned long flags;
804 
805 	dm_unprep_request(rq);
806 
807 	spin_lock_irqsave(q->queue_lock, flags);
808 	blk_requeue_request(q, rq);
809 	spin_unlock_irqrestore(q->queue_lock, flags);
810 
811 	rq_completed(md, rw, 0);
812 }
813 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
814 
815 static void __stop_queue(struct request_queue *q)
816 {
817 	blk_stop_queue(q);
818 }
819 
820 static void stop_queue(struct request_queue *q)
821 {
822 	unsigned long flags;
823 
824 	spin_lock_irqsave(q->queue_lock, flags);
825 	__stop_queue(q);
826 	spin_unlock_irqrestore(q->queue_lock, flags);
827 }
828 
829 static void __start_queue(struct request_queue *q)
830 {
831 	if (blk_queue_stopped(q))
832 		blk_start_queue(q);
833 }
834 
835 static void start_queue(struct request_queue *q)
836 {
837 	unsigned long flags;
838 
839 	spin_lock_irqsave(q->queue_lock, flags);
840 	__start_queue(q);
841 	spin_unlock_irqrestore(q->queue_lock, flags);
842 }
843 
844 static void dm_done(struct request *clone, int error, bool mapped)
845 {
846 	int r = error;
847 	struct dm_rq_target_io *tio = clone->end_io_data;
848 	dm_request_endio_fn rq_end_io = NULL;
849 
850 	if (tio->ti) {
851 		rq_end_io = tio->ti->type->rq_end_io;
852 
853 		if (mapped && rq_end_io)
854 			r = rq_end_io(tio->ti, clone, error, &tio->info);
855 	}
856 
857 	if (r <= 0)
858 		/* The target wants to complete the I/O */
859 		dm_end_request(clone, r);
860 	else if (r == DM_ENDIO_INCOMPLETE)
861 		/* The target will handle the I/O */
862 		return;
863 	else if (r == DM_ENDIO_REQUEUE)
864 		/* The target wants to requeue the I/O */
865 		dm_requeue_unmapped_request(clone);
866 	else {
867 		DMWARN("unimplemented target endio return value: %d", r);
868 		BUG();
869 	}
870 }
871 
872 /*
873  * Request completion handler for request-based dm
874  */
875 static void dm_softirq_done(struct request *rq)
876 {
877 	bool mapped = true;
878 	struct request *clone = rq->completion_data;
879 	struct dm_rq_target_io *tio = clone->end_io_data;
880 
881 	if (rq->cmd_flags & REQ_FAILED)
882 		mapped = false;
883 
884 	dm_done(clone, tio->error, mapped);
885 }
886 
887 /*
888  * Complete the clone and the original request with the error status
889  * through softirq context.
890  */
891 static void dm_complete_request(struct request *clone, int error)
892 {
893 	struct dm_rq_target_io *tio = clone->end_io_data;
894 	struct request *rq = tio->orig;
895 
896 	tio->error = error;
897 	rq->completion_data = clone;
898 	blk_complete_request(rq);
899 }
900 
901 /*
902  * Complete the not-mapped clone and the original request with the error status
903  * through softirq context.
904  * Target's rq_end_io() function isn't called.
905  * This may be used when the target's map_rq() function fails.
906  */
907 void dm_kill_unmapped_request(struct request *clone, int error)
908 {
909 	struct dm_rq_target_io *tio = clone->end_io_data;
910 	struct request *rq = tio->orig;
911 
912 	rq->cmd_flags |= REQ_FAILED;
913 	dm_complete_request(clone, error);
914 }
915 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
916 
917 /*
918  * Called with the queue lock held
919  */
920 static void end_clone_request(struct request *clone, int error)
921 {
922 	/*
923 	 * For just cleaning up the information of the queue in which
924 	 * the clone was dispatched.
925 	 * The clone is *NOT* freed actually here because it is alloced from
926 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
927 	 */
928 	__blk_put_request(clone->q, clone);
929 
930 	/*
931 	 * Actual request completion is done in a softirq context which doesn't
932 	 * hold the queue lock.  Otherwise, deadlock could occur because:
933 	 *     - another request may be submitted by the upper level driver
934 	 *       of the stacking during the completion
935 	 *     - the submission which requires queue lock may be done
936 	 *       against this queue
937 	 */
938 	dm_complete_request(clone, error);
939 }
940 
941 /*
942  * Return maximum size of I/O possible at the supplied sector up to the current
943  * target boundary.
944  */
945 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
946 {
947 	sector_t target_offset = dm_target_offset(ti, sector);
948 
949 	return ti->len - target_offset;
950 }
951 
952 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
953 {
954 	sector_t len = max_io_len_target_boundary(sector, ti);
955 	sector_t offset, max_len;
956 
957 	/*
958 	 * Does the target need to split even further?
959 	 */
960 	if (ti->max_io_len) {
961 		offset = dm_target_offset(ti, sector);
962 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
963 			max_len = sector_div(offset, ti->max_io_len);
964 		else
965 			max_len = offset & (ti->max_io_len - 1);
966 		max_len = ti->max_io_len - max_len;
967 
968 		if (len > max_len)
969 			len = max_len;
970 	}
971 
972 	return len;
973 }
974 
975 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
976 {
977 	if (len > UINT_MAX) {
978 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
979 		      (unsigned long long)len, UINT_MAX);
980 		ti->error = "Maximum size of target IO is too large";
981 		return -EINVAL;
982 	}
983 
984 	ti->max_io_len = (uint32_t) len;
985 
986 	return 0;
987 }
988 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
989 
990 static void __map_bio(struct dm_target *ti, struct dm_target_io *tio)
991 {
992 	int r;
993 	sector_t sector;
994 	struct mapped_device *md;
995 	struct bio *clone = &tio->clone;
996 
997 	clone->bi_end_io = clone_endio;
998 	clone->bi_private = tio;
999 
1000 	/*
1001 	 * Map the clone.  If r == 0 we don't need to do
1002 	 * anything, the target has assumed ownership of
1003 	 * this io.
1004 	 */
1005 	atomic_inc(&tio->io->io_count);
1006 	sector = clone->bi_sector;
1007 	r = ti->type->map(ti, clone);
1008 	if (r == DM_MAPIO_REMAPPED) {
1009 		/* the bio has been remapped so dispatch it */
1010 
1011 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1012 				      tio->io->bio->bi_bdev->bd_dev, sector);
1013 
1014 		generic_make_request(clone);
1015 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1016 		/* error the io and bail out, or requeue it if needed */
1017 		md = tio->io->md;
1018 		dec_pending(tio->io, r);
1019 		free_tio(md, tio);
1020 	} else if (r) {
1021 		DMWARN("unimplemented target map return value: %d", r);
1022 		BUG();
1023 	}
1024 }
1025 
1026 struct clone_info {
1027 	struct mapped_device *md;
1028 	struct dm_table *map;
1029 	struct bio *bio;
1030 	struct dm_io *io;
1031 	sector_t sector;
1032 	sector_t sector_count;
1033 	unsigned short idx;
1034 };
1035 
1036 /*
1037  * Creates a little bio that just does part of a bvec.
1038  */
1039 static void split_bvec(struct dm_target_io *tio, struct bio *bio,
1040 		       sector_t sector, unsigned short idx, unsigned int offset,
1041 		       unsigned int len, struct bio_set *bs)
1042 {
1043 	struct bio *clone = &tio->clone;
1044 	struct bio_vec *bv = bio->bi_io_vec + idx;
1045 
1046 	*clone->bi_io_vec = *bv;
1047 
1048 	clone->bi_sector = sector;
1049 	clone->bi_bdev = bio->bi_bdev;
1050 	clone->bi_rw = bio->bi_rw;
1051 	clone->bi_vcnt = 1;
1052 	clone->bi_size = to_bytes(len);
1053 	clone->bi_io_vec->bv_offset = offset;
1054 	clone->bi_io_vec->bv_len = clone->bi_size;
1055 	clone->bi_flags |= 1 << BIO_CLONED;
1056 
1057 	if (bio_integrity(bio)) {
1058 		bio_integrity_clone(clone, bio, GFP_NOIO);
1059 		bio_integrity_trim(clone,
1060 				   bio_sector_offset(bio, idx, offset), len);
1061 	}
1062 }
1063 
1064 /*
1065  * Creates a bio that consists of range of complete bvecs.
1066  */
1067 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1068 		      sector_t sector, unsigned short idx,
1069 		      unsigned short bv_count, unsigned int len,
1070 		      struct bio_set *bs)
1071 {
1072 	struct bio *clone = &tio->clone;
1073 
1074 	__bio_clone(clone, bio);
1075 	clone->bi_sector = sector;
1076 	clone->bi_idx = idx;
1077 	clone->bi_vcnt = idx + bv_count;
1078 	clone->bi_size = to_bytes(len);
1079 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1080 
1081 	if (bio_integrity(bio)) {
1082 		bio_integrity_clone(clone, bio, GFP_NOIO);
1083 
1084 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1085 			bio_integrity_trim(clone,
1086 					   bio_sector_offset(bio, idx, 0), len);
1087 	}
1088 }
1089 
1090 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1091 				      struct dm_target *ti, int nr_iovecs)
1092 {
1093 	struct dm_target_io *tio;
1094 	struct bio *clone;
1095 
1096 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1097 	tio = container_of(clone, struct dm_target_io, clone);
1098 
1099 	tio->io = ci->io;
1100 	tio->ti = ti;
1101 	memset(&tio->info, 0, sizeof(tio->info));
1102 	tio->target_request_nr = 0;
1103 
1104 	return tio;
1105 }
1106 
1107 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1108 				   unsigned request_nr, sector_t len)
1109 {
1110 	struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs);
1111 	struct bio *clone = &tio->clone;
1112 
1113 	tio->target_request_nr = request_nr;
1114 
1115 	/*
1116 	 * Discard requests require the bio's inline iovecs be initialized.
1117 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1118 	 * and discard, so no need for concern about wasted bvec allocations.
1119 	 */
1120 
1121 	 __bio_clone(clone, ci->bio);
1122 	if (len) {
1123 		clone->bi_sector = ci->sector;
1124 		clone->bi_size = to_bytes(len);
1125 	}
1126 
1127 	__map_bio(ti, tio);
1128 }
1129 
1130 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1131 				    unsigned num_requests, sector_t len)
1132 {
1133 	unsigned request_nr;
1134 
1135 	for (request_nr = 0; request_nr < num_requests; request_nr++)
1136 		__issue_target_request(ci, ti, request_nr, len);
1137 }
1138 
1139 static int __clone_and_map_empty_flush(struct clone_info *ci)
1140 {
1141 	unsigned target_nr = 0;
1142 	struct dm_target *ti;
1143 
1144 	BUG_ON(bio_has_data(ci->bio));
1145 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1146 		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1147 
1148 	return 0;
1149 }
1150 
1151 /*
1152  * Perform all io with a single clone.
1153  */
1154 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1155 {
1156 	struct bio *bio = ci->bio;
1157 	struct dm_target_io *tio;
1158 
1159 	tio = alloc_tio(ci, ti, bio->bi_max_vecs);
1160 	clone_bio(tio, bio, ci->sector, ci->idx, bio->bi_vcnt - ci->idx,
1161 		  ci->sector_count, ci->md->bs);
1162 	__map_bio(ti, tio);
1163 	ci->sector_count = 0;
1164 }
1165 
1166 typedef unsigned (*get_num_requests_fn)(struct dm_target *ti);
1167 
1168 static unsigned get_num_discard_requests(struct dm_target *ti)
1169 {
1170 	return ti->num_discard_requests;
1171 }
1172 
1173 static unsigned get_num_write_same_requests(struct dm_target *ti)
1174 {
1175 	return ti->num_write_same_requests;
1176 }
1177 
1178 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1179 
1180 static bool is_split_required_for_discard(struct dm_target *ti)
1181 {
1182 	return ti->split_discard_requests;
1183 }
1184 
1185 static int __clone_and_map_changing_extent_only(struct clone_info *ci,
1186 						get_num_requests_fn get_num_requests,
1187 						is_split_required_fn is_split_required)
1188 {
1189 	struct dm_target *ti;
1190 	sector_t len;
1191 	unsigned num_requests;
1192 
1193 	do {
1194 		ti = dm_table_find_target(ci->map, ci->sector);
1195 		if (!dm_target_is_valid(ti))
1196 			return -EIO;
1197 
1198 		/*
1199 		 * Even though the device advertised support for this type of
1200 		 * request, that does not mean every target supports it, and
1201 		 * reconfiguration might also have changed that since the
1202 		 * check was performed.
1203 		 */
1204 		num_requests = get_num_requests ? get_num_requests(ti) : 0;
1205 		if (!num_requests)
1206 			return -EOPNOTSUPP;
1207 
1208 		if (is_split_required && !is_split_required(ti))
1209 			len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1210 		else
1211 			len = min(ci->sector_count, max_io_len(ci->sector, ti));
1212 
1213 		__issue_target_requests(ci, ti, num_requests, len);
1214 
1215 		ci->sector += len;
1216 	} while (ci->sector_count -= len);
1217 
1218 	return 0;
1219 }
1220 
1221 static int __clone_and_map_discard(struct clone_info *ci)
1222 {
1223 	return __clone_and_map_changing_extent_only(ci, get_num_discard_requests,
1224 						    is_split_required_for_discard);
1225 }
1226 
1227 static int __clone_and_map_write_same(struct clone_info *ci)
1228 {
1229 	return __clone_and_map_changing_extent_only(ci, get_num_write_same_requests, NULL);
1230 }
1231 
1232 static int __clone_and_map(struct clone_info *ci)
1233 {
1234 	struct bio *bio = ci->bio;
1235 	struct dm_target *ti;
1236 	sector_t len = 0, max;
1237 	struct dm_target_io *tio;
1238 
1239 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1240 		return __clone_and_map_discard(ci);
1241 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1242 		return __clone_and_map_write_same(ci);
1243 
1244 	ti = dm_table_find_target(ci->map, ci->sector);
1245 	if (!dm_target_is_valid(ti))
1246 		return -EIO;
1247 
1248 	max = max_io_len(ci->sector, ti);
1249 
1250 	if (ci->sector_count <= max) {
1251 		/*
1252 		 * Optimise for the simple case where we can do all of
1253 		 * the remaining io with a single clone.
1254 		 */
1255 		__clone_and_map_simple(ci, ti);
1256 
1257 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1258 		/*
1259 		 * There are some bvecs that don't span targets.
1260 		 * Do as many of these as possible.
1261 		 */
1262 		int i;
1263 		sector_t remaining = max;
1264 		sector_t bv_len;
1265 
1266 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1267 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1268 
1269 			if (bv_len > remaining)
1270 				break;
1271 
1272 			remaining -= bv_len;
1273 			len += bv_len;
1274 		}
1275 
1276 		tio = alloc_tio(ci, ti, bio->bi_max_vecs);
1277 		clone_bio(tio, bio, ci->sector, ci->idx, i - ci->idx, len,
1278 			  ci->md->bs);
1279 		__map_bio(ti, tio);
1280 
1281 		ci->sector += len;
1282 		ci->sector_count -= len;
1283 		ci->idx = i;
1284 
1285 	} else {
1286 		/*
1287 		 * Handle a bvec that must be split between two or more targets.
1288 		 */
1289 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1290 		sector_t remaining = to_sector(bv->bv_len);
1291 		unsigned int offset = 0;
1292 
1293 		do {
1294 			if (offset) {
1295 				ti = dm_table_find_target(ci->map, ci->sector);
1296 				if (!dm_target_is_valid(ti))
1297 					return -EIO;
1298 
1299 				max = max_io_len(ci->sector, ti);
1300 			}
1301 
1302 			len = min(remaining, max);
1303 
1304 			tio = alloc_tio(ci, ti, 1);
1305 			split_bvec(tio, bio, ci->sector, ci->idx,
1306 				   bv->bv_offset + offset, len, ci->md->bs);
1307 
1308 			__map_bio(ti, tio);
1309 
1310 			ci->sector += len;
1311 			ci->sector_count -= len;
1312 			offset += to_bytes(len);
1313 		} while (remaining -= len);
1314 
1315 		ci->idx++;
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 /*
1322  * Split the bio into several clones and submit it to targets.
1323  */
1324 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1325 {
1326 	struct clone_info ci;
1327 	int error = 0;
1328 
1329 	ci.map = dm_get_live_table(md);
1330 	if (unlikely(!ci.map)) {
1331 		bio_io_error(bio);
1332 		return;
1333 	}
1334 
1335 	ci.md = md;
1336 	ci.io = alloc_io(md);
1337 	ci.io->error = 0;
1338 	atomic_set(&ci.io->io_count, 1);
1339 	ci.io->bio = bio;
1340 	ci.io->md = md;
1341 	spin_lock_init(&ci.io->endio_lock);
1342 	ci.sector = bio->bi_sector;
1343 	ci.idx = bio->bi_idx;
1344 
1345 	start_io_acct(ci.io);
1346 	if (bio->bi_rw & REQ_FLUSH) {
1347 		ci.bio = &ci.md->flush_bio;
1348 		ci.sector_count = 0;
1349 		error = __clone_and_map_empty_flush(&ci);
1350 		/* dec_pending submits any data associated with flush */
1351 	} else {
1352 		ci.bio = bio;
1353 		ci.sector_count = bio_sectors(bio);
1354 		while (ci.sector_count && !error)
1355 			error = __clone_and_map(&ci);
1356 	}
1357 
1358 	/* drop the extra reference count */
1359 	dec_pending(ci.io, error);
1360 	dm_table_put(ci.map);
1361 }
1362 /*-----------------------------------------------------------------
1363  * CRUD END
1364  *---------------------------------------------------------------*/
1365 
1366 static int dm_merge_bvec(struct request_queue *q,
1367 			 struct bvec_merge_data *bvm,
1368 			 struct bio_vec *biovec)
1369 {
1370 	struct mapped_device *md = q->queuedata;
1371 	struct dm_table *map = dm_get_live_table(md);
1372 	struct dm_target *ti;
1373 	sector_t max_sectors;
1374 	int max_size = 0;
1375 
1376 	if (unlikely(!map))
1377 		goto out;
1378 
1379 	ti = dm_table_find_target(map, bvm->bi_sector);
1380 	if (!dm_target_is_valid(ti))
1381 		goto out_table;
1382 
1383 	/*
1384 	 * Find maximum amount of I/O that won't need splitting
1385 	 */
1386 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1387 			  (sector_t) BIO_MAX_SECTORS);
1388 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1389 	if (max_size < 0)
1390 		max_size = 0;
1391 
1392 	/*
1393 	 * merge_bvec_fn() returns number of bytes
1394 	 * it can accept at this offset
1395 	 * max is precomputed maximal io size
1396 	 */
1397 	if (max_size && ti->type->merge)
1398 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1399 	/*
1400 	 * If the target doesn't support merge method and some of the devices
1401 	 * provided their merge_bvec method (we know this by looking at
1402 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1403 	 * entries.  So always set max_size to 0, and the code below allows
1404 	 * just one page.
1405 	 */
1406 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1407 
1408 		max_size = 0;
1409 
1410 out_table:
1411 	dm_table_put(map);
1412 
1413 out:
1414 	/*
1415 	 * Always allow an entire first page
1416 	 */
1417 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1418 		max_size = biovec->bv_len;
1419 
1420 	return max_size;
1421 }
1422 
1423 /*
1424  * The request function that just remaps the bio built up by
1425  * dm_merge_bvec.
1426  */
1427 static void _dm_request(struct request_queue *q, struct bio *bio)
1428 {
1429 	int rw = bio_data_dir(bio);
1430 	struct mapped_device *md = q->queuedata;
1431 	int cpu;
1432 
1433 	down_read(&md->io_lock);
1434 
1435 	cpu = part_stat_lock();
1436 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1437 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1438 	part_stat_unlock();
1439 
1440 	/* if we're suspended, we have to queue this io for later */
1441 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1442 		up_read(&md->io_lock);
1443 
1444 		if (bio_rw(bio) != READA)
1445 			queue_io(md, bio);
1446 		else
1447 			bio_io_error(bio);
1448 		return;
1449 	}
1450 
1451 	__split_and_process_bio(md, bio);
1452 	up_read(&md->io_lock);
1453 	return;
1454 }
1455 
1456 static int dm_request_based(struct mapped_device *md)
1457 {
1458 	return blk_queue_stackable(md->queue);
1459 }
1460 
1461 static void dm_request(struct request_queue *q, struct bio *bio)
1462 {
1463 	struct mapped_device *md = q->queuedata;
1464 
1465 	if (dm_request_based(md))
1466 		blk_queue_bio(q, bio);
1467 	else
1468 		_dm_request(q, bio);
1469 }
1470 
1471 void dm_dispatch_request(struct request *rq)
1472 {
1473 	int r;
1474 
1475 	if (blk_queue_io_stat(rq->q))
1476 		rq->cmd_flags |= REQ_IO_STAT;
1477 
1478 	rq->start_time = jiffies;
1479 	r = blk_insert_cloned_request(rq->q, rq);
1480 	if (r)
1481 		dm_complete_request(rq, r);
1482 }
1483 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1484 
1485 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1486 				 void *data)
1487 {
1488 	struct dm_rq_target_io *tio = data;
1489 	struct dm_rq_clone_bio_info *info =
1490 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1491 
1492 	info->orig = bio_orig;
1493 	info->tio = tio;
1494 	bio->bi_end_io = end_clone_bio;
1495 	bio->bi_private = info;
1496 
1497 	return 0;
1498 }
1499 
1500 static int setup_clone(struct request *clone, struct request *rq,
1501 		       struct dm_rq_target_io *tio)
1502 {
1503 	int r;
1504 
1505 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1506 			      dm_rq_bio_constructor, tio);
1507 	if (r)
1508 		return r;
1509 
1510 	clone->cmd = rq->cmd;
1511 	clone->cmd_len = rq->cmd_len;
1512 	clone->sense = rq->sense;
1513 	clone->buffer = rq->buffer;
1514 	clone->end_io = end_clone_request;
1515 	clone->end_io_data = tio;
1516 
1517 	return 0;
1518 }
1519 
1520 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1521 				gfp_t gfp_mask)
1522 {
1523 	struct request *clone;
1524 	struct dm_rq_target_io *tio;
1525 
1526 	tio = alloc_rq_tio(md, gfp_mask);
1527 	if (!tio)
1528 		return NULL;
1529 
1530 	tio->md = md;
1531 	tio->ti = NULL;
1532 	tio->orig = rq;
1533 	tio->error = 0;
1534 	memset(&tio->info, 0, sizeof(tio->info));
1535 
1536 	clone = &tio->clone;
1537 	if (setup_clone(clone, rq, tio)) {
1538 		/* -ENOMEM */
1539 		free_rq_tio(tio);
1540 		return NULL;
1541 	}
1542 
1543 	return clone;
1544 }
1545 
1546 /*
1547  * Called with the queue lock held.
1548  */
1549 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1550 {
1551 	struct mapped_device *md = q->queuedata;
1552 	struct request *clone;
1553 
1554 	if (unlikely(rq->special)) {
1555 		DMWARN("Already has something in rq->special.");
1556 		return BLKPREP_KILL;
1557 	}
1558 
1559 	clone = clone_rq(rq, md, GFP_ATOMIC);
1560 	if (!clone)
1561 		return BLKPREP_DEFER;
1562 
1563 	rq->special = clone;
1564 	rq->cmd_flags |= REQ_DONTPREP;
1565 
1566 	return BLKPREP_OK;
1567 }
1568 
1569 /*
1570  * Returns:
1571  * 0  : the request has been processed (not requeued)
1572  * !0 : the request has been requeued
1573  */
1574 static int map_request(struct dm_target *ti, struct request *clone,
1575 		       struct mapped_device *md)
1576 {
1577 	int r, requeued = 0;
1578 	struct dm_rq_target_io *tio = clone->end_io_data;
1579 
1580 	tio->ti = ti;
1581 	r = ti->type->map_rq(ti, clone, &tio->info);
1582 	switch (r) {
1583 	case DM_MAPIO_SUBMITTED:
1584 		/* The target has taken the I/O to submit by itself later */
1585 		break;
1586 	case DM_MAPIO_REMAPPED:
1587 		/* The target has remapped the I/O so dispatch it */
1588 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1589 				     blk_rq_pos(tio->orig));
1590 		dm_dispatch_request(clone);
1591 		break;
1592 	case DM_MAPIO_REQUEUE:
1593 		/* The target wants to requeue the I/O */
1594 		dm_requeue_unmapped_request(clone);
1595 		requeued = 1;
1596 		break;
1597 	default:
1598 		if (r > 0) {
1599 			DMWARN("unimplemented target map return value: %d", r);
1600 			BUG();
1601 		}
1602 
1603 		/* The target wants to complete the I/O */
1604 		dm_kill_unmapped_request(clone, r);
1605 		break;
1606 	}
1607 
1608 	return requeued;
1609 }
1610 
1611 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1612 {
1613 	struct request *clone;
1614 
1615 	blk_start_request(orig);
1616 	clone = orig->special;
1617 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1618 
1619 	/*
1620 	 * Hold the md reference here for the in-flight I/O.
1621 	 * We can't rely on the reference count by device opener,
1622 	 * because the device may be closed during the request completion
1623 	 * when all bios are completed.
1624 	 * See the comment in rq_completed() too.
1625 	 */
1626 	dm_get(md);
1627 
1628 	return clone;
1629 }
1630 
1631 /*
1632  * q->request_fn for request-based dm.
1633  * Called with the queue lock held.
1634  */
1635 static void dm_request_fn(struct request_queue *q)
1636 {
1637 	struct mapped_device *md = q->queuedata;
1638 	struct dm_table *map = dm_get_live_table(md);
1639 	struct dm_target *ti;
1640 	struct request *rq, *clone;
1641 	sector_t pos;
1642 
1643 	/*
1644 	 * For suspend, check blk_queue_stopped() and increment
1645 	 * ->pending within a single queue_lock not to increment the
1646 	 * number of in-flight I/Os after the queue is stopped in
1647 	 * dm_suspend().
1648 	 */
1649 	while (!blk_queue_stopped(q)) {
1650 		rq = blk_peek_request(q);
1651 		if (!rq)
1652 			goto delay_and_out;
1653 
1654 		/* always use block 0 to find the target for flushes for now */
1655 		pos = 0;
1656 		if (!(rq->cmd_flags & REQ_FLUSH))
1657 			pos = blk_rq_pos(rq);
1658 
1659 		ti = dm_table_find_target(map, pos);
1660 		if (!dm_target_is_valid(ti)) {
1661 			/*
1662 			 * Must perform setup, that dm_done() requires,
1663 			 * before calling dm_kill_unmapped_request
1664 			 */
1665 			DMERR_LIMIT("request attempted access beyond the end of device");
1666 			clone = dm_start_request(md, rq);
1667 			dm_kill_unmapped_request(clone, -EIO);
1668 			continue;
1669 		}
1670 
1671 		if (ti->type->busy && ti->type->busy(ti))
1672 			goto delay_and_out;
1673 
1674 		clone = dm_start_request(md, rq);
1675 
1676 		spin_unlock(q->queue_lock);
1677 		if (map_request(ti, clone, md))
1678 			goto requeued;
1679 
1680 		BUG_ON(!irqs_disabled());
1681 		spin_lock(q->queue_lock);
1682 	}
1683 
1684 	goto out;
1685 
1686 requeued:
1687 	BUG_ON(!irqs_disabled());
1688 	spin_lock(q->queue_lock);
1689 
1690 delay_and_out:
1691 	blk_delay_queue(q, HZ / 10);
1692 out:
1693 	dm_table_put(map);
1694 }
1695 
1696 int dm_underlying_device_busy(struct request_queue *q)
1697 {
1698 	return blk_lld_busy(q);
1699 }
1700 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1701 
1702 static int dm_lld_busy(struct request_queue *q)
1703 {
1704 	int r;
1705 	struct mapped_device *md = q->queuedata;
1706 	struct dm_table *map = dm_get_live_table(md);
1707 
1708 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1709 		r = 1;
1710 	else
1711 		r = dm_table_any_busy_target(map);
1712 
1713 	dm_table_put(map);
1714 
1715 	return r;
1716 }
1717 
1718 static int dm_any_congested(void *congested_data, int bdi_bits)
1719 {
1720 	int r = bdi_bits;
1721 	struct mapped_device *md = congested_data;
1722 	struct dm_table *map;
1723 
1724 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1725 		map = dm_get_live_table(md);
1726 		if (map) {
1727 			/*
1728 			 * Request-based dm cares about only own queue for
1729 			 * the query about congestion status of request_queue
1730 			 */
1731 			if (dm_request_based(md))
1732 				r = md->queue->backing_dev_info.state &
1733 				    bdi_bits;
1734 			else
1735 				r = dm_table_any_congested(map, bdi_bits);
1736 
1737 			dm_table_put(map);
1738 		}
1739 	}
1740 
1741 	return r;
1742 }
1743 
1744 /*-----------------------------------------------------------------
1745  * An IDR is used to keep track of allocated minor numbers.
1746  *---------------------------------------------------------------*/
1747 static void free_minor(int minor)
1748 {
1749 	spin_lock(&_minor_lock);
1750 	idr_remove(&_minor_idr, minor);
1751 	spin_unlock(&_minor_lock);
1752 }
1753 
1754 /*
1755  * See if the device with a specific minor # is free.
1756  */
1757 static int specific_minor(int minor)
1758 {
1759 	int r, m;
1760 
1761 	if (minor >= (1 << MINORBITS))
1762 		return -EINVAL;
1763 
1764 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1765 	if (!r)
1766 		return -ENOMEM;
1767 
1768 	spin_lock(&_minor_lock);
1769 
1770 	if (idr_find(&_minor_idr, minor)) {
1771 		r = -EBUSY;
1772 		goto out;
1773 	}
1774 
1775 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1776 	if (r)
1777 		goto out;
1778 
1779 	if (m != minor) {
1780 		idr_remove(&_minor_idr, m);
1781 		r = -EBUSY;
1782 		goto out;
1783 	}
1784 
1785 out:
1786 	spin_unlock(&_minor_lock);
1787 	return r;
1788 }
1789 
1790 static int next_free_minor(int *minor)
1791 {
1792 	int r, m;
1793 
1794 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1795 	if (!r)
1796 		return -ENOMEM;
1797 
1798 	spin_lock(&_minor_lock);
1799 
1800 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1801 	if (r)
1802 		goto out;
1803 
1804 	if (m >= (1 << MINORBITS)) {
1805 		idr_remove(&_minor_idr, m);
1806 		r = -ENOSPC;
1807 		goto out;
1808 	}
1809 
1810 	*minor = m;
1811 
1812 out:
1813 	spin_unlock(&_minor_lock);
1814 	return r;
1815 }
1816 
1817 static const struct block_device_operations dm_blk_dops;
1818 
1819 static void dm_wq_work(struct work_struct *work);
1820 
1821 static void dm_init_md_queue(struct mapped_device *md)
1822 {
1823 	/*
1824 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1825 	 * devices.  The type of this dm device has not been decided yet.
1826 	 * The type is decided at the first table loading time.
1827 	 * To prevent problematic device stacking, clear the queue flag
1828 	 * for request stacking support until then.
1829 	 *
1830 	 * This queue is new, so no concurrency on the queue_flags.
1831 	 */
1832 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1833 
1834 	md->queue->queuedata = md;
1835 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1836 	md->queue->backing_dev_info.congested_data = md;
1837 	blk_queue_make_request(md->queue, dm_request);
1838 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1839 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1840 }
1841 
1842 /*
1843  * Allocate and initialise a blank device with a given minor.
1844  */
1845 static struct mapped_device *alloc_dev(int minor)
1846 {
1847 	int r;
1848 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1849 	void *old_md;
1850 
1851 	if (!md) {
1852 		DMWARN("unable to allocate device, out of memory.");
1853 		return NULL;
1854 	}
1855 
1856 	if (!try_module_get(THIS_MODULE))
1857 		goto bad_module_get;
1858 
1859 	/* get a minor number for the dev */
1860 	if (minor == DM_ANY_MINOR)
1861 		r = next_free_minor(&minor);
1862 	else
1863 		r = specific_minor(minor);
1864 	if (r < 0)
1865 		goto bad_minor;
1866 
1867 	md->type = DM_TYPE_NONE;
1868 	init_rwsem(&md->io_lock);
1869 	mutex_init(&md->suspend_lock);
1870 	mutex_init(&md->type_lock);
1871 	spin_lock_init(&md->deferred_lock);
1872 	rwlock_init(&md->map_lock);
1873 	atomic_set(&md->holders, 1);
1874 	atomic_set(&md->open_count, 0);
1875 	atomic_set(&md->event_nr, 0);
1876 	atomic_set(&md->uevent_seq, 0);
1877 	INIT_LIST_HEAD(&md->uevent_list);
1878 	spin_lock_init(&md->uevent_lock);
1879 
1880 	md->queue = blk_alloc_queue(GFP_KERNEL);
1881 	if (!md->queue)
1882 		goto bad_queue;
1883 
1884 	dm_init_md_queue(md);
1885 
1886 	md->disk = alloc_disk(1);
1887 	if (!md->disk)
1888 		goto bad_disk;
1889 
1890 	atomic_set(&md->pending[0], 0);
1891 	atomic_set(&md->pending[1], 0);
1892 	init_waitqueue_head(&md->wait);
1893 	INIT_WORK(&md->work, dm_wq_work);
1894 	init_waitqueue_head(&md->eventq);
1895 
1896 	md->disk->major = _major;
1897 	md->disk->first_minor = minor;
1898 	md->disk->fops = &dm_blk_dops;
1899 	md->disk->queue = md->queue;
1900 	md->disk->private_data = md;
1901 	sprintf(md->disk->disk_name, "dm-%d", minor);
1902 	add_disk(md->disk);
1903 	format_dev_t(md->name, MKDEV(_major, minor));
1904 
1905 	md->wq = alloc_workqueue("kdmflush",
1906 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1907 	if (!md->wq)
1908 		goto bad_thread;
1909 
1910 	md->bdev = bdget_disk(md->disk, 0);
1911 	if (!md->bdev)
1912 		goto bad_bdev;
1913 
1914 	bio_init(&md->flush_bio);
1915 	md->flush_bio.bi_bdev = md->bdev;
1916 	md->flush_bio.bi_rw = WRITE_FLUSH;
1917 
1918 	/* Populate the mapping, nobody knows we exist yet */
1919 	spin_lock(&_minor_lock);
1920 	old_md = idr_replace(&_minor_idr, md, minor);
1921 	spin_unlock(&_minor_lock);
1922 
1923 	BUG_ON(old_md != MINOR_ALLOCED);
1924 
1925 	return md;
1926 
1927 bad_bdev:
1928 	destroy_workqueue(md->wq);
1929 bad_thread:
1930 	del_gendisk(md->disk);
1931 	put_disk(md->disk);
1932 bad_disk:
1933 	blk_cleanup_queue(md->queue);
1934 bad_queue:
1935 	free_minor(minor);
1936 bad_minor:
1937 	module_put(THIS_MODULE);
1938 bad_module_get:
1939 	kfree(md);
1940 	return NULL;
1941 }
1942 
1943 static void unlock_fs(struct mapped_device *md);
1944 
1945 static void free_dev(struct mapped_device *md)
1946 {
1947 	int minor = MINOR(disk_devt(md->disk));
1948 
1949 	unlock_fs(md);
1950 	bdput(md->bdev);
1951 	destroy_workqueue(md->wq);
1952 	if (md->tio_pool)
1953 		mempool_destroy(md->tio_pool);
1954 	if (md->io_pool)
1955 		mempool_destroy(md->io_pool);
1956 	if (md->bs)
1957 		bioset_free(md->bs);
1958 	blk_integrity_unregister(md->disk);
1959 	del_gendisk(md->disk);
1960 	free_minor(minor);
1961 
1962 	spin_lock(&_minor_lock);
1963 	md->disk->private_data = NULL;
1964 	spin_unlock(&_minor_lock);
1965 
1966 	put_disk(md->disk);
1967 	blk_cleanup_queue(md->queue);
1968 	module_put(THIS_MODULE);
1969 	kfree(md);
1970 }
1971 
1972 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1973 {
1974 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1975 
1976 	if (md->io_pool && (md->tio_pool || dm_table_get_type(t) == DM_TYPE_BIO_BASED) && md->bs) {
1977 		/*
1978 		 * The md already has necessary mempools. Reload just the
1979 		 * bioset because front_pad may have changed because
1980 		 * a different table was loaded.
1981 		 */
1982 		bioset_free(md->bs);
1983 		md->bs = p->bs;
1984 		p->bs = NULL;
1985 		goto out;
1986 	}
1987 
1988 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1989 
1990 	md->io_pool = p->io_pool;
1991 	p->io_pool = NULL;
1992 	md->tio_pool = p->tio_pool;
1993 	p->tio_pool = NULL;
1994 	md->bs = p->bs;
1995 	p->bs = NULL;
1996 
1997 out:
1998 	/* mempool bind completed, now no need any mempools in the table */
1999 	dm_table_free_md_mempools(t);
2000 }
2001 
2002 /*
2003  * Bind a table to the device.
2004  */
2005 static void event_callback(void *context)
2006 {
2007 	unsigned long flags;
2008 	LIST_HEAD(uevents);
2009 	struct mapped_device *md = (struct mapped_device *) context;
2010 
2011 	spin_lock_irqsave(&md->uevent_lock, flags);
2012 	list_splice_init(&md->uevent_list, &uevents);
2013 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2014 
2015 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2016 
2017 	atomic_inc(&md->event_nr);
2018 	wake_up(&md->eventq);
2019 }
2020 
2021 /*
2022  * Protected by md->suspend_lock obtained by dm_swap_table().
2023  */
2024 static void __set_size(struct mapped_device *md, sector_t size)
2025 {
2026 	set_capacity(md->disk, size);
2027 
2028 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2029 }
2030 
2031 /*
2032  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2033  *
2034  * If this function returns 0, then the device is either a non-dm
2035  * device without a merge_bvec_fn, or it is a dm device that is
2036  * able to split any bios it receives that are too big.
2037  */
2038 int dm_queue_merge_is_compulsory(struct request_queue *q)
2039 {
2040 	struct mapped_device *dev_md;
2041 
2042 	if (!q->merge_bvec_fn)
2043 		return 0;
2044 
2045 	if (q->make_request_fn == dm_request) {
2046 		dev_md = q->queuedata;
2047 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2048 			return 0;
2049 	}
2050 
2051 	return 1;
2052 }
2053 
2054 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2055 					 struct dm_dev *dev, sector_t start,
2056 					 sector_t len, void *data)
2057 {
2058 	struct block_device *bdev = dev->bdev;
2059 	struct request_queue *q = bdev_get_queue(bdev);
2060 
2061 	return dm_queue_merge_is_compulsory(q);
2062 }
2063 
2064 /*
2065  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2066  * on the properties of the underlying devices.
2067  */
2068 static int dm_table_merge_is_optional(struct dm_table *table)
2069 {
2070 	unsigned i = 0;
2071 	struct dm_target *ti;
2072 
2073 	while (i < dm_table_get_num_targets(table)) {
2074 		ti = dm_table_get_target(table, i++);
2075 
2076 		if (ti->type->iterate_devices &&
2077 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2078 			return 0;
2079 	}
2080 
2081 	return 1;
2082 }
2083 
2084 /*
2085  * Returns old map, which caller must destroy.
2086  */
2087 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2088 			       struct queue_limits *limits)
2089 {
2090 	struct dm_table *old_map;
2091 	struct request_queue *q = md->queue;
2092 	sector_t size;
2093 	unsigned long flags;
2094 	int merge_is_optional;
2095 
2096 	size = dm_table_get_size(t);
2097 
2098 	/*
2099 	 * Wipe any geometry if the size of the table changed.
2100 	 */
2101 	if (size != get_capacity(md->disk))
2102 		memset(&md->geometry, 0, sizeof(md->geometry));
2103 
2104 	__set_size(md, size);
2105 
2106 	dm_table_event_callback(t, event_callback, md);
2107 
2108 	/*
2109 	 * The queue hasn't been stopped yet, if the old table type wasn't
2110 	 * for request-based during suspension.  So stop it to prevent
2111 	 * I/O mapping before resume.
2112 	 * This must be done before setting the queue restrictions,
2113 	 * because request-based dm may be run just after the setting.
2114 	 */
2115 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2116 		stop_queue(q);
2117 
2118 	__bind_mempools(md, t);
2119 
2120 	merge_is_optional = dm_table_merge_is_optional(t);
2121 
2122 	write_lock_irqsave(&md->map_lock, flags);
2123 	old_map = md->map;
2124 	md->map = t;
2125 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2126 
2127 	dm_table_set_restrictions(t, q, limits);
2128 	if (merge_is_optional)
2129 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2130 	else
2131 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2132 	write_unlock_irqrestore(&md->map_lock, flags);
2133 
2134 	return old_map;
2135 }
2136 
2137 /*
2138  * Returns unbound table for the caller to free.
2139  */
2140 static struct dm_table *__unbind(struct mapped_device *md)
2141 {
2142 	struct dm_table *map = md->map;
2143 	unsigned long flags;
2144 
2145 	if (!map)
2146 		return NULL;
2147 
2148 	dm_table_event_callback(map, NULL, NULL);
2149 	write_lock_irqsave(&md->map_lock, flags);
2150 	md->map = NULL;
2151 	write_unlock_irqrestore(&md->map_lock, flags);
2152 
2153 	return map;
2154 }
2155 
2156 /*
2157  * Constructor for a new device.
2158  */
2159 int dm_create(int minor, struct mapped_device **result)
2160 {
2161 	struct mapped_device *md;
2162 
2163 	md = alloc_dev(minor);
2164 	if (!md)
2165 		return -ENXIO;
2166 
2167 	dm_sysfs_init(md);
2168 
2169 	*result = md;
2170 	return 0;
2171 }
2172 
2173 /*
2174  * Functions to manage md->type.
2175  * All are required to hold md->type_lock.
2176  */
2177 void dm_lock_md_type(struct mapped_device *md)
2178 {
2179 	mutex_lock(&md->type_lock);
2180 }
2181 
2182 void dm_unlock_md_type(struct mapped_device *md)
2183 {
2184 	mutex_unlock(&md->type_lock);
2185 }
2186 
2187 void dm_set_md_type(struct mapped_device *md, unsigned type)
2188 {
2189 	md->type = type;
2190 }
2191 
2192 unsigned dm_get_md_type(struct mapped_device *md)
2193 {
2194 	return md->type;
2195 }
2196 
2197 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2198 {
2199 	return md->immutable_target_type;
2200 }
2201 
2202 /*
2203  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2204  */
2205 static int dm_init_request_based_queue(struct mapped_device *md)
2206 {
2207 	struct request_queue *q = NULL;
2208 
2209 	if (md->queue->elevator)
2210 		return 1;
2211 
2212 	/* Fully initialize the queue */
2213 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2214 	if (!q)
2215 		return 0;
2216 
2217 	md->queue = q;
2218 	dm_init_md_queue(md);
2219 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2220 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2221 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2222 
2223 	elv_register_queue(md->queue);
2224 
2225 	return 1;
2226 }
2227 
2228 /*
2229  * Setup the DM device's queue based on md's type
2230  */
2231 int dm_setup_md_queue(struct mapped_device *md)
2232 {
2233 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2234 	    !dm_init_request_based_queue(md)) {
2235 		DMWARN("Cannot initialize queue for request-based mapped device");
2236 		return -EINVAL;
2237 	}
2238 
2239 	return 0;
2240 }
2241 
2242 static struct mapped_device *dm_find_md(dev_t dev)
2243 {
2244 	struct mapped_device *md;
2245 	unsigned minor = MINOR(dev);
2246 
2247 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2248 		return NULL;
2249 
2250 	spin_lock(&_minor_lock);
2251 
2252 	md = idr_find(&_minor_idr, minor);
2253 	if (md && (md == MINOR_ALLOCED ||
2254 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2255 		   dm_deleting_md(md) ||
2256 		   test_bit(DMF_FREEING, &md->flags))) {
2257 		md = NULL;
2258 		goto out;
2259 	}
2260 
2261 out:
2262 	spin_unlock(&_minor_lock);
2263 
2264 	return md;
2265 }
2266 
2267 struct mapped_device *dm_get_md(dev_t dev)
2268 {
2269 	struct mapped_device *md = dm_find_md(dev);
2270 
2271 	if (md)
2272 		dm_get(md);
2273 
2274 	return md;
2275 }
2276 EXPORT_SYMBOL_GPL(dm_get_md);
2277 
2278 void *dm_get_mdptr(struct mapped_device *md)
2279 {
2280 	return md->interface_ptr;
2281 }
2282 
2283 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2284 {
2285 	md->interface_ptr = ptr;
2286 }
2287 
2288 void dm_get(struct mapped_device *md)
2289 {
2290 	atomic_inc(&md->holders);
2291 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2292 }
2293 
2294 const char *dm_device_name(struct mapped_device *md)
2295 {
2296 	return md->name;
2297 }
2298 EXPORT_SYMBOL_GPL(dm_device_name);
2299 
2300 static void __dm_destroy(struct mapped_device *md, bool wait)
2301 {
2302 	struct dm_table *map;
2303 
2304 	might_sleep();
2305 
2306 	spin_lock(&_minor_lock);
2307 	map = dm_get_live_table(md);
2308 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2309 	set_bit(DMF_FREEING, &md->flags);
2310 	spin_unlock(&_minor_lock);
2311 
2312 	if (!dm_suspended_md(md)) {
2313 		dm_table_presuspend_targets(map);
2314 		dm_table_postsuspend_targets(map);
2315 	}
2316 
2317 	/*
2318 	 * Rare, but there may be I/O requests still going to complete,
2319 	 * for example.  Wait for all references to disappear.
2320 	 * No one should increment the reference count of the mapped_device,
2321 	 * after the mapped_device state becomes DMF_FREEING.
2322 	 */
2323 	if (wait)
2324 		while (atomic_read(&md->holders))
2325 			msleep(1);
2326 	else if (atomic_read(&md->holders))
2327 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2328 		       dm_device_name(md), atomic_read(&md->holders));
2329 
2330 	dm_sysfs_exit(md);
2331 	dm_table_put(map);
2332 	dm_table_destroy(__unbind(md));
2333 	free_dev(md);
2334 }
2335 
2336 void dm_destroy(struct mapped_device *md)
2337 {
2338 	__dm_destroy(md, true);
2339 }
2340 
2341 void dm_destroy_immediate(struct mapped_device *md)
2342 {
2343 	__dm_destroy(md, false);
2344 }
2345 
2346 void dm_put(struct mapped_device *md)
2347 {
2348 	atomic_dec(&md->holders);
2349 }
2350 EXPORT_SYMBOL_GPL(dm_put);
2351 
2352 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2353 {
2354 	int r = 0;
2355 	DECLARE_WAITQUEUE(wait, current);
2356 
2357 	add_wait_queue(&md->wait, &wait);
2358 
2359 	while (1) {
2360 		set_current_state(interruptible);
2361 
2362 		if (!md_in_flight(md))
2363 			break;
2364 
2365 		if (interruptible == TASK_INTERRUPTIBLE &&
2366 		    signal_pending(current)) {
2367 			r = -EINTR;
2368 			break;
2369 		}
2370 
2371 		io_schedule();
2372 	}
2373 	set_current_state(TASK_RUNNING);
2374 
2375 	remove_wait_queue(&md->wait, &wait);
2376 
2377 	return r;
2378 }
2379 
2380 /*
2381  * Process the deferred bios
2382  */
2383 static void dm_wq_work(struct work_struct *work)
2384 {
2385 	struct mapped_device *md = container_of(work, struct mapped_device,
2386 						work);
2387 	struct bio *c;
2388 
2389 	down_read(&md->io_lock);
2390 
2391 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2392 		spin_lock_irq(&md->deferred_lock);
2393 		c = bio_list_pop(&md->deferred);
2394 		spin_unlock_irq(&md->deferred_lock);
2395 
2396 		if (!c)
2397 			break;
2398 
2399 		up_read(&md->io_lock);
2400 
2401 		if (dm_request_based(md))
2402 			generic_make_request(c);
2403 		else
2404 			__split_and_process_bio(md, c);
2405 
2406 		down_read(&md->io_lock);
2407 	}
2408 
2409 	up_read(&md->io_lock);
2410 }
2411 
2412 static void dm_queue_flush(struct mapped_device *md)
2413 {
2414 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2415 	smp_mb__after_clear_bit();
2416 	queue_work(md->wq, &md->work);
2417 }
2418 
2419 /*
2420  * Swap in a new table, returning the old one for the caller to destroy.
2421  */
2422 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2423 {
2424 	struct dm_table *live_map, *map = ERR_PTR(-EINVAL);
2425 	struct queue_limits limits;
2426 	int r;
2427 
2428 	mutex_lock(&md->suspend_lock);
2429 
2430 	/* device must be suspended */
2431 	if (!dm_suspended_md(md))
2432 		goto out;
2433 
2434 	/*
2435 	 * If the new table has no data devices, retain the existing limits.
2436 	 * This helps multipath with queue_if_no_path if all paths disappear,
2437 	 * then new I/O is queued based on these limits, and then some paths
2438 	 * reappear.
2439 	 */
2440 	if (dm_table_has_no_data_devices(table)) {
2441 		live_map = dm_get_live_table(md);
2442 		if (live_map)
2443 			limits = md->queue->limits;
2444 		dm_table_put(live_map);
2445 	}
2446 
2447 	r = dm_calculate_queue_limits(table, &limits);
2448 	if (r) {
2449 		map = ERR_PTR(r);
2450 		goto out;
2451 	}
2452 
2453 	map = __bind(md, table, &limits);
2454 
2455 out:
2456 	mutex_unlock(&md->suspend_lock);
2457 	return map;
2458 }
2459 
2460 /*
2461  * Functions to lock and unlock any filesystem running on the
2462  * device.
2463  */
2464 static int lock_fs(struct mapped_device *md)
2465 {
2466 	int r;
2467 
2468 	WARN_ON(md->frozen_sb);
2469 
2470 	md->frozen_sb = freeze_bdev(md->bdev);
2471 	if (IS_ERR(md->frozen_sb)) {
2472 		r = PTR_ERR(md->frozen_sb);
2473 		md->frozen_sb = NULL;
2474 		return r;
2475 	}
2476 
2477 	set_bit(DMF_FROZEN, &md->flags);
2478 
2479 	return 0;
2480 }
2481 
2482 static void unlock_fs(struct mapped_device *md)
2483 {
2484 	if (!test_bit(DMF_FROZEN, &md->flags))
2485 		return;
2486 
2487 	thaw_bdev(md->bdev, md->frozen_sb);
2488 	md->frozen_sb = NULL;
2489 	clear_bit(DMF_FROZEN, &md->flags);
2490 }
2491 
2492 /*
2493  * We need to be able to change a mapping table under a mounted
2494  * filesystem.  For example we might want to move some data in
2495  * the background.  Before the table can be swapped with
2496  * dm_bind_table, dm_suspend must be called to flush any in
2497  * flight bios and ensure that any further io gets deferred.
2498  */
2499 /*
2500  * Suspend mechanism in request-based dm.
2501  *
2502  * 1. Flush all I/Os by lock_fs() if needed.
2503  * 2. Stop dispatching any I/O by stopping the request_queue.
2504  * 3. Wait for all in-flight I/Os to be completed or requeued.
2505  *
2506  * To abort suspend, start the request_queue.
2507  */
2508 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2509 {
2510 	struct dm_table *map = NULL;
2511 	int r = 0;
2512 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2513 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2514 
2515 	mutex_lock(&md->suspend_lock);
2516 
2517 	if (dm_suspended_md(md)) {
2518 		r = -EINVAL;
2519 		goto out_unlock;
2520 	}
2521 
2522 	map = dm_get_live_table(md);
2523 
2524 	/*
2525 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2526 	 * This flag is cleared before dm_suspend returns.
2527 	 */
2528 	if (noflush)
2529 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2530 
2531 	/* This does not get reverted if there's an error later. */
2532 	dm_table_presuspend_targets(map);
2533 
2534 	/*
2535 	 * Flush I/O to the device.
2536 	 * Any I/O submitted after lock_fs() may not be flushed.
2537 	 * noflush takes precedence over do_lockfs.
2538 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2539 	 */
2540 	if (!noflush && do_lockfs) {
2541 		r = lock_fs(md);
2542 		if (r)
2543 			goto out;
2544 	}
2545 
2546 	/*
2547 	 * Here we must make sure that no processes are submitting requests
2548 	 * to target drivers i.e. no one may be executing
2549 	 * __split_and_process_bio. This is called from dm_request and
2550 	 * dm_wq_work.
2551 	 *
2552 	 * To get all processes out of __split_and_process_bio in dm_request,
2553 	 * we take the write lock. To prevent any process from reentering
2554 	 * __split_and_process_bio from dm_request and quiesce the thread
2555 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2556 	 * flush_workqueue(md->wq).
2557 	 */
2558 	down_write(&md->io_lock);
2559 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2560 	up_write(&md->io_lock);
2561 
2562 	/*
2563 	 * Stop md->queue before flushing md->wq in case request-based
2564 	 * dm defers requests to md->wq from md->queue.
2565 	 */
2566 	if (dm_request_based(md))
2567 		stop_queue(md->queue);
2568 
2569 	flush_workqueue(md->wq);
2570 
2571 	/*
2572 	 * At this point no more requests are entering target request routines.
2573 	 * We call dm_wait_for_completion to wait for all existing requests
2574 	 * to finish.
2575 	 */
2576 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2577 
2578 	down_write(&md->io_lock);
2579 	if (noflush)
2580 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2581 	up_write(&md->io_lock);
2582 
2583 	/* were we interrupted ? */
2584 	if (r < 0) {
2585 		dm_queue_flush(md);
2586 
2587 		if (dm_request_based(md))
2588 			start_queue(md->queue);
2589 
2590 		unlock_fs(md);
2591 		goto out; /* pushback list is already flushed, so skip flush */
2592 	}
2593 
2594 	/*
2595 	 * If dm_wait_for_completion returned 0, the device is completely
2596 	 * quiescent now. There is no request-processing activity. All new
2597 	 * requests are being added to md->deferred list.
2598 	 */
2599 
2600 	set_bit(DMF_SUSPENDED, &md->flags);
2601 
2602 	dm_table_postsuspend_targets(map);
2603 
2604 out:
2605 	dm_table_put(map);
2606 
2607 out_unlock:
2608 	mutex_unlock(&md->suspend_lock);
2609 	return r;
2610 }
2611 
2612 int dm_resume(struct mapped_device *md)
2613 {
2614 	int r = -EINVAL;
2615 	struct dm_table *map = NULL;
2616 
2617 	mutex_lock(&md->suspend_lock);
2618 	if (!dm_suspended_md(md))
2619 		goto out;
2620 
2621 	map = dm_get_live_table(md);
2622 	if (!map || !dm_table_get_size(map))
2623 		goto out;
2624 
2625 	r = dm_table_resume_targets(map);
2626 	if (r)
2627 		goto out;
2628 
2629 	dm_queue_flush(md);
2630 
2631 	/*
2632 	 * Flushing deferred I/Os must be done after targets are resumed
2633 	 * so that mapping of targets can work correctly.
2634 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2635 	 */
2636 	if (dm_request_based(md))
2637 		start_queue(md->queue);
2638 
2639 	unlock_fs(md);
2640 
2641 	clear_bit(DMF_SUSPENDED, &md->flags);
2642 
2643 	r = 0;
2644 out:
2645 	dm_table_put(map);
2646 	mutex_unlock(&md->suspend_lock);
2647 
2648 	return r;
2649 }
2650 
2651 /*-----------------------------------------------------------------
2652  * Event notification.
2653  *---------------------------------------------------------------*/
2654 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2655 		       unsigned cookie)
2656 {
2657 	char udev_cookie[DM_COOKIE_LENGTH];
2658 	char *envp[] = { udev_cookie, NULL };
2659 
2660 	if (!cookie)
2661 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2662 	else {
2663 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2664 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2665 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2666 					  action, envp);
2667 	}
2668 }
2669 
2670 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2671 {
2672 	return atomic_add_return(1, &md->uevent_seq);
2673 }
2674 
2675 uint32_t dm_get_event_nr(struct mapped_device *md)
2676 {
2677 	return atomic_read(&md->event_nr);
2678 }
2679 
2680 int dm_wait_event(struct mapped_device *md, int event_nr)
2681 {
2682 	return wait_event_interruptible(md->eventq,
2683 			(event_nr != atomic_read(&md->event_nr)));
2684 }
2685 
2686 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2687 {
2688 	unsigned long flags;
2689 
2690 	spin_lock_irqsave(&md->uevent_lock, flags);
2691 	list_add(elist, &md->uevent_list);
2692 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2693 }
2694 
2695 /*
2696  * The gendisk is only valid as long as you have a reference
2697  * count on 'md'.
2698  */
2699 struct gendisk *dm_disk(struct mapped_device *md)
2700 {
2701 	return md->disk;
2702 }
2703 
2704 struct kobject *dm_kobject(struct mapped_device *md)
2705 {
2706 	return &md->kobj;
2707 }
2708 
2709 /*
2710  * struct mapped_device should not be exported outside of dm.c
2711  * so use this check to verify that kobj is part of md structure
2712  */
2713 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2714 {
2715 	struct mapped_device *md;
2716 
2717 	md = container_of(kobj, struct mapped_device, kobj);
2718 	if (&md->kobj != kobj)
2719 		return NULL;
2720 
2721 	if (test_bit(DMF_FREEING, &md->flags) ||
2722 	    dm_deleting_md(md))
2723 		return NULL;
2724 
2725 	dm_get(md);
2726 	return md;
2727 }
2728 
2729 int dm_suspended_md(struct mapped_device *md)
2730 {
2731 	return test_bit(DMF_SUSPENDED, &md->flags);
2732 }
2733 
2734 int dm_suspended(struct dm_target *ti)
2735 {
2736 	return dm_suspended_md(dm_table_get_md(ti->table));
2737 }
2738 EXPORT_SYMBOL_GPL(dm_suspended);
2739 
2740 int dm_noflush_suspending(struct dm_target *ti)
2741 {
2742 	return __noflush_suspending(dm_table_get_md(ti->table));
2743 }
2744 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2745 
2746 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2747 {
2748 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2749 	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2750 
2751 	if (!pools)
2752 		return NULL;
2753 
2754 	per_bio_data_size = roundup(per_bio_data_size, __alignof__(struct dm_target_io));
2755 
2756 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2757 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2758 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2759 	if (!pools->io_pool)
2760 		goto free_pools_and_out;
2761 
2762 	pools->tio_pool = NULL;
2763 	if (type == DM_TYPE_REQUEST_BASED) {
2764 		pools->tio_pool = mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2765 		if (!pools->tio_pool)
2766 			goto free_io_pool_and_out;
2767 	}
2768 
2769 	pools->bs = (type == DM_TYPE_BIO_BASED) ?
2770 		bioset_create(pool_size,
2771 			      per_bio_data_size + offsetof(struct dm_target_io, clone)) :
2772 		bioset_create(pool_size,
2773 			      offsetof(struct dm_rq_clone_bio_info, clone));
2774 	if (!pools->bs)
2775 		goto free_tio_pool_and_out;
2776 
2777 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2778 		goto free_bioset_and_out;
2779 
2780 	return pools;
2781 
2782 free_bioset_and_out:
2783 	bioset_free(pools->bs);
2784 
2785 free_tio_pool_and_out:
2786 	if (pools->tio_pool)
2787 		mempool_destroy(pools->tio_pool);
2788 
2789 free_io_pool_and_out:
2790 	mempool_destroy(pools->io_pool);
2791 
2792 free_pools_and_out:
2793 	kfree(pools);
2794 
2795 	return NULL;
2796 }
2797 
2798 void dm_free_md_mempools(struct dm_md_mempools *pools)
2799 {
2800 	if (!pools)
2801 		return;
2802 
2803 	if (pools->io_pool)
2804 		mempool_destroy(pools->io_pool);
2805 
2806 	if (pools->tio_pool)
2807 		mempool_destroy(pools->tio_pool);
2808 
2809 	if (pools->bs)
2810 		bioset_free(pools->bs);
2811 
2812 	kfree(pools);
2813 }
2814 
2815 static const struct block_device_operations dm_blk_dops = {
2816 	.open = dm_blk_open,
2817 	.release = dm_blk_close,
2818 	.ioctl = dm_blk_ioctl,
2819 	.getgeo = dm_blk_getgeo,
2820 	.owner = THIS_MODULE
2821 };
2822 
2823 EXPORT_SYMBOL(dm_get_mapinfo);
2824 
2825 /*
2826  * module hooks
2827  */
2828 module_init(dm_init);
2829 module_exit(dm_exit);
2830 
2831 module_param(major, uint, 0);
2832 MODULE_PARM_DESC(major, "The major number of the device mapper");
2833 MODULE_DESCRIPTION(DM_NAME " driver");
2834 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2835 MODULE_LICENSE("GPL");
2836