xref: /openbmc/linux/drivers/md/dm.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <trace/block.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 static const char *_name = DM_NAME;
29 
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32 
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35  * For bio-based dm.
36  * One of these is allocated per bio.
37  */
38 struct dm_io {
39 	struct mapped_device *md;
40 	int error;
41 	atomic_t io_count;
42 	struct bio *bio;
43 	unsigned long start_time;
44 };
45 
46 /*
47  * For bio-based dm.
48  * One of these is allocated per target within a bio.  Hopefully
49  * this will be simplified out one day.
50  */
51 struct dm_target_io {
52 	struct dm_io *io;
53 	struct dm_target *ti;
54 	union map_info info;
55 };
56 
57 DEFINE_TRACE(block_bio_complete);
58 
59 /*
60  * For request-based dm.
61  * One of these is allocated per request.
62  */
63 struct dm_rq_target_io {
64 	struct mapped_device *md;
65 	struct dm_target *ti;
66 	struct request *orig, clone;
67 	int error;
68 	union map_info info;
69 };
70 
71 /*
72  * For request-based dm.
73  * One of these is allocated per bio.
74  */
75 struct dm_rq_clone_bio_info {
76 	struct bio *orig;
77 	struct request *rq;
78 };
79 
80 union map_info *dm_get_mapinfo(struct bio *bio)
81 {
82 	if (bio && bio->bi_private)
83 		return &((struct dm_target_io *)bio->bi_private)->info;
84 	return NULL;
85 }
86 
87 #define MINOR_ALLOCED ((void *)-1)
88 
89 /*
90  * Bits for the md->flags field.
91  */
92 #define DMF_BLOCK_IO 0
93 #define DMF_SUSPENDED 1
94 #define DMF_FROZEN 2
95 #define DMF_FREEING 3
96 #define DMF_DELETING 4
97 #define DMF_NOFLUSH_SUSPENDING 5
98 
99 /*
100  * Work processed by per-device workqueue.
101  */
102 struct dm_wq_req {
103 	enum {
104 		DM_WQ_FLUSH_DEFERRED,
105 	} type;
106 	struct work_struct work;
107 	struct mapped_device *md;
108 	void *context;
109 };
110 
111 struct mapped_device {
112 	struct rw_semaphore io_lock;
113 	struct mutex suspend_lock;
114 	spinlock_t pushback_lock;
115 	rwlock_t map_lock;
116 	atomic_t holders;
117 	atomic_t open_count;
118 
119 	unsigned long flags;
120 
121 	struct request_queue *queue;
122 	struct gendisk *disk;
123 	char name[16];
124 
125 	void *interface_ptr;
126 
127 	/*
128 	 * A list of ios that arrived while we were suspended.
129 	 */
130 	atomic_t pending;
131 	wait_queue_head_t wait;
132 	struct bio_list deferred;
133 	struct bio_list pushback;
134 
135 	/*
136 	 * Processing queue (flush/barriers)
137 	 */
138 	struct workqueue_struct *wq;
139 
140 	/*
141 	 * The current mapping.
142 	 */
143 	struct dm_table *map;
144 
145 	/*
146 	 * io objects are allocated from here.
147 	 */
148 	mempool_t *io_pool;
149 	mempool_t *tio_pool;
150 
151 	struct bio_set *bs;
152 
153 	/*
154 	 * Event handling.
155 	 */
156 	atomic_t event_nr;
157 	wait_queue_head_t eventq;
158 	atomic_t uevent_seq;
159 	struct list_head uevent_list;
160 	spinlock_t uevent_lock; /* Protect access to uevent_list */
161 
162 	/*
163 	 * freeze/thaw support require holding onto a super block
164 	 */
165 	struct super_block *frozen_sb;
166 	struct block_device *suspended_bdev;
167 
168 	/* forced geometry settings */
169 	struct hd_geometry geometry;
170 
171 	/* sysfs handle */
172 	struct kobject kobj;
173 };
174 
175 #define MIN_IOS 256
176 static struct kmem_cache *_io_cache;
177 static struct kmem_cache *_tio_cache;
178 static struct kmem_cache *_rq_tio_cache;
179 static struct kmem_cache *_rq_bio_info_cache;
180 
181 static int __init local_init(void)
182 {
183 	int r = -ENOMEM;
184 
185 	/* allocate a slab for the dm_ios */
186 	_io_cache = KMEM_CACHE(dm_io, 0);
187 	if (!_io_cache)
188 		return r;
189 
190 	/* allocate a slab for the target ios */
191 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
192 	if (!_tio_cache)
193 		goto out_free_io_cache;
194 
195 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
196 	if (!_rq_tio_cache)
197 		goto out_free_tio_cache;
198 
199 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
200 	if (!_rq_bio_info_cache)
201 		goto out_free_rq_tio_cache;
202 
203 	r = dm_uevent_init();
204 	if (r)
205 		goto out_free_rq_bio_info_cache;
206 
207 	_major = major;
208 	r = register_blkdev(_major, _name);
209 	if (r < 0)
210 		goto out_uevent_exit;
211 
212 	if (!_major)
213 		_major = r;
214 
215 	return 0;
216 
217 out_uevent_exit:
218 	dm_uevent_exit();
219 out_free_rq_bio_info_cache:
220 	kmem_cache_destroy(_rq_bio_info_cache);
221 out_free_rq_tio_cache:
222 	kmem_cache_destroy(_rq_tio_cache);
223 out_free_tio_cache:
224 	kmem_cache_destroy(_tio_cache);
225 out_free_io_cache:
226 	kmem_cache_destroy(_io_cache);
227 
228 	return r;
229 }
230 
231 static void local_exit(void)
232 {
233 	kmem_cache_destroy(_rq_bio_info_cache);
234 	kmem_cache_destroy(_rq_tio_cache);
235 	kmem_cache_destroy(_tio_cache);
236 	kmem_cache_destroy(_io_cache);
237 	unregister_blkdev(_major, _name);
238 	dm_uevent_exit();
239 
240 	_major = 0;
241 
242 	DMINFO("cleaned up");
243 }
244 
245 static int (*_inits[])(void) __initdata = {
246 	local_init,
247 	dm_target_init,
248 	dm_linear_init,
249 	dm_stripe_init,
250 	dm_kcopyd_init,
251 	dm_interface_init,
252 };
253 
254 static void (*_exits[])(void) = {
255 	local_exit,
256 	dm_target_exit,
257 	dm_linear_exit,
258 	dm_stripe_exit,
259 	dm_kcopyd_exit,
260 	dm_interface_exit,
261 };
262 
263 static int __init dm_init(void)
264 {
265 	const int count = ARRAY_SIZE(_inits);
266 
267 	int r, i;
268 
269 	for (i = 0; i < count; i++) {
270 		r = _inits[i]();
271 		if (r)
272 			goto bad;
273 	}
274 
275 	return 0;
276 
277       bad:
278 	while (i--)
279 		_exits[i]();
280 
281 	return r;
282 }
283 
284 static void __exit dm_exit(void)
285 {
286 	int i = ARRAY_SIZE(_exits);
287 
288 	while (i--)
289 		_exits[i]();
290 }
291 
292 /*
293  * Block device functions
294  */
295 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
296 {
297 	struct mapped_device *md;
298 
299 	spin_lock(&_minor_lock);
300 
301 	md = bdev->bd_disk->private_data;
302 	if (!md)
303 		goto out;
304 
305 	if (test_bit(DMF_FREEING, &md->flags) ||
306 	    test_bit(DMF_DELETING, &md->flags)) {
307 		md = NULL;
308 		goto out;
309 	}
310 
311 	dm_get(md);
312 	atomic_inc(&md->open_count);
313 
314 out:
315 	spin_unlock(&_minor_lock);
316 
317 	return md ? 0 : -ENXIO;
318 }
319 
320 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
321 {
322 	struct mapped_device *md = disk->private_data;
323 	atomic_dec(&md->open_count);
324 	dm_put(md);
325 	return 0;
326 }
327 
328 int dm_open_count(struct mapped_device *md)
329 {
330 	return atomic_read(&md->open_count);
331 }
332 
333 /*
334  * Guarantees nothing is using the device before it's deleted.
335  */
336 int dm_lock_for_deletion(struct mapped_device *md)
337 {
338 	int r = 0;
339 
340 	spin_lock(&_minor_lock);
341 
342 	if (dm_open_count(md))
343 		r = -EBUSY;
344 	else
345 		set_bit(DMF_DELETING, &md->flags);
346 
347 	spin_unlock(&_minor_lock);
348 
349 	return r;
350 }
351 
352 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
353 {
354 	struct mapped_device *md = bdev->bd_disk->private_data;
355 
356 	return dm_get_geometry(md, geo);
357 }
358 
359 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
360 			unsigned int cmd, unsigned long arg)
361 {
362 	struct mapped_device *md = bdev->bd_disk->private_data;
363 	struct dm_table *map = dm_get_table(md);
364 	struct dm_target *tgt;
365 	int r = -ENOTTY;
366 
367 	if (!map || !dm_table_get_size(map))
368 		goto out;
369 
370 	/* We only support devices that have a single target */
371 	if (dm_table_get_num_targets(map) != 1)
372 		goto out;
373 
374 	tgt = dm_table_get_target(map, 0);
375 
376 	if (dm_suspended(md)) {
377 		r = -EAGAIN;
378 		goto out;
379 	}
380 
381 	if (tgt->type->ioctl)
382 		r = tgt->type->ioctl(tgt, cmd, arg);
383 
384 out:
385 	dm_table_put(map);
386 
387 	return r;
388 }
389 
390 static struct dm_io *alloc_io(struct mapped_device *md)
391 {
392 	return mempool_alloc(md->io_pool, GFP_NOIO);
393 }
394 
395 static void free_io(struct mapped_device *md, struct dm_io *io)
396 {
397 	mempool_free(io, md->io_pool);
398 }
399 
400 static struct dm_target_io *alloc_tio(struct mapped_device *md)
401 {
402 	return mempool_alloc(md->tio_pool, GFP_NOIO);
403 }
404 
405 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
406 {
407 	mempool_free(tio, md->tio_pool);
408 }
409 
410 static void start_io_acct(struct dm_io *io)
411 {
412 	struct mapped_device *md = io->md;
413 	int cpu;
414 
415 	io->start_time = jiffies;
416 
417 	cpu = part_stat_lock();
418 	part_round_stats(cpu, &dm_disk(md)->part0);
419 	part_stat_unlock();
420 	dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
421 }
422 
423 static void end_io_acct(struct dm_io *io)
424 {
425 	struct mapped_device *md = io->md;
426 	struct bio *bio = io->bio;
427 	unsigned long duration = jiffies - io->start_time;
428 	int pending, cpu;
429 	int rw = bio_data_dir(bio);
430 
431 	cpu = part_stat_lock();
432 	part_round_stats(cpu, &dm_disk(md)->part0);
433 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
434 	part_stat_unlock();
435 
436 	dm_disk(md)->part0.in_flight = pending =
437 		atomic_dec_return(&md->pending);
438 
439 	/* nudge anyone waiting on suspend queue */
440 	if (!pending)
441 		wake_up(&md->wait);
442 }
443 
444 /*
445  * Add the bio to the list of deferred io.
446  */
447 static int queue_io(struct mapped_device *md, struct bio *bio)
448 {
449 	down_write(&md->io_lock);
450 
451 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
452 		up_write(&md->io_lock);
453 		return 1;
454 	}
455 
456 	bio_list_add(&md->deferred, bio);
457 
458 	up_write(&md->io_lock);
459 	return 0;		/* deferred successfully */
460 }
461 
462 /*
463  * Everyone (including functions in this file), should use this
464  * function to access the md->map field, and make sure they call
465  * dm_table_put() when finished.
466  */
467 struct dm_table *dm_get_table(struct mapped_device *md)
468 {
469 	struct dm_table *t;
470 
471 	read_lock(&md->map_lock);
472 	t = md->map;
473 	if (t)
474 		dm_table_get(t);
475 	read_unlock(&md->map_lock);
476 
477 	return t;
478 }
479 
480 /*
481  * Get the geometry associated with a dm device
482  */
483 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
484 {
485 	*geo = md->geometry;
486 
487 	return 0;
488 }
489 
490 /*
491  * Set the geometry of a device.
492  */
493 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
494 {
495 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
496 
497 	if (geo->start > sz) {
498 		DMWARN("Start sector is beyond the geometry limits.");
499 		return -EINVAL;
500 	}
501 
502 	md->geometry = *geo;
503 
504 	return 0;
505 }
506 
507 /*-----------------------------------------------------------------
508  * CRUD START:
509  *   A more elegant soln is in the works that uses the queue
510  *   merge fn, unfortunately there are a couple of changes to
511  *   the block layer that I want to make for this.  So in the
512  *   interests of getting something for people to use I give
513  *   you this clearly demarcated crap.
514  *---------------------------------------------------------------*/
515 
516 static int __noflush_suspending(struct mapped_device *md)
517 {
518 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
519 }
520 
521 /*
522  * Decrements the number of outstanding ios that a bio has been
523  * cloned into, completing the original io if necc.
524  */
525 static void dec_pending(struct dm_io *io, int error)
526 {
527 	unsigned long flags;
528 	int io_error;
529 	struct bio *bio;
530 	struct mapped_device *md = io->md;
531 
532 	/* Push-back supersedes any I/O errors */
533 	if (error && !(io->error > 0 && __noflush_suspending(md)))
534 		io->error = error;
535 
536 	if (atomic_dec_and_test(&io->io_count)) {
537 		if (io->error == DM_ENDIO_REQUEUE) {
538 			/*
539 			 * Target requested pushing back the I/O.
540 			 * This must be handled before the sleeper on
541 			 * suspend queue merges the pushback list.
542 			 */
543 			spin_lock_irqsave(&md->pushback_lock, flags);
544 			if (__noflush_suspending(md))
545 				bio_list_add(&md->pushback, io->bio);
546 			else
547 				/* noflush suspend was interrupted. */
548 				io->error = -EIO;
549 			spin_unlock_irqrestore(&md->pushback_lock, flags);
550 		}
551 
552 		end_io_acct(io);
553 
554 		io_error = io->error;
555 		bio = io->bio;
556 
557 		free_io(md, io);
558 
559 		if (io_error != DM_ENDIO_REQUEUE) {
560 			trace_block_bio_complete(md->queue, bio);
561 
562 			bio_endio(bio, io_error);
563 		}
564 	}
565 }
566 
567 static void clone_endio(struct bio *bio, int error)
568 {
569 	int r = 0;
570 	struct dm_target_io *tio = bio->bi_private;
571 	struct dm_io *io = tio->io;
572 	struct mapped_device *md = tio->io->md;
573 	dm_endio_fn endio = tio->ti->type->end_io;
574 
575 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
576 		error = -EIO;
577 
578 	if (endio) {
579 		r = endio(tio->ti, bio, error, &tio->info);
580 		if (r < 0 || r == DM_ENDIO_REQUEUE)
581 			/*
582 			 * error and requeue request are handled
583 			 * in dec_pending().
584 			 */
585 			error = r;
586 		else if (r == DM_ENDIO_INCOMPLETE)
587 			/* The target will handle the io */
588 			return;
589 		else if (r) {
590 			DMWARN("unimplemented target endio return value: %d", r);
591 			BUG();
592 		}
593 	}
594 
595 	/*
596 	 * Store md for cleanup instead of tio which is about to get freed.
597 	 */
598 	bio->bi_private = md->bs;
599 
600 	free_tio(md, tio);
601 	bio_put(bio);
602 	dec_pending(io, error);
603 }
604 
605 static sector_t max_io_len(struct mapped_device *md,
606 			   sector_t sector, struct dm_target *ti)
607 {
608 	sector_t offset = sector - ti->begin;
609 	sector_t len = ti->len - offset;
610 
611 	/*
612 	 * Does the target need to split even further ?
613 	 */
614 	if (ti->split_io) {
615 		sector_t boundary;
616 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
617 			   - offset;
618 		if (len > boundary)
619 			len = boundary;
620 	}
621 
622 	return len;
623 }
624 
625 static void __map_bio(struct dm_target *ti, struct bio *clone,
626 		      struct dm_target_io *tio)
627 {
628 	int r;
629 	sector_t sector;
630 	struct mapped_device *md;
631 
632 	/*
633 	 * Sanity checks.
634 	 */
635 	BUG_ON(!clone->bi_size);
636 
637 	clone->bi_end_io = clone_endio;
638 	clone->bi_private = tio;
639 
640 	/*
641 	 * Map the clone.  If r == 0 we don't need to do
642 	 * anything, the target has assumed ownership of
643 	 * this io.
644 	 */
645 	atomic_inc(&tio->io->io_count);
646 	sector = clone->bi_sector;
647 	r = ti->type->map(ti, clone, &tio->info);
648 	if (r == DM_MAPIO_REMAPPED) {
649 		/* the bio has been remapped so dispatch it */
650 
651 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
652 				    tio->io->bio->bi_bdev->bd_dev,
653 				    clone->bi_sector, sector);
654 
655 		generic_make_request(clone);
656 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
657 		/* error the io and bail out, or requeue it if needed */
658 		md = tio->io->md;
659 		dec_pending(tio->io, r);
660 		/*
661 		 * Store bio_set for cleanup.
662 		 */
663 		clone->bi_private = md->bs;
664 		bio_put(clone);
665 		free_tio(md, tio);
666 	} else if (r) {
667 		DMWARN("unimplemented target map return value: %d", r);
668 		BUG();
669 	}
670 }
671 
672 struct clone_info {
673 	struct mapped_device *md;
674 	struct dm_table *map;
675 	struct bio *bio;
676 	struct dm_io *io;
677 	sector_t sector;
678 	sector_t sector_count;
679 	unsigned short idx;
680 };
681 
682 static void dm_bio_destructor(struct bio *bio)
683 {
684 	struct bio_set *bs = bio->bi_private;
685 
686 	bio_free(bio, bs);
687 }
688 
689 /*
690  * Creates a little bio that is just does part of a bvec.
691  */
692 static struct bio *split_bvec(struct bio *bio, sector_t sector,
693 			      unsigned short idx, unsigned int offset,
694 			      unsigned int len, struct bio_set *bs)
695 {
696 	struct bio *clone;
697 	struct bio_vec *bv = bio->bi_io_vec + idx;
698 
699 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
700 	clone->bi_destructor = dm_bio_destructor;
701 	*clone->bi_io_vec = *bv;
702 
703 	clone->bi_sector = sector;
704 	clone->bi_bdev = bio->bi_bdev;
705 	clone->bi_rw = bio->bi_rw;
706 	clone->bi_vcnt = 1;
707 	clone->bi_size = to_bytes(len);
708 	clone->bi_io_vec->bv_offset = offset;
709 	clone->bi_io_vec->bv_len = clone->bi_size;
710 	clone->bi_flags |= 1 << BIO_CLONED;
711 
712 	return clone;
713 }
714 
715 /*
716  * Creates a bio that consists of range of complete bvecs.
717  */
718 static struct bio *clone_bio(struct bio *bio, sector_t sector,
719 			     unsigned short idx, unsigned short bv_count,
720 			     unsigned int len, struct bio_set *bs)
721 {
722 	struct bio *clone;
723 
724 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
725 	__bio_clone(clone, bio);
726 	clone->bi_destructor = dm_bio_destructor;
727 	clone->bi_sector = sector;
728 	clone->bi_idx = idx;
729 	clone->bi_vcnt = idx + bv_count;
730 	clone->bi_size = to_bytes(len);
731 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
732 
733 	return clone;
734 }
735 
736 static int __clone_and_map(struct clone_info *ci)
737 {
738 	struct bio *clone, *bio = ci->bio;
739 	struct dm_target *ti;
740 	sector_t len = 0, max;
741 	struct dm_target_io *tio;
742 
743 	ti = dm_table_find_target(ci->map, ci->sector);
744 	if (!dm_target_is_valid(ti))
745 		return -EIO;
746 
747 	max = max_io_len(ci->md, ci->sector, ti);
748 
749 	/*
750 	 * Allocate a target io object.
751 	 */
752 	tio = alloc_tio(ci->md);
753 	tio->io = ci->io;
754 	tio->ti = ti;
755 	memset(&tio->info, 0, sizeof(tio->info));
756 
757 	if (ci->sector_count <= max) {
758 		/*
759 		 * Optimise for the simple case where we can do all of
760 		 * the remaining io with a single clone.
761 		 */
762 		clone = clone_bio(bio, ci->sector, ci->idx,
763 				  bio->bi_vcnt - ci->idx, ci->sector_count,
764 				  ci->md->bs);
765 		__map_bio(ti, clone, tio);
766 		ci->sector_count = 0;
767 
768 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
769 		/*
770 		 * There are some bvecs that don't span targets.
771 		 * Do as many of these as possible.
772 		 */
773 		int i;
774 		sector_t remaining = max;
775 		sector_t bv_len;
776 
777 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
778 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
779 
780 			if (bv_len > remaining)
781 				break;
782 
783 			remaining -= bv_len;
784 			len += bv_len;
785 		}
786 
787 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
788 				  ci->md->bs);
789 		__map_bio(ti, clone, tio);
790 
791 		ci->sector += len;
792 		ci->sector_count -= len;
793 		ci->idx = i;
794 
795 	} else {
796 		/*
797 		 * Handle a bvec that must be split between two or more targets.
798 		 */
799 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
800 		sector_t remaining = to_sector(bv->bv_len);
801 		unsigned int offset = 0;
802 
803 		do {
804 			if (offset) {
805 				ti = dm_table_find_target(ci->map, ci->sector);
806 				if (!dm_target_is_valid(ti))
807 					return -EIO;
808 
809 				max = max_io_len(ci->md, ci->sector, ti);
810 
811 				tio = alloc_tio(ci->md);
812 				tio->io = ci->io;
813 				tio->ti = ti;
814 				memset(&tio->info, 0, sizeof(tio->info));
815 			}
816 
817 			len = min(remaining, max);
818 
819 			clone = split_bvec(bio, ci->sector, ci->idx,
820 					   bv->bv_offset + offset, len,
821 					   ci->md->bs);
822 
823 			__map_bio(ti, clone, tio);
824 
825 			ci->sector += len;
826 			ci->sector_count -= len;
827 			offset += to_bytes(len);
828 		} while (remaining -= len);
829 
830 		ci->idx++;
831 	}
832 
833 	return 0;
834 }
835 
836 /*
837  * Split the bio into several clones.
838  */
839 static int __split_bio(struct mapped_device *md, struct bio *bio)
840 {
841 	struct clone_info ci;
842 	int error = 0;
843 
844 	ci.map = dm_get_table(md);
845 	if (unlikely(!ci.map))
846 		return -EIO;
847 	if (unlikely(bio_barrier(bio) && !dm_table_barrier_ok(ci.map))) {
848 		dm_table_put(ci.map);
849 		bio_endio(bio, -EOPNOTSUPP);
850 		return 0;
851 	}
852 	ci.md = md;
853 	ci.bio = bio;
854 	ci.io = alloc_io(md);
855 	ci.io->error = 0;
856 	atomic_set(&ci.io->io_count, 1);
857 	ci.io->bio = bio;
858 	ci.io->md = md;
859 	ci.sector = bio->bi_sector;
860 	ci.sector_count = bio_sectors(bio);
861 	ci.idx = bio->bi_idx;
862 
863 	start_io_acct(ci.io);
864 	while (ci.sector_count && !error)
865 		error = __clone_and_map(&ci);
866 
867 	/* drop the extra reference count */
868 	dec_pending(ci.io, error);
869 	dm_table_put(ci.map);
870 
871 	return 0;
872 }
873 /*-----------------------------------------------------------------
874  * CRUD END
875  *---------------------------------------------------------------*/
876 
877 static int dm_merge_bvec(struct request_queue *q,
878 			 struct bvec_merge_data *bvm,
879 			 struct bio_vec *biovec)
880 {
881 	struct mapped_device *md = q->queuedata;
882 	struct dm_table *map = dm_get_table(md);
883 	struct dm_target *ti;
884 	sector_t max_sectors;
885 	int max_size = 0;
886 
887 	if (unlikely(!map))
888 		goto out;
889 
890 	ti = dm_table_find_target(map, bvm->bi_sector);
891 	if (!dm_target_is_valid(ti))
892 		goto out_table;
893 
894 	/*
895 	 * Find maximum amount of I/O that won't need splitting
896 	 */
897 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
898 			  (sector_t) BIO_MAX_SECTORS);
899 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
900 	if (max_size < 0)
901 		max_size = 0;
902 
903 	/*
904 	 * merge_bvec_fn() returns number of bytes
905 	 * it can accept at this offset
906 	 * max is precomputed maximal io size
907 	 */
908 	if (max_size && ti->type->merge)
909 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
910 
911 out_table:
912 	dm_table_put(map);
913 
914 out:
915 	/*
916 	 * Always allow an entire first page
917 	 */
918 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
919 		max_size = biovec->bv_len;
920 
921 	return max_size;
922 }
923 
924 /*
925  * The request function that just remaps the bio built up by
926  * dm_merge_bvec.
927  */
928 static int dm_request(struct request_queue *q, struct bio *bio)
929 {
930 	int r = -EIO;
931 	int rw = bio_data_dir(bio);
932 	struct mapped_device *md = q->queuedata;
933 	int cpu;
934 
935 	down_read(&md->io_lock);
936 
937 	cpu = part_stat_lock();
938 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
939 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
940 	part_stat_unlock();
941 
942 	/*
943 	 * If we're suspended we have to queue
944 	 * this io for later.
945 	 */
946 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
947 		up_read(&md->io_lock);
948 
949 		if (bio_rw(bio) != READA)
950 			r = queue_io(md, bio);
951 
952 		if (r <= 0)
953 			goto out_req;
954 
955 		/*
956 		 * We're in a while loop, because someone could suspend
957 		 * before we get to the following read lock.
958 		 */
959 		down_read(&md->io_lock);
960 	}
961 
962 	r = __split_bio(md, bio);
963 	up_read(&md->io_lock);
964 
965 out_req:
966 	if (r < 0)
967 		bio_io_error(bio);
968 
969 	return 0;
970 }
971 
972 static void dm_unplug_all(struct request_queue *q)
973 {
974 	struct mapped_device *md = q->queuedata;
975 	struct dm_table *map = dm_get_table(md);
976 
977 	if (map) {
978 		dm_table_unplug_all(map);
979 		dm_table_put(map);
980 	}
981 }
982 
983 static int dm_any_congested(void *congested_data, int bdi_bits)
984 {
985 	int r = bdi_bits;
986 	struct mapped_device *md = congested_data;
987 	struct dm_table *map;
988 
989 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
990 		map = dm_get_table(md);
991 		if (map) {
992 			r = dm_table_any_congested(map, bdi_bits);
993 			dm_table_put(map);
994 		}
995 	}
996 
997 	return r;
998 }
999 
1000 /*-----------------------------------------------------------------
1001  * An IDR is used to keep track of allocated minor numbers.
1002  *---------------------------------------------------------------*/
1003 static DEFINE_IDR(_minor_idr);
1004 
1005 static void free_minor(int minor)
1006 {
1007 	spin_lock(&_minor_lock);
1008 	idr_remove(&_minor_idr, minor);
1009 	spin_unlock(&_minor_lock);
1010 }
1011 
1012 /*
1013  * See if the device with a specific minor # is free.
1014  */
1015 static int specific_minor(int minor)
1016 {
1017 	int r, m;
1018 
1019 	if (minor >= (1 << MINORBITS))
1020 		return -EINVAL;
1021 
1022 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1023 	if (!r)
1024 		return -ENOMEM;
1025 
1026 	spin_lock(&_minor_lock);
1027 
1028 	if (idr_find(&_minor_idr, minor)) {
1029 		r = -EBUSY;
1030 		goto out;
1031 	}
1032 
1033 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1034 	if (r)
1035 		goto out;
1036 
1037 	if (m != minor) {
1038 		idr_remove(&_minor_idr, m);
1039 		r = -EBUSY;
1040 		goto out;
1041 	}
1042 
1043 out:
1044 	spin_unlock(&_minor_lock);
1045 	return r;
1046 }
1047 
1048 static int next_free_minor(int *minor)
1049 {
1050 	int r, m;
1051 
1052 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1053 	if (!r)
1054 		return -ENOMEM;
1055 
1056 	spin_lock(&_minor_lock);
1057 
1058 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1059 	if (r)
1060 		goto out;
1061 
1062 	if (m >= (1 << MINORBITS)) {
1063 		idr_remove(&_minor_idr, m);
1064 		r = -ENOSPC;
1065 		goto out;
1066 	}
1067 
1068 	*minor = m;
1069 
1070 out:
1071 	spin_unlock(&_minor_lock);
1072 	return r;
1073 }
1074 
1075 static struct block_device_operations dm_blk_dops;
1076 
1077 /*
1078  * Allocate and initialise a blank device with a given minor.
1079  */
1080 static struct mapped_device *alloc_dev(int minor)
1081 {
1082 	int r;
1083 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1084 	void *old_md;
1085 
1086 	if (!md) {
1087 		DMWARN("unable to allocate device, out of memory.");
1088 		return NULL;
1089 	}
1090 
1091 	if (!try_module_get(THIS_MODULE))
1092 		goto bad_module_get;
1093 
1094 	/* get a minor number for the dev */
1095 	if (minor == DM_ANY_MINOR)
1096 		r = next_free_minor(&minor);
1097 	else
1098 		r = specific_minor(minor);
1099 	if (r < 0)
1100 		goto bad_minor;
1101 
1102 	init_rwsem(&md->io_lock);
1103 	mutex_init(&md->suspend_lock);
1104 	spin_lock_init(&md->pushback_lock);
1105 	rwlock_init(&md->map_lock);
1106 	atomic_set(&md->holders, 1);
1107 	atomic_set(&md->open_count, 0);
1108 	atomic_set(&md->event_nr, 0);
1109 	atomic_set(&md->uevent_seq, 0);
1110 	INIT_LIST_HEAD(&md->uevent_list);
1111 	spin_lock_init(&md->uevent_lock);
1112 
1113 	md->queue = blk_alloc_queue(GFP_KERNEL);
1114 	if (!md->queue)
1115 		goto bad_queue;
1116 
1117 	md->queue->queuedata = md;
1118 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1119 	md->queue->backing_dev_info.congested_data = md;
1120 	blk_queue_make_request(md->queue, dm_request);
1121 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1122 	md->queue->unplug_fn = dm_unplug_all;
1123 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1124 
1125 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1126 	if (!md->io_pool)
1127 		goto bad_io_pool;
1128 
1129 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1130 	if (!md->tio_pool)
1131 		goto bad_tio_pool;
1132 
1133 	md->bs = bioset_create(16, 0);
1134 	if (!md->bs)
1135 		goto bad_no_bioset;
1136 
1137 	md->disk = alloc_disk(1);
1138 	if (!md->disk)
1139 		goto bad_disk;
1140 
1141 	atomic_set(&md->pending, 0);
1142 	init_waitqueue_head(&md->wait);
1143 	init_waitqueue_head(&md->eventq);
1144 
1145 	md->disk->major = _major;
1146 	md->disk->first_minor = minor;
1147 	md->disk->fops = &dm_blk_dops;
1148 	md->disk->queue = md->queue;
1149 	md->disk->private_data = md;
1150 	sprintf(md->disk->disk_name, "dm-%d", minor);
1151 	add_disk(md->disk);
1152 	format_dev_t(md->name, MKDEV(_major, minor));
1153 
1154 	md->wq = create_singlethread_workqueue("kdmflush");
1155 	if (!md->wq)
1156 		goto bad_thread;
1157 
1158 	/* Populate the mapping, nobody knows we exist yet */
1159 	spin_lock(&_minor_lock);
1160 	old_md = idr_replace(&_minor_idr, md, minor);
1161 	spin_unlock(&_minor_lock);
1162 
1163 	BUG_ON(old_md != MINOR_ALLOCED);
1164 
1165 	return md;
1166 
1167 bad_thread:
1168 	put_disk(md->disk);
1169 bad_disk:
1170 	bioset_free(md->bs);
1171 bad_no_bioset:
1172 	mempool_destroy(md->tio_pool);
1173 bad_tio_pool:
1174 	mempool_destroy(md->io_pool);
1175 bad_io_pool:
1176 	blk_cleanup_queue(md->queue);
1177 bad_queue:
1178 	free_minor(minor);
1179 bad_minor:
1180 	module_put(THIS_MODULE);
1181 bad_module_get:
1182 	kfree(md);
1183 	return NULL;
1184 }
1185 
1186 static void unlock_fs(struct mapped_device *md);
1187 
1188 static void free_dev(struct mapped_device *md)
1189 {
1190 	int minor = MINOR(disk_devt(md->disk));
1191 
1192 	if (md->suspended_bdev) {
1193 		unlock_fs(md);
1194 		bdput(md->suspended_bdev);
1195 	}
1196 	destroy_workqueue(md->wq);
1197 	mempool_destroy(md->tio_pool);
1198 	mempool_destroy(md->io_pool);
1199 	bioset_free(md->bs);
1200 	del_gendisk(md->disk);
1201 	free_minor(minor);
1202 
1203 	spin_lock(&_minor_lock);
1204 	md->disk->private_data = NULL;
1205 	spin_unlock(&_minor_lock);
1206 
1207 	put_disk(md->disk);
1208 	blk_cleanup_queue(md->queue);
1209 	module_put(THIS_MODULE);
1210 	kfree(md);
1211 }
1212 
1213 /*
1214  * Bind a table to the device.
1215  */
1216 static void event_callback(void *context)
1217 {
1218 	unsigned long flags;
1219 	LIST_HEAD(uevents);
1220 	struct mapped_device *md = (struct mapped_device *) context;
1221 
1222 	spin_lock_irqsave(&md->uevent_lock, flags);
1223 	list_splice_init(&md->uevent_list, &uevents);
1224 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1225 
1226 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1227 
1228 	atomic_inc(&md->event_nr);
1229 	wake_up(&md->eventq);
1230 }
1231 
1232 static void __set_size(struct mapped_device *md, sector_t size)
1233 {
1234 	set_capacity(md->disk, size);
1235 
1236 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1237 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1238 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1239 }
1240 
1241 static int __bind(struct mapped_device *md, struct dm_table *t)
1242 {
1243 	struct request_queue *q = md->queue;
1244 	sector_t size;
1245 
1246 	size = dm_table_get_size(t);
1247 
1248 	/*
1249 	 * Wipe any geometry if the size of the table changed.
1250 	 */
1251 	if (size != get_capacity(md->disk))
1252 		memset(&md->geometry, 0, sizeof(md->geometry));
1253 
1254 	if (md->suspended_bdev)
1255 		__set_size(md, size);
1256 
1257 	if (!size) {
1258 		dm_table_destroy(t);
1259 		return 0;
1260 	}
1261 
1262 	dm_table_event_callback(t, event_callback, md);
1263 
1264 	write_lock(&md->map_lock);
1265 	md->map = t;
1266 	dm_table_set_restrictions(t, q);
1267 	write_unlock(&md->map_lock);
1268 
1269 	return 0;
1270 }
1271 
1272 static void __unbind(struct mapped_device *md)
1273 {
1274 	struct dm_table *map = md->map;
1275 
1276 	if (!map)
1277 		return;
1278 
1279 	dm_table_event_callback(map, NULL, NULL);
1280 	write_lock(&md->map_lock);
1281 	md->map = NULL;
1282 	write_unlock(&md->map_lock);
1283 	dm_table_destroy(map);
1284 }
1285 
1286 /*
1287  * Constructor for a new device.
1288  */
1289 int dm_create(int minor, struct mapped_device **result)
1290 {
1291 	struct mapped_device *md;
1292 
1293 	md = alloc_dev(minor);
1294 	if (!md)
1295 		return -ENXIO;
1296 
1297 	dm_sysfs_init(md);
1298 
1299 	*result = md;
1300 	return 0;
1301 }
1302 
1303 static struct mapped_device *dm_find_md(dev_t dev)
1304 {
1305 	struct mapped_device *md;
1306 	unsigned minor = MINOR(dev);
1307 
1308 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1309 		return NULL;
1310 
1311 	spin_lock(&_minor_lock);
1312 
1313 	md = idr_find(&_minor_idr, minor);
1314 	if (md && (md == MINOR_ALLOCED ||
1315 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
1316 		   test_bit(DMF_FREEING, &md->flags))) {
1317 		md = NULL;
1318 		goto out;
1319 	}
1320 
1321 out:
1322 	spin_unlock(&_minor_lock);
1323 
1324 	return md;
1325 }
1326 
1327 struct mapped_device *dm_get_md(dev_t dev)
1328 {
1329 	struct mapped_device *md = dm_find_md(dev);
1330 
1331 	if (md)
1332 		dm_get(md);
1333 
1334 	return md;
1335 }
1336 
1337 void *dm_get_mdptr(struct mapped_device *md)
1338 {
1339 	return md->interface_ptr;
1340 }
1341 
1342 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1343 {
1344 	md->interface_ptr = ptr;
1345 }
1346 
1347 void dm_get(struct mapped_device *md)
1348 {
1349 	atomic_inc(&md->holders);
1350 }
1351 
1352 const char *dm_device_name(struct mapped_device *md)
1353 {
1354 	return md->name;
1355 }
1356 EXPORT_SYMBOL_GPL(dm_device_name);
1357 
1358 void dm_put(struct mapped_device *md)
1359 {
1360 	struct dm_table *map;
1361 
1362 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1363 
1364 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1365 		map = dm_get_table(md);
1366 		idr_replace(&_minor_idr, MINOR_ALLOCED,
1367 			    MINOR(disk_devt(dm_disk(md))));
1368 		set_bit(DMF_FREEING, &md->flags);
1369 		spin_unlock(&_minor_lock);
1370 		if (!dm_suspended(md)) {
1371 			dm_table_presuspend_targets(map);
1372 			dm_table_postsuspend_targets(map);
1373 		}
1374 		dm_sysfs_exit(md);
1375 		dm_table_put(map);
1376 		__unbind(md);
1377 		free_dev(md);
1378 	}
1379 }
1380 EXPORT_SYMBOL_GPL(dm_put);
1381 
1382 static int dm_wait_for_completion(struct mapped_device *md)
1383 {
1384 	int r = 0;
1385 
1386 	while (1) {
1387 		set_current_state(TASK_INTERRUPTIBLE);
1388 
1389 		smp_mb();
1390 		if (!atomic_read(&md->pending))
1391 			break;
1392 
1393 		if (signal_pending(current)) {
1394 			r = -EINTR;
1395 			break;
1396 		}
1397 
1398 		io_schedule();
1399 	}
1400 	set_current_state(TASK_RUNNING);
1401 
1402 	return r;
1403 }
1404 
1405 /*
1406  * Process the deferred bios
1407  */
1408 static void __flush_deferred_io(struct mapped_device *md)
1409 {
1410 	struct bio *c;
1411 
1412 	while ((c = bio_list_pop(&md->deferred))) {
1413 		if (__split_bio(md, c))
1414 			bio_io_error(c);
1415 	}
1416 
1417 	clear_bit(DMF_BLOCK_IO, &md->flags);
1418 }
1419 
1420 static void __merge_pushback_list(struct mapped_device *md)
1421 {
1422 	unsigned long flags;
1423 
1424 	spin_lock_irqsave(&md->pushback_lock, flags);
1425 	clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1426 	bio_list_merge_head(&md->deferred, &md->pushback);
1427 	bio_list_init(&md->pushback);
1428 	spin_unlock_irqrestore(&md->pushback_lock, flags);
1429 }
1430 
1431 static void dm_wq_work(struct work_struct *work)
1432 {
1433 	struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1434 	struct mapped_device *md = req->md;
1435 
1436 	down_write(&md->io_lock);
1437 	switch (req->type) {
1438 	case DM_WQ_FLUSH_DEFERRED:
1439 		__flush_deferred_io(md);
1440 		break;
1441 	default:
1442 		DMERR("dm_wq_work: unrecognised work type %d", req->type);
1443 		BUG();
1444 	}
1445 	up_write(&md->io_lock);
1446 }
1447 
1448 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1449 			struct dm_wq_req *req)
1450 {
1451 	req->type = type;
1452 	req->md = md;
1453 	req->context = context;
1454 	INIT_WORK(&req->work, dm_wq_work);
1455 	queue_work(md->wq, &req->work);
1456 }
1457 
1458 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1459 {
1460 	struct dm_wq_req req;
1461 
1462 	dm_wq_queue(md, type, context, &req);
1463 	flush_workqueue(md->wq);
1464 }
1465 
1466 /*
1467  * Swap in a new table (destroying old one).
1468  */
1469 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1470 {
1471 	int r = -EINVAL;
1472 
1473 	mutex_lock(&md->suspend_lock);
1474 
1475 	/* device must be suspended */
1476 	if (!dm_suspended(md))
1477 		goto out;
1478 
1479 	/* without bdev, the device size cannot be changed */
1480 	if (!md->suspended_bdev)
1481 		if (get_capacity(md->disk) != dm_table_get_size(table))
1482 			goto out;
1483 
1484 	__unbind(md);
1485 	r = __bind(md, table);
1486 
1487 out:
1488 	mutex_unlock(&md->suspend_lock);
1489 	return r;
1490 }
1491 
1492 /*
1493  * Functions to lock and unlock any filesystem running on the
1494  * device.
1495  */
1496 static int lock_fs(struct mapped_device *md)
1497 {
1498 	int r;
1499 
1500 	WARN_ON(md->frozen_sb);
1501 
1502 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1503 	if (IS_ERR(md->frozen_sb)) {
1504 		r = PTR_ERR(md->frozen_sb);
1505 		md->frozen_sb = NULL;
1506 		return r;
1507 	}
1508 
1509 	set_bit(DMF_FROZEN, &md->flags);
1510 
1511 	/* don't bdput right now, we don't want the bdev
1512 	 * to go away while it is locked.
1513 	 */
1514 	return 0;
1515 }
1516 
1517 static void unlock_fs(struct mapped_device *md)
1518 {
1519 	if (!test_bit(DMF_FROZEN, &md->flags))
1520 		return;
1521 
1522 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1523 	md->frozen_sb = NULL;
1524 	clear_bit(DMF_FROZEN, &md->flags);
1525 }
1526 
1527 /*
1528  * We need to be able to change a mapping table under a mounted
1529  * filesystem.  For example we might want to move some data in
1530  * the background.  Before the table can be swapped with
1531  * dm_bind_table, dm_suspend must be called to flush any in
1532  * flight bios and ensure that any further io gets deferred.
1533  */
1534 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1535 {
1536 	struct dm_table *map = NULL;
1537 	DECLARE_WAITQUEUE(wait, current);
1538 	int r = 0;
1539 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1540 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1541 
1542 	mutex_lock(&md->suspend_lock);
1543 
1544 	if (dm_suspended(md)) {
1545 		r = -EINVAL;
1546 		goto out_unlock;
1547 	}
1548 
1549 	map = dm_get_table(md);
1550 
1551 	/*
1552 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1553 	 * This flag is cleared before dm_suspend returns.
1554 	 */
1555 	if (noflush)
1556 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1557 
1558 	/* This does not get reverted if there's an error later. */
1559 	dm_table_presuspend_targets(map);
1560 
1561 	/* bdget() can stall if the pending I/Os are not flushed */
1562 	if (!noflush) {
1563 		md->suspended_bdev = bdget_disk(md->disk, 0);
1564 		if (!md->suspended_bdev) {
1565 			DMWARN("bdget failed in dm_suspend");
1566 			r = -ENOMEM;
1567 			goto out;
1568 		}
1569 
1570 		/*
1571 		 * Flush I/O to the device. noflush supersedes do_lockfs,
1572 		 * because lock_fs() needs to flush I/Os.
1573 		 */
1574 		if (do_lockfs) {
1575 			r = lock_fs(md);
1576 			if (r)
1577 				goto out;
1578 		}
1579 	}
1580 
1581 	/*
1582 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1583 	 */
1584 	down_write(&md->io_lock);
1585 	set_bit(DMF_BLOCK_IO, &md->flags);
1586 
1587 	add_wait_queue(&md->wait, &wait);
1588 	up_write(&md->io_lock);
1589 
1590 	/* unplug */
1591 	if (map)
1592 		dm_table_unplug_all(map);
1593 
1594 	/*
1595 	 * Wait for the already-mapped ios to complete.
1596 	 */
1597 	r = dm_wait_for_completion(md);
1598 
1599 	down_write(&md->io_lock);
1600 	remove_wait_queue(&md->wait, &wait);
1601 
1602 	if (noflush)
1603 		__merge_pushback_list(md);
1604 	up_write(&md->io_lock);
1605 
1606 	/* were we interrupted ? */
1607 	if (r < 0) {
1608 		dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1609 
1610 		unlock_fs(md);
1611 		goto out; /* pushback list is already flushed, so skip flush */
1612 	}
1613 
1614 	dm_table_postsuspend_targets(map);
1615 
1616 	set_bit(DMF_SUSPENDED, &md->flags);
1617 
1618 out:
1619 	if (r && md->suspended_bdev) {
1620 		bdput(md->suspended_bdev);
1621 		md->suspended_bdev = NULL;
1622 	}
1623 
1624 	dm_table_put(map);
1625 
1626 out_unlock:
1627 	mutex_unlock(&md->suspend_lock);
1628 	return r;
1629 }
1630 
1631 int dm_resume(struct mapped_device *md)
1632 {
1633 	int r = -EINVAL;
1634 	struct dm_table *map = NULL;
1635 
1636 	mutex_lock(&md->suspend_lock);
1637 	if (!dm_suspended(md))
1638 		goto out;
1639 
1640 	map = dm_get_table(md);
1641 	if (!map || !dm_table_get_size(map))
1642 		goto out;
1643 
1644 	r = dm_table_resume_targets(map);
1645 	if (r)
1646 		goto out;
1647 
1648 	dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1649 
1650 	unlock_fs(md);
1651 
1652 	if (md->suspended_bdev) {
1653 		bdput(md->suspended_bdev);
1654 		md->suspended_bdev = NULL;
1655 	}
1656 
1657 	clear_bit(DMF_SUSPENDED, &md->flags);
1658 
1659 	dm_table_unplug_all(map);
1660 
1661 	dm_kobject_uevent(md);
1662 
1663 	r = 0;
1664 
1665 out:
1666 	dm_table_put(map);
1667 	mutex_unlock(&md->suspend_lock);
1668 
1669 	return r;
1670 }
1671 
1672 /*-----------------------------------------------------------------
1673  * Event notification.
1674  *---------------------------------------------------------------*/
1675 void dm_kobject_uevent(struct mapped_device *md)
1676 {
1677 	kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1678 }
1679 
1680 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1681 {
1682 	return atomic_add_return(1, &md->uevent_seq);
1683 }
1684 
1685 uint32_t dm_get_event_nr(struct mapped_device *md)
1686 {
1687 	return atomic_read(&md->event_nr);
1688 }
1689 
1690 int dm_wait_event(struct mapped_device *md, int event_nr)
1691 {
1692 	return wait_event_interruptible(md->eventq,
1693 			(event_nr != atomic_read(&md->event_nr)));
1694 }
1695 
1696 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1697 {
1698 	unsigned long flags;
1699 
1700 	spin_lock_irqsave(&md->uevent_lock, flags);
1701 	list_add(elist, &md->uevent_list);
1702 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1703 }
1704 
1705 /*
1706  * The gendisk is only valid as long as you have a reference
1707  * count on 'md'.
1708  */
1709 struct gendisk *dm_disk(struct mapped_device *md)
1710 {
1711 	return md->disk;
1712 }
1713 
1714 struct kobject *dm_kobject(struct mapped_device *md)
1715 {
1716 	return &md->kobj;
1717 }
1718 
1719 /*
1720  * struct mapped_device should not be exported outside of dm.c
1721  * so use this check to verify that kobj is part of md structure
1722  */
1723 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1724 {
1725 	struct mapped_device *md;
1726 
1727 	md = container_of(kobj, struct mapped_device, kobj);
1728 	if (&md->kobj != kobj)
1729 		return NULL;
1730 
1731 	dm_get(md);
1732 	return md;
1733 }
1734 
1735 int dm_suspended(struct mapped_device *md)
1736 {
1737 	return test_bit(DMF_SUSPENDED, &md->flags);
1738 }
1739 
1740 int dm_noflush_suspending(struct dm_target *ti)
1741 {
1742 	struct mapped_device *md = dm_table_get_md(ti->table);
1743 	int r = __noflush_suspending(md);
1744 
1745 	dm_put(md);
1746 
1747 	return r;
1748 }
1749 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1750 
1751 static struct block_device_operations dm_blk_dops = {
1752 	.open = dm_blk_open,
1753 	.release = dm_blk_close,
1754 	.ioctl = dm_blk_ioctl,
1755 	.getgeo = dm_blk_getgeo,
1756 	.owner = THIS_MODULE
1757 };
1758 
1759 EXPORT_SYMBOL(dm_get_mapinfo);
1760 
1761 /*
1762  * module hooks
1763  */
1764 module_init(dm_init);
1765 module_exit(dm_exit);
1766 
1767 module_param(major, uint, 0);
1768 MODULE_PARM_DESC(major, "The major number of the device mapper");
1769 MODULE_DESCRIPTION(DM_NAME " driver");
1770 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1771 MODULE_LICENSE("GPL");
1772