xref: /openbmc/linux/drivers/md/dm.c (revision cf4baafd)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 /*
44  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45  * dm_io into one list, and reuse bio->bi_private as the list head. Before
46  * ending this fs bio, we will recover its ->bi_private.
47  */
48 #define REQ_DM_POLL_LIST	REQ_DRV
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67 
68 void dm_issue_global_event(void)
69 {
70 	atomic_inc(&dm_global_event_nr);
71 	wake_up(&dm_global_eventq);
72 }
73 
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
77 
78 /*
79  * One of these is allocated (on-stack) per original bio.
80  */
81 struct clone_info {
82 	struct dm_table *map;
83 	struct bio *bio;
84 	struct dm_io *io;
85 	sector_t sector;
86 	unsigned sector_count;
87 	bool is_abnormal_io:1;
88 	bool submit_as_polled:1;
89 };
90 
91 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
92 #define DM_IO_BIO_OFFSET \
93 	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
94 
95 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
96 {
97 	return container_of(clone, struct dm_target_io, clone);
98 }
99 
100 void *dm_per_bio_data(struct bio *bio, size_t data_size)
101 {
102 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
103 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
104 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
105 }
106 EXPORT_SYMBOL_GPL(dm_per_bio_data);
107 
108 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
109 {
110 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
111 	if (io->magic == DM_IO_MAGIC)
112 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
113 	BUG_ON(io->magic != DM_TIO_MAGIC);
114 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
115 }
116 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
117 
118 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
119 {
120 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
123 
124 #define MINOR_ALLOCED ((void *)-1)
125 
126 #define DM_NUMA_NODE NUMA_NO_NODE
127 static int dm_numa_node = DM_NUMA_NODE;
128 
129 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
130 static int swap_bios = DEFAULT_SWAP_BIOS;
131 static int get_swap_bios(void)
132 {
133 	int latch = READ_ONCE(swap_bios);
134 	if (unlikely(latch <= 0))
135 		latch = DEFAULT_SWAP_BIOS;
136 	return latch;
137 }
138 
139 struct table_device {
140 	struct list_head list;
141 	refcount_t count;
142 	struct dm_dev dm_dev;
143 };
144 
145 /*
146  * Bio-based DM's mempools' reserved IOs set by the user.
147  */
148 #define RESERVED_BIO_BASED_IOS		16
149 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150 
151 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 {
153 	int param = READ_ONCE(*module_param);
154 	int modified_param = 0;
155 	bool modified = true;
156 
157 	if (param < min)
158 		modified_param = min;
159 	else if (param > max)
160 		modified_param = max;
161 	else
162 		modified = false;
163 
164 	if (modified) {
165 		(void)cmpxchg(module_param, param, modified_param);
166 		param = modified_param;
167 	}
168 
169 	return param;
170 }
171 
172 unsigned __dm_get_module_param(unsigned *module_param,
173 			       unsigned def, unsigned max)
174 {
175 	unsigned param = READ_ONCE(*module_param);
176 	unsigned modified_param = 0;
177 
178 	if (!param)
179 		modified_param = def;
180 	else if (param > max)
181 		modified_param = max;
182 
183 	if (modified_param) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned dm_get_reserved_bio_based_ios(void)
192 {
193 	return __dm_get_module_param(&reserved_bio_based_ios,
194 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
195 }
196 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
197 
198 static unsigned dm_get_numa_node(void)
199 {
200 	return __dm_get_module_param_int(&dm_numa_node,
201 					 DM_NUMA_NODE, num_online_nodes() - 1);
202 }
203 
204 static int __init local_init(void)
205 {
206 	int r;
207 
208 	r = dm_uevent_init();
209 	if (r)
210 		return r;
211 
212 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
213 	if (!deferred_remove_workqueue) {
214 		r = -ENOMEM;
215 		goto out_uevent_exit;
216 	}
217 
218 	_major = major;
219 	r = register_blkdev(_major, _name);
220 	if (r < 0)
221 		goto out_free_workqueue;
222 
223 	if (!_major)
224 		_major = r;
225 
226 	return 0;
227 
228 out_free_workqueue:
229 	destroy_workqueue(deferred_remove_workqueue);
230 out_uevent_exit:
231 	dm_uevent_exit();
232 
233 	return r;
234 }
235 
236 static void local_exit(void)
237 {
238 	flush_scheduled_work();
239 	destroy_workqueue(deferred_remove_workqueue);
240 
241 	unregister_blkdev(_major, _name);
242 	dm_uevent_exit();
243 
244 	_major = 0;
245 
246 	DMINFO("cleaned up");
247 }
248 
249 static int (*_inits[])(void) __initdata = {
250 	local_init,
251 	dm_target_init,
252 	dm_linear_init,
253 	dm_stripe_init,
254 	dm_io_init,
255 	dm_kcopyd_init,
256 	dm_interface_init,
257 	dm_statistics_init,
258 };
259 
260 static void (*_exits[])(void) = {
261 	local_exit,
262 	dm_target_exit,
263 	dm_linear_exit,
264 	dm_stripe_exit,
265 	dm_io_exit,
266 	dm_kcopyd_exit,
267 	dm_interface_exit,
268 	dm_statistics_exit,
269 };
270 
271 static int __init dm_init(void)
272 {
273 	const int count = ARRAY_SIZE(_inits);
274 	int r, i;
275 
276 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
277 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
278 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
279 #endif
280 
281 	for (i = 0; i < count; i++) {
282 		r = _inits[i]();
283 		if (r)
284 			goto bad;
285 	}
286 
287 	return 0;
288 bad:
289 	while (i--)
290 		_exits[i]();
291 
292 	return r;
293 }
294 
295 static void __exit dm_exit(void)
296 {
297 	int i = ARRAY_SIZE(_exits);
298 
299 	while (i--)
300 		_exits[i]();
301 
302 	/*
303 	 * Should be empty by this point.
304 	 */
305 	idr_destroy(&_minor_idr);
306 }
307 
308 /*
309  * Block device functions
310  */
311 int dm_deleting_md(struct mapped_device *md)
312 {
313 	return test_bit(DMF_DELETING, &md->flags);
314 }
315 
316 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
317 {
318 	struct mapped_device *md;
319 
320 	spin_lock(&_minor_lock);
321 
322 	md = bdev->bd_disk->private_data;
323 	if (!md)
324 		goto out;
325 
326 	if (test_bit(DMF_FREEING, &md->flags) ||
327 	    dm_deleting_md(md)) {
328 		md = NULL;
329 		goto out;
330 	}
331 
332 	dm_get(md);
333 	atomic_inc(&md->open_count);
334 out:
335 	spin_unlock(&_minor_lock);
336 
337 	return md ? 0 : -ENXIO;
338 }
339 
340 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
341 {
342 	struct mapped_device *md;
343 
344 	spin_lock(&_minor_lock);
345 
346 	md = disk->private_data;
347 	if (WARN_ON(!md))
348 		goto out;
349 
350 	if (atomic_dec_and_test(&md->open_count) &&
351 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
352 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
353 
354 	dm_put(md);
355 out:
356 	spin_unlock(&_minor_lock);
357 }
358 
359 int dm_open_count(struct mapped_device *md)
360 {
361 	return atomic_read(&md->open_count);
362 }
363 
364 /*
365  * Guarantees nothing is using the device before it's deleted.
366  */
367 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
368 {
369 	int r = 0;
370 
371 	spin_lock(&_minor_lock);
372 
373 	if (dm_open_count(md)) {
374 		r = -EBUSY;
375 		if (mark_deferred)
376 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
377 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
378 		r = -EEXIST;
379 	else
380 		set_bit(DMF_DELETING, &md->flags);
381 
382 	spin_unlock(&_minor_lock);
383 
384 	return r;
385 }
386 
387 int dm_cancel_deferred_remove(struct mapped_device *md)
388 {
389 	int r = 0;
390 
391 	spin_lock(&_minor_lock);
392 
393 	if (test_bit(DMF_DELETING, &md->flags))
394 		r = -EBUSY;
395 	else
396 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
397 
398 	spin_unlock(&_minor_lock);
399 
400 	return r;
401 }
402 
403 static void do_deferred_remove(struct work_struct *w)
404 {
405 	dm_deferred_remove();
406 }
407 
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 	struct mapped_device *md = bdev->bd_disk->private_data;
411 
412 	return dm_get_geometry(md, geo);
413 }
414 
415 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
416 			    struct block_device **bdev)
417 {
418 	struct dm_target *tgt;
419 	struct dm_table *map;
420 	int r;
421 
422 retry:
423 	r = -ENOTTY;
424 	map = dm_get_live_table(md, srcu_idx);
425 	if (!map || !dm_table_get_size(map))
426 		return r;
427 
428 	/* We only support devices that have a single target */
429 	if (dm_table_get_num_targets(map) != 1)
430 		return r;
431 
432 	tgt = dm_table_get_target(map, 0);
433 	if (!tgt->type->prepare_ioctl)
434 		return r;
435 
436 	if (dm_suspended_md(md))
437 		return -EAGAIN;
438 
439 	r = tgt->type->prepare_ioctl(tgt, bdev);
440 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
441 		dm_put_live_table(md, *srcu_idx);
442 		msleep(10);
443 		goto retry;
444 	}
445 
446 	return r;
447 }
448 
449 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
450 {
451 	dm_put_live_table(md, srcu_idx);
452 }
453 
454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
455 			unsigned int cmd, unsigned long arg)
456 {
457 	struct mapped_device *md = bdev->bd_disk->private_data;
458 	int r, srcu_idx;
459 
460 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
461 	if (r < 0)
462 		goto out;
463 
464 	if (r > 0) {
465 		/*
466 		 * Target determined this ioctl is being issued against a
467 		 * subset of the parent bdev; require extra privileges.
468 		 */
469 		if (!capable(CAP_SYS_RAWIO)) {
470 			DMDEBUG_LIMIT(
471 	"%s: sending ioctl %x to DM device without required privilege.",
472 				current->comm, cmd);
473 			r = -ENOIOCTLCMD;
474 			goto out;
475 		}
476 	}
477 
478 	if (!bdev->bd_disk->fops->ioctl)
479 		r = -ENOTTY;
480 	else
481 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
482 out:
483 	dm_unprepare_ioctl(md, srcu_idx);
484 	return r;
485 }
486 
487 u64 dm_start_time_ns_from_clone(struct bio *bio)
488 {
489 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
490 }
491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
492 
493 static bool bio_is_flush_with_data(struct bio *bio)
494 {
495 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
496 }
497 
498 static void dm_io_acct(struct dm_io *io, bool end)
499 {
500 	struct dm_stats_aux *stats_aux = &io->stats_aux;
501 	unsigned long start_time = io->start_time;
502 	struct mapped_device *md = io->md;
503 	struct bio *bio = io->orig_bio;
504 	unsigned int sectors;
505 
506 	/*
507 	 * If REQ_PREFLUSH set, don't account payload, it will be
508 	 * submitted (and accounted) after this flush completes.
509 	 */
510 	if (bio_is_flush_with_data(bio))
511 		sectors = 0;
512 	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
513 		sectors = bio_sectors(bio);
514 	else
515 		sectors = io->sectors;
516 
517 	if (!end)
518 		bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
519 				   start_time);
520 	else
521 		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
522 
523 	if (static_branch_unlikely(&stats_enabled) &&
524 	    unlikely(dm_stats_used(&md->stats))) {
525 		sector_t sector;
526 
527 		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
528 			sector = bio->bi_iter.bi_sector;
529 		else
530 			sector = bio_end_sector(bio) - io->sector_offset;
531 
532 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
533 				    sector, sectors,
534 				    end, start_time, stats_aux);
535 	}
536 }
537 
538 static void __dm_start_io_acct(struct dm_io *io)
539 {
540 	dm_io_acct(io, false);
541 }
542 
543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
544 {
545 	/*
546 	 * Ensure IO accounting is only ever started once.
547 	 */
548 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
549 		return;
550 
551 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
552 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
553 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
554 	} else {
555 		unsigned long flags;
556 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
557 		spin_lock_irqsave(&io->lock, flags);
558 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
559 		spin_unlock_irqrestore(&io->lock, flags);
560 	}
561 
562 	__dm_start_io_acct(io);
563 }
564 
565 static void dm_end_io_acct(struct dm_io *io)
566 {
567 	dm_io_acct(io, true);
568 }
569 
570 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
571 {
572 	struct dm_io *io;
573 	struct dm_target_io *tio;
574 	struct bio *clone;
575 
576 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
577 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
578 	clone->bi_bdev = md->disk->part0;
579 
580 	tio = clone_to_tio(clone);
581 	tio->flags = 0;
582 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
583 	tio->io = NULL;
584 
585 	io = container_of(tio, struct dm_io, tio);
586 	io->magic = DM_IO_MAGIC;
587 	io->status = BLK_STS_OK;
588 
589 	/* one ref is for submission, the other is for completion */
590 	atomic_set(&io->io_count, 2);
591 	this_cpu_inc(*md->pending_io);
592 	io->orig_bio = bio;
593 	io->md = md;
594 	spin_lock_init(&io->lock);
595 	io->start_time = jiffies;
596 	io->flags = 0;
597 
598 	if (static_branch_unlikely(&stats_enabled))
599 		dm_stats_record_start(&md->stats, &io->stats_aux);
600 
601 	return io;
602 }
603 
604 static void free_io(struct dm_io *io)
605 {
606 	bio_put(&io->tio.clone);
607 }
608 
609 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
610 			     unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
611 {
612 	struct dm_target_io *tio;
613 	struct bio *clone;
614 
615 	if (!ci->io->tio.io) {
616 		/* the dm_target_io embedded in ci->io is available */
617 		tio = &ci->io->tio;
618 		/* alloc_io() already initialized embedded clone */
619 		clone = &tio->clone;
620 	} else {
621 		struct mapped_device *md = ci->io->md;
622 
623 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
624 					&md->mempools->bs);
625 		if (!clone)
626 			return NULL;
627 		/* Set default bdev, but target must bio_set_dev() before issuing IO */
628 		clone->bi_bdev = md->disk->part0;
629 
630 		/* REQ_DM_POLL_LIST shouldn't be inherited */
631 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
632 
633 		tio = clone_to_tio(clone);
634 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
635 	}
636 
637 	tio->magic = DM_TIO_MAGIC;
638 	tio->io = ci->io;
639 	tio->ti = ti;
640 	tio->target_bio_nr = target_bio_nr;
641 	tio->len_ptr = len;
642 	tio->old_sector = 0;
643 
644 	if (len) {
645 		clone->bi_iter.bi_size = to_bytes(*len);
646 		if (bio_integrity(clone))
647 			bio_integrity_trim(clone);
648 	}
649 
650 	return clone;
651 }
652 
653 static void free_tio(struct bio *clone)
654 {
655 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
656 		return;
657 	bio_put(clone);
658 }
659 
660 /*
661  * Add the bio to the list of deferred io.
662  */
663 static void queue_io(struct mapped_device *md, struct bio *bio)
664 {
665 	unsigned long flags;
666 
667 	spin_lock_irqsave(&md->deferred_lock, flags);
668 	bio_list_add(&md->deferred, bio);
669 	spin_unlock_irqrestore(&md->deferred_lock, flags);
670 	queue_work(md->wq, &md->work);
671 }
672 
673 /*
674  * Everyone (including functions in this file), should use this
675  * function to access the md->map field, and make sure they call
676  * dm_put_live_table() when finished.
677  */
678 struct dm_table *dm_get_live_table(struct mapped_device *md,
679 				   int *srcu_idx) __acquires(md->io_barrier)
680 {
681 	*srcu_idx = srcu_read_lock(&md->io_barrier);
682 
683 	return srcu_dereference(md->map, &md->io_barrier);
684 }
685 
686 void dm_put_live_table(struct mapped_device *md,
687 		       int srcu_idx) __releases(md->io_barrier)
688 {
689 	srcu_read_unlock(&md->io_barrier, srcu_idx);
690 }
691 
692 void dm_sync_table(struct mapped_device *md)
693 {
694 	synchronize_srcu(&md->io_barrier);
695 	synchronize_rcu_expedited();
696 }
697 
698 /*
699  * A fast alternative to dm_get_live_table/dm_put_live_table.
700  * The caller must not block between these two functions.
701  */
702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
703 {
704 	rcu_read_lock();
705 	return rcu_dereference(md->map);
706 }
707 
708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
709 {
710 	rcu_read_unlock();
711 }
712 
713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
714 						     int *srcu_idx, struct bio *bio)
715 {
716 	if (bio->bi_opf & REQ_NOWAIT)
717 		return dm_get_live_table_fast(md);
718 	else
719 		return dm_get_live_table(md, srcu_idx);
720 }
721 
722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
723 					 struct bio *bio)
724 {
725 	if (bio->bi_opf & REQ_NOWAIT)
726 		dm_put_live_table_fast(md);
727 	else
728 		dm_put_live_table(md, srcu_idx);
729 }
730 
731 static char *_dm_claim_ptr = "I belong to device-mapper";
732 
733 /*
734  * Open a table device so we can use it as a map destination.
735  */
736 static int open_table_device(struct table_device *td, dev_t dev,
737 			     struct mapped_device *md)
738 {
739 	struct block_device *bdev;
740 	u64 part_off;
741 	int r;
742 
743 	BUG_ON(td->dm_dev.bdev);
744 
745 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
746 	if (IS_ERR(bdev))
747 		return PTR_ERR(bdev);
748 
749 	r = bd_link_disk_holder(bdev, dm_disk(md));
750 	if (r) {
751 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
752 		return r;
753 	}
754 
755 	td->dm_dev.bdev = bdev;
756 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
757 	return 0;
758 }
759 
760 /*
761  * Close a table device that we've been using.
762  */
763 static void close_table_device(struct table_device *td, struct mapped_device *md)
764 {
765 	if (!td->dm_dev.bdev)
766 		return;
767 
768 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
769 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
770 	put_dax(td->dm_dev.dax_dev);
771 	td->dm_dev.bdev = NULL;
772 	td->dm_dev.dax_dev = NULL;
773 }
774 
775 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
776 					      fmode_t mode)
777 {
778 	struct table_device *td;
779 
780 	list_for_each_entry(td, l, list)
781 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
782 			return td;
783 
784 	return NULL;
785 }
786 
787 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
788 			struct dm_dev **result)
789 {
790 	int r;
791 	struct table_device *td;
792 
793 	mutex_lock(&md->table_devices_lock);
794 	td = find_table_device(&md->table_devices, dev, mode);
795 	if (!td) {
796 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
797 		if (!td) {
798 			mutex_unlock(&md->table_devices_lock);
799 			return -ENOMEM;
800 		}
801 
802 		td->dm_dev.mode = mode;
803 		td->dm_dev.bdev = NULL;
804 
805 		if ((r = open_table_device(td, dev, md))) {
806 			mutex_unlock(&md->table_devices_lock);
807 			kfree(td);
808 			return r;
809 		}
810 
811 		format_dev_t(td->dm_dev.name, dev);
812 
813 		refcount_set(&td->count, 1);
814 		list_add(&td->list, &md->table_devices);
815 	} else {
816 		refcount_inc(&td->count);
817 	}
818 	mutex_unlock(&md->table_devices_lock);
819 
820 	*result = &td->dm_dev;
821 	return 0;
822 }
823 
824 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
825 {
826 	struct table_device *td = container_of(d, struct table_device, dm_dev);
827 
828 	mutex_lock(&md->table_devices_lock);
829 	if (refcount_dec_and_test(&td->count)) {
830 		close_table_device(td, md);
831 		list_del(&td->list);
832 		kfree(td);
833 	}
834 	mutex_unlock(&md->table_devices_lock);
835 }
836 
837 static void free_table_devices(struct list_head *devices)
838 {
839 	struct list_head *tmp, *next;
840 
841 	list_for_each_safe(tmp, next, devices) {
842 		struct table_device *td = list_entry(tmp, struct table_device, list);
843 
844 		DMWARN("dm_destroy: %s still exists with %d references",
845 		       td->dm_dev.name, refcount_read(&td->count));
846 		kfree(td);
847 	}
848 }
849 
850 /*
851  * Get the geometry associated with a dm device
852  */
853 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
854 {
855 	*geo = md->geometry;
856 
857 	return 0;
858 }
859 
860 /*
861  * Set the geometry of a device.
862  */
863 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
864 {
865 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
866 
867 	if (geo->start > sz) {
868 		DMWARN("Start sector is beyond the geometry limits.");
869 		return -EINVAL;
870 	}
871 
872 	md->geometry = *geo;
873 
874 	return 0;
875 }
876 
877 static int __noflush_suspending(struct mapped_device *md)
878 {
879 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
880 }
881 
882 static void dm_io_complete(struct dm_io *io)
883 {
884 	blk_status_t io_error;
885 	struct mapped_device *md = io->md;
886 	struct bio *bio = io->orig_bio;
887 
888 	if (io->status == BLK_STS_DM_REQUEUE) {
889 		unsigned long flags;
890 		/*
891 		 * Target requested pushing back the I/O.
892 		 */
893 		spin_lock_irqsave(&md->deferred_lock, flags);
894 		if (__noflush_suspending(md) &&
895 		    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
896 			/* NOTE early return due to BLK_STS_DM_REQUEUE below */
897 			bio_list_add_head(&md->deferred, bio);
898 		} else {
899 			/*
900 			 * noflush suspend was interrupted or this is
901 			 * a write to a zoned target.
902 			 */
903 			io->status = BLK_STS_IOERR;
904 		}
905 		spin_unlock_irqrestore(&md->deferred_lock, flags);
906 	}
907 
908 	io_error = io->status;
909 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
910 		dm_end_io_acct(io);
911 	else if (!io_error) {
912 		/*
913 		 * Must handle target that DM_MAPIO_SUBMITTED only to
914 		 * then bio_endio() rather than dm_submit_bio_remap()
915 		 */
916 		__dm_start_io_acct(io);
917 		dm_end_io_acct(io);
918 	}
919 	free_io(io);
920 	smp_wmb();
921 	this_cpu_dec(*md->pending_io);
922 
923 	/* nudge anyone waiting on suspend queue */
924 	if (unlikely(wq_has_sleeper(&md->wait)))
925 		wake_up(&md->wait);
926 
927 	if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) {
928 		if (bio->bi_opf & REQ_POLLED) {
929 			/*
930 			 * Upper layer won't help us poll split bio (io->orig_bio
931 			 * may only reflect a subset of the pre-split original)
932 			 * so clear REQ_POLLED in case of requeue.
933 			 */
934 			bio_clear_polled(bio);
935 			if (io_error == BLK_STS_AGAIN) {
936 				/* io_uring doesn't handle BLK_STS_AGAIN (yet) */
937 				queue_io(md, bio);
938 			}
939 		}
940 		return;
941 	}
942 
943 	if (bio_is_flush_with_data(bio)) {
944 		/*
945 		 * Preflush done for flush with data, reissue
946 		 * without REQ_PREFLUSH.
947 		 */
948 		bio->bi_opf &= ~REQ_PREFLUSH;
949 		queue_io(md, bio);
950 	} else {
951 		/* done with normal IO or empty flush */
952 		if (io_error)
953 			bio->bi_status = io_error;
954 		bio_endio(bio);
955 	}
956 }
957 
958 /*
959  * Decrements the number of outstanding ios that a bio has been
960  * cloned into, completing the original io if necc.
961  */
962 static inline void __dm_io_dec_pending(struct dm_io *io)
963 {
964 	if (atomic_dec_and_test(&io->io_count))
965 		dm_io_complete(io);
966 }
967 
968 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
969 {
970 	unsigned long flags;
971 
972 	/* Push-back supersedes any I/O errors */
973 	spin_lock_irqsave(&io->lock, flags);
974 	if (!(io->status == BLK_STS_DM_REQUEUE &&
975 	      __noflush_suspending(io->md))) {
976 		io->status = error;
977 	}
978 	spin_unlock_irqrestore(&io->lock, flags);
979 }
980 
981 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
982 {
983 	if (unlikely(error))
984 		dm_io_set_error(io, error);
985 
986 	__dm_io_dec_pending(io);
987 }
988 
989 void disable_discard(struct mapped_device *md)
990 {
991 	struct queue_limits *limits = dm_get_queue_limits(md);
992 
993 	/* device doesn't really support DISCARD, disable it */
994 	limits->max_discard_sectors = 0;
995 }
996 
997 void disable_write_zeroes(struct mapped_device *md)
998 {
999 	struct queue_limits *limits = dm_get_queue_limits(md);
1000 
1001 	/* device doesn't really support WRITE ZEROES, disable it */
1002 	limits->max_write_zeroes_sectors = 0;
1003 }
1004 
1005 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1006 {
1007 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1008 }
1009 
1010 static void clone_endio(struct bio *bio)
1011 {
1012 	blk_status_t error = bio->bi_status;
1013 	struct dm_target_io *tio = clone_to_tio(bio);
1014 	struct dm_target *ti = tio->ti;
1015 	dm_endio_fn endio = ti->type->end_io;
1016 	struct dm_io *io = tio->io;
1017 	struct mapped_device *md = io->md;
1018 
1019 	if (unlikely(error == BLK_STS_TARGET)) {
1020 		if (bio_op(bio) == REQ_OP_DISCARD &&
1021 		    !bdev_max_discard_sectors(bio->bi_bdev))
1022 			disable_discard(md);
1023 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1024 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1025 			disable_write_zeroes(md);
1026 	}
1027 
1028 	if (static_branch_unlikely(&zoned_enabled) &&
1029 	    unlikely(blk_queue_is_zoned(bdev_get_queue(bio->bi_bdev))))
1030 		dm_zone_endio(io, bio);
1031 
1032 	if (endio) {
1033 		int r = endio(ti, bio, &error);
1034 		switch (r) {
1035 		case DM_ENDIO_REQUEUE:
1036 			if (static_branch_unlikely(&zoned_enabled)) {
1037 				/*
1038 				 * Requeuing writes to a sequential zone of a zoned
1039 				 * target will break the sequential write pattern:
1040 				 * fail such IO.
1041 				 */
1042 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1043 					error = BLK_STS_IOERR;
1044 				else
1045 					error = BLK_STS_DM_REQUEUE;
1046 			} else
1047 				error = BLK_STS_DM_REQUEUE;
1048 			fallthrough;
1049 		case DM_ENDIO_DONE:
1050 			break;
1051 		case DM_ENDIO_INCOMPLETE:
1052 			/* The target will handle the io */
1053 			return;
1054 		default:
1055 			DMWARN("unimplemented target endio return value: %d", r);
1056 			BUG();
1057 		}
1058 	}
1059 
1060 	if (static_branch_unlikely(&swap_bios_enabled) &&
1061 	    unlikely(swap_bios_limit(ti, bio)))
1062 		up(&md->swap_bios_semaphore);
1063 
1064 	free_tio(bio);
1065 	dm_io_dec_pending(io, error);
1066 }
1067 
1068 /*
1069  * Return maximum size of I/O possible at the supplied sector up to the current
1070  * target boundary.
1071  */
1072 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1073 						  sector_t target_offset)
1074 {
1075 	return ti->len - target_offset;
1076 }
1077 
1078 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1079 {
1080 	sector_t target_offset = dm_target_offset(ti, sector);
1081 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1082 	sector_t max_len;
1083 
1084 	/*
1085 	 * Does the target need to split IO even further?
1086 	 * - varied (per target) IO splitting is a tenet of DM; this
1087 	 *   explains why stacked chunk_sectors based splitting via
1088 	 *   blk_max_size_offset() isn't possible here. So pass in
1089 	 *   ti->max_io_len to override stacked chunk_sectors.
1090 	 */
1091 	if (ti->max_io_len) {
1092 		max_len = blk_max_size_offset(ti->table->md->queue,
1093 					      target_offset, ti->max_io_len);
1094 		if (len > max_len)
1095 			len = max_len;
1096 	}
1097 
1098 	return len;
1099 }
1100 
1101 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1102 {
1103 	if (len > UINT_MAX) {
1104 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1105 		      (unsigned long long)len, UINT_MAX);
1106 		ti->error = "Maximum size of target IO is too large";
1107 		return -EINVAL;
1108 	}
1109 
1110 	ti->max_io_len = (uint32_t) len;
1111 
1112 	return 0;
1113 }
1114 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1115 
1116 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1117 						sector_t sector, int *srcu_idx)
1118 	__acquires(md->io_barrier)
1119 {
1120 	struct dm_table *map;
1121 	struct dm_target *ti;
1122 
1123 	map = dm_get_live_table(md, srcu_idx);
1124 	if (!map)
1125 		return NULL;
1126 
1127 	ti = dm_table_find_target(map, sector);
1128 	if (!ti)
1129 		return NULL;
1130 
1131 	return ti;
1132 }
1133 
1134 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1135 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1136 		pfn_t *pfn)
1137 {
1138 	struct mapped_device *md = dax_get_private(dax_dev);
1139 	sector_t sector = pgoff * PAGE_SECTORS;
1140 	struct dm_target *ti;
1141 	long len, ret = -EIO;
1142 	int srcu_idx;
1143 
1144 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1145 
1146 	if (!ti)
1147 		goto out;
1148 	if (!ti->type->direct_access)
1149 		goto out;
1150 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1151 	if (len < 1)
1152 		goto out;
1153 	nr_pages = min(len, nr_pages);
1154 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1155 
1156  out:
1157 	dm_put_live_table(md, srcu_idx);
1158 
1159 	return ret;
1160 }
1161 
1162 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1163 				  size_t nr_pages)
1164 {
1165 	struct mapped_device *md = dax_get_private(dax_dev);
1166 	sector_t sector = pgoff * PAGE_SECTORS;
1167 	struct dm_target *ti;
1168 	int ret = -EIO;
1169 	int srcu_idx;
1170 
1171 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1172 
1173 	if (!ti)
1174 		goto out;
1175 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1176 		/*
1177 		 * ->zero_page_range() is mandatory dax operation. If we are
1178 		 *  here, something is wrong.
1179 		 */
1180 		goto out;
1181 	}
1182 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1183  out:
1184 	dm_put_live_table(md, srcu_idx);
1185 
1186 	return ret;
1187 }
1188 
1189 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1190 		void *addr, size_t bytes, struct iov_iter *i)
1191 {
1192 	struct mapped_device *md = dax_get_private(dax_dev);
1193 	sector_t sector = pgoff * PAGE_SECTORS;
1194 	struct dm_target *ti;
1195 	int srcu_idx;
1196 	long ret = 0;
1197 
1198 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1199 	if (!ti || !ti->type->dax_recovery_write)
1200 		goto out;
1201 
1202 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1203 out:
1204 	dm_put_live_table(md, srcu_idx);
1205 	return ret;
1206 }
1207 
1208 /*
1209  * A target may call dm_accept_partial_bio only from the map routine.  It is
1210  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1211  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1212  * __send_duplicate_bios().
1213  *
1214  * dm_accept_partial_bio informs the dm that the target only wants to process
1215  * additional n_sectors sectors of the bio and the rest of the data should be
1216  * sent in a next bio.
1217  *
1218  * A diagram that explains the arithmetics:
1219  * +--------------------+---------------+-------+
1220  * |         1          |       2       |   3   |
1221  * +--------------------+---------------+-------+
1222  *
1223  * <-------------- *tio->len_ptr --------------->
1224  *                      <----- bio_sectors ----->
1225  *                      <-- n_sectors -->
1226  *
1227  * Region 1 was already iterated over with bio_advance or similar function.
1228  *	(it may be empty if the target doesn't use bio_advance)
1229  * Region 2 is the remaining bio size that the target wants to process.
1230  *	(it may be empty if region 1 is non-empty, although there is no reason
1231  *	 to make it empty)
1232  * The target requires that region 3 is to be sent in the next bio.
1233  *
1234  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1235  * the partially processed part (the sum of regions 1+2) must be the same for all
1236  * copies of the bio.
1237  */
1238 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1239 {
1240 	struct dm_target_io *tio = clone_to_tio(bio);
1241 	unsigned bio_sectors = bio_sectors(bio);
1242 
1243 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1244 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1245 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1246 	BUG_ON(bio_sectors > *tio->len_ptr);
1247 	BUG_ON(n_sectors > bio_sectors);
1248 
1249 	*tio->len_ptr -= bio_sectors - n_sectors;
1250 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1251 
1252 	/*
1253 	 * __split_and_process_bio() may have already saved mapped part
1254 	 * for accounting but it is being reduced so update accordingly.
1255 	 */
1256 	dm_io_set_flag(tio->io, DM_IO_WAS_SPLIT);
1257 	tio->io->sectors = n_sectors;
1258 }
1259 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1260 
1261 /*
1262  * @clone: clone bio that DM core passed to target's .map function
1263  * @tgt_clone: clone of @clone bio that target needs submitted
1264  *
1265  * Targets should use this interface to submit bios they take
1266  * ownership of when returning DM_MAPIO_SUBMITTED.
1267  *
1268  * Target should also enable ti->accounts_remapped_io
1269  */
1270 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1271 {
1272 	struct dm_target_io *tio = clone_to_tio(clone);
1273 	struct dm_io *io = tio->io;
1274 
1275 	/* establish bio that will get submitted */
1276 	if (!tgt_clone)
1277 		tgt_clone = clone;
1278 
1279 	/*
1280 	 * Account io->origin_bio to DM dev on behalf of target
1281 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1282 	 */
1283 	dm_start_io_acct(io, clone);
1284 
1285 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1286 			      tio->old_sector);
1287 	submit_bio_noacct(tgt_clone);
1288 }
1289 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1290 
1291 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1292 {
1293 	mutex_lock(&md->swap_bios_lock);
1294 	while (latch < md->swap_bios) {
1295 		cond_resched();
1296 		down(&md->swap_bios_semaphore);
1297 		md->swap_bios--;
1298 	}
1299 	while (latch > md->swap_bios) {
1300 		cond_resched();
1301 		up(&md->swap_bios_semaphore);
1302 		md->swap_bios++;
1303 	}
1304 	mutex_unlock(&md->swap_bios_lock);
1305 }
1306 
1307 static void __map_bio(struct bio *clone)
1308 {
1309 	struct dm_target_io *tio = clone_to_tio(clone);
1310 	struct dm_target *ti = tio->ti;
1311 	struct dm_io *io = tio->io;
1312 	struct mapped_device *md = io->md;
1313 	int r;
1314 
1315 	clone->bi_end_io = clone_endio;
1316 
1317 	/*
1318 	 * Map the clone.
1319 	 */
1320 	tio->old_sector = clone->bi_iter.bi_sector;
1321 
1322 	if (static_branch_unlikely(&swap_bios_enabled) &&
1323 	    unlikely(swap_bios_limit(ti, clone))) {
1324 		int latch = get_swap_bios();
1325 		if (unlikely(latch != md->swap_bios))
1326 			__set_swap_bios_limit(md, latch);
1327 		down(&md->swap_bios_semaphore);
1328 	}
1329 
1330 	if (static_branch_unlikely(&zoned_enabled)) {
1331 		/*
1332 		 * Check if the IO needs a special mapping due to zone append
1333 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1334 		 * calls the target map operation.
1335 		 */
1336 		if (unlikely(dm_emulate_zone_append(md)))
1337 			r = dm_zone_map_bio(tio);
1338 		else
1339 			r = ti->type->map(ti, clone);
1340 	} else
1341 		r = ti->type->map(ti, clone);
1342 
1343 	switch (r) {
1344 	case DM_MAPIO_SUBMITTED:
1345 		/* target has assumed ownership of this io */
1346 		if (!ti->accounts_remapped_io)
1347 			dm_start_io_acct(io, clone);
1348 		break;
1349 	case DM_MAPIO_REMAPPED:
1350 		dm_submit_bio_remap(clone, NULL);
1351 		break;
1352 	case DM_MAPIO_KILL:
1353 	case DM_MAPIO_REQUEUE:
1354 		if (static_branch_unlikely(&swap_bios_enabled) &&
1355 		    unlikely(swap_bios_limit(ti, clone)))
1356 			up(&md->swap_bios_semaphore);
1357 		free_tio(clone);
1358 		if (r == DM_MAPIO_KILL)
1359 			dm_io_dec_pending(io, BLK_STS_IOERR);
1360 		else
1361 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1362 		break;
1363 	default:
1364 		DMWARN("unimplemented target map return value: %d", r);
1365 		BUG();
1366 	}
1367 }
1368 
1369 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1370 {
1371 	struct dm_io *io = ci->io;
1372 
1373 	if (ci->sector_count > len) {
1374 		/*
1375 		 * Split needed, save the mapped part for accounting.
1376 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1377 		 */
1378 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1379 		io->sectors = len;
1380 	}
1381 
1382 	if (static_branch_unlikely(&stats_enabled) &&
1383 	    unlikely(dm_stats_used(&io->md->stats))) {
1384 		/*
1385 		 * Save bi_sector in terms of its offset from end of
1386 		 * original bio, only needed for DM-stats' benefit.
1387 		 * - saved regardless of whether split needed so that
1388 		 *   dm_accept_partial_bio() doesn't need to.
1389 		 */
1390 		io->sector_offset = bio_end_sector(ci->bio) - ci->sector;
1391 	}
1392 }
1393 
1394 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1395 				struct dm_target *ti, unsigned num_bios)
1396 {
1397 	struct bio *bio;
1398 	int try;
1399 
1400 	for (try = 0; try < 2; try++) {
1401 		int bio_nr;
1402 
1403 		if (try)
1404 			mutex_lock(&ci->io->md->table_devices_lock);
1405 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1406 			bio = alloc_tio(ci, ti, bio_nr, NULL,
1407 					try ? GFP_NOIO : GFP_NOWAIT);
1408 			if (!bio)
1409 				break;
1410 
1411 			bio_list_add(blist, bio);
1412 		}
1413 		if (try)
1414 			mutex_unlock(&ci->io->md->table_devices_lock);
1415 		if (bio_nr == num_bios)
1416 			return;
1417 
1418 		while ((bio = bio_list_pop(blist)))
1419 			free_tio(bio);
1420 	}
1421 }
1422 
1423 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1424 				  unsigned num_bios, unsigned *len)
1425 {
1426 	struct bio_list blist = BIO_EMPTY_LIST;
1427 	struct bio *clone;
1428 	int ret = 0;
1429 
1430 	switch (num_bios) {
1431 	case 0:
1432 		break;
1433 	case 1:
1434 		if (len)
1435 			setup_split_accounting(ci, *len);
1436 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1437 		__map_bio(clone);
1438 		ret = 1;
1439 		break;
1440 	default:
1441 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1442 		alloc_multiple_bios(&blist, ci, ti, num_bios);
1443 		while ((clone = bio_list_pop(&blist))) {
1444 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1445 			__map_bio(clone);
1446 			ret += 1;
1447 		}
1448 		break;
1449 	}
1450 
1451 	return ret;
1452 }
1453 
1454 static void __send_empty_flush(struct clone_info *ci)
1455 {
1456 	unsigned target_nr = 0;
1457 	struct dm_target *ti;
1458 	struct bio flush_bio;
1459 
1460 	/*
1461 	 * Use an on-stack bio for this, it's safe since we don't
1462 	 * need to reference it after submit. It's just used as
1463 	 * the basis for the clone(s).
1464 	 */
1465 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1466 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1467 
1468 	ci->bio = &flush_bio;
1469 	ci->sector_count = 0;
1470 	ci->io->tio.clone.bi_iter.bi_size = 0;
1471 
1472 	while ((ti = dm_table_get_target(ci->map, target_nr++))) {
1473 		int bios;
1474 
1475 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1476 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1477 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1478 	}
1479 
1480 	/*
1481 	 * alloc_io() takes one extra reference for submission, so the
1482 	 * reference won't reach 0 without the following subtraction
1483 	 */
1484 	atomic_sub(1, &ci->io->io_count);
1485 
1486 	bio_uninit(ci->bio);
1487 }
1488 
1489 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1490 					unsigned num_bios)
1491 {
1492 	unsigned len;
1493 	int bios;
1494 
1495 	len = min_t(sector_t, ci->sector_count,
1496 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1497 
1498 	atomic_add(num_bios, &ci->io->io_count);
1499 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1500 	/*
1501 	 * alloc_io() takes one extra reference for submission, so the
1502 	 * reference won't reach 0 without the following (+1) subtraction
1503 	 */
1504 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1505 
1506 	ci->sector += len;
1507 	ci->sector_count -= len;
1508 }
1509 
1510 static bool is_abnormal_io(struct bio *bio)
1511 {
1512 	unsigned int op = bio_op(bio);
1513 
1514 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1515 		switch (op) {
1516 		case REQ_OP_DISCARD:
1517 		case REQ_OP_SECURE_ERASE:
1518 		case REQ_OP_WRITE_ZEROES:
1519 			return true;
1520 		default:
1521 			break;
1522 		}
1523 	}
1524 
1525 	return false;
1526 }
1527 
1528 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1529 					  struct dm_target *ti)
1530 {
1531 	unsigned num_bios = 0;
1532 
1533 	switch (bio_op(ci->bio)) {
1534 	case REQ_OP_DISCARD:
1535 		num_bios = ti->num_discard_bios;
1536 		break;
1537 	case REQ_OP_SECURE_ERASE:
1538 		num_bios = ti->num_secure_erase_bios;
1539 		break;
1540 	case REQ_OP_WRITE_ZEROES:
1541 		num_bios = ti->num_write_zeroes_bios;
1542 		break;
1543 	}
1544 
1545 	/*
1546 	 * Even though the device advertised support for this type of
1547 	 * request, that does not mean every target supports it, and
1548 	 * reconfiguration might also have changed that since the
1549 	 * check was performed.
1550 	 */
1551 	if (unlikely(!num_bios))
1552 		return BLK_STS_NOTSUPP;
1553 
1554 	__send_changing_extent_only(ci, ti, num_bios);
1555 	return BLK_STS_OK;
1556 }
1557 
1558 /*
1559  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1560  * associated with this bio, and this bio's bi_private needs to be
1561  * stored in dm_io->data before the reuse.
1562  *
1563  * bio->bi_private is owned by fs or upper layer, so block layer won't
1564  * touch it after splitting. Meantime it won't be changed by anyone after
1565  * bio is submitted. So this reuse is safe.
1566  */
1567 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1568 {
1569 	return (struct dm_io **)&bio->bi_private;
1570 }
1571 
1572 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1573 {
1574 	struct dm_io **head = dm_poll_list_head(bio);
1575 
1576 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1577 		bio->bi_opf |= REQ_DM_POLL_LIST;
1578 		/*
1579 		 * Save .bi_private into dm_io, so that we can reuse
1580 		 * .bi_private as dm_io list head for storing dm_io list
1581 		 */
1582 		io->data = bio->bi_private;
1583 
1584 		/* tell block layer to poll for completion */
1585 		bio->bi_cookie = ~BLK_QC_T_NONE;
1586 
1587 		io->next = NULL;
1588 	} else {
1589 		/*
1590 		 * bio recursed due to split, reuse original poll list,
1591 		 * and save bio->bi_private too.
1592 		 */
1593 		io->data = (*head)->data;
1594 		io->next = *head;
1595 	}
1596 
1597 	*head = io;
1598 }
1599 
1600 /*
1601  * Select the correct strategy for processing a non-flush bio.
1602  */
1603 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1604 {
1605 	struct bio *clone;
1606 	struct dm_target *ti;
1607 	unsigned len;
1608 
1609 	ti = dm_table_find_target(ci->map, ci->sector);
1610 	if (unlikely(!ti))
1611 		return BLK_STS_IOERR;
1612 	else if (unlikely(ci->is_abnormal_io))
1613 		return __process_abnormal_io(ci, ti);
1614 
1615 	/*
1616 	 * Only support bio polling for normal IO, and the target io is
1617 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1618 	 */
1619 	ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1620 
1621 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1622 	setup_split_accounting(ci, len);
1623 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1624 	__map_bio(clone);
1625 
1626 	ci->sector += len;
1627 	ci->sector_count -= len;
1628 
1629 	return BLK_STS_OK;
1630 }
1631 
1632 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1633 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1634 {
1635 	ci->map = map;
1636 	ci->io = alloc_io(md, bio);
1637 	ci->bio = bio;
1638 	ci->is_abnormal_io = is_abnormal;
1639 	ci->submit_as_polled = false;
1640 	ci->sector = bio->bi_iter.bi_sector;
1641 	ci->sector_count = bio_sectors(bio);
1642 
1643 	/* Shouldn't happen but sector_count was being set to 0 so... */
1644 	if (static_branch_unlikely(&zoned_enabled) &&
1645 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1646 		ci->sector_count = 0;
1647 }
1648 
1649 /*
1650  * Entry point to split a bio into clones and submit them to the targets.
1651  */
1652 static void dm_split_and_process_bio(struct mapped_device *md,
1653 				     struct dm_table *map, struct bio *bio)
1654 {
1655 	struct clone_info ci;
1656 	struct dm_io *io;
1657 	blk_status_t error = BLK_STS_OK;
1658 	bool is_abnormal;
1659 
1660 	is_abnormal = is_abnormal_io(bio);
1661 	if (unlikely(is_abnormal)) {
1662 		/*
1663 		 * Use blk_queue_split() for abnormal IO (e.g. discard, etc)
1664 		 * otherwise associated queue_limits won't be imposed.
1665 		 */
1666 		blk_queue_split(&bio);
1667 	}
1668 
1669 	init_clone_info(&ci, md, map, bio, is_abnormal);
1670 	io = ci.io;
1671 
1672 	if (bio->bi_opf & REQ_PREFLUSH) {
1673 		__send_empty_flush(&ci);
1674 		/* dm_io_complete submits any data associated with flush */
1675 		goto out;
1676 	}
1677 
1678 	error = __split_and_process_bio(&ci);
1679 	if (error || !ci.sector_count)
1680 		goto out;
1681 	/*
1682 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1683 	 * *after* bios already submitted have been completely processed.
1684 	 */
1685 	bio_trim(bio, io->sectors, ci.sector_count);
1686 	trace_block_split(bio, bio->bi_iter.bi_sector);
1687 	bio_inc_remaining(bio);
1688 	submit_bio_noacct(bio);
1689 out:
1690 	/*
1691 	 * Drop the extra reference count for non-POLLED bio, and hold one
1692 	 * reference for POLLED bio, which will be released in dm_poll_bio
1693 	 *
1694 	 * Add every dm_io instance into the dm_io list head which is stored
1695 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1696 	 */
1697 	if (error || !ci.submit_as_polled) {
1698 		/*
1699 		 * In case of submission failure, the extra reference for
1700 		 * submitting io isn't consumed yet
1701 		 */
1702 		if (error)
1703 			atomic_dec(&io->io_count);
1704 		dm_io_dec_pending(io, error);
1705 	} else
1706 		dm_queue_poll_io(bio, io);
1707 }
1708 
1709 static void dm_submit_bio(struct bio *bio)
1710 {
1711 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1712 	int srcu_idx;
1713 	struct dm_table *map;
1714 
1715 	map = dm_get_live_table_bio(md, &srcu_idx, bio);
1716 
1717 	/* If suspended, or map not yet available, queue this IO for later */
1718 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1719 	    unlikely(!map)) {
1720 		if (bio->bi_opf & REQ_NOWAIT)
1721 			bio_wouldblock_error(bio);
1722 		else if (bio->bi_opf & REQ_RAHEAD)
1723 			bio_io_error(bio);
1724 		else
1725 			queue_io(md, bio);
1726 		goto out;
1727 	}
1728 
1729 	dm_split_and_process_bio(md, map, bio);
1730 out:
1731 	dm_put_live_table_bio(md, srcu_idx, bio);
1732 }
1733 
1734 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1735 			  unsigned int flags)
1736 {
1737 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1738 
1739 	/* don't poll if the mapped io is done */
1740 	if (atomic_read(&io->io_count) > 1)
1741 		bio_poll(&io->tio.clone, iob, flags);
1742 
1743 	/* bio_poll holds the last reference */
1744 	return atomic_read(&io->io_count) == 1;
1745 }
1746 
1747 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1748 		       unsigned int flags)
1749 {
1750 	struct dm_io **head = dm_poll_list_head(bio);
1751 	struct dm_io *list = *head;
1752 	struct dm_io *tmp = NULL;
1753 	struct dm_io *curr, *next;
1754 
1755 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1756 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1757 		return 0;
1758 
1759 	WARN_ON_ONCE(!list);
1760 
1761 	/*
1762 	 * Restore .bi_private before possibly completing dm_io.
1763 	 *
1764 	 * bio_poll() is only possible once @bio has been completely
1765 	 * submitted via submit_bio_noacct()'s depth-first submission.
1766 	 * So there is no dm_queue_poll_io() race associated with
1767 	 * clearing REQ_DM_POLL_LIST here.
1768 	 */
1769 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1770 	bio->bi_private = list->data;
1771 
1772 	for (curr = list, next = curr->next; curr; curr = next, next =
1773 			curr ? curr->next : NULL) {
1774 		if (dm_poll_dm_io(curr, iob, flags)) {
1775 			/*
1776 			 * clone_endio() has already occurred, so no
1777 			 * error handling is needed here.
1778 			 */
1779 			__dm_io_dec_pending(curr);
1780 		} else {
1781 			curr->next = tmp;
1782 			tmp = curr;
1783 		}
1784 	}
1785 
1786 	/* Not done? */
1787 	if (tmp) {
1788 		bio->bi_opf |= REQ_DM_POLL_LIST;
1789 		/* Reset bio->bi_private to dm_io list head */
1790 		*head = tmp;
1791 		return 0;
1792 	}
1793 	return 1;
1794 }
1795 
1796 /*-----------------------------------------------------------------
1797  * An IDR is used to keep track of allocated minor numbers.
1798  *---------------------------------------------------------------*/
1799 static void free_minor(int minor)
1800 {
1801 	spin_lock(&_minor_lock);
1802 	idr_remove(&_minor_idr, minor);
1803 	spin_unlock(&_minor_lock);
1804 }
1805 
1806 /*
1807  * See if the device with a specific minor # is free.
1808  */
1809 static int specific_minor(int minor)
1810 {
1811 	int r;
1812 
1813 	if (minor >= (1 << MINORBITS))
1814 		return -EINVAL;
1815 
1816 	idr_preload(GFP_KERNEL);
1817 	spin_lock(&_minor_lock);
1818 
1819 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1820 
1821 	spin_unlock(&_minor_lock);
1822 	idr_preload_end();
1823 	if (r < 0)
1824 		return r == -ENOSPC ? -EBUSY : r;
1825 	return 0;
1826 }
1827 
1828 static int next_free_minor(int *minor)
1829 {
1830 	int r;
1831 
1832 	idr_preload(GFP_KERNEL);
1833 	spin_lock(&_minor_lock);
1834 
1835 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1836 
1837 	spin_unlock(&_minor_lock);
1838 	idr_preload_end();
1839 	if (r < 0)
1840 		return r;
1841 	*minor = r;
1842 	return 0;
1843 }
1844 
1845 static const struct block_device_operations dm_blk_dops;
1846 static const struct block_device_operations dm_rq_blk_dops;
1847 static const struct dax_operations dm_dax_ops;
1848 
1849 static void dm_wq_work(struct work_struct *work);
1850 
1851 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1852 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1853 {
1854 	dm_destroy_crypto_profile(q->crypto_profile);
1855 }
1856 
1857 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1858 
1859 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1860 {
1861 }
1862 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1863 
1864 static void cleanup_mapped_device(struct mapped_device *md)
1865 {
1866 	if (md->wq)
1867 		destroy_workqueue(md->wq);
1868 	dm_free_md_mempools(md->mempools);
1869 
1870 	if (md->dax_dev) {
1871 		dax_remove_host(md->disk);
1872 		kill_dax(md->dax_dev);
1873 		put_dax(md->dax_dev);
1874 		md->dax_dev = NULL;
1875 	}
1876 
1877 	dm_cleanup_zoned_dev(md);
1878 	if (md->disk) {
1879 		spin_lock(&_minor_lock);
1880 		md->disk->private_data = NULL;
1881 		spin_unlock(&_minor_lock);
1882 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1883 			dm_sysfs_exit(md);
1884 			del_gendisk(md->disk);
1885 		}
1886 		dm_queue_destroy_crypto_profile(md->queue);
1887 		blk_cleanup_disk(md->disk);
1888 	}
1889 
1890 	if (md->pending_io) {
1891 		free_percpu(md->pending_io);
1892 		md->pending_io = NULL;
1893 	}
1894 
1895 	cleanup_srcu_struct(&md->io_barrier);
1896 
1897 	mutex_destroy(&md->suspend_lock);
1898 	mutex_destroy(&md->type_lock);
1899 	mutex_destroy(&md->table_devices_lock);
1900 	mutex_destroy(&md->swap_bios_lock);
1901 
1902 	dm_mq_cleanup_mapped_device(md);
1903 }
1904 
1905 /*
1906  * Allocate and initialise a blank device with a given minor.
1907  */
1908 static struct mapped_device *alloc_dev(int minor)
1909 {
1910 	int r, numa_node_id = dm_get_numa_node();
1911 	struct mapped_device *md;
1912 	void *old_md;
1913 
1914 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1915 	if (!md) {
1916 		DMWARN("unable to allocate device, out of memory.");
1917 		return NULL;
1918 	}
1919 
1920 	if (!try_module_get(THIS_MODULE))
1921 		goto bad_module_get;
1922 
1923 	/* get a minor number for the dev */
1924 	if (minor == DM_ANY_MINOR)
1925 		r = next_free_minor(&minor);
1926 	else
1927 		r = specific_minor(minor);
1928 	if (r < 0)
1929 		goto bad_minor;
1930 
1931 	r = init_srcu_struct(&md->io_barrier);
1932 	if (r < 0)
1933 		goto bad_io_barrier;
1934 
1935 	md->numa_node_id = numa_node_id;
1936 	md->init_tio_pdu = false;
1937 	md->type = DM_TYPE_NONE;
1938 	mutex_init(&md->suspend_lock);
1939 	mutex_init(&md->type_lock);
1940 	mutex_init(&md->table_devices_lock);
1941 	spin_lock_init(&md->deferred_lock);
1942 	atomic_set(&md->holders, 1);
1943 	atomic_set(&md->open_count, 0);
1944 	atomic_set(&md->event_nr, 0);
1945 	atomic_set(&md->uevent_seq, 0);
1946 	INIT_LIST_HEAD(&md->uevent_list);
1947 	INIT_LIST_HEAD(&md->table_devices);
1948 	spin_lock_init(&md->uevent_lock);
1949 
1950 	/*
1951 	 * default to bio-based until DM table is loaded and md->type
1952 	 * established. If request-based table is loaded: blk-mq will
1953 	 * override accordingly.
1954 	 */
1955 	md->disk = blk_alloc_disk(md->numa_node_id);
1956 	if (!md->disk)
1957 		goto bad;
1958 	md->queue = md->disk->queue;
1959 
1960 	init_waitqueue_head(&md->wait);
1961 	INIT_WORK(&md->work, dm_wq_work);
1962 	init_waitqueue_head(&md->eventq);
1963 	init_completion(&md->kobj_holder.completion);
1964 
1965 	md->swap_bios = get_swap_bios();
1966 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1967 	mutex_init(&md->swap_bios_lock);
1968 
1969 	md->disk->major = _major;
1970 	md->disk->first_minor = minor;
1971 	md->disk->minors = 1;
1972 	md->disk->flags |= GENHD_FL_NO_PART;
1973 	md->disk->fops = &dm_blk_dops;
1974 	md->disk->queue = md->queue;
1975 	md->disk->private_data = md;
1976 	sprintf(md->disk->disk_name, "dm-%d", minor);
1977 
1978 	if (IS_ENABLED(CONFIG_FS_DAX)) {
1979 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
1980 		if (IS_ERR(md->dax_dev)) {
1981 			md->dax_dev = NULL;
1982 			goto bad;
1983 		}
1984 		set_dax_nocache(md->dax_dev);
1985 		set_dax_nomc(md->dax_dev);
1986 		if (dax_add_host(md->dax_dev, md->disk))
1987 			goto bad;
1988 	}
1989 
1990 	format_dev_t(md->name, MKDEV(_major, minor));
1991 
1992 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1993 	if (!md->wq)
1994 		goto bad;
1995 
1996 	md->pending_io = alloc_percpu(unsigned long);
1997 	if (!md->pending_io)
1998 		goto bad;
1999 
2000 	dm_stats_init(&md->stats);
2001 
2002 	/* Populate the mapping, nobody knows we exist yet */
2003 	spin_lock(&_minor_lock);
2004 	old_md = idr_replace(&_minor_idr, md, minor);
2005 	spin_unlock(&_minor_lock);
2006 
2007 	BUG_ON(old_md != MINOR_ALLOCED);
2008 
2009 	return md;
2010 
2011 bad:
2012 	cleanup_mapped_device(md);
2013 bad_io_barrier:
2014 	free_minor(minor);
2015 bad_minor:
2016 	module_put(THIS_MODULE);
2017 bad_module_get:
2018 	kvfree(md);
2019 	return NULL;
2020 }
2021 
2022 static void unlock_fs(struct mapped_device *md);
2023 
2024 static void free_dev(struct mapped_device *md)
2025 {
2026 	int minor = MINOR(disk_devt(md->disk));
2027 
2028 	unlock_fs(md);
2029 
2030 	cleanup_mapped_device(md);
2031 
2032 	free_table_devices(&md->table_devices);
2033 	dm_stats_cleanup(&md->stats);
2034 	free_minor(minor);
2035 
2036 	module_put(THIS_MODULE);
2037 	kvfree(md);
2038 }
2039 
2040 /*
2041  * Bind a table to the device.
2042  */
2043 static void event_callback(void *context)
2044 {
2045 	unsigned long flags;
2046 	LIST_HEAD(uevents);
2047 	struct mapped_device *md = (struct mapped_device *) context;
2048 
2049 	spin_lock_irqsave(&md->uevent_lock, flags);
2050 	list_splice_init(&md->uevent_list, &uevents);
2051 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2052 
2053 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2054 
2055 	atomic_inc(&md->event_nr);
2056 	wake_up(&md->eventq);
2057 	dm_issue_global_event();
2058 }
2059 
2060 /*
2061  * Returns old map, which caller must destroy.
2062  */
2063 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2064 			       struct queue_limits *limits)
2065 {
2066 	struct dm_table *old_map;
2067 	sector_t size;
2068 	int ret;
2069 
2070 	lockdep_assert_held(&md->suspend_lock);
2071 
2072 	size = dm_table_get_size(t);
2073 
2074 	/*
2075 	 * Wipe any geometry if the size of the table changed.
2076 	 */
2077 	if (size != dm_get_size(md))
2078 		memset(&md->geometry, 0, sizeof(md->geometry));
2079 
2080 	if (!get_capacity(md->disk))
2081 		set_capacity(md->disk, size);
2082 	else
2083 		set_capacity_and_notify(md->disk, size);
2084 
2085 	dm_table_event_callback(t, event_callback, md);
2086 
2087 	if (dm_table_request_based(t)) {
2088 		/*
2089 		 * Leverage the fact that request-based DM targets are
2090 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2091 		 */
2092 		md->immutable_target = dm_table_get_immutable_target(t);
2093 
2094 		/*
2095 		 * There is no need to reload with request-based dm because the
2096 		 * size of front_pad doesn't change.
2097 		 *
2098 		 * Note for future: If you are to reload bioset, prep-ed
2099 		 * requests in the queue may refer to bio from the old bioset,
2100 		 * so you must walk through the queue to unprep.
2101 		 */
2102 		if (!md->mempools) {
2103 			md->mempools = t->mempools;
2104 			t->mempools = NULL;
2105 		}
2106 	} else {
2107 		/*
2108 		 * The md may already have mempools that need changing.
2109 		 * If so, reload bioset because front_pad may have changed
2110 		 * because a different table was loaded.
2111 		 */
2112 		dm_free_md_mempools(md->mempools);
2113 		md->mempools = t->mempools;
2114 		t->mempools = NULL;
2115 	}
2116 
2117 	ret = dm_table_set_restrictions(t, md->queue, limits);
2118 	if (ret) {
2119 		old_map = ERR_PTR(ret);
2120 		goto out;
2121 	}
2122 
2123 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2124 	rcu_assign_pointer(md->map, (void *)t);
2125 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2126 
2127 	if (old_map)
2128 		dm_sync_table(md);
2129 out:
2130 	return old_map;
2131 }
2132 
2133 /*
2134  * Returns unbound table for the caller to free.
2135  */
2136 static struct dm_table *__unbind(struct mapped_device *md)
2137 {
2138 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2139 
2140 	if (!map)
2141 		return NULL;
2142 
2143 	dm_table_event_callback(map, NULL, NULL);
2144 	RCU_INIT_POINTER(md->map, NULL);
2145 	dm_sync_table(md);
2146 
2147 	return map;
2148 }
2149 
2150 /*
2151  * Constructor for a new device.
2152  */
2153 int dm_create(int minor, struct mapped_device **result)
2154 {
2155 	struct mapped_device *md;
2156 
2157 	md = alloc_dev(minor);
2158 	if (!md)
2159 		return -ENXIO;
2160 
2161 	dm_ima_reset_data(md);
2162 
2163 	*result = md;
2164 	return 0;
2165 }
2166 
2167 /*
2168  * Functions to manage md->type.
2169  * All are required to hold md->type_lock.
2170  */
2171 void dm_lock_md_type(struct mapped_device *md)
2172 {
2173 	mutex_lock(&md->type_lock);
2174 }
2175 
2176 void dm_unlock_md_type(struct mapped_device *md)
2177 {
2178 	mutex_unlock(&md->type_lock);
2179 }
2180 
2181 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2182 {
2183 	BUG_ON(!mutex_is_locked(&md->type_lock));
2184 	md->type = type;
2185 }
2186 
2187 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2188 {
2189 	return md->type;
2190 }
2191 
2192 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2193 {
2194 	return md->immutable_target_type;
2195 }
2196 
2197 /*
2198  * The queue_limits are only valid as long as you have a reference
2199  * count on 'md'.
2200  */
2201 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2202 {
2203 	BUG_ON(!atomic_read(&md->holders));
2204 	return &md->queue->limits;
2205 }
2206 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2207 
2208 /*
2209  * Setup the DM device's queue based on md's type
2210  */
2211 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2212 {
2213 	enum dm_queue_mode type = dm_table_get_type(t);
2214 	struct queue_limits limits;
2215 	int r;
2216 
2217 	switch (type) {
2218 	case DM_TYPE_REQUEST_BASED:
2219 		md->disk->fops = &dm_rq_blk_dops;
2220 		r = dm_mq_init_request_queue(md, t);
2221 		if (r) {
2222 			DMERR("Cannot initialize queue for request-based dm mapped device");
2223 			return r;
2224 		}
2225 		break;
2226 	case DM_TYPE_BIO_BASED:
2227 	case DM_TYPE_DAX_BIO_BASED:
2228 		break;
2229 	case DM_TYPE_NONE:
2230 		WARN_ON_ONCE(true);
2231 		break;
2232 	}
2233 
2234 	r = dm_calculate_queue_limits(t, &limits);
2235 	if (r) {
2236 		DMERR("Cannot calculate initial queue limits");
2237 		return r;
2238 	}
2239 	r = dm_table_set_restrictions(t, md->queue, &limits);
2240 	if (r)
2241 		return r;
2242 
2243 	r = add_disk(md->disk);
2244 	if (r)
2245 		return r;
2246 
2247 	r = dm_sysfs_init(md);
2248 	if (r) {
2249 		del_gendisk(md->disk);
2250 		return r;
2251 	}
2252 	md->type = type;
2253 	return 0;
2254 }
2255 
2256 struct mapped_device *dm_get_md(dev_t dev)
2257 {
2258 	struct mapped_device *md;
2259 	unsigned minor = MINOR(dev);
2260 
2261 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2262 		return NULL;
2263 
2264 	spin_lock(&_minor_lock);
2265 
2266 	md = idr_find(&_minor_idr, minor);
2267 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2268 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2269 		md = NULL;
2270 		goto out;
2271 	}
2272 	dm_get(md);
2273 out:
2274 	spin_unlock(&_minor_lock);
2275 
2276 	return md;
2277 }
2278 EXPORT_SYMBOL_GPL(dm_get_md);
2279 
2280 void *dm_get_mdptr(struct mapped_device *md)
2281 {
2282 	return md->interface_ptr;
2283 }
2284 
2285 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2286 {
2287 	md->interface_ptr = ptr;
2288 }
2289 
2290 void dm_get(struct mapped_device *md)
2291 {
2292 	atomic_inc(&md->holders);
2293 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2294 }
2295 
2296 int dm_hold(struct mapped_device *md)
2297 {
2298 	spin_lock(&_minor_lock);
2299 	if (test_bit(DMF_FREEING, &md->flags)) {
2300 		spin_unlock(&_minor_lock);
2301 		return -EBUSY;
2302 	}
2303 	dm_get(md);
2304 	spin_unlock(&_minor_lock);
2305 	return 0;
2306 }
2307 EXPORT_SYMBOL_GPL(dm_hold);
2308 
2309 const char *dm_device_name(struct mapped_device *md)
2310 {
2311 	return md->name;
2312 }
2313 EXPORT_SYMBOL_GPL(dm_device_name);
2314 
2315 static void __dm_destroy(struct mapped_device *md, bool wait)
2316 {
2317 	struct dm_table *map;
2318 	int srcu_idx;
2319 
2320 	might_sleep();
2321 
2322 	spin_lock(&_minor_lock);
2323 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2324 	set_bit(DMF_FREEING, &md->flags);
2325 	spin_unlock(&_minor_lock);
2326 
2327 	blk_mark_disk_dead(md->disk);
2328 
2329 	/*
2330 	 * Take suspend_lock so that presuspend and postsuspend methods
2331 	 * do not race with internal suspend.
2332 	 */
2333 	mutex_lock(&md->suspend_lock);
2334 	map = dm_get_live_table(md, &srcu_idx);
2335 	if (!dm_suspended_md(md)) {
2336 		dm_table_presuspend_targets(map);
2337 		set_bit(DMF_SUSPENDED, &md->flags);
2338 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2339 		dm_table_postsuspend_targets(map);
2340 	}
2341 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2342 	dm_put_live_table(md, srcu_idx);
2343 	mutex_unlock(&md->suspend_lock);
2344 
2345 	/*
2346 	 * Rare, but there may be I/O requests still going to complete,
2347 	 * for example.  Wait for all references to disappear.
2348 	 * No one should increment the reference count of the mapped_device,
2349 	 * after the mapped_device state becomes DMF_FREEING.
2350 	 */
2351 	if (wait)
2352 		while (atomic_read(&md->holders))
2353 			msleep(1);
2354 	else if (atomic_read(&md->holders))
2355 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2356 		       dm_device_name(md), atomic_read(&md->holders));
2357 
2358 	dm_table_destroy(__unbind(md));
2359 	free_dev(md);
2360 }
2361 
2362 void dm_destroy(struct mapped_device *md)
2363 {
2364 	__dm_destroy(md, true);
2365 }
2366 
2367 void dm_destroy_immediate(struct mapped_device *md)
2368 {
2369 	__dm_destroy(md, false);
2370 }
2371 
2372 void dm_put(struct mapped_device *md)
2373 {
2374 	atomic_dec(&md->holders);
2375 }
2376 EXPORT_SYMBOL_GPL(dm_put);
2377 
2378 static bool dm_in_flight_bios(struct mapped_device *md)
2379 {
2380 	int cpu;
2381 	unsigned long sum = 0;
2382 
2383 	for_each_possible_cpu(cpu)
2384 		sum += *per_cpu_ptr(md->pending_io, cpu);
2385 
2386 	return sum != 0;
2387 }
2388 
2389 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2390 {
2391 	int r = 0;
2392 	DEFINE_WAIT(wait);
2393 
2394 	while (true) {
2395 		prepare_to_wait(&md->wait, &wait, task_state);
2396 
2397 		if (!dm_in_flight_bios(md))
2398 			break;
2399 
2400 		if (signal_pending_state(task_state, current)) {
2401 			r = -EINTR;
2402 			break;
2403 		}
2404 
2405 		io_schedule();
2406 	}
2407 	finish_wait(&md->wait, &wait);
2408 
2409 	smp_rmb();
2410 
2411 	return r;
2412 }
2413 
2414 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2415 {
2416 	int r = 0;
2417 
2418 	if (!queue_is_mq(md->queue))
2419 		return dm_wait_for_bios_completion(md, task_state);
2420 
2421 	while (true) {
2422 		if (!blk_mq_queue_inflight(md->queue))
2423 			break;
2424 
2425 		if (signal_pending_state(task_state, current)) {
2426 			r = -EINTR;
2427 			break;
2428 		}
2429 
2430 		msleep(5);
2431 	}
2432 
2433 	return r;
2434 }
2435 
2436 /*
2437  * Process the deferred bios
2438  */
2439 static void dm_wq_work(struct work_struct *work)
2440 {
2441 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2442 	struct bio *bio;
2443 
2444 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2445 		spin_lock_irq(&md->deferred_lock);
2446 		bio = bio_list_pop(&md->deferred);
2447 		spin_unlock_irq(&md->deferred_lock);
2448 
2449 		if (!bio)
2450 			break;
2451 
2452 		submit_bio_noacct(bio);
2453 	}
2454 }
2455 
2456 static void dm_queue_flush(struct mapped_device *md)
2457 {
2458 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2459 	smp_mb__after_atomic();
2460 	queue_work(md->wq, &md->work);
2461 }
2462 
2463 /*
2464  * Swap in a new table, returning the old one for the caller to destroy.
2465  */
2466 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2467 {
2468 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2469 	struct queue_limits limits;
2470 	int r;
2471 
2472 	mutex_lock(&md->suspend_lock);
2473 
2474 	/* device must be suspended */
2475 	if (!dm_suspended_md(md))
2476 		goto out;
2477 
2478 	/*
2479 	 * If the new table has no data devices, retain the existing limits.
2480 	 * This helps multipath with queue_if_no_path if all paths disappear,
2481 	 * then new I/O is queued based on these limits, and then some paths
2482 	 * reappear.
2483 	 */
2484 	if (dm_table_has_no_data_devices(table)) {
2485 		live_map = dm_get_live_table_fast(md);
2486 		if (live_map)
2487 			limits = md->queue->limits;
2488 		dm_put_live_table_fast(md);
2489 	}
2490 
2491 	if (!live_map) {
2492 		r = dm_calculate_queue_limits(table, &limits);
2493 		if (r) {
2494 			map = ERR_PTR(r);
2495 			goto out;
2496 		}
2497 	}
2498 
2499 	map = __bind(md, table, &limits);
2500 	dm_issue_global_event();
2501 
2502 out:
2503 	mutex_unlock(&md->suspend_lock);
2504 	return map;
2505 }
2506 
2507 /*
2508  * Functions to lock and unlock any filesystem running on the
2509  * device.
2510  */
2511 static int lock_fs(struct mapped_device *md)
2512 {
2513 	int r;
2514 
2515 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2516 
2517 	r = freeze_bdev(md->disk->part0);
2518 	if (!r)
2519 		set_bit(DMF_FROZEN, &md->flags);
2520 	return r;
2521 }
2522 
2523 static void unlock_fs(struct mapped_device *md)
2524 {
2525 	if (!test_bit(DMF_FROZEN, &md->flags))
2526 		return;
2527 	thaw_bdev(md->disk->part0);
2528 	clear_bit(DMF_FROZEN, &md->flags);
2529 }
2530 
2531 /*
2532  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2533  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2534  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2535  *
2536  * If __dm_suspend returns 0, the device is completely quiescent
2537  * now. There is no request-processing activity. All new requests
2538  * are being added to md->deferred list.
2539  */
2540 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2541 			unsigned suspend_flags, unsigned int task_state,
2542 			int dmf_suspended_flag)
2543 {
2544 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2545 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2546 	int r;
2547 
2548 	lockdep_assert_held(&md->suspend_lock);
2549 
2550 	/*
2551 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2552 	 * This flag is cleared before dm_suspend returns.
2553 	 */
2554 	if (noflush)
2555 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2556 	else
2557 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2558 
2559 	/*
2560 	 * This gets reverted if there's an error later and the targets
2561 	 * provide the .presuspend_undo hook.
2562 	 */
2563 	dm_table_presuspend_targets(map);
2564 
2565 	/*
2566 	 * Flush I/O to the device.
2567 	 * Any I/O submitted after lock_fs() may not be flushed.
2568 	 * noflush takes precedence over do_lockfs.
2569 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2570 	 */
2571 	if (!noflush && do_lockfs) {
2572 		r = lock_fs(md);
2573 		if (r) {
2574 			dm_table_presuspend_undo_targets(map);
2575 			return r;
2576 		}
2577 	}
2578 
2579 	/*
2580 	 * Here we must make sure that no processes are submitting requests
2581 	 * to target drivers i.e. no one may be executing
2582 	 * dm_split_and_process_bio from dm_submit_bio.
2583 	 *
2584 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2585 	 * we take the write lock. To prevent any process from reentering
2586 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2587 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2588 	 * flush_workqueue(md->wq).
2589 	 */
2590 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2591 	if (map)
2592 		synchronize_srcu(&md->io_barrier);
2593 
2594 	/*
2595 	 * Stop md->queue before flushing md->wq in case request-based
2596 	 * dm defers requests to md->wq from md->queue.
2597 	 */
2598 	if (dm_request_based(md))
2599 		dm_stop_queue(md->queue);
2600 
2601 	flush_workqueue(md->wq);
2602 
2603 	/*
2604 	 * At this point no more requests are entering target request routines.
2605 	 * We call dm_wait_for_completion to wait for all existing requests
2606 	 * to finish.
2607 	 */
2608 	r = dm_wait_for_completion(md, task_state);
2609 	if (!r)
2610 		set_bit(dmf_suspended_flag, &md->flags);
2611 
2612 	if (noflush)
2613 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2614 	if (map)
2615 		synchronize_srcu(&md->io_barrier);
2616 
2617 	/* were we interrupted ? */
2618 	if (r < 0) {
2619 		dm_queue_flush(md);
2620 
2621 		if (dm_request_based(md))
2622 			dm_start_queue(md->queue);
2623 
2624 		unlock_fs(md);
2625 		dm_table_presuspend_undo_targets(map);
2626 		/* pushback list is already flushed, so skip flush */
2627 	}
2628 
2629 	return r;
2630 }
2631 
2632 /*
2633  * We need to be able to change a mapping table under a mounted
2634  * filesystem.  For example we might want to move some data in
2635  * the background.  Before the table can be swapped with
2636  * dm_bind_table, dm_suspend must be called to flush any in
2637  * flight bios and ensure that any further io gets deferred.
2638  */
2639 /*
2640  * Suspend mechanism in request-based dm.
2641  *
2642  * 1. Flush all I/Os by lock_fs() if needed.
2643  * 2. Stop dispatching any I/O by stopping the request_queue.
2644  * 3. Wait for all in-flight I/Os to be completed or requeued.
2645  *
2646  * To abort suspend, start the request_queue.
2647  */
2648 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2649 {
2650 	struct dm_table *map = NULL;
2651 	int r = 0;
2652 
2653 retry:
2654 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2655 
2656 	if (dm_suspended_md(md)) {
2657 		r = -EINVAL;
2658 		goto out_unlock;
2659 	}
2660 
2661 	if (dm_suspended_internally_md(md)) {
2662 		/* already internally suspended, wait for internal resume */
2663 		mutex_unlock(&md->suspend_lock);
2664 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2665 		if (r)
2666 			return r;
2667 		goto retry;
2668 	}
2669 
2670 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2671 
2672 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2673 	if (r)
2674 		goto out_unlock;
2675 
2676 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2677 	dm_table_postsuspend_targets(map);
2678 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2679 
2680 out_unlock:
2681 	mutex_unlock(&md->suspend_lock);
2682 	return r;
2683 }
2684 
2685 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2686 {
2687 	if (map) {
2688 		int r = dm_table_resume_targets(map);
2689 		if (r)
2690 			return r;
2691 	}
2692 
2693 	dm_queue_flush(md);
2694 
2695 	/*
2696 	 * Flushing deferred I/Os must be done after targets are resumed
2697 	 * so that mapping of targets can work correctly.
2698 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2699 	 */
2700 	if (dm_request_based(md))
2701 		dm_start_queue(md->queue);
2702 
2703 	unlock_fs(md);
2704 
2705 	return 0;
2706 }
2707 
2708 int dm_resume(struct mapped_device *md)
2709 {
2710 	int r;
2711 	struct dm_table *map = NULL;
2712 
2713 retry:
2714 	r = -EINVAL;
2715 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2716 
2717 	if (!dm_suspended_md(md))
2718 		goto out;
2719 
2720 	if (dm_suspended_internally_md(md)) {
2721 		/* already internally suspended, wait for internal resume */
2722 		mutex_unlock(&md->suspend_lock);
2723 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2724 		if (r)
2725 			return r;
2726 		goto retry;
2727 	}
2728 
2729 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2730 	if (!map || !dm_table_get_size(map))
2731 		goto out;
2732 
2733 	r = __dm_resume(md, map);
2734 	if (r)
2735 		goto out;
2736 
2737 	clear_bit(DMF_SUSPENDED, &md->flags);
2738 out:
2739 	mutex_unlock(&md->suspend_lock);
2740 
2741 	return r;
2742 }
2743 
2744 /*
2745  * Internal suspend/resume works like userspace-driven suspend. It waits
2746  * until all bios finish and prevents issuing new bios to the target drivers.
2747  * It may be used only from the kernel.
2748  */
2749 
2750 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2751 {
2752 	struct dm_table *map = NULL;
2753 
2754 	lockdep_assert_held(&md->suspend_lock);
2755 
2756 	if (md->internal_suspend_count++)
2757 		return; /* nested internal suspend */
2758 
2759 	if (dm_suspended_md(md)) {
2760 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2761 		return; /* nest suspend */
2762 	}
2763 
2764 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2765 
2766 	/*
2767 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2768 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2769 	 * would require changing .presuspend to return an error -- avoid this
2770 	 * until there is a need for more elaborate variants of internal suspend.
2771 	 */
2772 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2773 			    DMF_SUSPENDED_INTERNALLY);
2774 
2775 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2776 	dm_table_postsuspend_targets(map);
2777 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2778 }
2779 
2780 static void __dm_internal_resume(struct mapped_device *md)
2781 {
2782 	BUG_ON(!md->internal_suspend_count);
2783 
2784 	if (--md->internal_suspend_count)
2785 		return; /* resume from nested internal suspend */
2786 
2787 	if (dm_suspended_md(md))
2788 		goto done; /* resume from nested suspend */
2789 
2790 	/*
2791 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2792 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2793 	 */
2794 	(void) __dm_resume(md, NULL);
2795 
2796 done:
2797 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2798 	smp_mb__after_atomic();
2799 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2800 }
2801 
2802 void dm_internal_suspend_noflush(struct mapped_device *md)
2803 {
2804 	mutex_lock(&md->suspend_lock);
2805 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2806 	mutex_unlock(&md->suspend_lock);
2807 }
2808 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2809 
2810 void dm_internal_resume(struct mapped_device *md)
2811 {
2812 	mutex_lock(&md->suspend_lock);
2813 	__dm_internal_resume(md);
2814 	mutex_unlock(&md->suspend_lock);
2815 }
2816 EXPORT_SYMBOL_GPL(dm_internal_resume);
2817 
2818 /*
2819  * Fast variants of internal suspend/resume hold md->suspend_lock,
2820  * which prevents interaction with userspace-driven suspend.
2821  */
2822 
2823 void dm_internal_suspend_fast(struct mapped_device *md)
2824 {
2825 	mutex_lock(&md->suspend_lock);
2826 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2827 		return;
2828 
2829 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2830 	synchronize_srcu(&md->io_barrier);
2831 	flush_workqueue(md->wq);
2832 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2833 }
2834 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2835 
2836 void dm_internal_resume_fast(struct mapped_device *md)
2837 {
2838 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2839 		goto done;
2840 
2841 	dm_queue_flush(md);
2842 
2843 done:
2844 	mutex_unlock(&md->suspend_lock);
2845 }
2846 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2847 
2848 /*-----------------------------------------------------------------
2849  * Event notification.
2850  *---------------------------------------------------------------*/
2851 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2852 		       unsigned cookie)
2853 {
2854 	int r;
2855 	unsigned noio_flag;
2856 	char udev_cookie[DM_COOKIE_LENGTH];
2857 	char *envp[] = { udev_cookie, NULL };
2858 
2859 	noio_flag = memalloc_noio_save();
2860 
2861 	if (!cookie)
2862 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2863 	else {
2864 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2865 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2866 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2867 				       action, envp);
2868 	}
2869 
2870 	memalloc_noio_restore(noio_flag);
2871 
2872 	return r;
2873 }
2874 
2875 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2876 {
2877 	return atomic_add_return(1, &md->uevent_seq);
2878 }
2879 
2880 uint32_t dm_get_event_nr(struct mapped_device *md)
2881 {
2882 	return atomic_read(&md->event_nr);
2883 }
2884 
2885 int dm_wait_event(struct mapped_device *md, int event_nr)
2886 {
2887 	return wait_event_interruptible(md->eventq,
2888 			(event_nr != atomic_read(&md->event_nr)));
2889 }
2890 
2891 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2892 {
2893 	unsigned long flags;
2894 
2895 	spin_lock_irqsave(&md->uevent_lock, flags);
2896 	list_add(elist, &md->uevent_list);
2897 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2898 }
2899 
2900 /*
2901  * The gendisk is only valid as long as you have a reference
2902  * count on 'md'.
2903  */
2904 struct gendisk *dm_disk(struct mapped_device *md)
2905 {
2906 	return md->disk;
2907 }
2908 EXPORT_SYMBOL_GPL(dm_disk);
2909 
2910 struct kobject *dm_kobject(struct mapped_device *md)
2911 {
2912 	return &md->kobj_holder.kobj;
2913 }
2914 
2915 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2916 {
2917 	struct mapped_device *md;
2918 
2919 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2920 
2921 	spin_lock(&_minor_lock);
2922 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2923 		md = NULL;
2924 		goto out;
2925 	}
2926 	dm_get(md);
2927 out:
2928 	spin_unlock(&_minor_lock);
2929 
2930 	return md;
2931 }
2932 
2933 int dm_suspended_md(struct mapped_device *md)
2934 {
2935 	return test_bit(DMF_SUSPENDED, &md->flags);
2936 }
2937 
2938 static int dm_post_suspending_md(struct mapped_device *md)
2939 {
2940 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2941 }
2942 
2943 int dm_suspended_internally_md(struct mapped_device *md)
2944 {
2945 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2946 }
2947 
2948 int dm_test_deferred_remove_flag(struct mapped_device *md)
2949 {
2950 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2951 }
2952 
2953 int dm_suspended(struct dm_target *ti)
2954 {
2955 	return dm_suspended_md(ti->table->md);
2956 }
2957 EXPORT_SYMBOL_GPL(dm_suspended);
2958 
2959 int dm_post_suspending(struct dm_target *ti)
2960 {
2961 	return dm_post_suspending_md(ti->table->md);
2962 }
2963 EXPORT_SYMBOL_GPL(dm_post_suspending);
2964 
2965 int dm_noflush_suspending(struct dm_target *ti)
2966 {
2967 	return __noflush_suspending(ti->table->md);
2968 }
2969 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2970 
2971 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2972 					    unsigned per_io_data_size, unsigned min_pool_size,
2973 					    bool integrity, bool poll)
2974 {
2975 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2976 	unsigned int pool_size = 0;
2977 	unsigned int front_pad, io_front_pad;
2978 	int ret;
2979 
2980 	if (!pools)
2981 		return NULL;
2982 
2983 	switch (type) {
2984 	case DM_TYPE_BIO_BASED:
2985 	case DM_TYPE_DAX_BIO_BASED:
2986 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2987 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2988 		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2989 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, poll ? BIOSET_PERCPU_CACHE : 0);
2990 		if (ret)
2991 			goto out;
2992 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2993 			goto out;
2994 		break;
2995 	case DM_TYPE_REQUEST_BASED:
2996 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2997 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2998 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2999 		break;
3000 	default:
3001 		BUG();
3002 	}
3003 
3004 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3005 	if (ret)
3006 		goto out;
3007 
3008 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3009 		goto out;
3010 
3011 	return pools;
3012 
3013 out:
3014 	dm_free_md_mempools(pools);
3015 
3016 	return NULL;
3017 }
3018 
3019 void dm_free_md_mempools(struct dm_md_mempools *pools)
3020 {
3021 	if (!pools)
3022 		return;
3023 
3024 	bioset_exit(&pools->bs);
3025 	bioset_exit(&pools->io_bs);
3026 
3027 	kfree(pools);
3028 }
3029 
3030 struct dm_pr {
3031 	u64	old_key;
3032 	u64	new_key;
3033 	u32	flags;
3034 	bool	fail_early;
3035 };
3036 
3037 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3038 		      void *data)
3039 {
3040 	struct mapped_device *md = bdev->bd_disk->private_data;
3041 	struct dm_table *table;
3042 	struct dm_target *ti;
3043 	int ret = -ENOTTY, srcu_idx;
3044 
3045 	table = dm_get_live_table(md, &srcu_idx);
3046 	if (!table || !dm_table_get_size(table))
3047 		goto out;
3048 
3049 	/* We only support devices that have a single target */
3050 	if (dm_table_get_num_targets(table) != 1)
3051 		goto out;
3052 	ti = dm_table_get_target(table, 0);
3053 
3054 	ret = -EINVAL;
3055 	if (!ti->type->iterate_devices)
3056 		goto out;
3057 
3058 	ret = ti->type->iterate_devices(ti, fn, data);
3059 out:
3060 	dm_put_live_table(md, srcu_idx);
3061 	return ret;
3062 }
3063 
3064 /*
3065  * For register / unregister we need to manually call out to every path.
3066  */
3067 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3068 			    sector_t start, sector_t len, void *data)
3069 {
3070 	struct dm_pr *pr = data;
3071 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3072 
3073 	if (!ops || !ops->pr_register)
3074 		return -EOPNOTSUPP;
3075 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3076 }
3077 
3078 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3079 			  u32 flags)
3080 {
3081 	struct dm_pr pr = {
3082 		.old_key	= old_key,
3083 		.new_key	= new_key,
3084 		.flags		= flags,
3085 		.fail_early	= true,
3086 	};
3087 	int ret;
3088 
3089 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3090 	if (ret && new_key) {
3091 		/* unregister all paths if we failed to register any path */
3092 		pr.old_key = new_key;
3093 		pr.new_key = 0;
3094 		pr.flags = 0;
3095 		pr.fail_early = false;
3096 		dm_call_pr(bdev, __dm_pr_register, &pr);
3097 	}
3098 
3099 	return ret;
3100 }
3101 
3102 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3103 			 u32 flags)
3104 {
3105 	struct mapped_device *md = bdev->bd_disk->private_data;
3106 	const struct pr_ops *ops;
3107 	int r, srcu_idx;
3108 
3109 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3110 	if (r < 0)
3111 		goto out;
3112 
3113 	ops = bdev->bd_disk->fops->pr_ops;
3114 	if (ops && ops->pr_reserve)
3115 		r = ops->pr_reserve(bdev, key, type, flags);
3116 	else
3117 		r = -EOPNOTSUPP;
3118 out:
3119 	dm_unprepare_ioctl(md, srcu_idx);
3120 	return r;
3121 }
3122 
3123 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3124 {
3125 	struct mapped_device *md = bdev->bd_disk->private_data;
3126 	const struct pr_ops *ops;
3127 	int r, srcu_idx;
3128 
3129 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3130 	if (r < 0)
3131 		goto out;
3132 
3133 	ops = bdev->bd_disk->fops->pr_ops;
3134 	if (ops && ops->pr_release)
3135 		r = ops->pr_release(bdev, key, type);
3136 	else
3137 		r = -EOPNOTSUPP;
3138 out:
3139 	dm_unprepare_ioctl(md, srcu_idx);
3140 	return r;
3141 }
3142 
3143 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3144 			 enum pr_type type, bool abort)
3145 {
3146 	struct mapped_device *md = bdev->bd_disk->private_data;
3147 	const struct pr_ops *ops;
3148 	int r, srcu_idx;
3149 
3150 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3151 	if (r < 0)
3152 		goto out;
3153 
3154 	ops = bdev->bd_disk->fops->pr_ops;
3155 	if (ops && ops->pr_preempt)
3156 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3157 	else
3158 		r = -EOPNOTSUPP;
3159 out:
3160 	dm_unprepare_ioctl(md, srcu_idx);
3161 	return r;
3162 }
3163 
3164 static int dm_pr_clear(struct block_device *bdev, u64 key)
3165 {
3166 	struct mapped_device *md = bdev->bd_disk->private_data;
3167 	const struct pr_ops *ops;
3168 	int r, srcu_idx;
3169 
3170 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3171 	if (r < 0)
3172 		goto out;
3173 
3174 	ops = bdev->bd_disk->fops->pr_ops;
3175 	if (ops && ops->pr_clear)
3176 		r = ops->pr_clear(bdev, key);
3177 	else
3178 		r = -EOPNOTSUPP;
3179 out:
3180 	dm_unprepare_ioctl(md, srcu_idx);
3181 	return r;
3182 }
3183 
3184 static const struct pr_ops dm_pr_ops = {
3185 	.pr_register	= dm_pr_register,
3186 	.pr_reserve	= dm_pr_reserve,
3187 	.pr_release	= dm_pr_release,
3188 	.pr_preempt	= dm_pr_preempt,
3189 	.pr_clear	= dm_pr_clear,
3190 };
3191 
3192 static const struct block_device_operations dm_blk_dops = {
3193 	.submit_bio = dm_submit_bio,
3194 	.poll_bio = dm_poll_bio,
3195 	.open = dm_blk_open,
3196 	.release = dm_blk_close,
3197 	.ioctl = dm_blk_ioctl,
3198 	.getgeo = dm_blk_getgeo,
3199 	.report_zones = dm_blk_report_zones,
3200 	.pr_ops = &dm_pr_ops,
3201 	.owner = THIS_MODULE
3202 };
3203 
3204 static const struct block_device_operations dm_rq_blk_dops = {
3205 	.open = dm_blk_open,
3206 	.release = dm_blk_close,
3207 	.ioctl = dm_blk_ioctl,
3208 	.getgeo = dm_blk_getgeo,
3209 	.pr_ops = &dm_pr_ops,
3210 	.owner = THIS_MODULE
3211 };
3212 
3213 static const struct dax_operations dm_dax_ops = {
3214 	.direct_access = dm_dax_direct_access,
3215 	.zero_page_range = dm_dax_zero_page_range,
3216 	.recovery_write = dm_dax_recovery_write,
3217 };
3218 
3219 /*
3220  * module hooks
3221  */
3222 module_init(dm_init);
3223 module_exit(dm_exit);
3224 
3225 module_param(major, uint, 0);
3226 MODULE_PARM_DESC(major, "The major number of the device mapper");
3227 
3228 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3229 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3230 
3231 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3232 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3233 
3234 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3235 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3236 
3237 MODULE_DESCRIPTION(DM_NAME " driver");
3238 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3239 MODULE_LICENSE("GPL");
3240