xref: /openbmc/linux/drivers/md/dm.c (revision c21b37f6)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/blktrace_api.h>
23 #include <linux/smp_lock.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 static const char *_name = DM_NAME;
28 
29 static unsigned int major = 0;
30 static unsigned int _major = 0;
31 
32 static DEFINE_SPINLOCK(_minor_lock);
33 /*
34  * One of these is allocated per bio.
35  */
36 struct dm_io {
37 	struct mapped_device *md;
38 	int error;
39 	struct bio *bio;
40 	atomic_t io_count;
41 	unsigned long start_time;
42 };
43 
44 /*
45  * One of these is allocated per target within a bio.  Hopefully
46  * this will be simplified out one day.
47  */
48 struct dm_target_io {
49 	struct dm_io *io;
50 	struct dm_target *ti;
51 	union map_info info;
52 };
53 
54 union map_info *dm_get_mapinfo(struct bio *bio)
55 {
56 	if (bio && bio->bi_private)
57 		return &((struct dm_target_io *)bio->bi_private)->info;
58 	return NULL;
59 }
60 
61 #define MINOR_ALLOCED ((void *)-1)
62 
63 /*
64  * Bits for the md->flags field.
65  */
66 #define DMF_BLOCK_IO 0
67 #define DMF_SUSPENDED 1
68 #define DMF_FROZEN 2
69 #define DMF_FREEING 3
70 #define DMF_DELETING 4
71 #define DMF_NOFLUSH_SUSPENDING 5
72 
73 struct mapped_device {
74 	struct rw_semaphore io_lock;
75 	struct semaphore suspend_lock;
76 	spinlock_t pushback_lock;
77 	rwlock_t map_lock;
78 	atomic_t holders;
79 	atomic_t open_count;
80 
81 	unsigned long flags;
82 
83 	struct request_queue *queue;
84 	struct gendisk *disk;
85 	char name[16];
86 
87 	void *interface_ptr;
88 
89 	/*
90 	 * A list of ios that arrived while we were suspended.
91 	 */
92 	atomic_t pending;
93 	wait_queue_head_t wait;
94 	struct bio_list deferred;
95 	struct bio_list pushback;
96 
97 	/*
98 	 * The current mapping.
99 	 */
100 	struct dm_table *map;
101 
102 	/*
103 	 * io objects are allocated from here.
104 	 */
105 	mempool_t *io_pool;
106 	mempool_t *tio_pool;
107 
108 	struct bio_set *bs;
109 
110 	/*
111 	 * Event handling.
112 	 */
113 	atomic_t event_nr;
114 	wait_queue_head_t eventq;
115 
116 	/*
117 	 * freeze/thaw support require holding onto a super block
118 	 */
119 	struct super_block *frozen_sb;
120 	struct block_device *suspended_bdev;
121 
122 	/* forced geometry settings */
123 	struct hd_geometry geometry;
124 };
125 
126 #define MIN_IOS 256
127 static struct kmem_cache *_io_cache;
128 static struct kmem_cache *_tio_cache;
129 
130 static int __init local_init(void)
131 {
132 	int r;
133 
134 	/* allocate a slab for the dm_ios */
135 	_io_cache = KMEM_CACHE(dm_io, 0);
136 	if (!_io_cache)
137 		return -ENOMEM;
138 
139 	/* allocate a slab for the target ios */
140 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
141 	if (!_tio_cache) {
142 		kmem_cache_destroy(_io_cache);
143 		return -ENOMEM;
144 	}
145 
146 	_major = major;
147 	r = register_blkdev(_major, _name);
148 	if (r < 0) {
149 		kmem_cache_destroy(_tio_cache);
150 		kmem_cache_destroy(_io_cache);
151 		return r;
152 	}
153 
154 	if (!_major)
155 		_major = r;
156 
157 	return 0;
158 }
159 
160 static void local_exit(void)
161 {
162 	kmem_cache_destroy(_tio_cache);
163 	kmem_cache_destroy(_io_cache);
164 	unregister_blkdev(_major, _name);
165 
166 	_major = 0;
167 
168 	DMINFO("cleaned up");
169 }
170 
171 int (*_inits[])(void) __initdata = {
172 	local_init,
173 	dm_target_init,
174 	dm_linear_init,
175 	dm_stripe_init,
176 	dm_interface_init,
177 };
178 
179 void (*_exits[])(void) = {
180 	local_exit,
181 	dm_target_exit,
182 	dm_linear_exit,
183 	dm_stripe_exit,
184 	dm_interface_exit,
185 };
186 
187 static int __init dm_init(void)
188 {
189 	const int count = ARRAY_SIZE(_inits);
190 
191 	int r, i;
192 
193 	for (i = 0; i < count; i++) {
194 		r = _inits[i]();
195 		if (r)
196 			goto bad;
197 	}
198 
199 	return 0;
200 
201       bad:
202 	while (i--)
203 		_exits[i]();
204 
205 	return r;
206 }
207 
208 static void __exit dm_exit(void)
209 {
210 	int i = ARRAY_SIZE(_exits);
211 
212 	while (i--)
213 		_exits[i]();
214 }
215 
216 /*
217  * Block device functions
218  */
219 static int dm_blk_open(struct inode *inode, struct file *file)
220 {
221 	struct mapped_device *md;
222 
223 	spin_lock(&_minor_lock);
224 
225 	md = inode->i_bdev->bd_disk->private_data;
226 	if (!md)
227 		goto out;
228 
229 	if (test_bit(DMF_FREEING, &md->flags) ||
230 	    test_bit(DMF_DELETING, &md->flags)) {
231 		md = NULL;
232 		goto out;
233 	}
234 
235 	dm_get(md);
236 	atomic_inc(&md->open_count);
237 
238 out:
239 	spin_unlock(&_minor_lock);
240 
241 	return md ? 0 : -ENXIO;
242 }
243 
244 static int dm_blk_close(struct inode *inode, struct file *file)
245 {
246 	struct mapped_device *md;
247 
248 	md = inode->i_bdev->bd_disk->private_data;
249 	atomic_dec(&md->open_count);
250 	dm_put(md);
251 	return 0;
252 }
253 
254 int dm_open_count(struct mapped_device *md)
255 {
256 	return atomic_read(&md->open_count);
257 }
258 
259 /*
260  * Guarantees nothing is using the device before it's deleted.
261  */
262 int dm_lock_for_deletion(struct mapped_device *md)
263 {
264 	int r = 0;
265 
266 	spin_lock(&_minor_lock);
267 
268 	if (dm_open_count(md))
269 		r = -EBUSY;
270 	else
271 		set_bit(DMF_DELETING, &md->flags);
272 
273 	spin_unlock(&_minor_lock);
274 
275 	return r;
276 }
277 
278 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
279 {
280 	struct mapped_device *md = bdev->bd_disk->private_data;
281 
282 	return dm_get_geometry(md, geo);
283 }
284 
285 static int dm_blk_ioctl(struct inode *inode, struct file *file,
286 			unsigned int cmd, unsigned long arg)
287 {
288 	struct mapped_device *md;
289 	struct dm_table *map;
290 	struct dm_target *tgt;
291 	int r = -ENOTTY;
292 
293 	/* We don't really need this lock, but we do need 'inode'. */
294 	unlock_kernel();
295 
296 	md = inode->i_bdev->bd_disk->private_data;
297 
298 	map = dm_get_table(md);
299 
300 	if (!map || !dm_table_get_size(map))
301 		goto out;
302 
303 	/* We only support devices that have a single target */
304 	if (dm_table_get_num_targets(map) != 1)
305 		goto out;
306 
307 	tgt = dm_table_get_target(map, 0);
308 
309 	if (dm_suspended(md)) {
310 		r = -EAGAIN;
311 		goto out;
312 	}
313 
314 	if (tgt->type->ioctl)
315 		r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
316 
317 out:
318 	dm_table_put(map);
319 
320 	lock_kernel();
321 	return r;
322 }
323 
324 static struct dm_io *alloc_io(struct mapped_device *md)
325 {
326 	return mempool_alloc(md->io_pool, GFP_NOIO);
327 }
328 
329 static void free_io(struct mapped_device *md, struct dm_io *io)
330 {
331 	mempool_free(io, md->io_pool);
332 }
333 
334 static struct dm_target_io *alloc_tio(struct mapped_device *md)
335 {
336 	return mempool_alloc(md->tio_pool, GFP_NOIO);
337 }
338 
339 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
340 {
341 	mempool_free(tio, md->tio_pool);
342 }
343 
344 static void start_io_acct(struct dm_io *io)
345 {
346 	struct mapped_device *md = io->md;
347 
348 	io->start_time = jiffies;
349 
350 	preempt_disable();
351 	disk_round_stats(dm_disk(md));
352 	preempt_enable();
353 	dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
354 }
355 
356 static int end_io_acct(struct dm_io *io)
357 {
358 	struct mapped_device *md = io->md;
359 	struct bio *bio = io->bio;
360 	unsigned long duration = jiffies - io->start_time;
361 	int pending;
362 	int rw = bio_data_dir(bio);
363 
364 	preempt_disable();
365 	disk_round_stats(dm_disk(md));
366 	preempt_enable();
367 	dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
368 
369 	disk_stat_add(dm_disk(md), ticks[rw], duration);
370 
371 	return !pending;
372 }
373 
374 /*
375  * Add the bio to the list of deferred io.
376  */
377 static int queue_io(struct mapped_device *md, struct bio *bio)
378 {
379 	down_write(&md->io_lock);
380 
381 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
382 		up_write(&md->io_lock);
383 		return 1;
384 	}
385 
386 	bio_list_add(&md->deferred, bio);
387 
388 	up_write(&md->io_lock);
389 	return 0;		/* deferred successfully */
390 }
391 
392 /*
393  * Everyone (including functions in this file), should use this
394  * function to access the md->map field, and make sure they call
395  * dm_table_put() when finished.
396  */
397 struct dm_table *dm_get_table(struct mapped_device *md)
398 {
399 	struct dm_table *t;
400 
401 	read_lock(&md->map_lock);
402 	t = md->map;
403 	if (t)
404 		dm_table_get(t);
405 	read_unlock(&md->map_lock);
406 
407 	return t;
408 }
409 
410 /*
411  * Get the geometry associated with a dm device
412  */
413 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
414 {
415 	*geo = md->geometry;
416 
417 	return 0;
418 }
419 
420 /*
421  * Set the geometry of a device.
422  */
423 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
424 {
425 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
426 
427 	if (geo->start > sz) {
428 		DMWARN("Start sector is beyond the geometry limits.");
429 		return -EINVAL;
430 	}
431 
432 	md->geometry = *geo;
433 
434 	return 0;
435 }
436 
437 /*-----------------------------------------------------------------
438  * CRUD START:
439  *   A more elegant soln is in the works that uses the queue
440  *   merge fn, unfortunately there are a couple of changes to
441  *   the block layer that I want to make for this.  So in the
442  *   interests of getting something for people to use I give
443  *   you this clearly demarcated crap.
444  *---------------------------------------------------------------*/
445 
446 static int __noflush_suspending(struct mapped_device *md)
447 {
448 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
449 }
450 
451 /*
452  * Decrements the number of outstanding ios that a bio has been
453  * cloned into, completing the original io if necc.
454  */
455 static void dec_pending(struct dm_io *io, int error)
456 {
457 	unsigned long flags;
458 
459 	/* Push-back supersedes any I/O errors */
460 	if (error && !(io->error > 0 && __noflush_suspending(io->md)))
461 		io->error = error;
462 
463 	if (atomic_dec_and_test(&io->io_count)) {
464 		if (io->error == DM_ENDIO_REQUEUE) {
465 			/*
466 			 * Target requested pushing back the I/O.
467 			 * This must be handled before the sleeper on
468 			 * suspend queue merges the pushback list.
469 			 */
470 			spin_lock_irqsave(&io->md->pushback_lock, flags);
471 			if (__noflush_suspending(io->md))
472 				bio_list_add(&io->md->pushback, io->bio);
473 			else
474 				/* noflush suspend was interrupted. */
475 				io->error = -EIO;
476 			spin_unlock_irqrestore(&io->md->pushback_lock, flags);
477 		}
478 
479 		if (end_io_acct(io))
480 			/* nudge anyone waiting on suspend queue */
481 			wake_up(&io->md->wait);
482 
483 		if (io->error != DM_ENDIO_REQUEUE) {
484 			blk_add_trace_bio(io->md->queue, io->bio,
485 					  BLK_TA_COMPLETE);
486 
487 			bio_endio(io->bio, io->bio->bi_size, io->error);
488 		}
489 
490 		free_io(io->md, io);
491 	}
492 }
493 
494 static int clone_endio(struct bio *bio, unsigned int done, int error)
495 {
496 	int r = 0;
497 	struct dm_target_io *tio = bio->bi_private;
498 	struct mapped_device *md = tio->io->md;
499 	dm_endio_fn endio = tio->ti->type->end_io;
500 
501 	if (bio->bi_size)
502 		return 1;
503 
504 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
505 		error = -EIO;
506 
507 	if (endio) {
508 		r = endio(tio->ti, bio, error, &tio->info);
509 		if (r < 0 || r == DM_ENDIO_REQUEUE)
510 			/*
511 			 * error and requeue request are handled
512 			 * in dec_pending().
513 			 */
514 			error = r;
515 		else if (r == DM_ENDIO_INCOMPLETE)
516 			/* The target will handle the io */
517 			return 1;
518 		else if (r) {
519 			DMWARN("unimplemented target endio return value: %d", r);
520 			BUG();
521 		}
522 	}
523 
524 	dec_pending(tio->io, error);
525 
526 	/*
527 	 * Store md for cleanup instead of tio which is about to get freed.
528 	 */
529 	bio->bi_private = md->bs;
530 
531 	bio_put(bio);
532 	free_tio(md, tio);
533 	return r;
534 }
535 
536 static sector_t max_io_len(struct mapped_device *md,
537 			   sector_t sector, struct dm_target *ti)
538 {
539 	sector_t offset = sector - ti->begin;
540 	sector_t len = ti->len - offset;
541 
542 	/*
543 	 * Does the target need to split even further ?
544 	 */
545 	if (ti->split_io) {
546 		sector_t boundary;
547 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
548 			   - offset;
549 		if (len > boundary)
550 			len = boundary;
551 	}
552 
553 	return len;
554 }
555 
556 static void __map_bio(struct dm_target *ti, struct bio *clone,
557 		      struct dm_target_io *tio)
558 {
559 	int r;
560 	sector_t sector;
561 	struct mapped_device *md;
562 
563 	/*
564 	 * Sanity checks.
565 	 */
566 	BUG_ON(!clone->bi_size);
567 
568 	clone->bi_end_io = clone_endio;
569 	clone->bi_private = tio;
570 
571 	/*
572 	 * Map the clone.  If r == 0 we don't need to do
573 	 * anything, the target has assumed ownership of
574 	 * this io.
575 	 */
576 	atomic_inc(&tio->io->io_count);
577 	sector = clone->bi_sector;
578 	r = ti->type->map(ti, clone, &tio->info);
579 	if (r == DM_MAPIO_REMAPPED) {
580 		/* the bio has been remapped so dispatch it */
581 
582 		blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
583 				    tio->io->bio->bi_bdev->bd_dev, sector,
584 				    clone->bi_sector);
585 
586 		generic_make_request(clone);
587 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
588 		/* error the io and bail out, or requeue it if needed */
589 		md = tio->io->md;
590 		dec_pending(tio->io, r);
591 		/*
592 		 * Store bio_set for cleanup.
593 		 */
594 		clone->bi_private = md->bs;
595 		bio_put(clone);
596 		free_tio(md, tio);
597 	} else if (r) {
598 		DMWARN("unimplemented target map return value: %d", r);
599 		BUG();
600 	}
601 }
602 
603 struct clone_info {
604 	struct mapped_device *md;
605 	struct dm_table *map;
606 	struct bio *bio;
607 	struct dm_io *io;
608 	sector_t sector;
609 	sector_t sector_count;
610 	unsigned short idx;
611 };
612 
613 static void dm_bio_destructor(struct bio *bio)
614 {
615 	struct bio_set *bs = bio->bi_private;
616 
617 	bio_free(bio, bs);
618 }
619 
620 /*
621  * Creates a little bio that is just does part of a bvec.
622  */
623 static struct bio *split_bvec(struct bio *bio, sector_t sector,
624 			      unsigned short idx, unsigned int offset,
625 			      unsigned int len, struct bio_set *bs)
626 {
627 	struct bio *clone;
628 	struct bio_vec *bv = bio->bi_io_vec + idx;
629 
630 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
631 	clone->bi_destructor = dm_bio_destructor;
632 	*clone->bi_io_vec = *bv;
633 
634 	clone->bi_sector = sector;
635 	clone->bi_bdev = bio->bi_bdev;
636 	clone->bi_rw = bio->bi_rw;
637 	clone->bi_vcnt = 1;
638 	clone->bi_size = to_bytes(len);
639 	clone->bi_io_vec->bv_offset = offset;
640 	clone->bi_io_vec->bv_len = clone->bi_size;
641 
642 	return clone;
643 }
644 
645 /*
646  * Creates a bio that consists of range of complete bvecs.
647  */
648 static struct bio *clone_bio(struct bio *bio, sector_t sector,
649 			     unsigned short idx, unsigned short bv_count,
650 			     unsigned int len, struct bio_set *bs)
651 {
652 	struct bio *clone;
653 
654 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
655 	__bio_clone(clone, bio);
656 	clone->bi_destructor = dm_bio_destructor;
657 	clone->bi_sector = sector;
658 	clone->bi_idx = idx;
659 	clone->bi_vcnt = idx + bv_count;
660 	clone->bi_size = to_bytes(len);
661 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
662 
663 	return clone;
664 }
665 
666 static void __clone_and_map(struct clone_info *ci)
667 {
668 	struct bio *clone, *bio = ci->bio;
669 	struct dm_target *ti = dm_table_find_target(ci->map, ci->sector);
670 	sector_t len = 0, max = max_io_len(ci->md, ci->sector, ti);
671 	struct dm_target_io *tio;
672 
673 	/*
674 	 * Allocate a target io object.
675 	 */
676 	tio = alloc_tio(ci->md);
677 	tio->io = ci->io;
678 	tio->ti = ti;
679 	memset(&tio->info, 0, sizeof(tio->info));
680 
681 	if (ci->sector_count <= max) {
682 		/*
683 		 * Optimise for the simple case where we can do all of
684 		 * the remaining io with a single clone.
685 		 */
686 		clone = clone_bio(bio, ci->sector, ci->idx,
687 				  bio->bi_vcnt - ci->idx, ci->sector_count,
688 				  ci->md->bs);
689 		__map_bio(ti, clone, tio);
690 		ci->sector_count = 0;
691 
692 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
693 		/*
694 		 * There are some bvecs that don't span targets.
695 		 * Do as many of these as possible.
696 		 */
697 		int i;
698 		sector_t remaining = max;
699 		sector_t bv_len;
700 
701 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
702 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
703 
704 			if (bv_len > remaining)
705 				break;
706 
707 			remaining -= bv_len;
708 			len += bv_len;
709 		}
710 
711 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
712 				  ci->md->bs);
713 		__map_bio(ti, clone, tio);
714 
715 		ci->sector += len;
716 		ci->sector_count -= len;
717 		ci->idx = i;
718 
719 	} else {
720 		/*
721 		 * Handle a bvec that must be split between two or more targets.
722 		 */
723 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
724 		sector_t remaining = to_sector(bv->bv_len);
725 		unsigned int offset = 0;
726 
727 		do {
728 			if (offset) {
729 				ti = dm_table_find_target(ci->map, ci->sector);
730 				max = max_io_len(ci->md, ci->sector, ti);
731 
732 				tio = alloc_tio(ci->md);
733 				tio->io = ci->io;
734 				tio->ti = ti;
735 				memset(&tio->info, 0, sizeof(tio->info));
736 			}
737 
738 			len = min(remaining, max);
739 
740 			clone = split_bvec(bio, ci->sector, ci->idx,
741 					   bv->bv_offset + offset, len,
742 					   ci->md->bs);
743 
744 			__map_bio(ti, clone, tio);
745 
746 			ci->sector += len;
747 			ci->sector_count -= len;
748 			offset += to_bytes(len);
749 		} while (remaining -= len);
750 
751 		ci->idx++;
752 	}
753 }
754 
755 /*
756  * Split the bio into several clones.
757  */
758 static void __split_bio(struct mapped_device *md, struct bio *bio)
759 {
760 	struct clone_info ci;
761 
762 	ci.map = dm_get_table(md);
763 	if (!ci.map) {
764 		bio_io_error(bio, bio->bi_size);
765 		return;
766 	}
767 
768 	ci.md = md;
769 	ci.bio = bio;
770 	ci.io = alloc_io(md);
771 	ci.io->error = 0;
772 	atomic_set(&ci.io->io_count, 1);
773 	ci.io->bio = bio;
774 	ci.io->md = md;
775 	ci.sector = bio->bi_sector;
776 	ci.sector_count = bio_sectors(bio);
777 	ci.idx = bio->bi_idx;
778 
779 	start_io_acct(ci.io);
780 	while (ci.sector_count)
781 		__clone_and_map(&ci);
782 
783 	/* drop the extra reference count */
784 	dec_pending(ci.io, 0);
785 	dm_table_put(ci.map);
786 }
787 /*-----------------------------------------------------------------
788  * CRUD END
789  *---------------------------------------------------------------*/
790 
791 /*
792  * The request function that just remaps the bio built up by
793  * dm_merge_bvec.
794  */
795 static int dm_request(struct request_queue *q, struct bio *bio)
796 {
797 	int r;
798 	int rw = bio_data_dir(bio);
799 	struct mapped_device *md = q->queuedata;
800 
801 	/*
802 	 * There is no use in forwarding any barrier request since we can't
803 	 * guarantee it is (or can be) handled by the targets correctly.
804 	 */
805 	if (unlikely(bio_barrier(bio))) {
806 		bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
807 		return 0;
808 	}
809 
810 	down_read(&md->io_lock);
811 
812 	disk_stat_inc(dm_disk(md), ios[rw]);
813 	disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
814 
815 	/*
816 	 * If we're suspended we have to queue
817 	 * this io for later.
818 	 */
819 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
820 		up_read(&md->io_lock);
821 
822 		if (bio_rw(bio) == READA) {
823 			bio_io_error(bio, bio->bi_size);
824 			return 0;
825 		}
826 
827 		r = queue_io(md, bio);
828 		if (r < 0) {
829 			bio_io_error(bio, bio->bi_size);
830 			return 0;
831 
832 		} else if (r == 0)
833 			return 0;	/* deferred successfully */
834 
835 		/*
836 		 * We're in a while loop, because someone could suspend
837 		 * before we get to the following read lock.
838 		 */
839 		down_read(&md->io_lock);
840 	}
841 
842 	__split_bio(md, bio);
843 	up_read(&md->io_lock);
844 	return 0;
845 }
846 
847 static int dm_flush_all(struct request_queue *q, struct gendisk *disk,
848 			sector_t *error_sector)
849 {
850 	struct mapped_device *md = q->queuedata;
851 	struct dm_table *map = dm_get_table(md);
852 	int ret = -ENXIO;
853 
854 	if (map) {
855 		ret = dm_table_flush_all(map);
856 		dm_table_put(map);
857 	}
858 
859 	return ret;
860 }
861 
862 static void dm_unplug_all(struct request_queue *q)
863 {
864 	struct mapped_device *md = q->queuedata;
865 	struct dm_table *map = dm_get_table(md);
866 
867 	if (map) {
868 		dm_table_unplug_all(map);
869 		dm_table_put(map);
870 	}
871 }
872 
873 static int dm_any_congested(void *congested_data, int bdi_bits)
874 {
875 	int r;
876 	struct mapped_device *md = (struct mapped_device *) congested_data;
877 	struct dm_table *map = dm_get_table(md);
878 
879 	if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
880 		r = bdi_bits;
881 	else
882 		r = dm_table_any_congested(map, bdi_bits);
883 
884 	dm_table_put(map);
885 	return r;
886 }
887 
888 /*-----------------------------------------------------------------
889  * An IDR is used to keep track of allocated minor numbers.
890  *---------------------------------------------------------------*/
891 static DEFINE_IDR(_minor_idr);
892 
893 static void free_minor(int minor)
894 {
895 	spin_lock(&_minor_lock);
896 	idr_remove(&_minor_idr, minor);
897 	spin_unlock(&_minor_lock);
898 }
899 
900 /*
901  * See if the device with a specific minor # is free.
902  */
903 static int specific_minor(struct mapped_device *md, int minor)
904 {
905 	int r, m;
906 
907 	if (minor >= (1 << MINORBITS))
908 		return -EINVAL;
909 
910 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
911 	if (!r)
912 		return -ENOMEM;
913 
914 	spin_lock(&_minor_lock);
915 
916 	if (idr_find(&_minor_idr, minor)) {
917 		r = -EBUSY;
918 		goto out;
919 	}
920 
921 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
922 	if (r)
923 		goto out;
924 
925 	if (m != minor) {
926 		idr_remove(&_minor_idr, m);
927 		r = -EBUSY;
928 		goto out;
929 	}
930 
931 out:
932 	spin_unlock(&_minor_lock);
933 	return r;
934 }
935 
936 static int next_free_minor(struct mapped_device *md, int *minor)
937 {
938 	int r, m;
939 
940 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
941 	if (!r)
942 		return -ENOMEM;
943 
944 	spin_lock(&_minor_lock);
945 
946 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
947 	if (r) {
948 		goto out;
949 	}
950 
951 	if (m >= (1 << MINORBITS)) {
952 		idr_remove(&_minor_idr, m);
953 		r = -ENOSPC;
954 		goto out;
955 	}
956 
957 	*minor = m;
958 
959 out:
960 	spin_unlock(&_minor_lock);
961 	return r;
962 }
963 
964 static struct block_device_operations dm_blk_dops;
965 
966 /*
967  * Allocate and initialise a blank device with a given minor.
968  */
969 static struct mapped_device *alloc_dev(int minor)
970 {
971 	int r;
972 	struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL);
973 	void *old_md;
974 
975 	if (!md) {
976 		DMWARN("unable to allocate device, out of memory.");
977 		return NULL;
978 	}
979 
980 	if (!try_module_get(THIS_MODULE))
981 		goto bad0;
982 
983 	/* get a minor number for the dev */
984 	if (minor == DM_ANY_MINOR)
985 		r = next_free_minor(md, &minor);
986 	else
987 		r = specific_minor(md, minor);
988 	if (r < 0)
989 		goto bad1;
990 
991 	memset(md, 0, sizeof(*md));
992 	init_rwsem(&md->io_lock);
993 	init_MUTEX(&md->suspend_lock);
994 	spin_lock_init(&md->pushback_lock);
995 	rwlock_init(&md->map_lock);
996 	atomic_set(&md->holders, 1);
997 	atomic_set(&md->open_count, 0);
998 	atomic_set(&md->event_nr, 0);
999 
1000 	md->queue = blk_alloc_queue(GFP_KERNEL);
1001 	if (!md->queue)
1002 		goto bad1_free_minor;
1003 
1004 	md->queue->queuedata = md;
1005 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1006 	md->queue->backing_dev_info.congested_data = md;
1007 	blk_queue_make_request(md->queue, dm_request);
1008 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1009 	md->queue->unplug_fn = dm_unplug_all;
1010 	md->queue->issue_flush_fn = dm_flush_all;
1011 
1012 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1013 	if (!md->io_pool)
1014 		goto bad2;
1015 
1016 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1017 	if (!md->tio_pool)
1018 		goto bad3;
1019 
1020 	md->bs = bioset_create(16, 16);
1021 	if (!md->bs)
1022 		goto bad_no_bioset;
1023 
1024 	md->disk = alloc_disk(1);
1025 	if (!md->disk)
1026 		goto bad4;
1027 
1028 	atomic_set(&md->pending, 0);
1029 	init_waitqueue_head(&md->wait);
1030 	init_waitqueue_head(&md->eventq);
1031 
1032 	md->disk->major = _major;
1033 	md->disk->first_minor = minor;
1034 	md->disk->fops = &dm_blk_dops;
1035 	md->disk->queue = md->queue;
1036 	md->disk->private_data = md;
1037 	sprintf(md->disk->disk_name, "dm-%d", minor);
1038 	add_disk(md->disk);
1039 	format_dev_t(md->name, MKDEV(_major, minor));
1040 
1041 	/* Populate the mapping, nobody knows we exist yet */
1042 	spin_lock(&_minor_lock);
1043 	old_md = idr_replace(&_minor_idr, md, minor);
1044 	spin_unlock(&_minor_lock);
1045 
1046 	BUG_ON(old_md != MINOR_ALLOCED);
1047 
1048 	return md;
1049 
1050  bad4:
1051 	bioset_free(md->bs);
1052  bad_no_bioset:
1053 	mempool_destroy(md->tio_pool);
1054  bad3:
1055 	mempool_destroy(md->io_pool);
1056  bad2:
1057 	blk_cleanup_queue(md->queue);
1058  bad1_free_minor:
1059 	free_minor(minor);
1060  bad1:
1061 	module_put(THIS_MODULE);
1062  bad0:
1063 	kfree(md);
1064 	return NULL;
1065 }
1066 
1067 static void free_dev(struct mapped_device *md)
1068 {
1069 	int minor = md->disk->first_minor;
1070 
1071 	if (md->suspended_bdev) {
1072 		thaw_bdev(md->suspended_bdev, NULL);
1073 		bdput(md->suspended_bdev);
1074 	}
1075 	mempool_destroy(md->tio_pool);
1076 	mempool_destroy(md->io_pool);
1077 	bioset_free(md->bs);
1078 	del_gendisk(md->disk);
1079 	free_minor(minor);
1080 
1081 	spin_lock(&_minor_lock);
1082 	md->disk->private_data = NULL;
1083 	spin_unlock(&_minor_lock);
1084 
1085 	put_disk(md->disk);
1086 	blk_cleanup_queue(md->queue);
1087 	module_put(THIS_MODULE);
1088 	kfree(md);
1089 }
1090 
1091 /*
1092  * Bind a table to the device.
1093  */
1094 static void event_callback(void *context)
1095 {
1096 	struct mapped_device *md = (struct mapped_device *) context;
1097 
1098 	atomic_inc(&md->event_nr);
1099 	wake_up(&md->eventq);
1100 }
1101 
1102 static void __set_size(struct mapped_device *md, sector_t size)
1103 {
1104 	set_capacity(md->disk, size);
1105 
1106 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1107 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1108 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1109 }
1110 
1111 static int __bind(struct mapped_device *md, struct dm_table *t)
1112 {
1113 	struct request_queue *q = md->queue;
1114 	sector_t size;
1115 
1116 	size = dm_table_get_size(t);
1117 
1118 	/*
1119 	 * Wipe any geometry if the size of the table changed.
1120 	 */
1121 	if (size != get_capacity(md->disk))
1122 		memset(&md->geometry, 0, sizeof(md->geometry));
1123 
1124 	if (md->suspended_bdev)
1125 		__set_size(md, size);
1126 	if (size == 0)
1127 		return 0;
1128 
1129 	dm_table_get(t);
1130 	dm_table_event_callback(t, event_callback, md);
1131 
1132 	write_lock(&md->map_lock);
1133 	md->map = t;
1134 	dm_table_set_restrictions(t, q);
1135 	write_unlock(&md->map_lock);
1136 
1137 	return 0;
1138 }
1139 
1140 static void __unbind(struct mapped_device *md)
1141 {
1142 	struct dm_table *map = md->map;
1143 
1144 	if (!map)
1145 		return;
1146 
1147 	dm_table_event_callback(map, NULL, NULL);
1148 	write_lock(&md->map_lock);
1149 	md->map = NULL;
1150 	write_unlock(&md->map_lock);
1151 	dm_table_put(map);
1152 }
1153 
1154 /*
1155  * Constructor for a new device.
1156  */
1157 int dm_create(int minor, struct mapped_device **result)
1158 {
1159 	struct mapped_device *md;
1160 
1161 	md = alloc_dev(minor);
1162 	if (!md)
1163 		return -ENXIO;
1164 
1165 	*result = md;
1166 	return 0;
1167 }
1168 
1169 static struct mapped_device *dm_find_md(dev_t dev)
1170 {
1171 	struct mapped_device *md;
1172 	unsigned minor = MINOR(dev);
1173 
1174 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1175 		return NULL;
1176 
1177 	spin_lock(&_minor_lock);
1178 
1179 	md = idr_find(&_minor_idr, minor);
1180 	if (md && (md == MINOR_ALLOCED ||
1181 		   (dm_disk(md)->first_minor != minor) ||
1182 		   test_bit(DMF_FREEING, &md->flags))) {
1183 		md = NULL;
1184 		goto out;
1185 	}
1186 
1187 out:
1188 	spin_unlock(&_minor_lock);
1189 
1190 	return md;
1191 }
1192 
1193 struct mapped_device *dm_get_md(dev_t dev)
1194 {
1195 	struct mapped_device *md = dm_find_md(dev);
1196 
1197 	if (md)
1198 		dm_get(md);
1199 
1200 	return md;
1201 }
1202 
1203 void *dm_get_mdptr(struct mapped_device *md)
1204 {
1205 	return md->interface_ptr;
1206 }
1207 
1208 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1209 {
1210 	md->interface_ptr = ptr;
1211 }
1212 
1213 void dm_get(struct mapped_device *md)
1214 {
1215 	atomic_inc(&md->holders);
1216 }
1217 
1218 const char *dm_device_name(struct mapped_device *md)
1219 {
1220 	return md->name;
1221 }
1222 EXPORT_SYMBOL_GPL(dm_device_name);
1223 
1224 void dm_put(struct mapped_device *md)
1225 {
1226 	struct dm_table *map;
1227 
1228 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1229 
1230 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1231 		map = dm_get_table(md);
1232 		idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor);
1233 		set_bit(DMF_FREEING, &md->flags);
1234 		spin_unlock(&_minor_lock);
1235 		if (!dm_suspended(md)) {
1236 			dm_table_presuspend_targets(map);
1237 			dm_table_postsuspend_targets(map);
1238 		}
1239 		__unbind(md);
1240 		dm_table_put(map);
1241 		free_dev(md);
1242 	}
1243 }
1244 EXPORT_SYMBOL_GPL(dm_put);
1245 
1246 /*
1247  * Process the deferred bios
1248  */
1249 static void __flush_deferred_io(struct mapped_device *md, struct bio *c)
1250 {
1251 	struct bio *n;
1252 
1253 	while (c) {
1254 		n = c->bi_next;
1255 		c->bi_next = NULL;
1256 		__split_bio(md, c);
1257 		c = n;
1258 	}
1259 }
1260 
1261 /*
1262  * Swap in a new table (destroying old one).
1263  */
1264 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1265 {
1266 	int r = -EINVAL;
1267 
1268 	down(&md->suspend_lock);
1269 
1270 	/* device must be suspended */
1271 	if (!dm_suspended(md))
1272 		goto out;
1273 
1274 	/* without bdev, the device size cannot be changed */
1275 	if (!md->suspended_bdev)
1276 		if (get_capacity(md->disk) != dm_table_get_size(table))
1277 			goto out;
1278 
1279 	__unbind(md);
1280 	r = __bind(md, table);
1281 
1282 out:
1283 	up(&md->suspend_lock);
1284 	return r;
1285 }
1286 
1287 /*
1288  * Functions to lock and unlock any filesystem running on the
1289  * device.
1290  */
1291 static int lock_fs(struct mapped_device *md)
1292 {
1293 	int r;
1294 
1295 	WARN_ON(md->frozen_sb);
1296 
1297 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1298 	if (IS_ERR(md->frozen_sb)) {
1299 		r = PTR_ERR(md->frozen_sb);
1300 		md->frozen_sb = NULL;
1301 		return r;
1302 	}
1303 
1304 	set_bit(DMF_FROZEN, &md->flags);
1305 
1306 	/* don't bdput right now, we don't want the bdev
1307 	 * to go away while it is locked.
1308 	 */
1309 	return 0;
1310 }
1311 
1312 static void unlock_fs(struct mapped_device *md)
1313 {
1314 	if (!test_bit(DMF_FROZEN, &md->flags))
1315 		return;
1316 
1317 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1318 	md->frozen_sb = NULL;
1319 	clear_bit(DMF_FROZEN, &md->flags);
1320 }
1321 
1322 /*
1323  * We need to be able to change a mapping table under a mounted
1324  * filesystem.  For example we might want to move some data in
1325  * the background.  Before the table can be swapped with
1326  * dm_bind_table, dm_suspend must be called to flush any in
1327  * flight bios and ensure that any further io gets deferred.
1328  */
1329 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1330 {
1331 	struct dm_table *map = NULL;
1332 	unsigned long flags;
1333 	DECLARE_WAITQUEUE(wait, current);
1334 	struct bio *def;
1335 	int r = -EINVAL;
1336 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1337 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1338 
1339 	down(&md->suspend_lock);
1340 
1341 	if (dm_suspended(md))
1342 		goto out_unlock;
1343 
1344 	map = dm_get_table(md);
1345 
1346 	/*
1347 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1348 	 * This flag is cleared before dm_suspend returns.
1349 	 */
1350 	if (noflush)
1351 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1352 
1353 	/* This does not get reverted if there's an error later. */
1354 	dm_table_presuspend_targets(map);
1355 
1356 	/* bdget() can stall if the pending I/Os are not flushed */
1357 	if (!noflush) {
1358 		md->suspended_bdev = bdget_disk(md->disk, 0);
1359 		if (!md->suspended_bdev) {
1360 			DMWARN("bdget failed in dm_suspend");
1361 			r = -ENOMEM;
1362 			goto flush_and_out;
1363 		}
1364 	}
1365 
1366 	/*
1367 	 * Flush I/O to the device.
1368 	 * noflush supersedes do_lockfs, because lock_fs() needs to flush I/Os.
1369 	 */
1370 	if (do_lockfs && !noflush) {
1371 		r = lock_fs(md);
1372 		if (r)
1373 			goto out;
1374 	}
1375 
1376 	/*
1377 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1378 	 */
1379 	down_write(&md->io_lock);
1380 	set_bit(DMF_BLOCK_IO, &md->flags);
1381 
1382 	add_wait_queue(&md->wait, &wait);
1383 	up_write(&md->io_lock);
1384 
1385 	/* unplug */
1386 	if (map)
1387 		dm_table_unplug_all(map);
1388 
1389 	/*
1390 	 * Then we wait for the already mapped ios to
1391 	 * complete.
1392 	 */
1393 	while (1) {
1394 		set_current_state(TASK_INTERRUPTIBLE);
1395 
1396 		if (!atomic_read(&md->pending) || signal_pending(current))
1397 			break;
1398 
1399 		io_schedule();
1400 	}
1401 	set_current_state(TASK_RUNNING);
1402 
1403 	down_write(&md->io_lock);
1404 	remove_wait_queue(&md->wait, &wait);
1405 
1406 	if (noflush) {
1407 		spin_lock_irqsave(&md->pushback_lock, flags);
1408 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1409 		bio_list_merge_head(&md->deferred, &md->pushback);
1410 		bio_list_init(&md->pushback);
1411 		spin_unlock_irqrestore(&md->pushback_lock, flags);
1412 	}
1413 
1414 	/* were we interrupted ? */
1415 	r = -EINTR;
1416 	if (atomic_read(&md->pending)) {
1417 		clear_bit(DMF_BLOCK_IO, &md->flags);
1418 		def = bio_list_get(&md->deferred);
1419 		__flush_deferred_io(md, def);
1420 		up_write(&md->io_lock);
1421 		unlock_fs(md);
1422 		goto out; /* pushback list is already flushed, so skip flush */
1423 	}
1424 	up_write(&md->io_lock);
1425 
1426 	dm_table_postsuspend_targets(map);
1427 
1428 	set_bit(DMF_SUSPENDED, &md->flags);
1429 
1430 	r = 0;
1431 
1432 flush_and_out:
1433 	if (r && noflush) {
1434 		/*
1435 		 * Because there may be already I/Os in the pushback list,
1436 		 * flush them before return.
1437 		 */
1438 		down_write(&md->io_lock);
1439 
1440 		spin_lock_irqsave(&md->pushback_lock, flags);
1441 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1442 		bio_list_merge_head(&md->deferred, &md->pushback);
1443 		bio_list_init(&md->pushback);
1444 		spin_unlock_irqrestore(&md->pushback_lock, flags);
1445 
1446 		def = bio_list_get(&md->deferred);
1447 		__flush_deferred_io(md, def);
1448 		up_write(&md->io_lock);
1449 	}
1450 
1451 out:
1452 	if (r && md->suspended_bdev) {
1453 		bdput(md->suspended_bdev);
1454 		md->suspended_bdev = NULL;
1455 	}
1456 
1457 	dm_table_put(map);
1458 
1459 out_unlock:
1460 	up(&md->suspend_lock);
1461 	return r;
1462 }
1463 
1464 int dm_resume(struct mapped_device *md)
1465 {
1466 	int r = -EINVAL;
1467 	struct bio *def;
1468 	struct dm_table *map = NULL;
1469 
1470 	down(&md->suspend_lock);
1471 	if (!dm_suspended(md))
1472 		goto out;
1473 
1474 	map = dm_get_table(md);
1475 	if (!map || !dm_table_get_size(map))
1476 		goto out;
1477 
1478 	r = dm_table_resume_targets(map);
1479 	if (r)
1480 		goto out;
1481 
1482 	down_write(&md->io_lock);
1483 	clear_bit(DMF_BLOCK_IO, &md->flags);
1484 
1485 	def = bio_list_get(&md->deferred);
1486 	__flush_deferred_io(md, def);
1487 	up_write(&md->io_lock);
1488 
1489 	unlock_fs(md);
1490 
1491 	if (md->suspended_bdev) {
1492 		bdput(md->suspended_bdev);
1493 		md->suspended_bdev = NULL;
1494 	}
1495 
1496 	clear_bit(DMF_SUSPENDED, &md->flags);
1497 
1498 	dm_table_unplug_all(map);
1499 
1500 	kobject_uevent(&md->disk->kobj, KOBJ_CHANGE);
1501 
1502 	r = 0;
1503 
1504 out:
1505 	dm_table_put(map);
1506 	up(&md->suspend_lock);
1507 
1508 	return r;
1509 }
1510 
1511 /*-----------------------------------------------------------------
1512  * Event notification.
1513  *---------------------------------------------------------------*/
1514 uint32_t dm_get_event_nr(struct mapped_device *md)
1515 {
1516 	return atomic_read(&md->event_nr);
1517 }
1518 
1519 int dm_wait_event(struct mapped_device *md, int event_nr)
1520 {
1521 	return wait_event_interruptible(md->eventq,
1522 			(event_nr != atomic_read(&md->event_nr)));
1523 }
1524 
1525 /*
1526  * The gendisk is only valid as long as you have a reference
1527  * count on 'md'.
1528  */
1529 struct gendisk *dm_disk(struct mapped_device *md)
1530 {
1531 	return md->disk;
1532 }
1533 
1534 int dm_suspended(struct mapped_device *md)
1535 {
1536 	return test_bit(DMF_SUSPENDED, &md->flags);
1537 }
1538 
1539 int dm_noflush_suspending(struct dm_target *ti)
1540 {
1541 	struct mapped_device *md = dm_table_get_md(ti->table);
1542 	int r = __noflush_suspending(md);
1543 
1544 	dm_put(md);
1545 
1546 	return r;
1547 }
1548 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1549 
1550 static struct block_device_operations dm_blk_dops = {
1551 	.open = dm_blk_open,
1552 	.release = dm_blk_close,
1553 	.ioctl = dm_blk_ioctl,
1554 	.getgeo = dm_blk_getgeo,
1555 	.owner = THIS_MODULE
1556 };
1557 
1558 EXPORT_SYMBOL(dm_get_mapinfo);
1559 
1560 /*
1561  * module hooks
1562  */
1563 module_init(dm_init);
1564 module_exit(dm_exit);
1565 
1566 module_param(major, uint, 0);
1567 MODULE_PARM_DESC(major, "The major number of the device mapper");
1568 MODULE_DESCRIPTION(DM_NAME " driver");
1569 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1570 MODULE_LICENSE("GPL");
1571