1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/mm.h> 16 #include <linux/sched/signal.h> 17 #include <linux/blkpg.h> 18 #include <linux/bio.h> 19 #include <linux/mempool.h> 20 #include <linux/dax.h> 21 #include <linux/slab.h> 22 #include <linux/idr.h> 23 #include <linux/uio.h> 24 #include <linux/hdreg.h> 25 #include <linux/delay.h> 26 #include <linux/wait.h> 27 #include <linux/pr.h> 28 #include <linux/refcount.h> 29 #include <linux/part_stat.h> 30 #include <linux/blk-crypto.h> 31 32 #define DM_MSG_PREFIX "core" 33 34 /* 35 * Cookies are numeric values sent with CHANGE and REMOVE 36 * uevents while resuming, removing or renaming the device. 37 */ 38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 39 #define DM_COOKIE_LENGTH 24 40 41 static const char *_name = DM_NAME; 42 43 static unsigned int major = 0; 44 static unsigned int _major = 0; 45 46 static DEFINE_IDR(_minor_idr); 47 48 static DEFINE_SPINLOCK(_minor_lock); 49 50 static void do_deferred_remove(struct work_struct *w); 51 52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 53 54 static struct workqueue_struct *deferred_remove_workqueue; 55 56 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 58 59 void dm_issue_global_event(void) 60 { 61 atomic_inc(&dm_global_event_nr); 62 wake_up(&dm_global_eventq); 63 } 64 65 /* 66 * One of these is allocated (on-stack) per original bio. 67 */ 68 struct clone_info { 69 struct dm_table *map; 70 struct bio *bio; 71 struct dm_io *io; 72 sector_t sector; 73 unsigned sector_count; 74 }; 75 76 /* 77 * One of these is allocated per clone bio. 78 */ 79 #define DM_TIO_MAGIC 7282014 80 struct dm_target_io { 81 unsigned magic; 82 struct dm_io *io; 83 struct dm_target *ti; 84 unsigned target_bio_nr; 85 unsigned *len_ptr; 86 bool inside_dm_io; 87 struct bio clone; 88 }; 89 90 /* 91 * One of these is allocated per original bio. 92 * It contains the first clone used for that original. 93 */ 94 #define DM_IO_MAGIC 5191977 95 struct dm_io { 96 unsigned magic; 97 struct mapped_device *md; 98 blk_status_t status; 99 atomic_t io_count; 100 struct bio *orig_bio; 101 unsigned long start_time; 102 spinlock_t endio_lock; 103 struct dm_stats_aux stats_aux; 104 /* last member of dm_target_io is 'struct bio' */ 105 struct dm_target_io tio; 106 }; 107 108 void *dm_per_bio_data(struct bio *bio, size_t data_size) 109 { 110 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 111 if (!tio->inside_dm_io) 112 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 113 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 114 } 115 EXPORT_SYMBOL_GPL(dm_per_bio_data); 116 117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 118 { 119 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 120 if (io->magic == DM_IO_MAGIC) 121 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 122 BUG_ON(io->magic != DM_TIO_MAGIC); 123 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 124 } 125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 126 127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 128 { 129 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 130 } 131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 132 133 #define MINOR_ALLOCED ((void *)-1) 134 135 /* 136 * Bits for the md->flags field. 137 */ 138 #define DMF_BLOCK_IO_FOR_SUSPEND 0 139 #define DMF_SUSPENDED 1 140 #define DMF_FROZEN 2 141 #define DMF_FREEING 3 142 #define DMF_DELETING 4 143 #define DMF_NOFLUSH_SUSPENDING 5 144 #define DMF_DEFERRED_REMOVE 6 145 #define DMF_SUSPENDED_INTERNALLY 7 146 #define DMF_POST_SUSPENDING 8 147 148 #define DM_NUMA_NODE NUMA_NO_NODE 149 static int dm_numa_node = DM_NUMA_NODE; 150 151 /* 152 * For mempools pre-allocation at the table loading time. 153 */ 154 struct dm_md_mempools { 155 struct bio_set bs; 156 struct bio_set io_bs; 157 }; 158 159 struct table_device { 160 struct list_head list; 161 refcount_t count; 162 struct dm_dev dm_dev; 163 }; 164 165 /* 166 * Bio-based DM's mempools' reserved IOs set by the user. 167 */ 168 #define RESERVED_BIO_BASED_IOS 16 169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 170 171 static int __dm_get_module_param_int(int *module_param, int min, int max) 172 { 173 int param = READ_ONCE(*module_param); 174 int modified_param = 0; 175 bool modified = true; 176 177 if (param < min) 178 modified_param = min; 179 else if (param > max) 180 modified_param = max; 181 else 182 modified = false; 183 184 if (modified) { 185 (void)cmpxchg(module_param, param, modified_param); 186 param = modified_param; 187 } 188 189 return param; 190 } 191 192 unsigned __dm_get_module_param(unsigned *module_param, 193 unsigned def, unsigned max) 194 { 195 unsigned param = READ_ONCE(*module_param); 196 unsigned modified_param = 0; 197 198 if (!param) 199 modified_param = def; 200 else if (param > max) 201 modified_param = max; 202 203 if (modified_param) { 204 (void)cmpxchg(module_param, param, modified_param); 205 param = modified_param; 206 } 207 208 return param; 209 } 210 211 unsigned dm_get_reserved_bio_based_ios(void) 212 { 213 return __dm_get_module_param(&reserved_bio_based_ios, 214 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 215 } 216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 217 218 static unsigned dm_get_numa_node(void) 219 { 220 return __dm_get_module_param_int(&dm_numa_node, 221 DM_NUMA_NODE, num_online_nodes() - 1); 222 } 223 224 static int __init local_init(void) 225 { 226 int r; 227 228 r = dm_uevent_init(); 229 if (r) 230 return r; 231 232 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 233 if (!deferred_remove_workqueue) { 234 r = -ENOMEM; 235 goto out_uevent_exit; 236 } 237 238 _major = major; 239 r = register_blkdev(_major, _name); 240 if (r < 0) 241 goto out_free_workqueue; 242 243 if (!_major) 244 _major = r; 245 246 return 0; 247 248 out_free_workqueue: 249 destroy_workqueue(deferred_remove_workqueue); 250 out_uevent_exit: 251 dm_uevent_exit(); 252 253 return r; 254 } 255 256 static void local_exit(void) 257 { 258 flush_scheduled_work(); 259 destroy_workqueue(deferred_remove_workqueue); 260 261 unregister_blkdev(_major, _name); 262 dm_uevent_exit(); 263 264 _major = 0; 265 266 DMINFO("cleaned up"); 267 } 268 269 static int (*_inits[])(void) __initdata = { 270 local_init, 271 dm_target_init, 272 dm_linear_init, 273 dm_stripe_init, 274 dm_io_init, 275 dm_kcopyd_init, 276 dm_interface_init, 277 dm_statistics_init, 278 }; 279 280 static void (*_exits[])(void) = { 281 local_exit, 282 dm_target_exit, 283 dm_linear_exit, 284 dm_stripe_exit, 285 dm_io_exit, 286 dm_kcopyd_exit, 287 dm_interface_exit, 288 dm_statistics_exit, 289 }; 290 291 static int __init dm_init(void) 292 { 293 const int count = ARRAY_SIZE(_inits); 294 295 int r, i; 296 297 for (i = 0; i < count; i++) { 298 r = _inits[i](); 299 if (r) 300 goto bad; 301 } 302 303 return 0; 304 305 bad: 306 while (i--) 307 _exits[i](); 308 309 return r; 310 } 311 312 static void __exit dm_exit(void) 313 { 314 int i = ARRAY_SIZE(_exits); 315 316 while (i--) 317 _exits[i](); 318 319 /* 320 * Should be empty by this point. 321 */ 322 idr_destroy(&_minor_idr); 323 } 324 325 /* 326 * Block device functions 327 */ 328 int dm_deleting_md(struct mapped_device *md) 329 { 330 return test_bit(DMF_DELETING, &md->flags); 331 } 332 333 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 334 { 335 struct mapped_device *md; 336 337 spin_lock(&_minor_lock); 338 339 md = bdev->bd_disk->private_data; 340 if (!md) 341 goto out; 342 343 if (test_bit(DMF_FREEING, &md->flags) || 344 dm_deleting_md(md)) { 345 md = NULL; 346 goto out; 347 } 348 349 dm_get(md); 350 atomic_inc(&md->open_count); 351 out: 352 spin_unlock(&_minor_lock); 353 354 return md ? 0 : -ENXIO; 355 } 356 357 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 358 { 359 struct mapped_device *md; 360 361 spin_lock(&_minor_lock); 362 363 md = disk->private_data; 364 if (WARN_ON(!md)) 365 goto out; 366 367 if (atomic_dec_and_test(&md->open_count) && 368 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 369 queue_work(deferred_remove_workqueue, &deferred_remove_work); 370 371 dm_put(md); 372 out: 373 spin_unlock(&_minor_lock); 374 } 375 376 int dm_open_count(struct mapped_device *md) 377 { 378 return atomic_read(&md->open_count); 379 } 380 381 /* 382 * Guarantees nothing is using the device before it's deleted. 383 */ 384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (dm_open_count(md)) { 391 r = -EBUSY; 392 if (mark_deferred) 393 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 395 r = -EEXIST; 396 else 397 set_bit(DMF_DELETING, &md->flags); 398 399 spin_unlock(&_minor_lock); 400 401 return r; 402 } 403 404 int dm_cancel_deferred_remove(struct mapped_device *md) 405 { 406 int r = 0; 407 408 spin_lock(&_minor_lock); 409 410 if (test_bit(DMF_DELETING, &md->flags)) 411 r = -EBUSY; 412 else 413 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 414 415 spin_unlock(&_minor_lock); 416 417 return r; 418 } 419 420 static void do_deferred_remove(struct work_struct *w) 421 { 422 dm_deferred_remove(); 423 } 424 425 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 426 { 427 struct mapped_device *md = bdev->bd_disk->private_data; 428 429 return dm_get_geometry(md, geo); 430 } 431 432 #ifdef CONFIG_BLK_DEV_ZONED 433 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data) 434 { 435 struct dm_report_zones_args *args = data; 436 sector_t sector_diff = args->tgt->begin - args->start; 437 438 /* 439 * Ignore zones beyond the target range. 440 */ 441 if (zone->start >= args->start + args->tgt->len) 442 return 0; 443 444 /* 445 * Remap the start sector and write pointer position of the zone 446 * to match its position in the target range. 447 */ 448 zone->start += sector_diff; 449 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 450 if (zone->cond == BLK_ZONE_COND_FULL) 451 zone->wp = zone->start + zone->len; 452 else if (zone->cond == BLK_ZONE_COND_EMPTY) 453 zone->wp = zone->start; 454 else 455 zone->wp += sector_diff; 456 } 457 458 args->next_sector = zone->start + zone->len; 459 return args->orig_cb(zone, args->zone_idx++, args->orig_data); 460 } 461 EXPORT_SYMBOL_GPL(dm_report_zones_cb); 462 463 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 464 unsigned int nr_zones, report_zones_cb cb, void *data) 465 { 466 struct mapped_device *md = disk->private_data; 467 struct dm_table *map; 468 int srcu_idx, ret; 469 struct dm_report_zones_args args = { 470 .next_sector = sector, 471 .orig_data = data, 472 .orig_cb = cb, 473 }; 474 475 if (dm_suspended_md(md)) 476 return -EAGAIN; 477 478 map = dm_get_live_table(md, &srcu_idx); 479 if (!map) { 480 ret = -EIO; 481 goto out; 482 } 483 484 do { 485 struct dm_target *tgt; 486 487 tgt = dm_table_find_target(map, args.next_sector); 488 if (WARN_ON_ONCE(!tgt->type->report_zones)) { 489 ret = -EIO; 490 goto out; 491 } 492 493 args.tgt = tgt; 494 ret = tgt->type->report_zones(tgt, &args, 495 nr_zones - args.zone_idx); 496 if (ret < 0) 497 goto out; 498 } while (args.zone_idx < nr_zones && 499 args.next_sector < get_capacity(disk)); 500 501 ret = args.zone_idx; 502 out: 503 dm_put_live_table(md, srcu_idx); 504 return ret; 505 } 506 #else 507 #define dm_blk_report_zones NULL 508 #endif /* CONFIG_BLK_DEV_ZONED */ 509 510 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 511 struct block_device **bdev) 512 { 513 struct dm_target *tgt; 514 struct dm_table *map; 515 int r; 516 517 retry: 518 r = -ENOTTY; 519 map = dm_get_live_table(md, srcu_idx); 520 if (!map || !dm_table_get_size(map)) 521 return r; 522 523 /* We only support devices that have a single target */ 524 if (dm_table_get_num_targets(map) != 1) 525 return r; 526 527 tgt = dm_table_get_target(map, 0); 528 if (!tgt->type->prepare_ioctl) 529 return r; 530 531 if (dm_suspended_md(md)) 532 return -EAGAIN; 533 534 r = tgt->type->prepare_ioctl(tgt, bdev); 535 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 536 dm_put_live_table(md, *srcu_idx); 537 msleep(10); 538 goto retry; 539 } 540 541 return r; 542 } 543 544 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 545 { 546 dm_put_live_table(md, srcu_idx); 547 } 548 549 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 550 unsigned int cmd, unsigned long arg) 551 { 552 struct mapped_device *md = bdev->bd_disk->private_data; 553 int r, srcu_idx; 554 555 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 556 if (r < 0) 557 goto out; 558 559 if (r > 0) { 560 /* 561 * Target determined this ioctl is being issued against a 562 * subset of the parent bdev; require extra privileges. 563 */ 564 if (!capable(CAP_SYS_RAWIO)) { 565 DMDEBUG_LIMIT( 566 "%s: sending ioctl %x to DM device without required privilege.", 567 current->comm, cmd); 568 r = -ENOIOCTLCMD; 569 goto out; 570 } 571 } 572 573 if (!bdev->bd_disk->fops->ioctl) 574 r = -ENOTTY; 575 else 576 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 577 out: 578 dm_unprepare_ioctl(md, srcu_idx); 579 return r; 580 } 581 582 u64 dm_start_time_ns_from_clone(struct bio *bio) 583 { 584 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 585 struct dm_io *io = tio->io; 586 587 return jiffies_to_nsecs(io->start_time); 588 } 589 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 590 591 static void start_io_acct(struct dm_io *io) 592 { 593 struct mapped_device *md = io->md; 594 struct bio *bio = io->orig_bio; 595 596 io->start_time = bio_start_io_acct(bio); 597 if (unlikely(dm_stats_used(&md->stats))) 598 dm_stats_account_io(&md->stats, bio_data_dir(bio), 599 bio->bi_iter.bi_sector, bio_sectors(bio), 600 false, 0, &io->stats_aux); 601 } 602 603 static void end_io_acct(struct dm_io *io) 604 { 605 struct mapped_device *md = io->md; 606 struct bio *bio = io->orig_bio; 607 unsigned long duration = jiffies - io->start_time; 608 609 bio_end_io_acct(bio, io->start_time); 610 611 if (unlikely(dm_stats_used(&md->stats))) 612 dm_stats_account_io(&md->stats, bio_data_dir(bio), 613 bio->bi_iter.bi_sector, bio_sectors(bio), 614 true, duration, &io->stats_aux); 615 616 /* nudge anyone waiting on suspend queue */ 617 if (unlikely(wq_has_sleeper(&md->wait))) 618 wake_up(&md->wait); 619 } 620 621 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 622 { 623 struct dm_io *io; 624 struct dm_target_io *tio; 625 struct bio *clone; 626 627 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 628 if (!clone) 629 return NULL; 630 631 tio = container_of(clone, struct dm_target_io, clone); 632 tio->inside_dm_io = true; 633 tio->io = NULL; 634 635 io = container_of(tio, struct dm_io, tio); 636 io->magic = DM_IO_MAGIC; 637 io->status = 0; 638 atomic_set(&io->io_count, 1); 639 io->orig_bio = bio; 640 io->md = md; 641 spin_lock_init(&io->endio_lock); 642 643 start_io_acct(io); 644 645 return io; 646 } 647 648 static void free_io(struct mapped_device *md, struct dm_io *io) 649 { 650 bio_put(&io->tio.clone); 651 } 652 653 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 654 unsigned target_bio_nr, gfp_t gfp_mask) 655 { 656 struct dm_target_io *tio; 657 658 if (!ci->io->tio.io) { 659 /* the dm_target_io embedded in ci->io is available */ 660 tio = &ci->io->tio; 661 } else { 662 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 663 if (!clone) 664 return NULL; 665 666 tio = container_of(clone, struct dm_target_io, clone); 667 tio->inside_dm_io = false; 668 } 669 670 tio->magic = DM_TIO_MAGIC; 671 tio->io = ci->io; 672 tio->ti = ti; 673 tio->target_bio_nr = target_bio_nr; 674 675 return tio; 676 } 677 678 static void free_tio(struct dm_target_io *tio) 679 { 680 if (tio->inside_dm_io) 681 return; 682 bio_put(&tio->clone); 683 } 684 685 /* 686 * Add the bio to the list of deferred io. 687 */ 688 static void queue_io(struct mapped_device *md, struct bio *bio) 689 { 690 unsigned long flags; 691 692 spin_lock_irqsave(&md->deferred_lock, flags); 693 bio_list_add(&md->deferred, bio); 694 spin_unlock_irqrestore(&md->deferred_lock, flags); 695 queue_work(md->wq, &md->work); 696 } 697 698 /* 699 * Everyone (including functions in this file), should use this 700 * function to access the md->map field, and make sure they call 701 * dm_put_live_table() when finished. 702 */ 703 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 704 { 705 *srcu_idx = srcu_read_lock(&md->io_barrier); 706 707 return srcu_dereference(md->map, &md->io_barrier); 708 } 709 710 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 711 { 712 srcu_read_unlock(&md->io_barrier, srcu_idx); 713 } 714 715 void dm_sync_table(struct mapped_device *md) 716 { 717 synchronize_srcu(&md->io_barrier); 718 synchronize_rcu_expedited(); 719 } 720 721 /* 722 * A fast alternative to dm_get_live_table/dm_put_live_table. 723 * The caller must not block between these two functions. 724 */ 725 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 726 { 727 rcu_read_lock(); 728 return rcu_dereference(md->map); 729 } 730 731 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 732 { 733 rcu_read_unlock(); 734 } 735 736 static char *_dm_claim_ptr = "I belong to device-mapper"; 737 738 /* 739 * Open a table device so we can use it as a map destination. 740 */ 741 static int open_table_device(struct table_device *td, dev_t dev, 742 struct mapped_device *md) 743 { 744 struct block_device *bdev; 745 746 int r; 747 748 BUG_ON(td->dm_dev.bdev); 749 750 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 751 if (IS_ERR(bdev)) 752 return PTR_ERR(bdev); 753 754 r = bd_link_disk_holder(bdev, dm_disk(md)); 755 if (r) { 756 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 757 return r; 758 } 759 760 td->dm_dev.bdev = bdev; 761 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 762 return 0; 763 } 764 765 /* 766 * Close a table device that we've been using. 767 */ 768 static void close_table_device(struct table_device *td, struct mapped_device *md) 769 { 770 if (!td->dm_dev.bdev) 771 return; 772 773 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 774 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 775 put_dax(td->dm_dev.dax_dev); 776 td->dm_dev.bdev = NULL; 777 td->dm_dev.dax_dev = NULL; 778 } 779 780 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 781 fmode_t mode) 782 { 783 struct table_device *td; 784 785 list_for_each_entry(td, l, list) 786 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 787 return td; 788 789 return NULL; 790 } 791 792 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 793 struct dm_dev **result) 794 { 795 int r; 796 struct table_device *td; 797 798 mutex_lock(&md->table_devices_lock); 799 td = find_table_device(&md->table_devices, dev, mode); 800 if (!td) { 801 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 802 if (!td) { 803 mutex_unlock(&md->table_devices_lock); 804 return -ENOMEM; 805 } 806 807 td->dm_dev.mode = mode; 808 td->dm_dev.bdev = NULL; 809 810 if ((r = open_table_device(td, dev, md))) { 811 mutex_unlock(&md->table_devices_lock); 812 kfree(td); 813 return r; 814 } 815 816 format_dev_t(td->dm_dev.name, dev); 817 818 refcount_set(&td->count, 1); 819 list_add(&td->list, &md->table_devices); 820 } else { 821 refcount_inc(&td->count); 822 } 823 mutex_unlock(&md->table_devices_lock); 824 825 *result = &td->dm_dev; 826 return 0; 827 } 828 EXPORT_SYMBOL_GPL(dm_get_table_device); 829 830 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 831 { 832 struct table_device *td = container_of(d, struct table_device, dm_dev); 833 834 mutex_lock(&md->table_devices_lock); 835 if (refcount_dec_and_test(&td->count)) { 836 close_table_device(td, md); 837 list_del(&td->list); 838 kfree(td); 839 } 840 mutex_unlock(&md->table_devices_lock); 841 } 842 EXPORT_SYMBOL(dm_put_table_device); 843 844 static void free_table_devices(struct list_head *devices) 845 { 846 struct list_head *tmp, *next; 847 848 list_for_each_safe(tmp, next, devices) { 849 struct table_device *td = list_entry(tmp, struct table_device, list); 850 851 DMWARN("dm_destroy: %s still exists with %d references", 852 td->dm_dev.name, refcount_read(&td->count)); 853 kfree(td); 854 } 855 } 856 857 /* 858 * Get the geometry associated with a dm device 859 */ 860 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 861 { 862 *geo = md->geometry; 863 864 return 0; 865 } 866 867 /* 868 * Set the geometry of a device. 869 */ 870 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 871 { 872 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 873 874 if (geo->start > sz) { 875 DMWARN("Start sector is beyond the geometry limits."); 876 return -EINVAL; 877 } 878 879 md->geometry = *geo; 880 881 return 0; 882 } 883 884 static int __noflush_suspending(struct mapped_device *md) 885 { 886 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 887 } 888 889 /* 890 * Decrements the number of outstanding ios that a bio has been 891 * cloned into, completing the original io if necc. 892 */ 893 static void dec_pending(struct dm_io *io, blk_status_t error) 894 { 895 unsigned long flags; 896 blk_status_t io_error; 897 struct bio *bio; 898 struct mapped_device *md = io->md; 899 900 /* Push-back supersedes any I/O errors */ 901 if (unlikely(error)) { 902 spin_lock_irqsave(&io->endio_lock, flags); 903 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 904 io->status = error; 905 spin_unlock_irqrestore(&io->endio_lock, flags); 906 } 907 908 if (atomic_dec_and_test(&io->io_count)) { 909 if (io->status == BLK_STS_DM_REQUEUE) { 910 /* 911 * Target requested pushing back the I/O. 912 */ 913 spin_lock_irqsave(&md->deferred_lock, flags); 914 if (__noflush_suspending(md)) 915 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 916 bio_list_add_head(&md->deferred, io->orig_bio); 917 else 918 /* noflush suspend was interrupted. */ 919 io->status = BLK_STS_IOERR; 920 spin_unlock_irqrestore(&md->deferred_lock, flags); 921 } 922 923 io_error = io->status; 924 bio = io->orig_bio; 925 end_io_acct(io); 926 free_io(md, io); 927 928 if (io_error == BLK_STS_DM_REQUEUE) 929 return; 930 931 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 932 /* 933 * Preflush done for flush with data, reissue 934 * without REQ_PREFLUSH. 935 */ 936 bio->bi_opf &= ~REQ_PREFLUSH; 937 queue_io(md, bio); 938 } else { 939 /* done with normal IO or empty flush */ 940 if (io_error) 941 bio->bi_status = io_error; 942 bio_endio(bio); 943 } 944 } 945 } 946 947 void disable_discard(struct mapped_device *md) 948 { 949 struct queue_limits *limits = dm_get_queue_limits(md); 950 951 /* device doesn't really support DISCARD, disable it */ 952 limits->max_discard_sectors = 0; 953 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 954 } 955 956 void disable_write_same(struct mapped_device *md) 957 { 958 struct queue_limits *limits = dm_get_queue_limits(md); 959 960 /* device doesn't really support WRITE SAME, disable it */ 961 limits->max_write_same_sectors = 0; 962 } 963 964 void disable_write_zeroes(struct mapped_device *md) 965 { 966 struct queue_limits *limits = dm_get_queue_limits(md); 967 968 /* device doesn't really support WRITE ZEROES, disable it */ 969 limits->max_write_zeroes_sectors = 0; 970 } 971 972 static void clone_endio(struct bio *bio) 973 { 974 blk_status_t error = bio->bi_status; 975 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 976 struct dm_io *io = tio->io; 977 struct mapped_device *md = tio->io->md; 978 dm_endio_fn endio = tio->ti->type->end_io; 979 struct bio *orig_bio = io->orig_bio; 980 981 if (unlikely(error == BLK_STS_TARGET)) { 982 if (bio_op(bio) == REQ_OP_DISCARD && 983 !bio->bi_disk->queue->limits.max_discard_sectors) 984 disable_discard(md); 985 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 986 !bio->bi_disk->queue->limits.max_write_same_sectors) 987 disable_write_same(md); 988 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 989 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 990 disable_write_zeroes(md); 991 } 992 993 /* 994 * For zone-append bios get offset in zone of the written 995 * sector and add that to the original bio sector pos. 996 */ 997 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) { 998 sector_t written_sector = bio->bi_iter.bi_sector; 999 struct request_queue *q = orig_bio->bi_disk->queue; 1000 u64 mask = (u64)blk_queue_zone_sectors(q) - 1; 1001 1002 orig_bio->bi_iter.bi_sector += written_sector & mask; 1003 } 1004 1005 if (endio) { 1006 int r = endio(tio->ti, bio, &error); 1007 switch (r) { 1008 case DM_ENDIO_REQUEUE: 1009 error = BLK_STS_DM_REQUEUE; 1010 fallthrough; 1011 case DM_ENDIO_DONE: 1012 break; 1013 case DM_ENDIO_INCOMPLETE: 1014 /* The target will handle the io */ 1015 return; 1016 default: 1017 DMWARN("unimplemented target endio return value: %d", r); 1018 BUG(); 1019 } 1020 } 1021 1022 free_tio(tio); 1023 dec_pending(io, error); 1024 } 1025 1026 /* 1027 * Return maximum size of I/O possible at the supplied sector up to the current 1028 * target boundary. 1029 */ 1030 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1031 sector_t target_offset) 1032 { 1033 return ti->len - target_offset; 1034 } 1035 1036 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 1037 { 1038 sector_t target_offset = dm_target_offset(ti, sector); 1039 sector_t len = max_io_len_target_boundary(ti, target_offset); 1040 sector_t max_len; 1041 1042 /* 1043 * Does the target need to split IO even further? 1044 * - varied (per target) IO splitting is a tenet of DM; this 1045 * explains why stacked chunk_sectors based splitting via 1046 * blk_max_size_offset() isn't possible here. So pass in 1047 * ti->max_io_len to override stacked chunk_sectors. 1048 */ 1049 if (ti->max_io_len) { 1050 max_len = blk_max_size_offset(ti->table->md->queue, 1051 target_offset, ti->max_io_len); 1052 if (len > max_len) 1053 len = max_len; 1054 } 1055 1056 return len; 1057 } 1058 1059 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1060 { 1061 if (len > UINT_MAX) { 1062 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1063 (unsigned long long)len, UINT_MAX); 1064 ti->error = "Maximum size of target IO is too large"; 1065 return -EINVAL; 1066 } 1067 1068 ti->max_io_len = (uint32_t) len; 1069 1070 return 0; 1071 } 1072 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1073 1074 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1075 sector_t sector, int *srcu_idx) 1076 __acquires(md->io_barrier) 1077 { 1078 struct dm_table *map; 1079 struct dm_target *ti; 1080 1081 map = dm_get_live_table(md, srcu_idx); 1082 if (!map) 1083 return NULL; 1084 1085 ti = dm_table_find_target(map, sector); 1086 if (!ti) 1087 return NULL; 1088 1089 return ti; 1090 } 1091 1092 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1093 long nr_pages, void **kaddr, pfn_t *pfn) 1094 { 1095 struct mapped_device *md = dax_get_private(dax_dev); 1096 sector_t sector = pgoff * PAGE_SECTORS; 1097 struct dm_target *ti; 1098 long len, ret = -EIO; 1099 int srcu_idx; 1100 1101 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1102 1103 if (!ti) 1104 goto out; 1105 if (!ti->type->direct_access) 1106 goto out; 1107 len = max_io_len(ti, sector) / PAGE_SECTORS; 1108 if (len < 1) 1109 goto out; 1110 nr_pages = min(len, nr_pages); 1111 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1112 1113 out: 1114 dm_put_live_table(md, srcu_idx); 1115 1116 return ret; 1117 } 1118 1119 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1120 int blocksize, sector_t start, sector_t len) 1121 { 1122 struct mapped_device *md = dax_get_private(dax_dev); 1123 struct dm_table *map; 1124 bool ret = false; 1125 int srcu_idx; 1126 1127 map = dm_get_live_table(md, &srcu_idx); 1128 if (!map) 1129 goto out; 1130 1131 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize); 1132 1133 out: 1134 dm_put_live_table(md, srcu_idx); 1135 1136 return ret; 1137 } 1138 1139 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1140 void *addr, size_t bytes, struct iov_iter *i) 1141 { 1142 struct mapped_device *md = dax_get_private(dax_dev); 1143 sector_t sector = pgoff * PAGE_SECTORS; 1144 struct dm_target *ti; 1145 long ret = 0; 1146 int srcu_idx; 1147 1148 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1149 1150 if (!ti) 1151 goto out; 1152 if (!ti->type->dax_copy_from_iter) { 1153 ret = copy_from_iter(addr, bytes, i); 1154 goto out; 1155 } 1156 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1157 out: 1158 dm_put_live_table(md, srcu_idx); 1159 1160 return ret; 1161 } 1162 1163 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1164 void *addr, size_t bytes, struct iov_iter *i) 1165 { 1166 struct mapped_device *md = dax_get_private(dax_dev); 1167 sector_t sector = pgoff * PAGE_SECTORS; 1168 struct dm_target *ti; 1169 long ret = 0; 1170 int srcu_idx; 1171 1172 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1173 1174 if (!ti) 1175 goto out; 1176 if (!ti->type->dax_copy_to_iter) { 1177 ret = copy_to_iter(addr, bytes, i); 1178 goto out; 1179 } 1180 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1181 out: 1182 dm_put_live_table(md, srcu_idx); 1183 1184 return ret; 1185 } 1186 1187 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1188 size_t nr_pages) 1189 { 1190 struct mapped_device *md = dax_get_private(dax_dev); 1191 sector_t sector = pgoff * PAGE_SECTORS; 1192 struct dm_target *ti; 1193 int ret = -EIO; 1194 int srcu_idx; 1195 1196 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1197 1198 if (!ti) 1199 goto out; 1200 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1201 /* 1202 * ->zero_page_range() is mandatory dax operation. If we are 1203 * here, something is wrong. 1204 */ 1205 goto out; 1206 } 1207 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1208 out: 1209 dm_put_live_table(md, srcu_idx); 1210 1211 return ret; 1212 } 1213 1214 /* 1215 * A target may call dm_accept_partial_bio only from the map routine. It is 1216 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET, 1217 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH. 1218 * 1219 * dm_accept_partial_bio informs the dm that the target only wants to process 1220 * additional n_sectors sectors of the bio and the rest of the data should be 1221 * sent in a next bio. 1222 * 1223 * A diagram that explains the arithmetics: 1224 * +--------------------+---------------+-------+ 1225 * | 1 | 2 | 3 | 1226 * +--------------------+---------------+-------+ 1227 * 1228 * <-------------- *tio->len_ptr ---------------> 1229 * <------- bi_size -------> 1230 * <-- n_sectors --> 1231 * 1232 * Region 1 was already iterated over with bio_advance or similar function. 1233 * (it may be empty if the target doesn't use bio_advance) 1234 * Region 2 is the remaining bio size that the target wants to process. 1235 * (it may be empty if region 1 is non-empty, although there is no reason 1236 * to make it empty) 1237 * The target requires that region 3 is to be sent in the next bio. 1238 * 1239 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1240 * the partially processed part (the sum of regions 1+2) must be the same for all 1241 * copies of the bio. 1242 */ 1243 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1244 { 1245 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1246 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1247 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1248 BUG_ON(bi_size > *tio->len_ptr); 1249 BUG_ON(n_sectors > bi_size); 1250 *tio->len_ptr -= bi_size - n_sectors; 1251 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1252 } 1253 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1254 1255 static blk_qc_t __map_bio(struct dm_target_io *tio) 1256 { 1257 int r; 1258 sector_t sector; 1259 struct bio *clone = &tio->clone; 1260 struct dm_io *io = tio->io; 1261 struct dm_target *ti = tio->ti; 1262 blk_qc_t ret = BLK_QC_T_NONE; 1263 1264 clone->bi_end_io = clone_endio; 1265 1266 /* 1267 * Map the clone. If r == 0 we don't need to do 1268 * anything, the target has assumed ownership of 1269 * this io. 1270 */ 1271 atomic_inc(&io->io_count); 1272 sector = clone->bi_iter.bi_sector; 1273 1274 r = ti->type->map(ti, clone); 1275 switch (r) { 1276 case DM_MAPIO_SUBMITTED: 1277 break; 1278 case DM_MAPIO_REMAPPED: 1279 /* the bio has been remapped so dispatch it */ 1280 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector); 1281 ret = submit_bio_noacct(clone); 1282 break; 1283 case DM_MAPIO_KILL: 1284 free_tio(tio); 1285 dec_pending(io, BLK_STS_IOERR); 1286 break; 1287 case DM_MAPIO_REQUEUE: 1288 free_tio(tio); 1289 dec_pending(io, BLK_STS_DM_REQUEUE); 1290 break; 1291 default: 1292 DMWARN("unimplemented target map return value: %d", r); 1293 BUG(); 1294 } 1295 1296 return ret; 1297 } 1298 1299 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1300 { 1301 bio->bi_iter.bi_sector = sector; 1302 bio->bi_iter.bi_size = to_bytes(len); 1303 } 1304 1305 /* 1306 * Creates a bio that consists of range of complete bvecs. 1307 */ 1308 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1309 sector_t sector, unsigned len) 1310 { 1311 struct bio *clone = &tio->clone; 1312 int r; 1313 1314 __bio_clone_fast(clone, bio); 1315 1316 r = bio_crypt_clone(clone, bio, GFP_NOIO); 1317 if (r < 0) 1318 return r; 1319 1320 if (bio_integrity(bio)) { 1321 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1322 !dm_target_passes_integrity(tio->ti->type))) { 1323 DMWARN("%s: the target %s doesn't support integrity data.", 1324 dm_device_name(tio->io->md), 1325 tio->ti->type->name); 1326 return -EIO; 1327 } 1328 1329 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1330 if (r < 0) 1331 return r; 1332 } 1333 1334 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1335 clone->bi_iter.bi_size = to_bytes(len); 1336 1337 if (bio_integrity(bio)) 1338 bio_integrity_trim(clone); 1339 1340 return 0; 1341 } 1342 1343 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1344 struct dm_target *ti, unsigned num_bios) 1345 { 1346 struct dm_target_io *tio; 1347 int try; 1348 1349 if (!num_bios) 1350 return; 1351 1352 if (num_bios == 1) { 1353 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1354 bio_list_add(blist, &tio->clone); 1355 return; 1356 } 1357 1358 for (try = 0; try < 2; try++) { 1359 int bio_nr; 1360 struct bio *bio; 1361 1362 if (try) 1363 mutex_lock(&ci->io->md->table_devices_lock); 1364 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1365 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1366 if (!tio) 1367 break; 1368 1369 bio_list_add(blist, &tio->clone); 1370 } 1371 if (try) 1372 mutex_unlock(&ci->io->md->table_devices_lock); 1373 if (bio_nr == num_bios) 1374 return; 1375 1376 while ((bio = bio_list_pop(blist))) { 1377 tio = container_of(bio, struct dm_target_io, clone); 1378 free_tio(tio); 1379 } 1380 } 1381 } 1382 1383 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1384 struct dm_target_io *tio, unsigned *len) 1385 { 1386 struct bio *clone = &tio->clone; 1387 1388 tio->len_ptr = len; 1389 1390 __bio_clone_fast(clone, ci->bio); 1391 if (len) 1392 bio_setup_sector(clone, ci->sector, *len); 1393 1394 return __map_bio(tio); 1395 } 1396 1397 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1398 unsigned num_bios, unsigned *len) 1399 { 1400 struct bio_list blist = BIO_EMPTY_LIST; 1401 struct bio *bio; 1402 struct dm_target_io *tio; 1403 1404 alloc_multiple_bios(&blist, ci, ti, num_bios); 1405 1406 while ((bio = bio_list_pop(&blist))) { 1407 tio = container_of(bio, struct dm_target_io, clone); 1408 (void) __clone_and_map_simple_bio(ci, tio, len); 1409 } 1410 } 1411 1412 static int __send_empty_flush(struct clone_info *ci) 1413 { 1414 unsigned target_nr = 0; 1415 struct dm_target *ti; 1416 struct bio flush_bio; 1417 1418 /* 1419 * Use an on-stack bio for this, it's safe since we don't 1420 * need to reference it after submit. It's just used as 1421 * the basis for the clone(s). 1422 */ 1423 bio_init(&flush_bio, NULL, 0); 1424 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1425 flush_bio.bi_disk = ci->io->md->disk; 1426 bio_associate_blkg(&flush_bio); 1427 1428 ci->bio = &flush_bio; 1429 ci->sector_count = 0; 1430 1431 BUG_ON(bio_has_data(ci->bio)); 1432 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1433 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1434 1435 bio_uninit(ci->bio); 1436 return 0; 1437 } 1438 1439 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1440 sector_t sector, unsigned *len) 1441 { 1442 struct bio *bio = ci->bio; 1443 struct dm_target_io *tio; 1444 int r; 1445 1446 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1447 tio->len_ptr = len; 1448 r = clone_bio(tio, bio, sector, *len); 1449 if (r < 0) { 1450 free_tio(tio); 1451 return r; 1452 } 1453 (void) __map_bio(tio); 1454 1455 return 0; 1456 } 1457 1458 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1459 unsigned num_bios) 1460 { 1461 unsigned len; 1462 1463 /* 1464 * Even though the device advertised support for this type of 1465 * request, that does not mean every target supports it, and 1466 * reconfiguration might also have changed that since the 1467 * check was performed. 1468 */ 1469 if (!num_bios) 1470 return -EOPNOTSUPP; 1471 1472 len = min_t(sector_t, ci->sector_count, 1473 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1474 1475 __send_duplicate_bios(ci, ti, num_bios, &len); 1476 1477 ci->sector += len; 1478 ci->sector_count -= len; 1479 1480 return 0; 1481 } 1482 1483 static bool is_abnormal_io(struct bio *bio) 1484 { 1485 bool r = false; 1486 1487 switch (bio_op(bio)) { 1488 case REQ_OP_DISCARD: 1489 case REQ_OP_SECURE_ERASE: 1490 case REQ_OP_WRITE_SAME: 1491 case REQ_OP_WRITE_ZEROES: 1492 r = true; 1493 break; 1494 } 1495 1496 return r; 1497 } 1498 1499 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1500 int *result) 1501 { 1502 struct bio *bio = ci->bio; 1503 unsigned num_bios = 0; 1504 1505 switch (bio_op(bio)) { 1506 case REQ_OP_DISCARD: 1507 num_bios = ti->num_discard_bios; 1508 break; 1509 case REQ_OP_SECURE_ERASE: 1510 num_bios = ti->num_secure_erase_bios; 1511 break; 1512 case REQ_OP_WRITE_SAME: 1513 num_bios = ti->num_write_same_bios; 1514 break; 1515 case REQ_OP_WRITE_ZEROES: 1516 num_bios = ti->num_write_zeroes_bios; 1517 break; 1518 default: 1519 return false; 1520 } 1521 1522 *result = __send_changing_extent_only(ci, ti, num_bios); 1523 return true; 1524 } 1525 1526 /* 1527 * Select the correct strategy for processing a non-flush bio. 1528 */ 1529 static int __split_and_process_non_flush(struct clone_info *ci) 1530 { 1531 struct dm_target *ti; 1532 unsigned len; 1533 int r; 1534 1535 ti = dm_table_find_target(ci->map, ci->sector); 1536 if (!ti) 1537 return -EIO; 1538 1539 if (__process_abnormal_io(ci, ti, &r)) 1540 return r; 1541 1542 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1543 1544 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1545 if (r < 0) 1546 return r; 1547 1548 ci->sector += len; 1549 ci->sector_count -= len; 1550 1551 return 0; 1552 } 1553 1554 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1555 struct dm_table *map, struct bio *bio) 1556 { 1557 ci->map = map; 1558 ci->io = alloc_io(md, bio); 1559 ci->sector = bio->bi_iter.bi_sector; 1560 } 1561 1562 #define __dm_part_stat_sub(part, field, subnd) \ 1563 (part_stat_get(part, field) -= (subnd)) 1564 1565 /* 1566 * Entry point to split a bio into clones and submit them to the targets. 1567 */ 1568 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1569 struct dm_table *map, struct bio *bio) 1570 { 1571 struct clone_info ci; 1572 blk_qc_t ret = BLK_QC_T_NONE; 1573 int error = 0; 1574 1575 init_clone_info(&ci, md, map, bio); 1576 1577 if (bio->bi_opf & REQ_PREFLUSH) { 1578 error = __send_empty_flush(&ci); 1579 /* dec_pending submits any data associated with flush */ 1580 } else if (op_is_zone_mgmt(bio_op(bio))) { 1581 ci.bio = bio; 1582 ci.sector_count = 0; 1583 error = __split_and_process_non_flush(&ci); 1584 } else { 1585 ci.bio = bio; 1586 ci.sector_count = bio_sectors(bio); 1587 while (ci.sector_count && !error) { 1588 error = __split_and_process_non_flush(&ci); 1589 if (ci.sector_count && !error) { 1590 /* 1591 * Remainder must be passed to submit_bio_noacct() 1592 * so that it gets handled *after* bios already submitted 1593 * have been completely processed. 1594 * We take a clone of the original to store in 1595 * ci.io->orig_bio to be used by end_io_acct() and 1596 * for dec_pending to use for completion handling. 1597 */ 1598 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1599 GFP_NOIO, &md->queue->bio_split); 1600 ci.io->orig_bio = b; 1601 1602 /* 1603 * Adjust IO stats for each split, otherwise upon queue 1604 * reentry there will be redundant IO accounting. 1605 * NOTE: this is a stop-gap fix, a proper fix involves 1606 * significant refactoring of DM core's bio splitting 1607 * (by eliminating DM's splitting and just using bio_split) 1608 */ 1609 part_stat_lock(); 1610 __dm_part_stat_sub(dm_disk(md)->part0, 1611 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1612 part_stat_unlock(); 1613 1614 bio_chain(b, bio); 1615 trace_block_split(b, bio->bi_iter.bi_sector); 1616 ret = submit_bio_noacct(bio); 1617 break; 1618 } 1619 } 1620 } 1621 1622 /* drop the extra reference count */ 1623 dec_pending(ci.io, errno_to_blk_status(error)); 1624 return ret; 1625 } 1626 1627 static blk_qc_t dm_submit_bio(struct bio *bio) 1628 { 1629 struct mapped_device *md = bio->bi_disk->private_data; 1630 blk_qc_t ret = BLK_QC_T_NONE; 1631 int srcu_idx; 1632 struct dm_table *map; 1633 1634 map = dm_get_live_table(md, &srcu_idx); 1635 if (unlikely(!map)) { 1636 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1637 dm_device_name(md)); 1638 bio_io_error(bio); 1639 goto out; 1640 } 1641 1642 /* If suspended, queue this IO for later */ 1643 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1644 if (bio->bi_opf & REQ_NOWAIT) 1645 bio_wouldblock_error(bio); 1646 else if (bio->bi_opf & REQ_RAHEAD) 1647 bio_io_error(bio); 1648 else 1649 queue_io(md, bio); 1650 goto out; 1651 } 1652 1653 /* 1654 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1655 * otherwise associated queue_limits won't be imposed. 1656 */ 1657 if (is_abnormal_io(bio)) 1658 blk_queue_split(&bio); 1659 1660 ret = __split_and_process_bio(md, map, bio); 1661 out: 1662 dm_put_live_table(md, srcu_idx); 1663 return ret; 1664 } 1665 1666 /*----------------------------------------------------------------- 1667 * An IDR is used to keep track of allocated minor numbers. 1668 *---------------------------------------------------------------*/ 1669 static void free_minor(int minor) 1670 { 1671 spin_lock(&_minor_lock); 1672 idr_remove(&_minor_idr, minor); 1673 spin_unlock(&_minor_lock); 1674 } 1675 1676 /* 1677 * See if the device with a specific minor # is free. 1678 */ 1679 static int specific_minor(int minor) 1680 { 1681 int r; 1682 1683 if (minor >= (1 << MINORBITS)) 1684 return -EINVAL; 1685 1686 idr_preload(GFP_KERNEL); 1687 spin_lock(&_minor_lock); 1688 1689 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1690 1691 spin_unlock(&_minor_lock); 1692 idr_preload_end(); 1693 if (r < 0) 1694 return r == -ENOSPC ? -EBUSY : r; 1695 return 0; 1696 } 1697 1698 static int next_free_minor(int *minor) 1699 { 1700 int r; 1701 1702 idr_preload(GFP_KERNEL); 1703 spin_lock(&_minor_lock); 1704 1705 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1706 1707 spin_unlock(&_minor_lock); 1708 idr_preload_end(); 1709 if (r < 0) 1710 return r; 1711 *minor = r; 1712 return 0; 1713 } 1714 1715 static const struct block_device_operations dm_blk_dops; 1716 static const struct block_device_operations dm_rq_blk_dops; 1717 static const struct dax_operations dm_dax_ops; 1718 1719 static void dm_wq_work(struct work_struct *work); 1720 1721 static void cleanup_mapped_device(struct mapped_device *md) 1722 { 1723 if (md->wq) 1724 destroy_workqueue(md->wq); 1725 bioset_exit(&md->bs); 1726 bioset_exit(&md->io_bs); 1727 1728 if (md->dax_dev) { 1729 kill_dax(md->dax_dev); 1730 put_dax(md->dax_dev); 1731 md->dax_dev = NULL; 1732 } 1733 1734 if (md->disk) { 1735 spin_lock(&_minor_lock); 1736 md->disk->private_data = NULL; 1737 spin_unlock(&_minor_lock); 1738 del_gendisk(md->disk); 1739 put_disk(md->disk); 1740 } 1741 1742 if (md->queue) 1743 blk_cleanup_queue(md->queue); 1744 1745 cleanup_srcu_struct(&md->io_barrier); 1746 1747 mutex_destroy(&md->suspend_lock); 1748 mutex_destroy(&md->type_lock); 1749 mutex_destroy(&md->table_devices_lock); 1750 1751 dm_mq_cleanup_mapped_device(md); 1752 } 1753 1754 /* 1755 * Allocate and initialise a blank device with a given minor. 1756 */ 1757 static struct mapped_device *alloc_dev(int minor) 1758 { 1759 int r, numa_node_id = dm_get_numa_node(); 1760 struct mapped_device *md; 1761 void *old_md; 1762 1763 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1764 if (!md) { 1765 DMWARN("unable to allocate device, out of memory."); 1766 return NULL; 1767 } 1768 1769 if (!try_module_get(THIS_MODULE)) 1770 goto bad_module_get; 1771 1772 /* get a minor number for the dev */ 1773 if (minor == DM_ANY_MINOR) 1774 r = next_free_minor(&minor); 1775 else 1776 r = specific_minor(minor); 1777 if (r < 0) 1778 goto bad_minor; 1779 1780 r = init_srcu_struct(&md->io_barrier); 1781 if (r < 0) 1782 goto bad_io_barrier; 1783 1784 md->numa_node_id = numa_node_id; 1785 md->init_tio_pdu = false; 1786 md->type = DM_TYPE_NONE; 1787 mutex_init(&md->suspend_lock); 1788 mutex_init(&md->type_lock); 1789 mutex_init(&md->table_devices_lock); 1790 spin_lock_init(&md->deferred_lock); 1791 atomic_set(&md->holders, 1); 1792 atomic_set(&md->open_count, 0); 1793 atomic_set(&md->event_nr, 0); 1794 atomic_set(&md->uevent_seq, 0); 1795 INIT_LIST_HEAD(&md->uevent_list); 1796 INIT_LIST_HEAD(&md->table_devices); 1797 spin_lock_init(&md->uevent_lock); 1798 1799 /* 1800 * default to bio-based until DM table is loaded and md->type 1801 * established. If request-based table is loaded: blk-mq will 1802 * override accordingly. 1803 */ 1804 md->queue = blk_alloc_queue(numa_node_id); 1805 if (!md->queue) 1806 goto bad; 1807 1808 md->disk = alloc_disk_node(1, md->numa_node_id); 1809 if (!md->disk) 1810 goto bad; 1811 1812 init_waitqueue_head(&md->wait); 1813 INIT_WORK(&md->work, dm_wq_work); 1814 init_waitqueue_head(&md->eventq); 1815 init_completion(&md->kobj_holder.completion); 1816 1817 md->disk->major = _major; 1818 md->disk->first_minor = minor; 1819 md->disk->fops = &dm_blk_dops; 1820 md->disk->queue = md->queue; 1821 md->disk->private_data = md; 1822 sprintf(md->disk->disk_name, "dm-%d", minor); 1823 1824 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1825 md->dax_dev = alloc_dax(md, md->disk->disk_name, 1826 &dm_dax_ops, 0); 1827 if (IS_ERR(md->dax_dev)) 1828 goto bad; 1829 } 1830 1831 add_disk_no_queue_reg(md->disk); 1832 format_dev_t(md->name, MKDEV(_major, minor)); 1833 1834 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1835 if (!md->wq) 1836 goto bad; 1837 1838 dm_stats_init(&md->stats); 1839 1840 /* Populate the mapping, nobody knows we exist yet */ 1841 spin_lock(&_minor_lock); 1842 old_md = idr_replace(&_minor_idr, md, minor); 1843 spin_unlock(&_minor_lock); 1844 1845 BUG_ON(old_md != MINOR_ALLOCED); 1846 1847 return md; 1848 1849 bad: 1850 cleanup_mapped_device(md); 1851 bad_io_barrier: 1852 free_minor(minor); 1853 bad_minor: 1854 module_put(THIS_MODULE); 1855 bad_module_get: 1856 kvfree(md); 1857 return NULL; 1858 } 1859 1860 static void unlock_fs(struct mapped_device *md); 1861 1862 static void free_dev(struct mapped_device *md) 1863 { 1864 int minor = MINOR(disk_devt(md->disk)); 1865 1866 unlock_fs(md); 1867 1868 cleanup_mapped_device(md); 1869 1870 free_table_devices(&md->table_devices); 1871 dm_stats_cleanup(&md->stats); 1872 free_minor(minor); 1873 1874 module_put(THIS_MODULE); 1875 kvfree(md); 1876 } 1877 1878 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1879 { 1880 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1881 int ret = 0; 1882 1883 if (dm_table_bio_based(t)) { 1884 /* 1885 * The md may already have mempools that need changing. 1886 * If so, reload bioset because front_pad may have changed 1887 * because a different table was loaded. 1888 */ 1889 bioset_exit(&md->bs); 1890 bioset_exit(&md->io_bs); 1891 1892 } else if (bioset_initialized(&md->bs)) { 1893 /* 1894 * There's no need to reload with request-based dm 1895 * because the size of front_pad doesn't change. 1896 * Note for future: If you are to reload bioset, 1897 * prep-ed requests in the queue may refer 1898 * to bio from the old bioset, so you must walk 1899 * through the queue to unprep. 1900 */ 1901 goto out; 1902 } 1903 1904 BUG_ON(!p || 1905 bioset_initialized(&md->bs) || 1906 bioset_initialized(&md->io_bs)); 1907 1908 ret = bioset_init_from_src(&md->bs, &p->bs); 1909 if (ret) 1910 goto out; 1911 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1912 if (ret) 1913 bioset_exit(&md->bs); 1914 out: 1915 /* mempool bind completed, no longer need any mempools in the table */ 1916 dm_table_free_md_mempools(t); 1917 return ret; 1918 } 1919 1920 /* 1921 * Bind a table to the device. 1922 */ 1923 static void event_callback(void *context) 1924 { 1925 unsigned long flags; 1926 LIST_HEAD(uevents); 1927 struct mapped_device *md = (struct mapped_device *) context; 1928 1929 spin_lock_irqsave(&md->uevent_lock, flags); 1930 list_splice_init(&md->uevent_list, &uevents); 1931 spin_unlock_irqrestore(&md->uevent_lock, flags); 1932 1933 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1934 1935 atomic_inc(&md->event_nr); 1936 wake_up(&md->eventq); 1937 dm_issue_global_event(); 1938 } 1939 1940 /* 1941 * Returns old map, which caller must destroy. 1942 */ 1943 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1944 struct queue_limits *limits) 1945 { 1946 struct dm_table *old_map; 1947 struct request_queue *q = md->queue; 1948 bool request_based = dm_table_request_based(t); 1949 sector_t size; 1950 int ret; 1951 1952 lockdep_assert_held(&md->suspend_lock); 1953 1954 size = dm_table_get_size(t); 1955 1956 /* 1957 * Wipe any geometry if the size of the table changed. 1958 */ 1959 if (size != dm_get_size(md)) 1960 memset(&md->geometry, 0, sizeof(md->geometry)); 1961 1962 set_capacity_and_notify(md->disk, size); 1963 1964 dm_table_event_callback(t, event_callback, md); 1965 1966 /* 1967 * The queue hasn't been stopped yet, if the old table type wasn't 1968 * for request-based during suspension. So stop it to prevent 1969 * I/O mapping before resume. 1970 * This must be done before setting the queue restrictions, 1971 * because request-based dm may be run just after the setting. 1972 */ 1973 if (request_based) 1974 dm_stop_queue(q); 1975 1976 if (request_based) { 1977 /* 1978 * Leverage the fact that request-based DM targets are 1979 * immutable singletons - used to optimize dm_mq_queue_rq. 1980 */ 1981 md->immutable_target = dm_table_get_immutable_target(t); 1982 } 1983 1984 ret = __bind_mempools(md, t); 1985 if (ret) { 1986 old_map = ERR_PTR(ret); 1987 goto out; 1988 } 1989 1990 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1991 rcu_assign_pointer(md->map, (void *)t); 1992 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1993 1994 dm_table_set_restrictions(t, q, limits); 1995 if (old_map) 1996 dm_sync_table(md); 1997 1998 out: 1999 return old_map; 2000 } 2001 2002 /* 2003 * Returns unbound table for the caller to free. 2004 */ 2005 static struct dm_table *__unbind(struct mapped_device *md) 2006 { 2007 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2008 2009 if (!map) 2010 return NULL; 2011 2012 dm_table_event_callback(map, NULL, NULL); 2013 RCU_INIT_POINTER(md->map, NULL); 2014 dm_sync_table(md); 2015 2016 return map; 2017 } 2018 2019 /* 2020 * Constructor for a new device. 2021 */ 2022 int dm_create(int minor, struct mapped_device **result) 2023 { 2024 int r; 2025 struct mapped_device *md; 2026 2027 md = alloc_dev(minor); 2028 if (!md) 2029 return -ENXIO; 2030 2031 r = dm_sysfs_init(md); 2032 if (r) { 2033 free_dev(md); 2034 return r; 2035 } 2036 2037 *result = md; 2038 return 0; 2039 } 2040 2041 /* 2042 * Functions to manage md->type. 2043 * All are required to hold md->type_lock. 2044 */ 2045 void dm_lock_md_type(struct mapped_device *md) 2046 { 2047 mutex_lock(&md->type_lock); 2048 } 2049 2050 void dm_unlock_md_type(struct mapped_device *md) 2051 { 2052 mutex_unlock(&md->type_lock); 2053 } 2054 2055 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2056 { 2057 BUG_ON(!mutex_is_locked(&md->type_lock)); 2058 md->type = type; 2059 } 2060 2061 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2062 { 2063 return md->type; 2064 } 2065 2066 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2067 { 2068 return md->immutable_target_type; 2069 } 2070 2071 /* 2072 * The queue_limits are only valid as long as you have a reference 2073 * count on 'md'. 2074 */ 2075 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2076 { 2077 BUG_ON(!atomic_read(&md->holders)); 2078 return &md->queue->limits; 2079 } 2080 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2081 2082 /* 2083 * Setup the DM device's queue based on md's type 2084 */ 2085 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2086 { 2087 int r; 2088 struct queue_limits limits; 2089 enum dm_queue_mode type = dm_get_md_type(md); 2090 2091 switch (type) { 2092 case DM_TYPE_REQUEST_BASED: 2093 md->disk->fops = &dm_rq_blk_dops; 2094 r = dm_mq_init_request_queue(md, t); 2095 if (r) { 2096 DMERR("Cannot initialize queue for request-based dm mapped device"); 2097 return r; 2098 } 2099 break; 2100 case DM_TYPE_BIO_BASED: 2101 case DM_TYPE_DAX_BIO_BASED: 2102 break; 2103 case DM_TYPE_NONE: 2104 WARN_ON_ONCE(true); 2105 break; 2106 } 2107 2108 r = dm_calculate_queue_limits(t, &limits); 2109 if (r) { 2110 DMERR("Cannot calculate initial queue limits"); 2111 return r; 2112 } 2113 dm_table_set_restrictions(t, md->queue, &limits); 2114 blk_register_queue(md->disk); 2115 2116 return 0; 2117 } 2118 2119 struct mapped_device *dm_get_md(dev_t dev) 2120 { 2121 struct mapped_device *md; 2122 unsigned minor = MINOR(dev); 2123 2124 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2125 return NULL; 2126 2127 spin_lock(&_minor_lock); 2128 2129 md = idr_find(&_minor_idr, minor); 2130 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2131 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2132 md = NULL; 2133 goto out; 2134 } 2135 dm_get(md); 2136 out: 2137 spin_unlock(&_minor_lock); 2138 2139 return md; 2140 } 2141 EXPORT_SYMBOL_GPL(dm_get_md); 2142 2143 void *dm_get_mdptr(struct mapped_device *md) 2144 { 2145 return md->interface_ptr; 2146 } 2147 2148 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2149 { 2150 md->interface_ptr = ptr; 2151 } 2152 2153 void dm_get(struct mapped_device *md) 2154 { 2155 atomic_inc(&md->holders); 2156 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2157 } 2158 2159 int dm_hold(struct mapped_device *md) 2160 { 2161 spin_lock(&_minor_lock); 2162 if (test_bit(DMF_FREEING, &md->flags)) { 2163 spin_unlock(&_minor_lock); 2164 return -EBUSY; 2165 } 2166 dm_get(md); 2167 spin_unlock(&_minor_lock); 2168 return 0; 2169 } 2170 EXPORT_SYMBOL_GPL(dm_hold); 2171 2172 const char *dm_device_name(struct mapped_device *md) 2173 { 2174 return md->name; 2175 } 2176 EXPORT_SYMBOL_GPL(dm_device_name); 2177 2178 static void __dm_destroy(struct mapped_device *md, bool wait) 2179 { 2180 struct dm_table *map; 2181 int srcu_idx; 2182 2183 might_sleep(); 2184 2185 spin_lock(&_minor_lock); 2186 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2187 set_bit(DMF_FREEING, &md->flags); 2188 spin_unlock(&_minor_lock); 2189 2190 blk_set_queue_dying(md->queue); 2191 2192 /* 2193 * Take suspend_lock so that presuspend and postsuspend methods 2194 * do not race with internal suspend. 2195 */ 2196 mutex_lock(&md->suspend_lock); 2197 map = dm_get_live_table(md, &srcu_idx); 2198 if (!dm_suspended_md(md)) { 2199 dm_table_presuspend_targets(map); 2200 set_bit(DMF_SUSPENDED, &md->flags); 2201 set_bit(DMF_POST_SUSPENDING, &md->flags); 2202 dm_table_postsuspend_targets(map); 2203 } 2204 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2205 dm_put_live_table(md, srcu_idx); 2206 mutex_unlock(&md->suspend_lock); 2207 2208 /* 2209 * Rare, but there may be I/O requests still going to complete, 2210 * for example. Wait for all references to disappear. 2211 * No one should increment the reference count of the mapped_device, 2212 * after the mapped_device state becomes DMF_FREEING. 2213 */ 2214 if (wait) 2215 while (atomic_read(&md->holders)) 2216 msleep(1); 2217 else if (atomic_read(&md->holders)) 2218 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2219 dm_device_name(md), atomic_read(&md->holders)); 2220 2221 dm_sysfs_exit(md); 2222 dm_table_destroy(__unbind(md)); 2223 free_dev(md); 2224 } 2225 2226 void dm_destroy(struct mapped_device *md) 2227 { 2228 __dm_destroy(md, true); 2229 } 2230 2231 void dm_destroy_immediate(struct mapped_device *md) 2232 { 2233 __dm_destroy(md, false); 2234 } 2235 2236 void dm_put(struct mapped_device *md) 2237 { 2238 atomic_dec(&md->holders); 2239 } 2240 EXPORT_SYMBOL_GPL(dm_put); 2241 2242 static bool md_in_flight_bios(struct mapped_device *md) 2243 { 2244 int cpu; 2245 struct block_device *part = dm_disk(md)->part0; 2246 long sum = 0; 2247 2248 for_each_possible_cpu(cpu) { 2249 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 2250 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 2251 } 2252 2253 return sum != 0; 2254 } 2255 2256 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state) 2257 { 2258 int r = 0; 2259 DEFINE_WAIT(wait); 2260 2261 while (true) { 2262 prepare_to_wait(&md->wait, &wait, task_state); 2263 2264 if (!md_in_flight_bios(md)) 2265 break; 2266 2267 if (signal_pending_state(task_state, current)) { 2268 r = -EINTR; 2269 break; 2270 } 2271 2272 io_schedule(); 2273 } 2274 finish_wait(&md->wait, &wait); 2275 2276 return r; 2277 } 2278 2279 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2280 { 2281 int r = 0; 2282 2283 if (!queue_is_mq(md->queue)) 2284 return dm_wait_for_bios_completion(md, task_state); 2285 2286 while (true) { 2287 if (!blk_mq_queue_inflight(md->queue)) 2288 break; 2289 2290 if (signal_pending_state(task_state, current)) { 2291 r = -EINTR; 2292 break; 2293 } 2294 2295 msleep(5); 2296 } 2297 2298 return r; 2299 } 2300 2301 /* 2302 * Process the deferred bios 2303 */ 2304 static void dm_wq_work(struct work_struct *work) 2305 { 2306 struct mapped_device *md = container_of(work, struct mapped_device, work); 2307 struct bio *bio; 2308 2309 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2310 spin_lock_irq(&md->deferred_lock); 2311 bio = bio_list_pop(&md->deferred); 2312 spin_unlock_irq(&md->deferred_lock); 2313 2314 if (!bio) 2315 break; 2316 2317 submit_bio_noacct(bio); 2318 } 2319 } 2320 2321 static void dm_queue_flush(struct mapped_device *md) 2322 { 2323 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2324 smp_mb__after_atomic(); 2325 queue_work(md->wq, &md->work); 2326 } 2327 2328 /* 2329 * Swap in a new table, returning the old one for the caller to destroy. 2330 */ 2331 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2332 { 2333 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2334 struct queue_limits limits; 2335 int r; 2336 2337 mutex_lock(&md->suspend_lock); 2338 2339 /* device must be suspended */ 2340 if (!dm_suspended_md(md)) 2341 goto out; 2342 2343 /* 2344 * If the new table has no data devices, retain the existing limits. 2345 * This helps multipath with queue_if_no_path if all paths disappear, 2346 * then new I/O is queued based on these limits, and then some paths 2347 * reappear. 2348 */ 2349 if (dm_table_has_no_data_devices(table)) { 2350 live_map = dm_get_live_table_fast(md); 2351 if (live_map) 2352 limits = md->queue->limits; 2353 dm_put_live_table_fast(md); 2354 } 2355 2356 if (!live_map) { 2357 r = dm_calculate_queue_limits(table, &limits); 2358 if (r) { 2359 map = ERR_PTR(r); 2360 goto out; 2361 } 2362 } 2363 2364 map = __bind(md, table, &limits); 2365 dm_issue_global_event(); 2366 2367 out: 2368 mutex_unlock(&md->suspend_lock); 2369 return map; 2370 } 2371 2372 /* 2373 * Functions to lock and unlock any filesystem running on the 2374 * device. 2375 */ 2376 static int lock_fs(struct mapped_device *md) 2377 { 2378 int r; 2379 2380 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2381 2382 r = freeze_bdev(md->disk->part0); 2383 if (!r) 2384 set_bit(DMF_FROZEN, &md->flags); 2385 return r; 2386 } 2387 2388 static void unlock_fs(struct mapped_device *md) 2389 { 2390 if (!test_bit(DMF_FROZEN, &md->flags)) 2391 return; 2392 thaw_bdev(md->disk->part0); 2393 clear_bit(DMF_FROZEN, &md->flags); 2394 } 2395 2396 /* 2397 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2398 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2399 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2400 * 2401 * If __dm_suspend returns 0, the device is completely quiescent 2402 * now. There is no request-processing activity. All new requests 2403 * are being added to md->deferred list. 2404 */ 2405 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2406 unsigned suspend_flags, long task_state, 2407 int dmf_suspended_flag) 2408 { 2409 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2410 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2411 int r; 2412 2413 lockdep_assert_held(&md->suspend_lock); 2414 2415 /* 2416 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2417 * This flag is cleared before dm_suspend returns. 2418 */ 2419 if (noflush) 2420 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2421 else 2422 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2423 2424 /* 2425 * This gets reverted if there's an error later and the targets 2426 * provide the .presuspend_undo hook. 2427 */ 2428 dm_table_presuspend_targets(map); 2429 2430 /* 2431 * Flush I/O to the device. 2432 * Any I/O submitted after lock_fs() may not be flushed. 2433 * noflush takes precedence over do_lockfs. 2434 * (lock_fs() flushes I/Os and waits for them to complete.) 2435 */ 2436 if (!noflush && do_lockfs) { 2437 r = lock_fs(md); 2438 if (r) { 2439 dm_table_presuspend_undo_targets(map); 2440 return r; 2441 } 2442 } 2443 2444 /* 2445 * Here we must make sure that no processes are submitting requests 2446 * to target drivers i.e. no one may be executing 2447 * __split_and_process_bio from dm_submit_bio. 2448 * 2449 * To get all processes out of __split_and_process_bio in dm_submit_bio, 2450 * we take the write lock. To prevent any process from reentering 2451 * __split_and_process_bio from dm_submit_bio and quiesce the thread 2452 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2453 * flush_workqueue(md->wq). 2454 */ 2455 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2456 if (map) 2457 synchronize_srcu(&md->io_barrier); 2458 2459 /* 2460 * Stop md->queue before flushing md->wq in case request-based 2461 * dm defers requests to md->wq from md->queue. 2462 */ 2463 if (dm_request_based(md)) 2464 dm_stop_queue(md->queue); 2465 2466 flush_workqueue(md->wq); 2467 2468 /* 2469 * At this point no more requests are entering target request routines. 2470 * We call dm_wait_for_completion to wait for all existing requests 2471 * to finish. 2472 */ 2473 r = dm_wait_for_completion(md, task_state); 2474 if (!r) 2475 set_bit(dmf_suspended_flag, &md->flags); 2476 2477 if (noflush) 2478 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2479 if (map) 2480 synchronize_srcu(&md->io_barrier); 2481 2482 /* were we interrupted ? */ 2483 if (r < 0) { 2484 dm_queue_flush(md); 2485 2486 if (dm_request_based(md)) 2487 dm_start_queue(md->queue); 2488 2489 unlock_fs(md); 2490 dm_table_presuspend_undo_targets(map); 2491 /* pushback list is already flushed, so skip flush */ 2492 } 2493 2494 return r; 2495 } 2496 2497 /* 2498 * We need to be able to change a mapping table under a mounted 2499 * filesystem. For example we might want to move some data in 2500 * the background. Before the table can be swapped with 2501 * dm_bind_table, dm_suspend must be called to flush any in 2502 * flight bios and ensure that any further io gets deferred. 2503 */ 2504 /* 2505 * Suspend mechanism in request-based dm. 2506 * 2507 * 1. Flush all I/Os by lock_fs() if needed. 2508 * 2. Stop dispatching any I/O by stopping the request_queue. 2509 * 3. Wait for all in-flight I/Os to be completed or requeued. 2510 * 2511 * To abort suspend, start the request_queue. 2512 */ 2513 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2514 { 2515 struct dm_table *map = NULL; 2516 int r = 0; 2517 2518 retry: 2519 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2520 2521 if (dm_suspended_md(md)) { 2522 r = -EINVAL; 2523 goto out_unlock; 2524 } 2525 2526 if (dm_suspended_internally_md(md)) { 2527 /* already internally suspended, wait for internal resume */ 2528 mutex_unlock(&md->suspend_lock); 2529 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2530 if (r) 2531 return r; 2532 goto retry; 2533 } 2534 2535 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2536 2537 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2538 if (r) 2539 goto out_unlock; 2540 2541 set_bit(DMF_POST_SUSPENDING, &md->flags); 2542 dm_table_postsuspend_targets(map); 2543 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2544 2545 out_unlock: 2546 mutex_unlock(&md->suspend_lock); 2547 return r; 2548 } 2549 2550 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2551 { 2552 if (map) { 2553 int r = dm_table_resume_targets(map); 2554 if (r) 2555 return r; 2556 } 2557 2558 dm_queue_flush(md); 2559 2560 /* 2561 * Flushing deferred I/Os must be done after targets are resumed 2562 * so that mapping of targets can work correctly. 2563 * Request-based dm is queueing the deferred I/Os in its request_queue. 2564 */ 2565 if (dm_request_based(md)) 2566 dm_start_queue(md->queue); 2567 2568 unlock_fs(md); 2569 2570 return 0; 2571 } 2572 2573 int dm_resume(struct mapped_device *md) 2574 { 2575 int r; 2576 struct dm_table *map = NULL; 2577 2578 retry: 2579 r = -EINVAL; 2580 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2581 2582 if (!dm_suspended_md(md)) 2583 goto out; 2584 2585 if (dm_suspended_internally_md(md)) { 2586 /* already internally suspended, wait for internal resume */ 2587 mutex_unlock(&md->suspend_lock); 2588 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2589 if (r) 2590 return r; 2591 goto retry; 2592 } 2593 2594 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2595 if (!map || !dm_table_get_size(map)) 2596 goto out; 2597 2598 r = __dm_resume(md, map); 2599 if (r) 2600 goto out; 2601 2602 clear_bit(DMF_SUSPENDED, &md->flags); 2603 out: 2604 mutex_unlock(&md->suspend_lock); 2605 2606 return r; 2607 } 2608 2609 /* 2610 * Internal suspend/resume works like userspace-driven suspend. It waits 2611 * until all bios finish and prevents issuing new bios to the target drivers. 2612 * It may be used only from the kernel. 2613 */ 2614 2615 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2616 { 2617 struct dm_table *map = NULL; 2618 2619 lockdep_assert_held(&md->suspend_lock); 2620 2621 if (md->internal_suspend_count++) 2622 return; /* nested internal suspend */ 2623 2624 if (dm_suspended_md(md)) { 2625 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2626 return; /* nest suspend */ 2627 } 2628 2629 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2630 2631 /* 2632 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2633 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2634 * would require changing .presuspend to return an error -- avoid this 2635 * until there is a need for more elaborate variants of internal suspend. 2636 */ 2637 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2638 DMF_SUSPENDED_INTERNALLY); 2639 2640 set_bit(DMF_POST_SUSPENDING, &md->flags); 2641 dm_table_postsuspend_targets(map); 2642 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2643 } 2644 2645 static void __dm_internal_resume(struct mapped_device *md) 2646 { 2647 BUG_ON(!md->internal_suspend_count); 2648 2649 if (--md->internal_suspend_count) 2650 return; /* resume from nested internal suspend */ 2651 2652 if (dm_suspended_md(md)) 2653 goto done; /* resume from nested suspend */ 2654 2655 /* 2656 * NOTE: existing callers don't need to call dm_table_resume_targets 2657 * (which may fail -- so best to avoid it for now by passing NULL map) 2658 */ 2659 (void) __dm_resume(md, NULL); 2660 2661 done: 2662 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2663 smp_mb__after_atomic(); 2664 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2665 } 2666 2667 void dm_internal_suspend_noflush(struct mapped_device *md) 2668 { 2669 mutex_lock(&md->suspend_lock); 2670 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2671 mutex_unlock(&md->suspend_lock); 2672 } 2673 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2674 2675 void dm_internal_resume(struct mapped_device *md) 2676 { 2677 mutex_lock(&md->suspend_lock); 2678 __dm_internal_resume(md); 2679 mutex_unlock(&md->suspend_lock); 2680 } 2681 EXPORT_SYMBOL_GPL(dm_internal_resume); 2682 2683 /* 2684 * Fast variants of internal suspend/resume hold md->suspend_lock, 2685 * which prevents interaction with userspace-driven suspend. 2686 */ 2687 2688 void dm_internal_suspend_fast(struct mapped_device *md) 2689 { 2690 mutex_lock(&md->suspend_lock); 2691 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2692 return; 2693 2694 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2695 synchronize_srcu(&md->io_barrier); 2696 flush_workqueue(md->wq); 2697 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2698 } 2699 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2700 2701 void dm_internal_resume_fast(struct mapped_device *md) 2702 { 2703 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2704 goto done; 2705 2706 dm_queue_flush(md); 2707 2708 done: 2709 mutex_unlock(&md->suspend_lock); 2710 } 2711 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2712 2713 /*----------------------------------------------------------------- 2714 * Event notification. 2715 *---------------------------------------------------------------*/ 2716 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2717 unsigned cookie) 2718 { 2719 int r; 2720 unsigned noio_flag; 2721 char udev_cookie[DM_COOKIE_LENGTH]; 2722 char *envp[] = { udev_cookie, NULL }; 2723 2724 noio_flag = memalloc_noio_save(); 2725 2726 if (!cookie) 2727 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2728 else { 2729 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2730 DM_COOKIE_ENV_VAR_NAME, cookie); 2731 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2732 action, envp); 2733 } 2734 2735 memalloc_noio_restore(noio_flag); 2736 2737 return r; 2738 } 2739 2740 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2741 { 2742 return atomic_add_return(1, &md->uevent_seq); 2743 } 2744 2745 uint32_t dm_get_event_nr(struct mapped_device *md) 2746 { 2747 return atomic_read(&md->event_nr); 2748 } 2749 2750 int dm_wait_event(struct mapped_device *md, int event_nr) 2751 { 2752 return wait_event_interruptible(md->eventq, 2753 (event_nr != atomic_read(&md->event_nr))); 2754 } 2755 2756 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2757 { 2758 unsigned long flags; 2759 2760 spin_lock_irqsave(&md->uevent_lock, flags); 2761 list_add(elist, &md->uevent_list); 2762 spin_unlock_irqrestore(&md->uevent_lock, flags); 2763 } 2764 2765 /* 2766 * The gendisk is only valid as long as you have a reference 2767 * count on 'md'. 2768 */ 2769 struct gendisk *dm_disk(struct mapped_device *md) 2770 { 2771 return md->disk; 2772 } 2773 EXPORT_SYMBOL_GPL(dm_disk); 2774 2775 struct kobject *dm_kobject(struct mapped_device *md) 2776 { 2777 return &md->kobj_holder.kobj; 2778 } 2779 2780 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2781 { 2782 struct mapped_device *md; 2783 2784 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2785 2786 spin_lock(&_minor_lock); 2787 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2788 md = NULL; 2789 goto out; 2790 } 2791 dm_get(md); 2792 out: 2793 spin_unlock(&_minor_lock); 2794 2795 return md; 2796 } 2797 2798 int dm_suspended_md(struct mapped_device *md) 2799 { 2800 return test_bit(DMF_SUSPENDED, &md->flags); 2801 } 2802 2803 static int dm_post_suspending_md(struct mapped_device *md) 2804 { 2805 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2806 } 2807 2808 int dm_suspended_internally_md(struct mapped_device *md) 2809 { 2810 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2811 } 2812 2813 int dm_test_deferred_remove_flag(struct mapped_device *md) 2814 { 2815 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2816 } 2817 2818 int dm_suspended(struct dm_target *ti) 2819 { 2820 return dm_suspended_md(ti->table->md); 2821 } 2822 EXPORT_SYMBOL_GPL(dm_suspended); 2823 2824 int dm_post_suspending(struct dm_target *ti) 2825 { 2826 return dm_post_suspending_md(ti->table->md); 2827 } 2828 EXPORT_SYMBOL_GPL(dm_post_suspending); 2829 2830 int dm_noflush_suspending(struct dm_target *ti) 2831 { 2832 return __noflush_suspending(ti->table->md); 2833 } 2834 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2835 2836 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2837 unsigned integrity, unsigned per_io_data_size, 2838 unsigned min_pool_size) 2839 { 2840 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2841 unsigned int pool_size = 0; 2842 unsigned int front_pad, io_front_pad; 2843 int ret; 2844 2845 if (!pools) 2846 return NULL; 2847 2848 switch (type) { 2849 case DM_TYPE_BIO_BASED: 2850 case DM_TYPE_DAX_BIO_BASED: 2851 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2852 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2853 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2854 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2855 if (ret) 2856 goto out; 2857 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2858 goto out; 2859 break; 2860 case DM_TYPE_REQUEST_BASED: 2861 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2862 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2863 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2864 break; 2865 default: 2866 BUG(); 2867 } 2868 2869 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2870 if (ret) 2871 goto out; 2872 2873 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2874 goto out; 2875 2876 return pools; 2877 2878 out: 2879 dm_free_md_mempools(pools); 2880 2881 return NULL; 2882 } 2883 2884 void dm_free_md_mempools(struct dm_md_mempools *pools) 2885 { 2886 if (!pools) 2887 return; 2888 2889 bioset_exit(&pools->bs); 2890 bioset_exit(&pools->io_bs); 2891 2892 kfree(pools); 2893 } 2894 2895 struct dm_pr { 2896 u64 old_key; 2897 u64 new_key; 2898 u32 flags; 2899 bool fail_early; 2900 }; 2901 2902 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2903 void *data) 2904 { 2905 struct mapped_device *md = bdev->bd_disk->private_data; 2906 struct dm_table *table; 2907 struct dm_target *ti; 2908 int ret = -ENOTTY, srcu_idx; 2909 2910 table = dm_get_live_table(md, &srcu_idx); 2911 if (!table || !dm_table_get_size(table)) 2912 goto out; 2913 2914 /* We only support devices that have a single target */ 2915 if (dm_table_get_num_targets(table) != 1) 2916 goto out; 2917 ti = dm_table_get_target(table, 0); 2918 2919 ret = -EINVAL; 2920 if (!ti->type->iterate_devices) 2921 goto out; 2922 2923 ret = ti->type->iterate_devices(ti, fn, data); 2924 out: 2925 dm_put_live_table(md, srcu_idx); 2926 return ret; 2927 } 2928 2929 /* 2930 * For register / unregister we need to manually call out to every path. 2931 */ 2932 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2933 sector_t start, sector_t len, void *data) 2934 { 2935 struct dm_pr *pr = data; 2936 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2937 2938 if (!ops || !ops->pr_register) 2939 return -EOPNOTSUPP; 2940 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2941 } 2942 2943 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2944 u32 flags) 2945 { 2946 struct dm_pr pr = { 2947 .old_key = old_key, 2948 .new_key = new_key, 2949 .flags = flags, 2950 .fail_early = true, 2951 }; 2952 int ret; 2953 2954 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2955 if (ret && new_key) { 2956 /* unregister all paths if we failed to register any path */ 2957 pr.old_key = new_key; 2958 pr.new_key = 0; 2959 pr.flags = 0; 2960 pr.fail_early = false; 2961 dm_call_pr(bdev, __dm_pr_register, &pr); 2962 } 2963 2964 return ret; 2965 } 2966 2967 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2968 u32 flags) 2969 { 2970 struct mapped_device *md = bdev->bd_disk->private_data; 2971 const struct pr_ops *ops; 2972 int r, srcu_idx; 2973 2974 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2975 if (r < 0) 2976 goto out; 2977 2978 ops = bdev->bd_disk->fops->pr_ops; 2979 if (ops && ops->pr_reserve) 2980 r = ops->pr_reserve(bdev, key, type, flags); 2981 else 2982 r = -EOPNOTSUPP; 2983 out: 2984 dm_unprepare_ioctl(md, srcu_idx); 2985 return r; 2986 } 2987 2988 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2989 { 2990 struct mapped_device *md = bdev->bd_disk->private_data; 2991 const struct pr_ops *ops; 2992 int r, srcu_idx; 2993 2994 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2995 if (r < 0) 2996 goto out; 2997 2998 ops = bdev->bd_disk->fops->pr_ops; 2999 if (ops && ops->pr_release) 3000 r = ops->pr_release(bdev, key, type); 3001 else 3002 r = -EOPNOTSUPP; 3003 out: 3004 dm_unprepare_ioctl(md, srcu_idx); 3005 return r; 3006 } 3007 3008 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3009 enum pr_type type, bool abort) 3010 { 3011 struct mapped_device *md = bdev->bd_disk->private_data; 3012 const struct pr_ops *ops; 3013 int r, srcu_idx; 3014 3015 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3016 if (r < 0) 3017 goto out; 3018 3019 ops = bdev->bd_disk->fops->pr_ops; 3020 if (ops && ops->pr_preempt) 3021 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3022 else 3023 r = -EOPNOTSUPP; 3024 out: 3025 dm_unprepare_ioctl(md, srcu_idx); 3026 return r; 3027 } 3028 3029 static int dm_pr_clear(struct block_device *bdev, u64 key) 3030 { 3031 struct mapped_device *md = bdev->bd_disk->private_data; 3032 const struct pr_ops *ops; 3033 int r, srcu_idx; 3034 3035 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3036 if (r < 0) 3037 goto out; 3038 3039 ops = bdev->bd_disk->fops->pr_ops; 3040 if (ops && ops->pr_clear) 3041 r = ops->pr_clear(bdev, key); 3042 else 3043 r = -EOPNOTSUPP; 3044 out: 3045 dm_unprepare_ioctl(md, srcu_idx); 3046 return r; 3047 } 3048 3049 static const struct pr_ops dm_pr_ops = { 3050 .pr_register = dm_pr_register, 3051 .pr_reserve = dm_pr_reserve, 3052 .pr_release = dm_pr_release, 3053 .pr_preempt = dm_pr_preempt, 3054 .pr_clear = dm_pr_clear, 3055 }; 3056 3057 static const struct block_device_operations dm_blk_dops = { 3058 .submit_bio = dm_submit_bio, 3059 .open = dm_blk_open, 3060 .release = dm_blk_close, 3061 .ioctl = dm_blk_ioctl, 3062 .getgeo = dm_blk_getgeo, 3063 .report_zones = dm_blk_report_zones, 3064 .pr_ops = &dm_pr_ops, 3065 .owner = THIS_MODULE 3066 }; 3067 3068 static const struct block_device_operations dm_rq_blk_dops = { 3069 .open = dm_blk_open, 3070 .release = dm_blk_close, 3071 .ioctl = dm_blk_ioctl, 3072 .getgeo = dm_blk_getgeo, 3073 .pr_ops = &dm_pr_ops, 3074 .owner = THIS_MODULE 3075 }; 3076 3077 static const struct dax_operations dm_dax_ops = { 3078 .direct_access = dm_dax_direct_access, 3079 .dax_supported = dm_dax_supported, 3080 .copy_from_iter = dm_dax_copy_from_iter, 3081 .copy_to_iter = dm_dax_copy_to_iter, 3082 .zero_page_range = dm_dax_zero_page_range, 3083 }; 3084 3085 /* 3086 * module hooks 3087 */ 3088 module_init(dm_init); 3089 module_exit(dm_exit); 3090 3091 module_param(major, uint, 0); 3092 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3093 3094 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3095 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3096 3097 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3098 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3099 3100 MODULE_DESCRIPTION(DM_NAME " driver"); 3101 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3102 MODULE_LICENSE("GPL"); 3103