1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-bio-list.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/moduleparam.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/buffer_head.h> 19 #include <linux/mempool.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/hdreg.h> 23 #include <linux/blktrace_api.h> 24 #include <trace/block.h> 25 26 #define DM_MSG_PREFIX "core" 27 28 static const char *_name = DM_NAME; 29 30 static unsigned int major = 0; 31 static unsigned int _major = 0; 32 33 static DEFINE_SPINLOCK(_minor_lock); 34 /* 35 * For bio-based dm. 36 * One of these is allocated per bio. 37 */ 38 struct dm_io { 39 struct mapped_device *md; 40 int error; 41 atomic_t io_count; 42 struct bio *bio; 43 unsigned long start_time; 44 }; 45 46 /* 47 * For bio-based dm. 48 * One of these is allocated per target within a bio. Hopefully 49 * this will be simplified out one day. 50 */ 51 struct dm_target_io { 52 struct dm_io *io; 53 struct dm_target *ti; 54 union map_info info; 55 }; 56 57 DEFINE_TRACE(block_bio_complete); 58 59 /* 60 * For request-based dm. 61 * One of these is allocated per request. 62 */ 63 struct dm_rq_target_io { 64 struct mapped_device *md; 65 struct dm_target *ti; 66 struct request *orig, clone; 67 int error; 68 union map_info info; 69 }; 70 71 /* 72 * For request-based dm. 73 * One of these is allocated per bio. 74 */ 75 struct dm_rq_clone_bio_info { 76 struct bio *orig; 77 struct request *rq; 78 }; 79 80 union map_info *dm_get_mapinfo(struct bio *bio) 81 { 82 if (bio && bio->bi_private) 83 return &((struct dm_target_io *)bio->bi_private)->info; 84 return NULL; 85 } 86 87 #define MINOR_ALLOCED ((void *)-1) 88 89 /* 90 * Bits for the md->flags field. 91 */ 92 #define DMF_BLOCK_IO 0 93 #define DMF_SUSPENDED 1 94 #define DMF_FROZEN 2 95 #define DMF_FREEING 3 96 #define DMF_DELETING 4 97 #define DMF_NOFLUSH_SUSPENDING 5 98 99 /* 100 * Work processed by per-device workqueue. 101 */ 102 struct dm_wq_req { 103 enum { 104 DM_WQ_FLUSH_DEFERRED, 105 } type; 106 struct work_struct work; 107 struct mapped_device *md; 108 void *context; 109 }; 110 111 struct mapped_device { 112 struct rw_semaphore io_lock; 113 struct mutex suspend_lock; 114 spinlock_t pushback_lock; 115 rwlock_t map_lock; 116 atomic_t holders; 117 atomic_t open_count; 118 119 unsigned long flags; 120 121 struct request_queue *queue; 122 struct gendisk *disk; 123 char name[16]; 124 125 void *interface_ptr; 126 127 /* 128 * A list of ios that arrived while we were suspended. 129 */ 130 atomic_t pending; 131 wait_queue_head_t wait; 132 struct bio_list deferred; 133 struct bio_list pushback; 134 135 /* 136 * Processing queue (flush/barriers) 137 */ 138 struct workqueue_struct *wq; 139 140 /* 141 * The current mapping. 142 */ 143 struct dm_table *map; 144 145 /* 146 * io objects are allocated from here. 147 */ 148 mempool_t *io_pool; 149 mempool_t *tio_pool; 150 151 struct bio_set *bs; 152 153 /* 154 * Event handling. 155 */ 156 atomic_t event_nr; 157 wait_queue_head_t eventq; 158 atomic_t uevent_seq; 159 struct list_head uevent_list; 160 spinlock_t uevent_lock; /* Protect access to uevent_list */ 161 162 /* 163 * freeze/thaw support require holding onto a super block 164 */ 165 struct super_block *frozen_sb; 166 struct block_device *suspended_bdev; 167 168 /* forced geometry settings */ 169 struct hd_geometry geometry; 170 171 /* sysfs handle */ 172 struct kobject kobj; 173 }; 174 175 #define MIN_IOS 256 176 static struct kmem_cache *_io_cache; 177 static struct kmem_cache *_tio_cache; 178 static struct kmem_cache *_rq_tio_cache; 179 static struct kmem_cache *_rq_bio_info_cache; 180 181 static int __init local_init(void) 182 { 183 int r = -ENOMEM; 184 185 /* allocate a slab for the dm_ios */ 186 _io_cache = KMEM_CACHE(dm_io, 0); 187 if (!_io_cache) 188 return r; 189 190 /* allocate a slab for the target ios */ 191 _tio_cache = KMEM_CACHE(dm_target_io, 0); 192 if (!_tio_cache) 193 goto out_free_io_cache; 194 195 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 196 if (!_rq_tio_cache) 197 goto out_free_tio_cache; 198 199 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 200 if (!_rq_bio_info_cache) 201 goto out_free_rq_tio_cache; 202 203 r = dm_uevent_init(); 204 if (r) 205 goto out_free_rq_bio_info_cache; 206 207 _major = major; 208 r = register_blkdev(_major, _name); 209 if (r < 0) 210 goto out_uevent_exit; 211 212 if (!_major) 213 _major = r; 214 215 return 0; 216 217 out_uevent_exit: 218 dm_uevent_exit(); 219 out_free_rq_bio_info_cache: 220 kmem_cache_destroy(_rq_bio_info_cache); 221 out_free_rq_tio_cache: 222 kmem_cache_destroy(_rq_tio_cache); 223 out_free_tio_cache: 224 kmem_cache_destroy(_tio_cache); 225 out_free_io_cache: 226 kmem_cache_destroy(_io_cache); 227 228 return r; 229 } 230 231 static void local_exit(void) 232 { 233 kmem_cache_destroy(_rq_bio_info_cache); 234 kmem_cache_destroy(_rq_tio_cache); 235 kmem_cache_destroy(_tio_cache); 236 kmem_cache_destroy(_io_cache); 237 unregister_blkdev(_major, _name); 238 dm_uevent_exit(); 239 240 _major = 0; 241 242 DMINFO("cleaned up"); 243 } 244 245 static int (*_inits[])(void) __initdata = { 246 local_init, 247 dm_target_init, 248 dm_linear_init, 249 dm_stripe_init, 250 dm_kcopyd_init, 251 dm_interface_init, 252 }; 253 254 static void (*_exits[])(void) = { 255 local_exit, 256 dm_target_exit, 257 dm_linear_exit, 258 dm_stripe_exit, 259 dm_kcopyd_exit, 260 dm_interface_exit, 261 }; 262 263 static int __init dm_init(void) 264 { 265 const int count = ARRAY_SIZE(_inits); 266 267 int r, i; 268 269 for (i = 0; i < count; i++) { 270 r = _inits[i](); 271 if (r) 272 goto bad; 273 } 274 275 return 0; 276 277 bad: 278 while (i--) 279 _exits[i](); 280 281 return r; 282 } 283 284 static void __exit dm_exit(void) 285 { 286 int i = ARRAY_SIZE(_exits); 287 288 while (i--) 289 _exits[i](); 290 } 291 292 /* 293 * Block device functions 294 */ 295 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 296 { 297 struct mapped_device *md; 298 299 spin_lock(&_minor_lock); 300 301 md = bdev->bd_disk->private_data; 302 if (!md) 303 goto out; 304 305 if (test_bit(DMF_FREEING, &md->flags) || 306 test_bit(DMF_DELETING, &md->flags)) { 307 md = NULL; 308 goto out; 309 } 310 311 dm_get(md); 312 atomic_inc(&md->open_count); 313 314 out: 315 spin_unlock(&_minor_lock); 316 317 return md ? 0 : -ENXIO; 318 } 319 320 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 321 { 322 struct mapped_device *md = disk->private_data; 323 atomic_dec(&md->open_count); 324 dm_put(md); 325 return 0; 326 } 327 328 int dm_open_count(struct mapped_device *md) 329 { 330 return atomic_read(&md->open_count); 331 } 332 333 /* 334 * Guarantees nothing is using the device before it's deleted. 335 */ 336 int dm_lock_for_deletion(struct mapped_device *md) 337 { 338 int r = 0; 339 340 spin_lock(&_minor_lock); 341 342 if (dm_open_count(md)) 343 r = -EBUSY; 344 else 345 set_bit(DMF_DELETING, &md->flags); 346 347 spin_unlock(&_minor_lock); 348 349 return r; 350 } 351 352 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 353 { 354 struct mapped_device *md = bdev->bd_disk->private_data; 355 356 return dm_get_geometry(md, geo); 357 } 358 359 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 360 unsigned int cmd, unsigned long arg) 361 { 362 struct mapped_device *md = bdev->bd_disk->private_data; 363 struct dm_table *map = dm_get_table(md); 364 struct dm_target *tgt; 365 int r = -ENOTTY; 366 367 if (!map || !dm_table_get_size(map)) 368 goto out; 369 370 /* We only support devices that have a single target */ 371 if (dm_table_get_num_targets(map) != 1) 372 goto out; 373 374 tgt = dm_table_get_target(map, 0); 375 376 if (dm_suspended(md)) { 377 r = -EAGAIN; 378 goto out; 379 } 380 381 if (tgt->type->ioctl) 382 r = tgt->type->ioctl(tgt, cmd, arg); 383 384 out: 385 dm_table_put(map); 386 387 return r; 388 } 389 390 static struct dm_io *alloc_io(struct mapped_device *md) 391 { 392 return mempool_alloc(md->io_pool, GFP_NOIO); 393 } 394 395 static void free_io(struct mapped_device *md, struct dm_io *io) 396 { 397 mempool_free(io, md->io_pool); 398 } 399 400 static struct dm_target_io *alloc_tio(struct mapped_device *md) 401 { 402 return mempool_alloc(md->tio_pool, GFP_NOIO); 403 } 404 405 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 406 { 407 mempool_free(tio, md->tio_pool); 408 } 409 410 static void start_io_acct(struct dm_io *io) 411 { 412 struct mapped_device *md = io->md; 413 int cpu; 414 415 io->start_time = jiffies; 416 417 cpu = part_stat_lock(); 418 part_round_stats(cpu, &dm_disk(md)->part0); 419 part_stat_unlock(); 420 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending); 421 } 422 423 static void end_io_acct(struct dm_io *io) 424 { 425 struct mapped_device *md = io->md; 426 struct bio *bio = io->bio; 427 unsigned long duration = jiffies - io->start_time; 428 int pending, cpu; 429 int rw = bio_data_dir(bio); 430 431 cpu = part_stat_lock(); 432 part_round_stats(cpu, &dm_disk(md)->part0); 433 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 434 part_stat_unlock(); 435 436 dm_disk(md)->part0.in_flight = pending = 437 atomic_dec_return(&md->pending); 438 439 /* nudge anyone waiting on suspend queue */ 440 if (!pending) 441 wake_up(&md->wait); 442 } 443 444 /* 445 * Add the bio to the list of deferred io. 446 */ 447 static int queue_io(struct mapped_device *md, struct bio *bio) 448 { 449 down_write(&md->io_lock); 450 451 if (!test_bit(DMF_BLOCK_IO, &md->flags)) { 452 up_write(&md->io_lock); 453 return 1; 454 } 455 456 bio_list_add(&md->deferred, bio); 457 458 up_write(&md->io_lock); 459 return 0; /* deferred successfully */ 460 } 461 462 /* 463 * Everyone (including functions in this file), should use this 464 * function to access the md->map field, and make sure they call 465 * dm_table_put() when finished. 466 */ 467 struct dm_table *dm_get_table(struct mapped_device *md) 468 { 469 struct dm_table *t; 470 471 read_lock(&md->map_lock); 472 t = md->map; 473 if (t) 474 dm_table_get(t); 475 read_unlock(&md->map_lock); 476 477 return t; 478 } 479 480 /* 481 * Get the geometry associated with a dm device 482 */ 483 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 484 { 485 *geo = md->geometry; 486 487 return 0; 488 } 489 490 /* 491 * Set the geometry of a device. 492 */ 493 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 494 { 495 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 496 497 if (geo->start > sz) { 498 DMWARN("Start sector is beyond the geometry limits."); 499 return -EINVAL; 500 } 501 502 md->geometry = *geo; 503 504 return 0; 505 } 506 507 /*----------------------------------------------------------------- 508 * CRUD START: 509 * A more elegant soln is in the works that uses the queue 510 * merge fn, unfortunately there are a couple of changes to 511 * the block layer that I want to make for this. So in the 512 * interests of getting something for people to use I give 513 * you this clearly demarcated crap. 514 *---------------------------------------------------------------*/ 515 516 static int __noflush_suspending(struct mapped_device *md) 517 { 518 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 519 } 520 521 /* 522 * Decrements the number of outstanding ios that a bio has been 523 * cloned into, completing the original io if necc. 524 */ 525 static void dec_pending(struct dm_io *io, int error) 526 { 527 unsigned long flags; 528 int io_error; 529 struct bio *bio; 530 struct mapped_device *md = io->md; 531 532 /* Push-back supersedes any I/O errors */ 533 if (error && !(io->error > 0 && __noflush_suspending(md))) 534 io->error = error; 535 536 if (atomic_dec_and_test(&io->io_count)) { 537 if (io->error == DM_ENDIO_REQUEUE) { 538 /* 539 * Target requested pushing back the I/O. 540 * This must be handled before the sleeper on 541 * suspend queue merges the pushback list. 542 */ 543 spin_lock_irqsave(&md->pushback_lock, flags); 544 if (__noflush_suspending(md)) 545 bio_list_add(&md->pushback, io->bio); 546 else 547 /* noflush suspend was interrupted. */ 548 io->error = -EIO; 549 spin_unlock_irqrestore(&md->pushback_lock, flags); 550 } 551 552 end_io_acct(io); 553 554 io_error = io->error; 555 bio = io->bio; 556 557 free_io(md, io); 558 559 if (io_error != DM_ENDIO_REQUEUE) { 560 trace_block_bio_complete(md->queue, bio); 561 562 bio_endio(bio, io_error); 563 } 564 } 565 } 566 567 static void clone_endio(struct bio *bio, int error) 568 { 569 int r = 0; 570 struct dm_target_io *tio = bio->bi_private; 571 struct dm_io *io = tio->io; 572 struct mapped_device *md = tio->io->md; 573 dm_endio_fn endio = tio->ti->type->end_io; 574 575 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 576 error = -EIO; 577 578 if (endio) { 579 r = endio(tio->ti, bio, error, &tio->info); 580 if (r < 0 || r == DM_ENDIO_REQUEUE) 581 /* 582 * error and requeue request are handled 583 * in dec_pending(). 584 */ 585 error = r; 586 else if (r == DM_ENDIO_INCOMPLETE) 587 /* The target will handle the io */ 588 return; 589 else if (r) { 590 DMWARN("unimplemented target endio return value: %d", r); 591 BUG(); 592 } 593 } 594 595 /* 596 * Store md for cleanup instead of tio which is about to get freed. 597 */ 598 bio->bi_private = md->bs; 599 600 free_tio(md, tio); 601 bio_put(bio); 602 dec_pending(io, error); 603 } 604 605 static sector_t max_io_len(struct mapped_device *md, 606 sector_t sector, struct dm_target *ti) 607 { 608 sector_t offset = sector - ti->begin; 609 sector_t len = ti->len - offset; 610 611 /* 612 * Does the target need to split even further ? 613 */ 614 if (ti->split_io) { 615 sector_t boundary; 616 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 617 - offset; 618 if (len > boundary) 619 len = boundary; 620 } 621 622 return len; 623 } 624 625 static void __map_bio(struct dm_target *ti, struct bio *clone, 626 struct dm_target_io *tio) 627 { 628 int r; 629 sector_t sector; 630 struct mapped_device *md; 631 632 /* 633 * Sanity checks. 634 */ 635 BUG_ON(!clone->bi_size); 636 637 clone->bi_end_io = clone_endio; 638 clone->bi_private = tio; 639 640 /* 641 * Map the clone. If r == 0 we don't need to do 642 * anything, the target has assumed ownership of 643 * this io. 644 */ 645 atomic_inc(&tio->io->io_count); 646 sector = clone->bi_sector; 647 r = ti->type->map(ti, clone, &tio->info); 648 if (r == DM_MAPIO_REMAPPED) { 649 /* the bio has been remapped so dispatch it */ 650 651 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone, 652 tio->io->bio->bi_bdev->bd_dev, 653 clone->bi_sector, sector); 654 655 generic_make_request(clone); 656 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 657 /* error the io and bail out, or requeue it if needed */ 658 md = tio->io->md; 659 dec_pending(tio->io, r); 660 /* 661 * Store bio_set for cleanup. 662 */ 663 clone->bi_private = md->bs; 664 bio_put(clone); 665 free_tio(md, tio); 666 } else if (r) { 667 DMWARN("unimplemented target map return value: %d", r); 668 BUG(); 669 } 670 } 671 672 struct clone_info { 673 struct mapped_device *md; 674 struct dm_table *map; 675 struct bio *bio; 676 struct dm_io *io; 677 sector_t sector; 678 sector_t sector_count; 679 unsigned short idx; 680 }; 681 682 static void dm_bio_destructor(struct bio *bio) 683 { 684 struct bio_set *bs = bio->bi_private; 685 686 bio_free(bio, bs); 687 } 688 689 /* 690 * Creates a little bio that is just does part of a bvec. 691 */ 692 static struct bio *split_bvec(struct bio *bio, sector_t sector, 693 unsigned short idx, unsigned int offset, 694 unsigned int len, struct bio_set *bs) 695 { 696 struct bio *clone; 697 struct bio_vec *bv = bio->bi_io_vec + idx; 698 699 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 700 clone->bi_destructor = dm_bio_destructor; 701 *clone->bi_io_vec = *bv; 702 703 clone->bi_sector = sector; 704 clone->bi_bdev = bio->bi_bdev; 705 clone->bi_rw = bio->bi_rw; 706 clone->bi_vcnt = 1; 707 clone->bi_size = to_bytes(len); 708 clone->bi_io_vec->bv_offset = offset; 709 clone->bi_io_vec->bv_len = clone->bi_size; 710 clone->bi_flags |= 1 << BIO_CLONED; 711 712 return clone; 713 } 714 715 /* 716 * Creates a bio that consists of range of complete bvecs. 717 */ 718 static struct bio *clone_bio(struct bio *bio, sector_t sector, 719 unsigned short idx, unsigned short bv_count, 720 unsigned int len, struct bio_set *bs) 721 { 722 struct bio *clone; 723 724 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 725 __bio_clone(clone, bio); 726 clone->bi_destructor = dm_bio_destructor; 727 clone->bi_sector = sector; 728 clone->bi_idx = idx; 729 clone->bi_vcnt = idx + bv_count; 730 clone->bi_size = to_bytes(len); 731 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 732 733 return clone; 734 } 735 736 static int __clone_and_map(struct clone_info *ci) 737 { 738 struct bio *clone, *bio = ci->bio; 739 struct dm_target *ti; 740 sector_t len = 0, max; 741 struct dm_target_io *tio; 742 743 ti = dm_table_find_target(ci->map, ci->sector); 744 if (!dm_target_is_valid(ti)) 745 return -EIO; 746 747 max = max_io_len(ci->md, ci->sector, ti); 748 749 /* 750 * Allocate a target io object. 751 */ 752 tio = alloc_tio(ci->md); 753 tio->io = ci->io; 754 tio->ti = ti; 755 memset(&tio->info, 0, sizeof(tio->info)); 756 757 if (ci->sector_count <= max) { 758 /* 759 * Optimise for the simple case where we can do all of 760 * the remaining io with a single clone. 761 */ 762 clone = clone_bio(bio, ci->sector, ci->idx, 763 bio->bi_vcnt - ci->idx, ci->sector_count, 764 ci->md->bs); 765 __map_bio(ti, clone, tio); 766 ci->sector_count = 0; 767 768 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 769 /* 770 * There are some bvecs that don't span targets. 771 * Do as many of these as possible. 772 */ 773 int i; 774 sector_t remaining = max; 775 sector_t bv_len; 776 777 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 778 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 779 780 if (bv_len > remaining) 781 break; 782 783 remaining -= bv_len; 784 len += bv_len; 785 } 786 787 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 788 ci->md->bs); 789 __map_bio(ti, clone, tio); 790 791 ci->sector += len; 792 ci->sector_count -= len; 793 ci->idx = i; 794 795 } else { 796 /* 797 * Handle a bvec that must be split between two or more targets. 798 */ 799 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 800 sector_t remaining = to_sector(bv->bv_len); 801 unsigned int offset = 0; 802 803 do { 804 if (offset) { 805 ti = dm_table_find_target(ci->map, ci->sector); 806 if (!dm_target_is_valid(ti)) 807 return -EIO; 808 809 max = max_io_len(ci->md, ci->sector, ti); 810 811 tio = alloc_tio(ci->md); 812 tio->io = ci->io; 813 tio->ti = ti; 814 memset(&tio->info, 0, sizeof(tio->info)); 815 } 816 817 len = min(remaining, max); 818 819 clone = split_bvec(bio, ci->sector, ci->idx, 820 bv->bv_offset + offset, len, 821 ci->md->bs); 822 823 __map_bio(ti, clone, tio); 824 825 ci->sector += len; 826 ci->sector_count -= len; 827 offset += to_bytes(len); 828 } while (remaining -= len); 829 830 ci->idx++; 831 } 832 833 return 0; 834 } 835 836 /* 837 * Split the bio into several clones. 838 */ 839 static int __split_bio(struct mapped_device *md, struct bio *bio) 840 { 841 struct clone_info ci; 842 int error = 0; 843 844 ci.map = dm_get_table(md); 845 if (unlikely(!ci.map)) 846 return -EIO; 847 if (unlikely(bio_barrier(bio) && !dm_table_barrier_ok(ci.map))) { 848 dm_table_put(ci.map); 849 bio_endio(bio, -EOPNOTSUPP); 850 return 0; 851 } 852 ci.md = md; 853 ci.bio = bio; 854 ci.io = alloc_io(md); 855 ci.io->error = 0; 856 atomic_set(&ci.io->io_count, 1); 857 ci.io->bio = bio; 858 ci.io->md = md; 859 ci.sector = bio->bi_sector; 860 ci.sector_count = bio_sectors(bio); 861 ci.idx = bio->bi_idx; 862 863 start_io_acct(ci.io); 864 while (ci.sector_count && !error) 865 error = __clone_and_map(&ci); 866 867 /* drop the extra reference count */ 868 dec_pending(ci.io, error); 869 dm_table_put(ci.map); 870 871 return 0; 872 } 873 /*----------------------------------------------------------------- 874 * CRUD END 875 *---------------------------------------------------------------*/ 876 877 static int dm_merge_bvec(struct request_queue *q, 878 struct bvec_merge_data *bvm, 879 struct bio_vec *biovec) 880 { 881 struct mapped_device *md = q->queuedata; 882 struct dm_table *map = dm_get_table(md); 883 struct dm_target *ti; 884 sector_t max_sectors; 885 int max_size = 0; 886 887 if (unlikely(!map)) 888 goto out; 889 890 ti = dm_table_find_target(map, bvm->bi_sector); 891 if (!dm_target_is_valid(ti)) 892 goto out_table; 893 894 /* 895 * Find maximum amount of I/O that won't need splitting 896 */ 897 max_sectors = min(max_io_len(md, bvm->bi_sector, ti), 898 (sector_t) BIO_MAX_SECTORS); 899 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 900 if (max_size < 0) 901 max_size = 0; 902 903 /* 904 * merge_bvec_fn() returns number of bytes 905 * it can accept at this offset 906 * max is precomputed maximal io size 907 */ 908 if (max_size && ti->type->merge) 909 max_size = ti->type->merge(ti, bvm, biovec, max_size); 910 911 out_table: 912 dm_table_put(map); 913 914 out: 915 /* 916 * Always allow an entire first page 917 */ 918 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 919 max_size = biovec->bv_len; 920 921 return max_size; 922 } 923 924 /* 925 * The request function that just remaps the bio built up by 926 * dm_merge_bvec. 927 */ 928 static int dm_request(struct request_queue *q, struct bio *bio) 929 { 930 int r = -EIO; 931 int rw = bio_data_dir(bio); 932 struct mapped_device *md = q->queuedata; 933 int cpu; 934 935 down_read(&md->io_lock); 936 937 cpu = part_stat_lock(); 938 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 939 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 940 part_stat_unlock(); 941 942 /* 943 * If we're suspended we have to queue 944 * this io for later. 945 */ 946 while (test_bit(DMF_BLOCK_IO, &md->flags)) { 947 up_read(&md->io_lock); 948 949 if (bio_rw(bio) != READA) 950 r = queue_io(md, bio); 951 952 if (r <= 0) 953 goto out_req; 954 955 /* 956 * We're in a while loop, because someone could suspend 957 * before we get to the following read lock. 958 */ 959 down_read(&md->io_lock); 960 } 961 962 r = __split_bio(md, bio); 963 up_read(&md->io_lock); 964 965 out_req: 966 if (r < 0) 967 bio_io_error(bio); 968 969 return 0; 970 } 971 972 static void dm_unplug_all(struct request_queue *q) 973 { 974 struct mapped_device *md = q->queuedata; 975 struct dm_table *map = dm_get_table(md); 976 977 if (map) { 978 dm_table_unplug_all(map); 979 dm_table_put(map); 980 } 981 } 982 983 static int dm_any_congested(void *congested_data, int bdi_bits) 984 { 985 int r = bdi_bits; 986 struct mapped_device *md = congested_data; 987 struct dm_table *map; 988 989 if (!test_bit(DMF_BLOCK_IO, &md->flags)) { 990 map = dm_get_table(md); 991 if (map) { 992 r = dm_table_any_congested(map, bdi_bits); 993 dm_table_put(map); 994 } 995 } 996 997 return r; 998 } 999 1000 /*----------------------------------------------------------------- 1001 * An IDR is used to keep track of allocated minor numbers. 1002 *---------------------------------------------------------------*/ 1003 static DEFINE_IDR(_minor_idr); 1004 1005 static void free_minor(int minor) 1006 { 1007 spin_lock(&_minor_lock); 1008 idr_remove(&_minor_idr, minor); 1009 spin_unlock(&_minor_lock); 1010 } 1011 1012 /* 1013 * See if the device with a specific minor # is free. 1014 */ 1015 static int specific_minor(int minor) 1016 { 1017 int r, m; 1018 1019 if (minor >= (1 << MINORBITS)) 1020 return -EINVAL; 1021 1022 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1023 if (!r) 1024 return -ENOMEM; 1025 1026 spin_lock(&_minor_lock); 1027 1028 if (idr_find(&_minor_idr, minor)) { 1029 r = -EBUSY; 1030 goto out; 1031 } 1032 1033 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 1034 if (r) 1035 goto out; 1036 1037 if (m != minor) { 1038 idr_remove(&_minor_idr, m); 1039 r = -EBUSY; 1040 goto out; 1041 } 1042 1043 out: 1044 spin_unlock(&_minor_lock); 1045 return r; 1046 } 1047 1048 static int next_free_minor(int *minor) 1049 { 1050 int r, m; 1051 1052 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1053 if (!r) 1054 return -ENOMEM; 1055 1056 spin_lock(&_minor_lock); 1057 1058 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1059 if (r) 1060 goto out; 1061 1062 if (m >= (1 << MINORBITS)) { 1063 idr_remove(&_minor_idr, m); 1064 r = -ENOSPC; 1065 goto out; 1066 } 1067 1068 *minor = m; 1069 1070 out: 1071 spin_unlock(&_minor_lock); 1072 return r; 1073 } 1074 1075 static struct block_device_operations dm_blk_dops; 1076 1077 /* 1078 * Allocate and initialise a blank device with a given minor. 1079 */ 1080 static struct mapped_device *alloc_dev(int minor) 1081 { 1082 int r; 1083 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1084 void *old_md; 1085 1086 if (!md) { 1087 DMWARN("unable to allocate device, out of memory."); 1088 return NULL; 1089 } 1090 1091 if (!try_module_get(THIS_MODULE)) 1092 goto bad_module_get; 1093 1094 /* get a minor number for the dev */ 1095 if (minor == DM_ANY_MINOR) 1096 r = next_free_minor(&minor); 1097 else 1098 r = specific_minor(minor); 1099 if (r < 0) 1100 goto bad_minor; 1101 1102 init_rwsem(&md->io_lock); 1103 mutex_init(&md->suspend_lock); 1104 spin_lock_init(&md->pushback_lock); 1105 rwlock_init(&md->map_lock); 1106 atomic_set(&md->holders, 1); 1107 atomic_set(&md->open_count, 0); 1108 atomic_set(&md->event_nr, 0); 1109 atomic_set(&md->uevent_seq, 0); 1110 INIT_LIST_HEAD(&md->uevent_list); 1111 spin_lock_init(&md->uevent_lock); 1112 1113 md->queue = blk_alloc_queue(GFP_KERNEL); 1114 if (!md->queue) 1115 goto bad_queue; 1116 1117 md->queue->queuedata = md; 1118 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1119 md->queue->backing_dev_info.congested_data = md; 1120 blk_queue_make_request(md->queue, dm_request); 1121 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1122 md->queue->unplug_fn = dm_unplug_all; 1123 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1124 1125 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache); 1126 if (!md->io_pool) 1127 goto bad_io_pool; 1128 1129 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache); 1130 if (!md->tio_pool) 1131 goto bad_tio_pool; 1132 1133 md->bs = bioset_create(16, 0); 1134 if (!md->bs) 1135 goto bad_no_bioset; 1136 1137 md->disk = alloc_disk(1); 1138 if (!md->disk) 1139 goto bad_disk; 1140 1141 atomic_set(&md->pending, 0); 1142 init_waitqueue_head(&md->wait); 1143 init_waitqueue_head(&md->eventq); 1144 1145 md->disk->major = _major; 1146 md->disk->first_minor = minor; 1147 md->disk->fops = &dm_blk_dops; 1148 md->disk->queue = md->queue; 1149 md->disk->private_data = md; 1150 sprintf(md->disk->disk_name, "dm-%d", minor); 1151 add_disk(md->disk); 1152 format_dev_t(md->name, MKDEV(_major, minor)); 1153 1154 md->wq = create_singlethread_workqueue("kdmflush"); 1155 if (!md->wq) 1156 goto bad_thread; 1157 1158 /* Populate the mapping, nobody knows we exist yet */ 1159 spin_lock(&_minor_lock); 1160 old_md = idr_replace(&_minor_idr, md, minor); 1161 spin_unlock(&_minor_lock); 1162 1163 BUG_ON(old_md != MINOR_ALLOCED); 1164 1165 return md; 1166 1167 bad_thread: 1168 put_disk(md->disk); 1169 bad_disk: 1170 bioset_free(md->bs); 1171 bad_no_bioset: 1172 mempool_destroy(md->tio_pool); 1173 bad_tio_pool: 1174 mempool_destroy(md->io_pool); 1175 bad_io_pool: 1176 blk_cleanup_queue(md->queue); 1177 bad_queue: 1178 free_minor(minor); 1179 bad_minor: 1180 module_put(THIS_MODULE); 1181 bad_module_get: 1182 kfree(md); 1183 return NULL; 1184 } 1185 1186 static void unlock_fs(struct mapped_device *md); 1187 1188 static void free_dev(struct mapped_device *md) 1189 { 1190 int minor = MINOR(disk_devt(md->disk)); 1191 1192 if (md->suspended_bdev) { 1193 unlock_fs(md); 1194 bdput(md->suspended_bdev); 1195 } 1196 destroy_workqueue(md->wq); 1197 mempool_destroy(md->tio_pool); 1198 mempool_destroy(md->io_pool); 1199 bioset_free(md->bs); 1200 del_gendisk(md->disk); 1201 free_minor(minor); 1202 1203 spin_lock(&_minor_lock); 1204 md->disk->private_data = NULL; 1205 spin_unlock(&_minor_lock); 1206 1207 put_disk(md->disk); 1208 blk_cleanup_queue(md->queue); 1209 module_put(THIS_MODULE); 1210 kfree(md); 1211 } 1212 1213 /* 1214 * Bind a table to the device. 1215 */ 1216 static void event_callback(void *context) 1217 { 1218 unsigned long flags; 1219 LIST_HEAD(uevents); 1220 struct mapped_device *md = (struct mapped_device *) context; 1221 1222 spin_lock_irqsave(&md->uevent_lock, flags); 1223 list_splice_init(&md->uevent_list, &uevents); 1224 spin_unlock_irqrestore(&md->uevent_lock, flags); 1225 1226 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1227 1228 atomic_inc(&md->event_nr); 1229 wake_up(&md->eventq); 1230 } 1231 1232 static void __set_size(struct mapped_device *md, sector_t size) 1233 { 1234 set_capacity(md->disk, size); 1235 1236 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex); 1237 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1238 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex); 1239 } 1240 1241 static int __bind(struct mapped_device *md, struct dm_table *t) 1242 { 1243 struct request_queue *q = md->queue; 1244 sector_t size; 1245 1246 size = dm_table_get_size(t); 1247 1248 /* 1249 * Wipe any geometry if the size of the table changed. 1250 */ 1251 if (size != get_capacity(md->disk)) 1252 memset(&md->geometry, 0, sizeof(md->geometry)); 1253 1254 if (md->suspended_bdev) 1255 __set_size(md, size); 1256 1257 if (!size) { 1258 dm_table_destroy(t); 1259 return 0; 1260 } 1261 1262 dm_table_event_callback(t, event_callback, md); 1263 1264 write_lock(&md->map_lock); 1265 md->map = t; 1266 dm_table_set_restrictions(t, q); 1267 write_unlock(&md->map_lock); 1268 1269 return 0; 1270 } 1271 1272 static void __unbind(struct mapped_device *md) 1273 { 1274 struct dm_table *map = md->map; 1275 1276 if (!map) 1277 return; 1278 1279 dm_table_event_callback(map, NULL, NULL); 1280 write_lock(&md->map_lock); 1281 md->map = NULL; 1282 write_unlock(&md->map_lock); 1283 dm_table_destroy(map); 1284 } 1285 1286 /* 1287 * Constructor for a new device. 1288 */ 1289 int dm_create(int minor, struct mapped_device **result) 1290 { 1291 struct mapped_device *md; 1292 1293 md = alloc_dev(minor); 1294 if (!md) 1295 return -ENXIO; 1296 1297 dm_sysfs_init(md); 1298 1299 *result = md; 1300 return 0; 1301 } 1302 1303 static struct mapped_device *dm_find_md(dev_t dev) 1304 { 1305 struct mapped_device *md; 1306 unsigned minor = MINOR(dev); 1307 1308 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1309 return NULL; 1310 1311 spin_lock(&_minor_lock); 1312 1313 md = idr_find(&_minor_idr, minor); 1314 if (md && (md == MINOR_ALLOCED || 1315 (MINOR(disk_devt(dm_disk(md))) != minor) || 1316 test_bit(DMF_FREEING, &md->flags))) { 1317 md = NULL; 1318 goto out; 1319 } 1320 1321 out: 1322 spin_unlock(&_minor_lock); 1323 1324 return md; 1325 } 1326 1327 struct mapped_device *dm_get_md(dev_t dev) 1328 { 1329 struct mapped_device *md = dm_find_md(dev); 1330 1331 if (md) 1332 dm_get(md); 1333 1334 return md; 1335 } 1336 1337 void *dm_get_mdptr(struct mapped_device *md) 1338 { 1339 return md->interface_ptr; 1340 } 1341 1342 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1343 { 1344 md->interface_ptr = ptr; 1345 } 1346 1347 void dm_get(struct mapped_device *md) 1348 { 1349 atomic_inc(&md->holders); 1350 } 1351 1352 const char *dm_device_name(struct mapped_device *md) 1353 { 1354 return md->name; 1355 } 1356 EXPORT_SYMBOL_GPL(dm_device_name); 1357 1358 void dm_put(struct mapped_device *md) 1359 { 1360 struct dm_table *map; 1361 1362 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1363 1364 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) { 1365 map = dm_get_table(md); 1366 idr_replace(&_minor_idr, MINOR_ALLOCED, 1367 MINOR(disk_devt(dm_disk(md)))); 1368 set_bit(DMF_FREEING, &md->flags); 1369 spin_unlock(&_minor_lock); 1370 if (!dm_suspended(md)) { 1371 dm_table_presuspend_targets(map); 1372 dm_table_postsuspend_targets(map); 1373 } 1374 dm_sysfs_exit(md); 1375 dm_table_put(map); 1376 __unbind(md); 1377 free_dev(md); 1378 } 1379 } 1380 EXPORT_SYMBOL_GPL(dm_put); 1381 1382 static int dm_wait_for_completion(struct mapped_device *md) 1383 { 1384 int r = 0; 1385 1386 while (1) { 1387 set_current_state(TASK_INTERRUPTIBLE); 1388 1389 smp_mb(); 1390 if (!atomic_read(&md->pending)) 1391 break; 1392 1393 if (signal_pending(current)) { 1394 r = -EINTR; 1395 break; 1396 } 1397 1398 io_schedule(); 1399 } 1400 set_current_state(TASK_RUNNING); 1401 1402 return r; 1403 } 1404 1405 /* 1406 * Process the deferred bios 1407 */ 1408 static void __flush_deferred_io(struct mapped_device *md) 1409 { 1410 struct bio *c; 1411 1412 while ((c = bio_list_pop(&md->deferred))) { 1413 if (__split_bio(md, c)) 1414 bio_io_error(c); 1415 } 1416 1417 clear_bit(DMF_BLOCK_IO, &md->flags); 1418 } 1419 1420 static void __merge_pushback_list(struct mapped_device *md) 1421 { 1422 unsigned long flags; 1423 1424 spin_lock_irqsave(&md->pushback_lock, flags); 1425 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 1426 bio_list_merge_head(&md->deferred, &md->pushback); 1427 bio_list_init(&md->pushback); 1428 spin_unlock_irqrestore(&md->pushback_lock, flags); 1429 } 1430 1431 static void dm_wq_work(struct work_struct *work) 1432 { 1433 struct dm_wq_req *req = container_of(work, struct dm_wq_req, work); 1434 struct mapped_device *md = req->md; 1435 1436 down_write(&md->io_lock); 1437 switch (req->type) { 1438 case DM_WQ_FLUSH_DEFERRED: 1439 __flush_deferred_io(md); 1440 break; 1441 default: 1442 DMERR("dm_wq_work: unrecognised work type %d", req->type); 1443 BUG(); 1444 } 1445 up_write(&md->io_lock); 1446 } 1447 1448 static void dm_wq_queue(struct mapped_device *md, int type, void *context, 1449 struct dm_wq_req *req) 1450 { 1451 req->type = type; 1452 req->md = md; 1453 req->context = context; 1454 INIT_WORK(&req->work, dm_wq_work); 1455 queue_work(md->wq, &req->work); 1456 } 1457 1458 static void dm_queue_flush(struct mapped_device *md, int type, void *context) 1459 { 1460 struct dm_wq_req req; 1461 1462 dm_wq_queue(md, type, context, &req); 1463 flush_workqueue(md->wq); 1464 } 1465 1466 /* 1467 * Swap in a new table (destroying old one). 1468 */ 1469 int dm_swap_table(struct mapped_device *md, struct dm_table *table) 1470 { 1471 int r = -EINVAL; 1472 1473 mutex_lock(&md->suspend_lock); 1474 1475 /* device must be suspended */ 1476 if (!dm_suspended(md)) 1477 goto out; 1478 1479 /* without bdev, the device size cannot be changed */ 1480 if (!md->suspended_bdev) 1481 if (get_capacity(md->disk) != dm_table_get_size(table)) 1482 goto out; 1483 1484 __unbind(md); 1485 r = __bind(md, table); 1486 1487 out: 1488 mutex_unlock(&md->suspend_lock); 1489 return r; 1490 } 1491 1492 /* 1493 * Functions to lock and unlock any filesystem running on the 1494 * device. 1495 */ 1496 static int lock_fs(struct mapped_device *md) 1497 { 1498 int r; 1499 1500 WARN_ON(md->frozen_sb); 1501 1502 md->frozen_sb = freeze_bdev(md->suspended_bdev); 1503 if (IS_ERR(md->frozen_sb)) { 1504 r = PTR_ERR(md->frozen_sb); 1505 md->frozen_sb = NULL; 1506 return r; 1507 } 1508 1509 set_bit(DMF_FROZEN, &md->flags); 1510 1511 /* don't bdput right now, we don't want the bdev 1512 * to go away while it is locked. 1513 */ 1514 return 0; 1515 } 1516 1517 static void unlock_fs(struct mapped_device *md) 1518 { 1519 if (!test_bit(DMF_FROZEN, &md->flags)) 1520 return; 1521 1522 thaw_bdev(md->suspended_bdev, md->frozen_sb); 1523 md->frozen_sb = NULL; 1524 clear_bit(DMF_FROZEN, &md->flags); 1525 } 1526 1527 /* 1528 * We need to be able to change a mapping table under a mounted 1529 * filesystem. For example we might want to move some data in 1530 * the background. Before the table can be swapped with 1531 * dm_bind_table, dm_suspend must be called to flush any in 1532 * flight bios and ensure that any further io gets deferred. 1533 */ 1534 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 1535 { 1536 struct dm_table *map = NULL; 1537 DECLARE_WAITQUEUE(wait, current); 1538 int r = 0; 1539 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 1540 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 1541 1542 mutex_lock(&md->suspend_lock); 1543 1544 if (dm_suspended(md)) { 1545 r = -EINVAL; 1546 goto out_unlock; 1547 } 1548 1549 map = dm_get_table(md); 1550 1551 /* 1552 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 1553 * This flag is cleared before dm_suspend returns. 1554 */ 1555 if (noflush) 1556 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 1557 1558 /* This does not get reverted if there's an error later. */ 1559 dm_table_presuspend_targets(map); 1560 1561 /* bdget() can stall if the pending I/Os are not flushed */ 1562 if (!noflush) { 1563 md->suspended_bdev = bdget_disk(md->disk, 0); 1564 if (!md->suspended_bdev) { 1565 DMWARN("bdget failed in dm_suspend"); 1566 r = -ENOMEM; 1567 goto out; 1568 } 1569 1570 /* 1571 * Flush I/O to the device. noflush supersedes do_lockfs, 1572 * because lock_fs() needs to flush I/Os. 1573 */ 1574 if (do_lockfs) { 1575 r = lock_fs(md); 1576 if (r) 1577 goto out; 1578 } 1579 } 1580 1581 /* 1582 * First we set the BLOCK_IO flag so no more ios will be mapped. 1583 */ 1584 down_write(&md->io_lock); 1585 set_bit(DMF_BLOCK_IO, &md->flags); 1586 1587 add_wait_queue(&md->wait, &wait); 1588 up_write(&md->io_lock); 1589 1590 /* unplug */ 1591 if (map) 1592 dm_table_unplug_all(map); 1593 1594 /* 1595 * Wait for the already-mapped ios to complete. 1596 */ 1597 r = dm_wait_for_completion(md); 1598 1599 down_write(&md->io_lock); 1600 remove_wait_queue(&md->wait, &wait); 1601 1602 if (noflush) 1603 __merge_pushback_list(md); 1604 up_write(&md->io_lock); 1605 1606 /* were we interrupted ? */ 1607 if (r < 0) { 1608 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL); 1609 1610 unlock_fs(md); 1611 goto out; /* pushback list is already flushed, so skip flush */ 1612 } 1613 1614 dm_table_postsuspend_targets(map); 1615 1616 set_bit(DMF_SUSPENDED, &md->flags); 1617 1618 out: 1619 if (r && md->suspended_bdev) { 1620 bdput(md->suspended_bdev); 1621 md->suspended_bdev = NULL; 1622 } 1623 1624 dm_table_put(map); 1625 1626 out_unlock: 1627 mutex_unlock(&md->suspend_lock); 1628 return r; 1629 } 1630 1631 int dm_resume(struct mapped_device *md) 1632 { 1633 int r = -EINVAL; 1634 struct dm_table *map = NULL; 1635 1636 mutex_lock(&md->suspend_lock); 1637 if (!dm_suspended(md)) 1638 goto out; 1639 1640 map = dm_get_table(md); 1641 if (!map || !dm_table_get_size(map)) 1642 goto out; 1643 1644 r = dm_table_resume_targets(map); 1645 if (r) 1646 goto out; 1647 1648 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL); 1649 1650 unlock_fs(md); 1651 1652 if (md->suspended_bdev) { 1653 bdput(md->suspended_bdev); 1654 md->suspended_bdev = NULL; 1655 } 1656 1657 clear_bit(DMF_SUSPENDED, &md->flags); 1658 1659 dm_table_unplug_all(map); 1660 1661 dm_kobject_uevent(md); 1662 1663 r = 0; 1664 1665 out: 1666 dm_table_put(map); 1667 mutex_unlock(&md->suspend_lock); 1668 1669 return r; 1670 } 1671 1672 /*----------------------------------------------------------------- 1673 * Event notification. 1674 *---------------------------------------------------------------*/ 1675 void dm_kobject_uevent(struct mapped_device *md) 1676 { 1677 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE); 1678 } 1679 1680 uint32_t dm_next_uevent_seq(struct mapped_device *md) 1681 { 1682 return atomic_add_return(1, &md->uevent_seq); 1683 } 1684 1685 uint32_t dm_get_event_nr(struct mapped_device *md) 1686 { 1687 return atomic_read(&md->event_nr); 1688 } 1689 1690 int dm_wait_event(struct mapped_device *md, int event_nr) 1691 { 1692 return wait_event_interruptible(md->eventq, 1693 (event_nr != atomic_read(&md->event_nr))); 1694 } 1695 1696 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 1697 { 1698 unsigned long flags; 1699 1700 spin_lock_irqsave(&md->uevent_lock, flags); 1701 list_add(elist, &md->uevent_list); 1702 spin_unlock_irqrestore(&md->uevent_lock, flags); 1703 } 1704 1705 /* 1706 * The gendisk is only valid as long as you have a reference 1707 * count on 'md'. 1708 */ 1709 struct gendisk *dm_disk(struct mapped_device *md) 1710 { 1711 return md->disk; 1712 } 1713 1714 struct kobject *dm_kobject(struct mapped_device *md) 1715 { 1716 return &md->kobj; 1717 } 1718 1719 /* 1720 * struct mapped_device should not be exported outside of dm.c 1721 * so use this check to verify that kobj is part of md structure 1722 */ 1723 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 1724 { 1725 struct mapped_device *md; 1726 1727 md = container_of(kobj, struct mapped_device, kobj); 1728 if (&md->kobj != kobj) 1729 return NULL; 1730 1731 dm_get(md); 1732 return md; 1733 } 1734 1735 int dm_suspended(struct mapped_device *md) 1736 { 1737 return test_bit(DMF_SUSPENDED, &md->flags); 1738 } 1739 1740 int dm_noflush_suspending(struct dm_target *ti) 1741 { 1742 struct mapped_device *md = dm_table_get_md(ti->table); 1743 int r = __noflush_suspending(md); 1744 1745 dm_put(md); 1746 1747 return r; 1748 } 1749 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 1750 1751 static struct block_device_operations dm_blk_dops = { 1752 .open = dm_blk_open, 1753 .release = dm_blk_close, 1754 .ioctl = dm_blk_ioctl, 1755 .getgeo = dm_blk_getgeo, 1756 .owner = THIS_MODULE 1757 }; 1758 1759 EXPORT_SYMBOL(dm_get_mapinfo); 1760 1761 /* 1762 * module hooks 1763 */ 1764 module_init(dm_init); 1765 module_exit(dm_exit); 1766 1767 module_param(major, uint, 0); 1768 MODULE_PARM_DESC(major, "The major number of the device mapper"); 1769 MODULE_DESCRIPTION(DM_NAME " driver"); 1770 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 1771 MODULE_LICENSE("GPL"); 1772