xref: /openbmc/linux/drivers/md/dm.c (revision bec36eca)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/blktrace_api.h>
23 #include <trace/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 static const char *_name = DM_NAME;
28 
29 static unsigned int major = 0;
30 static unsigned int _major = 0;
31 
32 static DEFINE_SPINLOCK(_minor_lock);
33 /*
34  * For bio-based dm.
35  * One of these is allocated per bio.
36  */
37 struct dm_io {
38 	struct mapped_device *md;
39 	int error;
40 	atomic_t io_count;
41 	struct bio *bio;
42 	unsigned long start_time;
43 };
44 
45 /*
46  * For bio-based dm.
47  * One of these is allocated per target within a bio.  Hopefully
48  * this will be simplified out one day.
49  */
50 struct dm_target_io {
51 	struct dm_io *io;
52 	struct dm_target *ti;
53 	union map_info info;
54 };
55 
56 DEFINE_TRACE(block_bio_complete);
57 
58 /*
59  * For request-based dm.
60  * One of these is allocated per request.
61  */
62 struct dm_rq_target_io {
63 	struct mapped_device *md;
64 	struct dm_target *ti;
65 	struct request *orig, clone;
66 	int error;
67 	union map_info info;
68 };
69 
70 /*
71  * For request-based dm.
72  * One of these is allocated per bio.
73  */
74 struct dm_rq_clone_bio_info {
75 	struct bio *orig;
76 	struct request *rq;
77 };
78 
79 union map_info *dm_get_mapinfo(struct bio *bio)
80 {
81 	if (bio && bio->bi_private)
82 		return &((struct dm_target_io *)bio->bi_private)->info;
83 	return NULL;
84 }
85 
86 #define MINOR_ALLOCED ((void *)-1)
87 
88 /*
89  * Bits for the md->flags field.
90  */
91 #define DMF_BLOCK_IO_FOR_SUSPEND 0
92 #define DMF_SUSPENDED 1
93 #define DMF_FROZEN 2
94 #define DMF_FREEING 3
95 #define DMF_DELETING 4
96 #define DMF_NOFLUSH_SUSPENDING 5
97 #define DMF_QUEUE_IO_TO_THREAD 6
98 
99 /*
100  * Work processed by per-device workqueue.
101  */
102 struct mapped_device {
103 	struct rw_semaphore io_lock;
104 	struct mutex suspend_lock;
105 	rwlock_t map_lock;
106 	atomic_t holders;
107 	atomic_t open_count;
108 
109 	unsigned long flags;
110 
111 	struct request_queue *queue;
112 	struct gendisk *disk;
113 	char name[16];
114 
115 	void *interface_ptr;
116 
117 	/*
118 	 * A list of ios that arrived while we were suspended.
119 	 */
120 	atomic_t pending;
121 	wait_queue_head_t wait;
122 	struct work_struct work;
123 	struct bio_list deferred;
124 	spinlock_t deferred_lock;
125 
126 	/*
127 	 * An error from the barrier request currently being processed.
128 	 */
129 	int barrier_error;
130 
131 	/*
132 	 * Processing queue (flush/barriers)
133 	 */
134 	struct workqueue_struct *wq;
135 
136 	/*
137 	 * The current mapping.
138 	 */
139 	struct dm_table *map;
140 
141 	/*
142 	 * io objects are allocated from here.
143 	 */
144 	mempool_t *io_pool;
145 	mempool_t *tio_pool;
146 
147 	struct bio_set *bs;
148 
149 	/*
150 	 * Event handling.
151 	 */
152 	atomic_t event_nr;
153 	wait_queue_head_t eventq;
154 	atomic_t uevent_seq;
155 	struct list_head uevent_list;
156 	spinlock_t uevent_lock; /* Protect access to uevent_list */
157 
158 	/*
159 	 * freeze/thaw support require holding onto a super block
160 	 */
161 	struct super_block *frozen_sb;
162 	struct block_device *suspended_bdev;
163 
164 	/* forced geometry settings */
165 	struct hd_geometry geometry;
166 
167 	/* sysfs handle */
168 	struct kobject kobj;
169 };
170 
171 #define MIN_IOS 256
172 static struct kmem_cache *_io_cache;
173 static struct kmem_cache *_tio_cache;
174 static struct kmem_cache *_rq_tio_cache;
175 static struct kmem_cache *_rq_bio_info_cache;
176 
177 static int __init local_init(void)
178 {
179 	int r = -ENOMEM;
180 
181 	/* allocate a slab for the dm_ios */
182 	_io_cache = KMEM_CACHE(dm_io, 0);
183 	if (!_io_cache)
184 		return r;
185 
186 	/* allocate a slab for the target ios */
187 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
188 	if (!_tio_cache)
189 		goto out_free_io_cache;
190 
191 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
192 	if (!_rq_tio_cache)
193 		goto out_free_tio_cache;
194 
195 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
196 	if (!_rq_bio_info_cache)
197 		goto out_free_rq_tio_cache;
198 
199 	r = dm_uevent_init();
200 	if (r)
201 		goto out_free_rq_bio_info_cache;
202 
203 	_major = major;
204 	r = register_blkdev(_major, _name);
205 	if (r < 0)
206 		goto out_uevent_exit;
207 
208 	if (!_major)
209 		_major = r;
210 
211 	return 0;
212 
213 out_uevent_exit:
214 	dm_uevent_exit();
215 out_free_rq_bio_info_cache:
216 	kmem_cache_destroy(_rq_bio_info_cache);
217 out_free_rq_tio_cache:
218 	kmem_cache_destroy(_rq_tio_cache);
219 out_free_tio_cache:
220 	kmem_cache_destroy(_tio_cache);
221 out_free_io_cache:
222 	kmem_cache_destroy(_io_cache);
223 
224 	return r;
225 }
226 
227 static void local_exit(void)
228 {
229 	kmem_cache_destroy(_rq_bio_info_cache);
230 	kmem_cache_destroy(_rq_tio_cache);
231 	kmem_cache_destroy(_tio_cache);
232 	kmem_cache_destroy(_io_cache);
233 	unregister_blkdev(_major, _name);
234 	dm_uevent_exit();
235 
236 	_major = 0;
237 
238 	DMINFO("cleaned up");
239 }
240 
241 static int (*_inits[])(void) __initdata = {
242 	local_init,
243 	dm_target_init,
244 	dm_linear_init,
245 	dm_stripe_init,
246 	dm_kcopyd_init,
247 	dm_interface_init,
248 };
249 
250 static void (*_exits[])(void) = {
251 	local_exit,
252 	dm_target_exit,
253 	dm_linear_exit,
254 	dm_stripe_exit,
255 	dm_kcopyd_exit,
256 	dm_interface_exit,
257 };
258 
259 static int __init dm_init(void)
260 {
261 	const int count = ARRAY_SIZE(_inits);
262 
263 	int r, i;
264 
265 	for (i = 0; i < count; i++) {
266 		r = _inits[i]();
267 		if (r)
268 			goto bad;
269 	}
270 
271 	return 0;
272 
273       bad:
274 	while (i--)
275 		_exits[i]();
276 
277 	return r;
278 }
279 
280 static void __exit dm_exit(void)
281 {
282 	int i = ARRAY_SIZE(_exits);
283 
284 	while (i--)
285 		_exits[i]();
286 }
287 
288 /*
289  * Block device functions
290  */
291 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
292 {
293 	struct mapped_device *md;
294 
295 	spin_lock(&_minor_lock);
296 
297 	md = bdev->bd_disk->private_data;
298 	if (!md)
299 		goto out;
300 
301 	if (test_bit(DMF_FREEING, &md->flags) ||
302 	    test_bit(DMF_DELETING, &md->flags)) {
303 		md = NULL;
304 		goto out;
305 	}
306 
307 	dm_get(md);
308 	atomic_inc(&md->open_count);
309 
310 out:
311 	spin_unlock(&_minor_lock);
312 
313 	return md ? 0 : -ENXIO;
314 }
315 
316 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
317 {
318 	struct mapped_device *md = disk->private_data;
319 	atomic_dec(&md->open_count);
320 	dm_put(md);
321 	return 0;
322 }
323 
324 int dm_open_count(struct mapped_device *md)
325 {
326 	return atomic_read(&md->open_count);
327 }
328 
329 /*
330  * Guarantees nothing is using the device before it's deleted.
331  */
332 int dm_lock_for_deletion(struct mapped_device *md)
333 {
334 	int r = 0;
335 
336 	spin_lock(&_minor_lock);
337 
338 	if (dm_open_count(md))
339 		r = -EBUSY;
340 	else
341 		set_bit(DMF_DELETING, &md->flags);
342 
343 	spin_unlock(&_minor_lock);
344 
345 	return r;
346 }
347 
348 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
349 {
350 	struct mapped_device *md = bdev->bd_disk->private_data;
351 
352 	return dm_get_geometry(md, geo);
353 }
354 
355 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
356 			unsigned int cmd, unsigned long arg)
357 {
358 	struct mapped_device *md = bdev->bd_disk->private_data;
359 	struct dm_table *map = dm_get_table(md);
360 	struct dm_target *tgt;
361 	int r = -ENOTTY;
362 
363 	if (!map || !dm_table_get_size(map))
364 		goto out;
365 
366 	/* We only support devices that have a single target */
367 	if (dm_table_get_num_targets(map) != 1)
368 		goto out;
369 
370 	tgt = dm_table_get_target(map, 0);
371 
372 	if (dm_suspended(md)) {
373 		r = -EAGAIN;
374 		goto out;
375 	}
376 
377 	if (tgt->type->ioctl)
378 		r = tgt->type->ioctl(tgt, cmd, arg);
379 
380 out:
381 	dm_table_put(map);
382 
383 	return r;
384 }
385 
386 static struct dm_io *alloc_io(struct mapped_device *md)
387 {
388 	return mempool_alloc(md->io_pool, GFP_NOIO);
389 }
390 
391 static void free_io(struct mapped_device *md, struct dm_io *io)
392 {
393 	mempool_free(io, md->io_pool);
394 }
395 
396 static struct dm_target_io *alloc_tio(struct mapped_device *md)
397 {
398 	return mempool_alloc(md->tio_pool, GFP_NOIO);
399 }
400 
401 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
402 {
403 	mempool_free(tio, md->tio_pool);
404 }
405 
406 static void start_io_acct(struct dm_io *io)
407 {
408 	struct mapped_device *md = io->md;
409 	int cpu;
410 
411 	io->start_time = jiffies;
412 
413 	cpu = part_stat_lock();
414 	part_round_stats(cpu, &dm_disk(md)->part0);
415 	part_stat_unlock();
416 	dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
417 }
418 
419 static void end_io_acct(struct dm_io *io)
420 {
421 	struct mapped_device *md = io->md;
422 	struct bio *bio = io->bio;
423 	unsigned long duration = jiffies - io->start_time;
424 	int pending, cpu;
425 	int rw = bio_data_dir(bio);
426 
427 	cpu = part_stat_lock();
428 	part_round_stats(cpu, &dm_disk(md)->part0);
429 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
430 	part_stat_unlock();
431 
432 	/*
433 	 * After this is decremented the bio must not be touched if it is
434 	 * a barrier.
435 	 */
436 	dm_disk(md)->part0.in_flight = pending =
437 		atomic_dec_return(&md->pending);
438 
439 	/* nudge anyone waiting on suspend queue */
440 	if (!pending)
441 		wake_up(&md->wait);
442 }
443 
444 /*
445  * Add the bio to the list of deferred io.
446  */
447 static void queue_io(struct mapped_device *md, struct bio *bio)
448 {
449 	down_write(&md->io_lock);
450 
451 	spin_lock_irq(&md->deferred_lock);
452 	bio_list_add(&md->deferred, bio);
453 	spin_unlock_irq(&md->deferred_lock);
454 
455 	if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
456 		queue_work(md->wq, &md->work);
457 
458 	up_write(&md->io_lock);
459 }
460 
461 /*
462  * Everyone (including functions in this file), should use this
463  * function to access the md->map field, and make sure they call
464  * dm_table_put() when finished.
465  */
466 struct dm_table *dm_get_table(struct mapped_device *md)
467 {
468 	struct dm_table *t;
469 
470 	read_lock(&md->map_lock);
471 	t = md->map;
472 	if (t)
473 		dm_table_get(t);
474 	read_unlock(&md->map_lock);
475 
476 	return t;
477 }
478 
479 /*
480  * Get the geometry associated with a dm device
481  */
482 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
483 {
484 	*geo = md->geometry;
485 
486 	return 0;
487 }
488 
489 /*
490  * Set the geometry of a device.
491  */
492 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
493 {
494 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
495 
496 	if (geo->start > sz) {
497 		DMWARN("Start sector is beyond the geometry limits.");
498 		return -EINVAL;
499 	}
500 
501 	md->geometry = *geo;
502 
503 	return 0;
504 }
505 
506 /*-----------------------------------------------------------------
507  * CRUD START:
508  *   A more elegant soln is in the works that uses the queue
509  *   merge fn, unfortunately there are a couple of changes to
510  *   the block layer that I want to make for this.  So in the
511  *   interests of getting something for people to use I give
512  *   you this clearly demarcated crap.
513  *---------------------------------------------------------------*/
514 
515 static int __noflush_suspending(struct mapped_device *md)
516 {
517 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
518 }
519 
520 /*
521  * Decrements the number of outstanding ios that a bio has been
522  * cloned into, completing the original io if necc.
523  */
524 static void dec_pending(struct dm_io *io, int error)
525 {
526 	unsigned long flags;
527 	int io_error;
528 	struct bio *bio;
529 	struct mapped_device *md = io->md;
530 
531 	/* Push-back supersedes any I/O errors */
532 	if (error && !(io->error > 0 && __noflush_suspending(md)))
533 		io->error = error;
534 
535 	if (atomic_dec_and_test(&io->io_count)) {
536 		if (io->error == DM_ENDIO_REQUEUE) {
537 			/*
538 			 * Target requested pushing back the I/O.
539 			 */
540 			spin_lock_irqsave(&md->deferred_lock, flags);
541 			if (__noflush_suspending(md))
542 				bio_list_add_head(&md->deferred, io->bio);
543 			else
544 				/* noflush suspend was interrupted. */
545 				io->error = -EIO;
546 			spin_unlock_irqrestore(&md->deferred_lock, flags);
547 		}
548 
549 		io_error = io->error;
550 		bio = io->bio;
551 
552 		if (bio_barrier(bio)) {
553 			/*
554 			 * There can be just one barrier request so we use
555 			 * a per-device variable for error reporting.
556 			 * Note that you can't touch the bio after end_io_acct
557 			 */
558 			md->barrier_error = io_error;
559 			end_io_acct(io);
560 		} else {
561 			end_io_acct(io);
562 
563 			if (io_error != DM_ENDIO_REQUEUE) {
564 				trace_block_bio_complete(md->queue, bio);
565 
566 				bio_endio(bio, io_error);
567 			}
568 		}
569 
570 		free_io(md, io);
571 	}
572 }
573 
574 static void clone_endio(struct bio *bio, int error)
575 {
576 	int r = 0;
577 	struct dm_target_io *tio = bio->bi_private;
578 	struct dm_io *io = tio->io;
579 	struct mapped_device *md = tio->io->md;
580 	dm_endio_fn endio = tio->ti->type->end_io;
581 
582 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
583 		error = -EIO;
584 
585 	if (endio) {
586 		r = endio(tio->ti, bio, error, &tio->info);
587 		if (r < 0 || r == DM_ENDIO_REQUEUE)
588 			/*
589 			 * error and requeue request are handled
590 			 * in dec_pending().
591 			 */
592 			error = r;
593 		else if (r == DM_ENDIO_INCOMPLETE)
594 			/* The target will handle the io */
595 			return;
596 		else if (r) {
597 			DMWARN("unimplemented target endio return value: %d", r);
598 			BUG();
599 		}
600 	}
601 
602 	/*
603 	 * Store md for cleanup instead of tio which is about to get freed.
604 	 */
605 	bio->bi_private = md->bs;
606 
607 	free_tio(md, tio);
608 	bio_put(bio);
609 	dec_pending(io, error);
610 }
611 
612 static sector_t max_io_len(struct mapped_device *md,
613 			   sector_t sector, struct dm_target *ti)
614 {
615 	sector_t offset = sector - ti->begin;
616 	sector_t len = ti->len - offset;
617 
618 	/*
619 	 * Does the target need to split even further ?
620 	 */
621 	if (ti->split_io) {
622 		sector_t boundary;
623 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
624 			   - offset;
625 		if (len > boundary)
626 			len = boundary;
627 	}
628 
629 	return len;
630 }
631 
632 static void __map_bio(struct dm_target *ti, struct bio *clone,
633 		      struct dm_target_io *tio)
634 {
635 	int r;
636 	sector_t sector;
637 	struct mapped_device *md;
638 
639 	/*
640 	 * Sanity checks.
641 	 */
642 	BUG_ON(!clone->bi_size);
643 
644 	clone->bi_end_io = clone_endio;
645 	clone->bi_private = tio;
646 
647 	/*
648 	 * Map the clone.  If r == 0 we don't need to do
649 	 * anything, the target has assumed ownership of
650 	 * this io.
651 	 */
652 	atomic_inc(&tio->io->io_count);
653 	sector = clone->bi_sector;
654 	r = ti->type->map(ti, clone, &tio->info);
655 	if (r == DM_MAPIO_REMAPPED) {
656 		/* the bio has been remapped so dispatch it */
657 
658 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
659 				    tio->io->bio->bi_bdev->bd_dev,
660 				    clone->bi_sector, sector);
661 
662 		generic_make_request(clone);
663 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
664 		/* error the io and bail out, or requeue it if needed */
665 		md = tio->io->md;
666 		dec_pending(tio->io, r);
667 		/*
668 		 * Store bio_set for cleanup.
669 		 */
670 		clone->bi_private = md->bs;
671 		bio_put(clone);
672 		free_tio(md, tio);
673 	} else if (r) {
674 		DMWARN("unimplemented target map return value: %d", r);
675 		BUG();
676 	}
677 }
678 
679 struct clone_info {
680 	struct mapped_device *md;
681 	struct dm_table *map;
682 	struct bio *bio;
683 	struct dm_io *io;
684 	sector_t sector;
685 	sector_t sector_count;
686 	unsigned short idx;
687 };
688 
689 static void dm_bio_destructor(struct bio *bio)
690 {
691 	struct bio_set *bs = bio->bi_private;
692 
693 	bio_free(bio, bs);
694 }
695 
696 /*
697  * Creates a little bio that is just does part of a bvec.
698  */
699 static struct bio *split_bvec(struct bio *bio, sector_t sector,
700 			      unsigned short idx, unsigned int offset,
701 			      unsigned int len, struct bio_set *bs)
702 {
703 	struct bio *clone;
704 	struct bio_vec *bv = bio->bi_io_vec + idx;
705 
706 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
707 	clone->bi_destructor = dm_bio_destructor;
708 	*clone->bi_io_vec = *bv;
709 
710 	clone->bi_sector = sector;
711 	clone->bi_bdev = bio->bi_bdev;
712 	clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
713 	clone->bi_vcnt = 1;
714 	clone->bi_size = to_bytes(len);
715 	clone->bi_io_vec->bv_offset = offset;
716 	clone->bi_io_vec->bv_len = clone->bi_size;
717 	clone->bi_flags |= 1 << BIO_CLONED;
718 
719 	if (bio_integrity(bio)) {
720 		bio_integrity_clone(clone, bio, GFP_NOIO);
721 		bio_integrity_trim(clone,
722 				   bio_sector_offset(bio, idx, offset), len);
723 	}
724 
725 	return clone;
726 }
727 
728 /*
729  * Creates a bio that consists of range of complete bvecs.
730  */
731 static struct bio *clone_bio(struct bio *bio, sector_t sector,
732 			     unsigned short idx, unsigned short bv_count,
733 			     unsigned int len, struct bio_set *bs)
734 {
735 	struct bio *clone;
736 
737 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
738 	__bio_clone(clone, bio);
739 	clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
740 	clone->bi_destructor = dm_bio_destructor;
741 	clone->bi_sector = sector;
742 	clone->bi_idx = idx;
743 	clone->bi_vcnt = idx + bv_count;
744 	clone->bi_size = to_bytes(len);
745 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
746 
747 	if (bio_integrity(bio)) {
748 		bio_integrity_clone(clone, bio, GFP_NOIO);
749 
750 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
751 			bio_integrity_trim(clone,
752 					   bio_sector_offset(bio, idx, 0), len);
753 	}
754 
755 	return clone;
756 }
757 
758 static int __clone_and_map(struct clone_info *ci)
759 {
760 	struct bio *clone, *bio = ci->bio;
761 	struct dm_target *ti;
762 	sector_t len = 0, max;
763 	struct dm_target_io *tio;
764 
765 	ti = dm_table_find_target(ci->map, ci->sector);
766 	if (!dm_target_is_valid(ti))
767 		return -EIO;
768 
769 	max = max_io_len(ci->md, ci->sector, ti);
770 
771 	/*
772 	 * Allocate a target io object.
773 	 */
774 	tio = alloc_tio(ci->md);
775 	tio->io = ci->io;
776 	tio->ti = ti;
777 	memset(&tio->info, 0, sizeof(tio->info));
778 
779 	if (ci->sector_count <= max) {
780 		/*
781 		 * Optimise for the simple case where we can do all of
782 		 * the remaining io with a single clone.
783 		 */
784 		clone = clone_bio(bio, ci->sector, ci->idx,
785 				  bio->bi_vcnt - ci->idx, ci->sector_count,
786 				  ci->md->bs);
787 		__map_bio(ti, clone, tio);
788 		ci->sector_count = 0;
789 
790 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
791 		/*
792 		 * There are some bvecs that don't span targets.
793 		 * Do as many of these as possible.
794 		 */
795 		int i;
796 		sector_t remaining = max;
797 		sector_t bv_len;
798 
799 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
800 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
801 
802 			if (bv_len > remaining)
803 				break;
804 
805 			remaining -= bv_len;
806 			len += bv_len;
807 		}
808 
809 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
810 				  ci->md->bs);
811 		__map_bio(ti, clone, tio);
812 
813 		ci->sector += len;
814 		ci->sector_count -= len;
815 		ci->idx = i;
816 
817 	} else {
818 		/*
819 		 * Handle a bvec that must be split between two or more targets.
820 		 */
821 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
822 		sector_t remaining = to_sector(bv->bv_len);
823 		unsigned int offset = 0;
824 
825 		do {
826 			if (offset) {
827 				ti = dm_table_find_target(ci->map, ci->sector);
828 				if (!dm_target_is_valid(ti))
829 					return -EIO;
830 
831 				max = max_io_len(ci->md, ci->sector, ti);
832 
833 				tio = alloc_tio(ci->md);
834 				tio->io = ci->io;
835 				tio->ti = ti;
836 				memset(&tio->info, 0, sizeof(tio->info));
837 			}
838 
839 			len = min(remaining, max);
840 
841 			clone = split_bvec(bio, ci->sector, ci->idx,
842 					   bv->bv_offset + offset, len,
843 					   ci->md->bs);
844 
845 			__map_bio(ti, clone, tio);
846 
847 			ci->sector += len;
848 			ci->sector_count -= len;
849 			offset += to_bytes(len);
850 		} while (remaining -= len);
851 
852 		ci->idx++;
853 	}
854 
855 	return 0;
856 }
857 
858 /*
859  * Split the bio into several clones and submit it to targets.
860  */
861 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
862 {
863 	struct clone_info ci;
864 	int error = 0;
865 
866 	ci.map = dm_get_table(md);
867 	if (unlikely(!ci.map)) {
868 		if (!bio_barrier(bio))
869 			bio_io_error(bio);
870 		else
871 			md->barrier_error = -EIO;
872 		return;
873 	}
874 
875 	ci.md = md;
876 	ci.bio = bio;
877 	ci.io = alloc_io(md);
878 	ci.io->error = 0;
879 	atomic_set(&ci.io->io_count, 1);
880 	ci.io->bio = bio;
881 	ci.io->md = md;
882 	ci.sector = bio->bi_sector;
883 	ci.sector_count = bio_sectors(bio);
884 	ci.idx = bio->bi_idx;
885 
886 	start_io_acct(ci.io);
887 	while (ci.sector_count && !error)
888 		error = __clone_and_map(&ci);
889 
890 	/* drop the extra reference count */
891 	dec_pending(ci.io, error);
892 	dm_table_put(ci.map);
893 }
894 /*-----------------------------------------------------------------
895  * CRUD END
896  *---------------------------------------------------------------*/
897 
898 static int dm_merge_bvec(struct request_queue *q,
899 			 struct bvec_merge_data *bvm,
900 			 struct bio_vec *biovec)
901 {
902 	struct mapped_device *md = q->queuedata;
903 	struct dm_table *map = dm_get_table(md);
904 	struct dm_target *ti;
905 	sector_t max_sectors;
906 	int max_size = 0;
907 
908 	if (unlikely(!map))
909 		goto out;
910 
911 	ti = dm_table_find_target(map, bvm->bi_sector);
912 	if (!dm_target_is_valid(ti))
913 		goto out_table;
914 
915 	/*
916 	 * Find maximum amount of I/O that won't need splitting
917 	 */
918 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
919 			  (sector_t) BIO_MAX_SECTORS);
920 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
921 	if (max_size < 0)
922 		max_size = 0;
923 
924 	/*
925 	 * merge_bvec_fn() returns number of bytes
926 	 * it can accept at this offset
927 	 * max is precomputed maximal io size
928 	 */
929 	if (max_size && ti->type->merge)
930 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
931 
932 out_table:
933 	dm_table_put(map);
934 
935 out:
936 	/*
937 	 * Always allow an entire first page
938 	 */
939 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
940 		max_size = biovec->bv_len;
941 
942 	return max_size;
943 }
944 
945 /*
946  * The request function that just remaps the bio built up by
947  * dm_merge_bvec.
948  */
949 static int dm_request(struct request_queue *q, struct bio *bio)
950 {
951 	int rw = bio_data_dir(bio);
952 	struct mapped_device *md = q->queuedata;
953 	int cpu;
954 
955 	down_read(&md->io_lock);
956 
957 	cpu = part_stat_lock();
958 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
959 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
960 	part_stat_unlock();
961 
962 	/*
963 	 * If we're suspended or the thread is processing barriers
964 	 * we have to queue this io for later.
965 	 */
966 	if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
967 	    unlikely(bio_barrier(bio))) {
968 		up_read(&md->io_lock);
969 
970 		if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
971 		    bio_rw(bio) == READA) {
972 			bio_io_error(bio);
973 			return 0;
974 		}
975 
976 		queue_io(md, bio);
977 
978 		return 0;
979 	}
980 
981 	__split_and_process_bio(md, bio);
982 	up_read(&md->io_lock);
983 	return 0;
984 }
985 
986 static void dm_unplug_all(struct request_queue *q)
987 {
988 	struct mapped_device *md = q->queuedata;
989 	struct dm_table *map = dm_get_table(md);
990 
991 	if (map) {
992 		dm_table_unplug_all(map);
993 		dm_table_put(map);
994 	}
995 }
996 
997 static int dm_any_congested(void *congested_data, int bdi_bits)
998 {
999 	int r = bdi_bits;
1000 	struct mapped_device *md = congested_data;
1001 	struct dm_table *map;
1002 
1003 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1004 		map = dm_get_table(md);
1005 		if (map) {
1006 			r = dm_table_any_congested(map, bdi_bits);
1007 			dm_table_put(map);
1008 		}
1009 	}
1010 
1011 	return r;
1012 }
1013 
1014 /*-----------------------------------------------------------------
1015  * An IDR is used to keep track of allocated minor numbers.
1016  *---------------------------------------------------------------*/
1017 static DEFINE_IDR(_minor_idr);
1018 
1019 static void free_minor(int minor)
1020 {
1021 	spin_lock(&_minor_lock);
1022 	idr_remove(&_minor_idr, minor);
1023 	spin_unlock(&_minor_lock);
1024 }
1025 
1026 /*
1027  * See if the device with a specific minor # is free.
1028  */
1029 static int specific_minor(int minor)
1030 {
1031 	int r, m;
1032 
1033 	if (minor >= (1 << MINORBITS))
1034 		return -EINVAL;
1035 
1036 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1037 	if (!r)
1038 		return -ENOMEM;
1039 
1040 	spin_lock(&_minor_lock);
1041 
1042 	if (idr_find(&_minor_idr, minor)) {
1043 		r = -EBUSY;
1044 		goto out;
1045 	}
1046 
1047 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1048 	if (r)
1049 		goto out;
1050 
1051 	if (m != minor) {
1052 		idr_remove(&_minor_idr, m);
1053 		r = -EBUSY;
1054 		goto out;
1055 	}
1056 
1057 out:
1058 	spin_unlock(&_minor_lock);
1059 	return r;
1060 }
1061 
1062 static int next_free_minor(int *minor)
1063 {
1064 	int r, m;
1065 
1066 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1067 	if (!r)
1068 		return -ENOMEM;
1069 
1070 	spin_lock(&_minor_lock);
1071 
1072 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1073 	if (r)
1074 		goto out;
1075 
1076 	if (m >= (1 << MINORBITS)) {
1077 		idr_remove(&_minor_idr, m);
1078 		r = -ENOSPC;
1079 		goto out;
1080 	}
1081 
1082 	*minor = m;
1083 
1084 out:
1085 	spin_unlock(&_minor_lock);
1086 	return r;
1087 }
1088 
1089 static struct block_device_operations dm_blk_dops;
1090 
1091 static void dm_wq_work(struct work_struct *work);
1092 
1093 /*
1094  * Allocate and initialise a blank device with a given minor.
1095  */
1096 static struct mapped_device *alloc_dev(int minor)
1097 {
1098 	int r;
1099 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1100 	void *old_md;
1101 
1102 	if (!md) {
1103 		DMWARN("unable to allocate device, out of memory.");
1104 		return NULL;
1105 	}
1106 
1107 	if (!try_module_get(THIS_MODULE))
1108 		goto bad_module_get;
1109 
1110 	/* get a minor number for the dev */
1111 	if (minor == DM_ANY_MINOR)
1112 		r = next_free_minor(&minor);
1113 	else
1114 		r = specific_minor(minor);
1115 	if (r < 0)
1116 		goto bad_minor;
1117 
1118 	init_rwsem(&md->io_lock);
1119 	mutex_init(&md->suspend_lock);
1120 	spin_lock_init(&md->deferred_lock);
1121 	rwlock_init(&md->map_lock);
1122 	atomic_set(&md->holders, 1);
1123 	atomic_set(&md->open_count, 0);
1124 	atomic_set(&md->event_nr, 0);
1125 	atomic_set(&md->uevent_seq, 0);
1126 	INIT_LIST_HEAD(&md->uevent_list);
1127 	spin_lock_init(&md->uevent_lock);
1128 
1129 	md->queue = blk_alloc_queue(GFP_KERNEL);
1130 	if (!md->queue)
1131 		goto bad_queue;
1132 
1133 	md->queue->queuedata = md;
1134 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1135 	md->queue->backing_dev_info.congested_data = md;
1136 	blk_queue_make_request(md->queue, dm_request);
1137 	blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1138 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1139 	md->queue->unplug_fn = dm_unplug_all;
1140 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1141 
1142 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1143 	if (!md->io_pool)
1144 		goto bad_io_pool;
1145 
1146 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1147 	if (!md->tio_pool)
1148 		goto bad_tio_pool;
1149 
1150 	md->bs = bioset_create(16, 0);
1151 	if (!md->bs)
1152 		goto bad_no_bioset;
1153 
1154 	md->disk = alloc_disk(1);
1155 	if (!md->disk)
1156 		goto bad_disk;
1157 
1158 	atomic_set(&md->pending, 0);
1159 	init_waitqueue_head(&md->wait);
1160 	INIT_WORK(&md->work, dm_wq_work);
1161 	init_waitqueue_head(&md->eventq);
1162 
1163 	md->disk->major = _major;
1164 	md->disk->first_minor = minor;
1165 	md->disk->fops = &dm_blk_dops;
1166 	md->disk->queue = md->queue;
1167 	md->disk->private_data = md;
1168 	sprintf(md->disk->disk_name, "dm-%d", minor);
1169 	add_disk(md->disk);
1170 	format_dev_t(md->name, MKDEV(_major, minor));
1171 
1172 	md->wq = create_singlethread_workqueue("kdmflush");
1173 	if (!md->wq)
1174 		goto bad_thread;
1175 
1176 	/* Populate the mapping, nobody knows we exist yet */
1177 	spin_lock(&_minor_lock);
1178 	old_md = idr_replace(&_minor_idr, md, minor);
1179 	spin_unlock(&_minor_lock);
1180 
1181 	BUG_ON(old_md != MINOR_ALLOCED);
1182 
1183 	return md;
1184 
1185 bad_thread:
1186 	put_disk(md->disk);
1187 bad_disk:
1188 	bioset_free(md->bs);
1189 bad_no_bioset:
1190 	mempool_destroy(md->tio_pool);
1191 bad_tio_pool:
1192 	mempool_destroy(md->io_pool);
1193 bad_io_pool:
1194 	blk_cleanup_queue(md->queue);
1195 bad_queue:
1196 	free_minor(minor);
1197 bad_minor:
1198 	module_put(THIS_MODULE);
1199 bad_module_get:
1200 	kfree(md);
1201 	return NULL;
1202 }
1203 
1204 static void unlock_fs(struct mapped_device *md);
1205 
1206 static void free_dev(struct mapped_device *md)
1207 {
1208 	int minor = MINOR(disk_devt(md->disk));
1209 
1210 	if (md->suspended_bdev) {
1211 		unlock_fs(md);
1212 		bdput(md->suspended_bdev);
1213 	}
1214 	destroy_workqueue(md->wq);
1215 	mempool_destroy(md->tio_pool);
1216 	mempool_destroy(md->io_pool);
1217 	bioset_free(md->bs);
1218 	blk_integrity_unregister(md->disk);
1219 	del_gendisk(md->disk);
1220 	free_minor(minor);
1221 
1222 	spin_lock(&_minor_lock);
1223 	md->disk->private_data = NULL;
1224 	spin_unlock(&_minor_lock);
1225 
1226 	put_disk(md->disk);
1227 	blk_cleanup_queue(md->queue);
1228 	module_put(THIS_MODULE);
1229 	kfree(md);
1230 }
1231 
1232 /*
1233  * Bind a table to the device.
1234  */
1235 static void event_callback(void *context)
1236 {
1237 	unsigned long flags;
1238 	LIST_HEAD(uevents);
1239 	struct mapped_device *md = (struct mapped_device *) context;
1240 
1241 	spin_lock_irqsave(&md->uevent_lock, flags);
1242 	list_splice_init(&md->uevent_list, &uevents);
1243 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1244 
1245 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1246 
1247 	atomic_inc(&md->event_nr);
1248 	wake_up(&md->eventq);
1249 }
1250 
1251 static void __set_size(struct mapped_device *md, sector_t size)
1252 {
1253 	set_capacity(md->disk, size);
1254 
1255 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1256 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1257 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1258 }
1259 
1260 static int __bind(struct mapped_device *md, struct dm_table *t)
1261 {
1262 	struct request_queue *q = md->queue;
1263 	sector_t size;
1264 
1265 	size = dm_table_get_size(t);
1266 
1267 	/*
1268 	 * Wipe any geometry if the size of the table changed.
1269 	 */
1270 	if (size != get_capacity(md->disk))
1271 		memset(&md->geometry, 0, sizeof(md->geometry));
1272 
1273 	if (md->suspended_bdev)
1274 		__set_size(md, size);
1275 
1276 	if (!size) {
1277 		dm_table_destroy(t);
1278 		return 0;
1279 	}
1280 
1281 	dm_table_event_callback(t, event_callback, md);
1282 
1283 	write_lock(&md->map_lock);
1284 	md->map = t;
1285 	dm_table_set_restrictions(t, q);
1286 	write_unlock(&md->map_lock);
1287 
1288 	return 0;
1289 }
1290 
1291 static void __unbind(struct mapped_device *md)
1292 {
1293 	struct dm_table *map = md->map;
1294 
1295 	if (!map)
1296 		return;
1297 
1298 	dm_table_event_callback(map, NULL, NULL);
1299 	write_lock(&md->map_lock);
1300 	md->map = NULL;
1301 	write_unlock(&md->map_lock);
1302 	dm_table_destroy(map);
1303 }
1304 
1305 /*
1306  * Constructor for a new device.
1307  */
1308 int dm_create(int minor, struct mapped_device **result)
1309 {
1310 	struct mapped_device *md;
1311 
1312 	md = alloc_dev(minor);
1313 	if (!md)
1314 		return -ENXIO;
1315 
1316 	dm_sysfs_init(md);
1317 
1318 	*result = md;
1319 	return 0;
1320 }
1321 
1322 static struct mapped_device *dm_find_md(dev_t dev)
1323 {
1324 	struct mapped_device *md;
1325 	unsigned minor = MINOR(dev);
1326 
1327 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1328 		return NULL;
1329 
1330 	spin_lock(&_minor_lock);
1331 
1332 	md = idr_find(&_minor_idr, minor);
1333 	if (md && (md == MINOR_ALLOCED ||
1334 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
1335 		   test_bit(DMF_FREEING, &md->flags))) {
1336 		md = NULL;
1337 		goto out;
1338 	}
1339 
1340 out:
1341 	spin_unlock(&_minor_lock);
1342 
1343 	return md;
1344 }
1345 
1346 struct mapped_device *dm_get_md(dev_t dev)
1347 {
1348 	struct mapped_device *md = dm_find_md(dev);
1349 
1350 	if (md)
1351 		dm_get(md);
1352 
1353 	return md;
1354 }
1355 
1356 void *dm_get_mdptr(struct mapped_device *md)
1357 {
1358 	return md->interface_ptr;
1359 }
1360 
1361 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1362 {
1363 	md->interface_ptr = ptr;
1364 }
1365 
1366 void dm_get(struct mapped_device *md)
1367 {
1368 	atomic_inc(&md->holders);
1369 }
1370 
1371 const char *dm_device_name(struct mapped_device *md)
1372 {
1373 	return md->name;
1374 }
1375 EXPORT_SYMBOL_GPL(dm_device_name);
1376 
1377 void dm_put(struct mapped_device *md)
1378 {
1379 	struct dm_table *map;
1380 
1381 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1382 
1383 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1384 		map = dm_get_table(md);
1385 		idr_replace(&_minor_idr, MINOR_ALLOCED,
1386 			    MINOR(disk_devt(dm_disk(md))));
1387 		set_bit(DMF_FREEING, &md->flags);
1388 		spin_unlock(&_minor_lock);
1389 		if (!dm_suspended(md)) {
1390 			dm_table_presuspend_targets(map);
1391 			dm_table_postsuspend_targets(map);
1392 		}
1393 		dm_sysfs_exit(md);
1394 		dm_table_put(map);
1395 		__unbind(md);
1396 		free_dev(md);
1397 	}
1398 }
1399 EXPORT_SYMBOL_GPL(dm_put);
1400 
1401 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1402 {
1403 	int r = 0;
1404 	DECLARE_WAITQUEUE(wait, current);
1405 
1406 	dm_unplug_all(md->queue);
1407 
1408 	add_wait_queue(&md->wait, &wait);
1409 
1410 	while (1) {
1411 		set_current_state(interruptible);
1412 
1413 		smp_mb();
1414 		if (!atomic_read(&md->pending))
1415 			break;
1416 
1417 		if (interruptible == TASK_INTERRUPTIBLE &&
1418 		    signal_pending(current)) {
1419 			r = -EINTR;
1420 			break;
1421 		}
1422 
1423 		io_schedule();
1424 	}
1425 	set_current_state(TASK_RUNNING);
1426 
1427 	remove_wait_queue(&md->wait, &wait);
1428 
1429 	return r;
1430 }
1431 
1432 static int dm_flush(struct mapped_device *md)
1433 {
1434 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1435 	return 0;
1436 }
1437 
1438 static void process_barrier(struct mapped_device *md, struct bio *bio)
1439 {
1440 	int error = dm_flush(md);
1441 
1442 	if (unlikely(error)) {
1443 		bio_endio(bio, error);
1444 		return;
1445 	}
1446 	if (bio_empty_barrier(bio)) {
1447 		bio_endio(bio, 0);
1448 		return;
1449 	}
1450 
1451 	__split_and_process_bio(md, bio);
1452 
1453 	error = dm_flush(md);
1454 
1455 	if (!error && md->barrier_error)
1456 		error = md->barrier_error;
1457 
1458 	if (md->barrier_error != DM_ENDIO_REQUEUE)
1459 		bio_endio(bio, error);
1460 }
1461 
1462 /*
1463  * Process the deferred bios
1464  */
1465 static void dm_wq_work(struct work_struct *work)
1466 {
1467 	struct mapped_device *md = container_of(work, struct mapped_device,
1468 						work);
1469 	struct bio *c;
1470 
1471 	down_write(&md->io_lock);
1472 
1473 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1474 		spin_lock_irq(&md->deferred_lock);
1475 		c = bio_list_pop(&md->deferred);
1476 		spin_unlock_irq(&md->deferred_lock);
1477 
1478 		if (!c) {
1479 			clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1480 			break;
1481 		}
1482 
1483 		up_write(&md->io_lock);
1484 
1485 		if (bio_barrier(c))
1486 			process_barrier(md, c);
1487 		else
1488 			__split_and_process_bio(md, c);
1489 
1490 		down_write(&md->io_lock);
1491 	}
1492 
1493 	up_write(&md->io_lock);
1494 }
1495 
1496 static void dm_queue_flush(struct mapped_device *md)
1497 {
1498 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1499 	smp_mb__after_clear_bit();
1500 	queue_work(md->wq, &md->work);
1501 }
1502 
1503 /*
1504  * Swap in a new table (destroying old one).
1505  */
1506 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1507 {
1508 	int r = -EINVAL;
1509 
1510 	mutex_lock(&md->suspend_lock);
1511 
1512 	/* device must be suspended */
1513 	if (!dm_suspended(md))
1514 		goto out;
1515 
1516 	/* without bdev, the device size cannot be changed */
1517 	if (!md->suspended_bdev)
1518 		if (get_capacity(md->disk) != dm_table_get_size(table))
1519 			goto out;
1520 
1521 	__unbind(md);
1522 	r = __bind(md, table);
1523 
1524 out:
1525 	mutex_unlock(&md->suspend_lock);
1526 	return r;
1527 }
1528 
1529 /*
1530  * Functions to lock and unlock any filesystem running on the
1531  * device.
1532  */
1533 static int lock_fs(struct mapped_device *md)
1534 {
1535 	int r;
1536 
1537 	WARN_ON(md->frozen_sb);
1538 
1539 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1540 	if (IS_ERR(md->frozen_sb)) {
1541 		r = PTR_ERR(md->frozen_sb);
1542 		md->frozen_sb = NULL;
1543 		return r;
1544 	}
1545 
1546 	set_bit(DMF_FROZEN, &md->flags);
1547 
1548 	/* don't bdput right now, we don't want the bdev
1549 	 * to go away while it is locked.
1550 	 */
1551 	return 0;
1552 }
1553 
1554 static void unlock_fs(struct mapped_device *md)
1555 {
1556 	if (!test_bit(DMF_FROZEN, &md->flags))
1557 		return;
1558 
1559 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1560 	md->frozen_sb = NULL;
1561 	clear_bit(DMF_FROZEN, &md->flags);
1562 }
1563 
1564 /*
1565  * We need to be able to change a mapping table under a mounted
1566  * filesystem.  For example we might want to move some data in
1567  * the background.  Before the table can be swapped with
1568  * dm_bind_table, dm_suspend must be called to flush any in
1569  * flight bios and ensure that any further io gets deferred.
1570  */
1571 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1572 {
1573 	struct dm_table *map = NULL;
1574 	int r = 0;
1575 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1576 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1577 
1578 	mutex_lock(&md->suspend_lock);
1579 
1580 	if (dm_suspended(md)) {
1581 		r = -EINVAL;
1582 		goto out_unlock;
1583 	}
1584 
1585 	map = dm_get_table(md);
1586 
1587 	/*
1588 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1589 	 * This flag is cleared before dm_suspend returns.
1590 	 */
1591 	if (noflush)
1592 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1593 
1594 	/* This does not get reverted if there's an error later. */
1595 	dm_table_presuspend_targets(map);
1596 
1597 	/* bdget() can stall if the pending I/Os are not flushed */
1598 	if (!noflush) {
1599 		md->suspended_bdev = bdget_disk(md->disk, 0);
1600 		if (!md->suspended_bdev) {
1601 			DMWARN("bdget failed in dm_suspend");
1602 			r = -ENOMEM;
1603 			goto out;
1604 		}
1605 
1606 		/*
1607 		 * Flush I/O to the device. noflush supersedes do_lockfs,
1608 		 * because lock_fs() needs to flush I/Os.
1609 		 */
1610 		if (do_lockfs) {
1611 			r = lock_fs(md);
1612 			if (r)
1613 				goto out;
1614 		}
1615 	}
1616 
1617 	/*
1618 	 * Here we must make sure that no processes are submitting requests
1619 	 * to target drivers i.e. no one may be executing
1620 	 * __split_and_process_bio. This is called from dm_request and
1621 	 * dm_wq_work.
1622 	 *
1623 	 * To get all processes out of __split_and_process_bio in dm_request,
1624 	 * we take the write lock. To prevent any process from reentering
1625 	 * __split_and_process_bio from dm_request, we set
1626 	 * DMF_QUEUE_IO_TO_THREAD.
1627 	 *
1628 	 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1629 	 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1630 	 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1631 	 * further calls to __split_and_process_bio from dm_wq_work.
1632 	 */
1633 	down_write(&md->io_lock);
1634 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1635 	set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1636 	up_write(&md->io_lock);
1637 
1638 	flush_workqueue(md->wq);
1639 
1640 	/*
1641 	 * At this point no more requests are entering target request routines.
1642 	 * We call dm_wait_for_completion to wait for all existing requests
1643 	 * to finish.
1644 	 */
1645 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1646 
1647 	down_write(&md->io_lock);
1648 	if (noflush)
1649 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1650 	up_write(&md->io_lock);
1651 
1652 	/* were we interrupted ? */
1653 	if (r < 0) {
1654 		dm_queue_flush(md);
1655 
1656 		unlock_fs(md);
1657 		goto out; /* pushback list is already flushed, so skip flush */
1658 	}
1659 
1660 	/*
1661 	 * If dm_wait_for_completion returned 0, the device is completely
1662 	 * quiescent now. There is no request-processing activity. All new
1663 	 * requests are being added to md->deferred list.
1664 	 */
1665 
1666 	dm_table_postsuspend_targets(map);
1667 
1668 	set_bit(DMF_SUSPENDED, &md->flags);
1669 
1670 out:
1671 	if (r && md->suspended_bdev) {
1672 		bdput(md->suspended_bdev);
1673 		md->suspended_bdev = NULL;
1674 	}
1675 
1676 	dm_table_put(map);
1677 
1678 out_unlock:
1679 	mutex_unlock(&md->suspend_lock);
1680 	return r;
1681 }
1682 
1683 int dm_resume(struct mapped_device *md)
1684 {
1685 	int r = -EINVAL;
1686 	struct dm_table *map = NULL;
1687 
1688 	mutex_lock(&md->suspend_lock);
1689 	if (!dm_suspended(md))
1690 		goto out;
1691 
1692 	map = dm_get_table(md);
1693 	if (!map || !dm_table_get_size(map))
1694 		goto out;
1695 
1696 	r = dm_table_resume_targets(map);
1697 	if (r)
1698 		goto out;
1699 
1700 	dm_queue_flush(md);
1701 
1702 	unlock_fs(md);
1703 
1704 	if (md->suspended_bdev) {
1705 		bdput(md->suspended_bdev);
1706 		md->suspended_bdev = NULL;
1707 	}
1708 
1709 	clear_bit(DMF_SUSPENDED, &md->flags);
1710 
1711 	dm_table_unplug_all(map);
1712 
1713 	dm_kobject_uevent(md);
1714 
1715 	r = 0;
1716 
1717 out:
1718 	dm_table_put(map);
1719 	mutex_unlock(&md->suspend_lock);
1720 
1721 	return r;
1722 }
1723 
1724 /*-----------------------------------------------------------------
1725  * Event notification.
1726  *---------------------------------------------------------------*/
1727 void dm_kobject_uevent(struct mapped_device *md)
1728 {
1729 	kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1730 }
1731 
1732 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1733 {
1734 	return atomic_add_return(1, &md->uevent_seq);
1735 }
1736 
1737 uint32_t dm_get_event_nr(struct mapped_device *md)
1738 {
1739 	return atomic_read(&md->event_nr);
1740 }
1741 
1742 int dm_wait_event(struct mapped_device *md, int event_nr)
1743 {
1744 	return wait_event_interruptible(md->eventq,
1745 			(event_nr != atomic_read(&md->event_nr)));
1746 }
1747 
1748 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1749 {
1750 	unsigned long flags;
1751 
1752 	spin_lock_irqsave(&md->uevent_lock, flags);
1753 	list_add(elist, &md->uevent_list);
1754 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1755 }
1756 
1757 /*
1758  * The gendisk is only valid as long as you have a reference
1759  * count on 'md'.
1760  */
1761 struct gendisk *dm_disk(struct mapped_device *md)
1762 {
1763 	return md->disk;
1764 }
1765 
1766 struct kobject *dm_kobject(struct mapped_device *md)
1767 {
1768 	return &md->kobj;
1769 }
1770 
1771 /*
1772  * struct mapped_device should not be exported outside of dm.c
1773  * so use this check to verify that kobj is part of md structure
1774  */
1775 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1776 {
1777 	struct mapped_device *md;
1778 
1779 	md = container_of(kobj, struct mapped_device, kobj);
1780 	if (&md->kobj != kobj)
1781 		return NULL;
1782 
1783 	dm_get(md);
1784 	return md;
1785 }
1786 
1787 int dm_suspended(struct mapped_device *md)
1788 {
1789 	return test_bit(DMF_SUSPENDED, &md->flags);
1790 }
1791 
1792 int dm_noflush_suspending(struct dm_target *ti)
1793 {
1794 	struct mapped_device *md = dm_table_get_md(ti->table);
1795 	int r = __noflush_suspending(md);
1796 
1797 	dm_put(md);
1798 
1799 	return r;
1800 }
1801 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1802 
1803 static struct block_device_operations dm_blk_dops = {
1804 	.open = dm_blk_open,
1805 	.release = dm_blk_close,
1806 	.ioctl = dm_blk_ioctl,
1807 	.getgeo = dm_blk_getgeo,
1808 	.owner = THIS_MODULE
1809 };
1810 
1811 EXPORT_SYMBOL(dm_get_mapinfo);
1812 
1813 /*
1814  * module hooks
1815  */
1816 module_init(dm_init);
1817 module_exit(dm_exit);
1818 
1819 module_param(major, uint, 0);
1820 MODULE_PARM_DESC(major, "The major number of the device mapper");
1821 MODULE_DESCRIPTION(DM_NAME " driver");
1822 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1823 MODULE_LICENSE("GPL");
1824