1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 53 static void do_deferred_remove(struct work_struct *w); 54 55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 56 57 /* 58 * For bio-based dm. 59 * One of these is allocated per bio. 60 */ 61 struct dm_io { 62 struct mapped_device *md; 63 int error; 64 atomic_t io_count; 65 struct bio *bio; 66 unsigned long start_time; 67 spinlock_t endio_lock; 68 struct dm_stats_aux stats_aux; 69 }; 70 71 /* 72 * For request-based dm. 73 * One of these is allocated per request. 74 */ 75 struct dm_rq_target_io { 76 struct mapped_device *md; 77 struct dm_target *ti; 78 struct request *orig, clone; 79 int error; 80 union map_info info; 81 }; 82 83 /* 84 * For request-based dm - the bio clones we allocate are embedded in these 85 * structs. 86 * 87 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 88 * the bioset is created - this means the bio has to come at the end of the 89 * struct. 90 */ 91 struct dm_rq_clone_bio_info { 92 struct bio *orig; 93 struct dm_rq_target_io *tio; 94 struct bio clone; 95 }; 96 97 union map_info *dm_get_rq_mapinfo(struct request *rq) 98 { 99 if (rq && rq->end_io_data) 100 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 101 return NULL; 102 } 103 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 104 105 #define MINOR_ALLOCED ((void *)-1) 106 107 /* 108 * Bits for the md->flags field. 109 */ 110 #define DMF_BLOCK_IO_FOR_SUSPEND 0 111 #define DMF_SUSPENDED 1 112 #define DMF_FROZEN 2 113 #define DMF_FREEING 3 114 #define DMF_DELETING 4 115 #define DMF_NOFLUSH_SUSPENDING 5 116 #define DMF_MERGE_IS_OPTIONAL 6 117 #define DMF_DEFERRED_REMOVE 7 118 119 /* 120 * A dummy definition to make RCU happy. 121 * struct dm_table should never be dereferenced in this file. 122 */ 123 struct dm_table { 124 int undefined__; 125 }; 126 127 /* 128 * Work processed by per-device workqueue. 129 */ 130 struct mapped_device { 131 struct srcu_struct io_barrier; 132 struct mutex suspend_lock; 133 atomic_t holders; 134 atomic_t open_count; 135 136 /* 137 * The current mapping. 138 * Use dm_get_live_table{_fast} or take suspend_lock for 139 * dereference. 140 */ 141 struct dm_table *map; 142 143 unsigned long flags; 144 145 struct request_queue *queue; 146 unsigned type; 147 /* Protect queue and type against concurrent access. */ 148 struct mutex type_lock; 149 150 struct target_type *immutable_target_type; 151 152 struct gendisk *disk; 153 char name[16]; 154 155 void *interface_ptr; 156 157 /* 158 * A list of ios that arrived while we were suspended. 159 */ 160 atomic_t pending[2]; 161 wait_queue_head_t wait; 162 struct work_struct work; 163 struct bio_list deferred; 164 spinlock_t deferred_lock; 165 166 /* 167 * Processing queue (flush) 168 */ 169 struct workqueue_struct *wq; 170 171 /* 172 * io objects are allocated from here. 173 */ 174 mempool_t *io_pool; 175 176 struct bio_set *bs; 177 178 /* 179 * Event handling. 180 */ 181 atomic_t event_nr; 182 wait_queue_head_t eventq; 183 atomic_t uevent_seq; 184 struct list_head uevent_list; 185 spinlock_t uevent_lock; /* Protect access to uevent_list */ 186 187 /* 188 * freeze/thaw support require holding onto a super block 189 */ 190 struct super_block *frozen_sb; 191 struct block_device *bdev; 192 193 /* forced geometry settings */ 194 struct hd_geometry geometry; 195 196 /* kobject and completion */ 197 struct dm_kobject_holder kobj_holder; 198 199 /* zero-length flush that will be cloned and submitted to targets */ 200 struct bio flush_bio; 201 202 struct dm_stats stats; 203 }; 204 205 /* 206 * For mempools pre-allocation at the table loading time. 207 */ 208 struct dm_md_mempools { 209 mempool_t *io_pool; 210 struct bio_set *bs; 211 }; 212 213 #define RESERVED_BIO_BASED_IOS 16 214 #define RESERVED_REQUEST_BASED_IOS 256 215 #define RESERVED_MAX_IOS 1024 216 static struct kmem_cache *_io_cache; 217 static struct kmem_cache *_rq_tio_cache; 218 219 /* 220 * Bio-based DM's mempools' reserved IOs set by the user. 221 */ 222 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 223 224 /* 225 * Request-based DM's mempools' reserved IOs set by the user. 226 */ 227 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 228 229 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios, 230 unsigned def, unsigned max) 231 { 232 unsigned ios = ACCESS_ONCE(*reserved_ios); 233 unsigned modified_ios = 0; 234 235 if (!ios) 236 modified_ios = def; 237 else if (ios > max) 238 modified_ios = max; 239 240 if (modified_ios) { 241 (void)cmpxchg(reserved_ios, ios, modified_ios); 242 ios = modified_ios; 243 } 244 245 return ios; 246 } 247 248 unsigned dm_get_reserved_bio_based_ios(void) 249 { 250 return __dm_get_reserved_ios(&reserved_bio_based_ios, 251 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 252 } 253 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 254 255 unsigned dm_get_reserved_rq_based_ios(void) 256 { 257 return __dm_get_reserved_ios(&reserved_rq_based_ios, 258 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 259 } 260 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 261 262 static int __init local_init(void) 263 { 264 int r = -ENOMEM; 265 266 /* allocate a slab for the dm_ios */ 267 _io_cache = KMEM_CACHE(dm_io, 0); 268 if (!_io_cache) 269 return r; 270 271 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 272 if (!_rq_tio_cache) 273 goto out_free_io_cache; 274 275 r = dm_uevent_init(); 276 if (r) 277 goto out_free_rq_tio_cache; 278 279 _major = major; 280 r = register_blkdev(_major, _name); 281 if (r < 0) 282 goto out_uevent_exit; 283 284 if (!_major) 285 _major = r; 286 287 return 0; 288 289 out_uevent_exit: 290 dm_uevent_exit(); 291 out_free_rq_tio_cache: 292 kmem_cache_destroy(_rq_tio_cache); 293 out_free_io_cache: 294 kmem_cache_destroy(_io_cache); 295 296 return r; 297 } 298 299 static void local_exit(void) 300 { 301 flush_scheduled_work(); 302 303 kmem_cache_destroy(_rq_tio_cache); 304 kmem_cache_destroy(_io_cache); 305 unregister_blkdev(_major, _name); 306 dm_uevent_exit(); 307 308 _major = 0; 309 310 DMINFO("cleaned up"); 311 } 312 313 static int (*_inits[])(void) __initdata = { 314 local_init, 315 dm_target_init, 316 dm_linear_init, 317 dm_stripe_init, 318 dm_io_init, 319 dm_kcopyd_init, 320 dm_interface_init, 321 dm_statistics_init, 322 }; 323 324 static void (*_exits[])(void) = { 325 local_exit, 326 dm_target_exit, 327 dm_linear_exit, 328 dm_stripe_exit, 329 dm_io_exit, 330 dm_kcopyd_exit, 331 dm_interface_exit, 332 dm_statistics_exit, 333 }; 334 335 static int __init dm_init(void) 336 { 337 const int count = ARRAY_SIZE(_inits); 338 339 int r, i; 340 341 for (i = 0; i < count; i++) { 342 r = _inits[i](); 343 if (r) 344 goto bad; 345 } 346 347 return 0; 348 349 bad: 350 while (i--) 351 _exits[i](); 352 353 return r; 354 } 355 356 static void __exit dm_exit(void) 357 { 358 int i = ARRAY_SIZE(_exits); 359 360 while (i--) 361 _exits[i](); 362 363 /* 364 * Should be empty by this point. 365 */ 366 idr_destroy(&_minor_idr); 367 } 368 369 /* 370 * Block device functions 371 */ 372 int dm_deleting_md(struct mapped_device *md) 373 { 374 return test_bit(DMF_DELETING, &md->flags); 375 } 376 377 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 378 { 379 struct mapped_device *md; 380 381 spin_lock(&_minor_lock); 382 383 md = bdev->bd_disk->private_data; 384 if (!md) 385 goto out; 386 387 if (test_bit(DMF_FREEING, &md->flags) || 388 dm_deleting_md(md)) { 389 md = NULL; 390 goto out; 391 } 392 393 dm_get(md); 394 atomic_inc(&md->open_count); 395 396 out: 397 spin_unlock(&_minor_lock); 398 399 return md ? 0 : -ENXIO; 400 } 401 402 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 403 { 404 struct mapped_device *md = disk->private_data; 405 406 spin_lock(&_minor_lock); 407 408 if (atomic_dec_and_test(&md->open_count) && 409 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 410 schedule_work(&deferred_remove_work); 411 412 dm_put(md); 413 414 spin_unlock(&_minor_lock); 415 } 416 417 int dm_open_count(struct mapped_device *md) 418 { 419 return atomic_read(&md->open_count); 420 } 421 422 /* 423 * Guarantees nothing is using the device before it's deleted. 424 */ 425 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 426 { 427 int r = 0; 428 429 spin_lock(&_minor_lock); 430 431 if (dm_open_count(md)) { 432 r = -EBUSY; 433 if (mark_deferred) 434 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 435 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 436 r = -EEXIST; 437 else 438 set_bit(DMF_DELETING, &md->flags); 439 440 spin_unlock(&_minor_lock); 441 442 return r; 443 } 444 445 int dm_cancel_deferred_remove(struct mapped_device *md) 446 { 447 int r = 0; 448 449 spin_lock(&_minor_lock); 450 451 if (test_bit(DMF_DELETING, &md->flags)) 452 r = -EBUSY; 453 else 454 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 455 456 spin_unlock(&_minor_lock); 457 458 return r; 459 } 460 461 static void do_deferred_remove(struct work_struct *w) 462 { 463 dm_deferred_remove(); 464 } 465 466 sector_t dm_get_size(struct mapped_device *md) 467 { 468 return get_capacity(md->disk); 469 } 470 471 struct request_queue *dm_get_md_queue(struct mapped_device *md) 472 { 473 return md->queue; 474 } 475 476 struct dm_stats *dm_get_stats(struct mapped_device *md) 477 { 478 return &md->stats; 479 } 480 481 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 482 { 483 struct mapped_device *md = bdev->bd_disk->private_data; 484 485 return dm_get_geometry(md, geo); 486 } 487 488 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 489 unsigned int cmd, unsigned long arg) 490 { 491 struct mapped_device *md = bdev->bd_disk->private_data; 492 int srcu_idx; 493 struct dm_table *map; 494 struct dm_target *tgt; 495 int r = -ENOTTY; 496 497 retry: 498 map = dm_get_live_table(md, &srcu_idx); 499 500 if (!map || !dm_table_get_size(map)) 501 goto out; 502 503 /* We only support devices that have a single target */ 504 if (dm_table_get_num_targets(map) != 1) 505 goto out; 506 507 tgt = dm_table_get_target(map, 0); 508 509 if (dm_suspended_md(md)) { 510 r = -EAGAIN; 511 goto out; 512 } 513 514 if (tgt->type->ioctl) 515 r = tgt->type->ioctl(tgt, cmd, arg); 516 517 out: 518 dm_put_live_table(md, srcu_idx); 519 520 if (r == -ENOTCONN) { 521 msleep(10); 522 goto retry; 523 } 524 525 return r; 526 } 527 528 static struct dm_io *alloc_io(struct mapped_device *md) 529 { 530 return mempool_alloc(md->io_pool, GFP_NOIO); 531 } 532 533 static void free_io(struct mapped_device *md, struct dm_io *io) 534 { 535 mempool_free(io, md->io_pool); 536 } 537 538 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 539 { 540 bio_put(&tio->clone); 541 } 542 543 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 544 gfp_t gfp_mask) 545 { 546 return mempool_alloc(md->io_pool, gfp_mask); 547 } 548 549 static void free_rq_tio(struct dm_rq_target_io *tio) 550 { 551 mempool_free(tio, tio->md->io_pool); 552 } 553 554 static int md_in_flight(struct mapped_device *md) 555 { 556 return atomic_read(&md->pending[READ]) + 557 atomic_read(&md->pending[WRITE]); 558 } 559 560 static void start_io_acct(struct dm_io *io) 561 { 562 struct mapped_device *md = io->md; 563 struct bio *bio = io->bio; 564 int cpu; 565 int rw = bio_data_dir(bio); 566 567 io->start_time = jiffies; 568 569 cpu = part_stat_lock(); 570 part_round_stats(cpu, &dm_disk(md)->part0); 571 part_stat_unlock(); 572 atomic_set(&dm_disk(md)->part0.in_flight[rw], 573 atomic_inc_return(&md->pending[rw])); 574 575 if (unlikely(dm_stats_used(&md->stats))) 576 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 577 bio_sectors(bio), false, 0, &io->stats_aux); 578 } 579 580 static void end_io_acct(struct dm_io *io) 581 { 582 struct mapped_device *md = io->md; 583 struct bio *bio = io->bio; 584 unsigned long duration = jiffies - io->start_time; 585 int pending, cpu; 586 int rw = bio_data_dir(bio); 587 588 cpu = part_stat_lock(); 589 part_round_stats(cpu, &dm_disk(md)->part0); 590 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 591 part_stat_unlock(); 592 593 if (unlikely(dm_stats_used(&md->stats))) 594 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 595 bio_sectors(bio), true, duration, &io->stats_aux); 596 597 /* 598 * After this is decremented the bio must not be touched if it is 599 * a flush. 600 */ 601 pending = atomic_dec_return(&md->pending[rw]); 602 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 603 pending += atomic_read(&md->pending[rw^0x1]); 604 605 /* nudge anyone waiting on suspend queue */ 606 if (!pending) 607 wake_up(&md->wait); 608 } 609 610 /* 611 * Add the bio to the list of deferred io. 612 */ 613 static void queue_io(struct mapped_device *md, struct bio *bio) 614 { 615 unsigned long flags; 616 617 spin_lock_irqsave(&md->deferred_lock, flags); 618 bio_list_add(&md->deferred, bio); 619 spin_unlock_irqrestore(&md->deferred_lock, flags); 620 queue_work(md->wq, &md->work); 621 } 622 623 /* 624 * Everyone (including functions in this file), should use this 625 * function to access the md->map field, and make sure they call 626 * dm_put_live_table() when finished. 627 */ 628 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 629 { 630 *srcu_idx = srcu_read_lock(&md->io_barrier); 631 632 return srcu_dereference(md->map, &md->io_barrier); 633 } 634 635 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 636 { 637 srcu_read_unlock(&md->io_barrier, srcu_idx); 638 } 639 640 void dm_sync_table(struct mapped_device *md) 641 { 642 synchronize_srcu(&md->io_barrier); 643 synchronize_rcu_expedited(); 644 } 645 646 /* 647 * A fast alternative to dm_get_live_table/dm_put_live_table. 648 * The caller must not block between these two functions. 649 */ 650 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 651 { 652 rcu_read_lock(); 653 return rcu_dereference(md->map); 654 } 655 656 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 657 { 658 rcu_read_unlock(); 659 } 660 661 /* 662 * Get the geometry associated with a dm device 663 */ 664 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 665 { 666 *geo = md->geometry; 667 668 return 0; 669 } 670 671 /* 672 * Set the geometry of a device. 673 */ 674 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 675 { 676 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 677 678 if (geo->start > sz) { 679 DMWARN("Start sector is beyond the geometry limits."); 680 return -EINVAL; 681 } 682 683 md->geometry = *geo; 684 685 return 0; 686 } 687 688 /*----------------------------------------------------------------- 689 * CRUD START: 690 * A more elegant soln is in the works that uses the queue 691 * merge fn, unfortunately there are a couple of changes to 692 * the block layer that I want to make for this. So in the 693 * interests of getting something for people to use I give 694 * you this clearly demarcated crap. 695 *---------------------------------------------------------------*/ 696 697 static int __noflush_suspending(struct mapped_device *md) 698 { 699 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 700 } 701 702 /* 703 * Decrements the number of outstanding ios that a bio has been 704 * cloned into, completing the original io if necc. 705 */ 706 static void dec_pending(struct dm_io *io, int error) 707 { 708 unsigned long flags; 709 int io_error; 710 struct bio *bio; 711 struct mapped_device *md = io->md; 712 713 /* Push-back supersedes any I/O errors */ 714 if (unlikely(error)) { 715 spin_lock_irqsave(&io->endio_lock, flags); 716 if (!(io->error > 0 && __noflush_suspending(md))) 717 io->error = error; 718 spin_unlock_irqrestore(&io->endio_lock, flags); 719 } 720 721 if (atomic_dec_and_test(&io->io_count)) { 722 if (io->error == DM_ENDIO_REQUEUE) { 723 /* 724 * Target requested pushing back the I/O. 725 */ 726 spin_lock_irqsave(&md->deferred_lock, flags); 727 if (__noflush_suspending(md)) 728 bio_list_add_head(&md->deferred, io->bio); 729 else 730 /* noflush suspend was interrupted. */ 731 io->error = -EIO; 732 spin_unlock_irqrestore(&md->deferred_lock, flags); 733 } 734 735 io_error = io->error; 736 bio = io->bio; 737 end_io_acct(io); 738 free_io(md, io); 739 740 if (io_error == DM_ENDIO_REQUEUE) 741 return; 742 743 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 744 /* 745 * Preflush done for flush with data, reissue 746 * without REQ_FLUSH. 747 */ 748 bio->bi_rw &= ~REQ_FLUSH; 749 queue_io(md, bio); 750 } else { 751 /* done with normal IO or empty flush */ 752 trace_block_bio_complete(md->queue, bio, io_error); 753 bio_endio(bio, io_error); 754 } 755 } 756 } 757 758 static void clone_endio(struct bio *bio, int error) 759 { 760 int r = 0; 761 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 762 struct dm_io *io = tio->io; 763 struct mapped_device *md = tio->io->md; 764 dm_endio_fn endio = tio->ti->type->end_io; 765 766 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 767 error = -EIO; 768 769 if (endio) { 770 r = endio(tio->ti, bio, error); 771 if (r < 0 || r == DM_ENDIO_REQUEUE) 772 /* 773 * error and requeue request are handled 774 * in dec_pending(). 775 */ 776 error = r; 777 else if (r == DM_ENDIO_INCOMPLETE) 778 /* The target will handle the io */ 779 return; 780 else if (r) { 781 DMWARN("unimplemented target endio return value: %d", r); 782 BUG(); 783 } 784 } 785 786 free_tio(md, tio); 787 dec_pending(io, error); 788 } 789 790 /* 791 * Partial completion handling for request-based dm 792 */ 793 static void end_clone_bio(struct bio *clone, int error) 794 { 795 struct dm_rq_clone_bio_info *info = 796 container_of(clone, struct dm_rq_clone_bio_info, clone); 797 struct dm_rq_target_io *tio = info->tio; 798 struct bio *bio = info->orig; 799 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 800 801 bio_put(clone); 802 803 if (tio->error) 804 /* 805 * An error has already been detected on the request. 806 * Once error occurred, just let clone->end_io() handle 807 * the remainder. 808 */ 809 return; 810 else if (error) { 811 /* 812 * Don't notice the error to the upper layer yet. 813 * The error handling decision is made by the target driver, 814 * when the request is completed. 815 */ 816 tio->error = error; 817 return; 818 } 819 820 /* 821 * I/O for the bio successfully completed. 822 * Notice the data completion to the upper layer. 823 */ 824 825 /* 826 * bios are processed from the head of the list. 827 * So the completing bio should always be rq->bio. 828 * If it's not, something wrong is happening. 829 */ 830 if (tio->orig->bio != bio) 831 DMERR("bio completion is going in the middle of the request"); 832 833 /* 834 * Update the original request. 835 * Do not use blk_end_request() here, because it may complete 836 * the original request before the clone, and break the ordering. 837 */ 838 blk_update_request(tio->orig, 0, nr_bytes); 839 } 840 841 /* 842 * Don't touch any member of the md after calling this function because 843 * the md may be freed in dm_put() at the end of this function. 844 * Or do dm_get() before calling this function and dm_put() later. 845 */ 846 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 847 { 848 atomic_dec(&md->pending[rw]); 849 850 /* nudge anyone waiting on suspend queue */ 851 if (!md_in_flight(md)) 852 wake_up(&md->wait); 853 854 /* 855 * Run this off this callpath, as drivers could invoke end_io while 856 * inside their request_fn (and holding the queue lock). Calling 857 * back into ->request_fn() could deadlock attempting to grab the 858 * queue lock again. 859 */ 860 if (run_queue) 861 blk_run_queue_async(md->queue); 862 863 /* 864 * dm_put() must be at the end of this function. See the comment above 865 */ 866 dm_put(md); 867 } 868 869 static void free_rq_clone(struct request *clone) 870 { 871 struct dm_rq_target_io *tio = clone->end_io_data; 872 873 blk_rq_unprep_clone(clone); 874 free_rq_tio(tio); 875 } 876 877 /* 878 * Complete the clone and the original request. 879 * Must be called without queue lock. 880 */ 881 static void dm_end_request(struct request *clone, int error) 882 { 883 int rw = rq_data_dir(clone); 884 struct dm_rq_target_io *tio = clone->end_io_data; 885 struct mapped_device *md = tio->md; 886 struct request *rq = tio->orig; 887 888 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 889 rq->errors = clone->errors; 890 rq->resid_len = clone->resid_len; 891 892 if (rq->sense) 893 /* 894 * We are using the sense buffer of the original 895 * request. 896 * So setting the length of the sense data is enough. 897 */ 898 rq->sense_len = clone->sense_len; 899 } 900 901 free_rq_clone(clone); 902 blk_end_request_all(rq, error); 903 rq_completed(md, rw, true); 904 } 905 906 static void dm_unprep_request(struct request *rq) 907 { 908 struct request *clone = rq->special; 909 910 rq->special = NULL; 911 rq->cmd_flags &= ~REQ_DONTPREP; 912 913 free_rq_clone(clone); 914 } 915 916 /* 917 * Requeue the original request of a clone. 918 */ 919 void dm_requeue_unmapped_request(struct request *clone) 920 { 921 int rw = rq_data_dir(clone); 922 struct dm_rq_target_io *tio = clone->end_io_data; 923 struct mapped_device *md = tio->md; 924 struct request *rq = tio->orig; 925 struct request_queue *q = rq->q; 926 unsigned long flags; 927 928 dm_unprep_request(rq); 929 930 spin_lock_irqsave(q->queue_lock, flags); 931 blk_requeue_request(q, rq); 932 spin_unlock_irqrestore(q->queue_lock, flags); 933 934 rq_completed(md, rw, 0); 935 } 936 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 937 938 static void __stop_queue(struct request_queue *q) 939 { 940 blk_stop_queue(q); 941 } 942 943 static void stop_queue(struct request_queue *q) 944 { 945 unsigned long flags; 946 947 spin_lock_irqsave(q->queue_lock, flags); 948 __stop_queue(q); 949 spin_unlock_irqrestore(q->queue_lock, flags); 950 } 951 952 static void __start_queue(struct request_queue *q) 953 { 954 if (blk_queue_stopped(q)) 955 blk_start_queue(q); 956 } 957 958 static void start_queue(struct request_queue *q) 959 { 960 unsigned long flags; 961 962 spin_lock_irqsave(q->queue_lock, flags); 963 __start_queue(q); 964 spin_unlock_irqrestore(q->queue_lock, flags); 965 } 966 967 static void dm_done(struct request *clone, int error, bool mapped) 968 { 969 int r = error; 970 struct dm_rq_target_io *tio = clone->end_io_data; 971 dm_request_endio_fn rq_end_io = NULL; 972 973 if (tio->ti) { 974 rq_end_io = tio->ti->type->rq_end_io; 975 976 if (mapped && rq_end_io) 977 r = rq_end_io(tio->ti, clone, error, &tio->info); 978 } 979 980 if (r <= 0) 981 /* The target wants to complete the I/O */ 982 dm_end_request(clone, r); 983 else if (r == DM_ENDIO_INCOMPLETE) 984 /* The target will handle the I/O */ 985 return; 986 else if (r == DM_ENDIO_REQUEUE) 987 /* The target wants to requeue the I/O */ 988 dm_requeue_unmapped_request(clone); 989 else { 990 DMWARN("unimplemented target endio return value: %d", r); 991 BUG(); 992 } 993 } 994 995 /* 996 * Request completion handler for request-based dm 997 */ 998 static void dm_softirq_done(struct request *rq) 999 { 1000 bool mapped = true; 1001 struct request *clone = rq->completion_data; 1002 struct dm_rq_target_io *tio = clone->end_io_data; 1003 1004 if (rq->cmd_flags & REQ_FAILED) 1005 mapped = false; 1006 1007 dm_done(clone, tio->error, mapped); 1008 } 1009 1010 /* 1011 * Complete the clone and the original request with the error status 1012 * through softirq context. 1013 */ 1014 static void dm_complete_request(struct request *clone, int error) 1015 { 1016 struct dm_rq_target_io *tio = clone->end_io_data; 1017 struct request *rq = tio->orig; 1018 1019 tio->error = error; 1020 rq->completion_data = clone; 1021 blk_complete_request(rq); 1022 } 1023 1024 /* 1025 * Complete the not-mapped clone and the original request with the error status 1026 * through softirq context. 1027 * Target's rq_end_io() function isn't called. 1028 * This may be used when the target's map_rq() function fails. 1029 */ 1030 void dm_kill_unmapped_request(struct request *clone, int error) 1031 { 1032 struct dm_rq_target_io *tio = clone->end_io_data; 1033 struct request *rq = tio->orig; 1034 1035 rq->cmd_flags |= REQ_FAILED; 1036 dm_complete_request(clone, error); 1037 } 1038 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 1039 1040 /* 1041 * Called with the queue lock held 1042 */ 1043 static void end_clone_request(struct request *clone, int error) 1044 { 1045 /* 1046 * For just cleaning up the information of the queue in which 1047 * the clone was dispatched. 1048 * The clone is *NOT* freed actually here because it is alloced from 1049 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 1050 */ 1051 __blk_put_request(clone->q, clone); 1052 1053 /* 1054 * Actual request completion is done in a softirq context which doesn't 1055 * hold the queue lock. Otherwise, deadlock could occur because: 1056 * - another request may be submitted by the upper level driver 1057 * of the stacking during the completion 1058 * - the submission which requires queue lock may be done 1059 * against this queue 1060 */ 1061 dm_complete_request(clone, error); 1062 } 1063 1064 /* 1065 * Return maximum size of I/O possible at the supplied sector up to the current 1066 * target boundary. 1067 */ 1068 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1069 { 1070 sector_t target_offset = dm_target_offset(ti, sector); 1071 1072 return ti->len - target_offset; 1073 } 1074 1075 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1076 { 1077 sector_t len = max_io_len_target_boundary(sector, ti); 1078 sector_t offset, max_len; 1079 1080 /* 1081 * Does the target need to split even further? 1082 */ 1083 if (ti->max_io_len) { 1084 offset = dm_target_offset(ti, sector); 1085 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1086 max_len = sector_div(offset, ti->max_io_len); 1087 else 1088 max_len = offset & (ti->max_io_len - 1); 1089 max_len = ti->max_io_len - max_len; 1090 1091 if (len > max_len) 1092 len = max_len; 1093 } 1094 1095 return len; 1096 } 1097 1098 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1099 { 1100 if (len > UINT_MAX) { 1101 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1102 (unsigned long long)len, UINT_MAX); 1103 ti->error = "Maximum size of target IO is too large"; 1104 return -EINVAL; 1105 } 1106 1107 ti->max_io_len = (uint32_t) len; 1108 1109 return 0; 1110 } 1111 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1112 1113 static void __map_bio(struct dm_target_io *tio) 1114 { 1115 int r; 1116 sector_t sector; 1117 struct mapped_device *md; 1118 struct bio *clone = &tio->clone; 1119 struct dm_target *ti = tio->ti; 1120 1121 clone->bi_end_io = clone_endio; 1122 1123 /* 1124 * Map the clone. If r == 0 we don't need to do 1125 * anything, the target has assumed ownership of 1126 * this io. 1127 */ 1128 atomic_inc(&tio->io->io_count); 1129 sector = clone->bi_iter.bi_sector; 1130 r = ti->type->map(ti, clone); 1131 if (r == DM_MAPIO_REMAPPED) { 1132 /* the bio has been remapped so dispatch it */ 1133 1134 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1135 tio->io->bio->bi_bdev->bd_dev, sector); 1136 1137 generic_make_request(clone); 1138 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1139 /* error the io and bail out, or requeue it if needed */ 1140 md = tio->io->md; 1141 dec_pending(tio->io, r); 1142 free_tio(md, tio); 1143 } else if (r) { 1144 DMWARN("unimplemented target map return value: %d", r); 1145 BUG(); 1146 } 1147 } 1148 1149 struct clone_info { 1150 struct mapped_device *md; 1151 struct dm_table *map; 1152 struct bio *bio; 1153 struct dm_io *io; 1154 sector_t sector; 1155 sector_t sector_count; 1156 }; 1157 1158 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len) 1159 { 1160 bio->bi_iter.bi_sector = sector; 1161 bio->bi_iter.bi_size = to_bytes(len); 1162 } 1163 1164 /* 1165 * Creates a bio that consists of range of complete bvecs. 1166 */ 1167 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1168 sector_t sector, unsigned len) 1169 { 1170 struct bio *clone = &tio->clone; 1171 1172 __bio_clone_fast(clone, bio); 1173 1174 if (bio_integrity(bio)) 1175 bio_integrity_clone(clone, bio, GFP_NOIO); 1176 1177 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1178 clone->bi_iter.bi_size = to_bytes(len); 1179 1180 if (bio_integrity(bio)) 1181 bio_integrity_trim(clone, 0, len); 1182 } 1183 1184 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1185 struct dm_target *ti, int nr_iovecs, 1186 unsigned target_bio_nr) 1187 { 1188 struct dm_target_io *tio; 1189 struct bio *clone; 1190 1191 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs); 1192 tio = container_of(clone, struct dm_target_io, clone); 1193 1194 tio->io = ci->io; 1195 tio->ti = ti; 1196 tio->target_bio_nr = target_bio_nr; 1197 1198 return tio; 1199 } 1200 1201 static void __clone_and_map_simple_bio(struct clone_info *ci, 1202 struct dm_target *ti, 1203 unsigned target_bio_nr, sector_t len) 1204 { 1205 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr); 1206 struct bio *clone = &tio->clone; 1207 1208 /* 1209 * Discard requests require the bio's inline iovecs be initialized. 1210 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1211 * and discard, so no need for concern about wasted bvec allocations. 1212 */ 1213 __bio_clone_fast(clone, ci->bio); 1214 if (len) 1215 bio_setup_sector(clone, ci->sector, len); 1216 1217 __map_bio(tio); 1218 } 1219 1220 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1221 unsigned num_bios, sector_t len) 1222 { 1223 unsigned target_bio_nr; 1224 1225 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1226 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1227 } 1228 1229 static int __send_empty_flush(struct clone_info *ci) 1230 { 1231 unsigned target_nr = 0; 1232 struct dm_target *ti; 1233 1234 BUG_ON(bio_has_data(ci->bio)); 1235 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1236 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0); 1237 1238 return 0; 1239 } 1240 1241 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1242 sector_t sector, unsigned len) 1243 { 1244 struct bio *bio = ci->bio; 1245 struct dm_target_io *tio; 1246 unsigned target_bio_nr; 1247 unsigned num_target_bios = 1; 1248 1249 /* 1250 * Does the target want to receive duplicate copies of the bio? 1251 */ 1252 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1253 num_target_bios = ti->num_write_bios(ti, bio); 1254 1255 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1256 tio = alloc_tio(ci, ti, 0, target_bio_nr); 1257 clone_bio(tio, bio, sector, len); 1258 __map_bio(tio); 1259 } 1260 } 1261 1262 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1263 1264 static unsigned get_num_discard_bios(struct dm_target *ti) 1265 { 1266 return ti->num_discard_bios; 1267 } 1268 1269 static unsigned get_num_write_same_bios(struct dm_target *ti) 1270 { 1271 return ti->num_write_same_bios; 1272 } 1273 1274 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1275 1276 static bool is_split_required_for_discard(struct dm_target *ti) 1277 { 1278 return ti->split_discard_bios; 1279 } 1280 1281 static int __send_changing_extent_only(struct clone_info *ci, 1282 get_num_bios_fn get_num_bios, 1283 is_split_required_fn is_split_required) 1284 { 1285 struct dm_target *ti; 1286 sector_t len; 1287 unsigned num_bios; 1288 1289 do { 1290 ti = dm_table_find_target(ci->map, ci->sector); 1291 if (!dm_target_is_valid(ti)) 1292 return -EIO; 1293 1294 /* 1295 * Even though the device advertised support for this type of 1296 * request, that does not mean every target supports it, and 1297 * reconfiguration might also have changed that since the 1298 * check was performed. 1299 */ 1300 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1301 if (!num_bios) 1302 return -EOPNOTSUPP; 1303 1304 if (is_split_required && !is_split_required(ti)) 1305 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1306 else 1307 len = min(ci->sector_count, max_io_len(ci->sector, ti)); 1308 1309 __send_duplicate_bios(ci, ti, num_bios, len); 1310 1311 ci->sector += len; 1312 } while (ci->sector_count -= len); 1313 1314 return 0; 1315 } 1316 1317 static int __send_discard(struct clone_info *ci) 1318 { 1319 return __send_changing_extent_only(ci, get_num_discard_bios, 1320 is_split_required_for_discard); 1321 } 1322 1323 static int __send_write_same(struct clone_info *ci) 1324 { 1325 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1326 } 1327 1328 /* 1329 * Select the correct strategy for processing a non-flush bio. 1330 */ 1331 static int __split_and_process_non_flush(struct clone_info *ci) 1332 { 1333 struct bio *bio = ci->bio; 1334 struct dm_target *ti; 1335 unsigned len; 1336 1337 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1338 return __send_discard(ci); 1339 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1340 return __send_write_same(ci); 1341 1342 ti = dm_table_find_target(ci->map, ci->sector); 1343 if (!dm_target_is_valid(ti)) 1344 return -EIO; 1345 1346 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1347 1348 __clone_and_map_data_bio(ci, ti, ci->sector, len); 1349 1350 ci->sector += len; 1351 ci->sector_count -= len; 1352 1353 return 0; 1354 } 1355 1356 /* 1357 * Entry point to split a bio into clones and submit them to the targets. 1358 */ 1359 static void __split_and_process_bio(struct mapped_device *md, 1360 struct dm_table *map, struct bio *bio) 1361 { 1362 struct clone_info ci; 1363 int error = 0; 1364 1365 if (unlikely(!map)) { 1366 bio_io_error(bio); 1367 return; 1368 } 1369 1370 ci.map = map; 1371 ci.md = md; 1372 ci.io = alloc_io(md); 1373 ci.io->error = 0; 1374 atomic_set(&ci.io->io_count, 1); 1375 ci.io->bio = bio; 1376 ci.io->md = md; 1377 spin_lock_init(&ci.io->endio_lock); 1378 ci.sector = bio->bi_iter.bi_sector; 1379 1380 start_io_acct(ci.io); 1381 1382 if (bio->bi_rw & REQ_FLUSH) { 1383 ci.bio = &ci.md->flush_bio; 1384 ci.sector_count = 0; 1385 error = __send_empty_flush(&ci); 1386 /* dec_pending submits any data associated with flush */ 1387 } else { 1388 ci.bio = bio; 1389 ci.sector_count = bio_sectors(bio); 1390 while (ci.sector_count && !error) 1391 error = __split_and_process_non_flush(&ci); 1392 } 1393 1394 /* drop the extra reference count */ 1395 dec_pending(ci.io, error); 1396 } 1397 /*----------------------------------------------------------------- 1398 * CRUD END 1399 *---------------------------------------------------------------*/ 1400 1401 static int dm_merge_bvec(struct request_queue *q, 1402 struct bvec_merge_data *bvm, 1403 struct bio_vec *biovec) 1404 { 1405 struct mapped_device *md = q->queuedata; 1406 struct dm_table *map = dm_get_live_table_fast(md); 1407 struct dm_target *ti; 1408 sector_t max_sectors; 1409 int max_size = 0; 1410 1411 if (unlikely(!map)) 1412 goto out; 1413 1414 ti = dm_table_find_target(map, bvm->bi_sector); 1415 if (!dm_target_is_valid(ti)) 1416 goto out; 1417 1418 /* 1419 * Find maximum amount of I/O that won't need splitting 1420 */ 1421 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1422 (sector_t) BIO_MAX_SECTORS); 1423 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1424 if (max_size < 0) 1425 max_size = 0; 1426 1427 /* 1428 * merge_bvec_fn() returns number of bytes 1429 * it can accept at this offset 1430 * max is precomputed maximal io size 1431 */ 1432 if (max_size && ti->type->merge) 1433 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1434 /* 1435 * If the target doesn't support merge method and some of the devices 1436 * provided their merge_bvec method (we know this by looking at 1437 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1438 * entries. So always set max_size to 0, and the code below allows 1439 * just one page. 1440 */ 1441 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1442 1443 max_size = 0; 1444 1445 out: 1446 dm_put_live_table_fast(md); 1447 /* 1448 * Always allow an entire first page 1449 */ 1450 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1451 max_size = biovec->bv_len; 1452 1453 return max_size; 1454 } 1455 1456 /* 1457 * The request function that just remaps the bio built up by 1458 * dm_merge_bvec. 1459 */ 1460 static void _dm_request(struct request_queue *q, struct bio *bio) 1461 { 1462 int rw = bio_data_dir(bio); 1463 struct mapped_device *md = q->queuedata; 1464 int cpu; 1465 int srcu_idx; 1466 struct dm_table *map; 1467 1468 map = dm_get_live_table(md, &srcu_idx); 1469 1470 cpu = part_stat_lock(); 1471 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1472 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1473 part_stat_unlock(); 1474 1475 /* if we're suspended, we have to queue this io for later */ 1476 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1477 dm_put_live_table(md, srcu_idx); 1478 1479 if (bio_rw(bio) != READA) 1480 queue_io(md, bio); 1481 else 1482 bio_io_error(bio); 1483 return; 1484 } 1485 1486 __split_and_process_bio(md, map, bio); 1487 dm_put_live_table(md, srcu_idx); 1488 return; 1489 } 1490 1491 int dm_request_based(struct mapped_device *md) 1492 { 1493 return blk_queue_stackable(md->queue); 1494 } 1495 1496 static void dm_request(struct request_queue *q, struct bio *bio) 1497 { 1498 struct mapped_device *md = q->queuedata; 1499 1500 if (dm_request_based(md)) 1501 blk_queue_bio(q, bio); 1502 else 1503 _dm_request(q, bio); 1504 } 1505 1506 void dm_dispatch_request(struct request *rq) 1507 { 1508 int r; 1509 1510 if (blk_queue_io_stat(rq->q)) 1511 rq->cmd_flags |= REQ_IO_STAT; 1512 1513 rq->start_time = jiffies; 1514 r = blk_insert_cloned_request(rq->q, rq); 1515 if (r) 1516 dm_complete_request(rq, r); 1517 } 1518 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1519 1520 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1521 void *data) 1522 { 1523 struct dm_rq_target_io *tio = data; 1524 struct dm_rq_clone_bio_info *info = 1525 container_of(bio, struct dm_rq_clone_bio_info, clone); 1526 1527 info->orig = bio_orig; 1528 info->tio = tio; 1529 bio->bi_end_io = end_clone_bio; 1530 1531 return 0; 1532 } 1533 1534 static int setup_clone(struct request *clone, struct request *rq, 1535 struct dm_rq_target_io *tio) 1536 { 1537 int r; 1538 1539 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1540 dm_rq_bio_constructor, tio); 1541 if (r) 1542 return r; 1543 1544 clone->cmd = rq->cmd; 1545 clone->cmd_len = rq->cmd_len; 1546 clone->sense = rq->sense; 1547 clone->buffer = rq->buffer; 1548 clone->end_io = end_clone_request; 1549 clone->end_io_data = tio; 1550 1551 return 0; 1552 } 1553 1554 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1555 gfp_t gfp_mask) 1556 { 1557 struct request *clone; 1558 struct dm_rq_target_io *tio; 1559 1560 tio = alloc_rq_tio(md, gfp_mask); 1561 if (!tio) 1562 return NULL; 1563 1564 tio->md = md; 1565 tio->ti = NULL; 1566 tio->orig = rq; 1567 tio->error = 0; 1568 memset(&tio->info, 0, sizeof(tio->info)); 1569 1570 clone = &tio->clone; 1571 if (setup_clone(clone, rq, tio)) { 1572 /* -ENOMEM */ 1573 free_rq_tio(tio); 1574 return NULL; 1575 } 1576 1577 return clone; 1578 } 1579 1580 /* 1581 * Called with the queue lock held. 1582 */ 1583 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1584 { 1585 struct mapped_device *md = q->queuedata; 1586 struct request *clone; 1587 1588 if (unlikely(rq->special)) { 1589 DMWARN("Already has something in rq->special."); 1590 return BLKPREP_KILL; 1591 } 1592 1593 clone = clone_rq(rq, md, GFP_ATOMIC); 1594 if (!clone) 1595 return BLKPREP_DEFER; 1596 1597 rq->special = clone; 1598 rq->cmd_flags |= REQ_DONTPREP; 1599 1600 return BLKPREP_OK; 1601 } 1602 1603 /* 1604 * Returns: 1605 * 0 : the request has been processed (not requeued) 1606 * !0 : the request has been requeued 1607 */ 1608 static int map_request(struct dm_target *ti, struct request *clone, 1609 struct mapped_device *md) 1610 { 1611 int r, requeued = 0; 1612 struct dm_rq_target_io *tio = clone->end_io_data; 1613 1614 tio->ti = ti; 1615 r = ti->type->map_rq(ti, clone, &tio->info); 1616 switch (r) { 1617 case DM_MAPIO_SUBMITTED: 1618 /* The target has taken the I/O to submit by itself later */ 1619 break; 1620 case DM_MAPIO_REMAPPED: 1621 /* The target has remapped the I/O so dispatch it */ 1622 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1623 blk_rq_pos(tio->orig)); 1624 dm_dispatch_request(clone); 1625 break; 1626 case DM_MAPIO_REQUEUE: 1627 /* The target wants to requeue the I/O */ 1628 dm_requeue_unmapped_request(clone); 1629 requeued = 1; 1630 break; 1631 default: 1632 if (r > 0) { 1633 DMWARN("unimplemented target map return value: %d", r); 1634 BUG(); 1635 } 1636 1637 /* The target wants to complete the I/O */ 1638 dm_kill_unmapped_request(clone, r); 1639 break; 1640 } 1641 1642 return requeued; 1643 } 1644 1645 static struct request *dm_start_request(struct mapped_device *md, struct request *orig) 1646 { 1647 struct request *clone; 1648 1649 blk_start_request(orig); 1650 clone = orig->special; 1651 atomic_inc(&md->pending[rq_data_dir(clone)]); 1652 1653 /* 1654 * Hold the md reference here for the in-flight I/O. 1655 * We can't rely on the reference count by device opener, 1656 * because the device may be closed during the request completion 1657 * when all bios are completed. 1658 * See the comment in rq_completed() too. 1659 */ 1660 dm_get(md); 1661 1662 return clone; 1663 } 1664 1665 /* 1666 * q->request_fn for request-based dm. 1667 * Called with the queue lock held. 1668 */ 1669 static void dm_request_fn(struct request_queue *q) 1670 { 1671 struct mapped_device *md = q->queuedata; 1672 int srcu_idx; 1673 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 1674 struct dm_target *ti; 1675 struct request *rq, *clone; 1676 sector_t pos; 1677 1678 /* 1679 * For suspend, check blk_queue_stopped() and increment 1680 * ->pending within a single queue_lock not to increment the 1681 * number of in-flight I/Os after the queue is stopped in 1682 * dm_suspend(). 1683 */ 1684 while (!blk_queue_stopped(q)) { 1685 rq = blk_peek_request(q); 1686 if (!rq) 1687 goto delay_and_out; 1688 1689 /* always use block 0 to find the target for flushes for now */ 1690 pos = 0; 1691 if (!(rq->cmd_flags & REQ_FLUSH)) 1692 pos = blk_rq_pos(rq); 1693 1694 ti = dm_table_find_target(map, pos); 1695 if (!dm_target_is_valid(ti)) { 1696 /* 1697 * Must perform setup, that dm_done() requires, 1698 * before calling dm_kill_unmapped_request 1699 */ 1700 DMERR_LIMIT("request attempted access beyond the end of device"); 1701 clone = dm_start_request(md, rq); 1702 dm_kill_unmapped_request(clone, -EIO); 1703 continue; 1704 } 1705 1706 if (ti->type->busy && ti->type->busy(ti)) 1707 goto delay_and_out; 1708 1709 clone = dm_start_request(md, rq); 1710 1711 spin_unlock(q->queue_lock); 1712 if (map_request(ti, clone, md)) 1713 goto requeued; 1714 1715 BUG_ON(!irqs_disabled()); 1716 spin_lock(q->queue_lock); 1717 } 1718 1719 goto out; 1720 1721 requeued: 1722 BUG_ON(!irqs_disabled()); 1723 spin_lock(q->queue_lock); 1724 1725 delay_and_out: 1726 blk_delay_queue(q, HZ / 10); 1727 out: 1728 dm_put_live_table(md, srcu_idx); 1729 } 1730 1731 int dm_underlying_device_busy(struct request_queue *q) 1732 { 1733 return blk_lld_busy(q); 1734 } 1735 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1736 1737 static int dm_lld_busy(struct request_queue *q) 1738 { 1739 int r; 1740 struct mapped_device *md = q->queuedata; 1741 struct dm_table *map = dm_get_live_table_fast(md); 1742 1743 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1744 r = 1; 1745 else 1746 r = dm_table_any_busy_target(map); 1747 1748 dm_put_live_table_fast(md); 1749 1750 return r; 1751 } 1752 1753 static int dm_any_congested(void *congested_data, int bdi_bits) 1754 { 1755 int r = bdi_bits; 1756 struct mapped_device *md = congested_data; 1757 struct dm_table *map; 1758 1759 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1760 map = dm_get_live_table_fast(md); 1761 if (map) { 1762 /* 1763 * Request-based dm cares about only own queue for 1764 * the query about congestion status of request_queue 1765 */ 1766 if (dm_request_based(md)) 1767 r = md->queue->backing_dev_info.state & 1768 bdi_bits; 1769 else 1770 r = dm_table_any_congested(map, bdi_bits); 1771 } 1772 dm_put_live_table_fast(md); 1773 } 1774 1775 return r; 1776 } 1777 1778 /*----------------------------------------------------------------- 1779 * An IDR is used to keep track of allocated minor numbers. 1780 *---------------------------------------------------------------*/ 1781 static void free_minor(int minor) 1782 { 1783 spin_lock(&_minor_lock); 1784 idr_remove(&_minor_idr, minor); 1785 spin_unlock(&_minor_lock); 1786 } 1787 1788 /* 1789 * See if the device with a specific minor # is free. 1790 */ 1791 static int specific_minor(int minor) 1792 { 1793 int r; 1794 1795 if (minor >= (1 << MINORBITS)) 1796 return -EINVAL; 1797 1798 idr_preload(GFP_KERNEL); 1799 spin_lock(&_minor_lock); 1800 1801 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1802 1803 spin_unlock(&_minor_lock); 1804 idr_preload_end(); 1805 if (r < 0) 1806 return r == -ENOSPC ? -EBUSY : r; 1807 return 0; 1808 } 1809 1810 static int next_free_minor(int *minor) 1811 { 1812 int r; 1813 1814 idr_preload(GFP_KERNEL); 1815 spin_lock(&_minor_lock); 1816 1817 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1818 1819 spin_unlock(&_minor_lock); 1820 idr_preload_end(); 1821 if (r < 0) 1822 return r; 1823 *minor = r; 1824 return 0; 1825 } 1826 1827 static const struct block_device_operations dm_blk_dops; 1828 1829 static void dm_wq_work(struct work_struct *work); 1830 1831 static void dm_init_md_queue(struct mapped_device *md) 1832 { 1833 /* 1834 * Request-based dm devices cannot be stacked on top of bio-based dm 1835 * devices. The type of this dm device has not been decided yet. 1836 * The type is decided at the first table loading time. 1837 * To prevent problematic device stacking, clear the queue flag 1838 * for request stacking support until then. 1839 * 1840 * This queue is new, so no concurrency on the queue_flags. 1841 */ 1842 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1843 1844 md->queue->queuedata = md; 1845 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1846 md->queue->backing_dev_info.congested_data = md; 1847 blk_queue_make_request(md->queue, dm_request); 1848 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1849 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1850 } 1851 1852 /* 1853 * Allocate and initialise a blank device with a given minor. 1854 */ 1855 static struct mapped_device *alloc_dev(int minor) 1856 { 1857 int r; 1858 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1859 void *old_md; 1860 1861 if (!md) { 1862 DMWARN("unable to allocate device, out of memory."); 1863 return NULL; 1864 } 1865 1866 if (!try_module_get(THIS_MODULE)) 1867 goto bad_module_get; 1868 1869 /* get a minor number for the dev */ 1870 if (minor == DM_ANY_MINOR) 1871 r = next_free_minor(&minor); 1872 else 1873 r = specific_minor(minor); 1874 if (r < 0) 1875 goto bad_minor; 1876 1877 r = init_srcu_struct(&md->io_barrier); 1878 if (r < 0) 1879 goto bad_io_barrier; 1880 1881 md->type = DM_TYPE_NONE; 1882 mutex_init(&md->suspend_lock); 1883 mutex_init(&md->type_lock); 1884 spin_lock_init(&md->deferred_lock); 1885 atomic_set(&md->holders, 1); 1886 atomic_set(&md->open_count, 0); 1887 atomic_set(&md->event_nr, 0); 1888 atomic_set(&md->uevent_seq, 0); 1889 INIT_LIST_HEAD(&md->uevent_list); 1890 spin_lock_init(&md->uevent_lock); 1891 1892 md->queue = blk_alloc_queue(GFP_KERNEL); 1893 if (!md->queue) 1894 goto bad_queue; 1895 1896 dm_init_md_queue(md); 1897 1898 md->disk = alloc_disk(1); 1899 if (!md->disk) 1900 goto bad_disk; 1901 1902 atomic_set(&md->pending[0], 0); 1903 atomic_set(&md->pending[1], 0); 1904 init_waitqueue_head(&md->wait); 1905 INIT_WORK(&md->work, dm_wq_work); 1906 init_waitqueue_head(&md->eventq); 1907 init_completion(&md->kobj_holder.completion); 1908 1909 md->disk->major = _major; 1910 md->disk->first_minor = minor; 1911 md->disk->fops = &dm_blk_dops; 1912 md->disk->queue = md->queue; 1913 md->disk->private_data = md; 1914 sprintf(md->disk->disk_name, "dm-%d", minor); 1915 add_disk(md->disk); 1916 format_dev_t(md->name, MKDEV(_major, minor)); 1917 1918 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1919 if (!md->wq) 1920 goto bad_thread; 1921 1922 md->bdev = bdget_disk(md->disk, 0); 1923 if (!md->bdev) 1924 goto bad_bdev; 1925 1926 bio_init(&md->flush_bio); 1927 md->flush_bio.bi_bdev = md->bdev; 1928 md->flush_bio.bi_rw = WRITE_FLUSH; 1929 1930 dm_stats_init(&md->stats); 1931 1932 /* Populate the mapping, nobody knows we exist yet */ 1933 spin_lock(&_minor_lock); 1934 old_md = idr_replace(&_minor_idr, md, minor); 1935 spin_unlock(&_minor_lock); 1936 1937 BUG_ON(old_md != MINOR_ALLOCED); 1938 1939 return md; 1940 1941 bad_bdev: 1942 destroy_workqueue(md->wq); 1943 bad_thread: 1944 del_gendisk(md->disk); 1945 put_disk(md->disk); 1946 bad_disk: 1947 blk_cleanup_queue(md->queue); 1948 bad_queue: 1949 cleanup_srcu_struct(&md->io_barrier); 1950 bad_io_barrier: 1951 free_minor(minor); 1952 bad_minor: 1953 module_put(THIS_MODULE); 1954 bad_module_get: 1955 kfree(md); 1956 return NULL; 1957 } 1958 1959 static void unlock_fs(struct mapped_device *md); 1960 1961 static void free_dev(struct mapped_device *md) 1962 { 1963 int minor = MINOR(disk_devt(md->disk)); 1964 1965 unlock_fs(md); 1966 bdput(md->bdev); 1967 destroy_workqueue(md->wq); 1968 if (md->io_pool) 1969 mempool_destroy(md->io_pool); 1970 if (md->bs) 1971 bioset_free(md->bs); 1972 blk_integrity_unregister(md->disk); 1973 del_gendisk(md->disk); 1974 cleanup_srcu_struct(&md->io_barrier); 1975 free_minor(minor); 1976 1977 spin_lock(&_minor_lock); 1978 md->disk->private_data = NULL; 1979 spin_unlock(&_minor_lock); 1980 1981 put_disk(md->disk); 1982 blk_cleanup_queue(md->queue); 1983 dm_stats_cleanup(&md->stats); 1984 module_put(THIS_MODULE); 1985 kfree(md); 1986 } 1987 1988 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1989 { 1990 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1991 1992 if (md->io_pool && md->bs) { 1993 /* The md already has necessary mempools. */ 1994 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 1995 /* 1996 * Reload bioset because front_pad may have changed 1997 * because a different table was loaded. 1998 */ 1999 bioset_free(md->bs); 2000 md->bs = p->bs; 2001 p->bs = NULL; 2002 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) { 2003 /* 2004 * There's no need to reload with request-based dm 2005 * because the size of front_pad doesn't change. 2006 * Note for future: If you are to reload bioset, 2007 * prep-ed requests in the queue may refer 2008 * to bio from the old bioset, so you must walk 2009 * through the queue to unprep. 2010 */ 2011 } 2012 goto out; 2013 } 2014 2015 BUG_ON(!p || md->io_pool || md->bs); 2016 2017 md->io_pool = p->io_pool; 2018 p->io_pool = NULL; 2019 md->bs = p->bs; 2020 p->bs = NULL; 2021 2022 out: 2023 /* mempool bind completed, now no need any mempools in the table */ 2024 dm_table_free_md_mempools(t); 2025 } 2026 2027 /* 2028 * Bind a table to the device. 2029 */ 2030 static void event_callback(void *context) 2031 { 2032 unsigned long flags; 2033 LIST_HEAD(uevents); 2034 struct mapped_device *md = (struct mapped_device *) context; 2035 2036 spin_lock_irqsave(&md->uevent_lock, flags); 2037 list_splice_init(&md->uevent_list, &uevents); 2038 spin_unlock_irqrestore(&md->uevent_lock, flags); 2039 2040 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2041 2042 atomic_inc(&md->event_nr); 2043 wake_up(&md->eventq); 2044 } 2045 2046 /* 2047 * Protected by md->suspend_lock obtained by dm_swap_table(). 2048 */ 2049 static void __set_size(struct mapped_device *md, sector_t size) 2050 { 2051 set_capacity(md->disk, size); 2052 2053 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2054 } 2055 2056 /* 2057 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2058 * 2059 * If this function returns 0, then the device is either a non-dm 2060 * device without a merge_bvec_fn, or it is a dm device that is 2061 * able to split any bios it receives that are too big. 2062 */ 2063 int dm_queue_merge_is_compulsory(struct request_queue *q) 2064 { 2065 struct mapped_device *dev_md; 2066 2067 if (!q->merge_bvec_fn) 2068 return 0; 2069 2070 if (q->make_request_fn == dm_request) { 2071 dev_md = q->queuedata; 2072 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2073 return 0; 2074 } 2075 2076 return 1; 2077 } 2078 2079 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2080 struct dm_dev *dev, sector_t start, 2081 sector_t len, void *data) 2082 { 2083 struct block_device *bdev = dev->bdev; 2084 struct request_queue *q = bdev_get_queue(bdev); 2085 2086 return dm_queue_merge_is_compulsory(q); 2087 } 2088 2089 /* 2090 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2091 * on the properties of the underlying devices. 2092 */ 2093 static int dm_table_merge_is_optional(struct dm_table *table) 2094 { 2095 unsigned i = 0; 2096 struct dm_target *ti; 2097 2098 while (i < dm_table_get_num_targets(table)) { 2099 ti = dm_table_get_target(table, i++); 2100 2101 if (ti->type->iterate_devices && 2102 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2103 return 0; 2104 } 2105 2106 return 1; 2107 } 2108 2109 /* 2110 * Returns old map, which caller must destroy. 2111 */ 2112 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2113 struct queue_limits *limits) 2114 { 2115 struct dm_table *old_map; 2116 struct request_queue *q = md->queue; 2117 sector_t size; 2118 int merge_is_optional; 2119 2120 size = dm_table_get_size(t); 2121 2122 /* 2123 * Wipe any geometry if the size of the table changed. 2124 */ 2125 if (size != dm_get_size(md)) 2126 memset(&md->geometry, 0, sizeof(md->geometry)); 2127 2128 __set_size(md, size); 2129 2130 dm_table_event_callback(t, event_callback, md); 2131 2132 /* 2133 * The queue hasn't been stopped yet, if the old table type wasn't 2134 * for request-based during suspension. So stop it to prevent 2135 * I/O mapping before resume. 2136 * This must be done before setting the queue restrictions, 2137 * because request-based dm may be run just after the setting. 2138 */ 2139 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2140 stop_queue(q); 2141 2142 __bind_mempools(md, t); 2143 2144 merge_is_optional = dm_table_merge_is_optional(t); 2145 2146 old_map = md->map; 2147 rcu_assign_pointer(md->map, t); 2148 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2149 2150 dm_table_set_restrictions(t, q, limits); 2151 if (merge_is_optional) 2152 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2153 else 2154 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2155 dm_sync_table(md); 2156 2157 return old_map; 2158 } 2159 2160 /* 2161 * Returns unbound table for the caller to free. 2162 */ 2163 static struct dm_table *__unbind(struct mapped_device *md) 2164 { 2165 struct dm_table *map = md->map; 2166 2167 if (!map) 2168 return NULL; 2169 2170 dm_table_event_callback(map, NULL, NULL); 2171 RCU_INIT_POINTER(md->map, NULL); 2172 dm_sync_table(md); 2173 2174 return map; 2175 } 2176 2177 /* 2178 * Constructor for a new device. 2179 */ 2180 int dm_create(int minor, struct mapped_device **result) 2181 { 2182 struct mapped_device *md; 2183 2184 md = alloc_dev(minor); 2185 if (!md) 2186 return -ENXIO; 2187 2188 dm_sysfs_init(md); 2189 2190 *result = md; 2191 return 0; 2192 } 2193 2194 /* 2195 * Functions to manage md->type. 2196 * All are required to hold md->type_lock. 2197 */ 2198 void dm_lock_md_type(struct mapped_device *md) 2199 { 2200 mutex_lock(&md->type_lock); 2201 } 2202 2203 void dm_unlock_md_type(struct mapped_device *md) 2204 { 2205 mutex_unlock(&md->type_lock); 2206 } 2207 2208 void dm_set_md_type(struct mapped_device *md, unsigned type) 2209 { 2210 BUG_ON(!mutex_is_locked(&md->type_lock)); 2211 md->type = type; 2212 } 2213 2214 unsigned dm_get_md_type(struct mapped_device *md) 2215 { 2216 BUG_ON(!mutex_is_locked(&md->type_lock)); 2217 return md->type; 2218 } 2219 2220 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2221 { 2222 return md->immutable_target_type; 2223 } 2224 2225 /* 2226 * The queue_limits are only valid as long as you have a reference 2227 * count on 'md'. 2228 */ 2229 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2230 { 2231 BUG_ON(!atomic_read(&md->holders)); 2232 return &md->queue->limits; 2233 } 2234 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2235 2236 /* 2237 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2238 */ 2239 static int dm_init_request_based_queue(struct mapped_device *md) 2240 { 2241 struct request_queue *q = NULL; 2242 2243 if (md->queue->elevator) 2244 return 1; 2245 2246 /* Fully initialize the queue */ 2247 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2248 if (!q) 2249 return 0; 2250 2251 md->queue = q; 2252 dm_init_md_queue(md); 2253 blk_queue_softirq_done(md->queue, dm_softirq_done); 2254 blk_queue_prep_rq(md->queue, dm_prep_fn); 2255 blk_queue_lld_busy(md->queue, dm_lld_busy); 2256 2257 elv_register_queue(md->queue); 2258 2259 return 1; 2260 } 2261 2262 /* 2263 * Setup the DM device's queue based on md's type 2264 */ 2265 int dm_setup_md_queue(struct mapped_device *md) 2266 { 2267 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2268 !dm_init_request_based_queue(md)) { 2269 DMWARN("Cannot initialize queue for request-based mapped device"); 2270 return -EINVAL; 2271 } 2272 2273 return 0; 2274 } 2275 2276 static struct mapped_device *dm_find_md(dev_t dev) 2277 { 2278 struct mapped_device *md; 2279 unsigned minor = MINOR(dev); 2280 2281 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2282 return NULL; 2283 2284 spin_lock(&_minor_lock); 2285 2286 md = idr_find(&_minor_idr, minor); 2287 if (md && (md == MINOR_ALLOCED || 2288 (MINOR(disk_devt(dm_disk(md))) != minor) || 2289 dm_deleting_md(md) || 2290 test_bit(DMF_FREEING, &md->flags))) { 2291 md = NULL; 2292 goto out; 2293 } 2294 2295 out: 2296 spin_unlock(&_minor_lock); 2297 2298 return md; 2299 } 2300 2301 struct mapped_device *dm_get_md(dev_t dev) 2302 { 2303 struct mapped_device *md = dm_find_md(dev); 2304 2305 if (md) 2306 dm_get(md); 2307 2308 return md; 2309 } 2310 EXPORT_SYMBOL_GPL(dm_get_md); 2311 2312 void *dm_get_mdptr(struct mapped_device *md) 2313 { 2314 return md->interface_ptr; 2315 } 2316 2317 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2318 { 2319 md->interface_ptr = ptr; 2320 } 2321 2322 void dm_get(struct mapped_device *md) 2323 { 2324 atomic_inc(&md->holders); 2325 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2326 } 2327 2328 const char *dm_device_name(struct mapped_device *md) 2329 { 2330 return md->name; 2331 } 2332 EXPORT_SYMBOL_GPL(dm_device_name); 2333 2334 static void __dm_destroy(struct mapped_device *md, bool wait) 2335 { 2336 struct dm_table *map; 2337 int srcu_idx; 2338 2339 might_sleep(); 2340 2341 spin_lock(&_minor_lock); 2342 map = dm_get_live_table(md, &srcu_idx); 2343 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2344 set_bit(DMF_FREEING, &md->flags); 2345 spin_unlock(&_minor_lock); 2346 2347 if (!dm_suspended_md(md)) { 2348 dm_table_presuspend_targets(map); 2349 dm_table_postsuspend_targets(map); 2350 } 2351 2352 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2353 dm_put_live_table(md, srcu_idx); 2354 2355 /* 2356 * Rare, but there may be I/O requests still going to complete, 2357 * for example. Wait for all references to disappear. 2358 * No one should increment the reference count of the mapped_device, 2359 * after the mapped_device state becomes DMF_FREEING. 2360 */ 2361 if (wait) 2362 while (atomic_read(&md->holders)) 2363 msleep(1); 2364 else if (atomic_read(&md->holders)) 2365 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2366 dm_device_name(md), atomic_read(&md->holders)); 2367 2368 dm_sysfs_exit(md); 2369 dm_table_destroy(__unbind(md)); 2370 free_dev(md); 2371 } 2372 2373 void dm_destroy(struct mapped_device *md) 2374 { 2375 __dm_destroy(md, true); 2376 } 2377 2378 void dm_destroy_immediate(struct mapped_device *md) 2379 { 2380 __dm_destroy(md, false); 2381 } 2382 2383 void dm_put(struct mapped_device *md) 2384 { 2385 atomic_dec(&md->holders); 2386 } 2387 EXPORT_SYMBOL_GPL(dm_put); 2388 2389 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2390 { 2391 int r = 0; 2392 DECLARE_WAITQUEUE(wait, current); 2393 2394 add_wait_queue(&md->wait, &wait); 2395 2396 while (1) { 2397 set_current_state(interruptible); 2398 2399 if (!md_in_flight(md)) 2400 break; 2401 2402 if (interruptible == TASK_INTERRUPTIBLE && 2403 signal_pending(current)) { 2404 r = -EINTR; 2405 break; 2406 } 2407 2408 io_schedule(); 2409 } 2410 set_current_state(TASK_RUNNING); 2411 2412 remove_wait_queue(&md->wait, &wait); 2413 2414 return r; 2415 } 2416 2417 /* 2418 * Process the deferred bios 2419 */ 2420 static void dm_wq_work(struct work_struct *work) 2421 { 2422 struct mapped_device *md = container_of(work, struct mapped_device, 2423 work); 2424 struct bio *c; 2425 int srcu_idx; 2426 struct dm_table *map; 2427 2428 map = dm_get_live_table(md, &srcu_idx); 2429 2430 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2431 spin_lock_irq(&md->deferred_lock); 2432 c = bio_list_pop(&md->deferred); 2433 spin_unlock_irq(&md->deferred_lock); 2434 2435 if (!c) 2436 break; 2437 2438 if (dm_request_based(md)) 2439 generic_make_request(c); 2440 else 2441 __split_and_process_bio(md, map, c); 2442 } 2443 2444 dm_put_live_table(md, srcu_idx); 2445 } 2446 2447 static void dm_queue_flush(struct mapped_device *md) 2448 { 2449 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2450 smp_mb__after_clear_bit(); 2451 queue_work(md->wq, &md->work); 2452 } 2453 2454 /* 2455 * Swap in a new table, returning the old one for the caller to destroy. 2456 */ 2457 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2458 { 2459 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2460 struct queue_limits limits; 2461 int r; 2462 2463 mutex_lock(&md->suspend_lock); 2464 2465 /* device must be suspended */ 2466 if (!dm_suspended_md(md)) 2467 goto out; 2468 2469 /* 2470 * If the new table has no data devices, retain the existing limits. 2471 * This helps multipath with queue_if_no_path if all paths disappear, 2472 * then new I/O is queued based on these limits, and then some paths 2473 * reappear. 2474 */ 2475 if (dm_table_has_no_data_devices(table)) { 2476 live_map = dm_get_live_table_fast(md); 2477 if (live_map) 2478 limits = md->queue->limits; 2479 dm_put_live_table_fast(md); 2480 } 2481 2482 if (!live_map) { 2483 r = dm_calculate_queue_limits(table, &limits); 2484 if (r) { 2485 map = ERR_PTR(r); 2486 goto out; 2487 } 2488 } 2489 2490 map = __bind(md, table, &limits); 2491 2492 out: 2493 mutex_unlock(&md->suspend_lock); 2494 return map; 2495 } 2496 2497 /* 2498 * Functions to lock and unlock any filesystem running on the 2499 * device. 2500 */ 2501 static int lock_fs(struct mapped_device *md) 2502 { 2503 int r; 2504 2505 WARN_ON(md->frozen_sb); 2506 2507 md->frozen_sb = freeze_bdev(md->bdev); 2508 if (IS_ERR(md->frozen_sb)) { 2509 r = PTR_ERR(md->frozen_sb); 2510 md->frozen_sb = NULL; 2511 return r; 2512 } 2513 2514 set_bit(DMF_FROZEN, &md->flags); 2515 2516 return 0; 2517 } 2518 2519 static void unlock_fs(struct mapped_device *md) 2520 { 2521 if (!test_bit(DMF_FROZEN, &md->flags)) 2522 return; 2523 2524 thaw_bdev(md->bdev, md->frozen_sb); 2525 md->frozen_sb = NULL; 2526 clear_bit(DMF_FROZEN, &md->flags); 2527 } 2528 2529 /* 2530 * We need to be able to change a mapping table under a mounted 2531 * filesystem. For example we might want to move some data in 2532 * the background. Before the table can be swapped with 2533 * dm_bind_table, dm_suspend must be called to flush any in 2534 * flight bios and ensure that any further io gets deferred. 2535 */ 2536 /* 2537 * Suspend mechanism in request-based dm. 2538 * 2539 * 1. Flush all I/Os by lock_fs() if needed. 2540 * 2. Stop dispatching any I/O by stopping the request_queue. 2541 * 3. Wait for all in-flight I/Os to be completed or requeued. 2542 * 2543 * To abort suspend, start the request_queue. 2544 */ 2545 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2546 { 2547 struct dm_table *map = NULL; 2548 int r = 0; 2549 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2550 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2551 2552 mutex_lock(&md->suspend_lock); 2553 2554 if (dm_suspended_md(md)) { 2555 r = -EINVAL; 2556 goto out_unlock; 2557 } 2558 2559 map = md->map; 2560 2561 /* 2562 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2563 * This flag is cleared before dm_suspend returns. 2564 */ 2565 if (noflush) 2566 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2567 2568 /* This does not get reverted if there's an error later. */ 2569 dm_table_presuspend_targets(map); 2570 2571 /* 2572 * Flush I/O to the device. 2573 * Any I/O submitted after lock_fs() may not be flushed. 2574 * noflush takes precedence over do_lockfs. 2575 * (lock_fs() flushes I/Os and waits for them to complete.) 2576 */ 2577 if (!noflush && do_lockfs) { 2578 r = lock_fs(md); 2579 if (r) 2580 goto out_unlock; 2581 } 2582 2583 /* 2584 * Here we must make sure that no processes are submitting requests 2585 * to target drivers i.e. no one may be executing 2586 * __split_and_process_bio. This is called from dm_request and 2587 * dm_wq_work. 2588 * 2589 * To get all processes out of __split_and_process_bio in dm_request, 2590 * we take the write lock. To prevent any process from reentering 2591 * __split_and_process_bio from dm_request and quiesce the thread 2592 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2593 * flush_workqueue(md->wq). 2594 */ 2595 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2596 synchronize_srcu(&md->io_barrier); 2597 2598 /* 2599 * Stop md->queue before flushing md->wq in case request-based 2600 * dm defers requests to md->wq from md->queue. 2601 */ 2602 if (dm_request_based(md)) 2603 stop_queue(md->queue); 2604 2605 flush_workqueue(md->wq); 2606 2607 /* 2608 * At this point no more requests are entering target request routines. 2609 * We call dm_wait_for_completion to wait for all existing requests 2610 * to finish. 2611 */ 2612 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2613 2614 if (noflush) 2615 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2616 synchronize_srcu(&md->io_barrier); 2617 2618 /* were we interrupted ? */ 2619 if (r < 0) { 2620 dm_queue_flush(md); 2621 2622 if (dm_request_based(md)) 2623 start_queue(md->queue); 2624 2625 unlock_fs(md); 2626 goto out_unlock; /* pushback list is already flushed, so skip flush */ 2627 } 2628 2629 /* 2630 * If dm_wait_for_completion returned 0, the device is completely 2631 * quiescent now. There is no request-processing activity. All new 2632 * requests are being added to md->deferred list. 2633 */ 2634 2635 set_bit(DMF_SUSPENDED, &md->flags); 2636 2637 dm_table_postsuspend_targets(map); 2638 2639 out_unlock: 2640 mutex_unlock(&md->suspend_lock); 2641 return r; 2642 } 2643 2644 int dm_resume(struct mapped_device *md) 2645 { 2646 int r = -EINVAL; 2647 struct dm_table *map = NULL; 2648 2649 mutex_lock(&md->suspend_lock); 2650 if (!dm_suspended_md(md)) 2651 goto out; 2652 2653 map = md->map; 2654 if (!map || !dm_table_get_size(map)) 2655 goto out; 2656 2657 r = dm_table_resume_targets(map); 2658 if (r) 2659 goto out; 2660 2661 dm_queue_flush(md); 2662 2663 /* 2664 * Flushing deferred I/Os must be done after targets are resumed 2665 * so that mapping of targets can work correctly. 2666 * Request-based dm is queueing the deferred I/Os in its request_queue. 2667 */ 2668 if (dm_request_based(md)) 2669 start_queue(md->queue); 2670 2671 unlock_fs(md); 2672 2673 clear_bit(DMF_SUSPENDED, &md->flags); 2674 2675 r = 0; 2676 out: 2677 mutex_unlock(&md->suspend_lock); 2678 2679 return r; 2680 } 2681 2682 /* 2683 * Internal suspend/resume works like userspace-driven suspend. It waits 2684 * until all bios finish and prevents issuing new bios to the target drivers. 2685 * It may be used only from the kernel. 2686 * 2687 * Internal suspend holds md->suspend_lock, which prevents interaction with 2688 * userspace-driven suspend. 2689 */ 2690 2691 void dm_internal_suspend(struct mapped_device *md) 2692 { 2693 mutex_lock(&md->suspend_lock); 2694 if (dm_suspended_md(md)) 2695 return; 2696 2697 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2698 synchronize_srcu(&md->io_barrier); 2699 flush_workqueue(md->wq); 2700 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2701 } 2702 2703 void dm_internal_resume(struct mapped_device *md) 2704 { 2705 if (dm_suspended_md(md)) 2706 goto done; 2707 2708 dm_queue_flush(md); 2709 2710 done: 2711 mutex_unlock(&md->suspend_lock); 2712 } 2713 2714 /*----------------------------------------------------------------- 2715 * Event notification. 2716 *---------------------------------------------------------------*/ 2717 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2718 unsigned cookie) 2719 { 2720 char udev_cookie[DM_COOKIE_LENGTH]; 2721 char *envp[] = { udev_cookie, NULL }; 2722 2723 if (!cookie) 2724 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2725 else { 2726 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2727 DM_COOKIE_ENV_VAR_NAME, cookie); 2728 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2729 action, envp); 2730 } 2731 } 2732 2733 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2734 { 2735 return atomic_add_return(1, &md->uevent_seq); 2736 } 2737 2738 uint32_t dm_get_event_nr(struct mapped_device *md) 2739 { 2740 return atomic_read(&md->event_nr); 2741 } 2742 2743 int dm_wait_event(struct mapped_device *md, int event_nr) 2744 { 2745 return wait_event_interruptible(md->eventq, 2746 (event_nr != atomic_read(&md->event_nr))); 2747 } 2748 2749 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2750 { 2751 unsigned long flags; 2752 2753 spin_lock_irqsave(&md->uevent_lock, flags); 2754 list_add(elist, &md->uevent_list); 2755 spin_unlock_irqrestore(&md->uevent_lock, flags); 2756 } 2757 2758 /* 2759 * The gendisk is only valid as long as you have a reference 2760 * count on 'md'. 2761 */ 2762 struct gendisk *dm_disk(struct mapped_device *md) 2763 { 2764 return md->disk; 2765 } 2766 2767 struct kobject *dm_kobject(struct mapped_device *md) 2768 { 2769 return &md->kobj_holder.kobj; 2770 } 2771 2772 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2773 { 2774 struct mapped_device *md; 2775 2776 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2777 2778 if (test_bit(DMF_FREEING, &md->flags) || 2779 dm_deleting_md(md)) 2780 return NULL; 2781 2782 dm_get(md); 2783 return md; 2784 } 2785 2786 int dm_suspended_md(struct mapped_device *md) 2787 { 2788 return test_bit(DMF_SUSPENDED, &md->flags); 2789 } 2790 2791 int dm_test_deferred_remove_flag(struct mapped_device *md) 2792 { 2793 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2794 } 2795 2796 int dm_suspended(struct dm_target *ti) 2797 { 2798 return dm_suspended_md(dm_table_get_md(ti->table)); 2799 } 2800 EXPORT_SYMBOL_GPL(dm_suspended); 2801 2802 int dm_noflush_suspending(struct dm_target *ti) 2803 { 2804 return __noflush_suspending(dm_table_get_md(ti->table)); 2805 } 2806 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2807 2808 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) 2809 { 2810 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 2811 struct kmem_cache *cachep; 2812 unsigned int pool_size; 2813 unsigned int front_pad; 2814 2815 if (!pools) 2816 return NULL; 2817 2818 if (type == DM_TYPE_BIO_BASED) { 2819 cachep = _io_cache; 2820 pool_size = dm_get_reserved_bio_based_ios(); 2821 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2822 } else if (type == DM_TYPE_REQUEST_BASED) { 2823 cachep = _rq_tio_cache; 2824 pool_size = dm_get_reserved_rq_based_ios(); 2825 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2826 /* per_bio_data_size is not used. See __bind_mempools(). */ 2827 WARN_ON(per_bio_data_size != 0); 2828 } else 2829 goto out; 2830 2831 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 2832 if (!pools->io_pool) 2833 goto out; 2834 2835 pools->bs = bioset_create(pool_size, front_pad); 2836 if (!pools->bs) 2837 goto out; 2838 2839 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2840 goto out; 2841 2842 return pools; 2843 2844 out: 2845 dm_free_md_mempools(pools); 2846 2847 return NULL; 2848 } 2849 2850 void dm_free_md_mempools(struct dm_md_mempools *pools) 2851 { 2852 if (!pools) 2853 return; 2854 2855 if (pools->io_pool) 2856 mempool_destroy(pools->io_pool); 2857 2858 if (pools->bs) 2859 bioset_free(pools->bs); 2860 2861 kfree(pools); 2862 } 2863 2864 static const struct block_device_operations dm_blk_dops = { 2865 .open = dm_blk_open, 2866 .release = dm_blk_close, 2867 .ioctl = dm_blk_ioctl, 2868 .getgeo = dm_blk_getgeo, 2869 .owner = THIS_MODULE 2870 }; 2871 2872 /* 2873 * module hooks 2874 */ 2875 module_init(dm_init); 2876 module_exit(dm_exit); 2877 2878 module_param(major, uint, 0); 2879 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2880 2881 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2882 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2883 2884 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 2885 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 2886 2887 MODULE_DESCRIPTION(DM_NAME " driver"); 2888 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2889 MODULE_LICENSE("GPL"); 2890