xref: /openbmc/linux/drivers/md/dm.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set *bs;
152 	struct bio_set *io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
163 
164 /*
165  * Bio-based DM's mempools' reserved IOs set by the user.
166  */
167 #define RESERVED_BIO_BASED_IOS		16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169 
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 {
172 	int param = READ_ONCE(*module_param);
173 	int modified_param = 0;
174 	bool modified = true;
175 
176 	if (param < min)
177 		modified_param = min;
178 	else if (param > max)
179 		modified_param = max;
180 	else
181 		modified = false;
182 
183 	if (modified) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned __dm_get_module_param(unsigned *module_param,
192 			       unsigned def, unsigned max)
193 {
194 	unsigned param = READ_ONCE(*module_param);
195 	unsigned modified_param = 0;
196 
197 	if (!param)
198 		modified_param = def;
199 	else if (param > max)
200 		modified_param = max;
201 
202 	if (modified_param) {
203 		(void)cmpxchg(module_param, param, modified_param);
204 		param = modified_param;
205 	}
206 
207 	return param;
208 }
209 
210 unsigned dm_get_reserved_bio_based_ios(void)
211 {
212 	return __dm_get_module_param(&reserved_bio_based_ios,
213 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 }
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216 
217 static unsigned dm_get_numa_node(void)
218 {
219 	return __dm_get_module_param_int(&dm_numa_node,
220 					 DM_NUMA_NODE, num_online_nodes() - 1);
221 }
222 
223 static int __init local_init(void)
224 {
225 	int r = -ENOMEM;
226 
227 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 	if (!_rq_tio_cache)
229 		return r;
230 
231 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 				      __alignof__(struct request), 0, NULL);
233 	if (!_rq_cache)
234 		goto out_free_rq_tio_cache;
235 
236 	r = dm_uevent_init();
237 	if (r)
238 		goto out_free_rq_cache;
239 
240 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 	if (!deferred_remove_workqueue) {
242 		r = -ENOMEM;
243 		goto out_uevent_exit;
244 	}
245 
246 	_major = major;
247 	r = register_blkdev(_major, _name);
248 	if (r < 0)
249 		goto out_free_workqueue;
250 
251 	if (!_major)
252 		_major = r;
253 
254 	return 0;
255 
256 out_free_workqueue:
257 	destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 	dm_uevent_exit();
260 out_free_rq_cache:
261 	kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 	kmem_cache_destroy(_rq_tio_cache);
264 
265 	return r;
266 }
267 
268 static void local_exit(void)
269 {
270 	flush_scheduled_work();
271 	destroy_workqueue(deferred_remove_workqueue);
272 
273 	kmem_cache_destroy(_rq_cache);
274 	kmem_cache_destroy(_rq_tio_cache);
275 	unregister_blkdev(_major, _name);
276 	dm_uevent_exit();
277 
278 	_major = 0;
279 
280 	DMINFO("cleaned up");
281 }
282 
283 static int (*_inits[])(void) __initdata = {
284 	local_init,
285 	dm_target_init,
286 	dm_linear_init,
287 	dm_stripe_init,
288 	dm_io_init,
289 	dm_kcopyd_init,
290 	dm_interface_init,
291 	dm_statistics_init,
292 };
293 
294 static void (*_exits[])(void) = {
295 	local_exit,
296 	dm_target_exit,
297 	dm_linear_exit,
298 	dm_stripe_exit,
299 	dm_io_exit,
300 	dm_kcopyd_exit,
301 	dm_interface_exit,
302 	dm_statistics_exit,
303 };
304 
305 static int __init dm_init(void)
306 {
307 	const int count = ARRAY_SIZE(_inits);
308 
309 	int r, i;
310 
311 	for (i = 0; i < count; i++) {
312 		r = _inits[i]();
313 		if (r)
314 			goto bad;
315 	}
316 
317 	return 0;
318 
319       bad:
320 	while (i--)
321 		_exits[i]();
322 
323 	return r;
324 }
325 
326 static void __exit dm_exit(void)
327 {
328 	int i = ARRAY_SIZE(_exits);
329 
330 	while (i--)
331 		_exits[i]();
332 
333 	/*
334 	 * Should be empty by this point.
335 	 */
336 	idr_destroy(&_minor_idr);
337 }
338 
339 /*
340  * Block device functions
341  */
342 int dm_deleting_md(struct mapped_device *md)
343 {
344 	return test_bit(DMF_DELETING, &md->flags);
345 }
346 
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348 {
349 	struct mapped_device *md;
350 
351 	spin_lock(&_minor_lock);
352 
353 	md = bdev->bd_disk->private_data;
354 	if (!md)
355 		goto out;
356 
357 	if (test_bit(DMF_FREEING, &md->flags) ||
358 	    dm_deleting_md(md)) {
359 		md = NULL;
360 		goto out;
361 	}
362 
363 	dm_get(md);
364 	atomic_inc(&md->open_count);
365 out:
366 	spin_unlock(&_minor_lock);
367 
368 	return md ? 0 : -ENXIO;
369 }
370 
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372 {
373 	struct mapped_device *md;
374 
375 	spin_lock(&_minor_lock);
376 
377 	md = disk->private_data;
378 	if (WARN_ON(!md))
379 		goto out;
380 
381 	if (atomic_dec_and_test(&md->open_count) &&
382 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
384 
385 	dm_put(md);
386 out:
387 	spin_unlock(&_minor_lock);
388 }
389 
390 int dm_open_count(struct mapped_device *md)
391 {
392 	return atomic_read(&md->open_count);
393 }
394 
395 /*
396  * Guarantees nothing is using the device before it's deleted.
397  */
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399 {
400 	int r = 0;
401 
402 	spin_lock(&_minor_lock);
403 
404 	if (dm_open_count(md)) {
405 		r = -EBUSY;
406 		if (mark_deferred)
407 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 		r = -EEXIST;
410 	else
411 		set_bit(DMF_DELETING, &md->flags);
412 
413 	spin_unlock(&_minor_lock);
414 
415 	return r;
416 }
417 
418 int dm_cancel_deferred_remove(struct mapped_device *md)
419 {
420 	int r = 0;
421 
422 	spin_lock(&_minor_lock);
423 
424 	if (test_bit(DMF_DELETING, &md->flags))
425 		r = -EBUSY;
426 	else
427 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428 
429 	spin_unlock(&_minor_lock);
430 
431 	return r;
432 }
433 
434 static void do_deferred_remove(struct work_struct *w)
435 {
436 	dm_deferred_remove();
437 }
438 
439 sector_t dm_get_size(struct mapped_device *md)
440 {
441 	return get_capacity(md->disk);
442 }
443 
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
445 {
446 	return md->queue;
447 }
448 
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
450 {
451 	return &md->stats;
452 }
453 
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455 {
456 	struct mapped_device *md = bdev->bd_disk->private_data;
457 
458 	return dm_get_geometry(md, geo);
459 }
460 
461 static char *_dm_claim_ptr = "I belong to device-mapper";
462 
463 static int dm_get_bdev_for_ioctl(struct mapped_device *md,
464 				 struct block_device **bdev,
465 				 fmode_t *mode)
466 {
467 	struct dm_target *tgt;
468 	struct dm_table *map;
469 	int srcu_idx, r, r2;
470 
471 retry:
472 	r = -ENOTTY;
473 	map = dm_get_live_table(md, &srcu_idx);
474 	if (!map || !dm_table_get_size(map))
475 		goto out;
476 
477 	/* We only support devices that have a single target */
478 	if (dm_table_get_num_targets(map) != 1)
479 		goto out;
480 
481 	tgt = dm_table_get_target(map, 0);
482 	if (!tgt->type->prepare_ioctl)
483 		goto out;
484 
485 	if (dm_suspended_md(md)) {
486 		r = -EAGAIN;
487 		goto out;
488 	}
489 
490 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
491 	if (r < 0)
492 		goto out;
493 
494 	bdgrab(*bdev);
495 	r2 = blkdev_get(*bdev, *mode, _dm_claim_ptr);
496 	if (r2 < 0) {
497 		r = r2;
498 		goto out;
499 	}
500 
501 	dm_put_live_table(md, srcu_idx);
502 	return r;
503 
504 out:
505 	dm_put_live_table(md, srcu_idx);
506 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
507 		msleep(10);
508 		goto retry;
509 	}
510 	return r;
511 }
512 
513 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
514 			unsigned int cmd, unsigned long arg)
515 {
516 	struct mapped_device *md = bdev->bd_disk->private_data;
517 	int r;
518 
519 	r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
520 	if (r < 0)
521 		return r;
522 
523 	if (r > 0) {
524 		/*
525 		 * Target determined this ioctl is being issued against a
526 		 * subset of the parent bdev; require extra privileges.
527 		 */
528 		if (!capable(CAP_SYS_RAWIO)) {
529 			DMWARN_LIMIT(
530 	"%s: sending ioctl %x to DM device without required privilege.",
531 				current->comm, cmd);
532 			r = -ENOIOCTLCMD;
533 			goto out;
534 		}
535 	}
536 
537 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
538 out:
539 	blkdev_put(bdev, mode);
540 	return r;
541 }
542 
543 static void start_io_acct(struct dm_io *io);
544 
545 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
546 {
547 	struct dm_io *io;
548 	struct dm_target_io *tio;
549 	struct bio *clone;
550 
551 	clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
552 	if (!clone)
553 		return NULL;
554 
555 	tio = container_of(clone, struct dm_target_io, clone);
556 	tio->inside_dm_io = true;
557 	tio->io = NULL;
558 
559 	io = container_of(tio, struct dm_io, tio);
560 	io->magic = DM_IO_MAGIC;
561 	io->status = 0;
562 	atomic_set(&io->io_count, 1);
563 	io->orig_bio = bio;
564 	io->md = md;
565 	spin_lock_init(&io->endio_lock);
566 
567 	start_io_acct(io);
568 
569 	return io;
570 }
571 
572 static void free_io(struct mapped_device *md, struct dm_io *io)
573 {
574 	bio_put(&io->tio.clone);
575 }
576 
577 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
578 				      unsigned target_bio_nr, gfp_t gfp_mask)
579 {
580 	struct dm_target_io *tio;
581 
582 	if (!ci->io->tio.io) {
583 		/* the dm_target_io embedded in ci->io is available */
584 		tio = &ci->io->tio;
585 	} else {
586 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
587 		if (!clone)
588 			return NULL;
589 
590 		tio = container_of(clone, struct dm_target_io, clone);
591 		tio->inside_dm_io = false;
592 	}
593 
594 	tio->magic = DM_TIO_MAGIC;
595 	tio->io = ci->io;
596 	tio->ti = ti;
597 	tio->target_bio_nr = target_bio_nr;
598 
599 	return tio;
600 }
601 
602 static void free_tio(struct dm_target_io *tio)
603 {
604 	if (tio->inside_dm_io)
605 		return;
606 	bio_put(&tio->clone);
607 }
608 
609 int md_in_flight(struct mapped_device *md)
610 {
611 	return atomic_read(&md->pending[READ]) +
612 	       atomic_read(&md->pending[WRITE]);
613 }
614 
615 static void start_io_acct(struct dm_io *io)
616 {
617 	struct mapped_device *md = io->md;
618 	struct bio *bio = io->orig_bio;
619 	int rw = bio_data_dir(bio);
620 
621 	io->start_time = jiffies;
622 
623 	generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
624 
625 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
626 		   atomic_inc_return(&md->pending[rw]));
627 
628 	if (unlikely(dm_stats_used(&md->stats)))
629 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
630 				    bio->bi_iter.bi_sector, bio_sectors(bio),
631 				    false, 0, &io->stats_aux);
632 }
633 
634 static void end_io_acct(struct dm_io *io)
635 {
636 	struct mapped_device *md = io->md;
637 	struct bio *bio = io->orig_bio;
638 	unsigned long duration = jiffies - io->start_time;
639 	int pending;
640 	int rw = bio_data_dir(bio);
641 
642 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
643 
644 	if (unlikely(dm_stats_used(&md->stats)))
645 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
646 				    bio->bi_iter.bi_sector, bio_sectors(bio),
647 				    true, duration, &io->stats_aux);
648 
649 	/*
650 	 * After this is decremented the bio must not be touched if it is
651 	 * a flush.
652 	 */
653 	pending = atomic_dec_return(&md->pending[rw]);
654 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
655 	pending += atomic_read(&md->pending[rw^0x1]);
656 
657 	/* nudge anyone waiting on suspend queue */
658 	if (!pending)
659 		wake_up(&md->wait);
660 }
661 
662 /*
663  * Add the bio to the list of deferred io.
664  */
665 static void queue_io(struct mapped_device *md, struct bio *bio)
666 {
667 	unsigned long flags;
668 
669 	spin_lock_irqsave(&md->deferred_lock, flags);
670 	bio_list_add(&md->deferred, bio);
671 	spin_unlock_irqrestore(&md->deferred_lock, flags);
672 	queue_work(md->wq, &md->work);
673 }
674 
675 /*
676  * Everyone (including functions in this file), should use this
677  * function to access the md->map field, and make sure they call
678  * dm_put_live_table() when finished.
679  */
680 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
681 {
682 	*srcu_idx = srcu_read_lock(&md->io_barrier);
683 
684 	return srcu_dereference(md->map, &md->io_barrier);
685 }
686 
687 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
688 {
689 	srcu_read_unlock(&md->io_barrier, srcu_idx);
690 }
691 
692 void dm_sync_table(struct mapped_device *md)
693 {
694 	synchronize_srcu(&md->io_barrier);
695 	synchronize_rcu_expedited();
696 }
697 
698 /*
699  * A fast alternative to dm_get_live_table/dm_put_live_table.
700  * The caller must not block between these two functions.
701  */
702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
703 {
704 	rcu_read_lock();
705 	return rcu_dereference(md->map);
706 }
707 
708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
709 {
710 	rcu_read_unlock();
711 }
712 
713 /*
714  * Open a table device so we can use it as a map destination.
715  */
716 static int open_table_device(struct table_device *td, dev_t dev,
717 			     struct mapped_device *md)
718 {
719 	struct block_device *bdev;
720 
721 	int r;
722 
723 	BUG_ON(td->dm_dev.bdev);
724 
725 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
726 	if (IS_ERR(bdev))
727 		return PTR_ERR(bdev);
728 
729 	r = bd_link_disk_holder(bdev, dm_disk(md));
730 	if (r) {
731 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
732 		return r;
733 	}
734 
735 	td->dm_dev.bdev = bdev;
736 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
737 	return 0;
738 }
739 
740 /*
741  * Close a table device that we've been using.
742  */
743 static void close_table_device(struct table_device *td, struct mapped_device *md)
744 {
745 	if (!td->dm_dev.bdev)
746 		return;
747 
748 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
749 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
750 	put_dax(td->dm_dev.dax_dev);
751 	td->dm_dev.bdev = NULL;
752 	td->dm_dev.dax_dev = NULL;
753 }
754 
755 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
756 					      fmode_t mode) {
757 	struct table_device *td;
758 
759 	list_for_each_entry(td, l, list)
760 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
761 			return td;
762 
763 	return NULL;
764 }
765 
766 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
767 			struct dm_dev **result) {
768 	int r;
769 	struct table_device *td;
770 
771 	mutex_lock(&md->table_devices_lock);
772 	td = find_table_device(&md->table_devices, dev, mode);
773 	if (!td) {
774 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
775 		if (!td) {
776 			mutex_unlock(&md->table_devices_lock);
777 			return -ENOMEM;
778 		}
779 
780 		td->dm_dev.mode = mode;
781 		td->dm_dev.bdev = NULL;
782 
783 		if ((r = open_table_device(td, dev, md))) {
784 			mutex_unlock(&md->table_devices_lock);
785 			kfree(td);
786 			return r;
787 		}
788 
789 		format_dev_t(td->dm_dev.name, dev);
790 
791 		refcount_set(&td->count, 1);
792 		list_add(&td->list, &md->table_devices);
793 	} else {
794 		refcount_inc(&td->count);
795 	}
796 	mutex_unlock(&md->table_devices_lock);
797 
798 	*result = &td->dm_dev;
799 	return 0;
800 }
801 EXPORT_SYMBOL_GPL(dm_get_table_device);
802 
803 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
804 {
805 	struct table_device *td = container_of(d, struct table_device, dm_dev);
806 
807 	mutex_lock(&md->table_devices_lock);
808 	if (refcount_dec_and_test(&td->count)) {
809 		close_table_device(td, md);
810 		list_del(&td->list);
811 		kfree(td);
812 	}
813 	mutex_unlock(&md->table_devices_lock);
814 }
815 EXPORT_SYMBOL(dm_put_table_device);
816 
817 static void free_table_devices(struct list_head *devices)
818 {
819 	struct list_head *tmp, *next;
820 
821 	list_for_each_safe(tmp, next, devices) {
822 		struct table_device *td = list_entry(tmp, struct table_device, list);
823 
824 		DMWARN("dm_destroy: %s still exists with %d references",
825 		       td->dm_dev.name, refcount_read(&td->count));
826 		kfree(td);
827 	}
828 }
829 
830 /*
831  * Get the geometry associated with a dm device
832  */
833 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
834 {
835 	*geo = md->geometry;
836 
837 	return 0;
838 }
839 
840 /*
841  * Set the geometry of a device.
842  */
843 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
844 {
845 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
846 
847 	if (geo->start > sz) {
848 		DMWARN("Start sector is beyond the geometry limits.");
849 		return -EINVAL;
850 	}
851 
852 	md->geometry = *geo;
853 
854 	return 0;
855 }
856 
857 static int __noflush_suspending(struct mapped_device *md)
858 {
859 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
860 }
861 
862 /*
863  * Decrements the number of outstanding ios that a bio has been
864  * cloned into, completing the original io if necc.
865  */
866 static void dec_pending(struct dm_io *io, blk_status_t error)
867 {
868 	unsigned long flags;
869 	blk_status_t io_error;
870 	struct bio *bio;
871 	struct mapped_device *md = io->md;
872 
873 	/* Push-back supersedes any I/O errors */
874 	if (unlikely(error)) {
875 		spin_lock_irqsave(&io->endio_lock, flags);
876 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
877 			io->status = error;
878 		spin_unlock_irqrestore(&io->endio_lock, flags);
879 	}
880 
881 	if (atomic_dec_and_test(&io->io_count)) {
882 		if (io->status == BLK_STS_DM_REQUEUE) {
883 			/*
884 			 * Target requested pushing back the I/O.
885 			 */
886 			spin_lock_irqsave(&md->deferred_lock, flags);
887 			if (__noflush_suspending(md))
888 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
889 				bio_list_add_head(&md->deferred, io->orig_bio);
890 			else
891 				/* noflush suspend was interrupted. */
892 				io->status = BLK_STS_IOERR;
893 			spin_unlock_irqrestore(&md->deferred_lock, flags);
894 		}
895 
896 		io_error = io->status;
897 		bio = io->orig_bio;
898 		end_io_acct(io);
899 		free_io(md, io);
900 
901 		if (io_error == BLK_STS_DM_REQUEUE)
902 			return;
903 
904 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
905 			/*
906 			 * Preflush done for flush with data, reissue
907 			 * without REQ_PREFLUSH.
908 			 */
909 			bio->bi_opf &= ~REQ_PREFLUSH;
910 			queue_io(md, bio);
911 		} else {
912 			/* done with normal IO or empty flush */
913 			if (io_error)
914 				bio->bi_status = io_error;
915 			bio_endio(bio);
916 		}
917 	}
918 }
919 
920 void disable_write_same(struct mapped_device *md)
921 {
922 	struct queue_limits *limits = dm_get_queue_limits(md);
923 
924 	/* device doesn't really support WRITE SAME, disable it */
925 	limits->max_write_same_sectors = 0;
926 }
927 
928 void disable_write_zeroes(struct mapped_device *md)
929 {
930 	struct queue_limits *limits = dm_get_queue_limits(md);
931 
932 	/* device doesn't really support WRITE ZEROES, disable it */
933 	limits->max_write_zeroes_sectors = 0;
934 }
935 
936 static void clone_endio(struct bio *bio)
937 {
938 	blk_status_t error = bio->bi_status;
939 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
940 	struct dm_io *io = tio->io;
941 	struct mapped_device *md = tio->io->md;
942 	dm_endio_fn endio = tio->ti->type->end_io;
943 
944 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
945 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
946 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
947 			disable_write_same(md);
948 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
949 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
950 			disable_write_zeroes(md);
951 	}
952 
953 	if (endio) {
954 		int r = endio(tio->ti, bio, &error);
955 		switch (r) {
956 		case DM_ENDIO_REQUEUE:
957 			error = BLK_STS_DM_REQUEUE;
958 			/*FALLTHRU*/
959 		case DM_ENDIO_DONE:
960 			break;
961 		case DM_ENDIO_INCOMPLETE:
962 			/* The target will handle the io */
963 			return;
964 		default:
965 			DMWARN("unimplemented target endio return value: %d", r);
966 			BUG();
967 		}
968 	}
969 
970 	free_tio(tio);
971 	dec_pending(io, error);
972 }
973 
974 /*
975  * Return maximum size of I/O possible at the supplied sector up to the current
976  * target boundary.
977  */
978 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
979 {
980 	sector_t target_offset = dm_target_offset(ti, sector);
981 
982 	return ti->len - target_offset;
983 }
984 
985 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
986 {
987 	sector_t len = max_io_len_target_boundary(sector, ti);
988 	sector_t offset, max_len;
989 
990 	/*
991 	 * Does the target need to split even further?
992 	 */
993 	if (ti->max_io_len) {
994 		offset = dm_target_offset(ti, sector);
995 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
996 			max_len = sector_div(offset, ti->max_io_len);
997 		else
998 			max_len = offset & (ti->max_io_len - 1);
999 		max_len = ti->max_io_len - max_len;
1000 
1001 		if (len > max_len)
1002 			len = max_len;
1003 	}
1004 
1005 	return len;
1006 }
1007 
1008 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1009 {
1010 	if (len > UINT_MAX) {
1011 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1012 		      (unsigned long long)len, UINT_MAX);
1013 		ti->error = "Maximum size of target IO is too large";
1014 		return -EINVAL;
1015 	}
1016 
1017 	/*
1018 	 * BIO based queue uses its own splitting. When multipage bvecs
1019 	 * is switched on, size of the incoming bio may be too big to
1020 	 * be handled in some targets, such as crypt.
1021 	 *
1022 	 * When these targets are ready for the big bio, we can remove
1023 	 * the limit.
1024 	 */
1025 	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1026 
1027 	return 0;
1028 }
1029 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1030 
1031 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1032 		sector_t sector, int *srcu_idx)
1033 {
1034 	struct dm_table *map;
1035 	struct dm_target *ti;
1036 
1037 	map = dm_get_live_table(md, srcu_idx);
1038 	if (!map)
1039 		return NULL;
1040 
1041 	ti = dm_table_find_target(map, sector);
1042 	if (!dm_target_is_valid(ti))
1043 		return NULL;
1044 
1045 	return ti;
1046 }
1047 
1048 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1049 		long nr_pages, void **kaddr, pfn_t *pfn)
1050 {
1051 	struct mapped_device *md = dax_get_private(dax_dev);
1052 	sector_t sector = pgoff * PAGE_SECTORS;
1053 	struct dm_target *ti;
1054 	long len, ret = -EIO;
1055 	int srcu_idx;
1056 
1057 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1058 
1059 	if (!ti)
1060 		goto out;
1061 	if (!ti->type->direct_access)
1062 		goto out;
1063 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1064 	if (len < 1)
1065 		goto out;
1066 	nr_pages = min(len, nr_pages);
1067 	if (ti->type->direct_access)
1068 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1069 
1070  out:
1071 	dm_put_live_table(md, srcu_idx);
1072 
1073 	return ret;
1074 }
1075 
1076 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1077 		void *addr, size_t bytes, struct iov_iter *i)
1078 {
1079 	struct mapped_device *md = dax_get_private(dax_dev);
1080 	sector_t sector = pgoff * PAGE_SECTORS;
1081 	struct dm_target *ti;
1082 	long ret = 0;
1083 	int srcu_idx;
1084 
1085 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1086 
1087 	if (!ti)
1088 		goto out;
1089 	if (!ti->type->dax_copy_from_iter) {
1090 		ret = copy_from_iter(addr, bytes, i);
1091 		goto out;
1092 	}
1093 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1094  out:
1095 	dm_put_live_table(md, srcu_idx);
1096 
1097 	return ret;
1098 }
1099 
1100 /*
1101  * A target may call dm_accept_partial_bio only from the map routine.  It is
1102  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1103  *
1104  * dm_accept_partial_bio informs the dm that the target only wants to process
1105  * additional n_sectors sectors of the bio and the rest of the data should be
1106  * sent in a next bio.
1107  *
1108  * A diagram that explains the arithmetics:
1109  * +--------------------+---------------+-------+
1110  * |         1          |       2       |   3   |
1111  * +--------------------+---------------+-------+
1112  *
1113  * <-------------- *tio->len_ptr --------------->
1114  *                      <------- bi_size ------->
1115  *                      <-- n_sectors -->
1116  *
1117  * Region 1 was already iterated over with bio_advance or similar function.
1118  *	(it may be empty if the target doesn't use bio_advance)
1119  * Region 2 is the remaining bio size that the target wants to process.
1120  *	(it may be empty if region 1 is non-empty, although there is no reason
1121  *	 to make it empty)
1122  * The target requires that region 3 is to be sent in the next bio.
1123  *
1124  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1125  * the partially processed part (the sum of regions 1+2) must be the same for all
1126  * copies of the bio.
1127  */
1128 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1129 {
1130 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1131 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1132 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1133 	BUG_ON(bi_size > *tio->len_ptr);
1134 	BUG_ON(n_sectors > bi_size);
1135 	*tio->len_ptr -= bi_size - n_sectors;
1136 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1137 }
1138 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1139 
1140 /*
1141  * The zone descriptors obtained with a zone report indicate
1142  * zone positions within the target device. The zone descriptors
1143  * must be remapped to match their position within the dm device.
1144  * A target may call dm_remap_zone_report after completion of a
1145  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1146  * from the target device mapping to the dm device.
1147  */
1148 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1149 {
1150 #ifdef CONFIG_BLK_DEV_ZONED
1151 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1152 	struct bio *report_bio = tio->io->orig_bio;
1153 	struct blk_zone_report_hdr *hdr = NULL;
1154 	struct blk_zone *zone;
1155 	unsigned int nr_rep = 0;
1156 	unsigned int ofst;
1157 	struct bio_vec bvec;
1158 	struct bvec_iter iter;
1159 	void *addr;
1160 
1161 	if (bio->bi_status)
1162 		return;
1163 
1164 	/*
1165 	 * Remap the start sector of the reported zones. For sequential zones,
1166 	 * also remap the write pointer position.
1167 	 */
1168 	bio_for_each_segment(bvec, report_bio, iter) {
1169 		addr = kmap_atomic(bvec.bv_page);
1170 
1171 		/* Remember the report header in the first page */
1172 		if (!hdr) {
1173 			hdr = addr;
1174 			ofst = sizeof(struct blk_zone_report_hdr);
1175 		} else
1176 			ofst = 0;
1177 
1178 		/* Set zones start sector */
1179 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1180 			zone = addr + ofst;
1181 			if (zone->start >= start + ti->len) {
1182 				hdr->nr_zones = 0;
1183 				break;
1184 			}
1185 			zone->start = zone->start + ti->begin - start;
1186 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1187 				if (zone->cond == BLK_ZONE_COND_FULL)
1188 					zone->wp = zone->start + zone->len;
1189 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1190 					zone->wp = zone->start;
1191 				else
1192 					zone->wp = zone->wp + ti->begin - start;
1193 			}
1194 			ofst += sizeof(struct blk_zone);
1195 			hdr->nr_zones--;
1196 			nr_rep++;
1197 		}
1198 
1199 		if (addr != hdr)
1200 			kunmap_atomic(addr);
1201 
1202 		if (!hdr->nr_zones)
1203 			break;
1204 	}
1205 
1206 	if (hdr) {
1207 		hdr->nr_zones = nr_rep;
1208 		kunmap_atomic(hdr);
1209 	}
1210 
1211 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1212 
1213 #else /* !CONFIG_BLK_DEV_ZONED */
1214 	bio->bi_status = BLK_STS_NOTSUPP;
1215 #endif
1216 }
1217 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1218 
1219 static blk_qc_t __map_bio(struct dm_target_io *tio)
1220 {
1221 	int r;
1222 	sector_t sector;
1223 	struct bio *clone = &tio->clone;
1224 	struct dm_io *io = tio->io;
1225 	struct mapped_device *md = io->md;
1226 	struct dm_target *ti = tio->ti;
1227 	blk_qc_t ret = BLK_QC_T_NONE;
1228 
1229 	clone->bi_end_io = clone_endio;
1230 
1231 	/*
1232 	 * Map the clone.  If r == 0 we don't need to do
1233 	 * anything, the target has assumed ownership of
1234 	 * this io.
1235 	 */
1236 	atomic_inc(&io->io_count);
1237 	sector = clone->bi_iter.bi_sector;
1238 
1239 	r = ti->type->map(ti, clone);
1240 	switch (r) {
1241 	case DM_MAPIO_SUBMITTED:
1242 		break;
1243 	case DM_MAPIO_REMAPPED:
1244 		/* the bio has been remapped so dispatch it */
1245 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1246 				      bio_dev(io->orig_bio), sector);
1247 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1248 			ret = direct_make_request(clone);
1249 		else
1250 			ret = generic_make_request(clone);
1251 		break;
1252 	case DM_MAPIO_KILL:
1253 		free_tio(tio);
1254 		dec_pending(io, BLK_STS_IOERR);
1255 		break;
1256 	case DM_MAPIO_REQUEUE:
1257 		free_tio(tio);
1258 		dec_pending(io, BLK_STS_DM_REQUEUE);
1259 		break;
1260 	default:
1261 		DMWARN("unimplemented target map return value: %d", r);
1262 		BUG();
1263 	}
1264 
1265 	return ret;
1266 }
1267 
1268 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1269 {
1270 	bio->bi_iter.bi_sector = sector;
1271 	bio->bi_iter.bi_size = to_bytes(len);
1272 }
1273 
1274 /*
1275  * Creates a bio that consists of range of complete bvecs.
1276  */
1277 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1278 		     sector_t sector, unsigned len)
1279 {
1280 	struct bio *clone = &tio->clone;
1281 
1282 	__bio_clone_fast(clone, bio);
1283 
1284 	if (unlikely(bio_integrity(bio) != NULL)) {
1285 		int r;
1286 
1287 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1288 			     !dm_target_passes_integrity(tio->ti->type))) {
1289 			DMWARN("%s: the target %s doesn't support integrity data.",
1290 				dm_device_name(tio->io->md),
1291 				tio->ti->type->name);
1292 			return -EIO;
1293 		}
1294 
1295 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1296 		if (r < 0)
1297 			return r;
1298 	}
1299 
1300 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1301 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1302 	clone->bi_iter.bi_size = to_bytes(len);
1303 
1304 	if (unlikely(bio_integrity(bio) != NULL))
1305 		bio_integrity_trim(clone);
1306 
1307 	return 0;
1308 }
1309 
1310 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1311 				struct dm_target *ti, unsigned num_bios)
1312 {
1313 	struct dm_target_io *tio;
1314 	int try;
1315 
1316 	if (!num_bios)
1317 		return;
1318 
1319 	if (num_bios == 1) {
1320 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1321 		bio_list_add(blist, &tio->clone);
1322 		return;
1323 	}
1324 
1325 	for (try = 0; try < 2; try++) {
1326 		int bio_nr;
1327 		struct bio *bio;
1328 
1329 		if (try)
1330 			mutex_lock(&ci->io->md->table_devices_lock);
1331 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1332 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1333 			if (!tio)
1334 				break;
1335 
1336 			bio_list_add(blist, &tio->clone);
1337 		}
1338 		if (try)
1339 			mutex_unlock(&ci->io->md->table_devices_lock);
1340 		if (bio_nr == num_bios)
1341 			return;
1342 
1343 		while ((bio = bio_list_pop(blist))) {
1344 			tio = container_of(bio, struct dm_target_io, clone);
1345 			free_tio(tio);
1346 		}
1347 	}
1348 }
1349 
1350 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1351 					   struct dm_target_io *tio, unsigned *len)
1352 {
1353 	struct bio *clone = &tio->clone;
1354 
1355 	tio->len_ptr = len;
1356 
1357 	__bio_clone_fast(clone, ci->bio);
1358 	if (len)
1359 		bio_setup_sector(clone, ci->sector, *len);
1360 
1361 	return __map_bio(tio);
1362 }
1363 
1364 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1365 				  unsigned num_bios, unsigned *len)
1366 {
1367 	struct bio_list blist = BIO_EMPTY_LIST;
1368 	struct bio *bio;
1369 	struct dm_target_io *tio;
1370 
1371 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1372 
1373 	while ((bio = bio_list_pop(&blist))) {
1374 		tio = container_of(bio, struct dm_target_io, clone);
1375 		(void) __clone_and_map_simple_bio(ci, tio, len);
1376 	}
1377 }
1378 
1379 static int __send_empty_flush(struct clone_info *ci)
1380 {
1381 	unsigned target_nr = 0;
1382 	struct dm_target *ti;
1383 
1384 	BUG_ON(bio_has_data(ci->bio));
1385 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1386 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1387 
1388 	return 0;
1389 }
1390 
1391 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1392 				    sector_t sector, unsigned *len)
1393 {
1394 	struct bio *bio = ci->bio;
1395 	struct dm_target_io *tio;
1396 	int r;
1397 
1398 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1399 	tio->len_ptr = len;
1400 	r = clone_bio(tio, bio, sector, *len);
1401 	if (r < 0) {
1402 		free_tio(tio);
1403 		return r;
1404 	}
1405 	(void) __map_bio(tio);
1406 
1407 	return 0;
1408 }
1409 
1410 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1411 
1412 static unsigned get_num_discard_bios(struct dm_target *ti)
1413 {
1414 	return ti->num_discard_bios;
1415 }
1416 
1417 static unsigned get_num_write_same_bios(struct dm_target *ti)
1418 {
1419 	return ti->num_write_same_bios;
1420 }
1421 
1422 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1423 {
1424 	return ti->num_write_zeroes_bios;
1425 }
1426 
1427 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1428 
1429 static bool is_split_required_for_discard(struct dm_target *ti)
1430 {
1431 	return ti->split_discard_bios;
1432 }
1433 
1434 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1435 				       get_num_bios_fn get_num_bios,
1436 				       is_split_required_fn is_split_required)
1437 {
1438 	unsigned len;
1439 	unsigned num_bios;
1440 
1441 	/*
1442 	 * Even though the device advertised support for this type of
1443 	 * request, that does not mean every target supports it, and
1444 	 * reconfiguration might also have changed that since the
1445 	 * check was performed.
1446 	 */
1447 	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1448 	if (!num_bios)
1449 		return -EOPNOTSUPP;
1450 
1451 	if (is_split_required && !is_split_required(ti))
1452 		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1453 	else
1454 		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1455 
1456 	__send_duplicate_bios(ci, ti, num_bios, &len);
1457 
1458 	ci->sector += len;
1459 	ci->sector_count -= len;
1460 
1461 	return 0;
1462 }
1463 
1464 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1465 {
1466 	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1467 					   is_split_required_for_discard);
1468 }
1469 
1470 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1471 {
1472 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1473 }
1474 
1475 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1476 {
1477 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1478 }
1479 
1480 /*
1481  * Select the correct strategy for processing a non-flush bio.
1482  */
1483 static int __split_and_process_non_flush(struct clone_info *ci)
1484 {
1485 	struct bio *bio = ci->bio;
1486 	struct dm_target *ti;
1487 	unsigned len;
1488 	int r;
1489 
1490 	ti = dm_table_find_target(ci->map, ci->sector);
1491 	if (!dm_target_is_valid(ti))
1492 		return -EIO;
1493 
1494 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1495 		return __send_discard(ci, ti);
1496 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1497 		return __send_write_same(ci, ti);
1498 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1499 		return __send_write_zeroes(ci, ti);
1500 
1501 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1502 		len = ci->sector_count;
1503 	else
1504 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1505 			    ci->sector_count);
1506 
1507 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1508 	if (r < 0)
1509 		return r;
1510 
1511 	ci->sector += len;
1512 	ci->sector_count -= len;
1513 
1514 	return 0;
1515 }
1516 
1517 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1518 			    struct dm_table *map, struct bio *bio)
1519 {
1520 	ci->map = map;
1521 	ci->io = alloc_io(md, bio);
1522 	ci->sector = bio->bi_iter.bi_sector;
1523 }
1524 
1525 /*
1526  * Entry point to split a bio into clones and submit them to the targets.
1527  */
1528 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1529 					struct dm_table *map, struct bio *bio)
1530 {
1531 	struct clone_info ci;
1532 	blk_qc_t ret = BLK_QC_T_NONE;
1533 	int error = 0;
1534 
1535 	if (unlikely(!map)) {
1536 		bio_io_error(bio);
1537 		return ret;
1538 	}
1539 
1540 	init_clone_info(&ci, md, map, bio);
1541 
1542 	if (bio->bi_opf & REQ_PREFLUSH) {
1543 		ci.bio = &ci.io->md->flush_bio;
1544 		ci.sector_count = 0;
1545 		error = __send_empty_flush(&ci);
1546 		/* dec_pending submits any data associated with flush */
1547 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1548 		ci.bio = bio;
1549 		ci.sector_count = 0;
1550 		error = __split_and_process_non_flush(&ci);
1551 	} else {
1552 		ci.bio = bio;
1553 		ci.sector_count = bio_sectors(bio);
1554 		while (ci.sector_count && !error) {
1555 			error = __split_and_process_non_flush(&ci);
1556 			if (current->bio_list && ci.sector_count && !error) {
1557 				/*
1558 				 * Remainder must be passed to generic_make_request()
1559 				 * so that it gets handled *after* bios already submitted
1560 				 * have been completely processed.
1561 				 * We take a clone of the original to store in
1562 				 * ci.io->orig_bio to be used by end_io_acct() and
1563 				 * for dec_pending to use for completion handling.
1564 				 * As this path is not used for REQ_OP_ZONE_REPORT,
1565 				 * the usage of io->orig_bio in dm_remap_zone_report()
1566 				 * won't be affected by this reassignment.
1567 				 */
1568 				struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1569 								 md->queue->bio_split);
1570 				ci.io->orig_bio = b;
1571 				bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1572 				bio_chain(b, bio);
1573 				ret = generic_make_request(bio);
1574 				break;
1575 			}
1576 		}
1577 	}
1578 
1579 	/* drop the extra reference count */
1580 	dec_pending(ci.io, errno_to_blk_status(error));
1581 	return ret;
1582 }
1583 
1584 /*
1585  * Optimized variant of __split_and_process_bio that leverages the
1586  * fact that targets that use it do _not_ have a need to split bios.
1587  */
1588 static blk_qc_t __process_bio(struct mapped_device *md,
1589 			      struct dm_table *map, struct bio *bio)
1590 {
1591 	struct clone_info ci;
1592 	blk_qc_t ret = BLK_QC_T_NONE;
1593 	int error = 0;
1594 
1595 	if (unlikely(!map)) {
1596 		bio_io_error(bio);
1597 		return ret;
1598 	}
1599 
1600 	init_clone_info(&ci, md, map, bio);
1601 
1602 	if (bio->bi_opf & REQ_PREFLUSH) {
1603 		ci.bio = &ci.io->md->flush_bio;
1604 		ci.sector_count = 0;
1605 		error = __send_empty_flush(&ci);
1606 		/* dec_pending submits any data associated with flush */
1607 	} else {
1608 		struct dm_target *ti = md->immutable_target;
1609 		struct dm_target_io *tio;
1610 
1611 		/*
1612 		 * Defend against IO still getting in during teardown
1613 		 * - as was seen for a time with nvme-fcloop
1614 		 */
1615 		if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1616 			error = -EIO;
1617 			goto out;
1618 		}
1619 
1620 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1621 		ci.bio = bio;
1622 		ci.sector_count = bio_sectors(bio);
1623 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1624 	}
1625 out:
1626 	/* drop the extra reference count */
1627 	dec_pending(ci.io, errno_to_blk_status(error));
1628 	return ret;
1629 }
1630 
1631 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1632 
1633 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1634 				  process_bio_fn process_bio)
1635 {
1636 	struct mapped_device *md = q->queuedata;
1637 	blk_qc_t ret = BLK_QC_T_NONE;
1638 	int srcu_idx;
1639 	struct dm_table *map;
1640 
1641 	map = dm_get_live_table(md, &srcu_idx);
1642 
1643 	/* if we're suspended, we have to queue this io for later */
1644 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1645 		dm_put_live_table(md, srcu_idx);
1646 
1647 		if (!(bio->bi_opf & REQ_RAHEAD))
1648 			queue_io(md, bio);
1649 		else
1650 			bio_io_error(bio);
1651 		return ret;
1652 	}
1653 
1654 	ret = process_bio(md, map, bio);
1655 
1656 	dm_put_live_table(md, srcu_idx);
1657 	return ret;
1658 }
1659 
1660 /*
1661  * The request function that remaps the bio to one target and
1662  * splits off any remainder.
1663  */
1664 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1665 {
1666 	return __dm_make_request(q, bio, __split_and_process_bio);
1667 }
1668 
1669 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1670 {
1671 	return __dm_make_request(q, bio, __process_bio);
1672 }
1673 
1674 static int dm_any_congested(void *congested_data, int bdi_bits)
1675 {
1676 	int r = bdi_bits;
1677 	struct mapped_device *md = congested_data;
1678 	struct dm_table *map;
1679 
1680 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1681 		if (dm_request_based(md)) {
1682 			/*
1683 			 * With request-based DM we only need to check the
1684 			 * top-level queue for congestion.
1685 			 */
1686 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1687 		} else {
1688 			map = dm_get_live_table_fast(md);
1689 			if (map)
1690 				r = dm_table_any_congested(map, bdi_bits);
1691 			dm_put_live_table_fast(md);
1692 		}
1693 	}
1694 
1695 	return r;
1696 }
1697 
1698 /*-----------------------------------------------------------------
1699  * An IDR is used to keep track of allocated minor numbers.
1700  *---------------------------------------------------------------*/
1701 static void free_minor(int minor)
1702 {
1703 	spin_lock(&_minor_lock);
1704 	idr_remove(&_minor_idr, minor);
1705 	spin_unlock(&_minor_lock);
1706 }
1707 
1708 /*
1709  * See if the device with a specific minor # is free.
1710  */
1711 static int specific_minor(int minor)
1712 {
1713 	int r;
1714 
1715 	if (minor >= (1 << MINORBITS))
1716 		return -EINVAL;
1717 
1718 	idr_preload(GFP_KERNEL);
1719 	spin_lock(&_minor_lock);
1720 
1721 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1722 
1723 	spin_unlock(&_minor_lock);
1724 	idr_preload_end();
1725 	if (r < 0)
1726 		return r == -ENOSPC ? -EBUSY : r;
1727 	return 0;
1728 }
1729 
1730 static int next_free_minor(int *minor)
1731 {
1732 	int r;
1733 
1734 	idr_preload(GFP_KERNEL);
1735 	spin_lock(&_minor_lock);
1736 
1737 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1738 
1739 	spin_unlock(&_minor_lock);
1740 	idr_preload_end();
1741 	if (r < 0)
1742 		return r;
1743 	*minor = r;
1744 	return 0;
1745 }
1746 
1747 static const struct block_device_operations dm_blk_dops;
1748 static const struct dax_operations dm_dax_ops;
1749 
1750 static void dm_wq_work(struct work_struct *work);
1751 
1752 static void dm_init_normal_md_queue(struct mapped_device *md)
1753 {
1754 	md->use_blk_mq = false;
1755 
1756 	/*
1757 	 * Initialize aspects of queue that aren't relevant for blk-mq
1758 	 */
1759 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1760 }
1761 
1762 static void cleanup_mapped_device(struct mapped_device *md)
1763 {
1764 	if (md->wq)
1765 		destroy_workqueue(md->wq);
1766 	if (md->kworker_task)
1767 		kthread_stop(md->kworker_task);
1768 	if (md->bs)
1769 		bioset_free(md->bs);
1770 	if (md->io_bs)
1771 		bioset_free(md->io_bs);
1772 
1773 	if (md->dax_dev) {
1774 		kill_dax(md->dax_dev);
1775 		put_dax(md->dax_dev);
1776 		md->dax_dev = NULL;
1777 	}
1778 
1779 	if (md->disk) {
1780 		spin_lock(&_minor_lock);
1781 		md->disk->private_data = NULL;
1782 		spin_unlock(&_minor_lock);
1783 		del_gendisk(md->disk);
1784 		put_disk(md->disk);
1785 	}
1786 
1787 	if (md->queue)
1788 		blk_cleanup_queue(md->queue);
1789 
1790 	cleanup_srcu_struct(&md->io_barrier);
1791 
1792 	if (md->bdev) {
1793 		bdput(md->bdev);
1794 		md->bdev = NULL;
1795 	}
1796 
1797 	mutex_destroy(&md->suspend_lock);
1798 	mutex_destroy(&md->type_lock);
1799 	mutex_destroy(&md->table_devices_lock);
1800 
1801 	dm_mq_cleanup_mapped_device(md);
1802 }
1803 
1804 /*
1805  * Allocate and initialise a blank device with a given minor.
1806  */
1807 static struct mapped_device *alloc_dev(int minor)
1808 {
1809 	int r, numa_node_id = dm_get_numa_node();
1810 	struct dax_device *dax_dev;
1811 	struct mapped_device *md;
1812 	void *old_md;
1813 
1814 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1815 	if (!md) {
1816 		DMWARN("unable to allocate device, out of memory.");
1817 		return NULL;
1818 	}
1819 
1820 	if (!try_module_get(THIS_MODULE))
1821 		goto bad_module_get;
1822 
1823 	/* get a minor number for the dev */
1824 	if (minor == DM_ANY_MINOR)
1825 		r = next_free_minor(&minor);
1826 	else
1827 		r = specific_minor(minor);
1828 	if (r < 0)
1829 		goto bad_minor;
1830 
1831 	r = init_srcu_struct(&md->io_barrier);
1832 	if (r < 0)
1833 		goto bad_io_barrier;
1834 
1835 	md->numa_node_id = numa_node_id;
1836 	md->use_blk_mq = dm_use_blk_mq_default();
1837 	md->init_tio_pdu = false;
1838 	md->type = DM_TYPE_NONE;
1839 	mutex_init(&md->suspend_lock);
1840 	mutex_init(&md->type_lock);
1841 	mutex_init(&md->table_devices_lock);
1842 	spin_lock_init(&md->deferred_lock);
1843 	atomic_set(&md->holders, 1);
1844 	atomic_set(&md->open_count, 0);
1845 	atomic_set(&md->event_nr, 0);
1846 	atomic_set(&md->uevent_seq, 0);
1847 	INIT_LIST_HEAD(&md->uevent_list);
1848 	INIT_LIST_HEAD(&md->table_devices);
1849 	spin_lock_init(&md->uevent_lock);
1850 
1851 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1852 	if (!md->queue)
1853 		goto bad;
1854 	md->queue->queuedata = md;
1855 	md->queue->backing_dev_info->congested_data = md;
1856 
1857 	md->disk = alloc_disk_node(1, md->numa_node_id);
1858 	if (!md->disk)
1859 		goto bad;
1860 
1861 	atomic_set(&md->pending[0], 0);
1862 	atomic_set(&md->pending[1], 0);
1863 	init_waitqueue_head(&md->wait);
1864 	INIT_WORK(&md->work, dm_wq_work);
1865 	init_waitqueue_head(&md->eventq);
1866 	init_completion(&md->kobj_holder.completion);
1867 	md->kworker_task = NULL;
1868 
1869 	md->disk->major = _major;
1870 	md->disk->first_minor = minor;
1871 	md->disk->fops = &dm_blk_dops;
1872 	md->disk->queue = md->queue;
1873 	md->disk->private_data = md;
1874 	sprintf(md->disk->disk_name, "dm-%d", minor);
1875 
1876 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1877 	if (!dax_dev)
1878 		goto bad;
1879 	md->dax_dev = dax_dev;
1880 
1881 	add_disk_no_queue_reg(md->disk);
1882 	format_dev_t(md->name, MKDEV(_major, minor));
1883 
1884 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1885 	if (!md->wq)
1886 		goto bad;
1887 
1888 	md->bdev = bdget_disk(md->disk, 0);
1889 	if (!md->bdev)
1890 		goto bad;
1891 
1892 	bio_init(&md->flush_bio, NULL, 0);
1893 	bio_set_dev(&md->flush_bio, md->bdev);
1894 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1895 
1896 	dm_stats_init(&md->stats);
1897 
1898 	/* Populate the mapping, nobody knows we exist yet */
1899 	spin_lock(&_minor_lock);
1900 	old_md = idr_replace(&_minor_idr, md, minor);
1901 	spin_unlock(&_minor_lock);
1902 
1903 	BUG_ON(old_md != MINOR_ALLOCED);
1904 
1905 	return md;
1906 
1907 bad:
1908 	cleanup_mapped_device(md);
1909 bad_io_barrier:
1910 	free_minor(minor);
1911 bad_minor:
1912 	module_put(THIS_MODULE);
1913 bad_module_get:
1914 	kvfree(md);
1915 	return NULL;
1916 }
1917 
1918 static void unlock_fs(struct mapped_device *md);
1919 
1920 static void free_dev(struct mapped_device *md)
1921 {
1922 	int minor = MINOR(disk_devt(md->disk));
1923 
1924 	unlock_fs(md);
1925 
1926 	cleanup_mapped_device(md);
1927 
1928 	free_table_devices(&md->table_devices);
1929 	dm_stats_cleanup(&md->stats);
1930 	free_minor(minor);
1931 
1932 	module_put(THIS_MODULE);
1933 	kvfree(md);
1934 }
1935 
1936 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1937 {
1938 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1939 
1940 	if (dm_table_bio_based(t)) {
1941 		/*
1942 		 * The md may already have mempools that need changing.
1943 		 * If so, reload bioset because front_pad may have changed
1944 		 * because a different table was loaded.
1945 		 */
1946 		if (md->bs) {
1947 			bioset_free(md->bs);
1948 			md->bs = NULL;
1949 		}
1950 		if (md->io_bs) {
1951 			bioset_free(md->io_bs);
1952 			md->io_bs = NULL;
1953 		}
1954 
1955 	} else if (md->bs) {
1956 		/*
1957 		 * There's no need to reload with request-based dm
1958 		 * because the size of front_pad doesn't change.
1959 		 * Note for future: If you are to reload bioset,
1960 		 * prep-ed requests in the queue may refer
1961 		 * to bio from the old bioset, so you must walk
1962 		 * through the queue to unprep.
1963 		 */
1964 		goto out;
1965 	}
1966 
1967 	BUG_ON(!p || md->bs || md->io_bs);
1968 
1969 	md->bs = p->bs;
1970 	p->bs = NULL;
1971 	md->io_bs = p->io_bs;
1972 	p->io_bs = NULL;
1973 out:
1974 	/* mempool bind completed, no longer need any mempools in the table */
1975 	dm_table_free_md_mempools(t);
1976 }
1977 
1978 /*
1979  * Bind a table to the device.
1980  */
1981 static void event_callback(void *context)
1982 {
1983 	unsigned long flags;
1984 	LIST_HEAD(uevents);
1985 	struct mapped_device *md = (struct mapped_device *) context;
1986 
1987 	spin_lock_irqsave(&md->uevent_lock, flags);
1988 	list_splice_init(&md->uevent_list, &uevents);
1989 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1990 
1991 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1992 
1993 	atomic_inc(&md->event_nr);
1994 	wake_up(&md->eventq);
1995 	dm_issue_global_event();
1996 }
1997 
1998 /*
1999  * Protected by md->suspend_lock obtained by dm_swap_table().
2000  */
2001 static void __set_size(struct mapped_device *md, sector_t size)
2002 {
2003 	lockdep_assert_held(&md->suspend_lock);
2004 
2005 	set_capacity(md->disk, size);
2006 
2007 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2008 }
2009 
2010 /*
2011  * Returns old map, which caller must destroy.
2012  */
2013 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2014 			       struct queue_limits *limits)
2015 {
2016 	struct dm_table *old_map;
2017 	struct request_queue *q = md->queue;
2018 	bool request_based = dm_table_request_based(t);
2019 	sector_t size;
2020 
2021 	lockdep_assert_held(&md->suspend_lock);
2022 
2023 	size = dm_table_get_size(t);
2024 
2025 	/*
2026 	 * Wipe any geometry if the size of the table changed.
2027 	 */
2028 	if (size != dm_get_size(md))
2029 		memset(&md->geometry, 0, sizeof(md->geometry));
2030 
2031 	__set_size(md, size);
2032 
2033 	dm_table_event_callback(t, event_callback, md);
2034 
2035 	/*
2036 	 * The queue hasn't been stopped yet, if the old table type wasn't
2037 	 * for request-based during suspension.  So stop it to prevent
2038 	 * I/O mapping before resume.
2039 	 * This must be done before setting the queue restrictions,
2040 	 * because request-based dm may be run just after the setting.
2041 	 */
2042 	if (request_based)
2043 		dm_stop_queue(q);
2044 
2045 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2046 		/*
2047 		 * Leverage the fact that request-based DM targets and
2048 		 * NVMe bio based targets are immutable singletons
2049 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2050 		 *   and __process_bio.
2051 		 */
2052 		md->immutable_target = dm_table_get_immutable_target(t);
2053 	}
2054 
2055 	__bind_mempools(md, t);
2056 
2057 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2058 	rcu_assign_pointer(md->map, (void *)t);
2059 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2060 
2061 	dm_table_set_restrictions(t, q, limits);
2062 	if (old_map)
2063 		dm_sync_table(md);
2064 
2065 	return old_map;
2066 }
2067 
2068 /*
2069  * Returns unbound table for the caller to free.
2070  */
2071 static struct dm_table *__unbind(struct mapped_device *md)
2072 {
2073 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2074 
2075 	if (!map)
2076 		return NULL;
2077 
2078 	dm_table_event_callback(map, NULL, NULL);
2079 	RCU_INIT_POINTER(md->map, NULL);
2080 	dm_sync_table(md);
2081 
2082 	return map;
2083 }
2084 
2085 /*
2086  * Constructor for a new device.
2087  */
2088 int dm_create(int minor, struct mapped_device **result)
2089 {
2090 	int r;
2091 	struct mapped_device *md;
2092 
2093 	md = alloc_dev(minor);
2094 	if (!md)
2095 		return -ENXIO;
2096 
2097 	r = dm_sysfs_init(md);
2098 	if (r) {
2099 		free_dev(md);
2100 		return r;
2101 	}
2102 
2103 	*result = md;
2104 	return 0;
2105 }
2106 
2107 /*
2108  * Functions to manage md->type.
2109  * All are required to hold md->type_lock.
2110  */
2111 void dm_lock_md_type(struct mapped_device *md)
2112 {
2113 	mutex_lock(&md->type_lock);
2114 }
2115 
2116 void dm_unlock_md_type(struct mapped_device *md)
2117 {
2118 	mutex_unlock(&md->type_lock);
2119 }
2120 
2121 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2122 {
2123 	BUG_ON(!mutex_is_locked(&md->type_lock));
2124 	md->type = type;
2125 }
2126 
2127 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2128 {
2129 	return md->type;
2130 }
2131 
2132 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2133 {
2134 	return md->immutable_target_type;
2135 }
2136 
2137 /*
2138  * The queue_limits are only valid as long as you have a reference
2139  * count on 'md'.
2140  */
2141 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2142 {
2143 	BUG_ON(!atomic_read(&md->holders));
2144 	return &md->queue->limits;
2145 }
2146 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2147 
2148 /*
2149  * Setup the DM device's queue based on md's type
2150  */
2151 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2152 {
2153 	int r;
2154 	struct queue_limits limits;
2155 	enum dm_queue_mode type = dm_get_md_type(md);
2156 
2157 	switch (type) {
2158 	case DM_TYPE_REQUEST_BASED:
2159 		dm_init_normal_md_queue(md);
2160 		r = dm_old_init_request_queue(md, t);
2161 		if (r) {
2162 			DMERR("Cannot initialize queue for request-based mapped device");
2163 			return r;
2164 		}
2165 		break;
2166 	case DM_TYPE_MQ_REQUEST_BASED:
2167 		r = dm_mq_init_request_queue(md, t);
2168 		if (r) {
2169 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2170 			return r;
2171 		}
2172 		break;
2173 	case DM_TYPE_BIO_BASED:
2174 	case DM_TYPE_DAX_BIO_BASED:
2175 		dm_init_normal_md_queue(md);
2176 		blk_queue_make_request(md->queue, dm_make_request);
2177 		break;
2178 	case DM_TYPE_NVME_BIO_BASED:
2179 		dm_init_normal_md_queue(md);
2180 		blk_queue_make_request(md->queue, dm_make_request_nvme);
2181 		break;
2182 	case DM_TYPE_NONE:
2183 		WARN_ON_ONCE(true);
2184 		break;
2185 	}
2186 
2187 	r = dm_calculate_queue_limits(t, &limits);
2188 	if (r) {
2189 		DMERR("Cannot calculate initial queue limits");
2190 		return r;
2191 	}
2192 	dm_table_set_restrictions(t, md->queue, &limits);
2193 	blk_register_queue(md->disk);
2194 
2195 	return 0;
2196 }
2197 
2198 struct mapped_device *dm_get_md(dev_t dev)
2199 {
2200 	struct mapped_device *md;
2201 	unsigned minor = MINOR(dev);
2202 
2203 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2204 		return NULL;
2205 
2206 	spin_lock(&_minor_lock);
2207 
2208 	md = idr_find(&_minor_idr, minor);
2209 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2210 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2211 		md = NULL;
2212 		goto out;
2213 	}
2214 	dm_get(md);
2215 out:
2216 	spin_unlock(&_minor_lock);
2217 
2218 	return md;
2219 }
2220 EXPORT_SYMBOL_GPL(dm_get_md);
2221 
2222 void *dm_get_mdptr(struct mapped_device *md)
2223 {
2224 	return md->interface_ptr;
2225 }
2226 
2227 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2228 {
2229 	md->interface_ptr = ptr;
2230 }
2231 
2232 void dm_get(struct mapped_device *md)
2233 {
2234 	atomic_inc(&md->holders);
2235 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2236 }
2237 
2238 int dm_hold(struct mapped_device *md)
2239 {
2240 	spin_lock(&_minor_lock);
2241 	if (test_bit(DMF_FREEING, &md->flags)) {
2242 		spin_unlock(&_minor_lock);
2243 		return -EBUSY;
2244 	}
2245 	dm_get(md);
2246 	spin_unlock(&_minor_lock);
2247 	return 0;
2248 }
2249 EXPORT_SYMBOL_GPL(dm_hold);
2250 
2251 const char *dm_device_name(struct mapped_device *md)
2252 {
2253 	return md->name;
2254 }
2255 EXPORT_SYMBOL_GPL(dm_device_name);
2256 
2257 static void __dm_destroy(struct mapped_device *md, bool wait)
2258 {
2259 	struct dm_table *map;
2260 	int srcu_idx;
2261 
2262 	might_sleep();
2263 
2264 	spin_lock(&_minor_lock);
2265 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2266 	set_bit(DMF_FREEING, &md->flags);
2267 	spin_unlock(&_minor_lock);
2268 
2269 	blk_set_queue_dying(md->queue);
2270 
2271 	if (dm_request_based(md) && md->kworker_task)
2272 		kthread_flush_worker(&md->kworker);
2273 
2274 	/*
2275 	 * Take suspend_lock so that presuspend and postsuspend methods
2276 	 * do not race with internal suspend.
2277 	 */
2278 	mutex_lock(&md->suspend_lock);
2279 	map = dm_get_live_table(md, &srcu_idx);
2280 	if (!dm_suspended_md(md)) {
2281 		dm_table_presuspend_targets(map);
2282 		dm_table_postsuspend_targets(map);
2283 	}
2284 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2285 	dm_put_live_table(md, srcu_idx);
2286 	mutex_unlock(&md->suspend_lock);
2287 
2288 	/*
2289 	 * Rare, but there may be I/O requests still going to complete,
2290 	 * for example.  Wait for all references to disappear.
2291 	 * No one should increment the reference count of the mapped_device,
2292 	 * after the mapped_device state becomes DMF_FREEING.
2293 	 */
2294 	if (wait)
2295 		while (atomic_read(&md->holders))
2296 			msleep(1);
2297 	else if (atomic_read(&md->holders))
2298 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2299 		       dm_device_name(md), atomic_read(&md->holders));
2300 
2301 	dm_sysfs_exit(md);
2302 	dm_table_destroy(__unbind(md));
2303 	free_dev(md);
2304 }
2305 
2306 void dm_destroy(struct mapped_device *md)
2307 {
2308 	__dm_destroy(md, true);
2309 }
2310 
2311 void dm_destroy_immediate(struct mapped_device *md)
2312 {
2313 	__dm_destroy(md, false);
2314 }
2315 
2316 void dm_put(struct mapped_device *md)
2317 {
2318 	atomic_dec(&md->holders);
2319 }
2320 EXPORT_SYMBOL_GPL(dm_put);
2321 
2322 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2323 {
2324 	int r = 0;
2325 	DEFINE_WAIT(wait);
2326 
2327 	while (1) {
2328 		prepare_to_wait(&md->wait, &wait, task_state);
2329 
2330 		if (!md_in_flight(md))
2331 			break;
2332 
2333 		if (signal_pending_state(task_state, current)) {
2334 			r = -EINTR;
2335 			break;
2336 		}
2337 
2338 		io_schedule();
2339 	}
2340 	finish_wait(&md->wait, &wait);
2341 
2342 	return r;
2343 }
2344 
2345 /*
2346  * Process the deferred bios
2347  */
2348 static void dm_wq_work(struct work_struct *work)
2349 {
2350 	struct mapped_device *md = container_of(work, struct mapped_device,
2351 						work);
2352 	struct bio *c;
2353 	int srcu_idx;
2354 	struct dm_table *map;
2355 
2356 	map = dm_get_live_table(md, &srcu_idx);
2357 
2358 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2359 		spin_lock_irq(&md->deferred_lock);
2360 		c = bio_list_pop(&md->deferred);
2361 		spin_unlock_irq(&md->deferred_lock);
2362 
2363 		if (!c)
2364 			break;
2365 
2366 		if (dm_request_based(md))
2367 			generic_make_request(c);
2368 		else
2369 			__split_and_process_bio(md, map, c);
2370 	}
2371 
2372 	dm_put_live_table(md, srcu_idx);
2373 }
2374 
2375 static void dm_queue_flush(struct mapped_device *md)
2376 {
2377 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2378 	smp_mb__after_atomic();
2379 	queue_work(md->wq, &md->work);
2380 }
2381 
2382 /*
2383  * Swap in a new table, returning the old one for the caller to destroy.
2384  */
2385 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2386 {
2387 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2388 	struct queue_limits limits;
2389 	int r;
2390 
2391 	mutex_lock(&md->suspend_lock);
2392 
2393 	/* device must be suspended */
2394 	if (!dm_suspended_md(md))
2395 		goto out;
2396 
2397 	/*
2398 	 * If the new table has no data devices, retain the existing limits.
2399 	 * This helps multipath with queue_if_no_path if all paths disappear,
2400 	 * then new I/O is queued based on these limits, and then some paths
2401 	 * reappear.
2402 	 */
2403 	if (dm_table_has_no_data_devices(table)) {
2404 		live_map = dm_get_live_table_fast(md);
2405 		if (live_map)
2406 			limits = md->queue->limits;
2407 		dm_put_live_table_fast(md);
2408 	}
2409 
2410 	if (!live_map) {
2411 		r = dm_calculate_queue_limits(table, &limits);
2412 		if (r) {
2413 			map = ERR_PTR(r);
2414 			goto out;
2415 		}
2416 	}
2417 
2418 	map = __bind(md, table, &limits);
2419 	dm_issue_global_event();
2420 
2421 out:
2422 	mutex_unlock(&md->suspend_lock);
2423 	return map;
2424 }
2425 
2426 /*
2427  * Functions to lock and unlock any filesystem running on the
2428  * device.
2429  */
2430 static int lock_fs(struct mapped_device *md)
2431 {
2432 	int r;
2433 
2434 	WARN_ON(md->frozen_sb);
2435 
2436 	md->frozen_sb = freeze_bdev(md->bdev);
2437 	if (IS_ERR(md->frozen_sb)) {
2438 		r = PTR_ERR(md->frozen_sb);
2439 		md->frozen_sb = NULL;
2440 		return r;
2441 	}
2442 
2443 	set_bit(DMF_FROZEN, &md->flags);
2444 
2445 	return 0;
2446 }
2447 
2448 static void unlock_fs(struct mapped_device *md)
2449 {
2450 	if (!test_bit(DMF_FROZEN, &md->flags))
2451 		return;
2452 
2453 	thaw_bdev(md->bdev, md->frozen_sb);
2454 	md->frozen_sb = NULL;
2455 	clear_bit(DMF_FROZEN, &md->flags);
2456 }
2457 
2458 /*
2459  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2460  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2461  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2462  *
2463  * If __dm_suspend returns 0, the device is completely quiescent
2464  * now. There is no request-processing activity. All new requests
2465  * are being added to md->deferred list.
2466  */
2467 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2468 			unsigned suspend_flags, long task_state,
2469 			int dmf_suspended_flag)
2470 {
2471 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2472 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2473 	int r;
2474 
2475 	lockdep_assert_held(&md->suspend_lock);
2476 
2477 	/*
2478 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2479 	 * This flag is cleared before dm_suspend returns.
2480 	 */
2481 	if (noflush)
2482 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2483 	else
2484 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2485 
2486 	/*
2487 	 * This gets reverted if there's an error later and the targets
2488 	 * provide the .presuspend_undo hook.
2489 	 */
2490 	dm_table_presuspend_targets(map);
2491 
2492 	/*
2493 	 * Flush I/O to the device.
2494 	 * Any I/O submitted after lock_fs() may not be flushed.
2495 	 * noflush takes precedence over do_lockfs.
2496 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2497 	 */
2498 	if (!noflush && do_lockfs) {
2499 		r = lock_fs(md);
2500 		if (r) {
2501 			dm_table_presuspend_undo_targets(map);
2502 			return r;
2503 		}
2504 	}
2505 
2506 	/*
2507 	 * Here we must make sure that no processes are submitting requests
2508 	 * to target drivers i.e. no one may be executing
2509 	 * __split_and_process_bio. This is called from dm_request and
2510 	 * dm_wq_work.
2511 	 *
2512 	 * To get all processes out of __split_and_process_bio in dm_request,
2513 	 * we take the write lock. To prevent any process from reentering
2514 	 * __split_and_process_bio from dm_request and quiesce the thread
2515 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2516 	 * flush_workqueue(md->wq).
2517 	 */
2518 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2519 	if (map)
2520 		synchronize_srcu(&md->io_barrier);
2521 
2522 	/*
2523 	 * Stop md->queue before flushing md->wq in case request-based
2524 	 * dm defers requests to md->wq from md->queue.
2525 	 */
2526 	if (dm_request_based(md)) {
2527 		dm_stop_queue(md->queue);
2528 		if (md->kworker_task)
2529 			kthread_flush_worker(&md->kworker);
2530 	}
2531 
2532 	flush_workqueue(md->wq);
2533 
2534 	/*
2535 	 * At this point no more requests are entering target request routines.
2536 	 * We call dm_wait_for_completion to wait for all existing requests
2537 	 * to finish.
2538 	 */
2539 	r = dm_wait_for_completion(md, task_state);
2540 	if (!r)
2541 		set_bit(dmf_suspended_flag, &md->flags);
2542 
2543 	if (noflush)
2544 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2545 	if (map)
2546 		synchronize_srcu(&md->io_barrier);
2547 
2548 	/* were we interrupted ? */
2549 	if (r < 0) {
2550 		dm_queue_flush(md);
2551 
2552 		if (dm_request_based(md))
2553 			dm_start_queue(md->queue);
2554 
2555 		unlock_fs(md);
2556 		dm_table_presuspend_undo_targets(map);
2557 		/* pushback list is already flushed, so skip flush */
2558 	}
2559 
2560 	return r;
2561 }
2562 
2563 /*
2564  * We need to be able to change a mapping table under a mounted
2565  * filesystem.  For example we might want to move some data in
2566  * the background.  Before the table can be swapped with
2567  * dm_bind_table, dm_suspend must be called to flush any in
2568  * flight bios and ensure that any further io gets deferred.
2569  */
2570 /*
2571  * Suspend mechanism in request-based dm.
2572  *
2573  * 1. Flush all I/Os by lock_fs() if needed.
2574  * 2. Stop dispatching any I/O by stopping the request_queue.
2575  * 3. Wait for all in-flight I/Os to be completed or requeued.
2576  *
2577  * To abort suspend, start the request_queue.
2578  */
2579 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2580 {
2581 	struct dm_table *map = NULL;
2582 	int r = 0;
2583 
2584 retry:
2585 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2586 
2587 	if (dm_suspended_md(md)) {
2588 		r = -EINVAL;
2589 		goto out_unlock;
2590 	}
2591 
2592 	if (dm_suspended_internally_md(md)) {
2593 		/* already internally suspended, wait for internal resume */
2594 		mutex_unlock(&md->suspend_lock);
2595 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2596 		if (r)
2597 			return r;
2598 		goto retry;
2599 	}
2600 
2601 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2602 
2603 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2604 	if (r)
2605 		goto out_unlock;
2606 
2607 	dm_table_postsuspend_targets(map);
2608 
2609 out_unlock:
2610 	mutex_unlock(&md->suspend_lock);
2611 	return r;
2612 }
2613 
2614 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2615 {
2616 	if (map) {
2617 		int r = dm_table_resume_targets(map);
2618 		if (r)
2619 			return r;
2620 	}
2621 
2622 	dm_queue_flush(md);
2623 
2624 	/*
2625 	 * Flushing deferred I/Os must be done after targets are resumed
2626 	 * so that mapping of targets can work correctly.
2627 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2628 	 */
2629 	if (dm_request_based(md))
2630 		dm_start_queue(md->queue);
2631 
2632 	unlock_fs(md);
2633 
2634 	return 0;
2635 }
2636 
2637 int dm_resume(struct mapped_device *md)
2638 {
2639 	int r;
2640 	struct dm_table *map = NULL;
2641 
2642 retry:
2643 	r = -EINVAL;
2644 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2645 
2646 	if (!dm_suspended_md(md))
2647 		goto out;
2648 
2649 	if (dm_suspended_internally_md(md)) {
2650 		/* already internally suspended, wait for internal resume */
2651 		mutex_unlock(&md->suspend_lock);
2652 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2653 		if (r)
2654 			return r;
2655 		goto retry;
2656 	}
2657 
2658 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2659 	if (!map || !dm_table_get_size(map))
2660 		goto out;
2661 
2662 	r = __dm_resume(md, map);
2663 	if (r)
2664 		goto out;
2665 
2666 	clear_bit(DMF_SUSPENDED, &md->flags);
2667 out:
2668 	mutex_unlock(&md->suspend_lock);
2669 
2670 	return r;
2671 }
2672 
2673 /*
2674  * Internal suspend/resume works like userspace-driven suspend. It waits
2675  * until all bios finish and prevents issuing new bios to the target drivers.
2676  * It may be used only from the kernel.
2677  */
2678 
2679 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2680 {
2681 	struct dm_table *map = NULL;
2682 
2683 	lockdep_assert_held(&md->suspend_lock);
2684 
2685 	if (md->internal_suspend_count++)
2686 		return; /* nested internal suspend */
2687 
2688 	if (dm_suspended_md(md)) {
2689 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2690 		return; /* nest suspend */
2691 	}
2692 
2693 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2694 
2695 	/*
2696 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2697 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2698 	 * would require changing .presuspend to return an error -- avoid this
2699 	 * until there is a need for more elaborate variants of internal suspend.
2700 	 */
2701 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2702 			    DMF_SUSPENDED_INTERNALLY);
2703 
2704 	dm_table_postsuspend_targets(map);
2705 }
2706 
2707 static void __dm_internal_resume(struct mapped_device *md)
2708 {
2709 	BUG_ON(!md->internal_suspend_count);
2710 
2711 	if (--md->internal_suspend_count)
2712 		return; /* resume from nested internal suspend */
2713 
2714 	if (dm_suspended_md(md))
2715 		goto done; /* resume from nested suspend */
2716 
2717 	/*
2718 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2719 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2720 	 */
2721 	(void) __dm_resume(md, NULL);
2722 
2723 done:
2724 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2725 	smp_mb__after_atomic();
2726 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2727 }
2728 
2729 void dm_internal_suspend_noflush(struct mapped_device *md)
2730 {
2731 	mutex_lock(&md->suspend_lock);
2732 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2733 	mutex_unlock(&md->suspend_lock);
2734 }
2735 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2736 
2737 void dm_internal_resume(struct mapped_device *md)
2738 {
2739 	mutex_lock(&md->suspend_lock);
2740 	__dm_internal_resume(md);
2741 	mutex_unlock(&md->suspend_lock);
2742 }
2743 EXPORT_SYMBOL_GPL(dm_internal_resume);
2744 
2745 /*
2746  * Fast variants of internal suspend/resume hold md->suspend_lock,
2747  * which prevents interaction with userspace-driven suspend.
2748  */
2749 
2750 void dm_internal_suspend_fast(struct mapped_device *md)
2751 {
2752 	mutex_lock(&md->suspend_lock);
2753 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2754 		return;
2755 
2756 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2757 	synchronize_srcu(&md->io_barrier);
2758 	flush_workqueue(md->wq);
2759 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2760 }
2761 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2762 
2763 void dm_internal_resume_fast(struct mapped_device *md)
2764 {
2765 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2766 		goto done;
2767 
2768 	dm_queue_flush(md);
2769 
2770 done:
2771 	mutex_unlock(&md->suspend_lock);
2772 }
2773 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2774 
2775 /*-----------------------------------------------------------------
2776  * Event notification.
2777  *---------------------------------------------------------------*/
2778 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2779 		       unsigned cookie)
2780 {
2781 	char udev_cookie[DM_COOKIE_LENGTH];
2782 	char *envp[] = { udev_cookie, NULL };
2783 
2784 	if (!cookie)
2785 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2786 	else {
2787 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2788 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2789 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2790 					  action, envp);
2791 	}
2792 }
2793 
2794 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2795 {
2796 	return atomic_add_return(1, &md->uevent_seq);
2797 }
2798 
2799 uint32_t dm_get_event_nr(struct mapped_device *md)
2800 {
2801 	return atomic_read(&md->event_nr);
2802 }
2803 
2804 int dm_wait_event(struct mapped_device *md, int event_nr)
2805 {
2806 	return wait_event_interruptible(md->eventq,
2807 			(event_nr != atomic_read(&md->event_nr)));
2808 }
2809 
2810 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2811 {
2812 	unsigned long flags;
2813 
2814 	spin_lock_irqsave(&md->uevent_lock, flags);
2815 	list_add(elist, &md->uevent_list);
2816 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2817 }
2818 
2819 /*
2820  * The gendisk is only valid as long as you have a reference
2821  * count on 'md'.
2822  */
2823 struct gendisk *dm_disk(struct mapped_device *md)
2824 {
2825 	return md->disk;
2826 }
2827 EXPORT_SYMBOL_GPL(dm_disk);
2828 
2829 struct kobject *dm_kobject(struct mapped_device *md)
2830 {
2831 	return &md->kobj_holder.kobj;
2832 }
2833 
2834 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2835 {
2836 	struct mapped_device *md;
2837 
2838 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2839 
2840 	spin_lock(&_minor_lock);
2841 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2842 		md = NULL;
2843 		goto out;
2844 	}
2845 	dm_get(md);
2846 out:
2847 	spin_unlock(&_minor_lock);
2848 
2849 	return md;
2850 }
2851 
2852 int dm_suspended_md(struct mapped_device *md)
2853 {
2854 	return test_bit(DMF_SUSPENDED, &md->flags);
2855 }
2856 
2857 int dm_suspended_internally_md(struct mapped_device *md)
2858 {
2859 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2860 }
2861 
2862 int dm_test_deferred_remove_flag(struct mapped_device *md)
2863 {
2864 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2865 }
2866 
2867 int dm_suspended(struct dm_target *ti)
2868 {
2869 	return dm_suspended_md(dm_table_get_md(ti->table));
2870 }
2871 EXPORT_SYMBOL_GPL(dm_suspended);
2872 
2873 int dm_noflush_suspending(struct dm_target *ti)
2874 {
2875 	return __noflush_suspending(dm_table_get_md(ti->table));
2876 }
2877 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2878 
2879 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2880 					    unsigned integrity, unsigned per_io_data_size,
2881 					    unsigned min_pool_size)
2882 {
2883 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2884 	unsigned int pool_size = 0;
2885 	unsigned int front_pad, io_front_pad;
2886 
2887 	if (!pools)
2888 		return NULL;
2889 
2890 	switch (type) {
2891 	case DM_TYPE_BIO_BASED:
2892 	case DM_TYPE_DAX_BIO_BASED:
2893 	case DM_TYPE_NVME_BIO_BASED:
2894 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2895 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2896 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2897 		pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2898 		if (!pools->io_bs)
2899 			goto out;
2900 		if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2901 			goto out;
2902 		break;
2903 	case DM_TYPE_REQUEST_BASED:
2904 	case DM_TYPE_MQ_REQUEST_BASED:
2905 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2906 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2907 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2908 		break;
2909 	default:
2910 		BUG();
2911 	}
2912 
2913 	pools->bs = bioset_create(pool_size, front_pad, 0);
2914 	if (!pools->bs)
2915 		goto out;
2916 
2917 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2918 		goto out;
2919 
2920 	return pools;
2921 
2922 out:
2923 	dm_free_md_mempools(pools);
2924 
2925 	return NULL;
2926 }
2927 
2928 void dm_free_md_mempools(struct dm_md_mempools *pools)
2929 {
2930 	if (!pools)
2931 		return;
2932 
2933 	if (pools->bs)
2934 		bioset_free(pools->bs);
2935 	if (pools->io_bs)
2936 		bioset_free(pools->io_bs);
2937 
2938 	kfree(pools);
2939 }
2940 
2941 struct dm_pr {
2942 	u64	old_key;
2943 	u64	new_key;
2944 	u32	flags;
2945 	bool	fail_early;
2946 };
2947 
2948 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2949 		      void *data)
2950 {
2951 	struct mapped_device *md = bdev->bd_disk->private_data;
2952 	struct dm_table *table;
2953 	struct dm_target *ti;
2954 	int ret = -ENOTTY, srcu_idx;
2955 
2956 	table = dm_get_live_table(md, &srcu_idx);
2957 	if (!table || !dm_table_get_size(table))
2958 		goto out;
2959 
2960 	/* We only support devices that have a single target */
2961 	if (dm_table_get_num_targets(table) != 1)
2962 		goto out;
2963 	ti = dm_table_get_target(table, 0);
2964 
2965 	ret = -EINVAL;
2966 	if (!ti->type->iterate_devices)
2967 		goto out;
2968 
2969 	ret = ti->type->iterate_devices(ti, fn, data);
2970 out:
2971 	dm_put_live_table(md, srcu_idx);
2972 	return ret;
2973 }
2974 
2975 /*
2976  * For register / unregister we need to manually call out to every path.
2977  */
2978 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2979 			    sector_t start, sector_t len, void *data)
2980 {
2981 	struct dm_pr *pr = data;
2982 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2983 
2984 	if (!ops || !ops->pr_register)
2985 		return -EOPNOTSUPP;
2986 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2987 }
2988 
2989 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2990 			  u32 flags)
2991 {
2992 	struct dm_pr pr = {
2993 		.old_key	= old_key,
2994 		.new_key	= new_key,
2995 		.flags		= flags,
2996 		.fail_early	= true,
2997 	};
2998 	int ret;
2999 
3000 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3001 	if (ret && new_key) {
3002 		/* unregister all paths if we failed to register any path */
3003 		pr.old_key = new_key;
3004 		pr.new_key = 0;
3005 		pr.flags = 0;
3006 		pr.fail_early = false;
3007 		dm_call_pr(bdev, __dm_pr_register, &pr);
3008 	}
3009 
3010 	return ret;
3011 }
3012 
3013 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3014 			 u32 flags)
3015 {
3016 	struct mapped_device *md = bdev->bd_disk->private_data;
3017 	const struct pr_ops *ops;
3018 	fmode_t mode;
3019 	int r;
3020 
3021 	r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
3022 	if (r < 0)
3023 		return r;
3024 
3025 	ops = bdev->bd_disk->fops->pr_ops;
3026 	if (ops && ops->pr_reserve)
3027 		r = ops->pr_reserve(bdev, key, type, flags);
3028 	else
3029 		r = -EOPNOTSUPP;
3030 
3031 	blkdev_put(bdev, mode);
3032 	return r;
3033 }
3034 
3035 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3036 {
3037 	struct mapped_device *md = bdev->bd_disk->private_data;
3038 	const struct pr_ops *ops;
3039 	fmode_t mode;
3040 	int r;
3041 
3042 	r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
3043 	if (r < 0)
3044 		return r;
3045 
3046 	ops = bdev->bd_disk->fops->pr_ops;
3047 	if (ops && ops->pr_release)
3048 		r = ops->pr_release(bdev, key, type);
3049 	else
3050 		r = -EOPNOTSUPP;
3051 
3052 	blkdev_put(bdev, mode);
3053 	return r;
3054 }
3055 
3056 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3057 			 enum pr_type type, bool abort)
3058 {
3059 	struct mapped_device *md = bdev->bd_disk->private_data;
3060 	const struct pr_ops *ops;
3061 	fmode_t mode;
3062 	int r;
3063 
3064 	r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
3065 	if (r < 0)
3066 		return r;
3067 
3068 	ops = bdev->bd_disk->fops->pr_ops;
3069 	if (ops && ops->pr_preempt)
3070 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3071 	else
3072 		r = -EOPNOTSUPP;
3073 
3074 	blkdev_put(bdev, mode);
3075 	return r;
3076 }
3077 
3078 static int dm_pr_clear(struct block_device *bdev, u64 key)
3079 {
3080 	struct mapped_device *md = bdev->bd_disk->private_data;
3081 	const struct pr_ops *ops;
3082 	fmode_t mode;
3083 	int r;
3084 
3085 	r = dm_get_bdev_for_ioctl(md, &bdev, &mode);
3086 	if (r < 0)
3087 		return r;
3088 
3089 	ops = bdev->bd_disk->fops->pr_ops;
3090 	if (ops && ops->pr_clear)
3091 		r = ops->pr_clear(bdev, key);
3092 	else
3093 		r = -EOPNOTSUPP;
3094 
3095 	blkdev_put(bdev, mode);
3096 	return r;
3097 }
3098 
3099 static const struct pr_ops dm_pr_ops = {
3100 	.pr_register	= dm_pr_register,
3101 	.pr_reserve	= dm_pr_reserve,
3102 	.pr_release	= dm_pr_release,
3103 	.pr_preempt	= dm_pr_preempt,
3104 	.pr_clear	= dm_pr_clear,
3105 };
3106 
3107 static const struct block_device_operations dm_blk_dops = {
3108 	.open = dm_blk_open,
3109 	.release = dm_blk_close,
3110 	.ioctl = dm_blk_ioctl,
3111 	.getgeo = dm_blk_getgeo,
3112 	.pr_ops = &dm_pr_ops,
3113 	.owner = THIS_MODULE
3114 };
3115 
3116 static const struct dax_operations dm_dax_ops = {
3117 	.direct_access = dm_dax_direct_access,
3118 	.copy_from_iter = dm_dax_copy_from_iter,
3119 };
3120 
3121 /*
3122  * module hooks
3123  */
3124 module_init(dm_init);
3125 module_exit(dm_exit);
3126 
3127 module_param(major, uint, 0);
3128 MODULE_PARM_DESC(major, "The major number of the device mapper");
3129 
3130 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3131 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3132 
3133 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3134 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3135 
3136 MODULE_DESCRIPTION(DM_NAME " driver");
3137 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3138 MODULE_LICENSE("GPL");
3139