xref: /openbmc/linux/drivers/md/dm.c (revision c5c87812)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 
32 #define DM_MSG_PREFIX "core"
33 
34 /*
35  * Cookies are numeric values sent with CHANGE and REMOVE
36  * uevents while resuming, removing or renaming the device.
37  */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40 
41 static const char *_name = DM_NAME;
42 
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45 
46 static DEFINE_IDR(_minor_idr);
47 
48 static DEFINE_SPINLOCK(_minor_lock);
49 
50 static void do_deferred_remove(struct work_struct *w);
51 
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53 
54 static struct workqueue_struct *deferred_remove_workqueue;
55 
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58 
59 void dm_issue_global_event(void)
60 {
61 	atomic_inc(&dm_global_event_nr);
62 	wake_up(&dm_global_eventq);
63 }
64 
65 /*
66  * One of these is allocated (on-stack) per original bio.
67  */
68 struct clone_info {
69 	struct dm_table *map;
70 	struct bio *bio;
71 	struct dm_io *io;
72 	sector_t sector;
73 	unsigned sector_count;
74 };
75 
76 /*
77  * One of these is allocated per clone bio.
78  */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 	unsigned magic;
82 	struct dm_io *io;
83 	struct dm_target *ti;
84 	unsigned target_bio_nr;
85 	unsigned *len_ptr;
86 	bool inside_dm_io;
87 	struct bio clone;
88 };
89 
90 /*
91  * One of these is allocated per original bio.
92  * It contains the first clone used for that original.
93  */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 	unsigned magic;
97 	struct mapped_device *md;
98 	blk_status_t status;
99 	atomic_t io_count;
100 	struct bio *orig_bio;
101 	unsigned long start_time;
102 	spinlock_t endio_lock;
103 	struct dm_stats_aux stats_aux;
104 	/* last member of dm_target_io is 'struct bio' */
105 	struct dm_target_io tio;
106 };
107 
108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 	if (!tio->inside_dm_io)
112 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116 
117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 	if (io->magic == DM_IO_MAGIC)
121 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 	BUG_ON(io->magic != DM_TIO_MAGIC);
123 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126 
127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132 
133 #define MINOR_ALLOCED ((void *)-1)
134 
135 /*
136  * Bits for the md->flags field.
137  */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
147 
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
150 
151 /*
152  * For mempools pre-allocation at the table loading time.
153  */
154 struct dm_md_mempools {
155 	struct bio_set bs;
156 	struct bio_set io_bs;
157 };
158 
159 struct table_device {
160 	struct list_head list;
161 	refcount_t count;
162 	struct dm_dev dm_dev;
163 };
164 
165 /*
166  * Bio-based DM's mempools' reserved IOs set by the user.
167  */
168 #define RESERVED_BIO_BASED_IOS		16
169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 
171 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 {
173 	int param = READ_ONCE(*module_param);
174 	int modified_param = 0;
175 	bool modified = true;
176 
177 	if (param < min)
178 		modified_param = min;
179 	else if (param > max)
180 		modified_param = max;
181 	else
182 		modified = false;
183 
184 	if (modified) {
185 		(void)cmpxchg(module_param, param, modified_param);
186 		param = modified_param;
187 	}
188 
189 	return param;
190 }
191 
192 unsigned __dm_get_module_param(unsigned *module_param,
193 			       unsigned def, unsigned max)
194 {
195 	unsigned param = READ_ONCE(*module_param);
196 	unsigned modified_param = 0;
197 
198 	if (!param)
199 		modified_param = def;
200 	else if (param > max)
201 		modified_param = max;
202 
203 	if (modified_param) {
204 		(void)cmpxchg(module_param, param, modified_param);
205 		param = modified_param;
206 	}
207 
208 	return param;
209 }
210 
211 unsigned dm_get_reserved_bio_based_ios(void)
212 {
213 	return __dm_get_module_param(&reserved_bio_based_ios,
214 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 }
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 
218 static unsigned dm_get_numa_node(void)
219 {
220 	return __dm_get_module_param_int(&dm_numa_node,
221 					 DM_NUMA_NODE, num_online_nodes() - 1);
222 }
223 
224 static int __init local_init(void)
225 {
226 	int r;
227 
228 	r = dm_uevent_init();
229 	if (r)
230 		return r;
231 
232 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
233 	if (!deferred_remove_workqueue) {
234 		r = -ENOMEM;
235 		goto out_uevent_exit;
236 	}
237 
238 	_major = major;
239 	r = register_blkdev(_major, _name);
240 	if (r < 0)
241 		goto out_free_workqueue;
242 
243 	if (!_major)
244 		_major = r;
245 
246 	return 0;
247 
248 out_free_workqueue:
249 	destroy_workqueue(deferred_remove_workqueue);
250 out_uevent_exit:
251 	dm_uevent_exit();
252 
253 	return r;
254 }
255 
256 static void local_exit(void)
257 {
258 	flush_scheduled_work();
259 	destroy_workqueue(deferred_remove_workqueue);
260 
261 	unregister_blkdev(_major, _name);
262 	dm_uevent_exit();
263 
264 	_major = 0;
265 
266 	DMINFO("cleaned up");
267 }
268 
269 static int (*_inits[])(void) __initdata = {
270 	local_init,
271 	dm_target_init,
272 	dm_linear_init,
273 	dm_stripe_init,
274 	dm_io_init,
275 	dm_kcopyd_init,
276 	dm_interface_init,
277 	dm_statistics_init,
278 };
279 
280 static void (*_exits[])(void) = {
281 	local_exit,
282 	dm_target_exit,
283 	dm_linear_exit,
284 	dm_stripe_exit,
285 	dm_io_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 	dm_statistics_exit,
289 };
290 
291 static int __init dm_init(void)
292 {
293 	const int count = ARRAY_SIZE(_inits);
294 
295 	int r, i;
296 
297 	for (i = 0; i < count; i++) {
298 		r = _inits[i]();
299 		if (r)
300 			goto bad;
301 	}
302 
303 	return 0;
304 
305       bad:
306 	while (i--)
307 		_exits[i]();
308 
309 	return r;
310 }
311 
312 static void __exit dm_exit(void)
313 {
314 	int i = ARRAY_SIZE(_exits);
315 
316 	while (i--)
317 		_exits[i]();
318 
319 	/*
320 	 * Should be empty by this point.
321 	 */
322 	idr_destroy(&_minor_idr);
323 }
324 
325 /*
326  * Block device functions
327  */
328 int dm_deleting_md(struct mapped_device *md)
329 {
330 	return test_bit(DMF_DELETING, &md->flags);
331 }
332 
333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
334 {
335 	struct mapped_device *md;
336 
337 	spin_lock(&_minor_lock);
338 
339 	md = bdev->bd_disk->private_data;
340 	if (!md)
341 		goto out;
342 
343 	if (test_bit(DMF_FREEING, &md->flags) ||
344 	    dm_deleting_md(md)) {
345 		md = NULL;
346 		goto out;
347 	}
348 
349 	dm_get(md);
350 	atomic_inc(&md->open_count);
351 out:
352 	spin_unlock(&_minor_lock);
353 
354 	return md ? 0 : -ENXIO;
355 }
356 
357 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
358 {
359 	struct mapped_device *md;
360 
361 	spin_lock(&_minor_lock);
362 
363 	md = disk->private_data;
364 	if (WARN_ON(!md))
365 		goto out;
366 
367 	if (atomic_dec_and_test(&md->open_count) &&
368 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
369 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
370 
371 	dm_put(md);
372 out:
373 	spin_unlock(&_minor_lock);
374 }
375 
376 int dm_open_count(struct mapped_device *md)
377 {
378 	return atomic_read(&md->open_count);
379 }
380 
381 /*
382  * Guarantees nothing is using the device before it's deleted.
383  */
384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (dm_open_count(md)) {
391 		r = -EBUSY;
392 		if (mark_deferred)
393 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
395 		r = -EEXIST;
396 	else
397 		set_bit(DMF_DELETING, &md->flags);
398 
399 	spin_unlock(&_minor_lock);
400 
401 	return r;
402 }
403 
404 int dm_cancel_deferred_remove(struct mapped_device *md)
405 {
406 	int r = 0;
407 
408 	spin_lock(&_minor_lock);
409 
410 	if (test_bit(DMF_DELETING, &md->flags))
411 		r = -EBUSY;
412 	else
413 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
414 
415 	spin_unlock(&_minor_lock);
416 
417 	return r;
418 }
419 
420 static void do_deferred_remove(struct work_struct *w)
421 {
422 	dm_deferred_remove();
423 }
424 
425 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
426 {
427 	struct mapped_device *md = bdev->bd_disk->private_data;
428 
429 	return dm_get_geometry(md, geo);
430 }
431 
432 #ifdef CONFIG_BLK_DEV_ZONED
433 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
434 {
435 	struct dm_report_zones_args *args = data;
436 	sector_t sector_diff = args->tgt->begin - args->start;
437 
438 	/*
439 	 * Ignore zones beyond the target range.
440 	 */
441 	if (zone->start >= args->start + args->tgt->len)
442 		return 0;
443 
444 	/*
445 	 * Remap the start sector and write pointer position of the zone
446 	 * to match its position in the target range.
447 	 */
448 	zone->start += sector_diff;
449 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
450 		if (zone->cond == BLK_ZONE_COND_FULL)
451 			zone->wp = zone->start + zone->len;
452 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
453 			zone->wp = zone->start;
454 		else
455 			zone->wp += sector_diff;
456 	}
457 
458 	args->next_sector = zone->start + zone->len;
459 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
460 }
461 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
462 
463 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
464 		unsigned int nr_zones, report_zones_cb cb, void *data)
465 {
466 	struct mapped_device *md = disk->private_data;
467 	struct dm_table *map;
468 	int srcu_idx, ret;
469 	struct dm_report_zones_args args = {
470 		.next_sector = sector,
471 		.orig_data = data,
472 		.orig_cb = cb,
473 	};
474 
475 	if (dm_suspended_md(md))
476 		return -EAGAIN;
477 
478 	map = dm_get_live_table(md, &srcu_idx);
479 	if (!map)
480 		return -EIO;
481 
482 	do {
483 		struct dm_target *tgt;
484 
485 		tgt = dm_table_find_target(map, args.next_sector);
486 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
487 			ret = -EIO;
488 			goto out;
489 		}
490 
491 		args.tgt = tgt;
492 		ret = tgt->type->report_zones(tgt, &args,
493 					      nr_zones - args.zone_idx);
494 		if (ret < 0)
495 			goto out;
496 	} while (args.zone_idx < nr_zones &&
497 		 args.next_sector < get_capacity(disk));
498 
499 	ret = args.zone_idx;
500 out:
501 	dm_put_live_table(md, srcu_idx);
502 	return ret;
503 }
504 #else
505 #define dm_blk_report_zones		NULL
506 #endif /* CONFIG_BLK_DEV_ZONED */
507 
508 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
509 			    struct block_device **bdev)
510 	__acquires(md->io_barrier)
511 {
512 	struct dm_target *tgt;
513 	struct dm_table *map;
514 	int r;
515 
516 retry:
517 	r = -ENOTTY;
518 	map = dm_get_live_table(md, srcu_idx);
519 	if (!map || !dm_table_get_size(map))
520 		return r;
521 
522 	/* We only support devices that have a single target */
523 	if (dm_table_get_num_targets(map) != 1)
524 		return r;
525 
526 	tgt = dm_table_get_target(map, 0);
527 	if (!tgt->type->prepare_ioctl)
528 		return r;
529 
530 	if (dm_suspended_md(md))
531 		return -EAGAIN;
532 
533 	r = tgt->type->prepare_ioctl(tgt, bdev);
534 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
535 		dm_put_live_table(md, *srcu_idx);
536 		msleep(10);
537 		goto retry;
538 	}
539 
540 	return r;
541 }
542 
543 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
544 	__releases(md->io_barrier)
545 {
546 	dm_put_live_table(md, srcu_idx);
547 }
548 
549 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
550 			unsigned int cmd, unsigned long arg)
551 {
552 	struct mapped_device *md = bdev->bd_disk->private_data;
553 	int r, srcu_idx;
554 
555 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
556 	if (r < 0)
557 		goto out;
558 
559 	if (r > 0) {
560 		/*
561 		 * Target determined this ioctl is being issued against a
562 		 * subset of the parent bdev; require extra privileges.
563 		 */
564 		if (!capable(CAP_SYS_RAWIO)) {
565 			DMWARN_LIMIT(
566 	"%s: sending ioctl %x to DM device without required privilege.",
567 				current->comm, cmd);
568 			r = -ENOIOCTLCMD;
569 			goto out;
570 		}
571 	}
572 
573 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
574 out:
575 	dm_unprepare_ioctl(md, srcu_idx);
576 	return r;
577 }
578 
579 u64 dm_start_time_ns_from_clone(struct bio *bio)
580 {
581 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
582 	struct dm_io *io = tio->io;
583 
584 	return jiffies_to_nsecs(io->start_time);
585 }
586 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
587 
588 static void start_io_acct(struct dm_io *io)
589 {
590 	struct mapped_device *md = io->md;
591 	struct bio *bio = io->orig_bio;
592 
593 	io->start_time = bio_start_io_acct(bio);
594 	if (unlikely(dm_stats_used(&md->stats)))
595 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
596 				    bio->bi_iter.bi_sector, bio_sectors(bio),
597 				    false, 0, &io->stats_aux);
598 }
599 
600 static void end_io_acct(struct dm_io *io)
601 {
602 	struct mapped_device *md = io->md;
603 	struct bio *bio = io->orig_bio;
604 	unsigned long duration = jiffies - io->start_time;
605 
606 	bio_end_io_acct(bio, io->start_time);
607 
608 	if (unlikely(dm_stats_used(&md->stats)))
609 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
610 				    bio->bi_iter.bi_sector, bio_sectors(bio),
611 				    true, duration, &io->stats_aux);
612 
613 	/* nudge anyone waiting on suspend queue */
614 	if (unlikely(wq_has_sleeper(&md->wait)))
615 		wake_up(&md->wait);
616 }
617 
618 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
619 {
620 	struct dm_io *io;
621 	struct dm_target_io *tio;
622 	struct bio *clone;
623 
624 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
625 	if (!clone)
626 		return NULL;
627 
628 	tio = container_of(clone, struct dm_target_io, clone);
629 	tio->inside_dm_io = true;
630 	tio->io = NULL;
631 
632 	io = container_of(tio, struct dm_io, tio);
633 	io->magic = DM_IO_MAGIC;
634 	io->status = 0;
635 	atomic_set(&io->io_count, 1);
636 	io->orig_bio = bio;
637 	io->md = md;
638 	spin_lock_init(&io->endio_lock);
639 
640 	start_io_acct(io);
641 
642 	return io;
643 }
644 
645 static void free_io(struct mapped_device *md, struct dm_io *io)
646 {
647 	bio_put(&io->tio.clone);
648 }
649 
650 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
651 				      unsigned target_bio_nr, gfp_t gfp_mask)
652 {
653 	struct dm_target_io *tio;
654 
655 	if (!ci->io->tio.io) {
656 		/* the dm_target_io embedded in ci->io is available */
657 		tio = &ci->io->tio;
658 	} else {
659 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
660 		if (!clone)
661 			return NULL;
662 
663 		tio = container_of(clone, struct dm_target_io, clone);
664 		tio->inside_dm_io = false;
665 	}
666 
667 	tio->magic = DM_TIO_MAGIC;
668 	tio->io = ci->io;
669 	tio->ti = ti;
670 	tio->target_bio_nr = target_bio_nr;
671 
672 	return tio;
673 }
674 
675 static void free_tio(struct dm_target_io *tio)
676 {
677 	if (tio->inside_dm_io)
678 		return;
679 	bio_put(&tio->clone);
680 }
681 
682 /*
683  * Add the bio to the list of deferred io.
684  */
685 static void queue_io(struct mapped_device *md, struct bio *bio)
686 {
687 	unsigned long flags;
688 
689 	spin_lock_irqsave(&md->deferred_lock, flags);
690 	bio_list_add(&md->deferred, bio);
691 	spin_unlock_irqrestore(&md->deferred_lock, flags);
692 	queue_work(md->wq, &md->work);
693 }
694 
695 /*
696  * Everyone (including functions in this file), should use this
697  * function to access the md->map field, and make sure they call
698  * dm_put_live_table() when finished.
699  */
700 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
701 {
702 	*srcu_idx = srcu_read_lock(&md->io_barrier);
703 
704 	return srcu_dereference(md->map, &md->io_barrier);
705 }
706 
707 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
708 {
709 	srcu_read_unlock(&md->io_barrier, srcu_idx);
710 }
711 
712 void dm_sync_table(struct mapped_device *md)
713 {
714 	synchronize_srcu(&md->io_barrier);
715 	synchronize_rcu_expedited();
716 }
717 
718 /*
719  * A fast alternative to dm_get_live_table/dm_put_live_table.
720  * The caller must not block between these two functions.
721  */
722 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
723 {
724 	rcu_read_lock();
725 	return rcu_dereference(md->map);
726 }
727 
728 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
729 {
730 	rcu_read_unlock();
731 }
732 
733 static char *_dm_claim_ptr = "I belong to device-mapper";
734 
735 /*
736  * Open a table device so we can use it as a map destination.
737  */
738 static int open_table_device(struct table_device *td, dev_t dev,
739 			     struct mapped_device *md)
740 {
741 	struct block_device *bdev;
742 
743 	int r;
744 
745 	BUG_ON(td->dm_dev.bdev);
746 
747 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
748 	if (IS_ERR(bdev))
749 		return PTR_ERR(bdev);
750 
751 	r = bd_link_disk_holder(bdev, dm_disk(md));
752 	if (r) {
753 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
754 		return r;
755 	}
756 
757 	td->dm_dev.bdev = bdev;
758 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
759 	return 0;
760 }
761 
762 /*
763  * Close a table device that we've been using.
764  */
765 static void close_table_device(struct table_device *td, struct mapped_device *md)
766 {
767 	if (!td->dm_dev.bdev)
768 		return;
769 
770 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
771 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
772 	put_dax(td->dm_dev.dax_dev);
773 	td->dm_dev.bdev = NULL;
774 	td->dm_dev.dax_dev = NULL;
775 }
776 
777 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
778 					      fmode_t mode)
779 {
780 	struct table_device *td;
781 
782 	list_for_each_entry(td, l, list)
783 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
784 			return td;
785 
786 	return NULL;
787 }
788 
789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 			struct dm_dev **result)
791 {
792 	int r;
793 	struct table_device *td;
794 
795 	mutex_lock(&md->table_devices_lock);
796 	td = find_table_device(&md->table_devices, dev, mode);
797 	if (!td) {
798 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
799 		if (!td) {
800 			mutex_unlock(&md->table_devices_lock);
801 			return -ENOMEM;
802 		}
803 
804 		td->dm_dev.mode = mode;
805 		td->dm_dev.bdev = NULL;
806 
807 		if ((r = open_table_device(td, dev, md))) {
808 			mutex_unlock(&md->table_devices_lock);
809 			kfree(td);
810 			return r;
811 		}
812 
813 		format_dev_t(td->dm_dev.name, dev);
814 
815 		refcount_set(&td->count, 1);
816 		list_add(&td->list, &md->table_devices);
817 	} else {
818 		refcount_inc(&td->count);
819 	}
820 	mutex_unlock(&md->table_devices_lock);
821 
822 	*result = &td->dm_dev;
823 	return 0;
824 }
825 EXPORT_SYMBOL_GPL(dm_get_table_device);
826 
827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
828 {
829 	struct table_device *td = container_of(d, struct table_device, dm_dev);
830 
831 	mutex_lock(&md->table_devices_lock);
832 	if (refcount_dec_and_test(&td->count)) {
833 		close_table_device(td, md);
834 		list_del(&td->list);
835 		kfree(td);
836 	}
837 	mutex_unlock(&md->table_devices_lock);
838 }
839 EXPORT_SYMBOL(dm_put_table_device);
840 
841 static void free_table_devices(struct list_head *devices)
842 {
843 	struct list_head *tmp, *next;
844 
845 	list_for_each_safe(tmp, next, devices) {
846 		struct table_device *td = list_entry(tmp, struct table_device, list);
847 
848 		DMWARN("dm_destroy: %s still exists with %d references",
849 		       td->dm_dev.name, refcount_read(&td->count));
850 		kfree(td);
851 	}
852 }
853 
854 /*
855  * Get the geometry associated with a dm device
856  */
857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
858 {
859 	*geo = md->geometry;
860 
861 	return 0;
862 }
863 
864 /*
865  * Set the geometry of a device.
866  */
867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
868 {
869 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
870 
871 	if (geo->start > sz) {
872 		DMWARN("Start sector is beyond the geometry limits.");
873 		return -EINVAL;
874 	}
875 
876 	md->geometry = *geo;
877 
878 	return 0;
879 }
880 
881 static int __noflush_suspending(struct mapped_device *md)
882 {
883 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
884 }
885 
886 /*
887  * Decrements the number of outstanding ios that a bio has been
888  * cloned into, completing the original io if necc.
889  */
890 static void dec_pending(struct dm_io *io, blk_status_t error)
891 {
892 	unsigned long flags;
893 	blk_status_t io_error;
894 	struct bio *bio;
895 	struct mapped_device *md = io->md;
896 
897 	/* Push-back supersedes any I/O errors */
898 	if (unlikely(error)) {
899 		spin_lock_irqsave(&io->endio_lock, flags);
900 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
901 			io->status = error;
902 		spin_unlock_irqrestore(&io->endio_lock, flags);
903 	}
904 
905 	if (atomic_dec_and_test(&io->io_count)) {
906 		if (io->status == BLK_STS_DM_REQUEUE) {
907 			/*
908 			 * Target requested pushing back the I/O.
909 			 */
910 			spin_lock_irqsave(&md->deferred_lock, flags);
911 			if (__noflush_suspending(md))
912 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
913 				bio_list_add_head(&md->deferred, io->orig_bio);
914 			else
915 				/* noflush suspend was interrupted. */
916 				io->status = BLK_STS_IOERR;
917 			spin_unlock_irqrestore(&md->deferred_lock, flags);
918 		}
919 
920 		io_error = io->status;
921 		bio = io->orig_bio;
922 		end_io_acct(io);
923 		free_io(md, io);
924 
925 		if (io_error == BLK_STS_DM_REQUEUE)
926 			return;
927 
928 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
929 			/*
930 			 * Preflush done for flush with data, reissue
931 			 * without REQ_PREFLUSH.
932 			 */
933 			bio->bi_opf &= ~REQ_PREFLUSH;
934 			queue_io(md, bio);
935 		} else {
936 			/* done with normal IO or empty flush */
937 			if (io_error)
938 				bio->bi_status = io_error;
939 			bio_endio(bio);
940 		}
941 	}
942 }
943 
944 void disable_discard(struct mapped_device *md)
945 {
946 	struct queue_limits *limits = dm_get_queue_limits(md);
947 
948 	/* device doesn't really support DISCARD, disable it */
949 	limits->max_discard_sectors = 0;
950 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
951 }
952 
953 void disable_write_same(struct mapped_device *md)
954 {
955 	struct queue_limits *limits = dm_get_queue_limits(md);
956 
957 	/* device doesn't really support WRITE SAME, disable it */
958 	limits->max_write_same_sectors = 0;
959 }
960 
961 void disable_write_zeroes(struct mapped_device *md)
962 {
963 	struct queue_limits *limits = dm_get_queue_limits(md);
964 
965 	/* device doesn't really support WRITE ZEROES, disable it */
966 	limits->max_write_zeroes_sectors = 0;
967 }
968 
969 static void clone_endio(struct bio *bio)
970 {
971 	blk_status_t error = bio->bi_status;
972 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
973 	struct dm_io *io = tio->io;
974 	struct mapped_device *md = tio->io->md;
975 	dm_endio_fn endio = tio->ti->type->end_io;
976 	struct bio *orig_bio = io->orig_bio;
977 
978 	if (unlikely(error == BLK_STS_TARGET)) {
979 		if (bio_op(bio) == REQ_OP_DISCARD &&
980 		    !bio->bi_disk->queue->limits.max_discard_sectors)
981 			disable_discard(md);
982 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
983 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
984 			disable_write_same(md);
985 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
986 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
987 			disable_write_zeroes(md);
988 	}
989 
990 	/*
991 	 * For zone-append bios get offset in zone of the written
992 	 * sector and add that to the original bio sector pos.
993 	 */
994 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
995 		sector_t written_sector = bio->bi_iter.bi_sector;
996 		struct request_queue *q = orig_bio->bi_disk->queue;
997 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
998 
999 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1000 	}
1001 
1002 	if (endio) {
1003 		int r = endio(tio->ti, bio, &error);
1004 		switch (r) {
1005 		case DM_ENDIO_REQUEUE:
1006 			error = BLK_STS_DM_REQUEUE;
1007 			fallthrough;
1008 		case DM_ENDIO_DONE:
1009 			break;
1010 		case DM_ENDIO_INCOMPLETE:
1011 			/* The target will handle the io */
1012 			return;
1013 		default:
1014 			DMWARN("unimplemented target endio return value: %d", r);
1015 			BUG();
1016 		}
1017 	}
1018 
1019 	free_tio(tio);
1020 	dec_pending(io, error);
1021 }
1022 
1023 /*
1024  * Return maximum size of I/O possible at the supplied sector up to the current
1025  * target boundary.
1026  */
1027 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1028 						  sector_t target_offset)
1029 {
1030 	return ti->len - target_offset;
1031 }
1032 
1033 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1034 {
1035 	sector_t target_offset = dm_target_offset(ti, sector);
1036 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1037 	sector_t max_len;
1038 
1039 	/*
1040 	 * Does the target need to split even further?
1041 	 * - q->limits.chunk_sectors reflects ti->max_io_len so
1042 	 *   blk_max_size_offset() provides required splitting.
1043 	 * - blk_max_size_offset() also respects q->limits.max_sectors
1044 	 */
1045 	max_len = blk_max_size_offset(ti->table->md->queue,
1046 				      target_offset);
1047 	if (len > max_len)
1048 		len = max_len;
1049 
1050 	return len;
1051 }
1052 
1053 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1054 {
1055 	if (len > UINT_MAX) {
1056 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1057 		      (unsigned long long)len, UINT_MAX);
1058 		ti->error = "Maximum size of target IO is too large";
1059 		return -EINVAL;
1060 	}
1061 
1062 	ti->max_io_len = (uint32_t) len;
1063 
1064 	return 0;
1065 }
1066 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1067 
1068 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1069 						sector_t sector, int *srcu_idx)
1070 	__acquires(md->io_barrier)
1071 {
1072 	struct dm_table *map;
1073 	struct dm_target *ti;
1074 
1075 	map = dm_get_live_table(md, srcu_idx);
1076 	if (!map)
1077 		return NULL;
1078 
1079 	ti = dm_table_find_target(map, sector);
1080 	if (!ti)
1081 		return NULL;
1082 
1083 	return ti;
1084 }
1085 
1086 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1087 				 long nr_pages, void **kaddr, pfn_t *pfn)
1088 {
1089 	struct mapped_device *md = dax_get_private(dax_dev);
1090 	sector_t sector = pgoff * PAGE_SECTORS;
1091 	struct dm_target *ti;
1092 	long len, ret = -EIO;
1093 	int srcu_idx;
1094 
1095 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1096 
1097 	if (!ti)
1098 		goto out;
1099 	if (!ti->type->direct_access)
1100 		goto out;
1101 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1102 	if (len < 1)
1103 		goto out;
1104 	nr_pages = min(len, nr_pages);
1105 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1106 
1107  out:
1108 	dm_put_live_table(md, srcu_idx);
1109 
1110 	return ret;
1111 }
1112 
1113 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1114 		int blocksize, sector_t start, sector_t len)
1115 {
1116 	struct mapped_device *md = dax_get_private(dax_dev);
1117 	struct dm_table *map;
1118 	bool ret = false;
1119 	int srcu_idx;
1120 
1121 	map = dm_get_live_table(md, &srcu_idx);
1122 	if (!map)
1123 		goto out;
1124 
1125 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1126 
1127 out:
1128 	dm_put_live_table(md, srcu_idx);
1129 
1130 	return ret;
1131 }
1132 
1133 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1134 				    void *addr, size_t bytes, struct iov_iter *i)
1135 {
1136 	struct mapped_device *md = dax_get_private(dax_dev);
1137 	sector_t sector = pgoff * PAGE_SECTORS;
1138 	struct dm_target *ti;
1139 	long ret = 0;
1140 	int srcu_idx;
1141 
1142 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1143 
1144 	if (!ti)
1145 		goto out;
1146 	if (!ti->type->dax_copy_from_iter) {
1147 		ret = copy_from_iter(addr, bytes, i);
1148 		goto out;
1149 	}
1150 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1151  out:
1152 	dm_put_live_table(md, srcu_idx);
1153 
1154 	return ret;
1155 }
1156 
1157 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1158 		void *addr, size_t bytes, struct iov_iter *i)
1159 {
1160 	struct mapped_device *md = dax_get_private(dax_dev);
1161 	sector_t sector = pgoff * PAGE_SECTORS;
1162 	struct dm_target *ti;
1163 	long ret = 0;
1164 	int srcu_idx;
1165 
1166 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1167 
1168 	if (!ti)
1169 		goto out;
1170 	if (!ti->type->dax_copy_to_iter) {
1171 		ret = copy_to_iter(addr, bytes, i);
1172 		goto out;
1173 	}
1174 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1175  out:
1176 	dm_put_live_table(md, srcu_idx);
1177 
1178 	return ret;
1179 }
1180 
1181 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1182 				  size_t nr_pages)
1183 {
1184 	struct mapped_device *md = dax_get_private(dax_dev);
1185 	sector_t sector = pgoff * PAGE_SECTORS;
1186 	struct dm_target *ti;
1187 	int ret = -EIO;
1188 	int srcu_idx;
1189 
1190 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1191 
1192 	if (!ti)
1193 		goto out;
1194 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1195 		/*
1196 		 * ->zero_page_range() is mandatory dax operation. If we are
1197 		 *  here, something is wrong.
1198 		 */
1199 		dm_put_live_table(md, srcu_idx);
1200 		goto out;
1201 	}
1202 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1203 
1204  out:
1205 	dm_put_live_table(md, srcu_idx);
1206 
1207 	return ret;
1208 }
1209 
1210 /*
1211  * A target may call dm_accept_partial_bio only from the map routine.  It is
1212  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1213  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1214  *
1215  * dm_accept_partial_bio informs the dm that the target only wants to process
1216  * additional n_sectors sectors of the bio and the rest of the data should be
1217  * sent in a next bio.
1218  *
1219  * A diagram that explains the arithmetics:
1220  * +--------------------+---------------+-------+
1221  * |         1          |       2       |   3   |
1222  * +--------------------+---------------+-------+
1223  *
1224  * <-------------- *tio->len_ptr --------------->
1225  *                      <------- bi_size ------->
1226  *                      <-- n_sectors -->
1227  *
1228  * Region 1 was already iterated over with bio_advance or similar function.
1229  *	(it may be empty if the target doesn't use bio_advance)
1230  * Region 2 is the remaining bio size that the target wants to process.
1231  *	(it may be empty if region 1 is non-empty, although there is no reason
1232  *	 to make it empty)
1233  * The target requires that region 3 is to be sent in the next bio.
1234  *
1235  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1236  * the partially processed part (the sum of regions 1+2) must be the same for all
1237  * copies of the bio.
1238  */
1239 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1240 {
1241 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1242 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1243 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1244 	BUG_ON(bi_size > *tio->len_ptr);
1245 	BUG_ON(n_sectors > bi_size);
1246 	*tio->len_ptr -= bi_size - n_sectors;
1247 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1248 }
1249 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1250 
1251 static blk_qc_t __map_bio(struct dm_target_io *tio)
1252 {
1253 	int r;
1254 	sector_t sector;
1255 	struct bio *clone = &tio->clone;
1256 	struct dm_io *io = tio->io;
1257 	struct dm_target *ti = tio->ti;
1258 	blk_qc_t ret = BLK_QC_T_NONE;
1259 
1260 	clone->bi_end_io = clone_endio;
1261 
1262 	/*
1263 	 * Map the clone.  If r == 0 we don't need to do
1264 	 * anything, the target has assumed ownership of
1265 	 * this io.
1266 	 */
1267 	atomic_inc(&io->io_count);
1268 	sector = clone->bi_iter.bi_sector;
1269 
1270 	r = ti->type->map(ti, clone);
1271 	switch (r) {
1272 	case DM_MAPIO_SUBMITTED:
1273 		break;
1274 	case DM_MAPIO_REMAPPED:
1275 		/* the bio has been remapped so dispatch it */
1276 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1277 				      bio_dev(io->orig_bio), sector);
1278 		ret = submit_bio_noacct(clone);
1279 		break;
1280 	case DM_MAPIO_KILL:
1281 		free_tio(tio);
1282 		dec_pending(io, BLK_STS_IOERR);
1283 		break;
1284 	case DM_MAPIO_REQUEUE:
1285 		free_tio(tio);
1286 		dec_pending(io, BLK_STS_DM_REQUEUE);
1287 		break;
1288 	default:
1289 		DMWARN("unimplemented target map return value: %d", r);
1290 		BUG();
1291 	}
1292 
1293 	return ret;
1294 }
1295 
1296 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1297 {
1298 	bio->bi_iter.bi_sector = sector;
1299 	bio->bi_iter.bi_size = to_bytes(len);
1300 }
1301 
1302 /*
1303  * Creates a bio that consists of range of complete bvecs.
1304  */
1305 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1306 		     sector_t sector, unsigned len)
1307 {
1308 	struct bio *clone = &tio->clone;
1309 	int r;
1310 
1311 	__bio_clone_fast(clone, bio);
1312 
1313 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1314 	if (r < 0)
1315 		return r;
1316 
1317 	if (bio_integrity(bio)) {
1318 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1319 			     !dm_target_passes_integrity(tio->ti->type))) {
1320 			DMWARN("%s: the target %s doesn't support integrity data.",
1321 				dm_device_name(tio->io->md),
1322 				tio->ti->type->name);
1323 			return -EIO;
1324 		}
1325 
1326 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1327 		if (r < 0)
1328 			return r;
1329 	}
1330 
1331 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1332 	clone->bi_iter.bi_size = to_bytes(len);
1333 
1334 	if (bio_integrity(bio))
1335 		bio_integrity_trim(clone);
1336 
1337 	return 0;
1338 }
1339 
1340 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1341 				struct dm_target *ti, unsigned num_bios)
1342 {
1343 	struct dm_target_io *tio;
1344 	int try;
1345 
1346 	if (!num_bios)
1347 		return;
1348 
1349 	if (num_bios == 1) {
1350 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1351 		bio_list_add(blist, &tio->clone);
1352 		return;
1353 	}
1354 
1355 	for (try = 0; try < 2; try++) {
1356 		int bio_nr;
1357 		struct bio *bio;
1358 
1359 		if (try)
1360 			mutex_lock(&ci->io->md->table_devices_lock);
1361 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1362 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1363 			if (!tio)
1364 				break;
1365 
1366 			bio_list_add(blist, &tio->clone);
1367 		}
1368 		if (try)
1369 			mutex_unlock(&ci->io->md->table_devices_lock);
1370 		if (bio_nr == num_bios)
1371 			return;
1372 
1373 		while ((bio = bio_list_pop(blist))) {
1374 			tio = container_of(bio, struct dm_target_io, clone);
1375 			free_tio(tio);
1376 		}
1377 	}
1378 }
1379 
1380 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1381 					   struct dm_target_io *tio, unsigned *len)
1382 {
1383 	struct bio *clone = &tio->clone;
1384 
1385 	tio->len_ptr = len;
1386 
1387 	__bio_clone_fast(clone, ci->bio);
1388 	if (len)
1389 		bio_setup_sector(clone, ci->sector, *len);
1390 
1391 	return __map_bio(tio);
1392 }
1393 
1394 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1395 				  unsigned num_bios, unsigned *len)
1396 {
1397 	struct bio_list blist = BIO_EMPTY_LIST;
1398 	struct bio *bio;
1399 	struct dm_target_io *tio;
1400 
1401 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1402 
1403 	while ((bio = bio_list_pop(&blist))) {
1404 		tio = container_of(bio, struct dm_target_io, clone);
1405 		(void) __clone_and_map_simple_bio(ci, tio, len);
1406 	}
1407 }
1408 
1409 static int __send_empty_flush(struct clone_info *ci)
1410 {
1411 	unsigned target_nr = 0;
1412 	struct dm_target *ti;
1413 	struct bio flush_bio;
1414 
1415 	/*
1416 	 * Use an on-stack bio for this, it's safe since we don't
1417 	 * need to reference it after submit. It's just used as
1418 	 * the basis for the clone(s).
1419 	 */
1420 	bio_init(&flush_bio, NULL, 0);
1421 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1422 	ci->bio = &flush_bio;
1423 	ci->sector_count = 0;
1424 
1425 	/*
1426 	 * Empty flush uses a statically initialized bio, as the base for
1427 	 * cloning.  However, blkg association requires that a bdev is
1428 	 * associated with a gendisk, which doesn't happen until the bdev is
1429 	 * opened.  So, blkg association is done at issue time of the flush
1430 	 * rather than when the device is created in alloc_dev().
1431 	 */
1432 	bio_set_dev(ci->bio, ci->io->md->bdev);
1433 
1434 	BUG_ON(bio_has_data(ci->bio));
1435 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1436 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1437 
1438 	bio_uninit(ci->bio);
1439 	return 0;
1440 }
1441 
1442 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1443 				    sector_t sector, unsigned *len)
1444 {
1445 	struct bio *bio = ci->bio;
1446 	struct dm_target_io *tio;
1447 	int r;
1448 
1449 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1450 	tio->len_ptr = len;
1451 	r = clone_bio(tio, bio, sector, *len);
1452 	if (r < 0) {
1453 		free_tio(tio);
1454 		return r;
1455 	}
1456 	(void) __map_bio(tio);
1457 
1458 	return 0;
1459 }
1460 
1461 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1462 				       unsigned num_bios)
1463 {
1464 	unsigned len;
1465 
1466 	/*
1467 	 * Even though the device advertised support for this type of
1468 	 * request, that does not mean every target supports it, and
1469 	 * reconfiguration might also have changed that since the
1470 	 * check was performed.
1471 	 */
1472 	if (!num_bios)
1473 		return -EOPNOTSUPP;
1474 
1475 	len = min_t(sector_t, ci->sector_count,
1476 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1477 
1478 	__send_duplicate_bios(ci, ti, num_bios, &len);
1479 
1480 	ci->sector += len;
1481 	ci->sector_count -= len;
1482 
1483 	return 0;
1484 }
1485 
1486 static bool is_abnormal_io(struct bio *bio)
1487 {
1488 	bool r = false;
1489 
1490 	switch (bio_op(bio)) {
1491 	case REQ_OP_DISCARD:
1492 	case REQ_OP_SECURE_ERASE:
1493 	case REQ_OP_WRITE_SAME:
1494 	case REQ_OP_WRITE_ZEROES:
1495 		r = true;
1496 		break;
1497 	}
1498 
1499 	return r;
1500 }
1501 
1502 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1503 				  int *result)
1504 {
1505 	struct bio *bio = ci->bio;
1506 	unsigned num_bios = 0;
1507 
1508 	switch (bio_op(bio)) {
1509 	case REQ_OP_DISCARD:
1510 		num_bios = ti->num_discard_bios;
1511 		break;
1512 	case REQ_OP_SECURE_ERASE:
1513 		num_bios = ti->num_secure_erase_bios;
1514 		break;
1515 	case REQ_OP_WRITE_SAME:
1516 		num_bios = ti->num_write_same_bios;
1517 		break;
1518 	case REQ_OP_WRITE_ZEROES:
1519 		num_bios = ti->num_write_zeroes_bios;
1520 		break;
1521 	default:
1522 		return false;
1523 	}
1524 
1525 	*result = __send_changing_extent_only(ci, ti, num_bios);
1526 	return true;
1527 }
1528 
1529 /*
1530  * Select the correct strategy for processing a non-flush bio.
1531  */
1532 static int __split_and_process_non_flush(struct clone_info *ci)
1533 {
1534 	struct dm_target *ti;
1535 	unsigned len;
1536 	int r;
1537 
1538 	ti = dm_table_find_target(ci->map, ci->sector);
1539 	if (!ti)
1540 		return -EIO;
1541 
1542 	if (__process_abnormal_io(ci, ti, &r))
1543 		return r;
1544 
1545 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1546 
1547 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1548 	if (r < 0)
1549 		return r;
1550 
1551 	ci->sector += len;
1552 	ci->sector_count -= len;
1553 
1554 	return 0;
1555 }
1556 
1557 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1558 			    struct dm_table *map, struct bio *bio)
1559 {
1560 	ci->map = map;
1561 	ci->io = alloc_io(md, bio);
1562 	ci->sector = bio->bi_iter.bi_sector;
1563 }
1564 
1565 #define __dm_part_stat_sub(part, field, subnd)	\
1566 	(part_stat_get(part, field) -= (subnd))
1567 
1568 /*
1569  * Entry point to split a bio into clones and submit them to the targets.
1570  */
1571 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1572 					struct dm_table *map, struct bio *bio)
1573 {
1574 	struct clone_info ci;
1575 	blk_qc_t ret = BLK_QC_T_NONE;
1576 	int error = 0;
1577 
1578 	init_clone_info(&ci, md, map, bio);
1579 
1580 	if (bio->bi_opf & REQ_PREFLUSH) {
1581 		error = __send_empty_flush(&ci);
1582 		/* dec_pending submits any data associated with flush */
1583 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1584 		ci.bio = bio;
1585 		ci.sector_count = 0;
1586 		error = __split_and_process_non_flush(&ci);
1587 	} else {
1588 		ci.bio = bio;
1589 		ci.sector_count = bio_sectors(bio);
1590 		while (ci.sector_count && !error) {
1591 			error = __split_and_process_non_flush(&ci);
1592 			if (current->bio_list && ci.sector_count && !error) {
1593 				/*
1594 				 * Remainder must be passed to submit_bio_noacct()
1595 				 * so that it gets handled *after* bios already submitted
1596 				 * have been completely processed.
1597 				 * We take a clone of the original to store in
1598 				 * ci.io->orig_bio to be used by end_io_acct() and
1599 				 * for dec_pending to use for completion handling.
1600 				 */
1601 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1602 							  GFP_NOIO, &md->queue->bio_split);
1603 				ci.io->orig_bio = b;
1604 
1605 				/*
1606 				 * Adjust IO stats for each split, otherwise upon queue
1607 				 * reentry there will be redundant IO accounting.
1608 				 * NOTE: this is a stop-gap fix, a proper fix involves
1609 				 * significant refactoring of DM core's bio splitting
1610 				 * (by eliminating DM's splitting and just using bio_split)
1611 				 */
1612 				part_stat_lock();
1613 				__dm_part_stat_sub(&dm_disk(md)->part0,
1614 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1615 				part_stat_unlock();
1616 
1617 				bio_chain(b, bio);
1618 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1619 				ret = submit_bio_noacct(bio);
1620 				break;
1621 			}
1622 		}
1623 	}
1624 
1625 	/* drop the extra reference count */
1626 	dec_pending(ci.io, errno_to_blk_status(error));
1627 	return ret;
1628 }
1629 
1630 static blk_qc_t dm_submit_bio(struct bio *bio)
1631 {
1632 	struct mapped_device *md = bio->bi_disk->private_data;
1633 	blk_qc_t ret = BLK_QC_T_NONE;
1634 	int srcu_idx;
1635 	struct dm_table *map;
1636 
1637 	map = dm_get_live_table(md, &srcu_idx);
1638 	if (unlikely(!map)) {
1639 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1640 			    dm_device_name(md));
1641 		bio_io_error(bio);
1642 		goto out;
1643 	}
1644 
1645 	/* If suspended, queue this IO for later */
1646 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1647 		if (bio->bi_opf & REQ_NOWAIT)
1648 			bio_wouldblock_error(bio);
1649 		else if (bio->bi_opf & REQ_RAHEAD)
1650 			bio_io_error(bio);
1651 		else
1652 			queue_io(md, bio);
1653 		goto out;
1654 	}
1655 
1656 	/*
1657 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1658 	 * otherwise associated queue_limits won't be imposed.
1659 	 */
1660 	if (is_abnormal_io(bio))
1661 		blk_queue_split(&bio);
1662 
1663 	ret = __split_and_process_bio(md, map, bio);
1664 out:
1665 	dm_put_live_table(md, srcu_idx);
1666 	return ret;
1667 }
1668 
1669 /*-----------------------------------------------------------------
1670  * An IDR is used to keep track of allocated minor numbers.
1671  *---------------------------------------------------------------*/
1672 static void free_minor(int minor)
1673 {
1674 	spin_lock(&_minor_lock);
1675 	idr_remove(&_minor_idr, minor);
1676 	spin_unlock(&_minor_lock);
1677 }
1678 
1679 /*
1680  * See if the device with a specific minor # is free.
1681  */
1682 static int specific_minor(int minor)
1683 {
1684 	int r;
1685 
1686 	if (minor >= (1 << MINORBITS))
1687 		return -EINVAL;
1688 
1689 	idr_preload(GFP_KERNEL);
1690 	spin_lock(&_minor_lock);
1691 
1692 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1693 
1694 	spin_unlock(&_minor_lock);
1695 	idr_preload_end();
1696 	if (r < 0)
1697 		return r == -ENOSPC ? -EBUSY : r;
1698 	return 0;
1699 }
1700 
1701 static int next_free_minor(int *minor)
1702 {
1703 	int r;
1704 
1705 	idr_preload(GFP_KERNEL);
1706 	spin_lock(&_minor_lock);
1707 
1708 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1709 
1710 	spin_unlock(&_minor_lock);
1711 	idr_preload_end();
1712 	if (r < 0)
1713 		return r;
1714 	*minor = r;
1715 	return 0;
1716 }
1717 
1718 static const struct block_device_operations dm_blk_dops;
1719 static const struct block_device_operations dm_rq_blk_dops;
1720 static const struct dax_operations dm_dax_ops;
1721 
1722 static void dm_wq_work(struct work_struct *work);
1723 
1724 static void cleanup_mapped_device(struct mapped_device *md)
1725 {
1726 	if (md->wq)
1727 		destroy_workqueue(md->wq);
1728 	bioset_exit(&md->bs);
1729 	bioset_exit(&md->io_bs);
1730 
1731 	if (md->dax_dev) {
1732 		kill_dax(md->dax_dev);
1733 		put_dax(md->dax_dev);
1734 		md->dax_dev = NULL;
1735 	}
1736 
1737 	if (md->disk) {
1738 		spin_lock(&_minor_lock);
1739 		md->disk->private_data = NULL;
1740 		spin_unlock(&_minor_lock);
1741 		del_gendisk(md->disk);
1742 		put_disk(md->disk);
1743 	}
1744 
1745 	if (md->queue)
1746 		blk_cleanup_queue(md->queue);
1747 
1748 	cleanup_srcu_struct(&md->io_barrier);
1749 
1750 	if (md->bdev) {
1751 		bdput(md->bdev);
1752 		md->bdev = NULL;
1753 	}
1754 
1755 	mutex_destroy(&md->suspend_lock);
1756 	mutex_destroy(&md->type_lock);
1757 	mutex_destroy(&md->table_devices_lock);
1758 
1759 	dm_mq_cleanup_mapped_device(md);
1760 }
1761 
1762 /*
1763  * Allocate and initialise a blank device with a given minor.
1764  */
1765 static struct mapped_device *alloc_dev(int minor)
1766 {
1767 	int r, numa_node_id = dm_get_numa_node();
1768 	struct mapped_device *md;
1769 	void *old_md;
1770 
1771 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1772 	if (!md) {
1773 		DMWARN("unable to allocate device, out of memory.");
1774 		return NULL;
1775 	}
1776 
1777 	if (!try_module_get(THIS_MODULE))
1778 		goto bad_module_get;
1779 
1780 	/* get a minor number for the dev */
1781 	if (minor == DM_ANY_MINOR)
1782 		r = next_free_minor(&minor);
1783 	else
1784 		r = specific_minor(minor);
1785 	if (r < 0)
1786 		goto bad_minor;
1787 
1788 	r = init_srcu_struct(&md->io_barrier);
1789 	if (r < 0)
1790 		goto bad_io_barrier;
1791 
1792 	md->numa_node_id = numa_node_id;
1793 	md->init_tio_pdu = false;
1794 	md->type = DM_TYPE_NONE;
1795 	mutex_init(&md->suspend_lock);
1796 	mutex_init(&md->type_lock);
1797 	mutex_init(&md->table_devices_lock);
1798 	spin_lock_init(&md->deferred_lock);
1799 	atomic_set(&md->holders, 1);
1800 	atomic_set(&md->open_count, 0);
1801 	atomic_set(&md->event_nr, 0);
1802 	atomic_set(&md->uevent_seq, 0);
1803 	INIT_LIST_HEAD(&md->uevent_list);
1804 	INIT_LIST_HEAD(&md->table_devices);
1805 	spin_lock_init(&md->uevent_lock);
1806 
1807 	/*
1808 	 * default to bio-based until DM table is loaded and md->type
1809 	 * established. If request-based table is loaded: blk-mq will
1810 	 * override accordingly.
1811 	 */
1812 	md->queue = blk_alloc_queue(numa_node_id);
1813 	if (!md->queue)
1814 		goto bad;
1815 
1816 	md->disk = alloc_disk_node(1, md->numa_node_id);
1817 	if (!md->disk)
1818 		goto bad;
1819 
1820 	init_waitqueue_head(&md->wait);
1821 	INIT_WORK(&md->work, dm_wq_work);
1822 	init_waitqueue_head(&md->eventq);
1823 	init_completion(&md->kobj_holder.completion);
1824 
1825 	md->disk->major = _major;
1826 	md->disk->first_minor = minor;
1827 	md->disk->fops = &dm_blk_dops;
1828 	md->disk->queue = md->queue;
1829 	md->disk->private_data = md;
1830 	sprintf(md->disk->disk_name, "dm-%d", minor);
1831 
1832 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1833 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1834 					&dm_dax_ops, 0);
1835 		if (IS_ERR(md->dax_dev))
1836 			goto bad;
1837 	}
1838 
1839 	add_disk_no_queue_reg(md->disk);
1840 	format_dev_t(md->name, MKDEV(_major, minor));
1841 
1842 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1843 	if (!md->wq)
1844 		goto bad;
1845 
1846 	md->bdev = bdget_disk(md->disk, 0);
1847 	if (!md->bdev)
1848 		goto bad;
1849 
1850 	dm_stats_init(&md->stats);
1851 
1852 	/* Populate the mapping, nobody knows we exist yet */
1853 	spin_lock(&_minor_lock);
1854 	old_md = idr_replace(&_minor_idr, md, minor);
1855 	spin_unlock(&_minor_lock);
1856 
1857 	BUG_ON(old_md != MINOR_ALLOCED);
1858 
1859 	return md;
1860 
1861 bad:
1862 	cleanup_mapped_device(md);
1863 bad_io_barrier:
1864 	free_minor(minor);
1865 bad_minor:
1866 	module_put(THIS_MODULE);
1867 bad_module_get:
1868 	kvfree(md);
1869 	return NULL;
1870 }
1871 
1872 static void unlock_fs(struct mapped_device *md);
1873 
1874 static void free_dev(struct mapped_device *md)
1875 {
1876 	int minor = MINOR(disk_devt(md->disk));
1877 
1878 	unlock_fs(md);
1879 
1880 	cleanup_mapped_device(md);
1881 
1882 	free_table_devices(&md->table_devices);
1883 	dm_stats_cleanup(&md->stats);
1884 	free_minor(minor);
1885 
1886 	module_put(THIS_MODULE);
1887 	kvfree(md);
1888 }
1889 
1890 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1891 {
1892 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1893 	int ret = 0;
1894 
1895 	if (dm_table_bio_based(t)) {
1896 		/*
1897 		 * The md may already have mempools that need changing.
1898 		 * If so, reload bioset because front_pad may have changed
1899 		 * because a different table was loaded.
1900 		 */
1901 		bioset_exit(&md->bs);
1902 		bioset_exit(&md->io_bs);
1903 
1904 	} else if (bioset_initialized(&md->bs)) {
1905 		/*
1906 		 * There's no need to reload with request-based dm
1907 		 * because the size of front_pad doesn't change.
1908 		 * Note for future: If you are to reload bioset,
1909 		 * prep-ed requests in the queue may refer
1910 		 * to bio from the old bioset, so you must walk
1911 		 * through the queue to unprep.
1912 		 */
1913 		goto out;
1914 	}
1915 
1916 	BUG_ON(!p ||
1917 	       bioset_initialized(&md->bs) ||
1918 	       bioset_initialized(&md->io_bs));
1919 
1920 	ret = bioset_init_from_src(&md->bs, &p->bs);
1921 	if (ret)
1922 		goto out;
1923 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1924 	if (ret)
1925 		bioset_exit(&md->bs);
1926 out:
1927 	/* mempool bind completed, no longer need any mempools in the table */
1928 	dm_table_free_md_mempools(t);
1929 	return ret;
1930 }
1931 
1932 /*
1933  * Bind a table to the device.
1934  */
1935 static void event_callback(void *context)
1936 {
1937 	unsigned long flags;
1938 	LIST_HEAD(uevents);
1939 	struct mapped_device *md = (struct mapped_device *) context;
1940 
1941 	spin_lock_irqsave(&md->uevent_lock, flags);
1942 	list_splice_init(&md->uevent_list, &uevents);
1943 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1944 
1945 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1946 
1947 	atomic_inc(&md->event_nr);
1948 	wake_up(&md->eventq);
1949 	dm_issue_global_event();
1950 }
1951 
1952 /*
1953  * Returns old map, which caller must destroy.
1954  */
1955 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1956 			       struct queue_limits *limits)
1957 {
1958 	struct dm_table *old_map;
1959 	struct request_queue *q = md->queue;
1960 	bool request_based = dm_table_request_based(t);
1961 	sector_t size;
1962 	int ret;
1963 
1964 	lockdep_assert_held(&md->suspend_lock);
1965 
1966 	size = dm_table_get_size(t);
1967 
1968 	/*
1969 	 * Wipe any geometry if the size of the table changed.
1970 	 */
1971 	if (size != dm_get_size(md))
1972 		memset(&md->geometry, 0, sizeof(md->geometry));
1973 
1974 	set_capacity(md->disk, size);
1975 	bd_set_nr_sectors(md->bdev, size);
1976 
1977 	dm_table_event_callback(t, event_callback, md);
1978 
1979 	/*
1980 	 * The queue hasn't been stopped yet, if the old table type wasn't
1981 	 * for request-based during suspension.  So stop it to prevent
1982 	 * I/O mapping before resume.
1983 	 * This must be done before setting the queue restrictions,
1984 	 * because request-based dm may be run just after the setting.
1985 	 */
1986 	if (request_based)
1987 		dm_stop_queue(q);
1988 
1989 	if (request_based) {
1990 		/*
1991 		 * Leverage the fact that request-based DM targets are
1992 		 * immutable singletons - used to optimize dm_mq_queue_rq.
1993 		 */
1994 		md->immutable_target = dm_table_get_immutable_target(t);
1995 	}
1996 
1997 	ret = __bind_mempools(md, t);
1998 	if (ret) {
1999 		old_map = ERR_PTR(ret);
2000 		goto out;
2001 	}
2002 
2003 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2004 	rcu_assign_pointer(md->map, (void *)t);
2005 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2006 
2007 	dm_table_set_restrictions(t, q, limits);
2008 	if (old_map)
2009 		dm_sync_table(md);
2010 
2011 out:
2012 	return old_map;
2013 }
2014 
2015 /*
2016  * Returns unbound table for the caller to free.
2017  */
2018 static struct dm_table *__unbind(struct mapped_device *md)
2019 {
2020 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2021 
2022 	if (!map)
2023 		return NULL;
2024 
2025 	dm_table_event_callback(map, NULL, NULL);
2026 	RCU_INIT_POINTER(md->map, NULL);
2027 	dm_sync_table(md);
2028 
2029 	return map;
2030 }
2031 
2032 /*
2033  * Constructor for a new device.
2034  */
2035 int dm_create(int minor, struct mapped_device **result)
2036 {
2037 	int r;
2038 	struct mapped_device *md;
2039 
2040 	md = alloc_dev(minor);
2041 	if (!md)
2042 		return -ENXIO;
2043 
2044 	r = dm_sysfs_init(md);
2045 	if (r) {
2046 		free_dev(md);
2047 		return r;
2048 	}
2049 
2050 	*result = md;
2051 	return 0;
2052 }
2053 
2054 /*
2055  * Functions to manage md->type.
2056  * All are required to hold md->type_lock.
2057  */
2058 void dm_lock_md_type(struct mapped_device *md)
2059 {
2060 	mutex_lock(&md->type_lock);
2061 }
2062 
2063 void dm_unlock_md_type(struct mapped_device *md)
2064 {
2065 	mutex_unlock(&md->type_lock);
2066 }
2067 
2068 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2069 {
2070 	BUG_ON(!mutex_is_locked(&md->type_lock));
2071 	md->type = type;
2072 }
2073 
2074 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2075 {
2076 	return md->type;
2077 }
2078 
2079 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2080 {
2081 	return md->immutable_target_type;
2082 }
2083 
2084 /*
2085  * The queue_limits are only valid as long as you have a reference
2086  * count on 'md'.
2087  */
2088 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2089 {
2090 	BUG_ON(!atomic_read(&md->holders));
2091 	return &md->queue->limits;
2092 }
2093 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2094 
2095 /*
2096  * Setup the DM device's queue based on md's type
2097  */
2098 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2099 {
2100 	int r;
2101 	struct queue_limits limits;
2102 	enum dm_queue_mode type = dm_get_md_type(md);
2103 
2104 	switch (type) {
2105 	case DM_TYPE_REQUEST_BASED:
2106 		md->disk->fops = &dm_rq_blk_dops;
2107 		r = dm_mq_init_request_queue(md, t);
2108 		if (r) {
2109 			DMERR("Cannot initialize queue for request-based dm mapped device");
2110 			return r;
2111 		}
2112 		break;
2113 	case DM_TYPE_BIO_BASED:
2114 	case DM_TYPE_DAX_BIO_BASED:
2115 		break;
2116 	case DM_TYPE_NONE:
2117 		WARN_ON_ONCE(true);
2118 		break;
2119 	}
2120 
2121 	r = dm_calculate_queue_limits(t, &limits);
2122 	if (r) {
2123 		DMERR("Cannot calculate initial queue limits");
2124 		return r;
2125 	}
2126 	dm_table_set_restrictions(t, md->queue, &limits);
2127 	blk_register_queue(md->disk);
2128 
2129 	return 0;
2130 }
2131 
2132 struct mapped_device *dm_get_md(dev_t dev)
2133 {
2134 	struct mapped_device *md;
2135 	unsigned minor = MINOR(dev);
2136 
2137 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2138 		return NULL;
2139 
2140 	spin_lock(&_minor_lock);
2141 
2142 	md = idr_find(&_minor_idr, minor);
2143 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2144 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2145 		md = NULL;
2146 		goto out;
2147 	}
2148 	dm_get(md);
2149 out:
2150 	spin_unlock(&_minor_lock);
2151 
2152 	return md;
2153 }
2154 EXPORT_SYMBOL_GPL(dm_get_md);
2155 
2156 void *dm_get_mdptr(struct mapped_device *md)
2157 {
2158 	return md->interface_ptr;
2159 }
2160 
2161 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2162 {
2163 	md->interface_ptr = ptr;
2164 }
2165 
2166 void dm_get(struct mapped_device *md)
2167 {
2168 	atomic_inc(&md->holders);
2169 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2170 }
2171 
2172 int dm_hold(struct mapped_device *md)
2173 {
2174 	spin_lock(&_minor_lock);
2175 	if (test_bit(DMF_FREEING, &md->flags)) {
2176 		spin_unlock(&_minor_lock);
2177 		return -EBUSY;
2178 	}
2179 	dm_get(md);
2180 	spin_unlock(&_minor_lock);
2181 	return 0;
2182 }
2183 EXPORT_SYMBOL_GPL(dm_hold);
2184 
2185 const char *dm_device_name(struct mapped_device *md)
2186 {
2187 	return md->name;
2188 }
2189 EXPORT_SYMBOL_GPL(dm_device_name);
2190 
2191 static void __dm_destroy(struct mapped_device *md, bool wait)
2192 {
2193 	struct dm_table *map;
2194 	int srcu_idx;
2195 
2196 	might_sleep();
2197 
2198 	spin_lock(&_minor_lock);
2199 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2200 	set_bit(DMF_FREEING, &md->flags);
2201 	spin_unlock(&_minor_lock);
2202 
2203 	blk_set_queue_dying(md->queue);
2204 
2205 	/*
2206 	 * Take suspend_lock so that presuspend and postsuspend methods
2207 	 * do not race with internal suspend.
2208 	 */
2209 	mutex_lock(&md->suspend_lock);
2210 	map = dm_get_live_table(md, &srcu_idx);
2211 	if (!dm_suspended_md(md)) {
2212 		dm_table_presuspend_targets(map);
2213 		set_bit(DMF_SUSPENDED, &md->flags);
2214 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2215 		dm_table_postsuspend_targets(map);
2216 	}
2217 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2218 	dm_put_live_table(md, srcu_idx);
2219 	mutex_unlock(&md->suspend_lock);
2220 
2221 	/*
2222 	 * Rare, but there may be I/O requests still going to complete,
2223 	 * for example.  Wait for all references to disappear.
2224 	 * No one should increment the reference count of the mapped_device,
2225 	 * after the mapped_device state becomes DMF_FREEING.
2226 	 */
2227 	if (wait)
2228 		while (atomic_read(&md->holders))
2229 			msleep(1);
2230 	else if (atomic_read(&md->holders))
2231 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2232 		       dm_device_name(md), atomic_read(&md->holders));
2233 
2234 	dm_sysfs_exit(md);
2235 	dm_table_destroy(__unbind(md));
2236 	free_dev(md);
2237 }
2238 
2239 void dm_destroy(struct mapped_device *md)
2240 {
2241 	__dm_destroy(md, true);
2242 }
2243 
2244 void dm_destroy_immediate(struct mapped_device *md)
2245 {
2246 	__dm_destroy(md, false);
2247 }
2248 
2249 void dm_put(struct mapped_device *md)
2250 {
2251 	atomic_dec(&md->holders);
2252 }
2253 EXPORT_SYMBOL_GPL(dm_put);
2254 
2255 static bool md_in_flight_bios(struct mapped_device *md)
2256 {
2257 	int cpu;
2258 	struct hd_struct *part = &dm_disk(md)->part0;
2259 	long sum = 0;
2260 
2261 	for_each_possible_cpu(cpu) {
2262 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2263 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2264 	}
2265 
2266 	return sum != 0;
2267 }
2268 
2269 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2270 {
2271 	int r = 0;
2272 	DEFINE_WAIT(wait);
2273 
2274 	while (true) {
2275 		prepare_to_wait(&md->wait, &wait, task_state);
2276 
2277 		if (!md_in_flight_bios(md))
2278 			break;
2279 
2280 		if (signal_pending_state(task_state, current)) {
2281 			r = -EINTR;
2282 			break;
2283 		}
2284 
2285 		io_schedule();
2286 	}
2287 	finish_wait(&md->wait, &wait);
2288 
2289 	return r;
2290 }
2291 
2292 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2293 {
2294 	int r = 0;
2295 
2296 	if (!queue_is_mq(md->queue))
2297 		return dm_wait_for_bios_completion(md, task_state);
2298 
2299 	while (true) {
2300 		if (!blk_mq_queue_inflight(md->queue))
2301 			break;
2302 
2303 		if (signal_pending_state(task_state, current)) {
2304 			r = -EINTR;
2305 			break;
2306 		}
2307 
2308 		msleep(5);
2309 	}
2310 
2311 	return r;
2312 }
2313 
2314 /*
2315  * Process the deferred bios
2316  */
2317 static void dm_wq_work(struct work_struct *work)
2318 {
2319 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2320 	struct bio *bio;
2321 
2322 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2323 		spin_lock_irq(&md->deferred_lock);
2324 		bio = bio_list_pop(&md->deferred);
2325 		spin_unlock_irq(&md->deferred_lock);
2326 
2327 		if (!bio)
2328 			break;
2329 
2330 		submit_bio_noacct(bio);
2331 	}
2332 }
2333 
2334 static void dm_queue_flush(struct mapped_device *md)
2335 {
2336 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2337 	smp_mb__after_atomic();
2338 	queue_work(md->wq, &md->work);
2339 }
2340 
2341 /*
2342  * Swap in a new table, returning the old one for the caller to destroy.
2343  */
2344 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2345 {
2346 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2347 	struct queue_limits limits;
2348 	int r;
2349 
2350 	mutex_lock(&md->suspend_lock);
2351 
2352 	/* device must be suspended */
2353 	if (!dm_suspended_md(md))
2354 		goto out;
2355 
2356 	/*
2357 	 * If the new table has no data devices, retain the existing limits.
2358 	 * This helps multipath with queue_if_no_path if all paths disappear,
2359 	 * then new I/O is queued based on these limits, and then some paths
2360 	 * reappear.
2361 	 */
2362 	if (dm_table_has_no_data_devices(table)) {
2363 		live_map = dm_get_live_table_fast(md);
2364 		if (live_map)
2365 			limits = md->queue->limits;
2366 		dm_put_live_table_fast(md);
2367 	}
2368 
2369 	if (!live_map) {
2370 		r = dm_calculate_queue_limits(table, &limits);
2371 		if (r) {
2372 			map = ERR_PTR(r);
2373 			goto out;
2374 		}
2375 	}
2376 
2377 	map = __bind(md, table, &limits);
2378 	dm_issue_global_event();
2379 
2380 out:
2381 	mutex_unlock(&md->suspend_lock);
2382 	return map;
2383 }
2384 
2385 /*
2386  * Functions to lock and unlock any filesystem running on the
2387  * device.
2388  */
2389 static int lock_fs(struct mapped_device *md)
2390 {
2391 	int r;
2392 
2393 	WARN_ON(md->frozen_sb);
2394 
2395 	md->frozen_sb = freeze_bdev(md->bdev);
2396 	if (IS_ERR(md->frozen_sb)) {
2397 		r = PTR_ERR(md->frozen_sb);
2398 		md->frozen_sb = NULL;
2399 		return r;
2400 	}
2401 
2402 	set_bit(DMF_FROZEN, &md->flags);
2403 
2404 	return 0;
2405 }
2406 
2407 static void unlock_fs(struct mapped_device *md)
2408 {
2409 	if (!test_bit(DMF_FROZEN, &md->flags))
2410 		return;
2411 
2412 	thaw_bdev(md->bdev, md->frozen_sb);
2413 	md->frozen_sb = NULL;
2414 	clear_bit(DMF_FROZEN, &md->flags);
2415 }
2416 
2417 /*
2418  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2419  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2420  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2421  *
2422  * If __dm_suspend returns 0, the device is completely quiescent
2423  * now. There is no request-processing activity. All new requests
2424  * are being added to md->deferred list.
2425  */
2426 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2427 			unsigned suspend_flags, long task_state,
2428 			int dmf_suspended_flag)
2429 {
2430 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2431 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2432 	int r;
2433 
2434 	lockdep_assert_held(&md->suspend_lock);
2435 
2436 	/*
2437 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2438 	 * This flag is cleared before dm_suspend returns.
2439 	 */
2440 	if (noflush)
2441 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2442 	else
2443 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2444 
2445 	/*
2446 	 * This gets reverted if there's an error later and the targets
2447 	 * provide the .presuspend_undo hook.
2448 	 */
2449 	dm_table_presuspend_targets(map);
2450 
2451 	/*
2452 	 * Flush I/O to the device.
2453 	 * Any I/O submitted after lock_fs() may not be flushed.
2454 	 * noflush takes precedence over do_lockfs.
2455 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2456 	 */
2457 	if (!noflush && do_lockfs) {
2458 		r = lock_fs(md);
2459 		if (r) {
2460 			dm_table_presuspend_undo_targets(map);
2461 			return r;
2462 		}
2463 	}
2464 
2465 	/*
2466 	 * Here we must make sure that no processes are submitting requests
2467 	 * to target drivers i.e. no one may be executing
2468 	 * __split_and_process_bio from dm_submit_bio.
2469 	 *
2470 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2471 	 * we take the write lock. To prevent any process from reentering
2472 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2473 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2474 	 * flush_workqueue(md->wq).
2475 	 */
2476 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2477 	if (map)
2478 		synchronize_srcu(&md->io_barrier);
2479 
2480 	/*
2481 	 * Stop md->queue before flushing md->wq in case request-based
2482 	 * dm defers requests to md->wq from md->queue.
2483 	 */
2484 	if (dm_request_based(md))
2485 		dm_stop_queue(md->queue);
2486 
2487 	flush_workqueue(md->wq);
2488 
2489 	/*
2490 	 * At this point no more requests are entering target request routines.
2491 	 * We call dm_wait_for_completion to wait for all existing requests
2492 	 * to finish.
2493 	 */
2494 	r = dm_wait_for_completion(md, task_state);
2495 	if (!r)
2496 		set_bit(dmf_suspended_flag, &md->flags);
2497 
2498 	if (noflush)
2499 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2500 	if (map)
2501 		synchronize_srcu(&md->io_barrier);
2502 
2503 	/* were we interrupted ? */
2504 	if (r < 0) {
2505 		dm_queue_flush(md);
2506 
2507 		if (dm_request_based(md))
2508 			dm_start_queue(md->queue);
2509 
2510 		unlock_fs(md);
2511 		dm_table_presuspend_undo_targets(map);
2512 		/* pushback list is already flushed, so skip flush */
2513 	}
2514 
2515 	return r;
2516 }
2517 
2518 /*
2519  * We need to be able to change a mapping table under a mounted
2520  * filesystem.  For example we might want to move some data in
2521  * the background.  Before the table can be swapped with
2522  * dm_bind_table, dm_suspend must be called to flush any in
2523  * flight bios and ensure that any further io gets deferred.
2524  */
2525 /*
2526  * Suspend mechanism in request-based dm.
2527  *
2528  * 1. Flush all I/Os by lock_fs() if needed.
2529  * 2. Stop dispatching any I/O by stopping the request_queue.
2530  * 3. Wait for all in-flight I/Os to be completed or requeued.
2531  *
2532  * To abort suspend, start the request_queue.
2533  */
2534 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2535 {
2536 	struct dm_table *map = NULL;
2537 	int r = 0;
2538 
2539 retry:
2540 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2541 
2542 	if (dm_suspended_md(md)) {
2543 		r = -EINVAL;
2544 		goto out_unlock;
2545 	}
2546 
2547 	if (dm_suspended_internally_md(md)) {
2548 		/* already internally suspended, wait for internal resume */
2549 		mutex_unlock(&md->suspend_lock);
2550 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2551 		if (r)
2552 			return r;
2553 		goto retry;
2554 	}
2555 
2556 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2557 
2558 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2559 	if (r)
2560 		goto out_unlock;
2561 
2562 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2563 	dm_table_postsuspend_targets(map);
2564 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2565 
2566 out_unlock:
2567 	mutex_unlock(&md->suspend_lock);
2568 	return r;
2569 }
2570 
2571 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2572 {
2573 	if (map) {
2574 		int r = dm_table_resume_targets(map);
2575 		if (r)
2576 			return r;
2577 	}
2578 
2579 	dm_queue_flush(md);
2580 
2581 	/*
2582 	 * Flushing deferred I/Os must be done after targets are resumed
2583 	 * so that mapping of targets can work correctly.
2584 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2585 	 */
2586 	if (dm_request_based(md))
2587 		dm_start_queue(md->queue);
2588 
2589 	unlock_fs(md);
2590 
2591 	return 0;
2592 }
2593 
2594 int dm_resume(struct mapped_device *md)
2595 {
2596 	int r;
2597 	struct dm_table *map = NULL;
2598 
2599 retry:
2600 	r = -EINVAL;
2601 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2602 
2603 	if (!dm_suspended_md(md))
2604 		goto out;
2605 
2606 	if (dm_suspended_internally_md(md)) {
2607 		/* already internally suspended, wait for internal resume */
2608 		mutex_unlock(&md->suspend_lock);
2609 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2610 		if (r)
2611 			return r;
2612 		goto retry;
2613 	}
2614 
2615 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2616 	if (!map || !dm_table_get_size(map))
2617 		goto out;
2618 
2619 	r = __dm_resume(md, map);
2620 	if (r)
2621 		goto out;
2622 
2623 	clear_bit(DMF_SUSPENDED, &md->flags);
2624 out:
2625 	mutex_unlock(&md->suspend_lock);
2626 
2627 	return r;
2628 }
2629 
2630 /*
2631  * Internal suspend/resume works like userspace-driven suspend. It waits
2632  * until all bios finish and prevents issuing new bios to the target drivers.
2633  * It may be used only from the kernel.
2634  */
2635 
2636 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2637 {
2638 	struct dm_table *map = NULL;
2639 
2640 	lockdep_assert_held(&md->suspend_lock);
2641 
2642 	if (md->internal_suspend_count++)
2643 		return; /* nested internal suspend */
2644 
2645 	if (dm_suspended_md(md)) {
2646 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2647 		return; /* nest suspend */
2648 	}
2649 
2650 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2651 
2652 	/*
2653 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2654 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2655 	 * would require changing .presuspend to return an error -- avoid this
2656 	 * until there is a need for more elaborate variants of internal suspend.
2657 	 */
2658 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2659 			    DMF_SUSPENDED_INTERNALLY);
2660 
2661 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2662 	dm_table_postsuspend_targets(map);
2663 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2664 }
2665 
2666 static void __dm_internal_resume(struct mapped_device *md)
2667 {
2668 	BUG_ON(!md->internal_suspend_count);
2669 
2670 	if (--md->internal_suspend_count)
2671 		return; /* resume from nested internal suspend */
2672 
2673 	if (dm_suspended_md(md))
2674 		goto done; /* resume from nested suspend */
2675 
2676 	/*
2677 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2678 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2679 	 */
2680 	(void) __dm_resume(md, NULL);
2681 
2682 done:
2683 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2684 	smp_mb__after_atomic();
2685 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2686 }
2687 
2688 void dm_internal_suspend_noflush(struct mapped_device *md)
2689 {
2690 	mutex_lock(&md->suspend_lock);
2691 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2692 	mutex_unlock(&md->suspend_lock);
2693 }
2694 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2695 
2696 void dm_internal_resume(struct mapped_device *md)
2697 {
2698 	mutex_lock(&md->suspend_lock);
2699 	__dm_internal_resume(md);
2700 	mutex_unlock(&md->suspend_lock);
2701 }
2702 EXPORT_SYMBOL_GPL(dm_internal_resume);
2703 
2704 /*
2705  * Fast variants of internal suspend/resume hold md->suspend_lock,
2706  * which prevents interaction with userspace-driven suspend.
2707  */
2708 
2709 void dm_internal_suspend_fast(struct mapped_device *md)
2710 {
2711 	mutex_lock(&md->suspend_lock);
2712 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2713 		return;
2714 
2715 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2716 	synchronize_srcu(&md->io_barrier);
2717 	flush_workqueue(md->wq);
2718 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2719 }
2720 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2721 
2722 void dm_internal_resume_fast(struct mapped_device *md)
2723 {
2724 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2725 		goto done;
2726 
2727 	dm_queue_flush(md);
2728 
2729 done:
2730 	mutex_unlock(&md->suspend_lock);
2731 }
2732 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2733 
2734 /*-----------------------------------------------------------------
2735  * Event notification.
2736  *---------------------------------------------------------------*/
2737 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2738 		       unsigned cookie)
2739 {
2740 	int r;
2741 	unsigned noio_flag;
2742 	char udev_cookie[DM_COOKIE_LENGTH];
2743 	char *envp[] = { udev_cookie, NULL };
2744 
2745 	noio_flag = memalloc_noio_save();
2746 
2747 	if (!cookie)
2748 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2749 	else {
2750 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2751 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2752 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2753 				       action, envp);
2754 	}
2755 
2756 	memalloc_noio_restore(noio_flag);
2757 
2758 	return r;
2759 }
2760 
2761 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2762 {
2763 	return atomic_add_return(1, &md->uevent_seq);
2764 }
2765 
2766 uint32_t dm_get_event_nr(struct mapped_device *md)
2767 {
2768 	return atomic_read(&md->event_nr);
2769 }
2770 
2771 int dm_wait_event(struct mapped_device *md, int event_nr)
2772 {
2773 	return wait_event_interruptible(md->eventq,
2774 			(event_nr != atomic_read(&md->event_nr)));
2775 }
2776 
2777 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2778 {
2779 	unsigned long flags;
2780 
2781 	spin_lock_irqsave(&md->uevent_lock, flags);
2782 	list_add(elist, &md->uevent_list);
2783 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2784 }
2785 
2786 /*
2787  * The gendisk is only valid as long as you have a reference
2788  * count on 'md'.
2789  */
2790 struct gendisk *dm_disk(struct mapped_device *md)
2791 {
2792 	return md->disk;
2793 }
2794 EXPORT_SYMBOL_GPL(dm_disk);
2795 
2796 struct kobject *dm_kobject(struct mapped_device *md)
2797 {
2798 	return &md->kobj_holder.kobj;
2799 }
2800 
2801 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2802 {
2803 	struct mapped_device *md;
2804 
2805 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2806 
2807 	spin_lock(&_minor_lock);
2808 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2809 		md = NULL;
2810 		goto out;
2811 	}
2812 	dm_get(md);
2813 out:
2814 	spin_unlock(&_minor_lock);
2815 
2816 	return md;
2817 }
2818 
2819 int dm_suspended_md(struct mapped_device *md)
2820 {
2821 	return test_bit(DMF_SUSPENDED, &md->flags);
2822 }
2823 
2824 static int dm_post_suspending_md(struct mapped_device *md)
2825 {
2826 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2827 }
2828 
2829 int dm_suspended_internally_md(struct mapped_device *md)
2830 {
2831 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2832 }
2833 
2834 int dm_test_deferred_remove_flag(struct mapped_device *md)
2835 {
2836 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2837 }
2838 
2839 int dm_suspended(struct dm_target *ti)
2840 {
2841 	return dm_suspended_md(ti->table->md);
2842 }
2843 EXPORT_SYMBOL_GPL(dm_suspended);
2844 
2845 int dm_post_suspending(struct dm_target *ti)
2846 {
2847 	return dm_post_suspending_md(ti->table->md);
2848 }
2849 EXPORT_SYMBOL_GPL(dm_post_suspending);
2850 
2851 int dm_noflush_suspending(struct dm_target *ti)
2852 {
2853 	return __noflush_suspending(ti->table->md);
2854 }
2855 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2856 
2857 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2858 					    unsigned integrity, unsigned per_io_data_size,
2859 					    unsigned min_pool_size)
2860 {
2861 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2862 	unsigned int pool_size = 0;
2863 	unsigned int front_pad, io_front_pad;
2864 	int ret;
2865 
2866 	if (!pools)
2867 		return NULL;
2868 
2869 	switch (type) {
2870 	case DM_TYPE_BIO_BASED:
2871 	case DM_TYPE_DAX_BIO_BASED:
2872 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2873 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2874 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2875 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2876 		if (ret)
2877 			goto out;
2878 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2879 			goto out;
2880 		break;
2881 	case DM_TYPE_REQUEST_BASED:
2882 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2883 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2884 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2885 		break;
2886 	default:
2887 		BUG();
2888 	}
2889 
2890 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2891 	if (ret)
2892 		goto out;
2893 
2894 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2895 		goto out;
2896 
2897 	return pools;
2898 
2899 out:
2900 	dm_free_md_mempools(pools);
2901 
2902 	return NULL;
2903 }
2904 
2905 void dm_free_md_mempools(struct dm_md_mempools *pools)
2906 {
2907 	if (!pools)
2908 		return;
2909 
2910 	bioset_exit(&pools->bs);
2911 	bioset_exit(&pools->io_bs);
2912 
2913 	kfree(pools);
2914 }
2915 
2916 struct dm_pr {
2917 	u64	old_key;
2918 	u64	new_key;
2919 	u32	flags;
2920 	bool	fail_early;
2921 };
2922 
2923 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2924 		      void *data)
2925 {
2926 	struct mapped_device *md = bdev->bd_disk->private_data;
2927 	struct dm_table *table;
2928 	struct dm_target *ti;
2929 	int ret = -ENOTTY, srcu_idx;
2930 
2931 	table = dm_get_live_table(md, &srcu_idx);
2932 	if (!table || !dm_table_get_size(table))
2933 		goto out;
2934 
2935 	/* We only support devices that have a single target */
2936 	if (dm_table_get_num_targets(table) != 1)
2937 		goto out;
2938 	ti = dm_table_get_target(table, 0);
2939 
2940 	ret = -EINVAL;
2941 	if (!ti->type->iterate_devices)
2942 		goto out;
2943 
2944 	ret = ti->type->iterate_devices(ti, fn, data);
2945 out:
2946 	dm_put_live_table(md, srcu_idx);
2947 	return ret;
2948 }
2949 
2950 /*
2951  * For register / unregister we need to manually call out to every path.
2952  */
2953 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2954 			    sector_t start, sector_t len, void *data)
2955 {
2956 	struct dm_pr *pr = data;
2957 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2958 
2959 	if (!ops || !ops->pr_register)
2960 		return -EOPNOTSUPP;
2961 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2962 }
2963 
2964 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2965 			  u32 flags)
2966 {
2967 	struct dm_pr pr = {
2968 		.old_key	= old_key,
2969 		.new_key	= new_key,
2970 		.flags		= flags,
2971 		.fail_early	= true,
2972 	};
2973 	int ret;
2974 
2975 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2976 	if (ret && new_key) {
2977 		/* unregister all paths if we failed to register any path */
2978 		pr.old_key = new_key;
2979 		pr.new_key = 0;
2980 		pr.flags = 0;
2981 		pr.fail_early = false;
2982 		dm_call_pr(bdev, __dm_pr_register, &pr);
2983 	}
2984 
2985 	return ret;
2986 }
2987 
2988 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2989 			 u32 flags)
2990 {
2991 	struct mapped_device *md = bdev->bd_disk->private_data;
2992 	const struct pr_ops *ops;
2993 	int r, srcu_idx;
2994 
2995 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2996 	if (r < 0)
2997 		goto out;
2998 
2999 	ops = bdev->bd_disk->fops->pr_ops;
3000 	if (ops && ops->pr_reserve)
3001 		r = ops->pr_reserve(bdev, key, type, flags);
3002 	else
3003 		r = -EOPNOTSUPP;
3004 out:
3005 	dm_unprepare_ioctl(md, srcu_idx);
3006 	return r;
3007 }
3008 
3009 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3010 {
3011 	struct mapped_device *md = bdev->bd_disk->private_data;
3012 	const struct pr_ops *ops;
3013 	int r, srcu_idx;
3014 
3015 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3016 	if (r < 0)
3017 		goto out;
3018 
3019 	ops = bdev->bd_disk->fops->pr_ops;
3020 	if (ops && ops->pr_release)
3021 		r = ops->pr_release(bdev, key, type);
3022 	else
3023 		r = -EOPNOTSUPP;
3024 out:
3025 	dm_unprepare_ioctl(md, srcu_idx);
3026 	return r;
3027 }
3028 
3029 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3030 			 enum pr_type type, bool abort)
3031 {
3032 	struct mapped_device *md = bdev->bd_disk->private_data;
3033 	const struct pr_ops *ops;
3034 	int r, srcu_idx;
3035 
3036 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3037 	if (r < 0)
3038 		goto out;
3039 
3040 	ops = bdev->bd_disk->fops->pr_ops;
3041 	if (ops && ops->pr_preempt)
3042 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3043 	else
3044 		r = -EOPNOTSUPP;
3045 out:
3046 	dm_unprepare_ioctl(md, srcu_idx);
3047 	return r;
3048 }
3049 
3050 static int dm_pr_clear(struct block_device *bdev, u64 key)
3051 {
3052 	struct mapped_device *md = bdev->bd_disk->private_data;
3053 	const struct pr_ops *ops;
3054 	int r, srcu_idx;
3055 
3056 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3057 	if (r < 0)
3058 		goto out;
3059 
3060 	ops = bdev->bd_disk->fops->pr_ops;
3061 	if (ops && ops->pr_clear)
3062 		r = ops->pr_clear(bdev, key);
3063 	else
3064 		r = -EOPNOTSUPP;
3065 out:
3066 	dm_unprepare_ioctl(md, srcu_idx);
3067 	return r;
3068 }
3069 
3070 static const struct pr_ops dm_pr_ops = {
3071 	.pr_register	= dm_pr_register,
3072 	.pr_reserve	= dm_pr_reserve,
3073 	.pr_release	= dm_pr_release,
3074 	.pr_preempt	= dm_pr_preempt,
3075 	.pr_clear	= dm_pr_clear,
3076 };
3077 
3078 static const struct block_device_operations dm_blk_dops = {
3079 	.submit_bio = dm_submit_bio,
3080 	.open = dm_blk_open,
3081 	.release = dm_blk_close,
3082 	.ioctl = dm_blk_ioctl,
3083 	.getgeo = dm_blk_getgeo,
3084 	.report_zones = dm_blk_report_zones,
3085 	.pr_ops = &dm_pr_ops,
3086 	.owner = THIS_MODULE
3087 };
3088 
3089 static const struct block_device_operations dm_rq_blk_dops = {
3090 	.open = dm_blk_open,
3091 	.release = dm_blk_close,
3092 	.ioctl = dm_blk_ioctl,
3093 	.getgeo = dm_blk_getgeo,
3094 	.pr_ops = &dm_pr_ops,
3095 	.owner = THIS_MODULE
3096 };
3097 
3098 static const struct dax_operations dm_dax_ops = {
3099 	.direct_access = dm_dax_direct_access,
3100 	.dax_supported = dm_dax_supported,
3101 	.copy_from_iter = dm_dax_copy_from_iter,
3102 	.copy_to_iter = dm_dax_copy_to_iter,
3103 	.zero_page_range = dm_dax_zero_page_range,
3104 };
3105 
3106 /*
3107  * module hooks
3108  */
3109 module_init(dm_init);
3110 module_exit(dm_exit);
3111 
3112 module_param(major, uint, 0);
3113 MODULE_PARM_DESC(major, "The major number of the device mapper");
3114 
3115 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3116 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3117 
3118 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3119 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3120 
3121 MODULE_DESCRIPTION(DM_NAME " driver");
3122 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3123 MODULE_LICENSE("GPL");
3124