xref: /openbmc/linux/drivers/md/dm.c (revision b9dd2add)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 
32 #define DM_MSG_PREFIX "core"
33 
34 /*
35  * Cookies are numeric values sent with CHANGE and REMOVE
36  * uevents while resuming, removing or renaming the device.
37  */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40 
41 static const char *_name = DM_NAME;
42 
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45 
46 static DEFINE_IDR(_minor_idr);
47 
48 static DEFINE_SPINLOCK(_minor_lock);
49 
50 static void do_deferred_remove(struct work_struct *w);
51 
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53 
54 static struct workqueue_struct *deferred_remove_workqueue;
55 
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58 
59 void dm_issue_global_event(void)
60 {
61 	atomic_inc(&dm_global_event_nr);
62 	wake_up(&dm_global_eventq);
63 }
64 
65 /*
66  * One of these is allocated (on-stack) per original bio.
67  */
68 struct clone_info {
69 	struct dm_table *map;
70 	struct bio *bio;
71 	struct dm_io *io;
72 	sector_t sector;
73 	unsigned sector_count;
74 };
75 
76 /*
77  * One of these is allocated per clone bio.
78  */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 	unsigned magic;
82 	struct dm_io *io;
83 	struct dm_target *ti;
84 	unsigned target_bio_nr;
85 	unsigned *len_ptr;
86 	bool inside_dm_io;
87 	struct bio clone;
88 };
89 
90 /*
91  * One of these is allocated per original bio.
92  * It contains the first clone used for that original.
93  */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 	unsigned magic;
97 	struct mapped_device *md;
98 	blk_status_t status;
99 	atomic_t io_count;
100 	struct bio *orig_bio;
101 	unsigned long start_time;
102 	spinlock_t endio_lock;
103 	struct dm_stats_aux stats_aux;
104 	/* last member of dm_target_io is 'struct bio' */
105 	struct dm_target_io tio;
106 };
107 
108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 	if (!tio->inside_dm_io)
112 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116 
117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 	if (io->magic == DM_IO_MAGIC)
121 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 	BUG_ON(io->magic != DM_TIO_MAGIC);
123 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126 
127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132 
133 #define MINOR_ALLOCED ((void *)-1)
134 
135 /*
136  * Bits for the md->flags field.
137  */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
147 
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
150 
151 /*
152  * For mempools pre-allocation at the table loading time.
153  */
154 struct dm_md_mempools {
155 	struct bio_set bs;
156 	struct bio_set io_bs;
157 };
158 
159 struct table_device {
160 	struct list_head list;
161 	refcount_t count;
162 	struct dm_dev dm_dev;
163 };
164 
165 /*
166  * Bio-based DM's mempools' reserved IOs set by the user.
167  */
168 #define RESERVED_BIO_BASED_IOS		16
169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 
171 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 {
173 	int param = READ_ONCE(*module_param);
174 	int modified_param = 0;
175 	bool modified = true;
176 
177 	if (param < min)
178 		modified_param = min;
179 	else if (param > max)
180 		modified_param = max;
181 	else
182 		modified = false;
183 
184 	if (modified) {
185 		(void)cmpxchg(module_param, param, modified_param);
186 		param = modified_param;
187 	}
188 
189 	return param;
190 }
191 
192 unsigned __dm_get_module_param(unsigned *module_param,
193 			       unsigned def, unsigned max)
194 {
195 	unsigned param = READ_ONCE(*module_param);
196 	unsigned modified_param = 0;
197 
198 	if (!param)
199 		modified_param = def;
200 	else if (param > max)
201 		modified_param = max;
202 
203 	if (modified_param) {
204 		(void)cmpxchg(module_param, param, modified_param);
205 		param = modified_param;
206 	}
207 
208 	return param;
209 }
210 
211 unsigned dm_get_reserved_bio_based_ios(void)
212 {
213 	return __dm_get_module_param(&reserved_bio_based_ios,
214 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 }
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 
218 static unsigned dm_get_numa_node(void)
219 {
220 	return __dm_get_module_param_int(&dm_numa_node,
221 					 DM_NUMA_NODE, num_online_nodes() - 1);
222 }
223 
224 static int __init local_init(void)
225 {
226 	int r;
227 
228 	r = dm_uevent_init();
229 	if (r)
230 		return r;
231 
232 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
233 	if (!deferred_remove_workqueue) {
234 		r = -ENOMEM;
235 		goto out_uevent_exit;
236 	}
237 
238 	_major = major;
239 	r = register_blkdev(_major, _name);
240 	if (r < 0)
241 		goto out_free_workqueue;
242 
243 	if (!_major)
244 		_major = r;
245 
246 	return 0;
247 
248 out_free_workqueue:
249 	destroy_workqueue(deferred_remove_workqueue);
250 out_uevent_exit:
251 	dm_uevent_exit();
252 
253 	return r;
254 }
255 
256 static void local_exit(void)
257 {
258 	flush_scheduled_work();
259 	destroy_workqueue(deferred_remove_workqueue);
260 
261 	unregister_blkdev(_major, _name);
262 	dm_uevent_exit();
263 
264 	_major = 0;
265 
266 	DMINFO("cleaned up");
267 }
268 
269 static int (*_inits[])(void) __initdata = {
270 	local_init,
271 	dm_target_init,
272 	dm_linear_init,
273 	dm_stripe_init,
274 	dm_io_init,
275 	dm_kcopyd_init,
276 	dm_interface_init,
277 	dm_statistics_init,
278 };
279 
280 static void (*_exits[])(void) = {
281 	local_exit,
282 	dm_target_exit,
283 	dm_linear_exit,
284 	dm_stripe_exit,
285 	dm_io_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 	dm_statistics_exit,
289 };
290 
291 static int __init dm_init(void)
292 {
293 	const int count = ARRAY_SIZE(_inits);
294 
295 	int r, i;
296 
297 	for (i = 0; i < count; i++) {
298 		r = _inits[i]();
299 		if (r)
300 			goto bad;
301 	}
302 
303 	return 0;
304 
305       bad:
306 	while (i--)
307 		_exits[i]();
308 
309 	return r;
310 }
311 
312 static void __exit dm_exit(void)
313 {
314 	int i = ARRAY_SIZE(_exits);
315 
316 	while (i--)
317 		_exits[i]();
318 
319 	/*
320 	 * Should be empty by this point.
321 	 */
322 	idr_destroy(&_minor_idr);
323 }
324 
325 /*
326  * Block device functions
327  */
328 int dm_deleting_md(struct mapped_device *md)
329 {
330 	return test_bit(DMF_DELETING, &md->flags);
331 }
332 
333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
334 {
335 	struct mapped_device *md;
336 
337 	spin_lock(&_minor_lock);
338 
339 	md = bdev->bd_disk->private_data;
340 	if (!md)
341 		goto out;
342 
343 	if (test_bit(DMF_FREEING, &md->flags) ||
344 	    dm_deleting_md(md)) {
345 		md = NULL;
346 		goto out;
347 	}
348 
349 	dm_get(md);
350 	atomic_inc(&md->open_count);
351 out:
352 	spin_unlock(&_minor_lock);
353 
354 	return md ? 0 : -ENXIO;
355 }
356 
357 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
358 {
359 	struct mapped_device *md;
360 
361 	spin_lock(&_minor_lock);
362 
363 	md = disk->private_data;
364 	if (WARN_ON(!md))
365 		goto out;
366 
367 	if (atomic_dec_and_test(&md->open_count) &&
368 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
369 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
370 
371 	dm_put(md);
372 out:
373 	spin_unlock(&_minor_lock);
374 }
375 
376 int dm_open_count(struct mapped_device *md)
377 {
378 	return atomic_read(&md->open_count);
379 }
380 
381 /*
382  * Guarantees nothing is using the device before it's deleted.
383  */
384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (dm_open_count(md)) {
391 		r = -EBUSY;
392 		if (mark_deferred)
393 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
395 		r = -EEXIST;
396 	else
397 		set_bit(DMF_DELETING, &md->flags);
398 
399 	spin_unlock(&_minor_lock);
400 
401 	return r;
402 }
403 
404 int dm_cancel_deferred_remove(struct mapped_device *md)
405 {
406 	int r = 0;
407 
408 	spin_lock(&_minor_lock);
409 
410 	if (test_bit(DMF_DELETING, &md->flags))
411 		r = -EBUSY;
412 	else
413 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
414 
415 	spin_unlock(&_minor_lock);
416 
417 	return r;
418 }
419 
420 static void do_deferred_remove(struct work_struct *w)
421 {
422 	dm_deferred_remove();
423 }
424 
425 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
426 {
427 	struct mapped_device *md = bdev->bd_disk->private_data;
428 
429 	return dm_get_geometry(md, geo);
430 }
431 
432 #ifdef CONFIG_BLK_DEV_ZONED
433 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
434 {
435 	struct dm_report_zones_args *args = data;
436 	sector_t sector_diff = args->tgt->begin - args->start;
437 
438 	/*
439 	 * Ignore zones beyond the target range.
440 	 */
441 	if (zone->start >= args->start + args->tgt->len)
442 		return 0;
443 
444 	/*
445 	 * Remap the start sector and write pointer position of the zone
446 	 * to match its position in the target range.
447 	 */
448 	zone->start += sector_diff;
449 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
450 		if (zone->cond == BLK_ZONE_COND_FULL)
451 			zone->wp = zone->start + zone->len;
452 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
453 			zone->wp = zone->start;
454 		else
455 			zone->wp += sector_diff;
456 	}
457 
458 	args->next_sector = zone->start + zone->len;
459 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
460 }
461 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
462 
463 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
464 		unsigned int nr_zones, report_zones_cb cb, void *data)
465 {
466 	struct mapped_device *md = disk->private_data;
467 	struct dm_table *map;
468 	int srcu_idx, ret;
469 	struct dm_report_zones_args args = {
470 		.next_sector = sector,
471 		.orig_data = data,
472 		.orig_cb = cb,
473 	};
474 
475 	if (dm_suspended_md(md))
476 		return -EAGAIN;
477 
478 	map = dm_get_live_table(md, &srcu_idx);
479 	if (!map) {
480 		ret = -EIO;
481 		goto out;
482 	}
483 
484 	do {
485 		struct dm_target *tgt;
486 
487 		tgt = dm_table_find_target(map, args.next_sector);
488 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
489 			ret = -EIO;
490 			goto out;
491 		}
492 
493 		args.tgt = tgt;
494 		ret = tgt->type->report_zones(tgt, &args,
495 					      nr_zones - args.zone_idx);
496 		if (ret < 0)
497 			goto out;
498 	} while (args.zone_idx < nr_zones &&
499 		 args.next_sector < get_capacity(disk));
500 
501 	ret = args.zone_idx;
502 out:
503 	dm_put_live_table(md, srcu_idx);
504 	return ret;
505 }
506 #else
507 #define dm_blk_report_zones		NULL
508 #endif /* CONFIG_BLK_DEV_ZONED */
509 
510 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
511 			    struct block_device **bdev)
512 {
513 	struct dm_target *tgt;
514 	struct dm_table *map;
515 	int r;
516 
517 retry:
518 	r = -ENOTTY;
519 	map = dm_get_live_table(md, srcu_idx);
520 	if (!map || !dm_table_get_size(map))
521 		return r;
522 
523 	/* We only support devices that have a single target */
524 	if (dm_table_get_num_targets(map) != 1)
525 		return r;
526 
527 	tgt = dm_table_get_target(map, 0);
528 	if (!tgt->type->prepare_ioctl)
529 		return r;
530 
531 	if (dm_suspended_md(md))
532 		return -EAGAIN;
533 
534 	r = tgt->type->prepare_ioctl(tgt, bdev);
535 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
536 		dm_put_live_table(md, *srcu_idx);
537 		msleep(10);
538 		goto retry;
539 	}
540 
541 	return r;
542 }
543 
544 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
545 {
546 	dm_put_live_table(md, srcu_idx);
547 }
548 
549 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
550 			unsigned int cmd, unsigned long arg)
551 {
552 	struct mapped_device *md = bdev->bd_disk->private_data;
553 	int r, srcu_idx;
554 
555 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
556 	if (r < 0)
557 		goto out;
558 
559 	if (r > 0) {
560 		/*
561 		 * Target determined this ioctl is being issued against a
562 		 * subset of the parent bdev; require extra privileges.
563 		 */
564 		if (!capable(CAP_SYS_RAWIO)) {
565 			DMDEBUG_LIMIT(
566 	"%s: sending ioctl %x to DM device without required privilege.",
567 				current->comm, cmd);
568 			r = -ENOIOCTLCMD;
569 			goto out;
570 		}
571 	}
572 
573 	if (!bdev->bd_disk->fops->ioctl)
574 		r = -ENOTTY;
575 	else
576 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
577 out:
578 	dm_unprepare_ioctl(md, srcu_idx);
579 	return r;
580 }
581 
582 u64 dm_start_time_ns_from_clone(struct bio *bio)
583 {
584 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
585 	struct dm_io *io = tio->io;
586 
587 	return jiffies_to_nsecs(io->start_time);
588 }
589 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
590 
591 static void start_io_acct(struct dm_io *io)
592 {
593 	struct mapped_device *md = io->md;
594 	struct bio *bio = io->orig_bio;
595 
596 	io->start_time = bio_start_io_acct(bio);
597 	if (unlikely(dm_stats_used(&md->stats)))
598 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
599 				    bio->bi_iter.bi_sector, bio_sectors(bio),
600 				    false, 0, &io->stats_aux);
601 }
602 
603 static void end_io_acct(struct dm_io *io)
604 {
605 	struct mapped_device *md = io->md;
606 	struct bio *bio = io->orig_bio;
607 	unsigned long duration = jiffies - io->start_time;
608 
609 	bio_end_io_acct(bio, io->start_time);
610 
611 	if (unlikely(dm_stats_used(&md->stats)))
612 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
613 				    bio->bi_iter.bi_sector, bio_sectors(bio),
614 				    true, duration, &io->stats_aux);
615 
616 	/* nudge anyone waiting on suspend queue */
617 	if (unlikely(wq_has_sleeper(&md->wait)))
618 		wake_up(&md->wait);
619 }
620 
621 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
622 {
623 	struct dm_io *io;
624 	struct dm_target_io *tio;
625 	struct bio *clone;
626 
627 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
628 	if (!clone)
629 		return NULL;
630 
631 	tio = container_of(clone, struct dm_target_io, clone);
632 	tio->inside_dm_io = true;
633 	tio->io = NULL;
634 
635 	io = container_of(tio, struct dm_io, tio);
636 	io->magic = DM_IO_MAGIC;
637 	io->status = 0;
638 	atomic_set(&io->io_count, 1);
639 	io->orig_bio = bio;
640 	io->md = md;
641 	spin_lock_init(&io->endio_lock);
642 
643 	start_io_acct(io);
644 
645 	return io;
646 }
647 
648 static void free_io(struct mapped_device *md, struct dm_io *io)
649 {
650 	bio_put(&io->tio.clone);
651 }
652 
653 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
654 				      unsigned target_bio_nr, gfp_t gfp_mask)
655 {
656 	struct dm_target_io *tio;
657 
658 	if (!ci->io->tio.io) {
659 		/* the dm_target_io embedded in ci->io is available */
660 		tio = &ci->io->tio;
661 	} else {
662 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
663 		if (!clone)
664 			return NULL;
665 
666 		tio = container_of(clone, struct dm_target_io, clone);
667 		tio->inside_dm_io = false;
668 	}
669 
670 	tio->magic = DM_TIO_MAGIC;
671 	tio->io = ci->io;
672 	tio->ti = ti;
673 	tio->target_bio_nr = target_bio_nr;
674 
675 	return tio;
676 }
677 
678 static void free_tio(struct dm_target_io *tio)
679 {
680 	if (tio->inside_dm_io)
681 		return;
682 	bio_put(&tio->clone);
683 }
684 
685 /*
686  * Add the bio to the list of deferred io.
687  */
688 static void queue_io(struct mapped_device *md, struct bio *bio)
689 {
690 	unsigned long flags;
691 
692 	spin_lock_irqsave(&md->deferred_lock, flags);
693 	bio_list_add(&md->deferred, bio);
694 	spin_unlock_irqrestore(&md->deferred_lock, flags);
695 	queue_work(md->wq, &md->work);
696 }
697 
698 /*
699  * Everyone (including functions in this file), should use this
700  * function to access the md->map field, and make sure they call
701  * dm_put_live_table() when finished.
702  */
703 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
704 {
705 	*srcu_idx = srcu_read_lock(&md->io_barrier);
706 
707 	return srcu_dereference(md->map, &md->io_barrier);
708 }
709 
710 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
711 {
712 	srcu_read_unlock(&md->io_barrier, srcu_idx);
713 }
714 
715 void dm_sync_table(struct mapped_device *md)
716 {
717 	synchronize_srcu(&md->io_barrier);
718 	synchronize_rcu_expedited();
719 }
720 
721 /*
722  * A fast alternative to dm_get_live_table/dm_put_live_table.
723  * The caller must not block between these two functions.
724  */
725 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
726 {
727 	rcu_read_lock();
728 	return rcu_dereference(md->map);
729 }
730 
731 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
732 {
733 	rcu_read_unlock();
734 }
735 
736 static char *_dm_claim_ptr = "I belong to device-mapper";
737 
738 /*
739  * Open a table device so we can use it as a map destination.
740  */
741 static int open_table_device(struct table_device *td, dev_t dev,
742 			     struct mapped_device *md)
743 {
744 	struct block_device *bdev;
745 
746 	int r;
747 
748 	BUG_ON(td->dm_dev.bdev);
749 
750 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
751 	if (IS_ERR(bdev))
752 		return PTR_ERR(bdev);
753 
754 	r = bd_link_disk_holder(bdev, dm_disk(md));
755 	if (r) {
756 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
757 		return r;
758 	}
759 
760 	td->dm_dev.bdev = bdev;
761 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
762 	return 0;
763 }
764 
765 /*
766  * Close a table device that we've been using.
767  */
768 static void close_table_device(struct table_device *td, struct mapped_device *md)
769 {
770 	if (!td->dm_dev.bdev)
771 		return;
772 
773 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
774 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
775 	put_dax(td->dm_dev.dax_dev);
776 	td->dm_dev.bdev = NULL;
777 	td->dm_dev.dax_dev = NULL;
778 }
779 
780 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
781 					      fmode_t mode)
782 {
783 	struct table_device *td;
784 
785 	list_for_each_entry(td, l, list)
786 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
787 			return td;
788 
789 	return NULL;
790 }
791 
792 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
793 			struct dm_dev **result)
794 {
795 	int r;
796 	struct table_device *td;
797 
798 	mutex_lock(&md->table_devices_lock);
799 	td = find_table_device(&md->table_devices, dev, mode);
800 	if (!td) {
801 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
802 		if (!td) {
803 			mutex_unlock(&md->table_devices_lock);
804 			return -ENOMEM;
805 		}
806 
807 		td->dm_dev.mode = mode;
808 		td->dm_dev.bdev = NULL;
809 
810 		if ((r = open_table_device(td, dev, md))) {
811 			mutex_unlock(&md->table_devices_lock);
812 			kfree(td);
813 			return r;
814 		}
815 
816 		format_dev_t(td->dm_dev.name, dev);
817 
818 		refcount_set(&td->count, 1);
819 		list_add(&td->list, &md->table_devices);
820 	} else {
821 		refcount_inc(&td->count);
822 	}
823 	mutex_unlock(&md->table_devices_lock);
824 
825 	*result = &td->dm_dev;
826 	return 0;
827 }
828 EXPORT_SYMBOL_GPL(dm_get_table_device);
829 
830 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
831 {
832 	struct table_device *td = container_of(d, struct table_device, dm_dev);
833 
834 	mutex_lock(&md->table_devices_lock);
835 	if (refcount_dec_and_test(&td->count)) {
836 		close_table_device(td, md);
837 		list_del(&td->list);
838 		kfree(td);
839 	}
840 	mutex_unlock(&md->table_devices_lock);
841 }
842 EXPORT_SYMBOL(dm_put_table_device);
843 
844 static void free_table_devices(struct list_head *devices)
845 {
846 	struct list_head *tmp, *next;
847 
848 	list_for_each_safe(tmp, next, devices) {
849 		struct table_device *td = list_entry(tmp, struct table_device, list);
850 
851 		DMWARN("dm_destroy: %s still exists with %d references",
852 		       td->dm_dev.name, refcount_read(&td->count));
853 		kfree(td);
854 	}
855 }
856 
857 /*
858  * Get the geometry associated with a dm device
859  */
860 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
861 {
862 	*geo = md->geometry;
863 
864 	return 0;
865 }
866 
867 /*
868  * Set the geometry of a device.
869  */
870 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
871 {
872 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
873 
874 	if (geo->start > sz) {
875 		DMWARN("Start sector is beyond the geometry limits.");
876 		return -EINVAL;
877 	}
878 
879 	md->geometry = *geo;
880 
881 	return 0;
882 }
883 
884 static int __noflush_suspending(struct mapped_device *md)
885 {
886 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
887 }
888 
889 /*
890  * Decrements the number of outstanding ios that a bio has been
891  * cloned into, completing the original io if necc.
892  */
893 static void dec_pending(struct dm_io *io, blk_status_t error)
894 {
895 	unsigned long flags;
896 	blk_status_t io_error;
897 	struct bio *bio;
898 	struct mapped_device *md = io->md;
899 
900 	/* Push-back supersedes any I/O errors */
901 	if (unlikely(error)) {
902 		spin_lock_irqsave(&io->endio_lock, flags);
903 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
904 			io->status = error;
905 		spin_unlock_irqrestore(&io->endio_lock, flags);
906 	}
907 
908 	if (atomic_dec_and_test(&io->io_count)) {
909 		if (io->status == BLK_STS_DM_REQUEUE) {
910 			/*
911 			 * Target requested pushing back the I/O.
912 			 */
913 			spin_lock_irqsave(&md->deferred_lock, flags);
914 			if (__noflush_suspending(md))
915 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
916 				bio_list_add_head(&md->deferred, io->orig_bio);
917 			else
918 				/* noflush suspend was interrupted. */
919 				io->status = BLK_STS_IOERR;
920 			spin_unlock_irqrestore(&md->deferred_lock, flags);
921 		}
922 
923 		io_error = io->status;
924 		bio = io->orig_bio;
925 		end_io_acct(io);
926 		free_io(md, io);
927 
928 		if (io_error == BLK_STS_DM_REQUEUE)
929 			return;
930 
931 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
932 			/*
933 			 * Preflush done for flush with data, reissue
934 			 * without REQ_PREFLUSH.
935 			 */
936 			bio->bi_opf &= ~REQ_PREFLUSH;
937 			queue_io(md, bio);
938 		} else {
939 			/* done with normal IO or empty flush */
940 			if (io_error)
941 				bio->bi_status = io_error;
942 			bio_endio(bio);
943 		}
944 	}
945 }
946 
947 void disable_discard(struct mapped_device *md)
948 {
949 	struct queue_limits *limits = dm_get_queue_limits(md);
950 
951 	/* device doesn't really support DISCARD, disable it */
952 	limits->max_discard_sectors = 0;
953 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
954 }
955 
956 void disable_write_same(struct mapped_device *md)
957 {
958 	struct queue_limits *limits = dm_get_queue_limits(md);
959 
960 	/* device doesn't really support WRITE SAME, disable it */
961 	limits->max_write_same_sectors = 0;
962 }
963 
964 void disable_write_zeroes(struct mapped_device *md)
965 {
966 	struct queue_limits *limits = dm_get_queue_limits(md);
967 
968 	/* device doesn't really support WRITE ZEROES, disable it */
969 	limits->max_write_zeroes_sectors = 0;
970 }
971 
972 static void clone_endio(struct bio *bio)
973 {
974 	blk_status_t error = bio->bi_status;
975 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
976 	struct dm_io *io = tio->io;
977 	struct mapped_device *md = tio->io->md;
978 	dm_endio_fn endio = tio->ti->type->end_io;
979 	struct bio *orig_bio = io->orig_bio;
980 
981 	if (unlikely(error == BLK_STS_TARGET)) {
982 		if (bio_op(bio) == REQ_OP_DISCARD &&
983 		    !bio->bi_disk->queue->limits.max_discard_sectors)
984 			disable_discard(md);
985 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
986 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
987 			disable_write_same(md);
988 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
989 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
990 			disable_write_zeroes(md);
991 	}
992 
993 	/*
994 	 * For zone-append bios get offset in zone of the written
995 	 * sector and add that to the original bio sector pos.
996 	 */
997 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
998 		sector_t written_sector = bio->bi_iter.bi_sector;
999 		struct request_queue *q = orig_bio->bi_disk->queue;
1000 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1001 
1002 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1003 	}
1004 
1005 	if (endio) {
1006 		int r = endio(tio->ti, bio, &error);
1007 		switch (r) {
1008 		case DM_ENDIO_REQUEUE:
1009 			error = BLK_STS_DM_REQUEUE;
1010 			fallthrough;
1011 		case DM_ENDIO_DONE:
1012 			break;
1013 		case DM_ENDIO_INCOMPLETE:
1014 			/* The target will handle the io */
1015 			return;
1016 		default:
1017 			DMWARN("unimplemented target endio return value: %d", r);
1018 			BUG();
1019 		}
1020 	}
1021 
1022 	free_tio(tio);
1023 	dec_pending(io, error);
1024 }
1025 
1026 /*
1027  * Return maximum size of I/O possible at the supplied sector up to the current
1028  * target boundary.
1029  */
1030 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1031 						  sector_t target_offset)
1032 {
1033 	return ti->len - target_offset;
1034 }
1035 
1036 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1037 {
1038 	sector_t target_offset = dm_target_offset(ti, sector);
1039 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1040 	sector_t max_len;
1041 
1042 	/*
1043 	 * Does the target need to split IO even further?
1044 	 * - varied (per target) IO splitting is a tenet of DM; this
1045 	 *   explains why stacked chunk_sectors based splitting via
1046 	 *   blk_max_size_offset() isn't possible here. So pass in
1047 	 *   ti->max_io_len to override stacked chunk_sectors.
1048 	 */
1049 	if (ti->max_io_len) {
1050 		max_len = blk_max_size_offset(ti->table->md->queue,
1051 					      target_offset, ti->max_io_len);
1052 		if (len > max_len)
1053 			len = max_len;
1054 	}
1055 
1056 	return len;
1057 }
1058 
1059 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1060 {
1061 	if (len > UINT_MAX) {
1062 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1063 		      (unsigned long long)len, UINT_MAX);
1064 		ti->error = "Maximum size of target IO is too large";
1065 		return -EINVAL;
1066 	}
1067 
1068 	ti->max_io_len = (uint32_t) len;
1069 
1070 	return 0;
1071 }
1072 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1073 
1074 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1075 						sector_t sector, int *srcu_idx)
1076 	__acquires(md->io_barrier)
1077 {
1078 	struct dm_table *map;
1079 	struct dm_target *ti;
1080 
1081 	map = dm_get_live_table(md, srcu_idx);
1082 	if (!map)
1083 		return NULL;
1084 
1085 	ti = dm_table_find_target(map, sector);
1086 	if (!ti)
1087 		return NULL;
1088 
1089 	return ti;
1090 }
1091 
1092 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1093 				 long nr_pages, void **kaddr, pfn_t *pfn)
1094 {
1095 	struct mapped_device *md = dax_get_private(dax_dev);
1096 	sector_t sector = pgoff * PAGE_SECTORS;
1097 	struct dm_target *ti;
1098 	long len, ret = -EIO;
1099 	int srcu_idx;
1100 
1101 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1102 
1103 	if (!ti)
1104 		goto out;
1105 	if (!ti->type->direct_access)
1106 		goto out;
1107 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1108 	if (len < 1)
1109 		goto out;
1110 	nr_pages = min(len, nr_pages);
1111 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1112 
1113  out:
1114 	dm_put_live_table(md, srcu_idx);
1115 
1116 	return ret;
1117 }
1118 
1119 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1120 		int blocksize, sector_t start, sector_t len)
1121 {
1122 	struct mapped_device *md = dax_get_private(dax_dev);
1123 	struct dm_table *map;
1124 	bool ret = false;
1125 	int srcu_idx;
1126 
1127 	map = dm_get_live_table(md, &srcu_idx);
1128 	if (!map)
1129 		goto out;
1130 
1131 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1132 
1133 out:
1134 	dm_put_live_table(md, srcu_idx);
1135 
1136 	return ret;
1137 }
1138 
1139 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1140 				    void *addr, size_t bytes, struct iov_iter *i)
1141 {
1142 	struct mapped_device *md = dax_get_private(dax_dev);
1143 	sector_t sector = pgoff * PAGE_SECTORS;
1144 	struct dm_target *ti;
1145 	long ret = 0;
1146 	int srcu_idx;
1147 
1148 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1149 
1150 	if (!ti)
1151 		goto out;
1152 	if (!ti->type->dax_copy_from_iter) {
1153 		ret = copy_from_iter(addr, bytes, i);
1154 		goto out;
1155 	}
1156 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1157  out:
1158 	dm_put_live_table(md, srcu_idx);
1159 
1160 	return ret;
1161 }
1162 
1163 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1164 		void *addr, size_t bytes, struct iov_iter *i)
1165 {
1166 	struct mapped_device *md = dax_get_private(dax_dev);
1167 	sector_t sector = pgoff * PAGE_SECTORS;
1168 	struct dm_target *ti;
1169 	long ret = 0;
1170 	int srcu_idx;
1171 
1172 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1173 
1174 	if (!ti)
1175 		goto out;
1176 	if (!ti->type->dax_copy_to_iter) {
1177 		ret = copy_to_iter(addr, bytes, i);
1178 		goto out;
1179 	}
1180 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1181  out:
1182 	dm_put_live_table(md, srcu_idx);
1183 
1184 	return ret;
1185 }
1186 
1187 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1188 				  size_t nr_pages)
1189 {
1190 	struct mapped_device *md = dax_get_private(dax_dev);
1191 	sector_t sector = pgoff * PAGE_SECTORS;
1192 	struct dm_target *ti;
1193 	int ret = -EIO;
1194 	int srcu_idx;
1195 
1196 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1197 
1198 	if (!ti)
1199 		goto out;
1200 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1201 		/*
1202 		 * ->zero_page_range() is mandatory dax operation. If we are
1203 		 *  here, something is wrong.
1204 		 */
1205 		goto out;
1206 	}
1207 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1208  out:
1209 	dm_put_live_table(md, srcu_idx);
1210 
1211 	return ret;
1212 }
1213 
1214 /*
1215  * A target may call dm_accept_partial_bio only from the map routine.  It is
1216  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1217  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1218  *
1219  * dm_accept_partial_bio informs the dm that the target only wants to process
1220  * additional n_sectors sectors of the bio and the rest of the data should be
1221  * sent in a next bio.
1222  *
1223  * A diagram that explains the arithmetics:
1224  * +--------------------+---------------+-------+
1225  * |         1          |       2       |   3   |
1226  * +--------------------+---------------+-------+
1227  *
1228  * <-------------- *tio->len_ptr --------------->
1229  *                      <------- bi_size ------->
1230  *                      <-- n_sectors -->
1231  *
1232  * Region 1 was already iterated over with bio_advance or similar function.
1233  *	(it may be empty if the target doesn't use bio_advance)
1234  * Region 2 is the remaining bio size that the target wants to process.
1235  *	(it may be empty if region 1 is non-empty, although there is no reason
1236  *	 to make it empty)
1237  * The target requires that region 3 is to be sent in the next bio.
1238  *
1239  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1240  * the partially processed part (the sum of regions 1+2) must be the same for all
1241  * copies of the bio.
1242  */
1243 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1244 {
1245 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1246 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1247 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1248 	BUG_ON(bi_size > *tio->len_ptr);
1249 	BUG_ON(n_sectors > bi_size);
1250 	*tio->len_ptr -= bi_size - n_sectors;
1251 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1252 }
1253 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1254 
1255 static blk_qc_t __map_bio(struct dm_target_io *tio)
1256 {
1257 	int r;
1258 	sector_t sector;
1259 	struct bio *clone = &tio->clone;
1260 	struct dm_io *io = tio->io;
1261 	struct dm_target *ti = tio->ti;
1262 	blk_qc_t ret = BLK_QC_T_NONE;
1263 
1264 	clone->bi_end_io = clone_endio;
1265 
1266 	/*
1267 	 * Map the clone.  If r == 0 we don't need to do
1268 	 * anything, the target has assumed ownership of
1269 	 * this io.
1270 	 */
1271 	atomic_inc(&io->io_count);
1272 	sector = clone->bi_iter.bi_sector;
1273 
1274 	r = ti->type->map(ti, clone);
1275 	switch (r) {
1276 	case DM_MAPIO_SUBMITTED:
1277 		break;
1278 	case DM_MAPIO_REMAPPED:
1279 		/* the bio has been remapped so dispatch it */
1280 		trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1281 		ret = submit_bio_noacct(clone);
1282 		break;
1283 	case DM_MAPIO_KILL:
1284 		free_tio(tio);
1285 		dec_pending(io, BLK_STS_IOERR);
1286 		break;
1287 	case DM_MAPIO_REQUEUE:
1288 		free_tio(tio);
1289 		dec_pending(io, BLK_STS_DM_REQUEUE);
1290 		break;
1291 	default:
1292 		DMWARN("unimplemented target map return value: %d", r);
1293 		BUG();
1294 	}
1295 
1296 	return ret;
1297 }
1298 
1299 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1300 {
1301 	bio->bi_iter.bi_sector = sector;
1302 	bio->bi_iter.bi_size = to_bytes(len);
1303 }
1304 
1305 /*
1306  * Creates a bio that consists of range of complete bvecs.
1307  */
1308 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1309 		     sector_t sector, unsigned len)
1310 {
1311 	struct bio *clone = &tio->clone;
1312 	int r;
1313 
1314 	__bio_clone_fast(clone, bio);
1315 
1316 	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1317 	if (r < 0)
1318 		return r;
1319 
1320 	if (bio_integrity(bio)) {
1321 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1322 			     !dm_target_passes_integrity(tio->ti->type))) {
1323 			DMWARN("%s: the target %s doesn't support integrity data.",
1324 				dm_device_name(tio->io->md),
1325 				tio->ti->type->name);
1326 			return -EIO;
1327 		}
1328 
1329 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1330 		if (r < 0)
1331 			return r;
1332 	}
1333 
1334 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1335 	clone->bi_iter.bi_size = to_bytes(len);
1336 
1337 	if (bio_integrity(bio))
1338 		bio_integrity_trim(clone);
1339 
1340 	return 0;
1341 }
1342 
1343 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1344 				struct dm_target *ti, unsigned num_bios)
1345 {
1346 	struct dm_target_io *tio;
1347 	int try;
1348 
1349 	if (!num_bios)
1350 		return;
1351 
1352 	if (num_bios == 1) {
1353 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1354 		bio_list_add(blist, &tio->clone);
1355 		return;
1356 	}
1357 
1358 	for (try = 0; try < 2; try++) {
1359 		int bio_nr;
1360 		struct bio *bio;
1361 
1362 		if (try)
1363 			mutex_lock(&ci->io->md->table_devices_lock);
1364 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1365 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1366 			if (!tio)
1367 				break;
1368 
1369 			bio_list_add(blist, &tio->clone);
1370 		}
1371 		if (try)
1372 			mutex_unlock(&ci->io->md->table_devices_lock);
1373 		if (bio_nr == num_bios)
1374 			return;
1375 
1376 		while ((bio = bio_list_pop(blist))) {
1377 			tio = container_of(bio, struct dm_target_io, clone);
1378 			free_tio(tio);
1379 		}
1380 	}
1381 }
1382 
1383 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1384 					   struct dm_target_io *tio, unsigned *len)
1385 {
1386 	struct bio *clone = &tio->clone;
1387 
1388 	tio->len_ptr = len;
1389 
1390 	__bio_clone_fast(clone, ci->bio);
1391 	if (len)
1392 		bio_setup_sector(clone, ci->sector, *len);
1393 
1394 	return __map_bio(tio);
1395 }
1396 
1397 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1398 				  unsigned num_bios, unsigned *len)
1399 {
1400 	struct bio_list blist = BIO_EMPTY_LIST;
1401 	struct bio *bio;
1402 	struct dm_target_io *tio;
1403 
1404 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1405 
1406 	while ((bio = bio_list_pop(&blist))) {
1407 		tio = container_of(bio, struct dm_target_io, clone);
1408 		(void) __clone_and_map_simple_bio(ci, tio, len);
1409 	}
1410 }
1411 
1412 static int __send_empty_flush(struct clone_info *ci)
1413 {
1414 	unsigned target_nr = 0;
1415 	struct dm_target *ti;
1416 	struct bio flush_bio;
1417 
1418 	/*
1419 	 * Use an on-stack bio for this, it's safe since we don't
1420 	 * need to reference it after submit. It's just used as
1421 	 * the basis for the clone(s).
1422 	 */
1423 	bio_init(&flush_bio, NULL, 0);
1424 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1425 	flush_bio.bi_disk = ci->io->md->disk;
1426 	bio_associate_blkg(&flush_bio);
1427 
1428 	ci->bio = &flush_bio;
1429 	ci->sector_count = 0;
1430 
1431 	BUG_ON(bio_has_data(ci->bio));
1432 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1433 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1434 
1435 	bio_uninit(ci->bio);
1436 	return 0;
1437 }
1438 
1439 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1440 				    sector_t sector, unsigned *len)
1441 {
1442 	struct bio *bio = ci->bio;
1443 	struct dm_target_io *tio;
1444 	int r;
1445 
1446 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1447 	tio->len_ptr = len;
1448 	r = clone_bio(tio, bio, sector, *len);
1449 	if (r < 0) {
1450 		free_tio(tio);
1451 		return r;
1452 	}
1453 	(void) __map_bio(tio);
1454 
1455 	return 0;
1456 }
1457 
1458 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1459 				       unsigned num_bios)
1460 {
1461 	unsigned len;
1462 
1463 	/*
1464 	 * Even though the device advertised support for this type of
1465 	 * request, that does not mean every target supports it, and
1466 	 * reconfiguration might also have changed that since the
1467 	 * check was performed.
1468 	 */
1469 	if (!num_bios)
1470 		return -EOPNOTSUPP;
1471 
1472 	len = min_t(sector_t, ci->sector_count,
1473 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1474 
1475 	__send_duplicate_bios(ci, ti, num_bios, &len);
1476 
1477 	ci->sector += len;
1478 	ci->sector_count -= len;
1479 
1480 	return 0;
1481 }
1482 
1483 static bool is_abnormal_io(struct bio *bio)
1484 {
1485 	bool r = false;
1486 
1487 	switch (bio_op(bio)) {
1488 	case REQ_OP_DISCARD:
1489 	case REQ_OP_SECURE_ERASE:
1490 	case REQ_OP_WRITE_SAME:
1491 	case REQ_OP_WRITE_ZEROES:
1492 		r = true;
1493 		break;
1494 	}
1495 
1496 	return r;
1497 }
1498 
1499 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1500 				  int *result)
1501 {
1502 	struct bio *bio = ci->bio;
1503 	unsigned num_bios = 0;
1504 
1505 	switch (bio_op(bio)) {
1506 	case REQ_OP_DISCARD:
1507 		num_bios = ti->num_discard_bios;
1508 		break;
1509 	case REQ_OP_SECURE_ERASE:
1510 		num_bios = ti->num_secure_erase_bios;
1511 		break;
1512 	case REQ_OP_WRITE_SAME:
1513 		num_bios = ti->num_write_same_bios;
1514 		break;
1515 	case REQ_OP_WRITE_ZEROES:
1516 		num_bios = ti->num_write_zeroes_bios;
1517 		break;
1518 	default:
1519 		return false;
1520 	}
1521 
1522 	*result = __send_changing_extent_only(ci, ti, num_bios);
1523 	return true;
1524 }
1525 
1526 /*
1527  * Select the correct strategy for processing a non-flush bio.
1528  */
1529 static int __split_and_process_non_flush(struct clone_info *ci)
1530 {
1531 	struct dm_target *ti;
1532 	unsigned len;
1533 	int r;
1534 
1535 	ti = dm_table_find_target(ci->map, ci->sector);
1536 	if (!ti)
1537 		return -EIO;
1538 
1539 	if (__process_abnormal_io(ci, ti, &r))
1540 		return r;
1541 
1542 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1543 
1544 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1545 	if (r < 0)
1546 		return r;
1547 
1548 	ci->sector += len;
1549 	ci->sector_count -= len;
1550 
1551 	return 0;
1552 }
1553 
1554 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1555 			    struct dm_table *map, struct bio *bio)
1556 {
1557 	ci->map = map;
1558 	ci->io = alloc_io(md, bio);
1559 	ci->sector = bio->bi_iter.bi_sector;
1560 }
1561 
1562 #define __dm_part_stat_sub(part, field, subnd)	\
1563 	(part_stat_get(part, field) -= (subnd))
1564 
1565 /*
1566  * Entry point to split a bio into clones and submit them to the targets.
1567  */
1568 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1569 					struct dm_table *map, struct bio *bio)
1570 {
1571 	struct clone_info ci;
1572 	blk_qc_t ret = BLK_QC_T_NONE;
1573 	int error = 0;
1574 
1575 	init_clone_info(&ci, md, map, bio);
1576 
1577 	if (bio->bi_opf & REQ_PREFLUSH) {
1578 		error = __send_empty_flush(&ci);
1579 		/* dec_pending submits any data associated with flush */
1580 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1581 		ci.bio = bio;
1582 		ci.sector_count = 0;
1583 		error = __split_and_process_non_flush(&ci);
1584 	} else {
1585 		ci.bio = bio;
1586 		ci.sector_count = bio_sectors(bio);
1587 		while (ci.sector_count && !error) {
1588 			error = __split_and_process_non_flush(&ci);
1589 			if (ci.sector_count && !error) {
1590 				/*
1591 				 * Remainder must be passed to submit_bio_noacct()
1592 				 * so that it gets handled *after* bios already submitted
1593 				 * have been completely processed.
1594 				 * We take a clone of the original to store in
1595 				 * ci.io->orig_bio to be used by end_io_acct() and
1596 				 * for dec_pending to use for completion handling.
1597 				 */
1598 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1599 							  GFP_NOIO, &md->queue->bio_split);
1600 				ci.io->orig_bio = b;
1601 
1602 				/*
1603 				 * Adjust IO stats for each split, otherwise upon queue
1604 				 * reentry there will be redundant IO accounting.
1605 				 * NOTE: this is a stop-gap fix, a proper fix involves
1606 				 * significant refactoring of DM core's bio splitting
1607 				 * (by eliminating DM's splitting and just using bio_split)
1608 				 */
1609 				part_stat_lock();
1610 				__dm_part_stat_sub(dm_disk(md)->part0,
1611 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1612 				part_stat_unlock();
1613 
1614 				bio_chain(b, bio);
1615 				trace_block_split(b, bio->bi_iter.bi_sector);
1616 				ret = submit_bio_noacct(bio);
1617 				break;
1618 			}
1619 		}
1620 	}
1621 
1622 	/* drop the extra reference count */
1623 	dec_pending(ci.io, errno_to_blk_status(error));
1624 	return ret;
1625 }
1626 
1627 static blk_qc_t dm_submit_bio(struct bio *bio)
1628 {
1629 	struct mapped_device *md = bio->bi_disk->private_data;
1630 	blk_qc_t ret = BLK_QC_T_NONE;
1631 	int srcu_idx;
1632 	struct dm_table *map;
1633 
1634 	map = dm_get_live_table(md, &srcu_idx);
1635 	if (unlikely(!map)) {
1636 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1637 			    dm_device_name(md));
1638 		bio_io_error(bio);
1639 		goto out;
1640 	}
1641 
1642 	/* If suspended, queue this IO for later */
1643 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1644 		if (bio->bi_opf & REQ_NOWAIT)
1645 			bio_wouldblock_error(bio);
1646 		else if (bio->bi_opf & REQ_RAHEAD)
1647 			bio_io_error(bio);
1648 		else
1649 			queue_io(md, bio);
1650 		goto out;
1651 	}
1652 
1653 	/*
1654 	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1655 	 * otherwise associated queue_limits won't be imposed.
1656 	 */
1657 	if (is_abnormal_io(bio))
1658 		blk_queue_split(&bio);
1659 
1660 	ret = __split_and_process_bio(md, map, bio);
1661 out:
1662 	dm_put_live_table(md, srcu_idx);
1663 	return ret;
1664 }
1665 
1666 /*-----------------------------------------------------------------
1667  * An IDR is used to keep track of allocated minor numbers.
1668  *---------------------------------------------------------------*/
1669 static void free_minor(int minor)
1670 {
1671 	spin_lock(&_minor_lock);
1672 	idr_remove(&_minor_idr, minor);
1673 	spin_unlock(&_minor_lock);
1674 }
1675 
1676 /*
1677  * See if the device with a specific minor # is free.
1678  */
1679 static int specific_minor(int minor)
1680 {
1681 	int r;
1682 
1683 	if (minor >= (1 << MINORBITS))
1684 		return -EINVAL;
1685 
1686 	idr_preload(GFP_KERNEL);
1687 	spin_lock(&_minor_lock);
1688 
1689 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1690 
1691 	spin_unlock(&_minor_lock);
1692 	idr_preload_end();
1693 	if (r < 0)
1694 		return r == -ENOSPC ? -EBUSY : r;
1695 	return 0;
1696 }
1697 
1698 static int next_free_minor(int *minor)
1699 {
1700 	int r;
1701 
1702 	idr_preload(GFP_KERNEL);
1703 	spin_lock(&_minor_lock);
1704 
1705 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1706 
1707 	spin_unlock(&_minor_lock);
1708 	idr_preload_end();
1709 	if (r < 0)
1710 		return r;
1711 	*minor = r;
1712 	return 0;
1713 }
1714 
1715 static const struct block_device_operations dm_blk_dops;
1716 static const struct block_device_operations dm_rq_blk_dops;
1717 static const struct dax_operations dm_dax_ops;
1718 
1719 static void dm_wq_work(struct work_struct *work);
1720 
1721 static void cleanup_mapped_device(struct mapped_device *md)
1722 {
1723 	if (md->wq)
1724 		destroy_workqueue(md->wq);
1725 	bioset_exit(&md->bs);
1726 	bioset_exit(&md->io_bs);
1727 
1728 	if (md->dax_dev) {
1729 		kill_dax(md->dax_dev);
1730 		put_dax(md->dax_dev);
1731 		md->dax_dev = NULL;
1732 	}
1733 
1734 	if (md->disk) {
1735 		spin_lock(&_minor_lock);
1736 		md->disk->private_data = NULL;
1737 		spin_unlock(&_minor_lock);
1738 		del_gendisk(md->disk);
1739 		put_disk(md->disk);
1740 	}
1741 
1742 	if (md->queue)
1743 		blk_cleanup_queue(md->queue);
1744 
1745 	cleanup_srcu_struct(&md->io_barrier);
1746 
1747 	mutex_destroy(&md->suspend_lock);
1748 	mutex_destroy(&md->type_lock);
1749 	mutex_destroy(&md->table_devices_lock);
1750 
1751 	dm_mq_cleanup_mapped_device(md);
1752 }
1753 
1754 /*
1755  * Allocate and initialise a blank device with a given minor.
1756  */
1757 static struct mapped_device *alloc_dev(int minor)
1758 {
1759 	int r, numa_node_id = dm_get_numa_node();
1760 	struct mapped_device *md;
1761 	void *old_md;
1762 
1763 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1764 	if (!md) {
1765 		DMWARN("unable to allocate device, out of memory.");
1766 		return NULL;
1767 	}
1768 
1769 	if (!try_module_get(THIS_MODULE))
1770 		goto bad_module_get;
1771 
1772 	/* get a minor number for the dev */
1773 	if (minor == DM_ANY_MINOR)
1774 		r = next_free_minor(&minor);
1775 	else
1776 		r = specific_minor(minor);
1777 	if (r < 0)
1778 		goto bad_minor;
1779 
1780 	r = init_srcu_struct(&md->io_barrier);
1781 	if (r < 0)
1782 		goto bad_io_barrier;
1783 
1784 	md->numa_node_id = numa_node_id;
1785 	md->init_tio_pdu = false;
1786 	md->type = DM_TYPE_NONE;
1787 	mutex_init(&md->suspend_lock);
1788 	mutex_init(&md->type_lock);
1789 	mutex_init(&md->table_devices_lock);
1790 	spin_lock_init(&md->deferred_lock);
1791 	atomic_set(&md->holders, 1);
1792 	atomic_set(&md->open_count, 0);
1793 	atomic_set(&md->event_nr, 0);
1794 	atomic_set(&md->uevent_seq, 0);
1795 	INIT_LIST_HEAD(&md->uevent_list);
1796 	INIT_LIST_HEAD(&md->table_devices);
1797 	spin_lock_init(&md->uevent_lock);
1798 
1799 	/*
1800 	 * default to bio-based until DM table is loaded and md->type
1801 	 * established. If request-based table is loaded: blk-mq will
1802 	 * override accordingly.
1803 	 */
1804 	md->queue = blk_alloc_queue(numa_node_id);
1805 	if (!md->queue)
1806 		goto bad;
1807 
1808 	md->disk = alloc_disk_node(1, md->numa_node_id);
1809 	if (!md->disk)
1810 		goto bad;
1811 
1812 	init_waitqueue_head(&md->wait);
1813 	INIT_WORK(&md->work, dm_wq_work);
1814 	init_waitqueue_head(&md->eventq);
1815 	init_completion(&md->kobj_holder.completion);
1816 
1817 	md->disk->major = _major;
1818 	md->disk->first_minor = minor;
1819 	md->disk->fops = &dm_blk_dops;
1820 	md->disk->queue = md->queue;
1821 	md->disk->private_data = md;
1822 	sprintf(md->disk->disk_name, "dm-%d", minor);
1823 
1824 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1825 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1826 					&dm_dax_ops, 0);
1827 		if (IS_ERR(md->dax_dev))
1828 			goto bad;
1829 	}
1830 
1831 	add_disk_no_queue_reg(md->disk);
1832 	format_dev_t(md->name, MKDEV(_major, minor));
1833 
1834 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1835 	if (!md->wq)
1836 		goto bad;
1837 
1838 	dm_stats_init(&md->stats);
1839 
1840 	/* Populate the mapping, nobody knows we exist yet */
1841 	spin_lock(&_minor_lock);
1842 	old_md = idr_replace(&_minor_idr, md, minor);
1843 	spin_unlock(&_minor_lock);
1844 
1845 	BUG_ON(old_md != MINOR_ALLOCED);
1846 
1847 	return md;
1848 
1849 bad:
1850 	cleanup_mapped_device(md);
1851 bad_io_barrier:
1852 	free_minor(minor);
1853 bad_minor:
1854 	module_put(THIS_MODULE);
1855 bad_module_get:
1856 	kvfree(md);
1857 	return NULL;
1858 }
1859 
1860 static void unlock_fs(struct mapped_device *md);
1861 
1862 static void free_dev(struct mapped_device *md)
1863 {
1864 	int minor = MINOR(disk_devt(md->disk));
1865 
1866 	unlock_fs(md);
1867 
1868 	cleanup_mapped_device(md);
1869 
1870 	free_table_devices(&md->table_devices);
1871 	dm_stats_cleanup(&md->stats);
1872 	free_minor(minor);
1873 
1874 	module_put(THIS_MODULE);
1875 	kvfree(md);
1876 }
1877 
1878 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1879 {
1880 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1881 	int ret = 0;
1882 
1883 	if (dm_table_bio_based(t)) {
1884 		/*
1885 		 * The md may already have mempools that need changing.
1886 		 * If so, reload bioset because front_pad may have changed
1887 		 * because a different table was loaded.
1888 		 */
1889 		bioset_exit(&md->bs);
1890 		bioset_exit(&md->io_bs);
1891 
1892 	} else if (bioset_initialized(&md->bs)) {
1893 		/*
1894 		 * There's no need to reload with request-based dm
1895 		 * because the size of front_pad doesn't change.
1896 		 * Note for future: If you are to reload bioset,
1897 		 * prep-ed requests in the queue may refer
1898 		 * to bio from the old bioset, so you must walk
1899 		 * through the queue to unprep.
1900 		 */
1901 		goto out;
1902 	}
1903 
1904 	BUG_ON(!p ||
1905 	       bioset_initialized(&md->bs) ||
1906 	       bioset_initialized(&md->io_bs));
1907 
1908 	ret = bioset_init_from_src(&md->bs, &p->bs);
1909 	if (ret)
1910 		goto out;
1911 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1912 	if (ret)
1913 		bioset_exit(&md->bs);
1914 out:
1915 	/* mempool bind completed, no longer need any mempools in the table */
1916 	dm_table_free_md_mempools(t);
1917 	return ret;
1918 }
1919 
1920 /*
1921  * Bind a table to the device.
1922  */
1923 static void event_callback(void *context)
1924 {
1925 	unsigned long flags;
1926 	LIST_HEAD(uevents);
1927 	struct mapped_device *md = (struct mapped_device *) context;
1928 
1929 	spin_lock_irqsave(&md->uevent_lock, flags);
1930 	list_splice_init(&md->uevent_list, &uevents);
1931 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1932 
1933 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1934 
1935 	atomic_inc(&md->event_nr);
1936 	wake_up(&md->eventq);
1937 	dm_issue_global_event();
1938 }
1939 
1940 /*
1941  * Returns old map, which caller must destroy.
1942  */
1943 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1944 			       struct queue_limits *limits)
1945 {
1946 	struct dm_table *old_map;
1947 	struct request_queue *q = md->queue;
1948 	bool request_based = dm_table_request_based(t);
1949 	sector_t size;
1950 	int ret;
1951 
1952 	lockdep_assert_held(&md->suspend_lock);
1953 
1954 	size = dm_table_get_size(t);
1955 
1956 	/*
1957 	 * Wipe any geometry if the size of the table changed.
1958 	 */
1959 	if (size != dm_get_size(md))
1960 		memset(&md->geometry, 0, sizeof(md->geometry));
1961 
1962 	set_capacity_and_notify(md->disk, size);
1963 
1964 	dm_table_event_callback(t, event_callback, md);
1965 
1966 	/*
1967 	 * The queue hasn't been stopped yet, if the old table type wasn't
1968 	 * for request-based during suspension.  So stop it to prevent
1969 	 * I/O mapping before resume.
1970 	 * This must be done before setting the queue restrictions,
1971 	 * because request-based dm may be run just after the setting.
1972 	 */
1973 	if (request_based)
1974 		dm_stop_queue(q);
1975 
1976 	if (request_based) {
1977 		/*
1978 		 * Leverage the fact that request-based DM targets are
1979 		 * immutable singletons - used to optimize dm_mq_queue_rq.
1980 		 */
1981 		md->immutable_target = dm_table_get_immutable_target(t);
1982 	}
1983 
1984 	ret = __bind_mempools(md, t);
1985 	if (ret) {
1986 		old_map = ERR_PTR(ret);
1987 		goto out;
1988 	}
1989 
1990 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1991 	rcu_assign_pointer(md->map, (void *)t);
1992 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1993 
1994 	dm_table_set_restrictions(t, q, limits);
1995 	if (old_map)
1996 		dm_sync_table(md);
1997 
1998 out:
1999 	return old_map;
2000 }
2001 
2002 /*
2003  * Returns unbound table for the caller to free.
2004  */
2005 static struct dm_table *__unbind(struct mapped_device *md)
2006 {
2007 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2008 
2009 	if (!map)
2010 		return NULL;
2011 
2012 	dm_table_event_callback(map, NULL, NULL);
2013 	RCU_INIT_POINTER(md->map, NULL);
2014 	dm_sync_table(md);
2015 
2016 	return map;
2017 }
2018 
2019 /*
2020  * Constructor for a new device.
2021  */
2022 int dm_create(int minor, struct mapped_device **result)
2023 {
2024 	int r;
2025 	struct mapped_device *md;
2026 
2027 	md = alloc_dev(minor);
2028 	if (!md)
2029 		return -ENXIO;
2030 
2031 	r = dm_sysfs_init(md);
2032 	if (r) {
2033 		free_dev(md);
2034 		return r;
2035 	}
2036 
2037 	*result = md;
2038 	return 0;
2039 }
2040 
2041 /*
2042  * Functions to manage md->type.
2043  * All are required to hold md->type_lock.
2044  */
2045 void dm_lock_md_type(struct mapped_device *md)
2046 {
2047 	mutex_lock(&md->type_lock);
2048 }
2049 
2050 void dm_unlock_md_type(struct mapped_device *md)
2051 {
2052 	mutex_unlock(&md->type_lock);
2053 }
2054 
2055 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2056 {
2057 	BUG_ON(!mutex_is_locked(&md->type_lock));
2058 	md->type = type;
2059 }
2060 
2061 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2062 {
2063 	return md->type;
2064 }
2065 
2066 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2067 {
2068 	return md->immutable_target_type;
2069 }
2070 
2071 /*
2072  * The queue_limits are only valid as long as you have a reference
2073  * count on 'md'.
2074  */
2075 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2076 {
2077 	BUG_ON(!atomic_read(&md->holders));
2078 	return &md->queue->limits;
2079 }
2080 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2081 
2082 /*
2083  * Setup the DM device's queue based on md's type
2084  */
2085 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2086 {
2087 	int r;
2088 	struct queue_limits limits;
2089 	enum dm_queue_mode type = dm_get_md_type(md);
2090 
2091 	switch (type) {
2092 	case DM_TYPE_REQUEST_BASED:
2093 		md->disk->fops = &dm_rq_blk_dops;
2094 		r = dm_mq_init_request_queue(md, t);
2095 		if (r) {
2096 			DMERR("Cannot initialize queue for request-based dm mapped device");
2097 			return r;
2098 		}
2099 		break;
2100 	case DM_TYPE_BIO_BASED:
2101 	case DM_TYPE_DAX_BIO_BASED:
2102 		break;
2103 	case DM_TYPE_NONE:
2104 		WARN_ON_ONCE(true);
2105 		break;
2106 	}
2107 
2108 	r = dm_calculate_queue_limits(t, &limits);
2109 	if (r) {
2110 		DMERR("Cannot calculate initial queue limits");
2111 		return r;
2112 	}
2113 	dm_table_set_restrictions(t, md->queue, &limits);
2114 	blk_register_queue(md->disk);
2115 
2116 	return 0;
2117 }
2118 
2119 struct mapped_device *dm_get_md(dev_t dev)
2120 {
2121 	struct mapped_device *md;
2122 	unsigned minor = MINOR(dev);
2123 
2124 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2125 		return NULL;
2126 
2127 	spin_lock(&_minor_lock);
2128 
2129 	md = idr_find(&_minor_idr, minor);
2130 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2131 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2132 		md = NULL;
2133 		goto out;
2134 	}
2135 	dm_get(md);
2136 out:
2137 	spin_unlock(&_minor_lock);
2138 
2139 	return md;
2140 }
2141 EXPORT_SYMBOL_GPL(dm_get_md);
2142 
2143 void *dm_get_mdptr(struct mapped_device *md)
2144 {
2145 	return md->interface_ptr;
2146 }
2147 
2148 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2149 {
2150 	md->interface_ptr = ptr;
2151 }
2152 
2153 void dm_get(struct mapped_device *md)
2154 {
2155 	atomic_inc(&md->holders);
2156 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2157 }
2158 
2159 int dm_hold(struct mapped_device *md)
2160 {
2161 	spin_lock(&_minor_lock);
2162 	if (test_bit(DMF_FREEING, &md->flags)) {
2163 		spin_unlock(&_minor_lock);
2164 		return -EBUSY;
2165 	}
2166 	dm_get(md);
2167 	spin_unlock(&_minor_lock);
2168 	return 0;
2169 }
2170 EXPORT_SYMBOL_GPL(dm_hold);
2171 
2172 const char *dm_device_name(struct mapped_device *md)
2173 {
2174 	return md->name;
2175 }
2176 EXPORT_SYMBOL_GPL(dm_device_name);
2177 
2178 static void __dm_destroy(struct mapped_device *md, bool wait)
2179 {
2180 	struct dm_table *map;
2181 	int srcu_idx;
2182 
2183 	might_sleep();
2184 
2185 	spin_lock(&_minor_lock);
2186 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2187 	set_bit(DMF_FREEING, &md->flags);
2188 	spin_unlock(&_minor_lock);
2189 
2190 	blk_set_queue_dying(md->queue);
2191 
2192 	/*
2193 	 * Take suspend_lock so that presuspend and postsuspend methods
2194 	 * do not race with internal suspend.
2195 	 */
2196 	mutex_lock(&md->suspend_lock);
2197 	map = dm_get_live_table(md, &srcu_idx);
2198 	if (!dm_suspended_md(md)) {
2199 		dm_table_presuspend_targets(map);
2200 		set_bit(DMF_SUSPENDED, &md->flags);
2201 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2202 		dm_table_postsuspend_targets(map);
2203 	}
2204 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2205 	dm_put_live_table(md, srcu_idx);
2206 	mutex_unlock(&md->suspend_lock);
2207 
2208 	/*
2209 	 * Rare, but there may be I/O requests still going to complete,
2210 	 * for example.  Wait for all references to disappear.
2211 	 * No one should increment the reference count of the mapped_device,
2212 	 * after the mapped_device state becomes DMF_FREEING.
2213 	 */
2214 	if (wait)
2215 		while (atomic_read(&md->holders))
2216 			msleep(1);
2217 	else if (atomic_read(&md->holders))
2218 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2219 		       dm_device_name(md), atomic_read(&md->holders));
2220 
2221 	dm_sysfs_exit(md);
2222 	dm_table_destroy(__unbind(md));
2223 	free_dev(md);
2224 }
2225 
2226 void dm_destroy(struct mapped_device *md)
2227 {
2228 	__dm_destroy(md, true);
2229 }
2230 
2231 void dm_destroy_immediate(struct mapped_device *md)
2232 {
2233 	__dm_destroy(md, false);
2234 }
2235 
2236 void dm_put(struct mapped_device *md)
2237 {
2238 	atomic_dec(&md->holders);
2239 }
2240 EXPORT_SYMBOL_GPL(dm_put);
2241 
2242 static bool md_in_flight_bios(struct mapped_device *md)
2243 {
2244 	int cpu;
2245 	struct block_device *part = dm_disk(md)->part0;
2246 	long sum = 0;
2247 
2248 	for_each_possible_cpu(cpu) {
2249 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2250 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2251 	}
2252 
2253 	return sum != 0;
2254 }
2255 
2256 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2257 {
2258 	int r = 0;
2259 	DEFINE_WAIT(wait);
2260 
2261 	while (true) {
2262 		prepare_to_wait(&md->wait, &wait, task_state);
2263 
2264 		if (!md_in_flight_bios(md))
2265 			break;
2266 
2267 		if (signal_pending_state(task_state, current)) {
2268 			r = -EINTR;
2269 			break;
2270 		}
2271 
2272 		io_schedule();
2273 	}
2274 	finish_wait(&md->wait, &wait);
2275 
2276 	return r;
2277 }
2278 
2279 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2280 {
2281 	int r = 0;
2282 
2283 	if (!queue_is_mq(md->queue))
2284 		return dm_wait_for_bios_completion(md, task_state);
2285 
2286 	while (true) {
2287 		if (!blk_mq_queue_inflight(md->queue))
2288 			break;
2289 
2290 		if (signal_pending_state(task_state, current)) {
2291 			r = -EINTR;
2292 			break;
2293 		}
2294 
2295 		msleep(5);
2296 	}
2297 
2298 	return r;
2299 }
2300 
2301 /*
2302  * Process the deferred bios
2303  */
2304 static void dm_wq_work(struct work_struct *work)
2305 {
2306 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2307 	struct bio *bio;
2308 
2309 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2310 		spin_lock_irq(&md->deferred_lock);
2311 		bio = bio_list_pop(&md->deferred);
2312 		spin_unlock_irq(&md->deferred_lock);
2313 
2314 		if (!bio)
2315 			break;
2316 
2317 		submit_bio_noacct(bio);
2318 	}
2319 }
2320 
2321 static void dm_queue_flush(struct mapped_device *md)
2322 {
2323 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2324 	smp_mb__after_atomic();
2325 	queue_work(md->wq, &md->work);
2326 }
2327 
2328 /*
2329  * Swap in a new table, returning the old one for the caller to destroy.
2330  */
2331 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2332 {
2333 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2334 	struct queue_limits limits;
2335 	int r;
2336 
2337 	mutex_lock(&md->suspend_lock);
2338 
2339 	/* device must be suspended */
2340 	if (!dm_suspended_md(md))
2341 		goto out;
2342 
2343 	/*
2344 	 * If the new table has no data devices, retain the existing limits.
2345 	 * This helps multipath with queue_if_no_path if all paths disappear,
2346 	 * then new I/O is queued based on these limits, and then some paths
2347 	 * reappear.
2348 	 */
2349 	if (dm_table_has_no_data_devices(table)) {
2350 		live_map = dm_get_live_table_fast(md);
2351 		if (live_map)
2352 			limits = md->queue->limits;
2353 		dm_put_live_table_fast(md);
2354 	}
2355 
2356 	if (!live_map) {
2357 		r = dm_calculate_queue_limits(table, &limits);
2358 		if (r) {
2359 			map = ERR_PTR(r);
2360 			goto out;
2361 		}
2362 	}
2363 
2364 	map = __bind(md, table, &limits);
2365 	dm_issue_global_event();
2366 
2367 out:
2368 	mutex_unlock(&md->suspend_lock);
2369 	return map;
2370 }
2371 
2372 /*
2373  * Functions to lock and unlock any filesystem running on the
2374  * device.
2375  */
2376 static int lock_fs(struct mapped_device *md)
2377 {
2378 	int r;
2379 
2380 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2381 
2382 	r = freeze_bdev(md->disk->part0);
2383 	if (!r)
2384 		set_bit(DMF_FROZEN, &md->flags);
2385 	return r;
2386 }
2387 
2388 static void unlock_fs(struct mapped_device *md)
2389 {
2390 	if (!test_bit(DMF_FROZEN, &md->flags))
2391 		return;
2392 	thaw_bdev(md->disk->part0);
2393 	clear_bit(DMF_FROZEN, &md->flags);
2394 }
2395 
2396 /*
2397  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2398  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2399  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2400  *
2401  * If __dm_suspend returns 0, the device is completely quiescent
2402  * now. There is no request-processing activity. All new requests
2403  * are being added to md->deferred list.
2404  */
2405 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2406 			unsigned suspend_flags, long task_state,
2407 			int dmf_suspended_flag)
2408 {
2409 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2410 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2411 	int r;
2412 
2413 	lockdep_assert_held(&md->suspend_lock);
2414 
2415 	/*
2416 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2417 	 * This flag is cleared before dm_suspend returns.
2418 	 */
2419 	if (noflush)
2420 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2421 	else
2422 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2423 
2424 	/*
2425 	 * This gets reverted if there's an error later and the targets
2426 	 * provide the .presuspend_undo hook.
2427 	 */
2428 	dm_table_presuspend_targets(map);
2429 
2430 	/*
2431 	 * Flush I/O to the device.
2432 	 * Any I/O submitted after lock_fs() may not be flushed.
2433 	 * noflush takes precedence over do_lockfs.
2434 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2435 	 */
2436 	if (!noflush && do_lockfs) {
2437 		r = lock_fs(md);
2438 		if (r) {
2439 			dm_table_presuspend_undo_targets(map);
2440 			return r;
2441 		}
2442 	}
2443 
2444 	/*
2445 	 * Here we must make sure that no processes are submitting requests
2446 	 * to target drivers i.e. no one may be executing
2447 	 * __split_and_process_bio from dm_submit_bio.
2448 	 *
2449 	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2450 	 * we take the write lock. To prevent any process from reentering
2451 	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2452 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2453 	 * flush_workqueue(md->wq).
2454 	 */
2455 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2456 	if (map)
2457 		synchronize_srcu(&md->io_barrier);
2458 
2459 	/*
2460 	 * Stop md->queue before flushing md->wq in case request-based
2461 	 * dm defers requests to md->wq from md->queue.
2462 	 */
2463 	if (dm_request_based(md))
2464 		dm_stop_queue(md->queue);
2465 
2466 	flush_workqueue(md->wq);
2467 
2468 	/*
2469 	 * At this point no more requests are entering target request routines.
2470 	 * We call dm_wait_for_completion to wait for all existing requests
2471 	 * to finish.
2472 	 */
2473 	r = dm_wait_for_completion(md, task_state);
2474 	if (!r)
2475 		set_bit(dmf_suspended_flag, &md->flags);
2476 
2477 	if (noflush)
2478 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2479 	if (map)
2480 		synchronize_srcu(&md->io_barrier);
2481 
2482 	/* were we interrupted ? */
2483 	if (r < 0) {
2484 		dm_queue_flush(md);
2485 
2486 		if (dm_request_based(md))
2487 			dm_start_queue(md->queue);
2488 
2489 		unlock_fs(md);
2490 		dm_table_presuspend_undo_targets(map);
2491 		/* pushback list is already flushed, so skip flush */
2492 	}
2493 
2494 	return r;
2495 }
2496 
2497 /*
2498  * We need to be able to change a mapping table under a mounted
2499  * filesystem.  For example we might want to move some data in
2500  * the background.  Before the table can be swapped with
2501  * dm_bind_table, dm_suspend must be called to flush any in
2502  * flight bios and ensure that any further io gets deferred.
2503  */
2504 /*
2505  * Suspend mechanism in request-based dm.
2506  *
2507  * 1. Flush all I/Os by lock_fs() if needed.
2508  * 2. Stop dispatching any I/O by stopping the request_queue.
2509  * 3. Wait for all in-flight I/Os to be completed or requeued.
2510  *
2511  * To abort suspend, start the request_queue.
2512  */
2513 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2514 {
2515 	struct dm_table *map = NULL;
2516 	int r = 0;
2517 
2518 retry:
2519 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2520 
2521 	if (dm_suspended_md(md)) {
2522 		r = -EINVAL;
2523 		goto out_unlock;
2524 	}
2525 
2526 	if (dm_suspended_internally_md(md)) {
2527 		/* already internally suspended, wait for internal resume */
2528 		mutex_unlock(&md->suspend_lock);
2529 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2530 		if (r)
2531 			return r;
2532 		goto retry;
2533 	}
2534 
2535 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2536 
2537 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2538 	if (r)
2539 		goto out_unlock;
2540 
2541 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2542 	dm_table_postsuspend_targets(map);
2543 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2544 
2545 out_unlock:
2546 	mutex_unlock(&md->suspend_lock);
2547 	return r;
2548 }
2549 
2550 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2551 {
2552 	if (map) {
2553 		int r = dm_table_resume_targets(map);
2554 		if (r)
2555 			return r;
2556 	}
2557 
2558 	dm_queue_flush(md);
2559 
2560 	/*
2561 	 * Flushing deferred I/Os must be done after targets are resumed
2562 	 * so that mapping of targets can work correctly.
2563 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2564 	 */
2565 	if (dm_request_based(md))
2566 		dm_start_queue(md->queue);
2567 
2568 	unlock_fs(md);
2569 
2570 	return 0;
2571 }
2572 
2573 int dm_resume(struct mapped_device *md)
2574 {
2575 	int r;
2576 	struct dm_table *map = NULL;
2577 
2578 retry:
2579 	r = -EINVAL;
2580 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2581 
2582 	if (!dm_suspended_md(md))
2583 		goto out;
2584 
2585 	if (dm_suspended_internally_md(md)) {
2586 		/* already internally suspended, wait for internal resume */
2587 		mutex_unlock(&md->suspend_lock);
2588 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2589 		if (r)
2590 			return r;
2591 		goto retry;
2592 	}
2593 
2594 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2595 	if (!map || !dm_table_get_size(map))
2596 		goto out;
2597 
2598 	r = __dm_resume(md, map);
2599 	if (r)
2600 		goto out;
2601 
2602 	clear_bit(DMF_SUSPENDED, &md->flags);
2603 out:
2604 	mutex_unlock(&md->suspend_lock);
2605 
2606 	return r;
2607 }
2608 
2609 /*
2610  * Internal suspend/resume works like userspace-driven suspend. It waits
2611  * until all bios finish and prevents issuing new bios to the target drivers.
2612  * It may be used only from the kernel.
2613  */
2614 
2615 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2616 {
2617 	struct dm_table *map = NULL;
2618 
2619 	lockdep_assert_held(&md->suspend_lock);
2620 
2621 	if (md->internal_suspend_count++)
2622 		return; /* nested internal suspend */
2623 
2624 	if (dm_suspended_md(md)) {
2625 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2626 		return; /* nest suspend */
2627 	}
2628 
2629 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2630 
2631 	/*
2632 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2633 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2634 	 * would require changing .presuspend to return an error -- avoid this
2635 	 * until there is a need for more elaborate variants of internal suspend.
2636 	 */
2637 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2638 			    DMF_SUSPENDED_INTERNALLY);
2639 
2640 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2641 	dm_table_postsuspend_targets(map);
2642 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2643 }
2644 
2645 static void __dm_internal_resume(struct mapped_device *md)
2646 {
2647 	BUG_ON(!md->internal_suspend_count);
2648 
2649 	if (--md->internal_suspend_count)
2650 		return; /* resume from nested internal suspend */
2651 
2652 	if (dm_suspended_md(md))
2653 		goto done; /* resume from nested suspend */
2654 
2655 	/*
2656 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2657 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2658 	 */
2659 	(void) __dm_resume(md, NULL);
2660 
2661 done:
2662 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2663 	smp_mb__after_atomic();
2664 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2665 }
2666 
2667 void dm_internal_suspend_noflush(struct mapped_device *md)
2668 {
2669 	mutex_lock(&md->suspend_lock);
2670 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2671 	mutex_unlock(&md->suspend_lock);
2672 }
2673 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2674 
2675 void dm_internal_resume(struct mapped_device *md)
2676 {
2677 	mutex_lock(&md->suspend_lock);
2678 	__dm_internal_resume(md);
2679 	mutex_unlock(&md->suspend_lock);
2680 }
2681 EXPORT_SYMBOL_GPL(dm_internal_resume);
2682 
2683 /*
2684  * Fast variants of internal suspend/resume hold md->suspend_lock,
2685  * which prevents interaction with userspace-driven suspend.
2686  */
2687 
2688 void dm_internal_suspend_fast(struct mapped_device *md)
2689 {
2690 	mutex_lock(&md->suspend_lock);
2691 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2692 		return;
2693 
2694 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2695 	synchronize_srcu(&md->io_barrier);
2696 	flush_workqueue(md->wq);
2697 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2698 }
2699 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2700 
2701 void dm_internal_resume_fast(struct mapped_device *md)
2702 {
2703 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2704 		goto done;
2705 
2706 	dm_queue_flush(md);
2707 
2708 done:
2709 	mutex_unlock(&md->suspend_lock);
2710 }
2711 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2712 
2713 /*-----------------------------------------------------------------
2714  * Event notification.
2715  *---------------------------------------------------------------*/
2716 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2717 		       unsigned cookie)
2718 {
2719 	int r;
2720 	unsigned noio_flag;
2721 	char udev_cookie[DM_COOKIE_LENGTH];
2722 	char *envp[] = { udev_cookie, NULL };
2723 
2724 	noio_flag = memalloc_noio_save();
2725 
2726 	if (!cookie)
2727 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2728 	else {
2729 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2730 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2731 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2732 				       action, envp);
2733 	}
2734 
2735 	memalloc_noio_restore(noio_flag);
2736 
2737 	return r;
2738 }
2739 
2740 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2741 {
2742 	return atomic_add_return(1, &md->uevent_seq);
2743 }
2744 
2745 uint32_t dm_get_event_nr(struct mapped_device *md)
2746 {
2747 	return atomic_read(&md->event_nr);
2748 }
2749 
2750 int dm_wait_event(struct mapped_device *md, int event_nr)
2751 {
2752 	return wait_event_interruptible(md->eventq,
2753 			(event_nr != atomic_read(&md->event_nr)));
2754 }
2755 
2756 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2757 {
2758 	unsigned long flags;
2759 
2760 	spin_lock_irqsave(&md->uevent_lock, flags);
2761 	list_add(elist, &md->uevent_list);
2762 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2763 }
2764 
2765 /*
2766  * The gendisk is only valid as long as you have a reference
2767  * count on 'md'.
2768  */
2769 struct gendisk *dm_disk(struct mapped_device *md)
2770 {
2771 	return md->disk;
2772 }
2773 EXPORT_SYMBOL_GPL(dm_disk);
2774 
2775 struct kobject *dm_kobject(struct mapped_device *md)
2776 {
2777 	return &md->kobj_holder.kobj;
2778 }
2779 
2780 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2781 {
2782 	struct mapped_device *md;
2783 
2784 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2785 
2786 	spin_lock(&_minor_lock);
2787 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2788 		md = NULL;
2789 		goto out;
2790 	}
2791 	dm_get(md);
2792 out:
2793 	spin_unlock(&_minor_lock);
2794 
2795 	return md;
2796 }
2797 
2798 int dm_suspended_md(struct mapped_device *md)
2799 {
2800 	return test_bit(DMF_SUSPENDED, &md->flags);
2801 }
2802 
2803 static int dm_post_suspending_md(struct mapped_device *md)
2804 {
2805 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2806 }
2807 
2808 int dm_suspended_internally_md(struct mapped_device *md)
2809 {
2810 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2811 }
2812 
2813 int dm_test_deferred_remove_flag(struct mapped_device *md)
2814 {
2815 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2816 }
2817 
2818 int dm_suspended(struct dm_target *ti)
2819 {
2820 	return dm_suspended_md(ti->table->md);
2821 }
2822 EXPORT_SYMBOL_GPL(dm_suspended);
2823 
2824 int dm_post_suspending(struct dm_target *ti)
2825 {
2826 	return dm_post_suspending_md(ti->table->md);
2827 }
2828 EXPORT_SYMBOL_GPL(dm_post_suspending);
2829 
2830 int dm_noflush_suspending(struct dm_target *ti)
2831 {
2832 	return __noflush_suspending(ti->table->md);
2833 }
2834 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2835 
2836 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2837 					    unsigned integrity, unsigned per_io_data_size,
2838 					    unsigned min_pool_size)
2839 {
2840 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2841 	unsigned int pool_size = 0;
2842 	unsigned int front_pad, io_front_pad;
2843 	int ret;
2844 
2845 	if (!pools)
2846 		return NULL;
2847 
2848 	switch (type) {
2849 	case DM_TYPE_BIO_BASED:
2850 	case DM_TYPE_DAX_BIO_BASED:
2851 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2852 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2853 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2854 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2855 		if (ret)
2856 			goto out;
2857 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2858 			goto out;
2859 		break;
2860 	case DM_TYPE_REQUEST_BASED:
2861 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2862 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2863 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2864 		break;
2865 	default:
2866 		BUG();
2867 	}
2868 
2869 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2870 	if (ret)
2871 		goto out;
2872 
2873 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2874 		goto out;
2875 
2876 	return pools;
2877 
2878 out:
2879 	dm_free_md_mempools(pools);
2880 
2881 	return NULL;
2882 }
2883 
2884 void dm_free_md_mempools(struct dm_md_mempools *pools)
2885 {
2886 	if (!pools)
2887 		return;
2888 
2889 	bioset_exit(&pools->bs);
2890 	bioset_exit(&pools->io_bs);
2891 
2892 	kfree(pools);
2893 }
2894 
2895 struct dm_pr {
2896 	u64	old_key;
2897 	u64	new_key;
2898 	u32	flags;
2899 	bool	fail_early;
2900 };
2901 
2902 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2903 		      void *data)
2904 {
2905 	struct mapped_device *md = bdev->bd_disk->private_data;
2906 	struct dm_table *table;
2907 	struct dm_target *ti;
2908 	int ret = -ENOTTY, srcu_idx;
2909 
2910 	table = dm_get_live_table(md, &srcu_idx);
2911 	if (!table || !dm_table_get_size(table))
2912 		goto out;
2913 
2914 	/* We only support devices that have a single target */
2915 	if (dm_table_get_num_targets(table) != 1)
2916 		goto out;
2917 	ti = dm_table_get_target(table, 0);
2918 
2919 	ret = -EINVAL;
2920 	if (!ti->type->iterate_devices)
2921 		goto out;
2922 
2923 	ret = ti->type->iterate_devices(ti, fn, data);
2924 out:
2925 	dm_put_live_table(md, srcu_idx);
2926 	return ret;
2927 }
2928 
2929 /*
2930  * For register / unregister we need to manually call out to every path.
2931  */
2932 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2933 			    sector_t start, sector_t len, void *data)
2934 {
2935 	struct dm_pr *pr = data;
2936 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2937 
2938 	if (!ops || !ops->pr_register)
2939 		return -EOPNOTSUPP;
2940 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2941 }
2942 
2943 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2944 			  u32 flags)
2945 {
2946 	struct dm_pr pr = {
2947 		.old_key	= old_key,
2948 		.new_key	= new_key,
2949 		.flags		= flags,
2950 		.fail_early	= true,
2951 	};
2952 	int ret;
2953 
2954 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2955 	if (ret && new_key) {
2956 		/* unregister all paths if we failed to register any path */
2957 		pr.old_key = new_key;
2958 		pr.new_key = 0;
2959 		pr.flags = 0;
2960 		pr.fail_early = false;
2961 		dm_call_pr(bdev, __dm_pr_register, &pr);
2962 	}
2963 
2964 	return ret;
2965 }
2966 
2967 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2968 			 u32 flags)
2969 {
2970 	struct mapped_device *md = bdev->bd_disk->private_data;
2971 	const struct pr_ops *ops;
2972 	int r, srcu_idx;
2973 
2974 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2975 	if (r < 0)
2976 		goto out;
2977 
2978 	ops = bdev->bd_disk->fops->pr_ops;
2979 	if (ops && ops->pr_reserve)
2980 		r = ops->pr_reserve(bdev, key, type, flags);
2981 	else
2982 		r = -EOPNOTSUPP;
2983 out:
2984 	dm_unprepare_ioctl(md, srcu_idx);
2985 	return r;
2986 }
2987 
2988 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2989 {
2990 	struct mapped_device *md = bdev->bd_disk->private_data;
2991 	const struct pr_ops *ops;
2992 	int r, srcu_idx;
2993 
2994 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2995 	if (r < 0)
2996 		goto out;
2997 
2998 	ops = bdev->bd_disk->fops->pr_ops;
2999 	if (ops && ops->pr_release)
3000 		r = ops->pr_release(bdev, key, type);
3001 	else
3002 		r = -EOPNOTSUPP;
3003 out:
3004 	dm_unprepare_ioctl(md, srcu_idx);
3005 	return r;
3006 }
3007 
3008 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3009 			 enum pr_type type, bool abort)
3010 {
3011 	struct mapped_device *md = bdev->bd_disk->private_data;
3012 	const struct pr_ops *ops;
3013 	int r, srcu_idx;
3014 
3015 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3016 	if (r < 0)
3017 		goto out;
3018 
3019 	ops = bdev->bd_disk->fops->pr_ops;
3020 	if (ops && ops->pr_preempt)
3021 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3022 	else
3023 		r = -EOPNOTSUPP;
3024 out:
3025 	dm_unprepare_ioctl(md, srcu_idx);
3026 	return r;
3027 }
3028 
3029 static int dm_pr_clear(struct block_device *bdev, u64 key)
3030 {
3031 	struct mapped_device *md = bdev->bd_disk->private_data;
3032 	const struct pr_ops *ops;
3033 	int r, srcu_idx;
3034 
3035 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3036 	if (r < 0)
3037 		goto out;
3038 
3039 	ops = bdev->bd_disk->fops->pr_ops;
3040 	if (ops && ops->pr_clear)
3041 		r = ops->pr_clear(bdev, key);
3042 	else
3043 		r = -EOPNOTSUPP;
3044 out:
3045 	dm_unprepare_ioctl(md, srcu_idx);
3046 	return r;
3047 }
3048 
3049 static const struct pr_ops dm_pr_ops = {
3050 	.pr_register	= dm_pr_register,
3051 	.pr_reserve	= dm_pr_reserve,
3052 	.pr_release	= dm_pr_release,
3053 	.pr_preempt	= dm_pr_preempt,
3054 	.pr_clear	= dm_pr_clear,
3055 };
3056 
3057 static const struct block_device_operations dm_blk_dops = {
3058 	.submit_bio = dm_submit_bio,
3059 	.open = dm_blk_open,
3060 	.release = dm_blk_close,
3061 	.ioctl = dm_blk_ioctl,
3062 	.getgeo = dm_blk_getgeo,
3063 	.report_zones = dm_blk_report_zones,
3064 	.pr_ops = &dm_pr_ops,
3065 	.owner = THIS_MODULE
3066 };
3067 
3068 static const struct block_device_operations dm_rq_blk_dops = {
3069 	.open = dm_blk_open,
3070 	.release = dm_blk_close,
3071 	.ioctl = dm_blk_ioctl,
3072 	.getgeo = dm_blk_getgeo,
3073 	.pr_ops = &dm_pr_ops,
3074 	.owner = THIS_MODULE
3075 };
3076 
3077 static const struct dax_operations dm_dax_ops = {
3078 	.direct_access = dm_dax_direct_access,
3079 	.dax_supported = dm_dax_supported,
3080 	.copy_from_iter = dm_dax_copy_from_iter,
3081 	.copy_to_iter = dm_dax_copy_to_iter,
3082 	.zero_page_range = dm_dax_zero_page_range,
3083 };
3084 
3085 /*
3086  * module hooks
3087  */
3088 module_init(dm_init);
3089 module_exit(dm_exit);
3090 
3091 module_param(major, uint, 0);
3092 MODULE_PARM_DESC(major, "The major number of the device mapper");
3093 
3094 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3095 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3096 
3097 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3098 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3099 
3100 MODULE_DESCRIPTION(DM_NAME " driver");
3101 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3102 MODULE_LICENSE("GPL");
3103