1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set *bs; 152 struct bio_set *io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 static struct kmem_cache *_rq_tio_cache; 162 static struct kmem_cache *_rq_cache; 163 164 /* 165 * Bio-based DM's mempools' reserved IOs set by the user. 166 */ 167 #define RESERVED_BIO_BASED_IOS 16 168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 169 170 static int __dm_get_module_param_int(int *module_param, int min, int max) 171 { 172 int param = READ_ONCE(*module_param); 173 int modified_param = 0; 174 bool modified = true; 175 176 if (param < min) 177 modified_param = min; 178 else if (param > max) 179 modified_param = max; 180 else 181 modified = false; 182 183 if (modified) { 184 (void)cmpxchg(module_param, param, modified_param); 185 param = modified_param; 186 } 187 188 return param; 189 } 190 191 unsigned __dm_get_module_param(unsigned *module_param, 192 unsigned def, unsigned max) 193 { 194 unsigned param = READ_ONCE(*module_param); 195 unsigned modified_param = 0; 196 197 if (!param) 198 modified_param = def; 199 else if (param > max) 200 modified_param = max; 201 202 if (modified_param) { 203 (void)cmpxchg(module_param, param, modified_param); 204 param = modified_param; 205 } 206 207 return param; 208 } 209 210 unsigned dm_get_reserved_bio_based_ios(void) 211 { 212 return __dm_get_module_param(&reserved_bio_based_ios, 213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 214 } 215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 216 217 static unsigned dm_get_numa_node(void) 218 { 219 return __dm_get_module_param_int(&dm_numa_node, 220 DM_NUMA_NODE, num_online_nodes() - 1); 221 } 222 223 static int __init local_init(void) 224 { 225 int r = -ENOMEM; 226 227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 228 if (!_rq_tio_cache) 229 return r; 230 231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 232 __alignof__(struct request), 0, NULL); 233 if (!_rq_cache) 234 goto out_free_rq_tio_cache; 235 236 r = dm_uevent_init(); 237 if (r) 238 goto out_free_rq_cache; 239 240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 241 if (!deferred_remove_workqueue) { 242 r = -ENOMEM; 243 goto out_uevent_exit; 244 } 245 246 _major = major; 247 r = register_blkdev(_major, _name); 248 if (r < 0) 249 goto out_free_workqueue; 250 251 if (!_major) 252 _major = r; 253 254 return 0; 255 256 out_free_workqueue: 257 destroy_workqueue(deferred_remove_workqueue); 258 out_uevent_exit: 259 dm_uevent_exit(); 260 out_free_rq_cache: 261 kmem_cache_destroy(_rq_cache); 262 out_free_rq_tio_cache: 263 kmem_cache_destroy(_rq_tio_cache); 264 265 return r; 266 } 267 268 static void local_exit(void) 269 { 270 flush_scheduled_work(); 271 destroy_workqueue(deferred_remove_workqueue); 272 273 kmem_cache_destroy(_rq_cache); 274 kmem_cache_destroy(_rq_tio_cache); 275 unregister_blkdev(_major, _name); 276 dm_uevent_exit(); 277 278 _major = 0; 279 280 DMINFO("cleaned up"); 281 } 282 283 static int (*_inits[])(void) __initdata = { 284 local_init, 285 dm_target_init, 286 dm_linear_init, 287 dm_stripe_init, 288 dm_io_init, 289 dm_kcopyd_init, 290 dm_interface_init, 291 dm_statistics_init, 292 }; 293 294 static void (*_exits[])(void) = { 295 local_exit, 296 dm_target_exit, 297 dm_linear_exit, 298 dm_stripe_exit, 299 dm_io_exit, 300 dm_kcopyd_exit, 301 dm_interface_exit, 302 dm_statistics_exit, 303 }; 304 305 static int __init dm_init(void) 306 { 307 const int count = ARRAY_SIZE(_inits); 308 309 int r, i; 310 311 for (i = 0; i < count; i++) { 312 r = _inits[i](); 313 if (r) 314 goto bad; 315 } 316 317 return 0; 318 319 bad: 320 while (i--) 321 _exits[i](); 322 323 return r; 324 } 325 326 static void __exit dm_exit(void) 327 { 328 int i = ARRAY_SIZE(_exits); 329 330 while (i--) 331 _exits[i](); 332 333 /* 334 * Should be empty by this point. 335 */ 336 idr_destroy(&_minor_idr); 337 } 338 339 /* 340 * Block device functions 341 */ 342 int dm_deleting_md(struct mapped_device *md) 343 { 344 return test_bit(DMF_DELETING, &md->flags); 345 } 346 347 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 348 { 349 struct mapped_device *md; 350 351 spin_lock(&_minor_lock); 352 353 md = bdev->bd_disk->private_data; 354 if (!md) 355 goto out; 356 357 if (test_bit(DMF_FREEING, &md->flags) || 358 dm_deleting_md(md)) { 359 md = NULL; 360 goto out; 361 } 362 363 dm_get(md); 364 atomic_inc(&md->open_count); 365 out: 366 spin_unlock(&_minor_lock); 367 368 return md ? 0 : -ENXIO; 369 } 370 371 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 372 { 373 struct mapped_device *md; 374 375 spin_lock(&_minor_lock); 376 377 md = disk->private_data; 378 if (WARN_ON(!md)) 379 goto out; 380 381 if (atomic_dec_and_test(&md->open_count) && 382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 383 queue_work(deferred_remove_workqueue, &deferred_remove_work); 384 385 dm_put(md); 386 out: 387 spin_unlock(&_minor_lock); 388 } 389 390 int dm_open_count(struct mapped_device *md) 391 { 392 return atomic_read(&md->open_count); 393 } 394 395 /* 396 * Guarantees nothing is using the device before it's deleted. 397 */ 398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 399 { 400 int r = 0; 401 402 spin_lock(&_minor_lock); 403 404 if (dm_open_count(md)) { 405 r = -EBUSY; 406 if (mark_deferred) 407 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 409 r = -EEXIST; 410 else 411 set_bit(DMF_DELETING, &md->flags); 412 413 spin_unlock(&_minor_lock); 414 415 return r; 416 } 417 418 int dm_cancel_deferred_remove(struct mapped_device *md) 419 { 420 int r = 0; 421 422 spin_lock(&_minor_lock); 423 424 if (test_bit(DMF_DELETING, &md->flags)) 425 r = -EBUSY; 426 else 427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 428 429 spin_unlock(&_minor_lock); 430 431 return r; 432 } 433 434 static void do_deferred_remove(struct work_struct *w) 435 { 436 dm_deferred_remove(); 437 } 438 439 sector_t dm_get_size(struct mapped_device *md) 440 { 441 return get_capacity(md->disk); 442 } 443 444 struct request_queue *dm_get_md_queue(struct mapped_device *md) 445 { 446 return md->queue; 447 } 448 449 struct dm_stats *dm_get_stats(struct mapped_device *md) 450 { 451 return &md->stats; 452 } 453 454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 455 { 456 struct mapped_device *md = bdev->bd_disk->private_data; 457 458 return dm_get_geometry(md, geo); 459 } 460 461 static char *_dm_claim_ptr = "I belong to device-mapper"; 462 463 static int dm_get_bdev_for_ioctl(struct mapped_device *md, 464 struct block_device **bdev, 465 fmode_t *mode) 466 { 467 struct dm_target *tgt; 468 struct dm_table *map; 469 int srcu_idx, r, r2; 470 471 retry: 472 r = -ENOTTY; 473 map = dm_get_live_table(md, &srcu_idx); 474 if (!map || !dm_table_get_size(map)) 475 goto out; 476 477 /* We only support devices that have a single target */ 478 if (dm_table_get_num_targets(map) != 1) 479 goto out; 480 481 tgt = dm_table_get_target(map, 0); 482 if (!tgt->type->prepare_ioctl) 483 goto out; 484 485 if (dm_suspended_md(md)) { 486 r = -EAGAIN; 487 goto out; 488 } 489 490 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 491 if (r < 0) 492 goto out; 493 494 bdgrab(*bdev); 495 r2 = blkdev_get(*bdev, *mode, _dm_claim_ptr); 496 if (r2 < 0) { 497 r = r2; 498 goto out; 499 } 500 501 dm_put_live_table(md, srcu_idx); 502 return r; 503 504 out: 505 dm_put_live_table(md, srcu_idx); 506 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 507 msleep(10); 508 goto retry; 509 } 510 return r; 511 } 512 513 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 514 unsigned int cmd, unsigned long arg) 515 { 516 struct mapped_device *md = bdev->bd_disk->private_data; 517 int r; 518 519 r = dm_get_bdev_for_ioctl(md, &bdev, &mode); 520 if (r < 0) 521 return r; 522 523 if (r > 0) { 524 /* 525 * Target determined this ioctl is being issued against a 526 * subset of the parent bdev; require extra privileges. 527 */ 528 if (!capable(CAP_SYS_RAWIO)) { 529 DMWARN_LIMIT( 530 "%s: sending ioctl %x to DM device without required privilege.", 531 current->comm, cmd); 532 r = -ENOIOCTLCMD; 533 goto out; 534 } 535 } 536 537 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 538 out: 539 blkdev_put(bdev, mode); 540 return r; 541 } 542 543 static void start_io_acct(struct dm_io *io); 544 545 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 546 { 547 struct dm_io *io; 548 struct dm_target_io *tio; 549 struct bio *clone; 550 551 clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs); 552 if (!clone) 553 return NULL; 554 555 tio = container_of(clone, struct dm_target_io, clone); 556 tio->inside_dm_io = true; 557 tio->io = NULL; 558 559 io = container_of(tio, struct dm_io, tio); 560 io->magic = DM_IO_MAGIC; 561 io->status = 0; 562 atomic_set(&io->io_count, 1); 563 io->orig_bio = bio; 564 io->md = md; 565 spin_lock_init(&io->endio_lock); 566 567 start_io_acct(io); 568 569 return io; 570 } 571 572 static void free_io(struct mapped_device *md, struct dm_io *io) 573 { 574 bio_put(&io->tio.clone); 575 } 576 577 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 578 unsigned target_bio_nr, gfp_t gfp_mask) 579 { 580 struct dm_target_io *tio; 581 582 if (!ci->io->tio.io) { 583 /* the dm_target_io embedded in ci->io is available */ 584 tio = &ci->io->tio; 585 } else { 586 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs); 587 if (!clone) 588 return NULL; 589 590 tio = container_of(clone, struct dm_target_io, clone); 591 tio->inside_dm_io = false; 592 } 593 594 tio->magic = DM_TIO_MAGIC; 595 tio->io = ci->io; 596 tio->ti = ti; 597 tio->target_bio_nr = target_bio_nr; 598 599 return tio; 600 } 601 602 static void free_tio(struct dm_target_io *tio) 603 { 604 if (tio->inside_dm_io) 605 return; 606 bio_put(&tio->clone); 607 } 608 609 int md_in_flight(struct mapped_device *md) 610 { 611 return atomic_read(&md->pending[READ]) + 612 atomic_read(&md->pending[WRITE]); 613 } 614 615 static void start_io_acct(struct dm_io *io) 616 { 617 struct mapped_device *md = io->md; 618 struct bio *bio = io->orig_bio; 619 int rw = bio_data_dir(bio); 620 621 io->start_time = jiffies; 622 623 generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0); 624 625 atomic_set(&dm_disk(md)->part0.in_flight[rw], 626 atomic_inc_return(&md->pending[rw])); 627 628 if (unlikely(dm_stats_used(&md->stats))) 629 dm_stats_account_io(&md->stats, bio_data_dir(bio), 630 bio->bi_iter.bi_sector, bio_sectors(bio), 631 false, 0, &io->stats_aux); 632 } 633 634 static void end_io_acct(struct dm_io *io) 635 { 636 struct mapped_device *md = io->md; 637 struct bio *bio = io->orig_bio; 638 unsigned long duration = jiffies - io->start_time; 639 int pending; 640 int rw = bio_data_dir(bio); 641 642 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time); 643 644 if (unlikely(dm_stats_used(&md->stats))) 645 dm_stats_account_io(&md->stats, bio_data_dir(bio), 646 bio->bi_iter.bi_sector, bio_sectors(bio), 647 true, duration, &io->stats_aux); 648 649 /* 650 * After this is decremented the bio must not be touched if it is 651 * a flush. 652 */ 653 pending = atomic_dec_return(&md->pending[rw]); 654 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 655 pending += atomic_read(&md->pending[rw^0x1]); 656 657 /* nudge anyone waiting on suspend queue */ 658 if (!pending) 659 wake_up(&md->wait); 660 } 661 662 /* 663 * Add the bio to the list of deferred io. 664 */ 665 static void queue_io(struct mapped_device *md, struct bio *bio) 666 { 667 unsigned long flags; 668 669 spin_lock_irqsave(&md->deferred_lock, flags); 670 bio_list_add(&md->deferred, bio); 671 spin_unlock_irqrestore(&md->deferred_lock, flags); 672 queue_work(md->wq, &md->work); 673 } 674 675 /* 676 * Everyone (including functions in this file), should use this 677 * function to access the md->map field, and make sure they call 678 * dm_put_live_table() when finished. 679 */ 680 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 681 { 682 *srcu_idx = srcu_read_lock(&md->io_barrier); 683 684 return srcu_dereference(md->map, &md->io_barrier); 685 } 686 687 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 688 { 689 srcu_read_unlock(&md->io_barrier, srcu_idx); 690 } 691 692 void dm_sync_table(struct mapped_device *md) 693 { 694 synchronize_srcu(&md->io_barrier); 695 synchronize_rcu_expedited(); 696 } 697 698 /* 699 * A fast alternative to dm_get_live_table/dm_put_live_table. 700 * The caller must not block between these two functions. 701 */ 702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 703 { 704 rcu_read_lock(); 705 return rcu_dereference(md->map); 706 } 707 708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 709 { 710 rcu_read_unlock(); 711 } 712 713 /* 714 * Open a table device so we can use it as a map destination. 715 */ 716 static int open_table_device(struct table_device *td, dev_t dev, 717 struct mapped_device *md) 718 { 719 struct block_device *bdev; 720 721 int r; 722 723 BUG_ON(td->dm_dev.bdev); 724 725 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 726 if (IS_ERR(bdev)) 727 return PTR_ERR(bdev); 728 729 r = bd_link_disk_holder(bdev, dm_disk(md)); 730 if (r) { 731 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 732 return r; 733 } 734 735 td->dm_dev.bdev = bdev; 736 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 737 return 0; 738 } 739 740 /* 741 * Close a table device that we've been using. 742 */ 743 static void close_table_device(struct table_device *td, struct mapped_device *md) 744 { 745 if (!td->dm_dev.bdev) 746 return; 747 748 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 749 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 750 put_dax(td->dm_dev.dax_dev); 751 td->dm_dev.bdev = NULL; 752 td->dm_dev.dax_dev = NULL; 753 } 754 755 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 756 fmode_t mode) { 757 struct table_device *td; 758 759 list_for_each_entry(td, l, list) 760 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 761 return td; 762 763 return NULL; 764 } 765 766 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 767 struct dm_dev **result) { 768 int r; 769 struct table_device *td; 770 771 mutex_lock(&md->table_devices_lock); 772 td = find_table_device(&md->table_devices, dev, mode); 773 if (!td) { 774 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 775 if (!td) { 776 mutex_unlock(&md->table_devices_lock); 777 return -ENOMEM; 778 } 779 780 td->dm_dev.mode = mode; 781 td->dm_dev.bdev = NULL; 782 783 if ((r = open_table_device(td, dev, md))) { 784 mutex_unlock(&md->table_devices_lock); 785 kfree(td); 786 return r; 787 } 788 789 format_dev_t(td->dm_dev.name, dev); 790 791 refcount_set(&td->count, 1); 792 list_add(&td->list, &md->table_devices); 793 } else { 794 refcount_inc(&td->count); 795 } 796 mutex_unlock(&md->table_devices_lock); 797 798 *result = &td->dm_dev; 799 return 0; 800 } 801 EXPORT_SYMBOL_GPL(dm_get_table_device); 802 803 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 804 { 805 struct table_device *td = container_of(d, struct table_device, dm_dev); 806 807 mutex_lock(&md->table_devices_lock); 808 if (refcount_dec_and_test(&td->count)) { 809 close_table_device(td, md); 810 list_del(&td->list); 811 kfree(td); 812 } 813 mutex_unlock(&md->table_devices_lock); 814 } 815 EXPORT_SYMBOL(dm_put_table_device); 816 817 static void free_table_devices(struct list_head *devices) 818 { 819 struct list_head *tmp, *next; 820 821 list_for_each_safe(tmp, next, devices) { 822 struct table_device *td = list_entry(tmp, struct table_device, list); 823 824 DMWARN("dm_destroy: %s still exists with %d references", 825 td->dm_dev.name, refcount_read(&td->count)); 826 kfree(td); 827 } 828 } 829 830 /* 831 * Get the geometry associated with a dm device 832 */ 833 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 834 { 835 *geo = md->geometry; 836 837 return 0; 838 } 839 840 /* 841 * Set the geometry of a device. 842 */ 843 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 844 { 845 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 846 847 if (geo->start > sz) { 848 DMWARN("Start sector is beyond the geometry limits."); 849 return -EINVAL; 850 } 851 852 md->geometry = *geo; 853 854 return 0; 855 } 856 857 static int __noflush_suspending(struct mapped_device *md) 858 { 859 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 860 } 861 862 /* 863 * Decrements the number of outstanding ios that a bio has been 864 * cloned into, completing the original io if necc. 865 */ 866 static void dec_pending(struct dm_io *io, blk_status_t error) 867 { 868 unsigned long flags; 869 blk_status_t io_error; 870 struct bio *bio; 871 struct mapped_device *md = io->md; 872 873 /* Push-back supersedes any I/O errors */ 874 if (unlikely(error)) { 875 spin_lock_irqsave(&io->endio_lock, flags); 876 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 877 io->status = error; 878 spin_unlock_irqrestore(&io->endio_lock, flags); 879 } 880 881 if (atomic_dec_and_test(&io->io_count)) { 882 if (io->status == BLK_STS_DM_REQUEUE) { 883 /* 884 * Target requested pushing back the I/O. 885 */ 886 spin_lock_irqsave(&md->deferred_lock, flags); 887 if (__noflush_suspending(md)) 888 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 889 bio_list_add_head(&md->deferred, io->orig_bio); 890 else 891 /* noflush suspend was interrupted. */ 892 io->status = BLK_STS_IOERR; 893 spin_unlock_irqrestore(&md->deferred_lock, flags); 894 } 895 896 io_error = io->status; 897 bio = io->orig_bio; 898 end_io_acct(io); 899 free_io(md, io); 900 901 if (io_error == BLK_STS_DM_REQUEUE) 902 return; 903 904 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 905 /* 906 * Preflush done for flush with data, reissue 907 * without REQ_PREFLUSH. 908 */ 909 bio->bi_opf &= ~REQ_PREFLUSH; 910 queue_io(md, bio); 911 } else { 912 /* done with normal IO or empty flush */ 913 if (io_error) 914 bio->bi_status = io_error; 915 bio_endio(bio); 916 } 917 } 918 } 919 920 void disable_write_same(struct mapped_device *md) 921 { 922 struct queue_limits *limits = dm_get_queue_limits(md); 923 924 /* device doesn't really support WRITE SAME, disable it */ 925 limits->max_write_same_sectors = 0; 926 } 927 928 void disable_write_zeroes(struct mapped_device *md) 929 { 930 struct queue_limits *limits = dm_get_queue_limits(md); 931 932 /* device doesn't really support WRITE ZEROES, disable it */ 933 limits->max_write_zeroes_sectors = 0; 934 } 935 936 static void clone_endio(struct bio *bio) 937 { 938 blk_status_t error = bio->bi_status; 939 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 940 struct dm_io *io = tio->io; 941 struct mapped_device *md = tio->io->md; 942 dm_endio_fn endio = tio->ti->type->end_io; 943 944 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 945 if (bio_op(bio) == REQ_OP_WRITE_SAME && 946 !bio->bi_disk->queue->limits.max_write_same_sectors) 947 disable_write_same(md); 948 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 949 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 950 disable_write_zeroes(md); 951 } 952 953 if (endio) { 954 int r = endio(tio->ti, bio, &error); 955 switch (r) { 956 case DM_ENDIO_REQUEUE: 957 error = BLK_STS_DM_REQUEUE; 958 /*FALLTHRU*/ 959 case DM_ENDIO_DONE: 960 break; 961 case DM_ENDIO_INCOMPLETE: 962 /* The target will handle the io */ 963 return; 964 default: 965 DMWARN("unimplemented target endio return value: %d", r); 966 BUG(); 967 } 968 } 969 970 free_tio(tio); 971 dec_pending(io, error); 972 } 973 974 /* 975 * Return maximum size of I/O possible at the supplied sector up to the current 976 * target boundary. 977 */ 978 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 979 { 980 sector_t target_offset = dm_target_offset(ti, sector); 981 982 return ti->len - target_offset; 983 } 984 985 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 986 { 987 sector_t len = max_io_len_target_boundary(sector, ti); 988 sector_t offset, max_len; 989 990 /* 991 * Does the target need to split even further? 992 */ 993 if (ti->max_io_len) { 994 offset = dm_target_offset(ti, sector); 995 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 996 max_len = sector_div(offset, ti->max_io_len); 997 else 998 max_len = offset & (ti->max_io_len - 1); 999 max_len = ti->max_io_len - max_len; 1000 1001 if (len > max_len) 1002 len = max_len; 1003 } 1004 1005 return len; 1006 } 1007 1008 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1009 { 1010 if (len > UINT_MAX) { 1011 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1012 (unsigned long long)len, UINT_MAX); 1013 ti->error = "Maximum size of target IO is too large"; 1014 return -EINVAL; 1015 } 1016 1017 /* 1018 * BIO based queue uses its own splitting. When multipage bvecs 1019 * is switched on, size of the incoming bio may be too big to 1020 * be handled in some targets, such as crypt. 1021 * 1022 * When these targets are ready for the big bio, we can remove 1023 * the limit. 1024 */ 1025 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE); 1026 1027 return 0; 1028 } 1029 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1030 1031 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1032 sector_t sector, int *srcu_idx) 1033 { 1034 struct dm_table *map; 1035 struct dm_target *ti; 1036 1037 map = dm_get_live_table(md, srcu_idx); 1038 if (!map) 1039 return NULL; 1040 1041 ti = dm_table_find_target(map, sector); 1042 if (!dm_target_is_valid(ti)) 1043 return NULL; 1044 1045 return ti; 1046 } 1047 1048 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1049 long nr_pages, void **kaddr, pfn_t *pfn) 1050 { 1051 struct mapped_device *md = dax_get_private(dax_dev); 1052 sector_t sector = pgoff * PAGE_SECTORS; 1053 struct dm_target *ti; 1054 long len, ret = -EIO; 1055 int srcu_idx; 1056 1057 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1058 1059 if (!ti) 1060 goto out; 1061 if (!ti->type->direct_access) 1062 goto out; 1063 len = max_io_len(sector, ti) / PAGE_SECTORS; 1064 if (len < 1) 1065 goto out; 1066 nr_pages = min(len, nr_pages); 1067 if (ti->type->direct_access) 1068 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1069 1070 out: 1071 dm_put_live_table(md, srcu_idx); 1072 1073 return ret; 1074 } 1075 1076 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1077 void *addr, size_t bytes, struct iov_iter *i) 1078 { 1079 struct mapped_device *md = dax_get_private(dax_dev); 1080 sector_t sector = pgoff * PAGE_SECTORS; 1081 struct dm_target *ti; 1082 long ret = 0; 1083 int srcu_idx; 1084 1085 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1086 1087 if (!ti) 1088 goto out; 1089 if (!ti->type->dax_copy_from_iter) { 1090 ret = copy_from_iter(addr, bytes, i); 1091 goto out; 1092 } 1093 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1094 out: 1095 dm_put_live_table(md, srcu_idx); 1096 1097 return ret; 1098 } 1099 1100 /* 1101 * A target may call dm_accept_partial_bio only from the map routine. It is 1102 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1103 * 1104 * dm_accept_partial_bio informs the dm that the target only wants to process 1105 * additional n_sectors sectors of the bio and the rest of the data should be 1106 * sent in a next bio. 1107 * 1108 * A diagram that explains the arithmetics: 1109 * +--------------------+---------------+-------+ 1110 * | 1 | 2 | 3 | 1111 * +--------------------+---------------+-------+ 1112 * 1113 * <-------------- *tio->len_ptr ---------------> 1114 * <------- bi_size -------> 1115 * <-- n_sectors --> 1116 * 1117 * Region 1 was already iterated over with bio_advance or similar function. 1118 * (it may be empty if the target doesn't use bio_advance) 1119 * Region 2 is the remaining bio size that the target wants to process. 1120 * (it may be empty if region 1 is non-empty, although there is no reason 1121 * to make it empty) 1122 * The target requires that region 3 is to be sent in the next bio. 1123 * 1124 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1125 * the partially processed part (the sum of regions 1+2) must be the same for all 1126 * copies of the bio. 1127 */ 1128 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1129 { 1130 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1131 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1132 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1133 BUG_ON(bi_size > *tio->len_ptr); 1134 BUG_ON(n_sectors > bi_size); 1135 *tio->len_ptr -= bi_size - n_sectors; 1136 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1137 } 1138 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1139 1140 /* 1141 * The zone descriptors obtained with a zone report indicate 1142 * zone positions within the target device. The zone descriptors 1143 * must be remapped to match their position within the dm device. 1144 * A target may call dm_remap_zone_report after completion of a 1145 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained 1146 * from the target device mapping to the dm device. 1147 */ 1148 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start) 1149 { 1150 #ifdef CONFIG_BLK_DEV_ZONED 1151 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1152 struct bio *report_bio = tio->io->orig_bio; 1153 struct blk_zone_report_hdr *hdr = NULL; 1154 struct blk_zone *zone; 1155 unsigned int nr_rep = 0; 1156 unsigned int ofst; 1157 struct bio_vec bvec; 1158 struct bvec_iter iter; 1159 void *addr; 1160 1161 if (bio->bi_status) 1162 return; 1163 1164 /* 1165 * Remap the start sector of the reported zones. For sequential zones, 1166 * also remap the write pointer position. 1167 */ 1168 bio_for_each_segment(bvec, report_bio, iter) { 1169 addr = kmap_atomic(bvec.bv_page); 1170 1171 /* Remember the report header in the first page */ 1172 if (!hdr) { 1173 hdr = addr; 1174 ofst = sizeof(struct blk_zone_report_hdr); 1175 } else 1176 ofst = 0; 1177 1178 /* Set zones start sector */ 1179 while (hdr->nr_zones && ofst < bvec.bv_len) { 1180 zone = addr + ofst; 1181 if (zone->start >= start + ti->len) { 1182 hdr->nr_zones = 0; 1183 break; 1184 } 1185 zone->start = zone->start + ti->begin - start; 1186 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 1187 if (zone->cond == BLK_ZONE_COND_FULL) 1188 zone->wp = zone->start + zone->len; 1189 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1190 zone->wp = zone->start; 1191 else 1192 zone->wp = zone->wp + ti->begin - start; 1193 } 1194 ofst += sizeof(struct blk_zone); 1195 hdr->nr_zones--; 1196 nr_rep++; 1197 } 1198 1199 if (addr != hdr) 1200 kunmap_atomic(addr); 1201 1202 if (!hdr->nr_zones) 1203 break; 1204 } 1205 1206 if (hdr) { 1207 hdr->nr_zones = nr_rep; 1208 kunmap_atomic(hdr); 1209 } 1210 1211 bio_advance(report_bio, report_bio->bi_iter.bi_size); 1212 1213 #else /* !CONFIG_BLK_DEV_ZONED */ 1214 bio->bi_status = BLK_STS_NOTSUPP; 1215 #endif 1216 } 1217 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1218 1219 static blk_qc_t __map_bio(struct dm_target_io *tio) 1220 { 1221 int r; 1222 sector_t sector; 1223 struct bio *clone = &tio->clone; 1224 struct dm_io *io = tio->io; 1225 struct mapped_device *md = io->md; 1226 struct dm_target *ti = tio->ti; 1227 blk_qc_t ret = BLK_QC_T_NONE; 1228 1229 clone->bi_end_io = clone_endio; 1230 1231 /* 1232 * Map the clone. If r == 0 we don't need to do 1233 * anything, the target has assumed ownership of 1234 * this io. 1235 */ 1236 atomic_inc(&io->io_count); 1237 sector = clone->bi_iter.bi_sector; 1238 1239 r = ti->type->map(ti, clone); 1240 switch (r) { 1241 case DM_MAPIO_SUBMITTED: 1242 break; 1243 case DM_MAPIO_REMAPPED: 1244 /* the bio has been remapped so dispatch it */ 1245 trace_block_bio_remap(clone->bi_disk->queue, clone, 1246 bio_dev(io->orig_bio), sector); 1247 if (md->type == DM_TYPE_NVME_BIO_BASED) 1248 ret = direct_make_request(clone); 1249 else 1250 ret = generic_make_request(clone); 1251 break; 1252 case DM_MAPIO_KILL: 1253 free_tio(tio); 1254 dec_pending(io, BLK_STS_IOERR); 1255 break; 1256 case DM_MAPIO_REQUEUE: 1257 free_tio(tio); 1258 dec_pending(io, BLK_STS_DM_REQUEUE); 1259 break; 1260 default: 1261 DMWARN("unimplemented target map return value: %d", r); 1262 BUG(); 1263 } 1264 1265 return ret; 1266 } 1267 1268 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1269 { 1270 bio->bi_iter.bi_sector = sector; 1271 bio->bi_iter.bi_size = to_bytes(len); 1272 } 1273 1274 /* 1275 * Creates a bio that consists of range of complete bvecs. 1276 */ 1277 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1278 sector_t sector, unsigned len) 1279 { 1280 struct bio *clone = &tio->clone; 1281 1282 __bio_clone_fast(clone, bio); 1283 1284 if (unlikely(bio_integrity(bio) != NULL)) { 1285 int r; 1286 1287 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1288 !dm_target_passes_integrity(tio->ti->type))) { 1289 DMWARN("%s: the target %s doesn't support integrity data.", 1290 dm_device_name(tio->io->md), 1291 tio->ti->type->name); 1292 return -EIO; 1293 } 1294 1295 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1296 if (r < 0) 1297 return r; 1298 } 1299 1300 if (bio_op(bio) != REQ_OP_ZONE_REPORT) 1301 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1302 clone->bi_iter.bi_size = to_bytes(len); 1303 1304 if (unlikely(bio_integrity(bio) != NULL)) 1305 bio_integrity_trim(clone); 1306 1307 return 0; 1308 } 1309 1310 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1311 struct dm_target *ti, unsigned num_bios) 1312 { 1313 struct dm_target_io *tio; 1314 int try; 1315 1316 if (!num_bios) 1317 return; 1318 1319 if (num_bios == 1) { 1320 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1321 bio_list_add(blist, &tio->clone); 1322 return; 1323 } 1324 1325 for (try = 0; try < 2; try++) { 1326 int bio_nr; 1327 struct bio *bio; 1328 1329 if (try) 1330 mutex_lock(&ci->io->md->table_devices_lock); 1331 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1332 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1333 if (!tio) 1334 break; 1335 1336 bio_list_add(blist, &tio->clone); 1337 } 1338 if (try) 1339 mutex_unlock(&ci->io->md->table_devices_lock); 1340 if (bio_nr == num_bios) 1341 return; 1342 1343 while ((bio = bio_list_pop(blist))) { 1344 tio = container_of(bio, struct dm_target_io, clone); 1345 free_tio(tio); 1346 } 1347 } 1348 } 1349 1350 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1351 struct dm_target_io *tio, unsigned *len) 1352 { 1353 struct bio *clone = &tio->clone; 1354 1355 tio->len_ptr = len; 1356 1357 __bio_clone_fast(clone, ci->bio); 1358 if (len) 1359 bio_setup_sector(clone, ci->sector, *len); 1360 1361 return __map_bio(tio); 1362 } 1363 1364 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1365 unsigned num_bios, unsigned *len) 1366 { 1367 struct bio_list blist = BIO_EMPTY_LIST; 1368 struct bio *bio; 1369 struct dm_target_io *tio; 1370 1371 alloc_multiple_bios(&blist, ci, ti, num_bios); 1372 1373 while ((bio = bio_list_pop(&blist))) { 1374 tio = container_of(bio, struct dm_target_io, clone); 1375 (void) __clone_and_map_simple_bio(ci, tio, len); 1376 } 1377 } 1378 1379 static int __send_empty_flush(struct clone_info *ci) 1380 { 1381 unsigned target_nr = 0; 1382 struct dm_target *ti; 1383 1384 BUG_ON(bio_has_data(ci->bio)); 1385 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1386 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1387 1388 return 0; 1389 } 1390 1391 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1392 sector_t sector, unsigned *len) 1393 { 1394 struct bio *bio = ci->bio; 1395 struct dm_target_io *tio; 1396 int r; 1397 1398 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1399 tio->len_ptr = len; 1400 r = clone_bio(tio, bio, sector, *len); 1401 if (r < 0) { 1402 free_tio(tio); 1403 return r; 1404 } 1405 (void) __map_bio(tio); 1406 1407 return 0; 1408 } 1409 1410 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1411 1412 static unsigned get_num_discard_bios(struct dm_target *ti) 1413 { 1414 return ti->num_discard_bios; 1415 } 1416 1417 static unsigned get_num_write_same_bios(struct dm_target *ti) 1418 { 1419 return ti->num_write_same_bios; 1420 } 1421 1422 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1423 { 1424 return ti->num_write_zeroes_bios; 1425 } 1426 1427 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1428 1429 static bool is_split_required_for_discard(struct dm_target *ti) 1430 { 1431 return ti->split_discard_bios; 1432 } 1433 1434 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1435 get_num_bios_fn get_num_bios, 1436 is_split_required_fn is_split_required) 1437 { 1438 unsigned len; 1439 unsigned num_bios; 1440 1441 /* 1442 * Even though the device advertised support for this type of 1443 * request, that does not mean every target supports it, and 1444 * reconfiguration might also have changed that since the 1445 * check was performed. 1446 */ 1447 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1448 if (!num_bios) 1449 return -EOPNOTSUPP; 1450 1451 if (is_split_required && !is_split_required(ti)) 1452 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1453 else 1454 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1455 1456 __send_duplicate_bios(ci, ti, num_bios, &len); 1457 1458 ci->sector += len; 1459 ci->sector_count -= len; 1460 1461 return 0; 1462 } 1463 1464 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1465 { 1466 return __send_changing_extent_only(ci, ti, get_num_discard_bios, 1467 is_split_required_for_discard); 1468 } 1469 1470 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1471 { 1472 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL); 1473 } 1474 1475 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1476 { 1477 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL); 1478 } 1479 1480 /* 1481 * Select the correct strategy for processing a non-flush bio. 1482 */ 1483 static int __split_and_process_non_flush(struct clone_info *ci) 1484 { 1485 struct bio *bio = ci->bio; 1486 struct dm_target *ti; 1487 unsigned len; 1488 int r; 1489 1490 ti = dm_table_find_target(ci->map, ci->sector); 1491 if (!dm_target_is_valid(ti)) 1492 return -EIO; 1493 1494 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1495 return __send_discard(ci, ti); 1496 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1497 return __send_write_same(ci, ti); 1498 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES)) 1499 return __send_write_zeroes(ci, ti); 1500 1501 if (bio_op(bio) == REQ_OP_ZONE_REPORT) 1502 len = ci->sector_count; 1503 else 1504 len = min_t(sector_t, max_io_len(ci->sector, ti), 1505 ci->sector_count); 1506 1507 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1508 if (r < 0) 1509 return r; 1510 1511 ci->sector += len; 1512 ci->sector_count -= len; 1513 1514 return 0; 1515 } 1516 1517 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1518 struct dm_table *map, struct bio *bio) 1519 { 1520 ci->map = map; 1521 ci->io = alloc_io(md, bio); 1522 ci->sector = bio->bi_iter.bi_sector; 1523 } 1524 1525 /* 1526 * Entry point to split a bio into clones and submit them to the targets. 1527 */ 1528 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1529 struct dm_table *map, struct bio *bio) 1530 { 1531 struct clone_info ci; 1532 blk_qc_t ret = BLK_QC_T_NONE; 1533 int error = 0; 1534 1535 if (unlikely(!map)) { 1536 bio_io_error(bio); 1537 return ret; 1538 } 1539 1540 init_clone_info(&ci, md, map, bio); 1541 1542 if (bio->bi_opf & REQ_PREFLUSH) { 1543 ci.bio = &ci.io->md->flush_bio; 1544 ci.sector_count = 0; 1545 error = __send_empty_flush(&ci); 1546 /* dec_pending submits any data associated with flush */ 1547 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1548 ci.bio = bio; 1549 ci.sector_count = 0; 1550 error = __split_and_process_non_flush(&ci); 1551 } else { 1552 ci.bio = bio; 1553 ci.sector_count = bio_sectors(bio); 1554 while (ci.sector_count && !error) { 1555 error = __split_and_process_non_flush(&ci); 1556 if (current->bio_list && ci.sector_count && !error) { 1557 /* 1558 * Remainder must be passed to generic_make_request() 1559 * so that it gets handled *after* bios already submitted 1560 * have been completely processed. 1561 * We take a clone of the original to store in 1562 * ci.io->orig_bio to be used by end_io_acct() and 1563 * for dec_pending to use for completion handling. 1564 * As this path is not used for REQ_OP_ZONE_REPORT, 1565 * the usage of io->orig_bio in dm_remap_zone_report() 1566 * won't be affected by this reassignment. 1567 */ 1568 struct bio *b = bio_clone_bioset(bio, GFP_NOIO, 1569 md->queue->bio_split); 1570 ci.io->orig_bio = b; 1571 bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9); 1572 bio_chain(b, bio); 1573 ret = generic_make_request(bio); 1574 break; 1575 } 1576 } 1577 } 1578 1579 /* drop the extra reference count */ 1580 dec_pending(ci.io, errno_to_blk_status(error)); 1581 return ret; 1582 } 1583 1584 /* 1585 * Optimized variant of __split_and_process_bio that leverages the 1586 * fact that targets that use it do _not_ have a need to split bios. 1587 */ 1588 static blk_qc_t __process_bio(struct mapped_device *md, 1589 struct dm_table *map, struct bio *bio) 1590 { 1591 struct clone_info ci; 1592 blk_qc_t ret = BLK_QC_T_NONE; 1593 int error = 0; 1594 1595 if (unlikely(!map)) { 1596 bio_io_error(bio); 1597 return ret; 1598 } 1599 1600 init_clone_info(&ci, md, map, bio); 1601 1602 if (bio->bi_opf & REQ_PREFLUSH) { 1603 ci.bio = &ci.io->md->flush_bio; 1604 ci.sector_count = 0; 1605 error = __send_empty_flush(&ci); 1606 /* dec_pending submits any data associated with flush */ 1607 } else { 1608 struct dm_target *ti = md->immutable_target; 1609 struct dm_target_io *tio; 1610 1611 /* 1612 * Defend against IO still getting in during teardown 1613 * - as was seen for a time with nvme-fcloop 1614 */ 1615 if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) { 1616 error = -EIO; 1617 goto out; 1618 } 1619 1620 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1621 ci.bio = bio; 1622 ci.sector_count = bio_sectors(bio); 1623 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1624 } 1625 out: 1626 /* drop the extra reference count */ 1627 dec_pending(ci.io, errno_to_blk_status(error)); 1628 return ret; 1629 } 1630 1631 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *); 1632 1633 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio, 1634 process_bio_fn process_bio) 1635 { 1636 struct mapped_device *md = q->queuedata; 1637 blk_qc_t ret = BLK_QC_T_NONE; 1638 int srcu_idx; 1639 struct dm_table *map; 1640 1641 map = dm_get_live_table(md, &srcu_idx); 1642 1643 /* if we're suspended, we have to queue this io for later */ 1644 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1645 dm_put_live_table(md, srcu_idx); 1646 1647 if (!(bio->bi_opf & REQ_RAHEAD)) 1648 queue_io(md, bio); 1649 else 1650 bio_io_error(bio); 1651 return ret; 1652 } 1653 1654 ret = process_bio(md, map, bio); 1655 1656 dm_put_live_table(md, srcu_idx); 1657 return ret; 1658 } 1659 1660 /* 1661 * The request function that remaps the bio to one target and 1662 * splits off any remainder. 1663 */ 1664 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1665 { 1666 return __dm_make_request(q, bio, __split_and_process_bio); 1667 } 1668 1669 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio) 1670 { 1671 return __dm_make_request(q, bio, __process_bio); 1672 } 1673 1674 static int dm_any_congested(void *congested_data, int bdi_bits) 1675 { 1676 int r = bdi_bits; 1677 struct mapped_device *md = congested_data; 1678 struct dm_table *map; 1679 1680 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1681 if (dm_request_based(md)) { 1682 /* 1683 * With request-based DM we only need to check the 1684 * top-level queue for congestion. 1685 */ 1686 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1687 } else { 1688 map = dm_get_live_table_fast(md); 1689 if (map) 1690 r = dm_table_any_congested(map, bdi_bits); 1691 dm_put_live_table_fast(md); 1692 } 1693 } 1694 1695 return r; 1696 } 1697 1698 /*----------------------------------------------------------------- 1699 * An IDR is used to keep track of allocated minor numbers. 1700 *---------------------------------------------------------------*/ 1701 static void free_minor(int minor) 1702 { 1703 spin_lock(&_minor_lock); 1704 idr_remove(&_minor_idr, minor); 1705 spin_unlock(&_minor_lock); 1706 } 1707 1708 /* 1709 * See if the device with a specific minor # is free. 1710 */ 1711 static int specific_minor(int minor) 1712 { 1713 int r; 1714 1715 if (minor >= (1 << MINORBITS)) 1716 return -EINVAL; 1717 1718 idr_preload(GFP_KERNEL); 1719 spin_lock(&_minor_lock); 1720 1721 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1722 1723 spin_unlock(&_minor_lock); 1724 idr_preload_end(); 1725 if (r < 0) 1726 return r == -ENOSPC ? -EBUSY : r; 1727 return 0; 1728 } 1729 1730 static int next_free_minor(int *minor) 1731 { 1732 int r; 1733 1734 idr_preload(GFP_KERNEL); 1735 spin_lock(&_minor_lock); 1736 1737 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1738 1739 spin_unlock(&_minor_lock); 1740 idr_preload_end(); 1741 if (r < 0) 1742 return r; 1743 *minor = r; 1744 return 0; 1745 } 1746 1747 static const struct block_device_operations dm_blk_dops; 1748 static const struct dax_operations dm_dax_ops; 1749 1750 static void dm_wq_work(struct work_struct *work); 1751 1752 static void dm_init_normal_md_queue(struct mapped_device *md) 1753 { 1754 md->use_blk_mq = false; 1755 1756 /* 1757 * Initialize aspects of queue that aren't relevant for blk-mq 1758 */ 1759 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1760 } 1761 1762 static void cleanup_mapped_device(struct mapped_device *md) 1763 { 1764 if (md->wq) 1765 destroy_workqueue(md->wq); 1766 if (md->kworker_task) 1767 kthread_stop(md->kworker_task); 1768 if (md->bs) 1769 bioset_free(md->bs); 1770 if (md->io_bs) 1771 bioset_free(md->io_bs); 1772 1773 if (md->dax_dev) { 1774 kill_dax(md->dax_dev); 1775 put_dax(md->dax_dev); 1776 md->dax_dev = NULL; 1777 } 1778 1779 if (md->disk) { 1780 spin_lock(&_minor_lock); 1781 md->disk->private_data = NULL; 1782 spin_unlock(&_minor_lock); 1783 del_gendisk(md->disk); 1784 put_disk(md->disk); 1785 } 1786 1787 if (md->queue) 1788 blk_cleanup_queue(md->queue); 1789 1790 cleanup_srcu_struct(&md->io_barrier); 1791 1792 if (md->bdev) { 1793 bdput(md->bdev); 1794 md->bdev = NULL; 1795 } 1796 1797 mutex_destroy(&md->suspend_lock); 1798 mutex_destroy(&md->type_lock); 1799 mutex_destroy(&md->table_devices_lock); 1800 1801 dm_mq_cleanup_mapped_device(md); 1802 } 1803 1804 /* 1805 * Allocate and initialise a blank device with a given minor. 1806 */ 1807 static struct mapped_device *alloc_dev(int minor) 1808 { 1809 int r, numa_node_id = dm_get_numa_node(); 1810 struct dax_device *dax_dev; 1811 struct mapped_device *md; 1812 void *old_md; 1813 1814 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1815 if (!md) { 1816 DMWARN("unable to allocate device, out of memory."); 1817 return NULL; 1818 } 1819 1820 if (!try_module_get(THIS_MODULE)) 1821 goto bad_module_get; 1822 1823 /* get a minor number for the dev */ 1824 if (minor == DM_ANY_MINOR) 1825 r = next_free_minor(&minor); 1826 else 1827 r = specific_minor(minor); 1828 if (r < 0) 1829 goto bad_minor; 1830 1831 r = init_srcu_struct(&md->io_barrier); 1832 if (r < 0) 1833 goto bad_io_barrier; 1834 1835 md->numa_node_id = numa_node_id; 1836 md->use_blk_mq = dm_use_blk_mq_default(); 1837 md->init_tio_pdu = false; 1838 md->type = DM_TYPE_NONE; 1839 mutex_init(&md->suspend_lock); 1840 mutex_init(&md->type_lock); 1841 mutex_init(&md->table_devices_lock); 1842 spin_lock_init(&md->deferred_lock); 1843 atomic_set(&md->holders, 1); 1844 atomic_set(&md->open_count, 0); 1845 atomic_set(&md->event_nr, 0); 1846 atomic_set(&md->uevent_seq, 0); 1847 INIT_LIST_HEAD(&md->uevent_list); 1848 INIT_LIST_HEAD(&md->table_devices); 1849 spin_lock_init(&md->uevent_lock); 1850 1851 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL); 1852 if (!md->queue) 1853 goto bad; 1854 md->queue->queuedata = md; 1855 md->queue->backing_dev_info->congested_data = md; 1856 1857 md->disk = alloc_disk_node(1, md->numa_node_id); 1858 if (!md->disk) 1859 goto bad; 1860 1861 atomic_set(&md->pending[0], 0); 1862 atomic_set(&md->pending[1], 0); 1863 init_waitqueue_head(&md->wait); 1864 INIT_WORK(&md->work, dm_wq_work); 1865 init_waitqueue_head(&md->eventq); 1866 init_completion(&md->kobj_holder.completion); 1867 md->kworker_task = NULL; 1868 1869 md->disk->major = _major; 1870 md->disk->first_minor = minor; 1871 md->disk->fops = &dm_blk_dops; 1872 md->disk->queue = md->queue; 1873 md->disk->private_data = md; 1874 sprintf(md->disk->disk_name, "dm-%d", minor); 1875 1876 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1877 if (!dax_dev) 1878 goto bad; 1879 md->dax_dev = dax_dev; 1880 1881 add_disk_no_queue_reg(md->disk); 1882 format_dev_t(md->name, MKDEV(_major, minor)); 1883 1884 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1885 if (!md->wq) 1886 goto bad; 1887 1888 md->bdev = bdget_disk(md->disk, 0); 1889 if (!md->bdev) 1890 goto bad; 1891 1892 bio_init(&md->flush_bio, NULL, 0); 1893 bio_set_dev(&md->flush_bio, md->bdev); 1894 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1895 1896 dm_stats_init(&md->stats); 1897 1898 /* Populate the mapping, nobody knows we exist yet */ 1899 spin_lock(&_minor_lock); 1900 old_md = idr_replace(&_minor_idr, md, minor); 1901 spin_unlock(&_minor_lock); 1902 1903 BUG_ON(old_md != MINOR_ALLOCED); 1904 1905 return md; 1906 1907 bad: 1908 cleanup_mapped_device(md); 1909 bad_io_barrier: 1910 free_minor(minor); 1911 bad_minor: 1912 module_put(THIS_MODULE); 1913 bad_module_get: 1914 kvfree(md); 1915 return NULL; 1916 } 1917 1918 static void unlock_fs(struct mapped_device *md); 1919 1920 static void free_dev(struct mapped_device *md) 1921 { 1922 int minor = MINOR(disk_devt(md->disk)); 1923 1924 unlock_fs(md); 1925 1926 cleanup_mapped_device(md); 1927 1928 free_table_devices(&md->table_devices); 1929 dm_stats_cleanup(&md->stats); 1930 free_minor(minor); 1931 1932 module_put(THIS_MODULE); 1933 kvfree(md); 1934 } 1935 1936 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1937 { 1938 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1939 1940 if (dm_table_bio_based(t)) { 1941 /* 1942 * The md may already have mempools that need changing. 1943 * If so, reload bioset because front_pad may have changed 1944 * because a different table was loaded. 1945 */ 1946 if (md->bs) { 1947 bioset_free(md->bs); 1948 md->bs = NULL; 1949 } 1950 if (md->io_bs) { 1951 bioset_free(md->io_bs); 1952 md->io_bs = NULL; 1953 } 1954 1955 } else if (md->bs) { 1956 /* 1957 * There's no need to reload with request-based dm 1958 * because the size of front_pad doesn't change. 1959 * Note for future: If you are to reload bioset, 1960 * prep-ed requests in the queue may refer 1961 * to bio from the old bioset, so you must walk 1962 * through the queue to unprep. 1963 */ 1964 goto out; 1965 } 1966 1967 BUG_ON(!p || md->bs || md->io_bs); 1968 1969 md->bs = p->bs; 1970 p->bs = NULL; 1971 md->io_bs = p->io_bs; 1972 p->io_bs = NULL; 1973 out: 1974 /* mempool bind completed, no longer need any mempools in the table */ 1975 dm_table_free_md_mempools(t); 1976 } 1977 1978 /* 1979 * Bind a table to the device. 1980 */ 1981 static void event_callback(void *context) 1982 { 1983 unsigned long flags; 1984 LIST_HEAD(uevents); 1985 struct mapped_device *md = (struct mapped_device *) context; 1986 1987 spin_lock_irqsave(&md->uevent_lock, flags); 1988 list_splice_init(&md->uevent_list, &uevents); 1989 spin_unlock_irqrestore(&md->uevent_lock, flags); 1990 1991 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1992 1993 atomic_inc(&md->event_nr); 1994 wake_up(&md->eventq); 1995 dm_issue_global_event(); 1996 } 1997 1998 /* 1999 * Protected by md->suspend_lock obtained by dm_swap_table(). 2000 */ 2001 static void __set_size(struct mapped_device *md, sector_t size) 2002 { 2003 lockdep_assert_held(&md->suspend_lock); 2004 2005 set_capacity(md->disk, size); 2006 2007 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2008 } 2009 2010 /* 2011 * Returns old map, which caller must destroy. 2012 */ 2013 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2014 struct queue_limits *limits) 2015 { 2016 struct dm_table *old_map; 2017 struct request_queue *q = md->queue; 2018 bool request_based = dm_table_request_based(t); 2019 sector_t size; 2020 2021 lockdep_assert_held(&md->suspend_lock); 2022 2023 size = dm_table_get_size(t); 2024 2025 /* 2026 * Wipe any geometry if the size of the table changed. 2027 */ 2028 if (size != dm_get_size(md)) 2029 memset(&md->geometry, 0, sizeof(md->geometry)); 2030 2031 __set_size(md, size); 2032 2033 dm_table_event_callback(t, event_callback, md); 2034 2035 /* 2036 * The queue hasn't been stopped yet, if the old table type wasn't 2037 * for request-based during suspension. So stop it to prevent 2038 * I/O mapping before resume. 2039 * This must be done before setting the queue restrictions, 2040 * because request-based dm may be run just after the setting. 2041 */ 2042 if (request_based) 2043 dm_stop_queue(q); 2044 2045 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2046 /* 2047 * Leverage the fact that request-based DM targets and 2048 * NVMe bio based targets are immutable singletons 2049 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2050 * and __process_bio. 2051 */ 2052 md->immutable_target = dm_table_get_immutable_target(t); 2053 } 2054 2055 __bind_mempools(md, t); 2056 2057 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2058 rcu_assign_pointer(md->map, (void *)t); 2059 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2060 2061 dm_table_set_restrictions(t, q, limits); 2062 if (old_map) 2063 dm_sync_table(md); 2064 2065 return old_map; 2066 } 2067 2068 /* 2069 * Returns unbound table for the caller to free. 2070 */ 2071 static struct dm_table *__unbind(struct mapped_device *md) 2072 { 2073 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2074 2075 if (!map) 2076 return NULL; 2077 2078 dm_table_event_callback(map, NULL, NULL); 2079 RCU_INIT_POINTER(md->map, NULL); 2080 dm_sync_table(md); 2081 2082 return map; 2083 } 2084 2085 /* 2086 * Constructor for a new device. 2087 */ 2088 int dm_create(int minor, struct mapped_device **result) 2089 { 2090 int r; 2091 struct mapped_device *md; 2092 2093 md = alloc_dev(minor); 2094 if (!md) 2095 return -ENXIO; 2096 2097 r = dm_sysfs_init(md); 2098 if (r) { 2099 free_dev(md); 2100 return r; 2101 } 2102 2103 *result = md; 2104 return 0; 2105 } 2106 2107 /* 2108 * Functions to manage md->type. 2109 * All are required to hold md->type_lock. 2110 */ 2111 void dm_lock_md_type(struct mapped_device *md) 2112 { 2113 mutex_lock(&md->type_lock); 2114 } 2115 2116 void dm_unlock_md_type(struct mapped_device *md) 2117 { 2118 mutex_unlock(&md->type_lock); 2119 } 2120 2121 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2122 { 2123 BUG_ON(!mutex_is_locked(&md->type_lock)); 2124 md->type = type; 2125 } 2126 2127 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2128 { 2129 return md->type; 2130 } 2131 2132 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2133 { 2134 return md->immutable_target_type; 2135 } 2136 2137 /* 2138 * The queue_limits are only valid as long as you have a reference 2139 * count on 'md'. 2140 */ 2141 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2142 { 2143 BUG_ON(!atomic_read(&md->holders)); 2144 return &md->queue->limits; 2145 } 2146 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2147 2148 /* 2149 * Setup the DM device's queue based on md's type 2150 */ 2151 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2152 { 2153 int r; 2154 struct queue_limits limits; 2155 enum dm_queue_mode type = dm_get_md_type(md); 2156 2157 switch (type) { 2158 case DM_TYPE_REQUEST_BASED: 2159 dm_init_normal_md_queue(md); 2160 r = dm_old_init_request_queue(md, t); 2161 if (r) { 2162 DMERR("Cannot initialize queue for request-based mapped device"); 2163 return r; 2164 } 2165 break; 2166 case DM_TYPE_MQ_REQUEST_BASED: 2167 r = dm_mq_init_request_queue(md, t); 2168 if (r) { 2169 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2170 return r; 2171 } 2172 break; 2173 case DM_TYPE_BIO_BASED: 2174 case DM_TYPE_DAX_BIO_BASED: 2175 dm_init_normal_md_queue(md); 2176 blk_queue_make_request(md->queue, dm_make_request); 2177 break; 2178 case DM_TYPE_NVME_BIO_BASED: 2179 dm_init_normal_md_queue(md); 2180 blk_queue_make_request(md->queue, dm_make_request_nvme); 2181 break; 2182 case DM_TYPE_NONE: 2183 WARN_ON_ONCE(true); 2184 break; 2185 } 2186 2187 r = dm_calculate_queue_limits(t, &limits); 2188 if (r) { 2189 DMERR("Cannot calculate initial queue limits"); 2190 return r; 2191 } 2192 dm_table_set_restrictions(t, md->queue, &limits); 2193 blk_register_queue(md->disk); 2194 2195 return 0; 2196 } 2197 2198 struct mapped_device *dm_get_md(dev_t dev) 2199 { 2200 struct mapped_device *md; 2201 unsigned minor = MINOR(dev); 2202 2203 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2204 return NULL; 2205 2206 spin_lock(&_minor_lock); 2207 2208 md = idr_find(&_minor_idr, minor); 2209 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2210 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2211 md = NULL; 2212 goto out; 2213 } 2214 dm_get(md); 2215 out: 2216 spin_unlock(&_minor_lock); 2217 2218 return md; 2219 } 2220 EXPORT_SYMBOL_GPL(dm_get_md); 2221 2222 void *dm_get_mdptr(struct mapped_device *md) 2223 { 2224 return md->interface_ptr; 2225 } 2226 2227 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2228 { 2229 md->interface_ptr = ptr; 2230 } 2231 2232 void dm_get(struct mapped_device *md) 2233 { 2234 atomic_inc(&md->holders); 2235 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2236 } 2237 2238 int dm_hold(struct mapped_device *md) 2239 { 2240 spin_lock(&_minor_lock); 2241 if (test_bit(DMF_FREEING, &md->flags)) { 2242 spin_unlock(&_minor_lock); 2243 return -EBUSY; 2244 } 2245 dm_get(md); 2246 spin_unlock(&_minor_lock); 2247 return 0; 2248 } 2249 EXPORT_SYMBOL_GPL(dm_hold); 2250 2251 const char *dm_device_name(struct mapped_device *md) 2252 { 2253 return md->name; 2254 } 2255 EXPORT_SYMBOL_GPL(dm_device_name); 2256 2257 static void __dm_destroy(struct mapped_device *md, bool wait) 2258 { 2259 struct dm_table *map; 2260 int srcu_idx; 2261 2262 might_sleep(); 2263 2264 spin_lock(&_minor_lock); 2265 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2266 set_bit(DMF_FREEING, &md->flags); 2267 spin_unlock(&_minor_lock); 2268 2269 blk_set_queue_dying(md->queue); 2270 2271 if (dm_request_based(md) && md->kworker_task) 2272 kthread_flush_worker(&md->kworker); 2273 2274 /* 2275 * Take suspend_lock so that presuspend and postsuspend methods 2276 * do not race with internal suspend. 2277 */ 2278 mutex_lock(&md->suspend_lock); 2279 map = dm_get_live_table(md, &srcu_idx); 2280 if (!dm_suspended_md(md)) { 2281 dm_table_presuspend_targets(map); 2282 dm_table_postsuspend_targets(map); 2283 } 2284 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2285 dm_put_live_table(md, srcu_idx); 2286 mutex_unlock(&md->suspend_lock); 2287 2288 /* 2289 * Rare, but there may be I/O requests still going to complete, 2290 * for example. Wait for all references to disappear. 2291 * No one should increment the reference count of the mapped_device, 2292 * after the mapped_device state becomes DMF_FREEING. 2293 */ 2294 if (wait) 2295 while (atomic_read(&md->holders)) 2296 msleep(1); 2297 else if (atomic_read(&md->holders)) 2298 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2299 dm_device_name(md), atomic_read(&md->holders)); 2300 2301 dm_sysfs_exit(md); 2302 dm_table_destroy(__unbind(md)); 2303 free_dev(md); 2304 } 2305 2306 void dm_destroy(struct mapped_device *md) 2307 { 2308 __dm_destroy(md, true); 2309 } 2310 2311 void dm_destroy_immediate(struct mapped_device *md) 2312 { 2313 __dm_destroy(md, false); 2314 } 2315 2316 void dm_put(struct mapped_device *md) 2317 { 2318 atomic_dec(&md->holders); 2319 } 2320 EXPORT_SYMBOL_GPL(dm_put); 2321 2322 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2323 { 2324 int r = 0; 2325 DEFINE_WAIT(wait); 2326 2327 while (1) { 2328 prepare_to_wait(&md->wait, &wait, task_state); 2329 2330 if (!md_in_flight(md)) 2331 break; 2332 2333 if (signal_pending_state(task_state, current)) { 2334 r = -EINTR; 2335 break; 2336 } 2337 2338 io_schedule(); 2339 } 2340 finish_wait(&md->wait, &wait); 2341 2342 return r; 2343 } 2344 2345 /* 2346 * Process the deferred bios 2347 */ 2348 static void dm_wq_work(struct work_struct *work) 2349 { 2350 struct mapped_device *md = container_of(work, struct mapped_device, 2351 work); 2352 struct bio *c; 2353 int srcu_idx; 2354 struct dm_table *map; 2355 2356 map = dm_get_live_table(md, &srcu_idx); 2357 2358 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2359 spin_lock_irq(&md->deferred_lock); 2360 c = bio_list_pop(&md->deferred); 2361 spin_unlock_irq(&md->deferred_lock); 2362 2363 if (!c) 2364 break; 2365 2366 if (dm_request_based(md)) 2367 generic_make_request(c); 2368 else 2369 __split_and_process_bio(md, map, c); 2370 } 2371 2372 dm_put_live_table(md, srcu_idx); 2373 } 2374 2375 static void dm_queue_flush(struct mapped_device *md) 2376 { 2377 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2378 smp_mb__after_atomic(); 2379 queue_work(md->wq, &md->work); 2380 } 2381 2382 /* 2383 * Swap in a new table, returning the old one for the caller to destroy. 2384 */ 2385 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2386 { 2387 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2388 struct queue_limits limits; 2389 int r; 2390 2391 mutex_lock(&md->suspend_lock); 2392 2393 /* device must be suspended */ 2394 if (!dm_suspended_md(md)) 2395 goto out; 2396 2397 /* 2398 * If the new table has no data devices, retain the existing limits. 2399 * This helps multipath with queue_if_no_path if all paths disappear, 2400 * then new I/O is queued based on these limits, and then some paths 2401 * reappear. 2402 */ 2403 if (dm_table_has_no_data_devices(table)) { 2404 live_map = dm_get_live_table_fast(md); 2405 if (live_map) 2406 limits = md->queue->limits; 2407 dm_put_live_table_fast(md); 2408 } 2409 2410 if (!live_map) { 2411 r = dm_calculate_queue_limits(table, &limits); 2412 if (r) { 2413 map = ERR_PTR(r); 2414 goto out; 2415 } 2416 } 2417 2418 map = __bind(md, table, &limits); 2419 dm_issue_global_event(); 2420 2421 out: 2422 mutex_unlock(&md->suspend_lock); 2423 return map; 2424 } 2425 2426 /* 2427 * Functions to lock and unlock any filesystem running on the 2428 * device. 2429 */ 2430 static int lock_fs(struct mapped_device *md) 2431 { 2432 int r; 2433 2434 WARN_ON(md->frozen_sb); 2435 2436 md->frozen_sb = freeze_bdev(md->bdev); 2437 if (IS_ERR(md->frozen_sb)) { 2438 r = PTR_ERR(md->frozen_sb); 2439 md->frozen_sb = NULL; 2440 return r; 2441 } 2442 2443 set_bit(DMF_FROZEN, &md->flags); 2444 2445 return 0; 2446 } 2447 2448 static void unlock_fs(struct mapped_device *md) 2449 { 2450 if (!test_bit(DMF_FROZEN, &md->flags)) 2451 return; 2452 2453 thaw_bdev(md->bdev, md->frozen_sb); 2454 md->frozen_sb = NULL; 2455 clear_bit(DMF_FROZEN, &md->flags); 2456 } 2457 2458 /* 2459 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2460 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2461 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2462 * 2463 * If __dm_suspend returns 0, the device is completely quiescent 2464 * now. There is no request-processing activity. All new requests 2465 * are being added to md->deferred list. 2466 */ 2467 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2468 unsigned suspend_flags, long task_state, 2469 int dmf_suspended_flag) 2470 { 2471 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2472 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2473 int r; 2474 2475 lockdep_assert_held(&md->suspend_lock); 2476 2477 /* 2478 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2479 * This flag is cleared before dm_suspend returns. 2480 */ 2481 if (noflush) 2482 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2483 else 2484 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2485 2486 /* 2487 * This gets reverted if there's an error later and the targets 2488 * provide the .presuspend_undo hook. 2489 */ 2490 dm_table_presuspend_targets(map); 2491 2492 /* 2493 * Flush I/O to the device. 2494 * Any I/O submitted after lock_fs() may not be flushed. 2495 * noflush takes precedence over do_lockfs. 2496 * (lock_fs() flushes I/Os and waits for them to complete.) 2497 */ 2498 if (!noflush && do_lockfs) { 2499 r = lock_fs(md); 2500 if (r) { 2501 dm_table_presuspend_undo_targets(map); 2502 return r; 2503 } 2504 } 2505 2506 /* 2507 * Here we must make sure that no processes are submitting requests 2508 * to target drivers i.e. no one may be executing 2509 * __split_and_process_bio. This is called from dm_request and 2510 * dm_wq_work. 2511 * 2512 * To get all processes out of __split_and_process_bio in dm_request, 2513 * we take the write lock. To prevent any process from reentering 2514 * __split_and_process_bio from dm_request and quiesce the thread 2515 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2516 * flush_workqueue(md->wq). 2517 */ 2518 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2519 if (map) 2520 synchronize_srcu(&md->io_barrier); 2521 2522 /* 2523 * Stop md->queue before flushing md->wq in case request-based 2524 * dm defers requests to md->wq from md->queue. 2525 */ 2526 if (dm_request_based(md)) { 2527 dm_stop_queue(md->queue); 2528 if (md->kworker_task) 2529 kthread_flush_worker(&md->kworker); 2530 } 2531 2532 flush_workqueue(md->wq); 2533 2534 /* 2535 * At this point no more requests are entering target request routines. 2536 * We call dm_wait_for_completion to wait for all existing requests 2537 * to finish. 2538 */ 2539 r = dm_wait_for_completion(md, task_state); 2540 if (!r) 2541 set_bit(dmf_suspended_flag, &md->flags); 2542 2543 if (noflush) 2544 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2545 if (map) 2546 synchronize_srcu(&md->io_barrier); 2547 2548 /* were we interrupted ? */ 2549 if (r < 0) { 2550 dm_queue_flush(md); 2551 2552 if (dm_request_based(md)) 2553 dm_start_queue(md->queue); 2554 2555 unlock_fs(md); 2556 dm_table_presuspend_undo_targets(map); 2557 /* pushback list is already flushed, so skip flush */ 2558 } 2559 2560 return r; 2561 } 2562 2563 /* 2564 * We need to be able to change a mapping table under a mounted 2565 * filesystem. For example we might want to move some data in 2566 * the background. Before the table can be swapped with 2567 * dm_bind_table, dm_suspend must be called to flush any in 2568 * flight bios and ensure that any further io gets deferred. 2569 */ 2570 /* 2571 * Suspend mechanism in request-based dm. 2572 * 2573 * 1. Flush all I/Os by lock_fs() if needed. 2574 * 2. Stop dispatching any I/O by stopping the request_queue. 2575 * 3. Wait for all in-flight I/Os to be completed or requeued. 2576 * 2577 * To abort suspend, start the request_queue. 2578 */ 2579 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2580 { 2581 struct dm_table *map = NULL; 2582 int r = 0; 2583 2584 retry: 2585 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2586 2587 if (dm_suspended_md(md)) { 2588 r = -EINVAL; 2589 goto out_unlock; 2590 } 2591 2592 if (dm_suspended_internally_md(md)) { 2593 /* already internally suspended, wait for internal resume */ 2594 mutex_unlock(&md->suspend_lock); 2595 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2596 if (r) 2597 return r; 2598 goto retry; 2599 } 2600 2601 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2602 2603 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2604 if (r) 2605 goto out_unlock; 2606 2607 dm_table_postsuspend_targets(map); 2608 2609 out_unlock: 2610 mutex_unlock(&md->suspend_lock); 2611 return r; 2612 } 2613 2614 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2615 { 2616 if (map) { 2617 int r = dm_table_resume_targets(map); 2618 if (r) 2619 return r; 2620 } 2621 2622 dm_queue_flush(md); 2623 2624 /* 2625 * Flushing deferred I/Os must be done after targets are resumed 2626 * so that mapping of targets can work correctly. 2627 * Request-based dm is queueing the deferred I/Os in its request_queue. 2628 */ 2629 if (dm_request_based(md)) 2630 dm_start_queue(md->queue); 2631 2632 unlock_fs(md); 2633 2634 return 0; 2635 } 2636 2637 int dm_resume(struct mapped_device *md) 2638 { 2639 int r; 2640 struct dm_table *map = NULL; 2641 2642 retry: 2643 r = -EINVAL; 2644 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2645 2646 if (!dm_suspended_md(md)) 2647 goto out; 2648 2649 if (dm_suspended_internally_md(md)) { 2650 /* already internally suspended, wait for internal resume */ 2651 mutex_unlock(&md->suspend_lock); 2652 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2653 if (r) 2654 return r; 2655 goto retry; 2656 } 2657 2658 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2659 if (!map || !dm_table_get_size(map)) 2660 goto out; 2661 2662 r = __dm_resume(md, map); 2663 if (r) 2664 goto out; 2665 2666 clear_bit(DMF_SUSPENDED, &md->flags); 2667 out: 2668 mutex_unlock(&md->suspend_lock); 2669 2670 return r; 2671 } 2672 2673 /* 2674 * Internal suspend/resume works like userspace-driven suspend. It waits 2675 * until all bios finish and prevents issuing new bios to the target drivers. 2676 * It may be used only from the kernel. 2677 */ 2678 2679 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2680 { 2681 struct dm_table *map = NULL; 2682 2683 lockdep_assert_held(&md->suspend_lock); 2684 2685 if (md->internal_suspend_count++) 2686 return; /* nested internal suspend */ 2687 2688 if (dm_suspended_md(md)) { 2689 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2690 return; /* nest suspend */ 2691 } 2692 2693 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2694 2695 /* 2696 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2697 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2698 * would require changing .presuspend to return an error -- avoid this 2699 * until there is a need for more elaborate variants of internal suspend. 2700 */ 2701 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2702 DMF_SUSPENDED_INTERNALLY); 2703 2704 dm_table_postsuspend_targets(map); 2705 } 2706 2707 static void __dm_internal_resume(struct mapped_device *md) 2708 { 2709 BUG_ON(!md->internal_suspend_count); 2710 2711 if (--md->internal_suspend_count) 2712 return; /* resume from nested internal suspend */ 2713 2714 if (dm_suspended_md(md)) 2715 goto done; /* resume from nested suspend */ 2716 2717 /* 2718 * NOTE: existing callers don't need to call dm_table_resume_targets 2719 * (which may fail -- so best to avoid it for now by passing NULL map) 2720 */ 2721 (void) __dm_resume(md, NULL); 2722 2723 done: 2724 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2725 smp_mb__after_atomic(); 2726 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2727 } 2728 2729 void dm_internal_suspend_noflush(struct mapped_device *md) 2730 { 2731 mutex_lock(&md->suspend_lock); 2732 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2733 mutex_unlock(&md->suspend_lock); 2734 } 2735 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2736 2737 void dm_internal_resume(struct mapped_device *md) 2738 { 2739 mutex_lock(&md->suspend_lock); 2740 __dm_internal_resume(md); 2741 mutex_unlock(&md->suspend_lock); 2742 } 2743 EXPORT_SYMBOL_GPL(dm_internal_resume); 2744 2745 /* 2746 * Fast variants of internal suspend/resume hold md->suspend_lock, 2747 * which prevents interaction with userspace-driven suspend. 2748 */ 2749 2750 void dm_internal_suspend_fast(struct mapped_device *md) 2751 { 2752 mutex_lock(&md->suspend_lock); 2753 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2754 return; 2755 2756 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2757 synchronize_srcu(&md->io_barrier); 2758 flush_workqueue(md->wq); 2759 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2760 } 2761 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2762 2763 void dm_internal_resume_fast(struct mapped_device *md) 2764 { 2765 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2766 goto done; 2767 2768 dm_queue_flush(md); 2769 2770 done: 2771 mutex_unlock(&md->suspend_lock); 2772 } 2773 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2774 2775 /*----------------------------------------------------------------- 2776 * Event notification. 2777 *---------------------------------------------------------------*/ 2778 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2779 unsigned cookie) 2780 { 2781 char udev_cookie[DM_COOKIE_LENGTH]; 2782 char *envp[] = { udev_cookie, NULL }; 2783 2784 if (!cookie) 2785 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2786 else { 2787 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2788 DM_COOKIE_ENV_VAR_NAME, cookie); 2789 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2790 action, envp); 2791 } 2792 } 2793 2794 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2795 { 2796 return atomic_add_return(1, &md->uevent_seq); 2797 } 2798 2799 uint32_t dm_get_event_nr(struct mapped_device *md) 2800 { 2801 return atomic_read(&md->event_nr); 2802 } 2803 2804 int dm_wait_event(struct mapped_device *md, int event_nr) 2805 { 2806 return wait_event_interruptible(md->eventq, 2807 (event_nr != atomic_read(&md->event_nr))); 2808 } 2809 2810 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2811 { 2812 unsigned long flags; 2813 2814 spin_lock_irqsave(&md->uevent_lock, flags); 2815 list_add(elist, &md->uevent_list); 2816 spin_unlock_irqrestore(&md->uevent_lock, flags); 2817 } 2818 2819 /* 2820 * The gendisk is only valid as long as you have a reference 2821 * count on 'md'. 2822 */ 2823 struct gendisk *dm_disk(struct mapped_device *md) 2824 { 2825 return md->disk; 2826 } 2827 EXPORT_SYMBOL_GPL(dm_disk); 2828 2829 struct kobject *dm_kobject(struct mapped_device *md) 2830 { 2831 return &md->kobj_holder.kobj; 2832 } 2833 2834 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2835 { 2836 struct mapped_device *md; 2837 2838 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2839 2840 spin_lock(&_minor_lock); 2841 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2842 md = NULL; 2843 goto out; 2844 } 2845 dm_get(md); 2846 out: 2847 spin_unlock(&_minor_lock); 2848 2849 return md; 2850 } 2851 2852 int dm_suspended_md(struct mapped_device *md) 2853 { 2854 return test_bit(DMF_SUSPENDED, &md->flags); 2855 } 2856 2857 int dm_suspended_internally_md(struct mapped_device *md) 2858 { 2859 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2860 } 2861 2862 int dm_test_deferred_remove_flag(struct mapped_device *md) 2863 { 2864 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2865 } 2866 2867 int dm_suspended(struct dm_target *ti) 2868 { 2869 return dm_suspended_md(dm_table_get_md(ti->table)); 2870 } 2871 EXPORT_SYMBOL_GPL(dm_suspended); 2872 2873 int dm_noflush_suspending(struct dm_target *ti) 2874 { 2875 return __noflush_suspending(dm_table_get_md(ti->table)); 2876 } 2877 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2878 2879 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2880 unsigned integrity, unsigned per_io_data_size, 2881 unsigned min_pool_size) 2882 { 2883 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2884 unsigned int pool_size = 0; 2885 unsigned int front_pad, io_front_pad; 2886 2887 if (!pools) 2888 return NULL; 2889 2890 switch (type) { 2891 case DM_TYPE_BIO_BASED: 2892 case DM_TYPE_DAX_BIO_BASED: 2893 case DM_TYPE_NVME_BIO_BASED: 2894 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2895 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2896 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2897 pools->io_bs = bioset_create(pool_size, io_front_pad, 0); 2898 if (!pools->io_bs) 2899 goto out; 2900 if (integrity && bioset_integrity_create(pools->io_bs, pool_size)) 2901 goto out; 2902 break; 2903 case DM_TYPE_REQUEST_BASED: 2904 case DM_TYPE_MQ_REQUEST_BASED: 2905 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2906 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2907 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2908 break; 2909 default: 2910 BUG(); 2911 } 2912 2913 pools->bs = bioset_create(pool_size, front_pad, 0); 2914 if (!pools->bs) 2915 goto out; 2916 2917 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2918 goto out; 2919 2920 return pools; 2921 2922 out: 2923 dm_free_md_mempools(pools); 2924 2925 return NULL; 2926 } 2927 2928 void dm_free_md_mempools(struct dm_md_mempools *pools) 2929 { 2930 if (!pools) 2931 return; 2932 2933 if (pools->bs) 2934 bioset_free(pools->bs); 2935 if (pools->io_bs) 2936 bioset_free(pools->io_bs); 2937 2938 kfree(pools); 2939 } 2940 2941 struct dm_pr { 2942 u64 old_key; 2943 u64 new_key; 2944 u32 flags; 2945 bool fail_early; 2946 }; 2947 2948 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2949 void *data) 2950 { 2951 struct mapped_device *md = bdev->bd_disk->private_data; 2952 struct dm_table *table; 2953 struct dm_target *ti; 2954 int ret = -ENOTTY, srcu_idx; 2955 2956 table = dm_get_live_table(md, &srcu_idx); 2957 if (!table || !dm_table_get_size(table)) 2958 goto out; 2959 2960 /* We only support devices that have a single target */ 2961 if (dm_table_get_num_targets(table) != 1) 2962 goto out; 2963 ti = dm_table_get_target(table, 0); 2964 2965 ret = -EINVAL; 2966 if (!ti->type->iterate_devices) 2967 goto out; 2968 2969 ret = ti->type->iterate_devices(ti, fn, data); 2970 out: 2971 dm_put_live_table(md, srcu_idx); 2972 return ret; 2973 } 2974 2975 /* 2976 * For register / unregister we need to manually call out to every path. 2977 */ 2978 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2979 sector_t start, sector_t len, void *data) 2980 { 2981 struct dm_pr *pr = data; 2982 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2983 2984 if (!ops || !ops->pr_register) 2985 return -EOPNOTSUPP; 2986 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2987 } 2988 2989 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2990 u32 flags) 2991 { 2992 struct dm_pr pr = { 2993 .old_key = old_key, 2994 .new_key = new_key, 2995 .flags = flags, 2996 .fail_early = true, 2997 }; 2998 int ret; 2999 3000 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3001 if (ret && new_key) { 3002 /* unregister all paths if we failed to register any path */ 3003 pr.old_key = new_key; 3004 pr.new_key = 0; 3005 pr.flags = 0; 3006 pr.fail_early = false; 3007 dm_call_pr(bdev, __dm_pr_register, &pr); 3008 } 3009 3010 return ret; 3011 } 3012 3013 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3014 u32 flags) 3015 { 3016 struct mapped_device *md = bdev->bd_disk->private_data; 3017 const struct pr_ops *ops; 3018 fmode_t mode; 3019 int r; 3020 3021 r = dm_get_bdev_for_ioctl(md, &bdev, &mode); 3022 if (r < 0) 3023 return r; 3024 3025 ops = bdev->bd_disk->fops->pr_ops; 3026 if (ops && ops->pr_reserve) 3027 r = ops->pr_reserve(bdev, key, type, flags); 3028 else 3029 r = -EOPNOTSUPP; 3030 3031 blkdev_put(bdev, mode); 3032 return r; 3033 } 3034 3035 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3036 { 3037 struct mapped_device *md = bdev->bd_disk->private_data; 3038 const struct pr_ops *ops; 3039 fmode_t mode; 3040 int r; 3041 3042 r = dm_get_bdev_for_ioctl(md, &bdev, &mode); 3043 if (r < 0) 3044 return r; 3045 3046 ops = bdev->bd_disk->fops->pr_ops; 3047 if (ops && ops->pr_release) 3048 r = ops->pr_release(bdev, key, type); 3049 else 3050 r = -EOPNOTSUPP; 3051 3052 blkdev_put(bdev, mode); 3053 return r; 3054 } 3055 3056 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3057 enum pr_type type, bool abort) 3058 { 3059 struct mapped_device *md = bdev->bd_disk->private_data; 3060 const struct pr_ops *ops; 3061 fmode_t mode; 3062 int r; 3063 3064 r = dm_get_bdev_for_ioctl(md, &bdev, &mode); 3065 if (r < 0) 3066 return r; 3067 3068 ops = bdev->bd_disk->fops->pr_ops; 3069 if (ops && ops->pr_preempt) 3070 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3071 else 3072 r = -EOPNOTSUPP; 3073 3074 blkdev_put(bdev, mode); 3075 return r; 3076 } 3077 3078 static int dm_pr_clear(struct block_device *bdev, u64 key) 3079 { 3080 struct mapped_device *md = bdev->bd_disk->private_data; 3081 const struct pr_ops *ops; 3082 fmode_t mode; 3083 int r; 3084 3085 r = dm_get_bdev_for_ioctl(md, &bdev, &mode); 3086 if (r < 0) 3087 return r; 3088 3089 ops = bdev->bd_disk->fops->pr_ops; 3090 if (ops && ops->pr_clear) 3091 r = ops->pr_clear(bdev, key); 3092 else 3093 r = -EOPNOTSUPP; 3094 3095 blkdev_put(bdev, mode); 3096 return r; 3097 } 3098 3099 static const struct pr_ops dm_pr_ops = { 3100 .pr_register = dm_pr_register, 3101 .pr_reserve = dm_pr_reserve, 3102 .pr_release = dm_pr_release, 3103 .pr_preempt = dm_pr_preempt, 3104 .pr_clear = dm_pr_clear, 3105 }; 3106 3107 static const struct block_device_operations dm_blk_dops = { 3108 .open = dm_blk_open, 3109 .release = dm_blk_close, 3110 .ioctl = dm_blk_ioctl, 3111 .getgeo = dm_blk_getgeo, 3112 .pr_ops = &dm_pr_ops, 3113 .owner = THIS_MODULE 3114 }; 3115 3116 static const struct dax_operations dm_dax_ops = { 3117 .direct_access = dm_dax_direct_access, 3118 .copy_from_iter = dm_dax_copy_from_iter, 3119 }; 3120 3121 /* 3122 * module hooks 3123 */ 3124 module_init(dm_init); 3125 module_exit(dm_exit); 3126 3127 module_param(major, uint, 0); 3128 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3129 3130 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3131 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3132 3133 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3134 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3135 3136 MODULE_DESCRIPTION(DM_NAME " driver"); 3137 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3138 MODULE_LICENSE("GPL"); 3139