xref: /openbmc/linux/drivers/md/dm.c (revision addee42a)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set *bs;
152 	struct bio_set *io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
163 
164 /*
165  * Bio-based DM's mempools' reserved IOs set by the user.
166  */
167 #define RESERVED_BIO_BASED_IOS		16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169 
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 {
172 	int param = READ_ONCE(*module_param);
173 	int modified_param = 0;
174 	bool modified = true;
175 
176 	if (param < min)
177 		modified_param = min;
178 	else if (param > max)
179 		modified_param = max;
180 	else
181 		modified = false;
182 
183 	if (modified) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned __dm_get_module_param(unsigned *module_param,
192 			       unsigned def, unsigned max)
193 {
194 	unsigned param = READ_ONCE(*module_param);
195 	unsigned modified_param = 0;
196 
197 	if (!param)
198 		modified_param = def;
199 	else if (param > max)
200 		modified_param = max;
201 
202 	if (modified_param) {
203 		(void)cmpxchg(module_param, param, modified_param);
204 		param = modified_param;
205 	}
206 
207 	return param;
208 }
209 
210 unsigned dm_get_reserved_bio_based_ios(void)
211 {
212 	return __dm_get_module_param(&reserved_bio_based_ios,
213 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 }
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216 
217 static unsigned dm_get_numa_node(void)
218 {
219 	return __dm_get_module_param_int(&dm_numa_node,
220 					 DM_NUMA_NODE, num_online_nodes() - 1);
221 }
222 
223 static int __init local_init(void)
224 {
225 	int r = -ENOMEM;
226 
227 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 	if (!_rq_tio_cache)
229 		return r;
230 
231 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 				      __alignof__(struct request), 0, NULL);
233 	if (!_rq_cache)
234 		goto out_free_rq_tio_cache;
235 
236 	r = dm_uevent_init();
237 	if (r)
238 		goto out_free_rq_cache;
239 
240 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 	if (!deferred_remove_workqueue) {
242 		r = -ENOMEM;
243 		goto out_uevent_exit;
244 	}
245 
246 	_major = major;
247 	r = register_blkdev(_major, _name);
248 	if (r < 0)
249 		goto out_free_workqueue;
250 
251 	if (!_major)
252 		_major = r;
253 
254 	return 0;
255 
256 out_free_workqueue:
257 	destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 	dm_uevent_exit();
260 out_free_rq_cache:
261 	kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 	kmem_cache_destroy(_rq_tio_cache);
264 
265 	return r;
266 }
267 
268 static void local_exit(void)
269 {
270 	flush_scheduled_work();
271 	destroy_workqueue(deferred_remove_workqueue);
272 
273 	kmem_cache_destroy(_rq_cache);
274 	kmem_cache_destroy(_rq_tio_cache);
275 	unregister_blkdev(_major, _name);
276 	dm_uevent_exit();
277 
278 	_major = 0;
279 
280 	DMINFO("cleaned up");
281 }
282 
283 static int (*_inits[])(void) __initdata = {
284 	local_init,
285 	dm_target_init,
286 	dm_linear_init,
287 	dm_stripe_init,
288 	dm_io_init,
289 	dm_kcopyd_init,
290 	dm_interface_init,
291 	dm_statistics_init,
292 };
293 
294 static void (*_exits[])(void) = {
295 	local_exit,
296 	dm_target_exit,
297 	dm_linear_exit,
298 	dm_stripe_exit,
299 	dm_io_exit,
300 	dm_kcopyd_exit,
301 	dm_interface_exit,
302 	dm_statistics_exit,
303 };
304 
305 static int __init dm_init(void)
306 {
307 	const int count = ARRAY_SIZE(_inits);
308 
309 	int r, i;
310 
311 	for (i = 0; i < count; i++) {
312 		r = _inits[i]();
313 		if (r)
314 			goto bad;
315 	}
316 
317 	return 0;
318 
319       bad:
320 	while (i--)
321 		_exits[i]();
322 
323 	return r;
324 }
325 
326 static void __exit dm_exit(void)
327 {
328 	int i = ARRAY_SIZE(_exits);
329 
330 	while (i--)
331 		_exits[i]();
332 
333 	/*
334 	 * Should be empty by this point.
335 	 */
336 	idr_destroy(&_minor_idr);
337 }
338 
339 /*
340  * Block device functions
341  */
342 int dm_deleting_md(struct mapped_device *md)
343 {
344 	return test_bit(DMF_DELETING, &md->flags);
345 }
346 
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348 {
349 	struct mapped_device *md;
350 
351 	spin_lock(&_minor_lock);
352 
353 	md = bdev->bd_disk->private_data;
354 	if (!md)
355 		goto out;
356 
357 	if (test_bit(DMF_FREEING, &md->flags) ||
358 	    dm_deleting_md(md)) {
359 		md = NULL;
360 		goto out;
361 	}
362 
363 	dm_get(md);
364 	atomic_inc(&md->open_count);
365 out:
366 	spin_unlock(&_minor_lock);
367 
368 	return md ? 0 : -ENXIO;
369 }
370 
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372 {
373 	struct mapped_device *md;
374 
375 	spin_lock(&_minor_lock);
376 
377 	md = disk->private_data;
378 	if (WARN_ON(!md))
379 		goto out;
380 
381 	if (atomic_dec_and_test(&md->open_count) &&
382 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
384 
385 	dm_put(md);
386 out:
387 	spin_unlock(&_minor_lock);
388 }
389 
390 int dm_open_count(struct mapped_device *md)
391 {
392 	return atomic_read(&md->open_count);
393 }
394 
395 /*
396  * Guarantees nothing is using the device before it's deleted.
397  */
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399 {
400 	int r = 0;
401 
402 	spin_lock(&_minor_lock);
403 
404 	if (dm_open_count(md)) {
405 		r = -EBUSY;
406 		if (mark_deferred)
407 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 		r = -EEXIST;
410 	else
411 		set_bit(DMF_DELETING, &md->flags);
412 
413 	spin_unlock(&_minor_lock);
414 
415 	return r;
416 }
417 
418 int dm_cancel_deferred_remove(struct mapped_device *md)
419 {
420 	int r = 0;
421 
422 	spin_lock(&_minor_lock);
423 
424 	if (test_bit(DMF_DELETING, &md->flags))
425 		r = -EBUSY;
426 	else
427 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428 
429 	spin_unlock(&_minor_lock);
430 
431 	return r;
432 }
433 
434 static void do_deferred_remove(struct work_struct *w)
435 {
436 	dm_deferred_remove();
437 }
438 
439 sector_t dm_get_size(struct mapped_device *md)
440 {
441 	return get_capacity(md->disk);
442 }
443 
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
445 {
446 	return md->queue;
447 }
448 
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
450 {
451 	return &md->stats;
452 }
453 
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455 {
456 	struct mapped_device *md = bdev->bd_disk->private_data;
457 
458 	return dm_get_geometry(md, geo);
459 }
460 
461 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
462 			    struct block_device **bdev)
463 	__acquires(md->io_barrier)
464 {
465 	struct dm_target *tgt;
466 	struct dm_table *map;
467 	int r;
468 
469 retry:
470 	r = -ENOTTY;
471 	map = dm_get_live_table(md, srcu_idx);
472 	if (!map || !dm_table_get_size(map))
473 		return r;
474 
475 	/* We only support devices that have a single target */
476 	if (dm_table_get_num_targets(map) != 1)
477 		return r;
478 
479 	tgt = dm_table_get_target(map, 0);
480 	if (!tgt->type->prepare_ioctl)
481 		return r;
482 
483 	if (dm_suspended_md(md))
484 		return -EAGAIN;
485 
486 	r = tgt->type->prepare_ioctl(tgt, bdev);
487 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
488 		dm_put_live_table(md, *srcu_idx);
489 		msleep(10);
490 		goto retry;
491 	}
492 
493 	return r;
494 }
495 
496 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
497 	__releases(md->io_barrier)
498 {
499 	dm_put_live_table(md, srcu_idx);
500 }
501 
502 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
503 			unsigned int cmd, unsigned long arg)
504 {
505 	struct mapped_device *md = bdev->bd_disk->private_data;
506 	int r, srcu_idx;
507 
508 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
509 	if (r < 0)
510 		goto out;
511 
512 	if (r > 0) {
513 		/*
514 		 * Target determined this ioctl is being issued against a
515 		 * subset of the parent bdev; require extra privileges.
516 		 */
517 		if (!capable(CAP_SYS_RAWIO)) {
518 			DMWARN_LIMIT(
519 	"%s: sending ioctl %x to DM device without required privilege.",
520 				current->comm, cmd);
521 			r = -ENOIOCTLCMD;
522 			goto out;
523 		}
524 	}
525 
526 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
527 out:
528 	dm_unprepare_ioctl(md, srcu_idx);
529 	return r;
530 }
531 
532 static void start_io_acct(struct dm_io *io);
533 
534 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
535 {
536 	struct dm_io *io;
537 	struct dm_target_io *tio;
538 	struct bio *clone;
539 
540 	clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
541 	if (!clone)
542 		return NULL;
543 
544 	tio = container_of(clone, struct dm_target_io, clone);
545 	tio->inside_dm_io = true;
546 	tio->io = NULL;
547 
548 	io = container_of(tio, struct dm_io, tio);
549 	io->magic = DM_IO_MAGIC;
550 	io->status = 0;
551 	atomic_set(&io->io_count, 1);
552 	io->orig_bio = bio;
553 	io->md = md;
554 	spin_lock_init(&io->endio_lock);
555 
556 	start_io_acct(io);
557 
558 	return io;
559 }
560 
561 static void free_io(struct mapped_device *md, struct dm_io *io)
562 {
563 	bio_put(&io->tio.clone);
564 }
565 
566 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
567 				      unsigned target_bio_nr, gfp_t gfp_mask)
568 {
569 	struct dm_target_io *tio;
570 
571 	if (!ci->io->tio.io) {
572 		/* the dm_target_io embedded in ci->io is available */
573 		tio = &ci->io->tio;
574 	} else {
575 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
576 		if (!clone)
577 			return NULL;
578 
579 		tio = container_of(clone, struct dm_target_io, clone);
580 		tio->inside_dm_io = false;
581 	}
582 
583 	tio->magic = DM_TIO_MAGIC;
584 	tio->io = ci->io;
585 	tio->ti = ti;
586 	tio->target_bio_nr = target_bio_nr;
587 
588 	return tio;
589 }
590 
591 static void free_tio(struct dm_target_io *tio)
592 {
593 	if (tio->inside_dm_io)
594 		return;
595 	bio_put(&tio->clone);
596 }
597 
598 int md_in_flight(struct mapped_device *md)
599 {
600 	return atomic_read(&md->pending[READ]) +
601 	       atomic_read(&md->pending[WRITE]);
602 }
603 
604 static void start_io_acct(struct dm_io *io)
605 {
606 	struct mapped_device *md = io->md;
607 	struct bio *bio = io->orig_bio;
608 	int rw = bio_data_dir(bio);
609 
610 	io->start_time = jiffies;
611 
612 	generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
613 
614 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
615 		   atomic_inc_return(&md->pending[rw]));
616 
617 	if (unlikely(dm_stats_used(&md->stats)))
618 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
619 				    bio->bi_iter.bi_sector, bio_sectors(bio),
620 				    false, 0, &io->stats_aux);
621 }
622 
623 static void end_io_acct(struct dm_io *io)
624 {
625 	struct mapped_device *md = io->md;
626 	struct bio *bio = io->orig_bio;
627 	unsigned long duration = jiffies - io->start_time;
628 	int pending;
629 	int rw = bio_data_dir(bio);
630 
631 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
632 
633 	if (unlikely(dm_stats_used(&md->stats)))
634 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
635 				    bio->bi_iter.bi_sector, bio_sectors(bio),
636 				    true, duration, &io->stats_aux);
637 
638 	/*
639 	 * After this is decremented the bio must not be touched if it is
640 	 * a flush.
641 	 */
642 	pending = atomic_dec_return(&md->pending[rw]);
643 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
644 	pending += atomic_read(&md->pending[rw^0x1]);
645 
646 	/* nudge anyone waiting on suspend queue */
647 	if (!pending)
648 		wake_up(&md->wait);
649 }
650 
651 /*
652  * Add the bio to the list of deferred io.
653  */
654 static void queue_io(struct mapped_device *md, struct bio *bio)
655 {
656 	unsigned long flags;
657 
658 	spin_lock_irqsave(&md->deferred_lock, flags);
659 	bio_list_add(&md->deferred, bio);
660 	spin_unlock_irqrestore(&md->deferred_lock, flags);
661 	queue_work(md->wq, &md->work);
662 }
663 
664 /*
665  * Everyone (including functions in this file), should use this
666  * function to access the md->map field, and make sure they call
667  * dm_put_live_table() when finished.
668  */
669 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
670 {
671 	*srcu_idx = srcu_read_lock(&md->io_barrier);
672 
673 	return srcu_dereference(md->map, &md->io_barrier);
674 }
675 
676 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
677 {
678 	srcu_read_unlock(&md->io_barrier, srcu_idx);
679 }
680 
681 void dm_sync_table(struct mapped_device *md)
682 {
683 	synchronize_srcu(&md->io_barrier);
684 	synchronize_rcu_expedited();
685 }
686 
687 /*
688  * A fast alternative to dm_get_live_table/dm_put_live_table.
689  * The caller must not block between these two functions.
690  */
691 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
692 {
693 	rcu_read_lock();
694 	return rcu_dereference(md->map);
695 }
696 
697 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
698 {
699 	rcu_read_unlock();
700 }
701 
702 static char *_dm_claim_ptr = "I belong to device-mapper";
703 
704 /*
705  * Open a table device so we can use it as a map destination.
706  */
707 static int open_table_device(struct table_device *td, dev_t dev,
708 			     struct mapped_device *md)
709 {
710 	struct block_device *bdev;
711 
712 	int r;
713 
714 	BUG_ON(td->dm_dev.bdev);
715 
716 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
717 	if (IS_ERR(bdev))
718 		return PTR_ERR(bdev);
719 
720 	r = bd_link_disk_holder(bdev, dm_disk(md));
721 	if (r) {
722 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
723 		return r;
724 	}
725 
726 	td->dm_dev.bdev = bdev;
727 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
728 	return 0;
729 }
730 
731 /*
732  * Close a table device that we've been using.
733  */
734 static void close_table_device(struct table_device *td, struct mapped_device *md)
735 {
736 	if (!td->dm_dev.bdev)
737 		return;
738 
739 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
740 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
741 	put_dax(td->dm_dev.dax_dev);
742 	td->dm_dev.bdev = NULL;
743 	td->dm_dev.dax_dev = NULL;
744 }
745 
746 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
747 					      fmode_t mode) {
748 	struct table_device *td;
749 
750 	list_for_each_entry(td, l, list)
751 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
752 			return td;
753 
754 	return NULL;
755 }
756 
757 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
758 			struct dm_dev **result) {
759 	int r;
760 	struct table_device *td;
761 
762 	mutex_lock(&md->table_devices_lock);
763 	td = find_table_device(&md->table_devices, dev, mode);
764 	if (!td) {
765 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
766 		if (!td) {
767 			mutex_unlock(&md->table_devices_lock);
768 			return -ENOMEM;
769 		}
770 
771 		td->dm_dev.mode = mode;
772 		td->dm_dev.bdev = NULL;
773 
774 		if ((r = open_table_device(td, dev, md))) {
775 			mutex_unlock(&md->table_devices_lock);
776 			kfree(td);
777 			return r;
778 		}
779 
780 		format_dev_t(td->dm_dev.name, dev);
781 
782 		refcount_set(&td->count, 1);
783 		list_add(&td->list, &md->table_devices);
784 	} else {
785 		refcount_inc(&td->count);
786 	}
787 	mutex_unlock(&md->table_devices_lock);
788 
789 	*result = &td->dm_dev;
790 	return 0;
791 }
792 EXPORT_SYMBOL_GPL(dm_get_table_device);
793 
794 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
795 {
796 	struct table_device *td = container_of(d, struct table_device, dm_dev);
797 
798 	mutex_lock(&md->table_devices_lock);
799 	if (refcount_dec_and_test(&td->count)) {
800 		close_table_device(td, md);
801 		list_del(&td->list);
802 		kfree(td);
803 	}
804 	mutex_unlock(&md->table_devices_lock);
805 }
806 EXPORT_SYMBOL(dm_put_table_device);
807 
808 static void free_table_devices(struct list_head *devices)
809 {
810 	struct list_head *tmp, *next;
811 
812 	list_for_each_safe(tmp, next, devices) {
813 		struct table_device *td = list_entry(tmp, struct table_device, list);
814 
815 		DMWARN("dm_destroy: %s still exists with %d references",
816 		       td->dm_dev.name, refcount_read(&td->count));
817 		kfree(td);
818 	}
819 }
820 
821 /*
822  * Get the geometry associated with a dm device
823  */
824 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
825 {
826 	*geo = md->geometry;
827 
828 	return 0;
829 }
830 
831 /*
832  * Set the geometry of a device.
833  */
834 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
835 {
836 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
837 
838 	if (geo->start > sz) {
839 		DMWARN("Start sector is beyond the geometry limits.");
840 		return -EINVAL;
841 	}
842 
843 	md->geometry = *geo;
844 
845 	return 0;
846 }
847 
848 static int __noflush_suspending(struct mapped_device *md)
849 {
850 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
851 }
852 
853 /*
854  * Decrements the number of outstanding ios that a bio has been
855  * cloned into, completing the original io if necc.
856  */
857 static void dec_pending(struct dm_io *io, blk_status_t error)
858 {
859 	unsigned long flags;
860 	blk_status_t io_error;
861 	struct bio *bio;
862 	struct mapped_device *md = io->md;
863 
864 	/* Push-back supersedes any I/O errors */
865 	if (unlikely(error)) {
866 		spin_lock_irqsave(&io->endio_lock, flags);
867 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
868 			io->status = error;
869 		spin_unlock_irqrestore(&io->endio_lock, flags);
870 	}
871 
872 	if (atomic_dec_and_test(&io->io_count)) {
873 		if (io->status == BLK_STS_DM_REQUEUE) {
874 			/*
875 			 * Target requested pushing back the I/O.
876 			 */
877 			spin_lock_irqsave(&md->deferred_lock, flags);
878 			if (__noflush_suspending(md))
879 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
880 				bio_list_add_head(&md->deferred, io->orig_bio);
881 			else
882 				/* noflush suspend was interrupted. */
883 				io->status = BLK_STS_IOERR;
884 			spin_unlock_irqrestore(&md->deferred_lock, flags);
885 		}
886 
887 		io_error = io->status;
888 		bio = io->orig_bio;
889 		end_io_acct(io);
890 		free_io(md, io);
891 
892 		if (io_error == BLK_STS_DM_REQUEUE)
893 			return;
894 
895 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
896 			/*
897 			 * Preflush done for flush with data, reissue
898 			 * without REQ_PREFLUSH.
899 			 */
900 			bio->bi_opf &= ~REQ_PREFLUSH;
901 			queue_io(md, bio);
902 		} else {
903 			/* done with normal IO or empty flush */
904 			if (io_error)
905 				bio->bi_status = io_error;
906 			bio_endio(bio);
907 		}
908 	}
909 }
910 
911 void disable_write_same(struct mapped_device *md)
912 {
913 	struct queue_limits *limits = dm_get_queue_limits(md);
914 
915 	/* device doesn't really support WRITE SAME, disable it */
916 	limits->max_write_same_sectors = 0;
917 }
918 
919 void disable_write_zeroes(struct mapped_device *md)
920 {
921 	struct queue_limits *limits = dm_get_queue_limits(md);
922 
923 	/* device doesn't really support WRITE ZEROES, disable it */
924 	limits->max_write_zeroes_sectors = 0;
925 }
926 
927 static void clone_endio(struct bio *bio)
928 {
929 	blk_status_t error = bio->bi_status;
930 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
931 	struct dm_io *io = tio->io;
932 	struct mapped_device *md = tio->io->md;
933 	dm_endio_fn endio = tio->ti->type->end_io;
934 
935 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
936 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
937 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
938 			disable_write_same(md);
939 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
940 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
941 			disable_write_zeroes(md);
942 	}
943 
944 	if (endio) {
945 		int r = endio(tio->ti, bio, &error);
946 		switch (r) {
947 		case DM_ENDIO_REQUEUE:
948 			error = BLK_STS_DM_REQUEUE;
949 			/*FALLTHRU*/
950 		case DM_ENDIO_DONE:
951 			break;
952 		case DM_ENDIO_INCOMPLETE:
953 			/* The target will handle the io */
954 			return;
955 		default:
956 			DMWARN("unimplemented target endio return value: %d", r);
957 			BUG();
958 		}
959 	}
960 
961 	free_tio(tio);
962 	dec_pending(io, error);
963 }
964 
965 /*
966  * Return maximum size of I/O possible at the supplied sector up to the current
967  * target boundary.
968  */
969 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
970 {
971 	sector_t target_offset = dm_target_offset(ti, sector);
972 
973 	return ti->len - target_offset;
974 }
975 
976 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
977 {
978 	sector_t len = max_io_len_target_boundary(sector, ti);
979 	sector_t offset, max_len;
980 
981 	/*
982 	 * Does the target need to split even further?
983 	 */
984 	if (ti->max_io_len) {
985 		offset = dm_target_offset(ti, sector);
986 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
987 			max_len = sector_div(offset, ti->max_io_len);
988 		else
989 			max_len = offset & (ti->max_io_len - 1);
990 		max_len = ti->max_io_len - max_len;
991 
992 		if (len > max_len)
993 			len = max_len;
994 	}
995 
996 	return len;
997 }
998 
999 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1000 {
1001 	if (len > UINT_MAX) {
1002 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1003 		      (unsigned long long)len, UINT_MAX);
1004 		ti->error = "Maximum size of target IO is too large";
1005 		return -EINVAL;
1006 	}
1007 
1008 	/*
1009 	 * BIO based queue uses its own splitting. When multipage bvecs
1010 	 * is switched on, size of the incoming bio may be too big to
1011 	 * be handled in some targets, such as crypt.
1012 	 *
1013 	 * When these targets are ready for the big bio, we can remove
1014 	 * the limit.
1015 	 */
1016 	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1017 
1018 	return 0;
1019 }
1020 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1021 
1022 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1023 						sector_t sector, int *srcu_idx)
1024 	__acquires(md->io_barrier)
1025 {
1026 	struct dm_table *map;
1027 	struct dm_target *ti;
1028 
1029 	map = dm_get_live_table(md, srcu_idx);
1030 	if (!map)
1031 		return NULL;
1032 
1033 	ti = dm_table_find_target(map, sector);
1034 	if (!dm_target_is_valid(ti))
1035 		return NULL;
1036 
1037 	return ti;
1038 }
1039 
1040 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1041 				 long nr_pages, void **kaddr, pfn_t *pfn)
1042 {
1043 	struct mapped_device *md = dax_get_private(dax_dev);
1044 	sector_t sector = pgoff * PAGE_SECTORS;
1045 	struct dm_target *ti;
1046 	long len, ret = -EIO;
1047 	int srcu_idx;
1048 
1049 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1050 
1051 	if (!ti)
1052 		goto out;
1053 	if (!ti->type->direct_access)
1054 		goto out;
1055 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1056 	if (len < 1)
1057 		goto out;
1058 	nr_pages = min(len, nr_pages);
1059 	if (ti->type->direct_access)
1060 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1061 
1062  out:
1063 	dm_put_live_table(md, srcu_idx);
1064 
1065 	return ret;
1066 }
1067 
1068 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1069 				    void *addr, size_t bytes, struct iov_iter *i)
1070 {
1071 	struct mapped_device *md = dax_get_private(dax_dev);
1072 	sector_t sector = pgoff * PAGE_SECTORS;
1073 	struct dm_target *ti;
1074 	long ret = 0;
1075 	int srcu_idx;
1076 
1077 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1078 
1079 	if (!ti)
1080 		goto out;
1081 	if (!ti->type->dax_copy_from_iter) {
1082 		ret = copy_from_iter(addr, bytes, i);
1083 		goto out;
1084 	}
1085 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1086  out:
1087 	dm_put_live_table(md, srcu_idx);
1088 
1089 	return ret;
1090 }
1091 
1092 /*
1093  * A target may call dm_accept_partial_bio only from the map routine.  It is
1094  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1095  *
1096  * dm_accept_partial_bio informs the dm that the target only wants to process
1097  * additional n_sectors sectors of the bio and the rest of the data should be
1098  * sent in a next bio.
1099  *
1100  * A diagram that explains the arithmetics:
1101  * +--------------------+---------------+-------+
1102  * |         1          |       2       |   3   |
1103  * +--------------------+---------------+-------+
1104  *
1105  * <-------------- *tio->len_ptr --------------->
1106  *                      <------- bi_size ------->
1107  *                      <-- n_sectors -->
1108  *
1109  * Region 1 was already iterated over with bio_advance or similar function.
1110  *	(it may be empty if the target doesn't use bio_advance)
1111  * Region 2 is the remaining bio size that the target wants to process.
1112  *	(it may be empty if region 1 is non-empty, although there is no reason
1113  *	 to make it empty)
1114  * The target requires that region 3 is to be sent in the next bio.
1115  *
1116  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1117  * the partially processed part (the sum of regions 1+2) must be the same for all
1118  * copies of the bio.
1119  */
1120 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1121 {
1122 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1123 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1124 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1125 	BUG_ON(bi_size > *tio->len_ptr);
1126 	BUG_ON(n_sectors > bi_size);
1127 	*tio->len_ptr -= bi_size - n_sectors;
1128 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1129 }
1130 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1131 
1132 /*
1133  * The zone descriptors obtained with a zone report indicate
1134  * zone positions within the target device. The zone descriptors
1135  * must be remapped to match their position within the dm device.
1136  * A target may call dm_remap_zone_report after completion of a
1137  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1138  * from the target device mapping to the dm device.
1139  */
1140 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1141 {
1142 #ifdef CONFIG_BLK_DEV_ZONED
1143 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1144 	struct bio *report_bio = tio->io->orig_bio;
1145 	struct blk_zone_report_hdr *hdr = NULL;
1146 	struct blk_zone *zone;
1147 	unsigned int nr_rep = 0;
1148 	unsigned int ofst;
1149 	struct bio_vec bvec;
1150 	struct bvec_iter iter;
1151 	void *addr;
1152 
1153 	if (bio->bi_status)
1154 		return;
1155 
1156 	/*
1157 	 * Remap the start sector of the reported zones. For sequential zones,
1158 	 * also remap the write pointer position.
1159 	 */
1160 	bio_for_each_segment(bvec, report_bio, iter) {
1161 		addr = kmap_atomic(bvec.bv_page);
1162 
1163 		/* Remember the report header in the first page */
1164 		if (!hdr) {
1165 			hdr = addr;
1166 			ofst = sizeof(struct blk_zone_report_hdr);
1167 		} else
1168 			ofst = 0;
1169 
1170 		/* Set zones start sector */
1171 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1172 			zone = addr + ofst;
1173 			if (zone->start >= start + ti->len) {
1174 				hdr->nr_zones = 0;
1175 				break;
1176 			}
1177 			zone->start = zone->start + ti->begin - start;
1178 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1179 				if (zone->cond == BLK_ZONE_COND_FULL)
1180 					zone->wp = zone->start + zone->len;
1181 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1182 					zone->wp = zone->start;
1183 				else
1184 					zone->wp = zone->wp + ti->begin - start;
1185 			}
1186 			ofst += sizeof(struct blk_zone);
1187 			hdr->nr_zones--;
1188 			nr_rep++;
1189 		}
1190 
1191 		if (addr != hdr)
1192 			kunmap_atomic(addr);
1193 
1194 		if (!hdr->nr_zones)
1195 			break;
1196 	}
1197 
1198 	if (hdr) {
1199 		hdr->nr_zones = nr_rep;
1200 		kunmap_atomic(hdr);
1201 	}
1202 
1203 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1204 
1205 #else /* !CONFIG_BLK_DEV_ZONED */
1206 	bio->bi_status = BLK_STS_NOTSUPP;
1207 #endif
1208 }
1209 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1210 
1211 static blk_qc_t __map_bio(struct dm_target_io *tio)
1212 {
1213 	int r;
1214 	sector_t sector;
1215 	struct bio *clone = &tio->clone;
1216 	struct dm_io *io = tio->io;
1217 	struct mapped_device *md = io->md;
1218 	struct dm_target *ti = tio->ti;
1219 	blk_qc_t ret = BLK_QC_T_NONE;
1220 
1221 	clone->bi_end_io = clone_endio;
1222 
1223 	/*
1224 	 * Map the clone.  If r == 0 we don't need to do
1225 	 * anything, the target has assumed ownership of
1226 	 * this io.
1227 	 */
1228 	atomic_inc(&io->io_count);
1229 	sector = clone->bi_iter.bi_sector;
1230 
1231 	r = ti->type->map(ti, clone);
1232 	switch (r) {
1233 	case DM_MAPIO_SUBMITTED:
1234 		break;
1235 	case DM_MAPIO_REMAPPED:
1236 		/* the bio has been remapped so dispatch it */
1237 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1238 				      bio_dev(io->orig_bio), sector);
1239 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1240 			ret = direct_make_request(clone);
1241 		else
1242 			ret = generic_make_request(clone);
1243 		break;
1244 	case DM_MAPIO_KILL:
1245 		free_tio(tio);
1246 		dec_pending(io, BLK_STS_IOERR);
1247 		break;
1248 	case DM_MAPIO_REQUEUE:
1249 		free_tio(tio);
1250 		dec_pending(io, BLK_STS_DM_REQUEUE);
1251 		break;
1252 	default:
1253 		DMWARN("unimplemented target map return value: %d", r);
1254 		BUG();
1255 	}
1256 
1257 	return ret;
1258 }
1259 
1260 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1261 {
1262 	bio->bi_iter.bi_sector = sector;
1263 	bio->bi_iter.bi_size = to_bytes(len);
1264 }
1265 
1266 /*
1267  * Creates a bio that consists of range of complete bvecs.
1268  */
1269 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1270 		     sector_t sector, unsigned len)
1271 {
1272 	struct bio *clone = &tio->clone;
1273 
1274 	__bio_clone_fast(clone, bio);
1275 
1276 	if (unlikely(bio_integrity(bio) != NULL)) {
1277 		int r;
1278 
1279 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1280 			     !dm_target_passes_integrity(tio->ti->type))) {
1281 			DMWARN("%s: the target %s doesn't support integrity data.",
1282 				dm_device_name(tio->io->md),
1283 				tio->ti->type->name);
1284 			return -EIO;
1285 		}
1286 
1287 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1288 		if (r < 0)
1289 			return r;
1290 	}
1291 
1292 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1293 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1294 	clone->bi_iter.bi_size = to_bytes(len);
1295 
1296 	if (unlikely(bio_integrity(bio) != NULL))
1297 		bio_integrity_trim(clone);
1298 
1299 	return 0;
1300 }
1301 
1302 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1303 				struct dm_target *ti, unsigned num_bios)
1304 {
1305 	struct dm_target_io *tio;
1306 	int try;
1307 
1308 	if (!num_bios)
1309 		return;
1310 
1311 	if (num_bios == 1) {
1312 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1313 		bio_list_add(blist, &tio->clone);
1314 		return;
1315 	}
1316 
1317 	for (try = 0; try < 2; try++) {
1318 		int bio_nr;
1319 		struct bio *bio;
1320 
1321 		if (try)
1322 			mutex_lock(&ci->io->md->table_devices_lock);
1323 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1324 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1325 			if (!tio)
1326 				break;
1327 
1328 			bio_list_add(blist, &tio->clone);
1329 		}
1330 		if (try)
1331 			mutex_unlock(&ci->io->md->table_devices_lock);
1332 		if (bio_nr == num_bios)
1333 			return;
1334 
1335 		while ((bio = bio_list_pop(blist))) {
1336 			tio = container_of(bio, struct dm_target_io, clone);
1337 			free_tio(tio);
1338 		}
1339 	}
1340 }
1341 
1342 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1343 					   struct dm_target_io *tio, unsigned *len)
1344 {
1345 	struct bio *clone = &tio->clone;
1346 
1347 	tio->len_ptr = len;
1348 
1349 	__bio_clone_fast(clone, ci->bio);
1350 	if (len)
1351 		bio_setup_sector(clone, ci->sector, *len);
1352 
1353 	return __map_bio(tio);
1354 }
1355 
1356 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1357 				  unsigned num_bios, unsigned *len)
1358 {
1359 	struct bio_list blist = BIO_EMPTY_LIST;
1360 	struct bio *bio;
1361 	struct dm_target_io *tio;
1362 
1363 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1364 
1365 	while ((bio = bio_list_pop(&blist))) {
1366 		tio = container_of(bio, struct dm_target_io, clone);
1367 		(void) __clone_and_map_simple_bio(ci, tio, len);
1368 	}
1369 }
1370 
1371 static int __send_empty_flush(struct clone_info *ci)
1372 {
1373 	unsigned target_nr = 0;
1374 	struct dm_target *ti;
1375 
1376 	BUG_ON(bio_has_data(ci->bio));
1377 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1378 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1379 
1380 	return 0;
1381 }
1382 
1383 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1384 				    sector_t sector, unsigned *len)
1385 {
1386 	struct bio *bio = ci->bio;
1387 	struct dm_target_io *tio;
1388 	int r;
1389 
1390 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1391 	tio->len_ptr = len;
1392 	r = clone_bio(tio, bio, sector, *len);
1393 	if (r < 0) {
1394 		free_tio(tio);
1395 		return r;
1396 	}
1397 	(void) __map_bio(tio);
1398 
1399 	return 0;
1400 }
1401 
1402 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1403 
1404 static unsigned get_num_discard_bios(struct dm_target *ti)
1405 {
1406 	return ti->num_discard_bios;
1407 }
1408 
1409 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1410 {
1411 	return ti->num_secure_erase_bios;
1412 }
1413 
1414 static unsigned get_num_write_same_bios(struct dm_target *ti)
1415 {
1416 	return ti->num_write_same_bios;
1417 }
1418 
1419 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1420 {
1421 	return ti->num_write_zeroes_bios;
1422 }
1423 
1424 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1425 
1426 static bool is_split_required_for_discard(struct dm_target *ti)
1427 {
1428 	return ti->split_discard_bios;
1429 }
1430 
1431 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1432 				       get_num_bios_fn get_num_bios,
1433 				       is_split_required_fn is_split_required)
1434 {
1435 	unsigned len;
1436 	unsigned num_bios;
1437 
1438 	/*
1439 	 * Even though the device advertised support for this type of
1440 	 * request, that does not mean every target supports it, and
1441 	 * reconfiguration might also have changed that since the
1442 	 * check was performed.
1443 	 */
1444 	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1445 	if (!num_bios)
1446 		return -EOPNOTSUPP;
1447 
1448 	if (is_split_required && !is_split_required(ti))
1449 		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1450 	else
1451 		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1452 
1453 	__send_duplicate_bios(ci, ti, num_bios, &len);
1454 
1455 	ci->sector += len;
1456 	ci->sector_count -= len;
1457 
1458 	return 0;
1459 }
1460 
1461 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1462 {
1463 	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1464 					   is_split_required_for_discard);
1465 }
1466 
1467 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1468 {
1469 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1470 }
1471 
1472 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1473 {
1474 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1475 }
1476 
1477 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1478 {
1479 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1480 }
1481 
1482 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1483 				  int *result)
1484 {
1485 	struct bio *bio = ci->bio;
1486 
1487 	if (bio_op(bio) == REQ_OP_DISCARD)
1488 		*result = __send_discard(ci, ti);
1489 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1490 		*result = __send_secure_erase(ci, ti);
1491 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1492 		*result = __send_write_same(ci, ti);
1493 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1494 		*result = __send_write_zeroes(ci, ti);
1495 	else
1496 		return false;
1497 
1498 	return true;
1499 }
1500 
1501 /*
1502  * Select the correct strategy for processing a non-flush bio.
1503  */
1504 static int __split_and_process_non_flush(struct clone_info *ci)
1505 {
1506 	struct bio *bio = ci->bio;
1507 	struct dm_target *ti;
1508 	unsigned len;
1509 	int r;
1510 
1511 	ti = dm_table_find_target(ci->map, ci->sector);
1512 	if (!dm_target_is_valid(ti))
1513 		return -EIO;
1514 
1515 	if (unlikely(__process_abnormal_io(ci, ti, &r)))
1516 		return r;
1517 
1518 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1519 		len = ci->sector_count;
1520 	else
1521 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1522 			    ci->sector_count);
1523 
1524 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1525 	if (r < 0)
1526 		return r;
1527 
1528 	ci->sector += len;
1529 	ci->sector_count -= len;
1530 
1531 	return 0;
1532 }
1533 
1534 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1535 			    struct dm_table *map, struct bio *bio)
1536 {
1537 	ci->map = map;
1538 	ci->io = alloc_io(md, bio);
1539 	ci->sector = bio->bi_iter.bi_sector;
1540 }
1541 
1542 /*
1543  * Entry point to split a bio into clones and submit them to the targets.
1544  */
1545 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1546 					struct dm_table *map, struct bio *bio)
1547 {
1548 	struct clone_info ci;
1549 	blk_qc_t ret = BLK_QC_T_NONE;
1550 	int error = 0;
1551 
1552 	if (unlikely(!map)) {
1553 		bio_io_error(bio);
1554 		return ret;
1555 	}
1556 
1557 	init_clone_info(&ci, md, map, bio);
1558 
1559 	if (bio->bi_opf & REQ_PREFLUSH) {
1560 		ci.bio = &ci.io->md->flush_bio;
1561 		ci.sector_count = 0;
1562 		error = __send_empty_flush(&ci);
1563 		/* dec_pending submits any data associated with flush */
1564 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1565 		ci.bio = bio;
1566 		ci.sector_count = 0;
1567 		error = __split_and_process_non_flush(&ci);
1568 	} else {
1569 		ci.bio = bio;
1570 		ci.sector_count = bio_sectors(bio);
1571 		while (ci.sector_count && !error) {
1572 			error = __split_and_process_non_flush(&ci);
1573 			if (current->bio_list && ci.sector_count && !error) {
1574 				/*
1575 				 * Remainder must be passed to generic_make_request()
1576 				 * so that it gets handled *after* bios already submitted
1577 				 * have been completely processed.
1578 				 * We take a clone of the original to store in
1579 				 * ci.io->orig_bio to be used by end_io_acct() and
1580 				 * for dec_pending to use for completion handling.
1581 				 * As this path is not used for REQ_OP_ZONE_REPORT,
1582 				 * the usage of io->orig_bio in dm_remap_zone_report()
1583 				 * won't be affected by this reassignment.
1584 				 */
1585 				struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1586 								 md->queue->bio_split);
1587 				ci.io->orig_bio = b;
1588 				bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1589 				bio_chain(b, bio);
1590 				ret = generic_make_request(bio);
1591 				break;
1592 			}
1593 		}
1594 	}
1595 
1596 	/* drop the extra reference count */
1597 	dec_pending(ci.io, errno_to_blk_status(error));
1598 	return ret;
1599 }
1600 
1601 /*
1602  * Optimized variant of __split_and_process_bio that leverages the
1603  * fact that targets that use it do _not_ have a need to split bios.
1604  */
1605 static blk_qc_t __process_bio(struct mapped_device *md,
1606 			      struct dm_table *map, struct bio *bio)
1607 {
1608 	struct clone_info ci;
1609 	blk_qc_t ret = BLK_QC_T_NONE;
1610 	int error = 0;
1611 
1612 	if (unlikely(!map)) {
1613 		bio_io_error(bio);
1614 		return ret;
1615 	}
1616 
1617 	init_clone_info(&ci, md, map, bio);
1618 
1619 	if (bio->bi_opf & REQ_PREFLUSH) {
1620 		ci.bio = &ci.io->md->flush_bio;
1621 		ci.sector_count = 0;
1622 		error = __send_empty_flush(&ci);
1623 		/* dec_pending submits any data associated with flush */
1624 	} else {
1625 		struct dm_target *ti = md->immutable_target;
1626 		struct dm_target_io *tio;
1627 
1628 		/*
1629 		 * Defend against IO still getting in during teardown
1630 		 * - as was seen for a time with nvme-fcloop
1631 		 */
1632 		if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1633 			error = -EIO;
1634 			goto out;
1635 		}
1636 
1637 		ci.bio = bio;
1638 		ci.sector_count = bio_sectors(bio);
1639 		if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1640 			goto out;
1641 
1642 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1643 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1644 	}
1645 out:
1646 	/* drop the extra reference count */
1647 	dec_pending(ci.io, errno_to_blk_status(error));
1648 	return ret;
1649 }
1650 
1651 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1652 
1653 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1654 				  process_bio_fn process_bio)
1655 {
1656 	struct mapped_device *md = q->queuedata;
1657 	blk_qc_t ret = BLK_QC_T_NONE;
1658 	int srcu_idx;
1659 	struct dm_table *map;
1660 
1661 	map = dm_get_live_table(md, &srcu_idx);
1662 
1663 	/* if we're suspended, we have to queue this io for later */
1664 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1665 		dm_put_live_table(md, srcu_idx);
1666 
1667 		if (!(bio->bi_opf & REQ_RAHEAD))
1668 			queue_io(md, bio);
1669 		else
1670 			bio_io_error(bio);
1671 		return ret;
1672 	}
1673 
1674 	ret = process_bio(md, map, bio);
1675 
1676 	dm_put_live_table(md, srcu_idx);
1677 	return ret;
1678 }
1679 
1680 /*
1681  * The request function that remaps the bio to one target and
1682  * splits off any remainder.
1683  */
1684 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1685 {
1686 	return __dm_make_request(q, bio, __split_and_process_bio);
1687 }
1688 
1689 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1690 {
1691 	return __dm_make_request(q, bio, __process_bio);
1692 }
1693 
1694 static int dm_any_congested(void *congested_data, int bdi_bits)
1695 {
1696 	int r = bdi_bits;
1697 	struct mapped_device *md = congested_data;
1698 	struct dm_table *map;
1699 
1700 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1701 		if (dm_request_based(md)) {
1702 			/*
1703 			 * With request-based DM we only need to check the
1704 			 * top-level queue for congestion.
1705 			 */
1706 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1707 		} else {
1708 			map = dm_get_live_table_fast(md);
1709 			if (map)
1710 				r = dm_table_any_congested(map, bdi_bits);
1711 			dm_put_live_table_fast(md);
1712 		}
1713 	}
1714 
1715 	return r;
1716 }
1717 
1718 /*-----------------------------------------------------------------
1719  * An IDR is used to keep track of allocated minor numbers.
1720  *---------------------------------------------------------------*/
1721 static void free_minor(int minor)
1722 {
1723 	spin_lock(&_minor_lock);
1724 	idr_remove(&_minor_idr, minor);
1725 	spin_unlock(&_minor_lock);
1726 }
1727 
1728 /*
1729  * See if the device with a specific minor # is free.
1730  */
1731 static int specific_minor(int minor)
1732 {
1733 	int r;
1734 
1735 	if (minor >= (1 << MINORBITS))
1736 		return -EINVAL;
1737 
1738 	idr_preload(GFP_KERNEL);
1739 	spin_lock(&_minor_lock);
1740 
1741 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1742 
1743 	spin_unlock(&_minor_lock);
1744 	idr_preload_end();
1745 	if (r < 0)
1746 		return r == -ENOSPC ? -EBUSY : r;
1747 	return 0;
1748 }
1749 
1750 static int next_free_minor(int *minor)
1751 {
1752 	int r;
1753 
1754 	idr_preload(GFP_KERNEL);
1755 	spin_lock(&_minor_lock);
1756 
1757 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1758 
1759 	spin_unlock(&_minor_lock);
1760 	idr_preload_end();
1761 	if (r < 0)
1762 		return r;
1763 	*minor = r;
1764 	return 0;
1765 }
1766 
1767 static const struct block_device_operations dm_blk_dops;
1768 static const struct dax_operations dm_dax_ops;
1769 
1770 static void dm_wq_work(struct work_struct *work);
1771 
1772 static void dm_init_normal_md_queue(struct mapped_device *md)
1773 {
1774 	md->use_blk_mq = false;
1775 
1776 	/*
1777 	 * Initialize aspects of queue that aren't relevant for blk-mq
1778 	 */
1779 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1780 }
1781 
1782 static void cleanup_mapped_device(struct mapped_device *md)
1783 {
1784 	if (md->wq)
1785 		destroy_workqueue(md->wq);
1786 	if (md->kworker_task)
1787 		kthread_stop(md->kworker_task);
1788 	if (md->bs)
1789 		bioset_free(md->bs);
1790 	if (md->io_bs)
1791 		bioset_free(md->io_bs);
1792 
1793 	if (md->dax_dev) {
1794 		kill_dax(md->dax_dev);
1795 		put_dax(md->dax_dev);
1796 		md->dax_dev = NULL;
1797 	}
1798 
1799 	if (md->disk) {
1800 		spin_lock(&_minor_lock);
1801 		md->disk->private_data = NULL;
1802 		spin_unlock(&_minor_lock);
1803 		del_gendisk(md->disk);
1804 		put_disk(md->disk);
1805 	}
1806 
1807 	if (md->queue)
1808 		blk_cleanup_queue(md->queue);
1809 
1810 	cleanup_srcu_struct(&md->io_barrier);
1811 
1812 	if (md->bdev) {
1813 		bdput(md->bdev);
1814 		md->bdev = NULL;
1815 	}
1816 
1817 	mutex_destroy(&md->suspend_lock);
1818 	mutex_destroy(&md->type_lock);
1819 	mutex_destroy(&md->table_devices_lock);
1820 
1821 	dm_mq_cleanup_mapped_device(md);
1822 }
1823 
1824 /*
1825  * Allocate and initialise a blank device with a given minor.
1826  */
1827 static struct mapped_device *alloc_dev(int minor)
1828 {
1829 	int r, numa_node_id = dm_get_numa_node();
1830 	struct dax_device *dax_dev = NULL;
1831 	struct mapped_device *md;
1832 	void *old_md;
1833 
1834 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1835 	if (!md) {
1836 		DMWARN("unable to allocate device, out of memory.");
1837 		return NULL;
1838 	}
1839 
1840 	if (!try_module_get(THIS_MODULE))
1841 		goto bad_module_get;
1842 
1843 	/* get a minor number for the dev */
1844 	if (minor == DM_ANY_MINOR)
1845 		r = next_free_minor(&minor);
1846 	else
1847 		r = specific_minor(minor);
1848 	if (r < 0)
1849 		goto bad_minor;
1850 
1851 	r = init_srcu_struct(&md->io_barrier);
1852 	if (r < 0)
1853 		goto bad_io_barrier;
1854 
1855 	md->numa_node_id = numa_node_id;
1856 	md->use_blk_mq = dm_use_blk_mq_default();
1857 	md->init_tio_pdu = false;
1858 	md->type = DM_TYPE_NONE;
1859 	mutex_init(&md->suspend_lock);
1860 	mutex_init(&md->type_lock);
1861 	mutex_init(&md->table_devices_lock);
1862 	spin_lock_init(&md->deferred_lock);
1863 	atomic_set(&md->holders, 1);
1864 	atomic_set(&md->open_count, 0);
1865 	atomic_set(&md->event_nr, 0);
1866 	atomic_set(&md->uevent_seq, 0);
1867 	INIT_LIST_HEAD(&md->uevent_list);
1868 	INIT_LIST_HEAD(&md->table_devices);
1869 	spin_lock_init(&md->uevent_lock);
1870 
1871 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1872 	if (!md->queue)
1873 		goto bad;
1874 	md->queue->queuedata = md;
1875 	md->queue->backing_dev_info->congested_data = md;
1876 
1877 	md->disk = alloc_disk_node(1, md->numa_node_id);
1878 	if (!md->disk)
1879 		goto bad;
1880 
1881 	atomic_set(&md->pending[0], 0);
1882 	atomic_set(&md->pending[1], 0);
1883 	init_waitqueue_head(&md->wait);
1884 	INIT_WORK(&md->work, dm_wq_work);
1885 	init_waitqueue_head(&md->eventq);
1886 	init_completion(&md->kobj_holder.completion);
1887 	md->kworker_task = NULL;
1888 
1889 	md->disk->major = _major;
1890 	md->disk->first_minor = minor;
1891 	md->disk->fops = &dm_blk_dops;
1892 	md->disk->queue = md->queue;
1893 	md->disk->private_data = md;
1894 	sprintf(md->disk->disk_name, "dm-%d", minor);
1895 
1896 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1897 		dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1898 		if (!dax_dev)
1899 			goto bad;
1900 	}
1901 	md->dax_dev = dax_dev;
1902 
1903 	add_disk_no_queue_reg(md->disk);
1904 	format_dev_t(md->name, MKDEV(_major, minor));
1905 
1906 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1907 	if (!md->wq)
1908 		goto bad;
1909 
1910 	md->bdev = bdget_disk(md->disk, 0);
1911 	if (!md->bdev)
1912 		goto bad;
1913 
1914 	bio_init(&md->flush_bio, NULL, 0);
1915 	bio_set_dev(&md->flush_bio, md->bdev);
1916 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1917 
1918 	dm_stats_init(&md->stats);
1919 
1920 	/* Populate the mapping, nobody knows we exist yet */
1921 	spin_lock(&_minor_lock);
1922 	old_md = idr_replace(&_minor_idr, md, minor);
1923 	spin_unlock(&_minor_lock);
1924 
1925 	BUG_ON(old_md != MINOR_ALLOCED);
1926 
1927 	return md;
1928 
1929 bad:
1930 	cleanup_mapped_device(md);
1931 bad_io_barrier:
1932 	free_minor(minor);
1933 bad_minor:
1934 	module_put(THIS_MODULE);
1935 bad_module_get:
1936 	kvfree(md);
1937 	return NULL;
1938 }
1939 
1940 static void unlock_fs(struct mapped_device *md);
1941 
1942 static void free_dev(struct mapped_device *md)
1943 {
1944 	int minor = MINOR(disk_devt(md->disk));
1945 
1946 	unlock_fs(md);
1947 
1948 	cleanup_mapped_device(md);
1949 
1950 	free_table_devices(&md->table_devices);
1951 	dm_stats_cleanup(&md->stats);
1952 	free_minor(minor);
1953 
1954 	module_put(THIS_MODULE);
1955 	kvfree(md);
1956 }
1957 
1958 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1959 {
1960 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1961 
1962 	if (dm_table_bio_based(t)) {
1963 		/*
1964 		 * The md may already have mempools that need changing.
1965 		 * If so, reload bioset because front_pad may have changed
1966 		 * because a different table was loaded.
1967 		 */
1968 		if (md->bs) {
1969 			bioset_free(md->bs);
1970 			md->bs = NULL;
1971 		}
1972 		if (md->io_bs) {
1973 			bioset_free(md->io_bs);
1974 			md->io_bs = NULL;
1975 		}
1976 
1977 	} else if (md->bs) {
1978 		/*
1979 		 * There's no need to reload with request-based dm
1980 		 * because the size of front_pad doesn't change.
1981 		 * Note for future: If you are to reload bioset,
1982 		 * prep-ed requests in the queue may refer
1983 		 * to bio from the old bioset, so you must walk
1984 		 * through the queue to unprep.
1985 		 */
1986 		goto out;
1987 	}
1988 
1989 	BUG_ON(!p || md->bs || md->io_bs);
1990 
1991 	md->bs = p->bs;
1992 	p->bs = NULL;
1993 	md->io_bs = p->io_bs;
1994 	p->io_bs = NULL;
1995 out:
1996 	/* mempool bind completed, no longer need any mempools in the table */
1997 	dm_table_free_md_mempools(t);
1998 }
1999 
2000 /*
2001  * Bind a table to the device.
2002  */
2003 static void event_callback(void *context)
2004 {
2005 	unsigned long flags;
2006 	LIST_HEAD(uevents);
2007 	struct mapped_device *md = (struct mapped_device *) context;
2008 
2009 	spin_lock_irqsave(&md->uevent_lock, flags);
2010 	list_splice_init(&md->uevent_list, &uevents);
2011 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2012 
2013 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2014 
2015 	atomic_inc(&md->event_nr);
2016 	wake_up(&md->eventq);
2017 	dm_issue_global_event();
2018 }
2019 
2020 /*
2021  * Protected by md->suspend_lock obtained by dm_swap_table().
2022  */
2023 static void __set_size(struct mapped_device *md, sector_t size)
2024 {
2025 	lockdep_assert_held(&md->suspend_lock);
2026 
2027 	set_capacity(md->disk, size);
2028 
2029 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2030 }
2031 
2032 /*
2033  * Returns old map, which caller must destroy.
2034  */
2035 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2036 			       struct queue_limits *limits)
2037 {
2038 	struct dm_table *old_map;
2039 	struct request_queue *q = md->queue;
2040 	bool request_based = dm_table_request_based(t);
2041 	sector_t size;
2042 
2043 	lockdep_assert_held(&md->suspend_lock);
2044 
2045 	size = dm_table_get_size(t);
2046 
2047 	/*
2048 	 * Wipe any geometry if the size of the table changed.
2049 	 */
2050 	if (size != dm_get_size(md))
2051 		memset(&md->geometry, 0, sizeof(md->geometry));
2052 
2053 	__set_size(md, size);
2054 
2055 	dm_table_event_callback(t, event_callback, md);
2056 
2057 	/*
2058 	 * The queue hasn't been stopped yet, if the old table type wasn't
2059 	 * for request-based during suspension.  So stop it to prevent
2060 	 * I/O mapping before resume.
2061 	 * This must be done before setting the queue restrictions,
2062 	 * because request-based dm may be run just after the setting.
2063 	 */
2064 	if (request_based)
2065 		dm_stop_queue(q);
2066 
2067 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2068 		/*
2069 		 * Leverage the fact that request-based DM targets and
2070 		 * NVMe bio based targets are immutable singletons
2071 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2072 		 *   and __process_bio.
2073 		 */
2074 		md->immutable_target = dm_table_get_immutable_target(t);
2075 	}
2076 
2077 	__bind_mempools(md, t);
2078 
2079 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2080 	rcu_assign_pointer(md->map, (void *)t);
2081 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2082 
2083 	dm_table_set_restrictions(t, q, limits);
2084 	if (old_map)
2085 		dm_sync_table(md);
2086 
2087 	return old_map;
2088 }
2089 
2090 /*
2091  * Returns unbound table for the caller to free.
2092  */
2093 static struct dm_table *__unbind(struct mapped_device *md)
2094 {
2095 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2096 
2097 	if (!map)
2098 		return NULL;
2099 
2100 	dm_table_event_callback(map, NULL, NULL);
2101 	RCU_INIT_POINTER(md->map, NULL);
2102 	dm_sync_table(md);
2103 
2104 	return map;
2105 }
2106 
2107 /*
2108  * Constructor for a new device.
2109  */
2110 int dm_create(int minor, struct mapped_device **result)
2111 {
2112 	int r;
2113 	struct mapped_device *md;
2114 
2115 	md = alloc_dev(minor);
2116 	if (!md)
2117 		return -ENXIO;
2118 
2119 	r = dm_sysfs_init(md);
2120 	if (r) {
2121 		free_dev(md);
2122 		return r;
2123 	}
2124 
2125 	*result = md;
2126 	return 0;
2127 }
2128 
2129 /*
2130  * Functions to manage md->type.
2131  * All are required to hold md->type_lock.
2132  */
2133 void dm_lock_md_type(struct mapped_device *md)
2134 {
2135 	mutex_lock(&md->type_lock);
2136 }
2137 
2138 void dm_unlock_md_type(struct mapped_device *md)
2139 {
2140 	mutex_unlock(&md->type_lock);
2141 }
2142 
2143 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2144 {
2145 	BUG_ON(!mutex_is_locked(&md->type_lock));
2146 	md->type = type;
2147 }
2148 
2149 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2150 {
2151 	return md->type;
2152 }
2153 
2154 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2155 {
2156 	return md->immutable_target_type;
2157 }
2158 
2159 /*
2160  * The queue_limits are only valid as long as you have a reference
2161  * count on 'md'.
2162  */
2163 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2164 {
2165 	BUG_ON(!atomic_read(&md->holders));
2166 	return &md->queue->limits;
2167 }
2168 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2169 
2170 /*
2171  * Setup the DM device's queue based on md's type
2172  */
2173 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2174 {
2175 	int r;
2176 	struct queue_limits limits;
2177 	enum dm_queue_mode type = dm_get_md_type(md);
2178 
2179 	switch (type) {
2180 	case DM_TYPE_REQUEST_BASED:
2181 		dm_init_normal_md_queue(md);
2182 		r = dm_old_init_request_queue(md, t);
2183 		if (r) {
2184 			DMERR("Cannot initialize queue for request-based mapped device");
2185 			return r;
2186 		}
2187 		break;
2188 	case DM_TYPE_MQ_REQUEST_BASED:
2189 		r = dm_mq_init_request_queue(md, t);
2190 		if (r) {
2191 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2192 			return r;
2193 		}
2194 		break;
2195 	case DM_TYPE_BIO_BASED:
2196 	case DM_TYPE_DAX_BIO_BASED:
2197 		dm_init_normal_md_queue(md);
2198 		blk_queue_make_request(md->queue, dm_make_request);
2199 		break;
2200 	case DM_TYPE_NVME_BIO_BASED:
2201 		dm_init_normal_md_queue(md);
2202 		blk_queue_make_request(md->queue, dm_make_request_nvme);
2203 		break;
2204 	case DM_TYPE_NONE:
2205 		WARN_ON_ONCE(true);
2206 		break;
2207 	}
2208 
2209 	r = dm_calculate_queue_limits(t, &limits);
2210 	if (r) {
2211 		DMERR("Cannot calculate initial queue limits");
2212 		return r;
2213 	}
2214 	dm_table_set_restrictions(t, md->queue, &limits);
2215 	blk_register_queue(md->disk);
2216 
2217 	return 0;
2218 }
2219 
2220 struct mapped_device *dm_get_md(dev_t dev)
2221 {
2222 	struct mapped_device *md;
2223 	unsigned minor = MINOR(dev);
2224 
2225 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2226 		return NULL;
2227 
2228 	spin_lock(&_minor_lock);
2229 
2230 	md = idr_find(&_minor_idr, minor);
2231 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2232 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2233 		md = NULL;
2234 		goto out;
2235 	}
2236 	dm_get(md);
2237 out:
2238 	spin_unlock(&_minor_lock);
2239 
2240 	return md;
2241 }
2242 EXPORT_SYMBOL_GPL(dm_get_md);
2243 
2244 void *dm_get_mdptr(struct mapped_device *md)
2245 {
2246 	return md->interface_ptr;
2247 }
2248 
2249 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2250 {
2251 	md->interface_ptr = ptr;
2252 }
2253 
2254 void dm_get(struct mapped_device *md)
2255 {
2256 	atomic_inc(&md->holders);
2257 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2258 }
2259 
2260 int dm_hold(struct mapped_device *md)
2261 {
2262 	spin_lock(&_minor_lock);
2263 	if (test_bit(DMF_FREEING, &md->flags)) {
2264 		spin_unlock(&_minor_lock);
2265 		return -EBUSY;
2266 	}
2267 	dm_get(md);
2268 	spin_unlock(&_minor_lock);
2269 	return 0;
2270 }
2271 EXPORT_SYMBOL_GPL(dm_hold);
2272 
2273 const char *dm_device_name(struct mapped_device *md)
2274 {
2275 	return md->name;
2276 }
2277 EXPORT_SYMBOL_GPL(dm_device_name);
2278 
2279 static void __dm_destroy(struct mapped_device *md, bool wait)
2280 {
2281 	struct dm_table *map;
2282 	int srcu_idx;
2283 
2284 	might_sleep();
2285 
2286 	spin_lock(&_minor_lock);
2287 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2288 	set_bit(DMF_FREEING, &md->flags);
2289 	spin_unlock(&_minor_lock);
2290 
2291 	blk_set_queue_dying(md->queue);
2292 
2293 	if (dm_request_based(md) && md->kworker_task)
2294 		kthread_flush_worker(&md->kworker);
2295 
2296 	/*
2297 	 * Take suspend_lock so that presuspend and postsuspend methods
2298 	 * do not race with internal suspend.
2299 	 */
2300 	mutex_lock(&md->suspend_lock);
2301 	map = dm_get_live_table(md, &srcu_idx);
2302 	if (!dm_suspended_md(md)) {
2303 		dm_table_presuspend_targets(map);
2304 		dm_table_postsuspend_targets(map);
2305 	}
2306 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2307 	dm_put_live_table(md, srcu_idx);
2308 	mutex_unlock(&md->suspend_lock);
2309 
2310 	/*
2311 	 * Rare, but there may be I/O requests still going to complete,
2312 	 * for example.  Wait for all references to disappear.
2313 	 * No one should increment the reference count of the mapped_device,
2314 	 * after the mapped_device state becomes DMF_FREEING.
2315 	 */
2316 	if (wait)
2317 		while (atomic_read(&md->holders))
2318 			msleep(1);
2319 	else if (atomic_read(&md->holders))
2320 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2321 		       dm_device_name(md), atomic_read(&md->holders));
2322 
2323 	dm_sysfs_exit(md);
2324 	dm_table_destroy(__unbind(md));
2325 	free_dev(md);
2326 }
2327 
2328 void dm_destroy(struct mapped_device *md)
2329 {
2330 	__dm_destroy(md, true);
2331 }
2332 
2333 void dm_destroy_immediate(struct mapped_device *md)
2334 {
2335 	__dm_destroy(md, false);
2336 }
2337 
2338 void dm_put(struct mapped_device *md)
2339 {
2340 	atomic_dec(&md->holders);
2341 }
2342 EXPORT_SYMBOL_GPL(dm_put);
2343 
2344 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2345 {
2346 	int r = 0;
2347 	DEFINE_WAIT(wait);
2348 
2349 	while (1) {
2350 		prepare_to_wait(&md->wait, &wait, task_state);
2351 
2352 		if (!md_in_flight(md))
2353 			break;
2354 
2355 		if (signal_pending_state(task_state, current)) {
2356 			r = -EINTR;
2357 			break;
2358 		}
2359 
2360 		io_schedule();
2361 	}
2362 	finish_wait(&md->wait, &wait);
2363 
2364 	return r;
2365 }
2366 
2367 /*
2368  * Process the deferred bios
2369  */
2370 static void dm_wq_work(struct work_struct *work)
2371 {
2372 	struct mapped_device *md = container_of(work, struct mapped_device,
2373 						work);
2374 	struct bio *c;
2375 	int srcu_idx;
2376 	struct dm_table *map;
2377 
2378 	map = dm_get_live_table(md, &srcu_idx);
2379 
2380 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2381 		spin_lock_irq(&md->deferred_lock);
2382 		c = bio_list_pop(&md->deferred);
2383 		spin_unlock_irq(&md->deferred_lock);
2384 
2385 		if (!c)
2386 			break;
2387 
2388 		if (dm_request_based(md))
2389 			generic_make_request(c);
2390 		else
2391 			__split_and_process_bio(md, map, c);
2392 	}
2393 
2394 	dm_put_live_table(md, srcu_idx);
2395 }
2396 
2397 static void dm_queue_flush(struct mapped_device *md)
2398 {
2399 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2400 	smp_mb__after_atomic();
2401 	queue_work(md->wq, &md->work);
2402 }
2403 
2404 /*
2405  * Swap in a new table, returning the old one for the caller to destroy.
2406  */
2407 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2408 {
2409 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2410 	struct queue_limits limits;
2411 	int r;
2412 
2413 	mutex_lock(&md->suspend_lock);
2414 
2415 	/* device must be suspended */
2416 	if (!dm_suspended_md(md))
2417 		goto out;
2418 
2419 	/*
2420 	 * If the new table has no data devices, retain the existing limits.
2421 	 * This helps multipath with queue_if_no_path if all paths disappear,
2422 	 * then new I/O is queued based on these limits, and then some paths
2423 	 * reappear.
2424 	 */
2425 	if (dm_table_has_no_data_devices(table)) {
2426 		live_map = dm_get_live_table_fast(md);
2427 		if (live_map)
2428 			limits = md->queue->limits;
2429 		dm_put_live_table_fast(md);
2430 	}
2431 
2432 	if (!live_map) {
2433 		r = dm_calculate_queue_limits(table, &limits);
2434 		if (r) {
2435 			map = ERR_PTR(r);
2436 			goto out;
2437 		}
2438 	}
2439 
2440 	map = __bind(md, table, &limits);
2441 	dm_issue_global_event();
2442 
2443 out:
2444 	mutex_unlock(&md->suspend_lock);
2445 	return map;
2446 }
2447 
2448 /*
2449  * Functions to lock and unlock any filesystem running on the
2450  * device.
2451  */
2452 static int lock_fs(struct mapped_device *md)
2453 {
2454 	int r;
2455 
2456 	WARN_ON(md->frozen_sb);
2457 
2458 	md->frozen_sb = freeze_bdev(md->bdev);
2459 	if (IS_ERR(md->frozen_sb)) {
2460 		r = PTR_ERR(md->frozen_sb);
2461 		md->frozen_sb = NULL;
2462 		return r;
2463 	}
2464 
2465 	set_bit(DMF_FROZEN, &md->flags);
2466 
2467 	return 0;
2468 }
2469 
2470 static void unlock_fs(struct mapped_device *md)
2471 {
2472 	if (!test_bit(DMF_FROZEN, &md->flags))
2473 		return;
2474 
2475 	thaw_bdev(md->bdev, md->frozen_sb);
2476 	md->frozen_sb = NULL;
2477 	clear_bit(DMF_FROZEN, &md->flags);
2478 }
2479 
2480 /*
2481  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2482  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2483  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2484  *
2485  * If __dm_suspend returns 0, the device is completely quiescent
2486  * now. There is no request-processing activity. All new requests
2487  * are being added to md->deferred list.
2488  */
2489 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2490 			unsigned suspend_flags, long task_state,
2491 			int dmf_suspended_flag)
2492 {
2493 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2494 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2495 	int r;
2496 
2497 	lockdep_assert_held(&md->suspend_lock);
2498 
2499 	/*
2500 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2501 	 * This flag is cleared before dm_suspend returns.
2502 	 */
2503 	if (noflush)
2504 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2505 	else
2506 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2507 
2508 	/*
2509 	 * This gets reverted if there's an error later and the targets
2510 	 * provide the .presuspend_undo hook.
2511 	 */
2512 	dm_table_presuspend_targets(map);
2513 
2514 	/*
2515 	 * Flush I/O to the device.
2516 	 * Any I/O submitted after lock_fs() may not be flushed.
2517 	 * noflush takes precedence over do_lockfs.
2518 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2519 	 */
2520 	if (!noflush && do_lockfs) {
2521 		r = lock_fs(md);
2522 		if (r) {
2523 			dm_table_presuspend_undo_targets(map);
2524 			return r;
2525 		}
2526 	}
2527 
2528 	/*
2529 	 * Here we must make sure that no processes are submitting requests
2530 	 * to target drivers i.e. no one may be executing
2531 	 * __split_and_process_bio. This is called from dm_request and
2532 	 * dm_wq_work.
2533 	 *
2534 	 * To get all processes out of __split_and_process_bio in dm_request,
2535 	 * we take the write lock. To prevent any process from reentering
2536 	 * __split_and_process_bio from dm_request and quiesce the thread
2537 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2538 	 * flush_workqueue(md->wq).
2539 	 */
2540 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2541 	if (map)
2542 		synchronize_srcu(&md->io_barrier);
2543 
2544 	/*
2545 	 * Stop md->queue before flushing md->wq in case request-based
2546 	 * dm defers requests to md->wq from md->queue.
2547 	 */
2548 	if (dm_request_based(md)) {
2549 		dm_stop_queue(md->queue);
2550 		if (md->kworker_task)
2551 			kthread_flush_worker(&md->kworker);
2552 	}
2553 
2554 	flush_workqueue(md->wq);
2555 
2556 	/*
2557 	 * At this point no more requests are entering target request routines.
2558 	 * We call dm_wait_for_completion to wait for all existing requests
2559 	 * to finish.
2560 	 */
2561 	r = dm_wait_for_completion(md, task_state);
2562 	if (!r)
2563 		set_bit(dmf_suspended_flag, &md->flags);
2564 
2565 	if (noflush)
2566 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2567 	if (map)
2568 		synchronize_srcu(&md->io_barrier);
2569 
2570 	/* were we interrupted ? */
2571 	if (r < 0) {
2572 		dm_queue_flush(md);
2573 
2574 		if (dm_request_based(md))
2575 			dm_start_queue(md->queue);
2576 
2577 		unlock_fs(md);
2578 		dm_table_presuspend_undo_targets(map);
2579 		/* pushback list is already flushed, so skip flush */
2580 	}
2581 
2582 	return r;
2583 }
2584 
2585 /*
2586  * We need to be able to change a mapping table under a mounted
2587  * filesystem.  For example we might want to move some data in
2588  * the background.  Before the table can be swapped with
2589  * dm_bind_table, dm_suspend must be called to flush any in
2590  * flight bios and ensure that any further io gets deferred.
2591  */
2592 /*
2593  * Suspend mechanism in request-based dm.
2594  *
2595  * 1. Flush all I/Os by lock_fs() if needed.
2596  * 2. Stop dispatching any I/O by stopping the request_queue.
2597  * 3. Wait for all in-flight I/Os to be completed or requeued.
2598  *
2599  * To abort suspend, start the request_queue.
2600  */
2601 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2602 {
2603 	struct dm_table *map = NULL;
2604 	int r = 0;
2605 
2606 retry:
2607 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2608 
2609 	if (dm_suspended_md(md)) {
2610 		r = -EINVAL;
2611 		goto out_unlock;
2612 	}
2613 
2614 	if (dm_suspended_internally_md(md)) {
2615 		/* already internally suspended, wait for internal resume */
2616 		mutex_unlock(&md->suspend_lock);
2617 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2618 		if (r)
2619 			return r;
2620 		goto retry;
2621 	}
2622 
2623 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2624 
2625 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2626 	if (r)
2627 		goto out_unlock;
2628 
2629 	dm_table_postsuspend_targets(map);
2630 
2631 out_unlock:
2632 	mutex_unlock(&md->suspend_lock);
2633 	return r;
2634 }
2635 
2636 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2637 {
2638 	if (map) {
2639 		int r = dm_table_resume_targets(map);
2640 		if (r)
2641 			return r;
2642 	}
2643 
2644 	dm_queue_flush(md);
2645 
2646 	/*
2647 	 * Flushing deferred I/Os must be done after targets are resumed
2648 	 * so that mapping of targets can work correctly.
2649 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2650 	 */
2651 	if (dm_request_based(md))
2652 		dm_start_queue(md->queue);
2653 
2654 	unlock_fs(md);
2655 
2656 	return 0;
2657 }
2658 
2659 int dm_resume(struct mapped_device *md)
2660 {
2661 	int r;
2662 	struct dm_table *map = NULL;
2663 
2664 retry:
2665 	r = -EINVAL;
2666 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2667 
2668 	if (!dm_suspended_md(md))
2669 		goto out;
2670 
2671 	if (dm_suspended_internally_md(md)) {
2672 		/* already internally suspended, wait for internal resume */
2673 		mutex_unlock(&md->suspend_lock);
2674 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2675 		if (r)
2676 			return r;
2677 		goto retry;
2678 	}
2679 
2680 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2681 	if (!map || !dm_table_get_size(map))
2682 		goto out;
2683 
2684 	r = __dm_resume(md, map);
2685 	if (r)
2686 		goto out;
2687 
2688 	clear_bit(DMF_SUSPENDED, &md->flags);
2689 out:
2690 	mutex_unlock(&md->suspend_lock);
2691 
2692 	return r;
2693 }
2694 
2695 /*
2696  * Internal suspend/resume works like userspace-driven suspend. It waits
2697  * until all bios finish and prevents issuing new bios to the target drivers.
2698  * It may be used only from the kernel.
2699  */
2700 
2701 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2702 {
2703 	struct dm_table *map = NULL;
2704 
2705 	lockdep_assert_held(&md->suspend_lock);
2706 
2707 	if (md->internal_suspend_count++)
2708 		return; /* nested internal suspend */
2709 
2710 	if (dm_suspended_md(md)) {
2711 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2712 		return; /* nest suspend */
2713 	}
2714 
2715 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2716 
2717 	/*
2718 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2719 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2720 	 * would require changing .presuspend to return an error -- avoid this
2721 	 * until there is a need for more elaborate variants of internal suspend.
2722 	 */
2723 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2724 			    DMF_SUSPENDED_INTERNALLY);
2725 
2726 	dm_table_postsuspend_targets(map);
2727 }
2728 
2729 static void __dm_internal_resume(struct mapped_device *md)
2730 {
2731 	BUG_ON(!md->internal_suspend_count);
2732 
2733 	if (--md->internal_suspend_count)
2734 		return; /* resume from nested internal suspend */
2735 
2736 	if (dm_suspended_md(md))
2737 		goto done; /* resume from nested suspend */
2738 
2739 	/*
2740 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2741 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2742 	 */
2743 	(void) __dm_resume(md, NULL);
2744 
2745 done:
2746 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2747 	smp_mb__after_atomic();
2748 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2749 }
2750 
2751 void dm_internal_suspend_noflush(struct mapped_device *md)
2752 {
2753 	mutex_lock(&md->suspend_lock);
2754 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2755 	mutex_unlock(&md->suspend_lock);
2756 }
2757 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2758 
2759 void dm_internal_resume(struct mapped_device *md)
2760 {
2761 	mutex_lock(&md->suspend_lock);
2762 	__dm_internal_resume(md);
2763 	mutex_unlock(&md->suspend_lock);
2764 }
2765 EXPORT_SYMBOL_GPL(dm_internal_resume);
2766 
2767 /*
2768  * Fast variants of internal suspend/resume hold md->suspend_lock,
2769  * which prevents interaction with userspace-driven suspend.
2770  */
2771 
2772 void dm_internal_suspend_fast(struct mapped_device *md)
2773 {
2774 	mutex_lock(&md->suspend_lock);
2775 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2776 		return;
2777 
2778 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2779 	synchronize_srcu(&md->io_barrier);
2780 	flush_workqueue(md->wq);
2781 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2782 }
2783 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2784 
2785 void dm_internal_resume_fast(struct mapped_device *md)
2786 {
2787 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2788 		goto done;
2789 
2790 	dm_queue_flush(md);
2791 
2792 done:
2793 	mutex_unlock(&md->suspend_lock);
2794 }
2795 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2796 
2797 /*-----------------------------------------------------------------
2798  * Event notification.
2799  *---------------------------------------------------------------*/
2800 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2801 		       unsigned cookie)
2802 {
2803 	char udev_cookie[DM_COOKIE_LENGTH];
2804 	char *envp[] = { udev_cookie, NULL };
2805 
2806 	if (!cookie)
2807 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2808 	else {
2809 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2810 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2811 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2812 					  action, envp);
2813 	}
2814 }
2815 
2816 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2817 {
2818 	return atomic_add_return(1, &md->uevent_seq);
2819 }
2820 
2821 uint32_t dm_get_event_nr(struct mapped_device *md)
2822 {
2823 	return atomic_read(&md->event_nr);
2824 }
2825 
2826 int dm_wait_event(struct mapped_device *md, int event_nr)
2827 {
2828 	return wait_event_interruptible(md->eventq,
2829 			(event_nr != atomic_read(&md->event_nr)));
2830 }
2831 
2832 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2833 {
2834 	unsigned long flags;
2835 
2836 	spin_lock_irqsave(&md->uevent_lock, flags);
2837 	list_add(elist, &md->uevent_list);
2838 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2839 }
2840 
2841 /*
2842  * The gendisk is only valid as long as you have a reference
2843  * count on 'md'.
2844  */
2845 struct gendisk *dm_disk(struct mapped_device *md)
2846 {
2847 	return md->disk;
2848 }
2849 EXPORT_SYMBOL_GPL(dm_disk);
2850 
2851 struct kobject *dm_kobject(struct mapped_device *md)
2852 {
2853 	return &md->kobj_holder.kobj;
2854 }
2855 
2856 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2857 {
2858 	struct mapped_device *md;
2859 
2860 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2861 
2862 	spin_lock(&_minor_lock);
2863 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2864 		md = NULL;
2865 		goto out;
2866 	}
2867 	dm_get(md);
2868 out:
2869 	spin_unlock(&_minor_lock);
2870 
2871 	return md;
2872 }
2873 
2874 int dm_suspended_md(struct mapped_device *md)
2875 {
2876 	return test_bit(DMF_SUSPENDED, &md->flags);
2877 }
2878 
2879 int dm_suspended_internally_md(struct mapped_device *md)
2880 {
2881 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2882 }
2883 
2884 int dm_test_deferred_remove_flag(struct mapped_device *md)
2885 {
2886 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2887 }
2888 
2889 int dm_suspended(struct dm_target *ti)
2890 {
2891 	return dm_suspended_md(dm_table_get_md(ti->table));
2892 }
2893 EXPORT_SYMBOL_GPL(dm_suspended);
2894 
2895 int dm_noflush_suspending(struct dm_target *ti)
2896 {
2897 	return __noflush_suspending(dm_table_get_md(ti->table));
2898 }
2899 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2900 
2901 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2902 					    unsigned integrity, unsigned per_io_data_size,
2903 					    unsigned min_pool_size)
2904 {
2905 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2906 	unsigned int pool_size = 0;
2907 	unsigned int front_pad, io_front_pad;
2908 
2909 	if (!pools)
2910 		return NULL;
2911 
2912 	switch (type) {
2913 	case DM_TYPE_BIO_BASED:
2914 	case DM_TYPE_DAX_BIO_BASED:
2915 	case DM_TYPE_NVME_BIO_BASED:
2916 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2917 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2918 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2919 		pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2920 		if (!pools->io_bs)
2921 			goto out;
2922 		if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2923 			goto out;
2924 		break;
2925 	case DM_TYPE_REQUEST_BASED:
2926 	case DM_TYPE_MQ_REQUEST_BASED:
2927 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2928 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2929 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2930 		break;
2931 	default:
2932 		BUG();
2933 	}
2934 
2935 	pools->bs = bioset_create(pool_size, front_pad, 0);
2936 	if (!pools->bs)
2937 		goto out;
2938 
2939 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2940 		goto out;
2941 
2942 	return pools;
2943 
2944 out:
2945 	dm_free_md_mempools(pools);
2946 
2947 	return NULL;
2948 }
2949 
2950 void dm_free_md_mempools(struct dm_md_mempools *pools)
2951 {
2952 	if (!pools)
2953 		return;
2954 
2955 	if (pools->bs)
2956 		bioset_free(pools->bs);
2957 	if (pools->io_bs)
2958 		bioset_free(pools->io_bs);
2959 
2960 	kfree(pools);
2961 }
2962 
2963 struct dm_pr {
2964 	u64	old_key;
2965 	u64	new_key;
2966 	u32	flags;
2967 	bool	fail_early;
2968 };
2969 
2970 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2971 		      void *data)
2972 {
2973 	struct mapped_device *md = bdev->bd_disk->private_data;
2974 	struct dm_table *table;
2975 	struct dm_target *ti;
2976 	int ret = -ENOTTY, srcu_idx;
2977 
2978 	table = dm_get_live_table(md, &srcu_idx);
2979 	if (!table || !dm_table_get_size(table))
2980 		goto out;
2981 
2982 	/* We only support devices that have a single target */
2983 	if (dm_table_get_num_targets(table) != 1)
2984 		goto out;
2985 	ti = dm_table_get_target(table, 0);
2986 
2987 	ret = -EINVAL;
2988 	if (!ti->type->iterate_devices)
2989 		goto out;
2990 
2991 	ret = ti->type->iterate_devices(ti, fn, data);
2992 out:
2993 	dm_put_live_table(md, srcu_idx);
2994 	return ret;
2995 }
2996 
2997 /*
2998  * For register / unregister we need to manually call out to every path.
2999  */
3000 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3001 			    sector_t start, sector_t len, void *data)
3002 {
3003 	struct dm_pr *pr = data;
3004 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3005 
3006 	if (!ops || !ops->pr_register)
3007 		return -EOPNOTSUPP;
3008 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3009 }
3010 
3011 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3012 			  u32 flags)
3013 {
3014 	struct dm_pr pr = {
3015 		.old_key	= old_key,
3016 		.new_key	= new_key,
3017 		.flags		= flags,
3018 		.fail_early	= true,
3019 	};
3020 	int ret;
3021 
3022 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3023 	if (ret && new_key) {
3024 		/* unregister all paths if we failed to register any path */
3025 		pr.old_key = new_key;
3026 		pr.new_key = 0;
3027 		pr.flags = 0;
3028 		pr.fail_early = false;
3029 		dm_call_pr(bdev, __dm_pr_register, &pr);
3030 	}
3031 
3032 	return ret;
3033 }
3034 
3035 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3036 			 u32 flags)
3037 {
3038 	struct mapped_device *md = bdev->bd_disk->private_data;
3039 	const struct pr_ops *ops;
3040 	int r, srcu_idx;
3041 
3042 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3043 	if (r < 0)
3044 		goto out;
3045 
3046 	ops = bdev->bd_disk->fops->pr_ops;
3047 	if (ops && ops->pr_reserve)
3048 		r = ops->pr_reserve(bdev, key, type, flags);
3049 	else
3050 		r = -EOPNOTSUPP;
3051 out:
3052 	dm_unprepare_ioctl(md, srcu_idx);
3053 	return r;
3054 }
3055 
3056 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3057 {
3058 	struct mapped_device *md = bdev->bd_disk->private_data;
3059 	const struct pr_ops *ops;
3060 	int r, srcu_idx;
3061 
3062 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3063 	if (r < 0)
3064 		goto out;
3065 
3066 	ops = bdev->bd_disk->fops->pr_ops;
3067 	if (ops && ops->pr_release)
3068 		r = ops->pr_release(bdev, key, type);
3069 	else
3070 		r = -EOPNOTSUPP;
3071 out:
3072 	dm_unprepare_ioctl(md, srcu_idx);
3073 	return r;
3074 }
3075 
3076 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3077 			 enum pr_type type, bool abort)
3078 {
3079 	struct mapped_device *md = bdev->bd_disk->private_data;
3080 	const struct pr_ops *ops;
3081 	int r, srcu_idx;
3082 
3083 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3084 	if (r < 0)
3085 		goto out;
3086 
3087 	ops = bdev->bd_disk->fops->pr_ops;
3088 	if (ops && ops->pr_preempt)
3089 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3090 	else
3091 		r = -EOPNOTSUPP;
3092 out:
3093 	dm_unprepare_ioctl(md, srcu_idx);
3094 	return r;
3095 }
3096 
3097 static int dm_pr_clear(struct block_device *bdev, u64 key)
3098 {
3099 	struct mapped_device *md = bdev->bd_disk->private_data;
3100 	const struct pr_ops *ops;
3101 	int r, srcu_idx;
3102 
3103 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3104 	if (r < 0)
3105 		goto out;
3106 
3107 	ops = bdev->bd_disk->fops->pr_ops;
3108 	if (ops && ops->pr_clear)
3109 		r = ops->pr_clear(bdev, key);
3110 	else
3111 		r = -EOPNOTSUPP;
3112 out:
3113 	dm_unprepare_ioctl(md, srcu_idx);
3114 	return r;
3115 }
3116 
3117 static const struct pr_ops dm_pr_ops = {
3118 	.pr_register	= dm_pr_register,
3119 	.pr_reserve	= dm_pr_reserve,
3120 	.pr_release	= dm_pr_release,
3121 	.pr_preempt	= dm_pr_preempt,
3122 	.pr_clear	= dm_pr_clear,
3123 };
3124 
3125 static const struct block_device_operations dm_blk_dops = {
3126 	.open = dm_blk_open,
3127 	.release = dm_blk_close,
3128 	.ioctl = dm_blk_ioctl,
3129 	.getgeo = dm_blk_getgeo,
3130 	.pr_ops = &dm_pr_ops,
3131 	.owner = THIS_MODULE
3132 };
3133 
3134 static const struct dax_operations dm_dax_ops = {
3135 	.direct_access = dm_dax_direct_access,
3136 	.copy_from_iter = dm_dax_copy_from_iter,
3137 };
3138 
3139 /*
3140  * module hooks
3141  */
3142 module_init(dm_init);
3143 module_exit(dm_exit);
3144 
3145 module_param(major, uint, 0);
3146 MODULE_PARM_DESC(major, "The major number of the device mapper");
3147 
3148 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3149 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3150 
3151 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3152 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3153 
3154 MODULE_DESCRIPTION(DM_NAME " driver");
3155 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3156 MODULE_LICENSE("GPL");
3157