1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/kthread.h> 24 #include <linux/ktime.h> 25 #include <linux/elevator.h> /* for rq_end_sector() */ 26 #include <linux/blk-mq.h> 27 28 #include <trace/events/block.h> 29 30 #define DM_MSG_PREFIX "core" 31 32 #ifdef CONFIG_PRINTK 33 /* 34 * ratelimit state to be used in DMXXX_LIMIT(). 35 */ 36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 37 DEFAULT_RATELIMIT_INTERVAL, 38 DEFAULT_RATELIMIT_BURST); 39 EXPORT_SYMBOL(dm_ratelimit_state); 40 #endif 41 42 /* 43 * Cookies are numeric values sent with CHANGE and REMOVE 44 * uevents while resuming, removing or renaming the device. 45 */ 46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 47 #define DM_COOKIE_LENGTH 24 48 49 static const char *_name = DM_NAME; 50 51 static unsigned int major = 0; 52 static unsigned int _major = 0; 53 54 static DEFINE_IDR(_minor_idr); 55 56 static DEFINE_SPINLOCK(_minor_lock); 57 58 static void do_deferred_remove(struct work_struct *w); 59 60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 61 62 static struct workqueue_struct *deferred_remove_workqueue; 63 64 /* 65 * For bio-based dm. 66 * One of these is allocated per bio. 67 */ 68 struct dm_io { 69 struct mapped_device *md; 70 int error; 71 atomic_t io_count; 72 struct bio *bio; 73 unsigned long start_time; 74 spinlock_t endio_lock; 75 struct dm_stats_aux stats_aux; 76 }; 77 78 /* 79 * For request-based dm. 80 * One of these is allocated per request. 81 */ 82 struct dm_rq_target_io { 83 struct mapped_device *md; 84 struct dm_target *ti; 85 struct request *orig, *clone; 86 struct kthread_work work; 87 int error; 88 union map_info info; 89 struct dm_stats_aux stats_aux; 90 unsigned long duration_jiffies; 91 unsigned n_sectors; 92 }; 93 94 /* 95 * For request-based dm - the bio clones we allocate are embedded in these 96 * structs. 97 * 98 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 99 * the bioset is created - this means the bio has to come at the end of the 100 * struct. 101 */ 102 struct dm_rq_clone_bio_info { 103 struct bio *orig; 104 struct dm_rq_target_io *tio; 105 struct bio clone; 106 }; 107 108 union map_info *dm_get_rq_mapinfo(struct request *rq) 109 { 110 if (rq && rq->end_io_data) 111 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 112 return NULL; 113 } 114 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 115 116 #define MINOR_ALLOCED ((void *)-1) 117 118 /* 119 * Bits for the md->flags field. 120 */ 121 #define DMF_BLOCK_IO_FOR_SUSPEND 0 122 #define DMF_SUSPENDED 1 123 #define DMF_FROZEN 2 124 #define DMF_FREEING 3 125 #define DMF_DELETING 4 126 #define DMF_NOFLUSH_SUSPENDING 5 127 #define DMF_DEFERRED_REMOVE 6 128 #define DMF_SUSPENDED_INTERNALLY 7 129 130 /* 131 * A dummy definition to make RCU happy. 132 * struct dm_table should never be dereferenced in this file. 133 */ 134 struct dm_table { 135 int undefined__; 136 }; 137 138 /* 139 * Work processed by per-device workqueue. 140 */ 141 struct mapped_device { 142 struct srcu_struct io_barrier; 143 struct mutex suspend_lock; 144 atomic_t holders; 145 atomic_t open_count; 146 147 /* 148 * The current mapping. 149 * Use dm_get_live_table{_fast} or take suspend_lock for 150 * dereference. 151 */ 152 struct dm_table __rcu *map; 153 154 struct list_head table_devices; 155 struct mutex table_devices_lock; 156 157 unsigned long flags; 158 159 struct request_queue *queue; 160 unsigned type; 161 /* Protect queue and type against concurrent access. */ 162 struct mutex type_lock; 163 164 struct target_type *immutable_target_type; 165 166 struct gendisk *disk; 167 char name[16]; 168 169 void *interface_ptr; 170 171 /* 172 * A list of ios that arrived while we were suspended. 173 */ 174 atomic_t pending[2]; 175 wait_queue_head_t wait; 176 struct work_struct work; 177 struct bio_list deferred; 178 spinlock_t deferred_lock; 179 180 /* 181 * Processing queue (flush) 182 */ 183 struct workqueue_struct *wq; 184 185 /* 186 * io objects are allocated from here. 187 */ 188 mempool_t *io_pool; 189 mempool_t *rq_pool; 190 191 struct bio_set *bs; 192 193 /* 194 * Event handling. 195 */ 196 atomic_t event_nr; 197 wait_queue_head_t eventq; 198 atomic_t uevent_seq; 199 struct list_head uevent_list; 200 spinlock_t uevent_lock; /* Protect access to uevent_list */ 201 202 /* 203 * freeze/thaw support require holding onto a super block 204 */ 205 struct super_block *frozen_sb; 206 struct block_device *bdev; 207 208 /* forced geometry settings */ 209 struct hd_geometry geometry; 210 211 /* kobject and completion */ 212 struct dm_kobject_holder kobj_holder; 213 214 /* zero-length flush that will be cloned and submitted to targets */ 215 struct bio flush_bio; 216 217 /* the number of internal suspends */ 218 unsigned internal_suspend_count; 219 220 struct dm_stats stats; 221 222 struct kthread_worker kworker; 223 struct task_struct *kworker_task; 224 225 /* for request-based merge heuristic in dm_request_fn() */ 226 unsigned seq_rq_merge_deadline_usecs; 227 int last_rq_rw; 228 sector_t last_rq_pos; 229 ktime_t last_rq_start_time; 230 231 /* for blk-mq request-based DM support */ 232 struct blk_mq_tag_set tag_set; 233 bool use_blk_mq; 234 }; 235 236 #ifdef CONFIG_DM_MQ_DEFAULT 237 static bool use_blk_mq = true; 238 #else 239 static bool use_blk_mq = false; 240 #endif 241 242 bool dm_use_blk_mq(struct mapped_device *md) 243 { 244 return md->use_blk_mq; 245 } 246 247 /* 248 * For mempools pre-allocation at the table loading time. 249 */ 250 struct dm_md_mempools { 251 mempool_t *io_pool; 252 mempool_t *rq_pool; 253 struct bio_set *bs; 254 }; 255 256 struct table_device { 257 struct list_head list; 258 atomic_t count; 259 struct dm_dev dm_dev; 260 }; 261 262 #define RESERVED_BIO_BASED_IOS 16 263 #define RESERVED_REQUEST_BASED_IOS 256 264 #define RESERVED_MAX_IOS 1024 265 static struct kmem_cache *_io_cache; 266 static struct kmem_cache *_rq_tio_cache; 267 static struct kmem_cache *_rq_cache; 268 269 /* 270 * Bio-based DM's mempools' reserved IOs set by the user. 271 */ 272 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 273 274 /* 275 * Request-based DM's mempools' reserved IOs set by the user. 276 */ 277 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 278 279 static unsigned __dm_get_module_param(unsigned *module_param, 280 unsigned def, unsigned max) 281 { 282 unsigned param = ACCESS_ONCE(*module_param); 283 unsigned modified_param = 0; 284 285 if (!param) 286 modified_param = def; 287 else if (param > max) 288 modified_param = max; 289 290 if (modified_param) { 291 (void)cmpxchg(module_param, param, modified_param); 292 param = modified_param; 293 } 294 295 return param; 296 } 297 298 unsigned dm_get_reserved_bio_based_ios(void) 299 { 300 return __dm_get_module_param(&reserved_bio_based_ios, 301 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 302 } 303 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 304 305 unsigned dm_get_reserved_rq_based_ios(void) 306 { 307 return __dm_get_module_param(&reserved_rq_based_ios, 308 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 309 } 310 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 311 312 static int __init local_init(void) 313 { 314 int r = -ENOMEM; 315 316 /* allocate a slab for the dm_ios */ 317 _io_cache = KMEM_CACHE(dm_io, 0); 318 if (!_io_cache) 319 return r; 320 321 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 322 if (!_rq_tio_cache) 323 goto out_free_io_cache; 324 325 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request), 326 __alignof__(struct request), 0, NULL); 327 if (!_rq_cache) 328 goto out_free_rq_tio_cache; 329 330 r = dm_uevent_init(); 331 if (r) 332 goto out_free_rq_cache; 333 334 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 335 if (!deferred_remove_workqueue) { 336 r = -ENOMEM; 337 goto out_uevent_exit; 338 } 339 340 _major = major; 341 r = register_blkdev(_major, _name); 342 if (r < 0) 343 goto out_free_workqueue; 344 345 if (!_major) 346 _major = r; 347 348 return 0; 349 350 out_free_workqueue: 351 destroy_workqueue(deferred_remove_workqueue); 352 out_uevent_exit: 353 dm_uevent_exit(); 354 out_free_rq_cache: 355 kmem_cache_destroy(_rq_cache); 356 out_free_rq_tio_cache: 357 kmem_cache_destroy(_rq_tio_cache); 358 out_free_io_cache: 359 kmem_cache_destroy(_io_cache); 360 361 return r; 362 } 363 364 static void local_exit(void) 365 { 366 flush_scheduled_work(); 367 destroy_workqueue(deferred_remove_workqueue); 368 369 kmem_cache_destroy(_rq_cache); 370 kmem_cache_destroy(_rq_tio_cache); 371 kmem_cache_destroy(_io_cache); 372 unregister_blkdev(_major, _name); 373 dm_uevent_exit(); 374 375 _major = 0; 376 377 DMINFO("cleaned up"); 378 } 379 380 static int (*_inits[])(void) __initdata = { 381 local_init, 382 dm_target_init, 383 dm_linear_init, 384 dm_stripe_init, 385 dm_io_init, 386 dm_kcopyd_init, 387 dm_interface_init, 388 dm_statistics_init, 389 }; 390 391 static void (*_exits[])(void) = { 392 local_exit, 393 dm_target_exit, 394 dm_linear_exit, 395 dm_stripe_exit, 396 dm_io_exit, 397 dm_kcopyd_exit, 398 dm_interface_exit, 399 dm_statistics_exit, 400 }; 401 402 static int __init dm_init(void) 403 { 404 const int count = ARRAY_SIZE(_inits); 405 406 int r, i; 407 408 for (i = 0; i < count; i++) { 409 r = _inits[i](); 410 if (r) 411 goto bad; 412 } 413 414 return 0; 415 416 bad: 417 while (i--) 418 _exits[i](); 419 420 return r; 421 } 422 423 static void __exit dm_exit(void) 424 { 425 int i = ARRAY_SIZE(_exits); 426 427 while (i--) 428 _exits[i](); 429 430 /* 431 * Should be empty by this point. 432 */ 433 idr_destroy(&_minor_idr); 434 } 435 436 /* 437 * Block device functions 438 */ 439 int dm_deleting_md(struct mapped_device *md) 440 { 441 return test_bit(DMF_DELETING, &md->flags); 442 } 443 444 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 445 { 446 struct mapped_device *md; 447 448 spin_lock(&_minor_lock); 449 450 md = bdev->bd_disk->private_data; 451 if (!md) 452 goto out; 453 454 if (test_bit(DMF_FREEING, &md->flags) || 455 dm_deleting_md(md)) { 456 md = NULL; 457 goto out; 458 } 459 460 dm_get(md); 461 atomic_inc(&md->open_count); 462 out: 463 spin_unlock(&_minor_lock); 464 465 return md ? 0 : -ENXIO; 466 } 467 468 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 469 { 470 struct mapped_device *md; 471 472 spin_lock(&_minor_lock); 473 474 md = disk->private_data; 475 if (WARN_ON(!md)) 476 goto out; 477 478 if (atomic_dec_and_test(&md->open_count) && 479 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 480 queue_work(deferred_remove_workqueue, &deferred_remove_work); 481 482 dm_put(md); 483 out: 484 spin_unlock(&_minor_lock); 485 } 486 487 int dm_open_count(struct mapped_device *md) 488 { 489 return atomic_read(&md->open_count); 490 } 491 492 /* 493 * Guarantees nothing is using the device before it's deleted. 494 */ 495 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 496 { 497 int r = 0; 498 499 spin_lock(&_minor_lock); 500 501 if (dm_open_count(md)) { 502 r = -EBUSY; 503 if (mark_deferred) 504 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 505 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 506 r = -EEXIST; 507 else 508 set_bit(DMF_DELETING, &md->flags); 509 510 spin_unlock(&_minor_lock); 511 512 return r; 513 } 514 515 int dm_cancel_deferred_remove(struct mapped_device *md) 516 { 517 int r = 0; 518 519 spin_lock(&_minor_lock); 520 521 if (test_bit(DMF_DELETING, &md->flags)) 522 r = -EBUSY; 523 else 524 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 525 526 spin_unlock(&_minor_lock); 527 528 return r; 529 } 530 531 static void do_deferred_remove(struct work_struct *w) 532 { 533 dm_deferred_remove(); 534 } 535 536 sector_t dm_get_size(struct mapped_device *md) 537 { 538 return get_capacity(md->disk); 539 } 540 541 struct request_queue *dm_get_md_queue(struct mapped_device *md) 542 { 543 return md->queue; 544 } 545 546 struct dm_stats *dm_get_stats(struct mapped_device *md) 547 { 548 return &md->stats; 549 } 550 551 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 552 { 553 struct mapped_device *md = bdev->bd_disk->private_data; 554 555 return dm_get_geometry(md, geo); 556 } 557 558 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 559 unsigned int cmd, unsigned long arg) 560 { 561 struct mapped_device *md = bdev->bd_disk->private_data; 562 int srcu_idx; 563 struct dm_table *map; 564 struct dm_target *tgt; 565 int r = -ENOTTY; 566 567 retry: 568 map = dm_get_live_table(md, &srcu_idx); 569 570 if (!map || !dm_table_get_size(map)) 571 goto out; 572 573 /* We only support devices that have a single target */ 574 if (dm_table_get_num_targets(map) != 1) 575 goto out; 576 577 tgt = dm_table_get_target(map, 0); 578 if (!tgt->type->ioctl) 579 goto out; 580 581 if (dm_suspended_md(md)) { 582 r = -EAGAIN; 583 goto out; 584 } 585 586 r = tgt->type->ioctl(tgt, cmd, arg); 587 588 out: 589 dm_put_live_table(md, srcu_idx); 590 591 if (r == -ENOTCONN) { 592 msleep(10); 593 goto retry; 594 } 595 596 return r; 597 } 598 599 static struct dm_io *alloc_io(struct mapped_device *md) 600 { 601 return mempool_alloc(md->io_pool, GFP_NOIO); 602 } 603 604 static void free_io(struct mapped_device *md, struct dm_io *io) 605 { 606 mempool_free(io, md->io_pool); 607 } 608 609 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 610 { 611 bio_put(&tio->clone); 612 } 613 614 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 615 gfp_t gfp_mask) 616 { 617 return mempool_alloc(md->io_pool, gfp_mask); 618 } 619 620 static void free_rq_tio(struct dm_rq_target_io *tio) 621 { 622 mempool_free(tio, tio->md->io_pool); 623 } 624 625 static struct request *alloc_clone_request(struct mapped_device *md, 626 gfp_t gfp_mask) 627 { 628 return mempool_alloc(md->rq_pool, gfp_mask); 629 } 630 631 static void free_clone_request(struct mapped_device *md, struct request *rq) 632 { 633 mempool_free(rq, md->rq_pool); 634 } 635 636 static int md_in_flight(struct mapped_device *md) 637 { 638 return atomic_read(&md->pending[READ]) + 639 atomic_read(&md->pending[WRITE]); 640 } 641 642 static void start_io_acct(struct dm_io *io) 643 { 644 struct mapped_device *md = io->md; 645 struct bio *bio = io->bio; 646 int cpu; 647 int rw = bio_data_dir(bio); 648 649 io->start_time = jiffies; 650 651 cpu = part_stat_lock(); 652 part_round_stats(cpu, &dm_disk(md)->part0); 653 part_stat_unlock(); 654 atomic_set(&dm_disk(md)->part0.in_flight[rw], 655 atomic_inc_return(&md->pending[rw])); 656 657 if (unlikely(dm_stats_used(&md->stats))) 658 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 659 bio_sectors(bio), false, 0, &io->stats_aux); 660 } 661 662 static void end_io_acct(struct dm_io *io) 663 { 664 struct mapped_device *md = io->md; 665 struct bio *bio = io->bio; 666 unsigned long duration = jiffies - io->start_time; 667 int pending; 668 int rw = bio_data_dir(bio); 669 670 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 671 672 if (unlikely(dm_stats_used(&md->stats))) 673 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 674 bio_sectors(bio), true, duration, &io->stats_aux); 675 676 /* 677 * After this is decremented the bio must not be touched if it is 678 * a flush. 679 */ 680 pending = atomic_dec_return(&md->pending[rw]); 681 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 682 pending += atomic_read(&md->pending[rw^0x1]); 683 684 /* nudge anyone waiting on suspend queue */ 685 if (!pending) 686 wake_up(&md->wait); 687 } 688 689 /* 690 * Add the bio to the list of deferred io. 691 */ 692 static void queue_io(struct mapped_device *md, struct bio *bio) 693 { 694 unsigned long flags; 695 696 spin_lock_irqsave(&md->deferred_lock, flags); 697 bio_list_add(&md->deferred, bio); 698 spin_unlock_irqrestore(&md->deferred_lock, flags); 699 queue_work(md->wq, &md->work); 700 } 701 702 /* 703 * Everyone (including functions in this file), should use this 704 * function to access the md->map field, and make sure they call 705 * dm_put_live_table() when finished. 706 */ 707 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 708 { 709 *srcu_idx = srcu_read_lock(&md->io_barrier); 710 711 return srcu_dereference(md->map, &md->io_barrier); 712 } 713 714 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 715 { 716 srcu_read_unlock(&md->io_barrier, srcu_idx); 717 } 718 719 void dm_sync_table(struct mapped_device *md) 720 { 721 synchronize_srcu(&md->io_barrier); 722 synchronize_rcu_expedited(); 723 } 724 725 /* 726 * A fast alternative to dm_get_live_table/dm_put_live_table. 727 * The caller must not block between these two functions. 728 */ 729 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 730 { 731 rcu_read_lock(); 732 return rcu_dereference(md->map); 733 } 734 735 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 736 { 737 rcu_read_unlock(); 738 } 739 740 /* 741 * Open a table device so we can use it as a map destination. 742 */ 743 static int open_table_device(struct table_device *td, dev_t dev, 744 struct mapped_device *md) 745 { 746 static char *_claim_ptr = "I belong to device-mapper"; 747 struct block_device *bdev; 748 749 int r; 750 751 BUG_ON(td->dm_dev.bdev); 752 753 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 754 if (IS_ERR(bdev)) 755 return PTR_ERR(bdev); 756 757 r = bd_link_disk_holder(bdev, dm_disk(md)); 758 if (r) { 759 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 760 return r; 761 } 762 763 td->dm_dev.bdev = bdev; 764 return 0; 765 } 766 767 /* 768 * Close a table device that we've been using. 769 */ 770 static void close_table_device(struct table_device *td, struct mapped_device *md) 771 { 772 if (!td->dm_dev.bdev) 773 return; 774 775 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 776 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 777 td->dm_dev.bdev = NULL; 778 } 779 780 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 781 fmode_t mode) { 782 struct table_device *td; 783 784 list_for_each_entry(td, l, list) 785 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 786 return td; 787 788 return NULL; 789 } 790 791 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 792 struct dm_dev **result) { 793 int r; 794 struct table_device *td; 795 796 mutex_lock(&md->table_devices_lock); 797 td = find_table_device(&md->table_devices, dev, mode); 798 if (!td) { 799 td = kmalloc(sizeof(*td), GFP_KERNEL); 800 if (!td) { 801 mutex_unlock(&md->table_devices_lock); 802 return -ENOMEM; 803 } 804 805 td->dm_dev.mode = mode; 806 td->dm_dev.bdev = NULL; 807 808 if ((r = open_table_device(td, dev, md))) { 809 mutex_unlock(&md->table_devices_lock); 810 kfree(td); 811 return r; 812 } 813 814 format_dev_t(td->dm_dev.name, dev); 815 816 atomic_set(&td->count, 0); 817 list_add(&td->list, &md->table_devices); 818 } 819 atomic_inc(&td->count); 820 mutex_unlock(&md->table_devices_lock); 821 822 *result = &td->dm_dev; 823 return 0; 824 } 825 EXPORT_SYMBOL_GPL(dm_get_table_device); 826 827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 828 { 829 struct table_device *td = container_of(d, struct table_device, dm_dev); 830 831 mutex_lock(&md->table_devices_lock); 832 if (atomic_dec_and_test(&td->count)) { 833 close_table_device(td, md); 834 list_del(&td->list); 835 kfree(td); 836 } 837 mutex_unlock(&md->table_devices_lock); 838 } 839 EXPORT_SYMBOL(dm_put_table_device); 840 841 static void free_table_devices(struct list_head *devices) 842 { 843 struct list_head *tmp, *next; 844 845 list_for_each_safe(tmp, next, devices) { 846 struct table_device *td = list_entry(tmp, struct table_device, list); 847 848 DMWARN("dm_destroy: %s still exists with %d references", 849 td->dm_dev.name, atomic_read(&td->count)); 850 kfree(td); 851 } 852 } 853 854 /* 855 * Get the geometry associated with a dm device 856 */ 857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 858 { 859 *geo = md->geometry; 860 861 return 0; 862 } 863 864 /* 865 * Set the geometry of a device. 866 */ 867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 868 { 869 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 870 871 if (geo->start > sz) { 872 DMWARN("Start sector is beyond the geometry limits."); 873 return -EINVAL; 874 } 875 876 md->geometry = *geo; 877 878 return 0; 879 } 880 881 /*----------------------------------------------------------------- 882 * CRUD START: 883 * A more elegant soln is in the works that uses the queue 884 * merge fn, unfortunately there are a couple of changes to 885 * the block layer that I want to make for this. So in the 886 * interests of getting something for people to use I give 887 * you this clearly demarcated crap. 888 *---------------------------------------------------------------*/ 889 890 static int __noflush_suspending(struct mapped_device *md) 891 { 892 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 893 } 894 895 /* 896 * Decrements the number of outstanding ios that a bio has been 897 * cloned into, completing the original io if necc. 898 */ 899 static void dec_pending(struct dm_io *io, int error) 900 { 901 unsigned long flags; 902 int io_error; 903 struct bio *bio; 904 struct mapped_device *md = io->md; 905 906 /* Push-back supersedes any I/O errors */ 907 if (unlikely(error)) { 908 spin_lock_irqsave(&io->endio_lock, flags); 909 if (!(io->error > 0 && __noflush_suspending(md))) 910 io->error = error; 911 spin_unlock_irqrestore(&io->endio_lock, flags); 912 } 913 914 if (atomic_dec_and_test(&io->io_count)) { 915 if (io->error == DM_ENDIO_REQUEUE) { 916 /* 917 * Target requested pushing back the I/O. 918 */ 919 spin_lock_irqsave(&md->deferred_lock, flags); 920 if (__noflush_suspending(md)) 921 bio_list_add_head(&md->deferred, io->bio); 922 else 923 /* noflush suspend was interrupted. */ 924 io->error = -EIO; 925 spin_unlock_irqrestore(&md->deferred_lock, flags); 926 } 927 928 io_error = io->error; 929 bio = io->bio; 930 end_io_acct(io); 931 free_io(md, io); 932 933 if (io_error == DM_ENDIO_REQUEUE) 934 return; 935 936 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 937 /* 938 * Preflush done for flush with data, reissue 939 * without REQ_FLUSH. 940 */ 941 bio->bi_rw &= ~REQ_FLUSH; 942 queue_io(md, bio); 943 } else { 944 /* done with normal IO or empty flush */ 945 trace_block_bio_complete(md->queue, bio, io_error); 946 bio->bi_error = io_error; 947 bio_endio(bio); 948 } 949 } 950 } 951 952 static void disable_write_same(struct mapped_device *md) 953 { 954 struct queue_limits *limits = dm_get_queue_limits(md); 955 956 /* device doesn't really support WRITE SAME, disable it */ 957 limits->max_write_same_sectors = 0; 958 } 959 960 static void clone_endio(struct bio *bio) 961 { 962 int error = bio->bi_error; 963 int r = error; 964 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 965 struct dm_io *io = tio->io; 966 struct mapped_device *md = tio->io->md; 967 dm_endio_fn endio = tio->ti->type->end_io; 968 969 if (endio) { 970 r = endio(tio->ti, bio, error); 971 if (r < 0 || r == DM_ENDIO_REQUEUE) 972 /* 973 * error and requeue request are handled 974 * in dec_pending(). 975 */ 976 error = r; 977 else if (r == DM_ENDIO_INCOMPLETE) 978 /* The target will handle the io */ 979 return; 980 else if (r) { 981 DMWARN("unimplemented target endio return value: %d", r); 982 BUG(); 983 } 984 } 985 986 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && 987 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 988 disable_write_same(md); 989 990 free_tio(md, tio); 991 dec_pending(io, error); 992 } 993 994 /* 995 * Partial completion handling for request-based dm 996 */ 997 static void end_clone_bio(struct bio *clone) 998 { 999 struct dm_rq_clone_bio_info *info = 1000 container_of(clone, struct dm_rq_clone_bio_info, clone); 1001 struct dm_rq_target_io *tio = info->tio; 1002 struct bio *bio = info->orig; 1003 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 1004 1005 bio_put(clone); 1006 1007 if (tio->error) 1008 /* 1009 * An error has already been detected on the request. 1010 * Once error occurred, just let clone->end_io() handle 1011 * the remainder. 1012 */ 1013 return; 1014 else if (bio->bi_error) { 1015 /* 1016 * Don't notice the error to the upper layer yet. 1017 * The error handling decision is made by the target driver, 1018 * when the request is completed. 1019 */ 1020 tio->error = bio->bi_error; 1021 return; 1022 } 1023 1024 /* 1025 * I/O for the bio successfully completed. 1026 * Notice the data completion to the upper layer. 1027 */ 1028 1029 /* 1030 * bios are processed from the head of the list. 1031 * So the completing bio should always be rq->bio. 1032 * If it's not, something wrong is happening. 1033 */ 1034 if (tio->orig->bio != bio) 1035 DMERR("bio completion is going in the middle of the request"); 1036 1037 /* 1038 * Update the original request. 1039 * Do not use blk_end_request() here, because it may complete 1040 * the original request before the clone, and break the ordering. 1041 */ 1042 blk_update_request(tio->orig, 0, nr_bytes); 1043 } 1044 1045 static struct dm_rq_target_io *tio_from_request(struct request *rq) 1046 { 1047 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special); 1048 } 1049 1050 static void rq_end_stats(struct mapped_device *md, struct request *orig) 1051 { 1052 if (unlikely(dm_stats_used(&md->stats))) { 1053 struct dm_rq_target_io *tio = tio_from_request(orig); 1054 tio->duration_jiffies = jiffies - tio->duration_jiffies; 1055 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig), 1056 tio->n_sectors, true, tio->duration_jiffies, 1057 &tio->stats_aux); 1058 } 1059 } 1060 1061 /* 1062 * Don't touch any member of the md after calling this function because 1063 * the md may be freed in dm_put() at the end of this function. 1064 * Or do dm_get() before calling this function and dm_put() later. 1065 */ 1066 static void rq_completed(struct mapped_device *md, int rw, bool run_queue) 1067 { 1068 atomic_dec(&md->pending[rw]); 1069 1070 /* nudge anyone waiting on suspend queue */ 1071 if (!md_in_flight(md)) 1072 wake_up(&md->wait); 1073 1074 /* 1075 * Run this off this callpath, as drivers could invoke end_io while 1076 * inside their request_fn (and holding the queue lock). Calling 1077 * back into ->request_fn() could deadlock attempting to grab the 1078 * queue lock again. 1079 */ 1080 if (run_queue) { 1081 if (md->queue->mq_ops) 1082 blk_mq_run_hw_queues(md->queue, true); 1083 else 1084 blk_run_queue_async(md->queue); 1085 } 1086 1087 /* 1088 * dm_put() must be at the end of this function. See the comment above 1089 */ 1090 dm_put(md); 1091 } 1092 1093 static void free_rq_clone(struct request *clone) 1094 { 1095 struct dm_rq_target_io *tio = clone->end_io_data; 1096 struct mapped_device *md = tio->md; 1097 1098 blk_rq_unprep_clone(clone); 1099 1100 if (md->type == DM_TYPE_MQ_REQUEST_BASED) 1101 /* stacked on blk-mq queue(s) */ 1102 tio->ti->type->release_clone_rq(clone); 1103 else if (!md->queue->mq_ops) 1104 /* request_fn queue stacked on request_fn queue(s) */ 1105 free_clone_request(md, clone); 1106 /* 1107 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case: 1108 * no need to call free_clone_request() because we leverage blk-mq by 1109 * allocating the clone at the end of the blk-mq pdu (see: clone_rq) 1110 */ 1111 1112 if (!md->queue->mq_ops) 1113 free_rq_tio(tio); 1114 } 1115 1116 /* 1117 * Complete the clone and the original request. 1118 * Must be called without clone's queue lock held, 1119 * see end_clone_request() for more details. 1120 */ 1121 static void dm_end_request(struct request *clone, int error) 1122 { 1123 int rw = rq_data_dir(clone); 1124 struct dm_rq_target_io *tio = clone->end_io_data; 1125 struct mapped_device *md = tio->md; 1126 struct request *rq = tio->orig; 1127 1128 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 1129 rq->errors = clone->errors; 1130 rq->resid_len = clone->resid_len; 1131 1132 if (rq->sense) 1133 /* 1134 * We are using the sense buffer of the original 1135 * request. 1136 * So setting the length of the sense data is enough. 1137 */ 1138 rq->sense_len = clone->sense_len; 1139 } 1140 1141 free_rq_clone(clone); 1142 rq_end_stats(md, rq); 1143 if (!rq->q->mq_ops) 1144 blk_end_request_all(rq, error); 1145 else 1146 blk_mq_end_request(rq, error); 1147 rq_completed(md, rw, true); 1148 } 1149 1150 static void dm_unprep_request(struct request *rq) 1151 { 1152 struct dm_rq_target_io *tio = tio_from_request(rq); 1153 struct request *clone = tio->clone; 1154 1155 if (!rq->q->mq_ops) { 1156 rq->special = NULL; 1157 rq->cmd_flags &= ~REQ_DONTPREP; 1158 } 1159 1160 if (clone) 1161 free_rq_clone(clone); 1162 } 1163 1164 /* 1165 * Requeue the original request of a clone. 1166 */ 1167 static void old_requeue_request(struct request *rq) 1168 { 1169 struct request_queue *q = rq->q; 1170 unsigned long flags; 1171 1172 spin_lock_irqsave(q->queue_lock, flags); 1173 blk_requeue_request(q, rq); 1174 blk_run_queue_async(q); 1175 spin_unlock_irqrestore(q->queue_lock, flags); 1176 } 1177 1178 static void dm_requeue_original_request(struct mapped_device *md, 1179 struct request *rq) 1180 { 1181 int rw = rq_data_dir(rq); 1182 1183 dm_unprep_request(rq); 1184 1185 rq_end_stats(md, rq); 1186 if (!rq->q->mq_ops) 1187 old_requeue_request(rq); 1188 else { 1189 blk_mq_requeue_request(rq); 1190 blk_mq_kick_requeue_list(rq->q); 1191 } 1192 1193 rq_completed(md, rw, false); 1194 } 1195 1196 static void old_stop_queue(struct request_queue *q) 1197 { 1198 unsigned long flags; 1199 1200 if (blk_queue_stopped(q)) 1201 return; 1202 1203 spin_lock_irqsave(q->queue_lock, flags); 1204 blk_stop_queue(q); 1205 spin_unlock_irqrestore(q->queue_lock, flags); 1206 } 1207 1208 static void stop_queue(struct request_queue *q) 1209 { 1210 if (!q->mq_ops) 1211 old_stop_queue(q); 1212 else 1213 blk_mq_stop_hw_queues(q); 1214 } 1215 1216 static void old_start_queue(struct request_queue *q) 1217 { 1218 unsigned long flags; 1219 1220 spin_lock_irqsave(q->queue_lock, flags); 1221 if (blk_queue_stopped(q)) 1222 blk_start_queue(q); 1223 spin_unlock_irqrestore(q->queue_lock, flags); 1224 } 1225 1226 static void start_queue(struct request_queue *q) 1227 { 1228 if (!q->mq_ops) 1229 old_start_queue(q); 1230 else 1231 blk_mq_start_stopped_hw_queues(q, true); 1232 } 1233 1234 static void dm_done(struct request *clone, int error, bool mapped) 1235 { 1236 int r = error; 1237 struct dm_rq_target_io *tio = clone->end_io_data; 1238 dm_request_endio_fn rq_end_io = NULL; 1239 1240 if (tio->ti) { 1241 rq_end_io = tio->ti->type->rq_end_io; 1242 1243 if (mapped && rq_end_io) 1244 r = rq_end_io(tio->ti, clone, error, &tio->info); 1245 } 1246 1247 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && 1248 !clone->q->limits.max_write_same_sectors)) 1249 disable_write_same(tio->md); 1250 1251 if (r <= 0) 1252 /* The target wants to complete the I/O */ 1253 dm_end_request(clone, r); 1254 else if (r == DM_ENDIO_INCOMPLETE) 1255 /* The target will handle the I/O */ 1256 return; 1257 else if (r == DM_ENDIO_REQUEUE) 1258 /* The target wants to requeue the I/O */ 1259 dm_requeue_original_request(tio->md, tio->orig); 1260 else { 1261 DMWARN("unimplemented target endio return value: %d", r); 1262 BUG(); 1263 } 1264 } 1265 1266 /* 1267 * Request completion handler for request-based dm 1268 */ 1269 static void dm_softirq_done(struct request *rq) 1270 { 1271 bool mapped = true; 1272 struct dm_rq_target_io *tio = tio_from_request(rq); 1273 struct request *clone = tio->clone; 1274 int rw; 1275 1276 if (!clone) { 1277 rq_end_stats(tio->md, rq); 1278 rw = rq_data_dir(rq); 1279 if (!rq->q->mq_ops) { 1280 blk_end_request_all(rq, tio->error); 1281 rq_completed(tio->md, rw, false); 1282 free_rq_tio(tio); 1283 } else { 1284 blk_mq_end_request(rq, tio->error); 1285 rq_completed(tio->md, rw, false); 1286 } 1287 return; 1288 } 1289 1290 if (rq->cmd_flags & REQ_FAILED) 1291 mapped = false; 1292 1293 dm_done(clone, tio->error, mapped); 1294 } 1295 1296 /* 1297 * Complete the clone and the original request with the error status 1298 * through softirq context. 1299 */ 1300 static void dm_complete_request(struct request *rq, int error) 1301 { 1302 struct dm_rq_target_io *tio = tio_from_request(rq); 1303 1304 tio->error = error; 1305 blk_complete_request(rq); 1306 } 1307 1308 /* 1309 * Complete the not-mapped clone and the original request with the error status 1310 * through softirq context. 1311 * Target's rq_end_io() function isn't called. 1312 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail. 1313 */ 1314 static void dm_kill_unmapped_request(struct request *rq, int error) 1315 { 1316 rq->cmd_flags |= REQ_FAILED; 1317 dm_complete_request(rq, error); 1318 } 1319 1320 /* 1321 * Called with the clone's queue lock held (for non-blk-mq) 1322 */ 1323 static void end_clone_request(struct request *clone, int error) 1324 { 1325 struct dm_rq_target_io *tio = clone->end_io_data; 1326 1327 if (!clone->q->mq_ops) { 1328 /* 1329 * For just cleaning up the information of the queue in which 1330 * the clone was dispatched. 1331 * The clone is *NOT* freed actually here because it is alloced 1332 * from dm own mempool (REQ_ALLOCED isn't set). 1333 */ 1334 __blk_put_request(clone->q, clone); 1335 } 1336 1337 /* 1338 * Actual request completion is done in a softirq context which doesn't 1339 * hold the clone's queue lock. Otherwise, deadlock could occur because: 1340 * - another request may be submitted by the upper level driver 1341 * of the stacking during the completion 1342 * - the submission which requires queue lock may be done 1343 * against this clone's queue 1344 */ 1345 dm_complete_request(tio->orig, error); 1346 } 1347 1348 /* 1349 * Return maximum size of I/O possible at the supplied sector up to the current 1350 * target boundary. 1351 */ 1352 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1353 { 1354 sector_t target_offset = dm_target_offset(ti, sector); 1355 1356 return ti->len - target_offset; 1357 } 1358 1359 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1360 { 1361 sector_t len = max_io_len_target_boundary(sector, ti); 1362 sector_t offset, max_len; 1363 1364 /* 1365 * Does the target need to split even further? 1366 */ 1367 if (ti->max_io_len) { 1368 offset = dm_target_offset(ti, sector); 1369 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1370 max_len = sector_div(offset, ti->max_io_len); 1371 else 1372 max_len = offset & (ti->max_io_len - 1); 1373 max_len = ti->max_io_len - max_len; 1374 1375 if (len > max_len) 1376 len = max_len; 1377 } 1378 1379 return len; 1380 } 1381 1382 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1383 { 1384 if (len > UINT_MAX) { 1385 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1386 (unsigned long long)len, UINT_MAX); 1387 ti->error = "Maximum size of target IO is too large"; 1388 return -EINVAL; 1389 } 1390 1391 ti->max_io_len = (uint32_t) len; 1392 1393 return 0; 1394 } 1395 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1396 1397 /* 1398 * A target may call dm_accept_partial_bio only from the map routine. It is 1399 * allowed for all bio types except REQ_FLUSH. 1400 * 1401 * dm_accept_partial_bio informs the dm that the target only wants to process 1402 * additional n_sectors sectors of the bio and the rest of the data should be 1403 * sent in a next bio. 1404 * 1405 * A diagram that explains the arithmetics: 1406 * +--------------------+---------------+-------+ 1407 * | 1 | 2 | 3 | 1408 * +--------------------+---------------+-------+ 1409 * 1410 * <-------------- *tio->len_ptr ---------------> 1411 * <------- bi_size -------> 1412 * <-- n_sectors --> 1413 * 1414 * Region 1 was already iterated over with bio_advance or similar function. 1415 * (it may be empty if the target doesn't use bio_advance) 1416 * Region 2 is the remaining bio size that the target wants to process. 1417 * (it may be empty if region 1 is non-empty, although there is no reason 1418 * to make it empty) 1419 * The target requires that region 3 is to be sent in the next bio. 1420 * 1421 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1422 * the partially processed part (the sum of regions 1+2) must be the same for all 1423 * copies of the bio. 1424 */ 1425 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1426 { 1427 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1428 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1429 BUG_ON(bio->bi_rw & REQ_FLUSH); 1430 BUG_ON(bi_size > *tio->len_ptr); 1431 BUG_ON(n_sectors > bi_size); 1432 *tio->len_ptr -= bi_size - n_sectors; 1433 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1434 } 1435 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1436 1437 static void __map_bio(struct dm_target_io *tio) 1438 { 1439 int r; 1440 sector_t sector; 1441 struct mapped_device *md; 1442 struct bio *clone = &tio->clone; 1443 struct dm_target *ti = tio->ti; 1444 1445 clone->bi_end_io = clone_endio; 1446 1447 /* 1448 * Map the clone. If r == 0 we don't need to do 1449 * anything, the target has assumed ownership of 1450 * this io. 1451 */ 1452 atomic_inc(&tio->io->io_count); 1453 sector = clone->bi_iter.bi_sector; 1454 r = ti->type->map(ti, clone); 1455 if (r == DM_MAPIO_REMAPPED) { 1456 /* the bio has been remapped so dispatch it */ 1457 1458 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1459 tio->io->bio->bi_bdev->bd_dev, sector); 1460 1461 generic_make_request(clone); 1462 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1463 /* error the io and bail out, or requeue it if needed */ 1464 md = tio->io->md; 1465 dec_pending(tio->io, r); 1466 free_tio(md, tio); 1467 } else if (r != DM_MAPIO_SUBMITTED) { 1468 DMWARN("unimplemented target map return value: %d", r); 1469 BUG(); 1470 } 1471 } 1472 1473 struct clone_info { 1474 struct mapped_device *md; 1475 struct dm_table *map; 1476 struct bio *bio; 1477 struct dm_io *io; 1478 sector_t sector; 1479 unsigned sector_count; 1480 }; 1481 1482 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1483 { 1484 bio->bi_iter.bi_sector = sector; 1485 bio->bi_iter.bi_size = to_bytes(len); 1486 } 1487 1488 /* 1489 * Creates a bio that consists of range of complete bvecs. 1490 */ 1491 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1492 sector_t sector, unsigned len) 1493 { 1494 struct bio *clone = &tio->clone; 1495 1496 __bio_clone_fast(clone, bio); 1497 1498 if (bio_integrity(bio)) 1499 bio_integrity_clone(clone, bio, GFP_NOIO); 1500 1501 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1502 clone->bi_iter.bi_size = to_bytes(len); 1503 1504 if (bio_integrity(bio)) 1505 bio_integrity_trim(clone, 0, len); 1506 } 1507 1508 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1509 struct dm_target *ti, 1510 unsigned target_bio_nr) 1511 { 1512 struct dm_target_io *tio; 1513 struct bio *clone; 1514 1515 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1516 tio = container_of(clone, struct dm_target_io, clone); 1517 1518 tio->io = ci->io; 1519 tio->ti = ti; 1520 tio->target_bio_nr = target_bio_nr; 1521 1522 return tio; 1523 } 1524 1525 static void __clone_and_map_simple_bio(struct clone_info *ci, 1526 struct dm_target *ti, 1527 unsigned target_bio_nr, unsigned *len) 1528 { 1529 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1530 struct bio *clone = &tio->clone; 1531 1532 tio->len_ptr = len; 1533 1534 __bio_clone_fast(clone, ci->bio); 1535 if (len) 1536 bio_setup_sector(clone, ci->sector, *len); 1537 1538 __map_bio(tio); 1539 } 1540 1541 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1542 unsigned num_bios, unsigned *len) 1543 { 1544 unsigned target_bio_nr; 1545 1546 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1547 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1548 } 1549 1550 static int __send_empty_flush(struct clone_info *ci) 1551 { 1552 unsigned target_nr = 0; 1553 struct dm_target *ti; 1554 1555 BUG_ON(bio_has_data(ci->bio)); 1556 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1557 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1558 1559 return 0; 1560 } 1561 1562 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1563 sector_t sector, unsigned *len) 1564 { 1565 struct bio *bio = ci->bio; 1566 struct dm_target_io *tio; 1567 unsigned target_bio_nr; 1568 unsigned num_target_bios = 1; 1569 1570 /* 1571 * Does the target want to receive duplicate copies of the bio? 1572 */ 1573 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1574 num_target_bios = ti->num_write_bios(ti, bio); 1575 1576 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1577 tio = alloc_tio(ci, ti, target_bio_nr); 1578 tio->len_ptr = len; 1579 clone_bio(tio, bio, sector, *len); 1580 __map_bio(tio); 1581 } 1582 } 1583 1584 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1585 1586 static unsigned get_num_discard_bios(struct dm_target *ti) 1587 { 1588 return ti->num_discard_bios; 1589 } 1590 1591 static unsigned get_num_write_same_bios(struct dm_target *ti) 1592 { 1593 return ti->num_write_same_bios; 1594 } 1595 1596 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1597 1598 static bool is_split_required_for_discard(struct dm_target *ti) 1599 { 1600 return ti->split_discard_bios; 1601 } 1602 1603 static int __send_changing_extent_only(struct clone_info *ci, 1604 get_num_bios_fn get_num_bios, 1605 is_split_required_fn is_split_required) 1606 { 1607 struct dm_target *ti; 1608 unsigned len; 1609 unsigned num_bios; 1610 1611 do { 1612 ti = dm_table_find_target(ci->map, ci->sector); 1613 if (!dm_target_is_valid(ti)) 1614 return -EIO; 1615 1616 /* 1617 * Even though the device advertised support for this type of 1618 * request, that does not mean every target supports it, and 1619 * reconfiguration might also have changed that since the 1620 * check was performed. 1621 */ 1622 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1623 if (!num_bios) 1624 return -EOPNOTSUPP; 1625 1626 if (is_split_required && !is_split_required(ti)) 1627 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1628 else 1629 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1630 1631 __send_duplicate_bios(ci, ti, num_bios, &len); 1632 1633 ci->sector += len; 1634 } while (ci->sector_count -= len); 1635 1636 return 0; 1637 } 1638 1639 static int __send_discard(struct clone_info *ci) 1640 { 1641 return __send_changing_extent_only(ci, get_num_discard_bios, 1642 is_split_required_for_discard); 1643 } 1644 1645 static int __send_write_same(struct clone_info *ci) 1646 { 1647 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1648 } 1649 1650 /* 1651 * Select the correct strategy for processing a non-flush bio. 1652 */ 1653 static int __split_and_process_non_flush(struct clone_info *ci) 1654 { 1655 struct bio *bio = ci->bio; 1656 struct dm_target *ti; 1657 unsigned len; 1658 1659 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1660 return __send_discard(ci); 1661 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1662 return __send_write_same(ci); 1663 1664 ti = dm_table_find_target(ci->map, ci->sector); 1665 if (!dm_target_is_valid(ti)) 1666 return -EIO; 1667 1668 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1669 1670 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1671 1672 ci->sector += len; 1673 ci->sector_count -= len; 1674 1675 return 0; 1676 } 1677 1678 /* 1679 * Entry point to split a bio into clones and submit them to the targets. 1680 */ 1681 static void __split_and_process_bio(struct mapped_device *md, 1682 struct dm_table *map, struct bio *bio) 1683 { 1684 struct clone_info ci; 1685 int error = 0; 1686 1687 if (unlikely(!map)) { 1688 bio_io_error(bio); 1689 return; 1690 } 1691 1692 ci.map = map; 1693 ci.md = md; 1694 ci.io = alloc_io(md); 1695 ci.io->error = 0; 1696 atomic_set(&ci.io->io_count, 1); 1697 ci.io->bio = bio; 1698 ci.io->md = md; 1699 spin_lock_init(&ci.io->endio_lock); 1700 ci.sector = bio->bi_iter.bi_sector; 1701 1702 start_io_acct(ci.io); 1703 1704 if (bio->bi_rw & REQ_FLUSH) { 1705 ci.bio = &ci.md->flush_bio; 1706 ci.sector_count = 0; 1707 error = __send_empty_flush(&ci); 1708 /* dec_pending submits any data associated with flush */ 1709 } else { 1710 ci.bio = bio; 1711 ci.sector_count = bio_sectors(bio); 1712 while (ci.sector_count && !error) 1713 error = __split_and_process_non_flush(&ci); 1714 } 1715 1716 /* drop the extra reference count */ 1717 dec_pending(ci.io, error); 1718 } 1719 /*----------------------------------------------------------------- 1720 * CRUD END 1721 *---------------------------------------------------------------*/ 1722 1723 /* 1724 * The request function that just remaps the bio built up by 1725 * dm_merge_bvec. 1726 */ 1727 static void dm_make_request(struct request_queue *q, struct bio *bio) 1728 { 1729 int rw = bio_data_dir(bio); 1730 struct mapped_device *md = q->queuedata; 1731 int srcu_idx; 1732 struct dm_table *map; 1733 1734 map = dm_get_live_table(md, &srcu_idx); 1735 1736 blk_queue_split(q, &bio, q->bio_split); 1737 1738 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1739 1740 /* if we're suspended, we have to queue this io for later */ 1741 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1742 dm_put_live_table(md, srcu_idx); 1743 1744 if (bio_rw(bio) != READA) 1745 queue_io(md, bio); 1746 else 1747 bio_io_error(bio); 1748 return; 1749 } 1750 1751 __split_and_process_bio(md, map, bio); 1752 dm_put_live_table(md, srcu_idx); 1753 return; 1754 } 1755 1756 int dm_request_based(struct mapped_device *md) 1757 { 1758 return blk_queue_stackable(md->queue); 1759 } 1760 1761 static void dm_dispatch_clone_request(struct request *clone, struct request *rq) 1762 { 1763 int r; 1764 1765 if (blk_queue_io_stat(clone->q)) 1766 clone->cmd_flags |= REQ_IO_STAT; 1767 1768 clone->start_time = jiffies; 1769 r = blk_insert_cloned_request(clone->q, clone); 1770 if (r) 1771 /* must complete clone in terms of original request */ 1772 dm_complete_request(rq, r); 1773 } 1774 1775 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1776 void *data) 1777 { 1778 struct dm_rq_target_io *tio = data; 1779 struct dm_rq_clone_bio_info *info = 1780 container_of(bio, struct dm_rq_clone_bio_info, clone); 1781 1782 info->orig = bio_orig; 1783 info->tio = tio; 1784 bio->bi_end_io = end_clone_bio; 1785 1786 return 0; 1787 } 1788 1789 static int setup_clone(struct request *clone, struct request *rq, 1790 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1791 { 1792 int r; 1793 1794 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask, 1795 dm_rq_bio_constructor, tio); 1796 if (r) 1797 return r; 1798 1799 clone->cmd = rq->cmd; 1800 clone->cmd_len = rq->cmd_len; 1801 clone->sense = rq->sense; 1802 clone->end_io = end_clone_request; 1803 clone->end_io_data = tio; 1804 1805 tio->clone = clone; 1806 1807 return 0; 1808 } 1809 1810 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1811 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1812 { 1813 /* 1814 * Do not allocate a clone if tio->clone was already set 1815 * (see: dm_mq_queue_rq). 1816 */ 1817 bool alloc_clone = !tio->clone; 1818 struct request *clone; 1819 1820 if (alloc_clone) { 1821 clone = alloc_clone_request(md, gfp_mask); 1822 if (!clone) 1823 return NULL; 1824 } else 1825 clone = tio->clone; 1826 1827 blk_rq_init(NULL, clone); 1828 if (setup_clone(clone, rq, tio, gfp_mask)) { 1829 /* -ENOMEM */ 1830 if (alloc_clone) 1831 free_clone_request(md, clone); 1832 return NULL; 1833 } 1834 1835 return clone; 1836 } 1837 1838 static void map_tio_request(struct kthread_work *work); 1839 1840 static void init_tio(struct dm_rq_target_io *tio, struct request *rq, 1841 struct mapped_device *md) 1842 { 1843 tio->md = md; 1844 tio->ti = NULL; 1845 tio->clone = NULL; 1846 tio->orig = rq; 1847 tio->error = 0; 1848 memset(&tio->info, 0, sizeof(tio->info)); 1849 if (md->kworker_task) 1850 init_kthread_work(&tio->work, map_tio_request); 1851 } 1852 1853 static struct dm_rq_target_io *prep_tio(struct request *rq, 1854 struct mapped_device *md, gfp_t gfp_mask) 1855 { 1856 struct dm_rq_target_io *tio; 1857 int srcu_idx; 1858 struct dm_table *table; 1859 1860 tio = alloc_rq_tio(md, gfp_mask); 1861 if (!tio) 1862 return NULL; 1863 1864 init_tio(tio, rq, md); 1865 1866 table = dm_get_live_table(md, &srcu_idx); 1867 if (!dm_table_mq_request_based(table)) { 1868 if (!clone_rq(rq, md, tio, gfp_mask)) { 1869 dm_put_live_table(md, srcu_idx); 1870 free_rq_tio(tio); 1871 return NULL; 1872 } 1873 } 1874 dm_put_live_table(md, srcu_idx); 1875 1876 return tio; 1877 } 1878 1879 /* 1880 * Called with the queue lock held. 1881 */ 1882 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1883 { 1884 struct mapped_device *md = q->queuedata; 1885 struct dm_rq_target_io *tio; 1886 1887 if (unlikely(rq->special)) { 1888 DMWARN("Already has something in rq->special."); 1889 return BLKPREP_KILL; 1890 } 1891 1892 tio = prep_tio(rq, md, GFP_ATOMIC); 1893 if (!tio) 1894 return BLKPREP_DEFER; 1895 1896 rq->special = tio; 1897 rq->cmd_flags |= REQ_DONTPREP; 1898 1899 return BLKPREP_OK; 1900 } 1901 1902 /* 1903 * Returns: 1904 * 0 : the request has been processed 1905 * DM_MAPIO_REQUEUE : the original request needs to be requeued 1906 * < 0 : the request was completed due to failure 1907 */ 1908 static int map_request(struct dm_rq_target_io *tio, struct request *rq, 1909 struct mapped_device *md) 1910 { 1911 int r; 1912 struct dm_target *ti = tio->ti; 1913 struct request *clone = NULL; 1914 1915 if (tio->clone) { 1916 clone = tio->clone; 1917 r = ti->type->map_rq(ti, clone, &tio->info); 1918 } else { 1919 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone); 1920 if (r < 0) { 1921 /* The target wants to complete the I/O */ 1922 dm_kill_unmapped_request(rq, r); 1923 return r; 1924 } 1925 if (r != DM_MAPIO_REMAPPED) 1926 return r; 1927 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) { 1928 /* -ENOMEM */ 1929 ti->type->release_clone_rq(clone); 1930 return DM_MAPIO_REQUEUE; 1931 } 1932 } 1933 1934 switch (r) { 1935 case DM_MAPIO_SUBMITTED: 1936 /* The target has taken the I/O to submit by itself later */ 1937 break; 1938 case DM_MAPIO_REMAPPED: 1939 /* The target has remapped the I/O so dispatch it */ 1940 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1941 blk_rq_pos(rq)); 1942 dm_dispatch_clone_request(clone, rq); 1943 break; 1944 case DM_MAPIO_REQUEUE: 1945 /* The target wants to requeue the I/O */ 1946 dm_requeue_original_request(md, tio->orig); 1947 break; 1948 default: 1949 if (r > 0) { 1950 DMWARN("unimplemented target map return value: %d", r); 1951 BUG(); 1952 } 1953 1954 /* The target wants to complete the I/O */ 1955 dm_kill_unmapped_request(rq, r); 1956 return r; 1957 } 1958 1959 return 0; 1960 } 1961 1962 static void map_tio_request(struct kthread_work *work) 1963 { 1964 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work); 1965 struct request *rq = tio->orig; 1966 struct mapped_device *md = tio->md; 1967 1968 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) 1969 dm_requeue_original_request(md, rq); 1970 } 1971 1972 static void dm_start_request(struct mapped_device *md, struct request *orig) 1973 { 1974 if (!orig->q->mq_ops) 1975 blk_start_request(orig); 1976 else 1977 blk_mq_start_request(orig); 1978 atomic_inc(&md->pending[rq_data_dir(orig)]); 1979 1980 if (md->seq_rq_merge_deadline_usecs) { 1981 md->last_rq_pos = rq_end_sector(orig); 1982 md->last_rq_rw = rq_data_dir(orig); 1983 md->last_rq_start_time = ktime_get(); 1984 } 1985 1986 if (unlikely(dm_stats_used(&md->stats))) { 1987 struct dm_rq_target_io *tio = tio_from_request(orig); 1988 tio->duration_jiffies = jiffies; 1989 tio->n_sectors = blk_rq_sectors(orig); 1990 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig), 1991 tio->n_sectors, false, 0, &tio->stats_aux); 1992 } 1993 1994 /* 1995 * Hold the md reference here for the in-flight I/O. 1996 * We can't rely on the reference count by device opener, 1997 * because the device may be closed during the request completion 1998 * when all bios are completed. 1999 * See the comment in rq_completed() too. 2000 */ 2001 dm_get(md); 2002 } 2003 2004 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000 2005 2006 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf) 2007 { 2008 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs); 2009 } 2010 2011 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md, 2012 const char *buf, size_t count) 2013 { 2014 unsigned deadline; 2015 2016 if (!dm_request_based(md) || md->use_blk_mq) 2017 return count; 2018 2019 if (kstrtouint(buf, 10, &deadline)) 2020 return -EINVAL; 2021 2022 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS) 2023 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS; 2024 2025 md->seq_rq_merge_deadline_usecs = deadline; 2026 2027 return count; 2028 } 2029 2030 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md) 2031 { 2032 ktime_t kt_deadline; 2033 2034 if (!md->seq_rq_merge_deadline_usecs) 2035 return false; 2036 2037 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC); 2038 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline); 2039 2040 return !ktime_after(ktime_get(), kt_deadline); 2041 } 2042 2043 /* 2044 * q->request_fn for request-based dm. 2045 * Called with the queue lock held. 2046 */ 2047 static void dm_request_fn(struct request_queue *q) 2048 { 2049 struct mapped_device *md = q->queuedata; 2050 int srcu_idx; 2051 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2052 struct dm_target *ti; 2053 struct request *rq; 2054 struct dm_rq_target_io *tio; 2055 sector_t pos; 2056 2057 /* 2058 * For suspend, check blk_queue_stopped() and increment 2059 * ->pending within a single queue_lock not to increment the 2060 * number of in-flight I/Os after the queue is stopped in 2061 * dm_suspend(). 2062 */ 2063 while (!blk_queue_stopped(q)) { 2064 rq = blk_peek_request(q); 2065 if (!rq) 2066 goto out; 2067 2068 /* always use block 0 to find the target for flushes for now */ 2069 pos = 0; 2070 if (!(rq->cmd_flags & REQ_FLUSH)) 2071 pos = blk_rq_pos(rq); 2072 2073 ti = dm_table_find_target(map, pos); 2074 if (!dm_target_is_valid(ti)) { 2075 /* 2076 * Must perform setup, that rq_completed() requires, 2077 * before calling dm_kill_unmapped_request 2078 */ 2079 DMERR_LIMIT("request attempted access beyond the end of device"); 2080 dm_start_request(md, rq); 2081 dm_kill_unmapped_request(rq, -EIO); 2082 continue; 2083 } 2084 2085 if (dm_request_peeked_before_merge_deadline(md) && 2086 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 && 2087 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) 2088 goto delay_and_out; 2089 2090 if (ti->type->busy && ti->type->busy(ti)) 2091 goto delay_and_out; 2092 2093 dm_start_request(md, rq); 2094 2095 tio = tio_from_request(rq); 2096 /* Establish tio->ti before queuing work (map_tio_request) */ 2097 tio->ti = ti; 2098 queue_kthread_work(&md->kworker, &tio->work); 2099 BUG_ON(!irqs_disabled()); 2100 } 2101 2102 goto out; 2103 2104 delay_and_out: 2105 blk_delay_queue(q, HZ / 100); 2106 out: 2107 dm_put_live_table(md, srcu_idx); 2108 } 2109 2110 static int dm_any_congested(void *congested_data, int bdi_bits) 2111 { 2112 int r = bdi_bits; 2113 struct mapped_device *md = congested_data; 2114 struct dm_table *map; 2115 2116 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2117 map = dm_get_live_table_fast(md); 2118 if (map) { 2119 /* 2120 * Request-based dm cares about only own queue for 2121 * the query about congestion status of request_queue 2122 */ 2123 if (dm_request_based(md)) 2124 r = md->queue->backing_dev_info.wb.state & 2125 bdi_bits; 2126 else 2127 r = dm_table_any_congested(map, bdi_bits); 2128 } 2129 dm_put_live_table_fast(md); 2130 } 2131 2132 return r; 2133 } 2134 2135 /*----------------------------------------------------------------- 2136 * An IDR is used to keep track of allocated minor numbers. 2137 *---------------------------------------------------------------*/ 2138 static void free_minor(int minor) 2139 { 2140 spin_lock(&_minor_lock); 2141 idr_remove(&_minor_idr, minor); 2142 spin_unlock(&_minor_lock); 2143 } 2144 2145 /* 2146 * See if the device with a specific minor # is free. 2147 */ 2148 static int specific_minor(int minor) 2149 { 2150 int r; 2151 2152 if (minor >= (1 << MINORBITS)) 2153 return -EINVAL; 2154 2155 idr_preload(GFP_KERNEL); 2156 spin_lock(&_minor_lock); 2157 2158 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2159 2160 spin_unlock(&_minor_lock); 2161 idr_preload_end(); 2162 if (r < 0) 2163 return r == -ENOSPC ? -EBUSY : r; 2164 return 0; 2165 } 2166 2167 static int next_free_minor(int *minor) 2168 { 2169 int r; 2170 2171 idr_preload(GFP_KERNEL); 2172 spin_lock(&_minor_lock); 2173 2174 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2175 2176 spin_unlock(&_minor_lock); 2177 idr_preload_end(); 2178 if (r < 0) 2179 return r; 2180 *minor = r; 2181 return 0; 2182 } 2183 2184 static const struct block_device_operations dm_blk_dops; 2185 2186 static void dm_wq_work(struct work_struct *work); 2187 2188 static void dm_init_md_queue(struct mapped_device *md) 2189 { 2190 /* 2191 * Request-based dm devices cannot be stacked on top of bio-based dm 2192 * devices. The type of this dm device may not have been decided yet. 2193 * The type is decided at the first table loading time. 2194 * To prevent problematic device stacking, clear the queue flag 2195 * for request stacking support until then. 2196 * 2197 * This queue is new, so no concurrency on the queue_flags. 2198 */ 2199 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 2200 } 2201 2202 static void dm_init_old_md_queue(struct mapped_device *md) 2203 { 2204 md->use_blk_mq = false; 2205 dm_init_md_queue(md); 2206 2207 /* 2208 * Initialize aspects of queue that aren't relevant for blk-mq 2209 */ 2210 md->queue->queuedata = md; 2211 md->queue->backing_dev_info.congested_fn = dm_any_congested; 2212 md->queue->backing_dev_info.congested_data = md; 2213 2214 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 2215 } 2216 2217 static void cleanup_mapped_device(struct mapped_device *md) 2218 { 2219 if (md->wq) 2220 destroy_workqueue(md->wq); 2221 if (md->kworker_task) 2222 kthread_stop(md->kworker_task); 2223 if (md->io_pool) 2224 mempool_destroy(md->io_pool); 2225 if (md->rq_pool) 2226 mempool_destroy(md->rq_pool); 2227 if (md->bs) 2228 bioset_free(md->bs); 2229 2230 cleanup_srcu_struct(&md->io_barrier); 2231 2232 if (md->disk) { 2233 spin_lock(&_minor_lock); 2234 md->disk->private_data = NULL; 2235 spin_unlock(&_minor_lock); 2236 if (blk_get_integrity(md->disk)) 2237 blk_integrity_unregister(md->disk); 2238 del_gendisk(md->disk); 2239 put_disk(md->disk); 2240 } 2241 2242 if (md->queue) 2243 blk_cleanup_queue(md->queue); 2244 2245 if (md->bdev) { 2246 bdput(md->bdev); 2247 md->bdev = NULL; 2248 } 2249 } 2250 2251 /* 2252 * Allocate and initialise a blank device with a given minor. 2253 */ 2254 static struct mapped_device *alloc_dev(int minor) 2255 { 2256 int r; 2257 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 2258 void *old_md; 2259 2260 if (!md) { 2261 DMWARN("unable to allocate device, out of memory."); 2262 return NULL; 2263 } 2264 2265 if (!try_module_get(THIS_MODULE)) 2266 goto bad_module_get; 2267 2268 /* get a minor number for the dev */ 2269 if (minor == DM_ANY_MINOR) 2270 r = next_free_minor(&minor); 2271 else 2272 r = specific_minor(minor); 2273 if (r < 0) 2274 goto bad_minor; 2275 2276 r = init_srcu_struct(&md->io_barrier); 2277 if (r < 0) 2278 goto bad_io_barrier; 2279 2280 md->use_blk_mq = use_blk_mq; 2281 md->type = DM_TYPE_NONE; 2282 mutex_init(&md->suspend_lock); 2283 mutex_init(&md->type_lock); 2284 mutex_init(&md->table_devices_lock); 2285 spin_lock_init(&md->deferred_lock); 2286 atomic_set(&md->holders, 1); 2287 atomic_set(&md->open_count, 0); 2288 atomic_set(&md->event_nr, 0); 2289 atomic_set(&md->uevent_seq, 0); 2290 INIT_LIST_HEAD(&md->uevent_list); 2291 INIT_LIST_HEAD(&md->table_devices); 2292 spin_lock_init(&md->uevent_lock); 2293 2294 md->queue = blk_alloc_queue(GFP_KERNEL); 2295 if (!md->queue) 2296 goto bad; 2297 2298 dm_init_md_queue(md); 2299 2300 md->disk = alloc_disk(1); 2301 if (!md->disk) 2302 goto bad; 2303 2304 atomic_set(&md->pending[0], 0); 2305 atomic_set(&md->pending[1], 0); 2306 init_waitqueue_head(&md->wait); 2307 INIT_WORK(&md->work, dm_wq_work); 2308 init_waitqueue_head(&md->eventq); 2309 init_completion(&md->kobj_holder.completion); 2310 md->kworker_task = NULL; 2311 2312 md->disk->major = _major; 2313 md->disk->first_minor = minor; 2314 md->disk->fops = &dm_blk_dops; 2315 md->disk->queue = md->queue; 2316 md->disk->private_data = md; 2317 sprintf(md->disk->disk_name, "dm-%d", minor); 2318 add_disk(md->disk); 2319 format_dev_t(md->name, MKDEV(_major, minor)); 2320 2321 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2322 if (!md->wq) 2323 goto bad; 2324 2325 md->bdev = bdget_disk(md->disk, 0); 2326 if (!md->bdev) 2327 goto bad; 2328 2329 bio_init(&md->flush_bio); 2330 md->flush_bio.bi_bdev = md->bdev; 2331 md->flush_bio.bi_rw = WRITE_FLUSH; 2332 2333 dm_stats_init(&md->stats); 2334 2335 /* Populate the mapping, nobody knows we exist yet */ 2336 spin_lock(&_minor_lock); 2337 old_md = idr_replace(&_minor_idr, md, minor); 2338 spin_unlock(&_minor_lock); 2339 2340 BUG_ON(old_md != MINOR_ALLOCED); 2341 2342 return md; 2343 2344 bad: 2345 cleanup_mapped_device(md); 2346 bad_io_barrier: 2347 free_minor(minor); 2348 bad_minor: 2349 module_put(THIS_MODULE); 2350 bad_module_get: 2351 kfree(md); 2352 return NULL; 2353 } 2354 2355 static void unlock_fs(struct mapped_device *md); 2356 2357 static void free_dev(struct mapped_device *md) 2358 { 2359 int minor = MINOR(disk_devt(md->disk)); 2360 2361 unlock_fs(md); 2362 2363 cleanup_mapped_device(md); 2364 if (md->use_blk_mq) 2365 blk_mq_free_tag_set(&md->tag_set); 2366 2367 free_table_devices(&md->table_devices); 2368 dm_stats_cleanup(&md->stats); 2369 free_minor(minor); 2370 2371 module_put(THIS_MODULE); 2372 kfree(md); 2373 } 2374 2375 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2376 { 2377 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2378 2379 if (md->bs) { 2380 /* The md already has necessary mempools. */ 2381 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2382 /* 2383 * Reload bioset because front_pad may have changed 2384 * because a different table was loaded. 2385 */ 2386 bioset_free(md->bs); 2387 md->bs = p->bs; 2388 p->bs = NULL; 2389 } 2390 /* 2391 * There's no need to reload with request-based dm 2392 * because the size of front_pad doesn't change. 2393 * Note for future: If you are to reload bioset, 2394 * prep-ed requests in the queue may refer 2395 * to bio from the old bioset, so you must walk 2396 * through the queue to unprep. 2397 */ 2398 goto out; 2399 } 2400 2401 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs); 2402 2403 md->io_pool = p->io_pool; 2404 p->io_pool = NULL; 2405 md->rq_pool = p->rq_pool; 2406 p->rq_pool = NULL; 2407 md->bs = p->bs; 2408 p->bs = NULL; 2409 2410 out: 2411 /* mempool bind completed, no longer need any mempools in the table */ 2412 dm_table_free_md_mempools(t); 2413 } 2414 2415 /* 2416 * Bind a table to the device. 2417 */ 2418 static void event_callback(void *context) 2419 { 2420 unsigned long flags; 2421 LIST_HEAD(uevents); 2422 struct mapped_device *md = (struct mapped_device *) context; 2423 2424 spin_lock_irqsave(&md->uevent_lock, flags); 2425 list_splice_init(&md->uevent_list, &uevents); 2426 spin_unlock_irqrestore(&md->uevent_lock, flags); 2427 2428 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2429 2430 atomic_inc(&md->event_nr); 2431 wake_up(&md->eventq); 2432 } 2433 2434 /* 2435 * Protected by md->suspend_lock obtained by dm_swap_table(). 2436 */ 2437 static void __set_size(struct mapped_device *md, sector_t size) 2438 { 2439 set_capacity(md->disk, size); 2440 2441 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2442 } 2443 2444 /* 2445 * Returns old map, which caller must destroy. 2446 */ 2447 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2448 struct queue_limits *limits) 2449 { 2450 struct dm_table *old_map; 2451 struct request_queue *q = md->queue; 2452 sector_t size; 2453 2454 size = dm_table_get_size(t); 2455 2456 /* 2457 * Wipe any geometry if the size of the table changed. 2458 */ 2459 if (size != dm_get_size(md)) 2460 memset(&md->geometry, 0, sizeof(md->geometry)); 2461 2462 __set_size(md, size); 2463 2464 dm_table_event_callback(t, event_callback, md); 2465 2466 /* 2467 * The queue hasn't been stopped yet, if the old table type wasn't 2468 * for request-based during suspension. So stop it to prevent 2469 * I/O mapping before resume. 2470 * This must be done before setting the queue restrictions, 2471 * because request-based dm may be run just after the setting. 2472 */ 2473 if (dm_table_request_based(t)) 2474 stop_queue(q); 2475 2476 __bind_mempools(md, t); 2477 2478 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2479 rcu_assign_pointer(md->map, t); 2480 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2481 2482 dm_table_set_restrictions(t, q, limits); 2483 if (old_map) 2484 dm_sync_table(md); 2485 2486 return old_map; 2487 } 2488 2489 /* 2490 * Returns unbound table for the caller to free. 2491 */ 2492 static struct dm_table *__unbind(struct mapped_device *md) 2493 { 2494 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2495 2496 if (!map) 2497 return NULL; 2498 2499 dm_table_event_callback(map, NULL, NULL); 2500 RCU_INIT_POINTER(md->map, NULL); 2501 dm_sync_table(md); 2502 2503 return map; 2504 } 2505 2506 /* 2507 * Constructor for a new device. 2508 */ 2509 int dm_create(int minor, struct mapped_device **result) 2510 { 2511 struct mapped_device *md; 2512 2513 md = alloc_dev(minor); 2514 if (!md) 2515 return -ENXIO; 2516 2517 dm_sysfs_init(md); 2518 2519 *result = md; 2520 return 0; 2521 } 2522 2523 /* 2524 * Functions to manage md->type. 2525 * All are required to hold md->type_lock. 2526 */ 2527 void dm_lock_md_type(struct mapped_device *md) 2528 { 2529 mutex_lock(&md->type_lock); 2530 } 2531 2532 void dm_unlock_md_type(struct mapped_device *md) 2533 { 2534 mutex_unlock(&md->type_lock); 2535 } 2536 2537 void dm_set_md_type(struct mapped_device *md, unsigned type) 2538 { 2539 BUG_ON(!mutex_is_locked(&md->type_lock)); 2540 md->type = type; 2541 } 2542 2543 unsigned dm_get_md_type(struct mapped_device *md) 2544 { 2545 BUG_ON(!mutex_is_locked(&md->type_lock)); 2546 return md->type; 2547 } 2548 2549 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2550 { 2551 return md->immutable_target_type; 2552 } 2553 2554 /* 2555 * The queue_limits are only valid as long as you have a reference 2556 * count on 'md'. 2557 */ 2558 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2559 { 2560 BUG_ON(!atomic_read(&md->holders)); 2561 return &md->queue->limits; 2562 } 2563 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2564 2565 static void init_rq_based_worker_thread(struct mapped_device *md) 2566 { 2567 /* Initialize the request-based DM worker thread */ 2568 init_kthread_worker(&md->kworker); 2569 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker, 2570 "kdmwork-%s", dm_device_name(md)); 2571 } 2572 2573 /* 2574 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2575 */ 2576 static int dm_init_request_based_queue(struct mapped_device *md) 2577 { 2578 struct request_queue *q = NULL; 2579 2580 /* Fully initialize the queue */ 2581 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2582 if (!q) 2583 return -EINVAL; 2584 2585 /* disable dm_request_fn's merge heuristic by default */ 2586 md->seq_rq_merge_deadline_usecs = 0; 2587 2588 md->queue = q; 2589 dm_init_old_md_queue(md); 2590 blk_queue_softirq_done(md->queue, dm_softirq_done); 2591 blk_queue_prep_rq(md->queue, dm_prep_fn); 2592 2593 init_rq_based_worker_thread(md); 2594 2595 elv_register_queue(md->queue); 2596 2597 return 0; 2598 } 2599 2600 static int dm_mq_init_request(void *data, struct request *rq, 2601 unsigned int hctx_idx, unsigned int request_idx, 2602 unsigned int numa_node) 2603 { 2604 struct mapped_device *md = data; 2605 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2606 2607 /* 2608 * Must initialize md member of tio, otherwise it won't 2609 * be available in dm_mq_queue_rq. 2610 */ 2611 tio->md = md; 2612 2613 return 0; 2614 } 2615 2616 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 2617 const struct blk_mq_queue_data *bd) 2618 { 2619 struct request *rq = bd->rq; 2620 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2621 struct mapped_device *md = tio->md; 2622 int srcu_idx; 2623 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2624 struct dm_target *ti; 2625 sector_t pos; 2626 2627 /* always use block 0 to find the target for flushes for now */ 2628 pos = 0; 2629 if (!(rq->cmd_flags & REQ_FLUSH)) 2630 pos = blk_rq_pos(rq); 2631 2632 ti = dm_table_find_target(map, pos); 2633 if (!dm_target_is_valid(ti)) { 2634 dm_put_live_table(md, srcu_idx); 2635 DMERR_LIMIT("request attempted access beyond the end of device"); 2636 /* 2637 * Must perform setup, that rq_completed() requires, 2638 * before returning BLK_MQ_RQ_QUEUE_ERROR 2639 */ 2640 dm_start_request(md, rq); 2641 return BLK_MQ_RQ_QUEUE_ERROR; 2642 } 2643 dm_put_live_table(md, srcu_idx); 2644 2645 if (ti->type->busy && ti->type->busy(ti)) 2646 return BLK_MQ_RQ_QUEUE_BUSY; 2647 2648 dm_start_request(md, rq); 2649 2650 /* Init tio using md established in .init_request */ 2651 init_tio(tio, rq, md); 2652 2653 /* 2654 * Establish tio->ti before queuing work (map_tio_request) 2655 * or making direct call to map_request(). 2656 */ 2657 tio->ti = ti; 2658 2659 /* Clone the request if underlying devices aren't blk-mq */ 2660 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) { 2661 /* clone request is allocated at the end of the pdu */ 2662 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io); 2663 (void) clone_rq(rq, md, tio, GFP_ATOMIC); 2664 queue_kthread_work(&md->kworker, &tio->work); 2665 } else { 2666 /* Direct call is fine since .queue_rq allows allocations */ 2667 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) { 2668 /* Undo dm_start_request() before requeuing */ 2669 rq_end_stats(md, rq); 2670 rq_completed(md, rq_data_dir(rq), false); 2671 return BLK_MQ_RQ_QUEUE_BUSY; 2672 } 2673 } 2674 2675 return BLK_MQ_RQ_QUEUE_OK; 2676 } 2677 2678 static struct blk_mq_ops dm_mq_ops = { 2679 .queue_rq = dm_mq_queue_rq, 2680 .map_queue = blk_mq_map_queue, 2681 .complete = dm_softirq_done, 2682 .init_request = dm_mq_init_request, 2683 }; 2684 2685 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md) 2686 { 2687 unsigned md_type = dm_get_md_type(md); 2688 struct request_queue *q; 2689 int err; 2690 2691 memset(&md->tag_set, 0, sizeof(md->tag_set)); 2692 md->tag_set.ops = &dm_mq_ops; 2693 md->tag_set.queue_depth = BLKDEV_MAX_RQ; 2694 md->tag_set.numa_node = NUMA_NO_NODE; 2695 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2696 md->tag_set.nr_hw_queues = 1; 2697 if (md_type == DM_TYPE_REQUEST_BASED) { 2698 /* make the memory for non-blk-mq clone part of the pdu */ 2699 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request); 2700 } else 2701 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io); 2702 md->tag_set.driver_data = md; 2703 2704 err = blk_mq_alloc_tag_set(&md->tag_set); 2705 if (err) 2706 return err; 2707 2708 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue); 2709 if (IS_ERR(q)) { 2710 err = PTR_ERR(q); 2711 goto out_tag_set; 2712 } 2713 md->queue = q; 2714 dm_init_md_queue(md); 2715 2716 /* backfill 'mq' sysfs registration normally done in blk_register_queue */ 2717 blk_mq_register_disk(md->disk); 2718 2719 if (md_type == DM_TYPE_REQUEST_BASED) 2720 init_rq_based_worker_thread(md); 2721 2722 return 0; 2723 2724 out_tag_set: 2725 blk_mq_free_tag_set(&md->tag_set); 2726 return err; 2727 } 2728 2729 static unsigned filter_md_type(unsigned type, struct mapped_device *md) 2730 { 2731 if (type == DM_TYPE_BIO_BASED) 2732 return type; 2733 2734 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED; 2735 } 2736 2737 /* 2738 * Setup the DM device's queue based on md's type 2739 */ 2740 int dm_setup_md_queue(struct mapped_device *md) 2741 { 2742 int r; 2743 unsigned md_type = filter_md_type(dm_get_md_type(md), md); 2744 2745 switch (md_type) { 2746 case DM_TYPE_REQUEST_BASED: 2747 r = dm_init_request_based_queue(md); 2748 if (r) { 2749 DMWARN("Cannot initialize queue for request-based mapped device"); 2750 return r; 2751 } 2752 break; 2753 case DM_TYPE_MQ_REQUEST_BASED: 2754 r = dm_init_request_based_blk_mq_queue(md); 2755 if (r) { 2756 DMWARN("Cannot initialize queue for request-based blk-mq mapped device"); 2757 return r; 2758 } 2759 break; 2760 case DM_TYPE_BIO_BASED: 2761 dm_init_old_md_queue(md); 2762 blk_queue_make_request(md->queue, dm_make_request); 2763 break; 2764 } 2765 2766 return 0; 2767 } 2768 2769 struct mapped_device *dm_get_md(dev_t dev) 2770 { 2771 struct mapped_device *md; 2772 unsigned minor = MINOR(dev); 2773 2774 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2775 return NULL; 2776 2777 spin_lock(&_minor_lock); 2778 2779 md = idr_find(&_minor_idr, minor); 2780 if (md) { 2781 if ((md == MINOR_ALLOCED || 2782 (MINOR(disk_devt(dm_disk(md))) != minor) || 2783 dm_deleting_md(md) || 2784 test_bit(DMF_FREEING, &md->flags))) { 2785 md = NULL; 2786 goto out; 2787 } 2788 dm_get(md); 2789 } 2790 2791 out: 2792 spin_unlock(&_minor_lock); 2793 2794 return md; 2795 } 2796 EXPORT_SYMBOL_GPL(dm_get_md); 2797 2798 void *dm_get_mdptr(struct mapped_device *md) 2799 { 2800 return md->interface_ptr; 2801 } 2802 2803 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2804 { 2805 md->interface_ptr = ptr; 2806 } 2807 2808 void dm_get(struct mapped_device *md) 2809 { 2810 atomic_inc(&md->holders); 2811 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2812 } 2813 2814 int dm_hold(struct mapped_device *md) 2815 { 2816 spin_lock(&_minor_lock); 2817 if (test_bit(DMF_FREEING, &md->flags)) { 2818 spin_unlock(&_minor_lock); 2819 return -EBUSY; 2820 } 2821 dm_get(md); 2822 spin_unlock(&_minor_lock); 2823 return 0; 2824 } 2825 EXPORT_SYMBOL_GPL(dm_hold); 2826 2827 const char *dm_device_name(struct mapped_device *md) 2828 { 2829 return md->name; 2830 } 2831 EXPORT_SYMBOL_GPL(dm_device_name); 2832 2833 static void __dm_destroy(struct mapped_device *md, bool wait) 2834 { 2835 struct dm_table *map; 2836 int srcu_idx; 2837 2838 might_sleep(); 2839 2840 map = dm_get_live_table(md, &srcu_idx); 2841 2842 spin_lock(&_minor_lock); 2843 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2844 set_bit(DMF_FREEING, &md->flags); 2845 spin_unlock(&_minor_lock); 2846 2847 if (dm_request_based(md) && md->kworker_task) 2848 flush_kthread_worker(&md->kworker); 2849 2850 /* 2851 * Take suspend_lock so that presuspend and postsuspend methods 2852 * do not race with internal suspend. 2853 */ 2854 mutex_lock(&md->suspend_lock); 2855 if (!dm_suspended_md(md)) { 2856 dm_table_presuspend_targets(map); 2857 dm_table_postsuspend_targets(map); 2858 } 2859 mutex_unlock(&md->suspend_lock); 2860 2861 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2862 dm_put_live_table(md, srcu_idx); 2863 2864 /* 2865 * Rare, but there may be I/O requests still going to complete, 2866 * for example. Wait for all references to disappear. 2867 * No one should increment the reference count of the mapped_device, 2868 * after the mapped_device state becomes DMF_FREEING. 2869 */ 2870 if (wait) 2871 while (atomic_read(&md->holders)) 2872 msleep(1); 2873 else if (atomic_read(&md->holders)) 2874 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2875 dm_device_name(md), atomic_read(&md->holders)); 2876 2877 dm_sysfs_exit(md); 2878 dm_table_destroy(__unbind(md)); 2879 free_dev(md); 2880 } 2881 2882 void dm_destroy(struct mapped_device *md) 2883 { 2884 __dm_destroy(md, true); 2885 } 2886 2887 void dm_destroy_immediate(struct mapped_device *md) 2888 { 2889 __dm_destroy(md, false); 2890 } 2891 2892 void dm_put(struct mapped_device *md) 2893 { 2894 atomic_dec(&md->holders); 2895 } 2896 EXPORT_SYMBOL_GPL(dm_put); 2897 2898 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2899 { 2900 int r = 0; 2901 DECLARE_WAITQUEUE(wait, current); 2902 2903 add_wait_queue(&md->wait, &wait); 2904 2905 while (1) { 2906 set_current_state(interruptible); 2907 2908 if (!md_in_flight(md)) 2909 break; 2910 2911 if (interruptible == TASK_INTERRUPTIBLE && 2912 signal_pending(current)) { 2913 r = -EINTR; 2914 break; 2915 } 2916 2917 io_schedule(); 2918 } 2919 set_current_state(TASK_RUNNING); 2920 2921 remove_wait_queue(&md->wait, &wait); 2922 2923 return r; 2924 } 2925 2926 /* 2927 * Process the deferred bios 2928 */ 2929 static void dm_wq_work(struct work_struct *work) 2930 { 2931 struct mapped_device *md = container_of(work, struct mapped_device, 2932 work); 2933 struct bio *c; 2934 int srcu_idx; 2935 struct dm_table *map; 2936 2937 map = dm_get_live_table(md, &srcu_idx); 2938 2939 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2940 spin_lock_irq(&md->deferred_lock); 2941 c = bio_list_pop(&md->deferred); 2942 spin_unlock_irq(&md->deferred_lock); 2943 2944 if (!c) 2945 break; 2946 2947 if (dm_request_based(md)) 2948 generic_make_request(c); 2949 else 2950 __split_and_process_bio(md, map, c); 2951 } 2952 2953 dm_put_live_table(md, srcu_idx); 2954 } 2955 2956 static void dm_queue_flush(struct mapped_device *md) 2957 { 2958 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2959 smp_mb__after_atomic(); 2960 queue_work(md->wq, &md->work); 2961 } 2962 2963 /* 2964 * Swap in a new table, returning the old one for the caller to destroy. 2965 */ 2966 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2967 { 2968 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2969 struct queue_limits limits; 2970 int r; 2971 2972 mutex_lock(&md->suspend_lock); 2973 2974 /* device must be suspended */ 2975 if (!dm_suspended_md(md)) 2976 goto out; 2977 2978 /* 2979 * If the new table has no data devices, retain the existing limits. 2980 * This helps multipath with queue_if_no_path if all paths disappear, 2981 * then new I/O is queued based on these limits, and then some paths 2982 * reappear. 2983 */ 2984 if (dm_table_has_no_data_devices(table)) { 2985 live_map = dm_get_live_table_fast(md); 2986 if (live_map) 2987 limits = md->queue->limits; 2988 dm_put_live_table_fast(md); 2989 } 2990 2991 if (!live_map) { 2992 r = dm_calculate_queue_limits(table, &limits); 2993 if (r) { 2994 map = ERR_PTR(r); 2995 goto out; 2996 } 2997 } 2998 2999 map = __bind(md, table, &limits); 3000 3001 out: 3002 mutex_unlock(&md->suspend_lock); 3003 return map; 3004 } 3005 3006 /* 3007 * Functions to lock and unlock any filesystem running on the 3008 * device. 3009 */ 3010 static int lock_fs(struct mapped_device *md) 3011 { 3012 int r; 3013 3014 WARN_ON(md->frozen_sb); 3015 3016 md->frozen_sb = freeze_bdev(md->bdev); 3017 if (IS_ERR(md->frozen_sb)) { 3018 r = PTR_ERR(md->frozen_sb); 3019 md->frozen_sb = NULL; 3020 return r; 3021 } 3022 3023 set_bit(DMF_FROZEN, &md->flags); 3024 3025 return 0; 3026 } 3027 3028 static void unlock_fs(struct mapped_device *md) 3029 { 3030 if (!test_bit(DMF_FROZEN, &md->flags)) 3031 return; 3032 3033 thaw_bdev(md->bdev, md->frozen_sb); 3034 md->frozen_sb = NULL; 3035 clear_bit(DMF_FROZEN, &md->flags); 3036 } 3037 3038 /* 3039 * If __dm_suspend returns 0, the device is completely quiescent 3040 * now. There is no request-processing activity. All new requests 3041 * are being added to md->deferred list. 3042 * 3043 * Caller must hold md->suspend_lock 3044 */ 3045 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 3046 unsigned suspend_flags, int interruptible) 3047 { 3048 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 3049 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 3050 int r; 3051 3052 /* 3053 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 3054 * This flag is cleared before dm_suspend returns. 3055 */ 3056 if (noflush) 3057 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3058 3059 /* 3060 * This gets reverted if there's an error later and the targets 3061 * provide the .presuspend_undo hook. 3062 */ 3063 dm_table_presuspend_targets(map); 3064 3065 /* 3066 * Flush I/O to the device. 3067 * Any I/O submitted after lock_fs() may not be flushed. 3068 * noflush takes precedence over do_lockfs. 3069 * (lock_fs() flushes I/Os and waits for them to complete.) 3070 */ 3071 if (!noflush && do_lockfs) { 3072 r = lock_fs(md); 3073 if (r) { 3074 dm_table_presuspend_undo_targets(map); 3075 return r; 3076 } 3077 } 3078 3079 /* 3080 * Here we must make sure that no processes are submitting requests 3081 * to target drivers i.e. no one may be executing 3082 * __split_and_process_bio. This is called from dm_request and 3083 * dm_wq_work. 3084 * 3085 * To get all processes out of __split_and_process_bio in dm_request, 3086 * we take the write lock. To prevent any process from reentering 3087 * __split_and_process_bio from dm_request and quiesce the thread 3088 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 3089 * flush_workqueue(md->wq). 3090 */ 3091 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3092 if (map) 3093 synchronize_srcu(&md->io_barrier); 3094 3095 /* 3096 * Stop md->queue before flushing md->wq in case request-based 3097 * dm defers requests to md->wq from md->queue. 3098 */ 3099 if (dm_request_based(md)) { 3100 stop_queue(md->queue); 3101 if (md->kworker_task) 3102 flush_kthread_worker(&md->kworker); 3103 } 3104 3105 flush_workqueue(md->wq); 3106 3107 /* 3108 * At this point no more requests are entering target request routines. 3109 * We call dm_wait_for_completion to wait for all existing requests 3110 * to finish. 3111 */ 3112 r = dm_wait_for_completion(md, interruptible); 3113 3114 if (noflush) 3115 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3116 if (map) 3117 synchronize_srcu(&md->io_barrier); 3118 3119 /* were we interrupted ? */ 3120 if (r < 0) { 3121 dm_queue_flush(md); 3122 3123 if (dm_request_based(md)) 3124 start_queue(md->queue); 3125 3126 unlock_fs(md); 3127 dm_table_presuspend_undo_targets(map); 3128 /* pushback list is already flushed, so skip flush */ 3129 } 3130 3131 return r; 3132 } 3133 3134 /* 3135 * We need to be able to change a mapping table under a mounted 3136 * filesystem. For example we might want to move some data in 3137 * the background. Before the table can be swapped with 3138 * dm_bind_table, dm_suspend must be called to flush any in 3139 * flight bios and ensure that any further io gets deferred. 3140 */ 3141 /* 3142 * Suspend mechanism in request-based dm. 3143 * 3144 * 1. Flush all I/Os by lock_fs() if needed. 3145 * 2. Stop dispatching any I/O by stopping the request_queue. 3146 * 3. Wait for all in-flight I/Os to be completed or requeued. 3147 * 3148 * To abort suspend, start the request_queue. 3149 */ 3150 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 3151 { 3152 struct dm_table *map = NULL; 3153 int r = 0; 3154 3155 retry: 3156 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3157 3158 if (dm_suspended_md(md)) { 3159 r = -EINVAL; 3160 goto out_unlock; 3161 } 3162 3163 if (dm_suspended_internally_md(md)) { 3164 /* already internally suspended, wait for internal resume */ 3165 mutex_unlock(&md->suspend_lock); 3166 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3167 if (r) 3168 return r; 3169 goto retry; 3170 } 3171 3172 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3173 3174 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE); 3175 if (r) 3176 goto out_unlock; 3177 3178 set_bit(DMF_SUSPENDED, &md->flags); 3179 3180 dm_table_postsuspend_targets(map); 3181 3182 out_unlock: 3183 mutex_unlock(&md->suspend_lock); 3184 return r; 3185 } 3186 3187 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3188 { 3189 if (map) { 3190 int r = dm_table_resume_targets(map); 3191 if (r) 3192 return r; 3193 } 3194 3195 dm_queue_flush(md); 3196 3197 /* 3198 * Flushing deferred I/Os must be done after targets are resumed 3199 * so that mapping of targets can work correctly. 3200 * Request-based dm is queueing the deferred I/Os in its request_queue. 3201 */ 3202 if (dm_request_based(md)) 3203 start_queue(md->queue); 3204 3205 unlock_fs(md); 3206 3207 return 0; 3208 } 3209 3210 int dm_resume(struct mapped_device *md) 3211 { 3212 int r = -EINVAL; 3213 struct dm_table *map = NULL; 3214 3215 retry: 3216 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3217 3218 if (!dm_suspended_md(md)) 3219 goto out; 3220 3221 if (dm_suspended_internally_md(md)) { 3222 /* already internally suspended, wait for internal resume */ 3223 mutex_unlock(&md->suspend_lock); 3224 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3225 if (r) 3226 return r; 3227 goto retry; 3228 } 3229 3230 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3231 if (!map || !dm_table_get_size(map)) 3232 goto out; 3233 3234 r = __dm_resume(md, map); 3235 if (r) 3236 goto out; 3237 3238 clear_bit(DMF_SUSPENDED, &md->flags); 3239 3240 r = 0; 3241 out: 3242 mutex_unlock(&md->suspend_lock); 3243 3244 return r; 3245 } 3246 3247 /* 3248 * Internal suspend/resume works like userspace-driven suspend. It waits 3249 * until all bios finish and prevents issuing new bios to the target drivers. 3250 * It may be used only from the kernel. 3251 */ 3252 3253 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 3254 { 3255 struct dm_table *map = NULL; 3256 3257 if (md->internal_suspend_count++) 3258 return; /* nested internal suspend */ 3259 3260 if (dm_suspended_md(md)) { 3261 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3262 return; /* nest suspend */ 3263 } 3264 3265 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3266 3267 /* 3268 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3269 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3270 * would require changing .presuspend to return an error -- avoid this 3271 * until there is a need for more elaborate variants of internal suspend. 3272 */ 3273 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE); 3274 3275 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3276 3277 dm_table_postsuspend_targets(map); 3278 } 3279 3280 static void __dm_internal_resume(struct mapped_device *md) 3281 { 3282 BUG_ON(!md->internal_suspend_count); 3283 3284 if (--md->internal_suspend_count) 3285 return; /* resume from nested internal suspend */ 3286 3287 if (dm_suspended_md(md)) 3288 goto done; /* resume from nested suspend */ 3289 3290 /* 3291 * NOTE: existing callers don't need to call dm_table_resume_targets 3292 * (which may fail -- so best to avoid it for now by passing NULL map) 3293 */ 3294 (void) __dm_resume(md, NULL); 3295 3296 done: 3297 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3298 smp_mb__after_atomic(); 3299 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3300 } 3301 3302 void dm_internal_suspend_noflush(struct mapped_device *md) 3303 { 3304 mutex_lock(&md->suspend_lock); 3305 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3306 mutex_unlock(&md->suspend_lock); 3307 } 3308 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3309 3310 void dm_internal_resume(struct mapped_device *md) 3311 { 3312 mutex_lock(&md->suspend_lock); 3313 __dm_internal_resume(md); 3314 mutex_unlock(&md->suspend_lock); 3315 } 3316 EXPORT_SYMBOL_GPL(dm_internal_resume); 3317 3318 /* 3319 * Fast variants of internal suspend/resume hold md->suspend_lock, 3320 * which prevents interaction with userspace-driven suspend. 3321 */ 3322 3323 void dm_internal_suspend_fast(struct mapped_device *md) 3324 { 3325 mutex_lock(&md->suspend_lock); 3326 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3327 return; 3328 3329 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3330 synchronize_srcu(&md->io_barrier); 3331 flush_workqueue(md->wq); 3332 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3333 } 3334 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3335 3336 void dm_internal_resume_fast(struct mapped_device *md) 3337 { 3338 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3339 goto done; 3340 3341 dm_queue_flush(md); 3342 3343 done: 3344 mutex_unlock(&md->suspend_lock); 3345 } 3346 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3347 3348 /*----------------------------------------------------------------- 3349 * Event notification. 3350 *---------------------------------------------------------------*/ 3351 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3352 unsigned cookie) 3353 { 3354 char udev_cookie[DM_COOKIE_LENGTH]; 3355 char *envp[] = { udev_cookie, NULL }; 3356 3357 if (!cookie) 3358 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 3359 else { 3360 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3361 DM_COOKIE_ENV_VAR_NAME, cookie); 3362 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 3363 action, envp); 3364 } 3365 } 3366 3367 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3368 { 3369 return atomic_add_return(1, &md->uevent_seq); 3370 } 3371 3372 uint32_t dm_get_event_nr(struct mapped_device *md) 3373 { 3374 return atomic_read(&md->event_nr); 3375 } 3376 3377 int dm_wait_event(struct mapped_device *md, int event_nr) 3378 { 3379 return wait_event_interruptible(md->eventq, 3380 (event_nr != atomic_read(&md->event_nr))); 3381 } 3382 3383 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3384 { 3385 unsigned long flags; 3386 3387 spin_lock_irqsave(&md->uevent_lock, flags); 3388 list_add(elist, &md->uevent_list); 3389 spin_unlock_irqrestore(&md->uevent_lock, flags); 3390 } 3391 3392 /* 3393 * The gendisk is only valid as long as you have a reference 3394 * count on 'md'. 3395 */ 3396 struct gendisk *dm_disk(struct mapped_device *md) 3397 { 3398 return md->disk; 3399 } 3400 EXPORT_SYMBOL_GPL(dm_disk); 3401 3402 struct kobject *dm_kobject(struct mapped_device *md) 3403 { 3404 return &md->kobj_holder.kobj; 3405 } 3406 3407 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3408 { 3409 struct mapped_device *md; 3410 3411 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3412 3413 if (test_bit(DMF_FREEING, &md->flags) || 3414 dm_deleting_md(md)) 3415 return NULL; 3416 3417 dm_get(md); 3418 return md; 3419 } 3420 3421 int dm_suspended_md(struct mapped_device *md) 3422 { 3423 return test_bit(DMF_SUSPENDED, &md->flags); 3424 } 3425 3426 int dm_suspended_internally_md(struct mapped_device *md) 3427 { 3428 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3429 } 3430 3431 int dm_test_deferred_remove_flag(struct mapped_device *md) 3432 { 3433 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3434 } 3435 3436 int dm_suspended(struct dm_target *ti) 3437 { 3438 return dm_suspended_md(dm_table_get_md(ti->table)); 3439 } 3440 EXPORT_SYMBOL_GPL(dm_suspended); 3441 3442 int dm_noflush_suspending(struct dm_target *ti) 3443 { 3444 return __noflush_suspending(dm_table_get_md(ti->table)); 3445 } 3446 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3447 3448 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 3449 unsigned integrity, unsigned per_bio_data_size) 3450 { 3451 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 3452 struct kmem_cache *cachep = NULL; 3453 unsigned int pool_size = 0; 3454 unsigned int front_pad; 3455 3456 if (!pools) 3457 return NULL; 3458 3459 type = filter_md_type(type, md); 3460 3461 switch (type) { 3462 case DM_TYPE_BIO_BASED: 3463 cachep = _io_cache; 3464 pool_size = dm_get_reserved_bio_based_ios(); 3465 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3466 break; 3467 case DM_TYPE_REQUEST_BASED: 3468 cachep = _rq_tio_cache; 3469 pool_size = dm_get_reserved_rq_based_ios(); 3470 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache); 3471 if (!pools->rq_pool) 3472 goto out; 3473 /* fall through to setup remaining rq-based pools */ 3474 case DM_TYPE_MQ_REQUEST_BASED: 3475 if (!pool_size) 3476 pool_size = dm_get_reserved_rq_based_ios(); 3477 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3478 /* per_bio_data_size is not used. See __bind_mempools(). */ 3479 WARN_ON(per_bio_data_size != 0); 3480 break; 3481 default: 3482 BUG(); 3483 } 3484 3485 if (cachep) { 3486 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 3487 if (!pools->io_pool) 3488 goto out; 3489 } 3490 3491 pools->bs = bioset_create_nobvec(pool_size, front_pad); 3492 if (!pools->bs) 3493 goto out; 3494 3495 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 3496 goto out; 3497 3498 return pools; 3499 3500 out: 3501 dm_free_md_mempools(pools); 3502 3503 return NULL; 3504 } 3505 3506 void dm_free_md_mempools(struct dm_md_mempools *pools) 3507 { 3508 if (!pools) 3509 return; 3510 3511 if (pools->io_pool) 3512 mempool_destroy(pools->io_pool); 3513 3514 if (pools->rq_pool) 3515 mempool_destroy(pools->rq_pool); 3516 3517 if (pools->bs) 3518 bioset_free(pools->bs); 3519 3520 kfree(pools); 3521 } 3522 3523 static const struct block_device_operations dm_blk_dops = { 3524 .open = dm_blk_open, 3525 .release = dm_blk_close, 3526 .ioctl = dm_blk_ioctl, 3527 .getgeo = dm_blk_getgeo, 3528 .owner = THIS_MODULE 3529 }; 3530 3531 /* 3532 * module hooks 3533 */ 3534 module_init(dm_init); 3535 module_exit(dm_exit); 3536 3537 module_param(major, uint, 0); 3538 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3539 3540 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3541 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3542 3543 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 3544 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 3545 3546 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR); 3547 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices"); 3548 3549 MODULE_DESCRIPTION(DM_NAME " driver"); 3550 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3551 MODULE_LICENSE("GPL"); 3552