1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/mm.h> 16 #include <linux/sched/signal.h> 17 #include <linux/blkpg.h> 18 #include <linux/bio.h> 19 #include <linux/mempool.h> 20 #include <linux/dax.h> 21 #include <linux/slab.h> 22 #include <linux/idr.h> 23 #include <linux/uio.h> 24 #include <linux/hdreg.h> 25 #include <linux/delay.h> 26 #include <linux/wait.h> 27 #include <linux/pr.h> 28 #include <linux/refcount.h> 29 #include <linux/part_stat.h> 30 #include <linux/blk-crypto.h> 31 #include <linux/keyslot-manager.h> 32 33 #define DM_MSG_PREFIX "core" 34 35 /* 36 * Cookies are numeric values sent with CHANGE and REMOVE 37 * uevents while resuming, removing or renaming the device. 38 */ 39 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 40 #define DM_COOKIE_LENGTH 24 41 42 static const char *_name = DM_NAME; 43 44 static unsigned int major = 0; 45 static unsigned int _major = 0; 46 47 static DEFINE_IDR(_minor_idr); 48 49 static DEFINE_SPINLOCK(_minor_lock); 50 51 static void do_deferred_remove(struct work_struct *w); 52 53 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 54 55 static struct workqueue_struct *deferred_remove_workqueue; 56 57 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 58 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 59 60 void dm_issue_global_event(void) 61 { 62 atomic_inc(&dm_global_event_nr); 63 wake_up(&dm_global_eventq); 64 } 65 66 /* 67 * One of these is allocated (on-stack) per original bio. 68 */ 69 struct clone_info { 70 struct dm_table *map; 71 struct bio *bio; 72 struct dm_io *io; 73 sector_t sector; 74 unsigned sector_count; 75 }; 76 77 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone)) 78 #define DM_IO_BIO_OFFSET \ 79 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio)) 80 81 void *dm_per_bio_data(struct bio *bio, size_t data_size) 82 { 83 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 84 if (!tio->inside_dm_io) 85 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 86 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 87 } 88 EXPORT_SYMBOL_GPL(dm_per_bio_data); 89 90 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 91 { 92 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 93 if (io->magic == DM_IO_MAGIC) 94 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 95 BUG_ON(io->magic != DM_TIO_MAGIC); 96 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 97 } 98 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 99 100 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 101 { 102 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 103 } 104 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 105 106 #define MINOR_ALLOCED ((void *)-1) 107 108 #define DM_NUMA_NODE NUMA_NO_NODE 109 static int dm_numa_node = DM_NUMA_NODE; 110 111 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 112 static int swap_bios = DEFAULT_SWAP_BIOS; 113 static int get_swap_bios(void) 114 { 115 int latch = READ_ONCE(swap_bios); 116 if (unlikely(latch <= 0)) 117 latch = DEFAULT_SWAP_BIOS; 118 return latch; 119 } 120 121 /* 122 * For mempools pre-allocation at the table loading time. 123 */ 124 struct dm_md_mempools { 125 struct bio_set bs; 126 struct bio_set io_bs; 127 }; 128 129 struct table_device { 130 struct list_head list; 131 refcount_t count; 132 struct dm_dev dm_dev; 133 }; 134 135 /* 136 * Bio-based DM's mempools' reserved IOs set by the user. 137 */ 138 #define RESERVED_BIO_BASED_IOS 16 139 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 140 141 static int __dm_get_module_param_int(int *module_param, int min, int max) 142 { 143 int param = READ_ONCE(*module_param); 144 int modified_param = 0; 145 bool modified = true; 146 147 if (param < min) 148 modified_param = min; 149 else if (param > max) 150 modified_param = max; 151 else 152 modified = false; 153 154 if (modified) { 155 (void)cmpxchg(module_param, param, modified_param); 156 param = modified_param; 157 } 158 159 return param; 160 } 161 162 unsigned __dm_get_module_param(unsigned *module_param, 163 unsigned def, unsigned max) 164 { 165 unsigned param = READ_ONCE(*module_param); 166 unsigned modified_param = 0; 167 168 if (!param) 169 modified_param = def; 170 else if (param > max) 171 modified_param = max; 172 173 if (modified_param) { 174 (void)cmpxchg(module_param, param, modified_param); 175 param = modified_param; 176 } 177 178 return param; 179 } 180 181 unsigned dm_get_reserved_bio_based_ios(void) 182 { 183 return __dm_get_module_param(&reserved_bio_based_ios, 184 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 185 } 186 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 187 188 static unsigned dm_get_numa_node(void) 189 { 190 return __dm_get_module_param_int(&dm_numa_node, 191 DM_NUMA_NODE, num_online_nodes() - 1); 192 } 193 194 static int __init local_init(void) 195 { 196 int r; 197 198 r = dm_uevent_init(); 199 if (r) 200 return r; 201 202 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 203 if (!deferred_remove_workqueue) { 204 r = -ENOMEM; 205 goto out_uevent_exit; 206 } 207 208 _major = major; 209 r = register_blkdev(_major, _name); 210 if (r < 0) 211 goto out_free_workqueue; 212 213 if (!_major) 214 _major = r; 215 216 return 0; 217 218 out_free_workqueue: 219 destroy_workqueue(deferred_remove_workqueue); 220 out_uevent_exit: 221 dm_uevent_exit(); 222 223 return r; 224 } 225 226 static void local_exit(void) 227 { 228 flush_scheduled_work(); 229 destroy_workqueue(deferred_remove_workqueue); 230 231 unregister_blkdev(_major, _name); 232 dm_uevent_exit(); 233 234 _major = 0; 235 236 DMINFO("cleaned up"); 237 } 238 239 static int (*_inits[])(void) __initdata = { 240 local_init, 241 dm_target_init, 242 dm_linear_init, 243 dm_stripe_init, 244 dm_io_init, 245 dm_kcopyd_init, 246 dm_interface_init, 247 dm_statistics_init, 248 }; 249 250 static void (*_exits[])(void) = { 251 local_exit, 252 dm_target_exit, 253 dm_linear_exit, 254 dm_stripe_exit, 255 dm_io_exit, 256 dm_kcopyd_exit, 257 dm_interface_exit, 258 dm_statistics_exit, 259 }; 260 261 static int __init dm_init(void) 262 { 263 const int count = ARRAY_SIZE(_inits); 264 265 int r, i; 266 267 for (i = 0; i < count; i++) { 268 r = _inits[i](); 269 if (r) 270 goto bad; 271 } 272 273 return 0; 274 275 bad: 276 while (i--) 277 _exits[i](); 278 279 return r; 280 } 281 282 static void __exit dm_exit(void) 283 { 284 int i = ARRAY_SIZE(_exits); 285 286 while (i--) 287 _exits[i](); 288 289 /* 290 * Should be empty by this point. 291 */ 292 idr_destroy(&_minor_idr); 293 } 294 295 /* 296 * Block device functions 297 */ 298 int dm_deleting_md(struct mapped_device *md) 299 { 300 return test_bit(DMF_DELETING, &md->flags); 301 } 302 303 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 304 { 305 struct mapped_device *md; 306 307 spin_lock(&_minor_lock); 308 309 md = bdev->bd_disk->private_data; 310 if (!md) 311 goto out; 312 313 if (test_bit(DMF_FREEING, &md->flags) || 314 dm_deleting_md(md)) { 315 md = NULL; 316 goto out; 317 } 318 319 dm_get(md); 320 atomic_inc(&md->open_count); 321 out: 322 spin_unlock(&_minor_lock); 323 324 return md ? 0 : -ENXIO; 325 } 326 327 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 328 { 329 struct mapped_device *md; 330 331 spin_lock(&_minor_lock); 332 333 md = disk->private_data; 334 if (WARN_ON(!md)) 335 goto out; 336 337 if (atomic_dec_and_test(&md->open_count) && 338 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 339 queue_work(deferred_remove_workqueue, &deferred_remove_work); 340 341 dm_put(md); 342 out: 343 spin_unlock(&_minor_lock); 344 } 345 346 int dm_open_count(struct mapped_device *md) 347 { 348 return atomic_read(&md->open_count); 349 } 350 351 /* 352 * Guarantees nothing is using the device before it's deleted. 353 */ 354 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 355 { 356 int r = 0; 357 358 spin_lock(&_minor_lock); 359 360 if (dm_open_count(md)) { 361 r = -EBUSY; 362 if (mark_deferred) 363 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 364 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 365 r = -EEXIST; 366 else 367 set_bit(DMF_DELETING, &md->flags); 368 369 spin_unlock(&_minor_lock); 370 371 return r; 372 } 373 374 int dm_cancel_deferred_remove(struct mapped_device *md) 375 { 376 int r = 0; 377 378 spin_lock(&_minor_lock); 379 380 if (test_bit(DMF_DELETING, &md->flags)) 381 r = -EBUSY; 382 else 383 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 384 385 spin_unlock(&_minor_lock); 386 387 return r; 388 } 389 390 static void do_deferred_remove(struct work_struct *w) 391 { 392 dm_deferred_remove(); 393 } 394 395 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 396 { 397 struct mapped_device *md = bdev->bd_disk->private_data; 398 399 return dm_get_geometry(md, geo); 400 } 401 402 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 403 struct block_device **bdev) 404 { 405 struct dm_target *tgt; 406 struct dm_table *map; 407 int r; 408 409 retry: 410 r = -ENOTTY; 411 map = dm_get_live_table(md, srcu_idx); 412 if (!map || !dm_table_get_size(map)) 413 return r; 414 415 /* We only support devices that have a single target */ 416 if (dm_table_get_num_targets(map) != 1) 417 return r; 418 419 tgt = dm_table_get_target(map, 0); 420 if (!tgt->type->prepare_ioctl) 421 return r; 422 423 if (dm_suspended_md(md)) 424 return -EAGAIN; 425 426 r = tgt->type->prepare_ioctl(tgt, bdev); 427 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 428 dm_put_live_table(md, *srcu_idx); 429 msleep(10); 430 goto retry; 431 } 432 433 return r; 434 } 435 436 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 437 { 438 dm_put_live_table(md, srcu_idx); 439 } 440 441 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 442 unsigned int cmd, unsigned long arg) 443 { 444 struct mapped_device *md = bdev->bd_disk->private_data; 445 int r, srcu_idx; 446 447 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 448 if (r < 0) 449 goto out; 450 451 if (r > 0) { 452 /* 453 * Target determined this ioctl is being issued against a 454 * subset of the parent bdev; require extra privileges. 455 */ 456 if (!capable(CAP_SYS_RAWIO)) { 457 DMDEBUG_LIMIT( 458 "%s: sending ioctl %x to DM device without required privilege.", 459 current->comm, cmd); 460 r = -ENOIOCTLCMD; 461 goto out; 462 } 463 } 464 465 if (!bdev->bd_disk->fops->ioctl) 466 r = -ENOTTY; 467 else 468 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 469 out: 470 dm_unprepare_ioctl(md, srcu_idx); 471 return r; 472 } 473 474 u64 dm_start_time_ns_from_clone(struct bio *bio) 475 { 476 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 477 struct dm_io *io = tio->io; 478 479 return jiffies_to_nsecs(io->start_time); 480 } 481 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 482 483 static void start_io_acct(struct dm_io *io) 484 { 485 struct mapped_device *md = io->md; 486 struct bio *bio = io->orig_bio; 487 488 io->start_time = bio_start_io_acct(bio); 489 if (unlikely(dm_stats_used(&md->stats))) 490 dm_stats_account_io(&md->stats, bio_data_dir(bio), 491 bio->bi_iter.bi_sector, bio_sectors(bio), 492 false, 0, &io->stats_aux); 493 } 494 495 static void end_io_acct(struct dm_io *io) 496 { 497 struct mapped_device *md = io->md; 498 struct bio *bio = io->orig_bio; 499 unsigned long duration = jiffies - io->start_time; 500 501 bio_end_io_acct(bio, io->start_time); 502 503 if (unlikely(dm_stats_used(&md->stats))) 504 dm_stats_account_io(&md->stats, bio_data_dir(bio), 505 bio->bi_iter.bi_sector, bio_sectors(bio), 506 true, duration, &io->stats_aux); 507 508 /* nudge anyone waiting on suspend queue */ 509 if (unlikely(wq_has_sleeper(&md->wait))) 510 wake_up(&md->wait); 511 } 512 513 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 514 { 515 struct dm_io *io; 516 struct dm_target_io *tio; 517 struct bio *clone; 518 519 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 520 if (!clone) 521 return NULL; 522 523 tio = container_of(clone, struct dm_target_io, clone); 524 tio->inside_dm_io = true; 525 tio->io = NULL; 526 527 io = container_of(tio, struct dm_io, tio); 528 io->magic = DM_IO_MAGIC; 529 io->status = 0; 530 atomic_set(&io->io_count, 1); 531 io->orig_bio = bio; 532 io->md = md; 533 spin_lock_init(&io->endio_lock); 534 535 start_io_acct(io); 536 537 return io; 538 } 539 540 static void free_io(struct mapped_device *md, struct dm_io *io) 541 { 542 bio_put(&io->tio.clone); 543 } 544 545 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 546 unsigned target_bio_nr, gfp_t gfp_mask) 547 { 548 struct dm_target_io *tio; 549 550 if (!ci->io->tio.io) { 551 /* the dm_target_io embedded in ci->io is available */ 552 tio = &ci->io->tio; 553 } else { 554 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 555 if (!clone) 556 return NULL; 557 558 tio = container_of(clone, struct dm_target_io, clone); 559 tio->inside_dm_io = false; 560 } 561 562 tio->magic = DM_TIO_MAGIC; 563 tio->io = ci->io; 564 tio->ti = ti; 565 tio->target_bio_nr = target_bio_nr; 566 567 return tio; 568 } 569 570 static void free_tio(struct dm_target_io *tio) 571 { 572 if (tio->inside_dm_io) 573 return; 574 bio_put(&tio->clone); 575 } 576 577 /* 578 * Add the bio to the list of deferred io. 579 */ 580 static void queue_io(struct mapped_device *md, struct bio *bio) 581 { 582 unsigned long flags; 583 584 spin_lock_irqsave(&md->deferred_lock, flags); 585 bio_list_add(&md->deferred, bio); 586 spin_unlock_irqrestore(&md->deferred_lock, flags); 587 queue_work(md->wq, &md->work); 588 } 589 590 /* 591 * Everyone (including functions in this file), should use this 592 * function to access the md->map field, and make sure they call 593 * dm_put_live_table() when finished. 594 */ 595 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 596 { 597 *srcu_idx = srcu_read_lock(&md->io_barrier); 598 599 return srcu_dereference(md->map, &md->io_barrier); 600 } 601 602 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 603 { 604 srcu_read_unlock(&md->io_barrier, srcu_idx); 605 } 606 607 void dm_sync_table(struct mapped_device *md) 608 { 609 synchronize_srcu(&md->io_barrier); 610 synchronize_rcu_expedited(); 611 } 612 613 /* 614 * A fast alternative to dm_get_live_table/dm_put_live_table. 615 * The caller must not block between these two functions. 616 */ 617 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 618 { 619 rcu_read_lock(); 620 return rcu_dereference(md->map); 621 } 622 623 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 624 { 625 rcu_read_unlock(); 626 } 627 628 static char *_dm_claim_ptr = "I belong to device-mapper"; 629 630 /* 631 * Open a table device so we can use it as a map destination. 632 */ 633 static int open_table_device(struct table_device *td, dev_t dev, 634 struct mapped_device *md) 635 { 636 struct block_device *bdev; 637 638 int r; 639 640 BUG_ON(td->dm_dev.bdev); 641 642 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 643 if (IS_ERR(bdev)) 644 return PTR_ERR(bdev); 645 646 r = bd_link_disk_holder(bdev, dm_disk(md)); 647 if (r) { 648 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 649 return r; 650 } 651 652 td->dm_dev.bdev = bdev; 653 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 654 return 0; 655 } 656 657 /* 658 * Close a table device that we've been using. 659 */ 660 static void close_table_device(struct table_device *td, struct mapped_device *md) 661 { 662 if (!td->dm_dev.bdev) 663 return; 664 665 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 666 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 667 put_dax(td->dm_dev.dax_dev); 668 td->dm_dev.bdev = NULL; 669 td->dm_dev.dax_dev = NULL; 670 } 671 672 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 673 fmode_t mode) 674 { 675 struct table_device *td; 676 677 list_for_each_entry(td, l, list) 678 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 679 return td; 680 681 return NULL; 682 } 683 684 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 685 struct dm_dev **result) 686 { 687 int r; 688 struct table_device *td; 689 690 mutex_lock(&md->table_devices_lock); 691 td = find_table_device(&md->table_devices, dev, mode); 692 if (!td) { 693 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 694 if (!td) { 695 mutex_unlock(&md->table_devices_lock); 696 return -ENOMEM; 697 } 698 699 td->dm_dev.mode = mode; 700 td->dm_dev.bdev = NULL; 701 702 if ((r = open_table_device(td, dev, md))) { 703 mutex_unlock(&md->table_devices_lock); 704 kfree(td); 705 return r; 706 } 707 708 format_dev_t(td->dm_dev.name, dev); 709 710 refcount_set(&td->count, 1); 711 list_add(&td->list, &md->table_devices); 712 } else { 713 refcount_inc(&td->count); 714 } 715 mutex_unlock(&md->table_devices_lock); 716 717 *result = &td->dm_dev; 718 return 0; 719 } 720 721 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 722 { 723 struct table_device *td = container_of(d, struct table_device, dm_dev); 724 725 mutex_lock(&md->table_devices_lock); 726 if (refcount_dec_and_test(&td->count)) { 727 close_table_device(td, md); 728 list_del(&td->list); 729 kfree(td); 730 } 731 mutex_unlock(&md->table_devices_lock); 732 } 733 734 static void free_table_devices(struct list_head *devices) 735 { 736 struct list_head *tmp, *next; 737 738 list_for_each_safe(tmp, next, devices) { 739 struct table_device *td = list_entry(tmp, struct table_device, list); 740 741 DMWARN("dm_destroy: %s still exists with %d references", 742 td->dm_dev.name, refcount_read(&td->count)); 743 kfree(td); 744 } 745 } 746 747 /* 748 * Get the geometry associated with a dm device 749 */ 750 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 751 { 752 *geo = md->geometry; 753 754 return 0; 755 } 756 757 /* 758 * Set the geometry of a device. 759 */ 760 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 761 { 762 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 763 764 if (geo->start > sz) { 765 DMWARN("Start sector is beyond the geometry limits."); 766 return -EINVAL; 767 } 768 769 md->geometry = *geo; 770 771 return 0; 772 } 773 774 static int __noflush_suspending(struct mapped_device *md) 775 { 776 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 777 } 778 779 /* 780 * Decrements the number of outstanding ios that a bio has been 781 * cloned into, completing the original io if necc. 782 */ 783 void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 784 { 785 unsigned long flags; 786 blk_status_t io_error; 787 struct bio *bio; 788 struct mapped_device *md = io->md; 789 790 /* Push-back supersedes any I/O errors */ 791 if (unlikely(error)) { 792 spin_lock_irqsave(&io->endio_lock, flags); 793 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 794 io->status = error; 795 spin_unlock_irqrestore(&io->endio_lock, flags); 796 } 797 798 if (atomic_dec_and_test(&io->io_count)) { 799 bio = io->orig_bio; 800 if (io->status == BLK_STS_DM_REQUEUE) { 801 /* 802 * Target requested pushing back the I/O. 803 */ 804 spin_lock_irqsave(&md->deferred_lock, flags); 805 if (__noflush_suspending(md) && 806 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) { 807 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 808 bio_list_add_head(&md->deferred, bio); 809 } else { 810 /* 811 * noflush suspend was interrupted or this is 812 * a write to a zoned target. 813 */ 814 io->status = BLK_STS_IOERR; 815 } 816 spin_unlock_irqrestore(&md->deferred_lock, flags); 817 } 818 819 io_error = io->status; 820 end_io_acct(io); 821 free_io(md, io); 822 823 if (io_error == BLK_STS_DM_REQUEUE) 824 return; 825 826 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 827 /* 828 * Preflush done for flush with data, reissue 829 * without REQ_PREFLUSH. 830 */ 831 bio->bi_opf &= ~REQ_PREFLUSH; 832 queue_io(md, bio); 833 } else { 834 /* done with normal IO or empty flush */ 835 if (io_error) 836 bio->bi_status = io_error; 837 bio_endio(bio); 838 } 839 } 840 } 841 842 void disable_discard(struct mapped_device *md) 843 { 844 struct queue_limits *limits = dm_get_queue_limits(md); 845 846 /* device doesn't really support DISCARD, disable it */ 847 limits->max_discard_sectors = 0; 848 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 849 } 850 851 void disable_write_same(struct mapped_device *md) 852 { 853 struct queue_limits *limits = dm_get_queue_limits(md); 854 855 /* device doesn't really support WRITE SAME, disable it */ 856 limits->max_write_same_sectors = 0; 857 } 858 859 void disable_write_zeroes(struct mapped_device *md) 860 { 861 struct queue_limits *limits = dm_get_queue_limits(md); 862 863 /* device doesn't really support WRITE ZEROES, disable it */ 864 limits->max_write_zeroes_sectors = 0; 865 } 866 867 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 868 { 869 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 870 } 871 872 static void clone_endio(struct bio *bio) 873 { 874 blk_status_t error = bio->bi_status; 875 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 876 struct dm_io *io = tio->io; 877 struct mapped_device *md = tio->io->md; 878 dm_endio_fn endio = tio->ti->type->end_io; 879 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 880 881 if (unlikely(error == BLK_STS_TARGET)) { 882 if (bio_op(bio) == REQ_OP_DISCARD && 883 !q->limits.max_discard_sectors) 884 disable_discard(md); 885 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 886 !q->limits.max_write_same_sectors) 887 disable_write_same(md); 888 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 889 !q->limits.max_write_zeroes_sectors) 890 disable_write_zeroes(md); 891 } 892 893 if (blk_queue_is_zoned(q)) 894 dm_zone_endio(io, bio); 895 896 if (endio) { 897 int r = endio(tio->ti, bio, &error); 898 switch (r) { 899 case DM_ENDIO_REQUEUE: 900 /* 901 * Requeuing writes to a sequential zone of a zoned 902 * target will break the sequential write pattern: 903 * fail such IO. 904 */ 905 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 906 error = BLK_STS_IOERR; 907 else 908 error = BLK_STS_DM_REQUEUE; 909 fallthrough; 910 case DM_ENDIO_DONE: 911 break; 912 case DM_ENDIO_INCOMPLETE: 913 /* The target will handle the io */ 914 return; 915 default: 916 DMWARN("unimplemented target endio return value: %d", r); 917 BUG(); 918 } 919 } 920 921 if (unlikely(swap_bios_limit(tio->ti, bio))) { 922 struct mapped_device *md = io->md; 923 up(&md->swap_bios_semaphore); 924 } 925 926 free_tio(tio); 927 dm_io_dec_pending(io, error); 928 } 929 930 /* 931 * Return maximum size of I/O possible at the supplied sector up to the current 932 * target boundary. 933 */ 934 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 935 sector_t target_offset) 936 { 937 return ti->len - target_offset; 938 } 939 940 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 941 { 942 sector_t target_offset = dm_target_offset(ti, sector); 943 sector_t len = max_io_len_target_boundary(ti, target_offset); 944 sector_t max_len; 945 946 /* 947 * Does the target need to split IO even further? 948 * - varied (per target) IO splitting is a tenet of DM; this 949 * explains why stacked chunk_sectors based splitting via 950 * blk_max_size_offset() isn't possible here. So pass in 951 * ti->max_io_len to override stacked chunk_sectors. 952 */ 953 if (ti->max_io_len) { 954 max_len = blk_max_size_offset(ti->table->md->queue, 955 target_offset, ti->max_io_len); 956 if (len > max_len) 957 len = max_len; 958 } 959 960 return len; 961 } 962 963 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 964 { 965 if (len > UINT_MAX) { 966 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 967 (unsigned long long)len, UINT_MAX); 968 ti->error = "Maximum size of target IO is too large"; 969 return -EINVAL; 970 } 971 972 ti->max_io_len = (uint32_t) len; 973 974 return 0; 975 } 976 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 977 978 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 979 sector_t sector, int *srcu_idx) 980 __acquires(md->io_barrier) 981 { 982 struct dm_table *map; 983 struct dm_target *ti; 984 985 map = dm_get_live_table(md, srcu_idx); 986 if (!map) 987 return NULL; 988 989 ti = dm_table_find_target(map, sector); 990 if (!ti) 991 return NULL; 992 993 return ti; 994 } 995 996 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 997 long nr_pages, void **kaddr, pfn_t *pfn) 998 { 999 struct mapped_device *md = dax_get_private(dax_dev); 1000 sector_t sector = pgoff * PAGE_SECTORS; 1001 struct dm_target *ti; 1002 long len, ret = -EIO; 1003 int srcu_idx; 1004 1005 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1006 1007 if (!ti) 1008 goto out; 1009 if (!ti->type->direct_access) 1010 goto out; 1011 len = max_io_len(ti, sector) / PAGE_SECTORS; 1012 if (len < 1) 1013 goto out; 1014 nr_pages = min(len, nr_pages); 1015 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1016 1017 out: 1018 dm_put_live_table(md, srcu_idx); 1019 1020 return ret; 1021 } 1022 1023 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1024 int blocksize, sector_t start, sector_t len) 1025 { 1026 struct mapped_device *md = dax_get_private(dax_dev); 1027 struct dm_table *map; 1028 bool ret = false; 1029 int srcu_idx; 1030 1031 map = dm_get_live_table(md, &srcu_idx); 1032 if (!map) 1033 goto out; 1034 1035 ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize); 1036 1037 out: 1038 dm_put_live_table(md, srcu_idx); 1039 1040 return ret; 1041 } 1042 1043 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1044 void *addr, size_t bytes, struct iov_iter *i) 1045 { 1046 struct mapped_device *md = dax_get_private(dax_dev); 1047 sector_t sector = pgoff * PAGE_SECTORS; 1048 struct dm_target *ti; 1049 long ret = 0; 1050 int srcu_idx; 1051 1052 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1053 1054 if (!ti) 1055 goto out; 1056 if (!ti->type->dax_copy_from_iter) { 1057 ret = copy_from_iter(addr, bytes, i); 1058 goto out; 1059 } 1060 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1061 out: 1062 dm_put_live_table(md, srcu_idx); 1063 1064 return ret; 1065 } 1066 1067 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1068 void *addr, size_t bytes, struct iov_iter *i) 1069 { 1070 struct mapped_device *md = dax_get_private(dax_dev); 1071 sector_t sector = pgoff * PAGE_SECTORS; 1072 struct dm_target *ti; 1073 long ret = 0; 1074 int srcu_idx; 1075 1076 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1077 1078 if (!ti) 1079 goto out; 1080 if (!ti->type->dax_copy_to_iter) { 1081 ret = copy_to_iter(addr, bytes, i); 1082 goto out; 1083 } 1084 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1085 out: 1086 dm_put_live_table(md, srcu_idx); 1087 1088 return ret; 1089 } 1090 1091 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1092 size_t nr_pages) 1093 { 1094 struct mapped_device *md = dax_get_private(dax_dev); 1095 sector_t sector = pgoff * PAGE_SECTORS; 1096 struct dm_target *ti; 1097 int ret = -EIO; 1098 int srcu_idx; 1099 1100 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1101 1102 if (!ti) 1103 goto out; 1104 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1105 /* 1106 * ->zero_page_range() is mandatory dax operation. If we are 1107 * here, something is wrong. 1108 */ 1109 goto out; 1110 } 1111 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1112 out: 1113 dm_put_live_table(md, srcu_idx); 1114 1115 return ret; 1116 } 1117 1118 /* 1119 * A target may call dm_accept_partial_bio only from the map routine. It is 1120 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1121 * operations and REQ_OP_ZONE_APPEND (zone append writes). 1122 * 1123 * dm_accept_partial_bio informs the dm that the target only wants to process 1124 * additional n_sectors sectors of the bio and the rest of the data should be 1125 * sent in a next bio. 1126 * 1127 * A diagram that explains the arithmetics: 1128 * +--------------------+---------------+-------+ 1129 * | 1 | 2 | 3 | 1130 * +--------------------+---------------+-------+ 1131 * 1132 * <-------------- *tio->len_ptr ---------------> 1133 * <------- bi_size -------> 1134 * <-- n_sectors --> 1135 * 1136 * Region 1 was already iterated over with bio_advance or similar function. 1137 * (it may be empty if the target doesn't use bio_advance) 1138 * Region 2 is the remaining bio size that the target wants to process. 1139 * (it may be empty if region 1 is non-empty, although there is no reason 1140 * to make it empty) 1141 * The target requires that region 3 is to be sent in the next bio. 1142 * 1143 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1144 * the partially processed part (the sum of regions 1+2) must be the same for all 1145 * copies of the bio. 1146 */ 1147 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1148 { 1149 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1150 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1151 1152 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1153 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1154 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1155 BUG_ON(bi_size > *tio->len_ptr); 1156 BUG_ON(n_sectors > bi_size); 1157 1158 *tio->len_ptr -= bi_size - n_sectors; 1159 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1160 } 1161 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1162 1163 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1164 { 1165 mutex_lock(&md->swap_bios_lock); 1166 while (latch < md->swap_bios) { 1167 cond_resched(); 1168 down(&md->swap_bios_semaphore); 1169 md->swap_bios--; 1170 } 1171 while (latch > md->swap_bios) { 1172 cond_resched(); 1173 up(&md->swap_bios_semaphore); 1174 md->swap_bios++; 1175 } 1176 mutex_unlock(&md->swap_bios_lock); 1177 } 1178 1179 static blk_qc_t __map_bio(struct dm_target_io *tio) 1180 { 1181 int r; 1182 sector_t sector; 1183 struct bio *clone = &tio->clone; 1184 struct dm_io *io = tio->io; 1185 struct dm_target *ti = tio->ti; 1186 blk_qc_t ret = BLK_QC_T_NONE; 1187 1188 clone->bi_end_io = clone_endio; 1189 1190 /* 1191 * Map the clone. If r == 0 we don't need to do 1192 * anything, the target has assumed ownership of 1193 * this io. 1194 */ 1195 dm_io_inc_pending(io); 1196 sector = clone->bi_iter.bi_sector; 1197 1198 if (unlikely(swap_bios_limit(ti, clone))) { 1199 struct mapped_device *md = io->md; 1200 int latch = get_swap_bios(); 1201 if (unlikely(latch != md->swap_bios)) 1202 __set_swap_bios_limit(md, latch); 1203 down(&md->swap_bios_semaphore); 1204 } 1205 1206 /* 1207 * Check if the IO needs a special mapping due to zone append emulation 1208 * on zoned target. In this case, dm_zone_map_bio() calls the target 1209 * map operation. 1210 */ 1211 if (dm_emulate_zone_append(io->md)) 1212 r = dm_zone_map_bio(tio); 1213 else 1214 r = ti->type->map(ti, clone); 1215 1216 switch (r) { 1217 case DM_MAPIO_SUBMITTED: 1218 break; 1219 case DM_MAPIO_REMAPPED: 1220 /* the bio has been remapped so dispatch it */ 1221 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector); 1222 ret = submit_bio_noacct(clone); 1223 break; 1224 case DM_MAPIO_KILL: 1225 if (unlikely(swap_bios_limit(ti, clone))) { 1226 struct mapped_device *md = io->md; 1227 up(&md->swap_bios_semaphore); 1228 } 1229 free_tio(tio); 1230 dm_io_dec_pending(io, BLK_STS_IOERR); 1231 break; 1232 case DM_MAPIO_REQUEUE: 1233 if (unlikely(swap_bios_limit(ti, clone))) { 1234 struct mapped_device *md = io->md; 1235 up(&md->swap_bios_semaphore); 1236 } 1237 free_tio(tio); 1238 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1239 break; 1240 default: 1241 DMWARN("unimplemented target map return value: %d", r); 1242 BUG(); 1243 } 1244 1245 return ret; 1246 } 1247 1248 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1249 { 1250 bio->bi_iter.bi_sector = sector; 1251 bio->bi_iter.bi_size = to_bytes(len); 1252 } 1253 1254 /* 1255 * Creates a bio that consists of range of complete bvecs. 1256 */ 1257 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1258 sector_t sector, unsigned len) 1259 { 1260 struct bio *clone = &tio->clone; 1261 int r; 1262 1263 __bio_clone_fast(clone, bio); 1264 1265 r = bio_crypt_clone(clone, bio, GFP_NOIO); 1266 if (r < 0) 1267 return r; 1268 1269 if (bio_integrity(bio)) { 1270 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1271 !dm_target_passes_integrity(tio->ti->type))) { 1272 DMWARN("%s: the target %s doesn't support integrity data.", 1273 dm_device_name(tio->io->md), 1274 tio->ti->type->name); 1275 return -EIO; 1276 } 1277 1278 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1279 if (r < 0) 1280 return r; 1281 } 1282 1283 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1284 clone->bi_iter.bi_size = to_bytes(len); 1285 1286 if (bio_integrity(bio)) 1287 bio_integrity_trim(clone); 1288 1289 return 0; 1290 } 1291 1292 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1293 struct dm_target *ti, unsigned num_bios) 1294 { 1295 struct dm_target_io *tio; 1296 int try; 1297 1298 if (!num_bios) 1299 return; 1300 1301 if (num_bios == 1) { 1302 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1303 bio_list_add(blist, &tio->clone); 1304 return; 1305 } 1306 1307 for (try = 0; try < 2; try++) { 1308 int bio_nr; 1309 struct bio *bio; 1310 1311 if (try) 1312 mutex_lock(&ci->io->md->table_devices_lock); 1313 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1314 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1315 if (!tio) 1316 break; 1317 1318 bio_list_add(blist, &tio->clone); 1319 } 1320 if (try) 1321 mutex_unlock(&ci->io->md->table_devices_lock); 1322 if (bio_nr == num_bios) 1323 return; 1324 1325 while ((bio = bio_list_pop(blist))) { 1326 tio = container_of(bio, struct dm_target_io, clone); 1327 free_tio(tio); 1328 } 1329 } 1330 } 1331 1332 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1333 struct dm_target_io *tio, unsigned *len) 1334 { 1335 struct bio *clone = &tio->clone; 1336 1337 tio->len_ptr = len; 1338 1339 __bio_clone_fast(clone, ci->bio); 1340 if (len) 1341 bio_setup_sector(clone, ci->sector, *len); 1342 1343 return __map_bio(tio); 1344 } 1345 1346 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1347 unsigned num_bios, unsigned *len) 1348 { 1349 struct bio_list blist = BIO_EMPTY_LIST; 1350 struct bio *bio; 1351 struct dm_target_io *tio; 1352 1353 alloc_multiple_bios(&blist, ci, ti, num_bios); 1354 1355 while ((bio = bio_list_pop(&blist))) { 1356 tio = container_of(bio, struct dm_target_io, clone); 1357 (void) __clone_and_map_simple_bio(ci, tio, len); 1358 } 1359 } 1360 1361 static int __send_empty_flush(struct clone_info *ci) 1362 { 1363 unsigned target_nr = 0; 1364 struct dm_target *ti; 1365 struct bio flush_bio; 1366 1367 /* 1368 * Use an on-stack bio for this, it's safe since we don't 1369 * need to reference it after submit. It's just used as 1370 * the basis for the clone(s). 1371 */ 1372 bio_init(&flush_bio, NULL, 0); 1373 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1374 bio_set_dev(&flush_bio, ci->io->md->disk->part0); 1375 1376 ci->bio = &flush_bio; 1377 ci->sector_count = 0; 1378 1379 BUG_ON(bio_has_data(ci->bio)); 1380 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1381 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1382 1383 bio_uninit(ci->bio); 1384 return 0; 1385 } 1386 1387 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1388 sector_t sector, unsigned *len) 1389 { 1390 struct bio *bio = ci->bio; 1391 struct dm_target_io *tio; 1392 int r; 1393 1394 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1395 tio->len_ptr = len; 1396 r = clone_bio(tio, bio, sector, *len); 1397 if (r < 0) { 1398 free_tio(tio); 1399 return r; 1400 } 1401 (void) __map_bio(tio); 1402 1403 return 0; 1404 } 1405 1406 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1407 unsigned num_bios) 1408 { 1409 unsigned len; 1410 1411 /* 1412 * Even though the device advertised support for this type of 1413 * request, that does not mean every target supports it, and 1414 * reconfiguration might also have changed that since the 1415 * check was performed. 1416 */ 1417 if (!num_bios) 1418 return -EOPNOTSUPP; 1419 1420 len = min_t(sector_t, ci->sector_count, 1421 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1422 1423 __send_duplicate_bios(ci, ti, num_bios, &len); 1424 1425 ci->sector += len; 1426 ci->sector_count -= len; 1427 1428 return 0; 1429 } 1430 1431 static bool is_abnormal_io(struct bio *bio) 1432 { 1433 bool r = false; 1434 1435 switch (bio_op(bio)) { 1436 case REQ_OP_DISCARD: 1437 case REQ_OP_SECURE_ERASE: 1438 case REQ_OP_WRITE_SAME: 1439 case REQ_OP_WRITE_ZEROES: 1440 r = true; 1441 break; 1442 } 1443 1444 return r; 1445 } 1446 1447 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1448 int *result) 1449 { 1450 struct bio *bio = ci->bio; 1451 unsigned num_bios = 0; 1452 1453 switch (bio_op(bio)) { 1454 case REQ_OP_DISCARD: 1455 num_bios = ti->num_discard_bios; 1456 break; 1457 case REQ_OP_SECURE_ERASE: 1458 num_bios = ti->num_secure_erase_bios; 1459 break; 1460 case REQ_OP_WRITE_SAME: 1461 num_bios = ti->num_write_same_bios; 1462 break; 1463 case REQ_OP_WRITE_ZEROES: 1464 num_bios = ti->num_write_zeroes_bios; 1465 break; 1466 default: 1467 return false; 1468 } 1469 1470 *result = __send_changing_extent_only(ci, ti, num_bios); 1471 return true; 1472 } 1473 1474 /* 1475 * Select the correct strategy for processing a non-flush bio. 1476 */ 1477 static int __split_and_process_non_flush(struct clone_info *ci) 1478 { 1479 struct dm_target *ti; 1480 unsigned len; 1481 int r; 1482 1483 ti = dm_table_find_target(ci->map, ci->sector); 1484 if (!ti) 1485 return -EIO; 1486 1487 if (__process_abnormal_io(ci, ti, &r)) 1488 return r; 1489 1490 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1491 1492 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1493 if (r < 0) 1494 return r; 1495 1496 ci->sector += len; 1497 ci->sector_count -= len; 1498 1499 return 0; 1500 } 1501 1502 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1503 struct dm_table *map, struct bio *bio) 1504 { 1505 ci->map = map; 1506 ci->io = alloc_io(md, bio); 1507 ci->sector = bio->bi_iter.bi_sector; 1508 } 1509 1510 #define __dm_part_stat_sub(part, field, subnd) \ 1511 (part_stat_get(part, field) -= (subnd)) 1512 1513 /* 1514 * Entry point to split a bio into clones and submit them to the targets. 1515 */ 1516 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1517 struct dm_table *map, struct bio *bio) 1518 { 1519 struct clone_info ci; 1520 blk_qc_t ret = BLK_QC_T_NONE; 1521 int error = 0; 1522 1523 init_clone_info(&ci, md, map, bio); 1524 1525 if (bio->bi_opf & REQ_PREFLUSH) { 1526 error = __send_empty_flush(&ci); 1527 /* dm_io_dec_pending submits any data associated with flush */ 1528 } else if (op_is_zone_mgmt(bio_op(bio))) { 1529 ci.bio = bio; 1530 ci.sector_count = 0; 1531 error = __split_and_process_non_flush(&ci); 1532 } else { 1533 ci.bio = bio; 1534 ci.sector_count = bio_sectors(bio); 1535 error = __split_and_process_non_flush(&ci); 1536 if (ci.sector_count && !error) { 1537 /* 1538 * Remainder must be passed to submit_bio_noacct() 1539 * so that it gets handled *after* bios already submitted 1540 * have been completely processed. 1541 * We take a clone of the original to store in 1542 * ci.io->orig_bio to be used by end_io_acct() and 1543 * for dec_pending to use for completion handling. 1544 */ 1545 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1546 GFP_NOIO, &md->queue->bio_split); 1547 ci.io->orig_bio = b; 1548 1549 /* 1550 * Adjust IO stats for each split, otherwise upon queue 1551 * reentry there will be redundant IO accounting. 1552 * NOTE: this is a stop-gap fix, a proper fix involves 1553 * significant refactoring of DM core's bio splitting 1554 * (by eliminating DM's splitting and just using bio_split) 1555 */ 1556 part_stat_lock(); 1557 __dm_part_stat_sub(dm_disk(md)->part0, 1558 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1559 part_stat_unlock(); 1560 1561 bio_chain(b, bio); 1562 trace_block_split(b, bio->bi_iter.bi_sector); 1563 ret = submit_bio_noacct(bio); 1564 } 1565 } 1566 1567 /* drop the extra reference count */ 1568 dm_io_dec_pending(ci.io, errno_to_blk_status(error)); 1569 return ret; 1570 } 1571 1572 static blk_qc_t dm_submit_bio(struct bio *bio) 1573 { 1574 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1575 blk_qc_t ret = BLK_QC_T_NONE; 1576 int srcu_idx; 1577 struct dm_table *map; 1578 1579 map = dm_get_live_table(md, &srcu_idx); 1580 if (unlikely(!map)) { 1581 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1582 dm_device_name(md)); 1583 bio_io_error(bio); 1584 goto out; 1585 } 1586 1587 /* If suspended, queue this IO for later */ 1588 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1589 if (bio->bi_opf & REQ_NOWAIT) 1590 bio_wouldblock_error(bio); 1591 else if (bio->bi_opf & REQ_RAHEAD) 1592 bio_io_error(bio); 1593 else 1594 queue_io(md, bio); 1595 goto out; 1596 } 1597 1598 /* 1599 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1600 * otherwise associated queue_limits won't be imposed. 1601 */ 1602 if (is_abnormal_io(bio)) 1603 blk_queue_split(&bio); 1604 1605 ret = __split_and_process_bio(md, map, bio); 1606 out: 1607 dm_put_live_table(md, srcu_idx); 1608 return ret; 1609 } 1610 1611 /*----------------------------------------------------------------- 1612 * An IDR is used to keep track of allocated minor numbers. 1613 *---------------------------------------------------------------*/ 1614 static void free_minor(int minor) 1615 { 1616 spin_lock(&_minor_lock); 1617 idr_remove(&_minor_idr, minor); 1618 spin_unlock(&_minor_lock); 1619 } 1620 1621 /* 1622 * See if the device with a specific minor # is free. 1623 */ 1624 static int specific_minor(int minor) 1625 { 1626 int r; 1627 1628 if (minor >= (1 << MINORBITS)) 1629 return -EINVAL; 1630 1631 idr_preload(GFP_KERNEL); 1632 spin_lock(&_minor_lock); 1633 1634 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1635 1636 spin_unlock(&_minor_lock); 1637 idr_preload_end(); 1638 if (r < 0) 1639 return r == -ENOSPC ? -EBUSY : r; 1640 return 0; 1641 } 1642 1643 static int next_free_minor(int *minor) 1644 { 1645 int r; 1646 1647 idr_preload(GFP_KERNEL); 1648 spin_lock(&_minor_lock); 1649 1650 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1651 1652 spin_unlock(&_minor_lock); 1653 idr_preload_end(); 1654 if (r < 0) 1655 return r; 1656 *minor = r; 1657 return 0; 1658 } 1659 1660 static const struct block_device_operations dm_blk_dops; 1661 static const struct block_device_operations dm_rq_blk_dops; 1662 static const struct dax_operations dm_dax_ops; 1663 1664 static void dm_wq_work(struct work_struct *work); 1665 1666 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1667 static void dm_queue_destroy_keyslot_manager(struct request_queue *q) 1668 { 1669 dm_destroy_keyslot_manager(q->ksm); 1670 } 1671 1672 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1673 1674 static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q) 1675 { 1676 } 1677 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1678 1679 static void cleanup_mapped_device(struct mapped_device *md) 1680 { 1681 if (md->wq) 1682 destroy_workqueue(md->wq); 1683 bioset_exit(&md->bs); 1684 bioset_exit(&md->io_bs); 1685 1686 if (md->dax_dev) { 1687 kill_dax(md->dax_dev); 1688 put_dax(md->dax_dev); 1689 md->dax_dev = NULL; 1690 } 1691 1692 if (md->disk) { 1693 spin_lock(&_minor_lock); 1694 md->disk->private_data = NULL; 1695 spin_unlock(&_minor_lock); 1696 del_gendisk(md->disk); 1697 } 1698 1699 if (md->queue) 1700 dm_queue_destroy_keyslot_manager(md->queue); 1701 1702 if (md->disk) 1703 blk_cleanup_disk(md->disk); 1704 1705 cleanup_srcu_struct(&md->io_barrier); 1706 1707 mutex_destroy(&md->suspend_lock); 1708 mutex_destroy(&md->type_lock); 1709 mutex_destroy(&md->table_devices_lock); 1710 mutex_destroy(&md->swap_bios_lock); 1711 1712 dm_mq_cleanup_mapped_device(md); 1713 dm_cleanup_zoned_dev(md); 1714 } 1715 1716 /* 1717 * Allocate and initialise a blank device with a given minor. 1718 */ 1719 static struct mapped_device *alloc_dev(int minor) 1720 { 1721 int r, numa_node_id = dm_get_numa_node(); 1722 struct mapped_device *md; 1723 void *old_md; 1724 1725 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1726 if (!md) { 1727 DMWARN("unable to allocate device, out of memory."); 1728 return NULL; 1729 } 1730 1731 if (!try_module_get(THIS_MODULE)) 1732 goto bad_module_get; 1733 1734 /* get a minor number for the dev */ 1735 if (minor == DM_ANY_MINOR) 1736 r = next_free_minor(&minor); 1737 else 1738 r = specific_minor(minor); 1739 if (r < 0) 1740 goto bad_minor; 1741 1742 r = init_srcu_struct(&md->io_barrier); 1743 if (r < 0) 1744 goto bad_io_barrier; 1745 1746 md->numa_node_id = numa_node_id; 1747 md->init_tio_pdu = false; 1748 md->type = DM_TYPE_NONE; 1749 mutex_init(&md->suspend_lock); 1750 mutex_init(&md->type_lock); 1751 mutex_init(&md->table_devices_lock); 1752 spin_lock_init(&md->deferred_lock); 1753 atomic_set(&md->holders, 1); 1754 atomic_set(&md->open_count, 0); 1755 atomic_set(&md->event_nr, 0); 1756 atomic_set(&md->uevent_seq, 0); 1757 INIT_LIST_HEAD(&md->uevent_list); 1758 INIT_LIST_HEAD(&md->table_devices); 1759 spin_lock_init(&md->uevent_lock); 1760 1761 /* 1762 * default to bio-based until DM table is loaded and md->type 1763 * established. If request-based table is loaded: blk-mq will 1764 * override accordingly. 1765 */ 1766 md->disk = blk_alloc_disk(md->numa_node_id); 1767 if (!md->disk) 1768 goto bad; 1769 md->queue = md->disk->queue; 1770 1771 init_waitqueue_head(&md->wait); 1772 INIT_WORK(&md->work, dm_wq_work); 1773 init_waitqueue_head(&md->eventq); 1774 init_completion(&md->kobj_holder.completion); 1775 1776 md->swap_bios = get_swap_bios(); 1777 sema_init(&md->swap_bios_semaphore, md->swap_bios); 1778 mutex_init(&md->swap_bios_lock); 1779 1780 md->disk->major = _major; 1781 md->disk->first_minor = minor; 1782 md->disk->minors = 1; 1783 md->disk->fops = &dm_blk_dops; 1784 md->disk->queue = md->queue; 1785 md->disk->private_data = md; 1786 sprintf(md->disk->disk_name, "dm-%d", minor); 1787 1788 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1789 md->dax_dev = alloc_dax(md, md->disk->disk_name, 1790 &dm_dax_ops, 0); 1791 if (IS_ERR(md->dax_dev)) 1792 goto bad; 1793 } 1794 1795 add_disk_no_queue_reg(md->disk); 1796 format_dev_t(md->name, MKDEV(_major, minor)); 1797 1798 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1799 if (!md->wq) 1800 goto bad; 1801 1802 dm_stats_init(&md->stats); 1803 1804 /* Populate the mapping, nobody knows we exist yet */ 1805 spin_lock(&_minor_lock); 1806 old_md = idr_replace(&_minor_idr, md, minor); 1807 spin_unlock(&_minor_lock); 1808 1809 BUG_ON(old_md != MINOR_ALLOCED); 1810 1811 return md; 1812 1813 bad: 1814 cleanup_mapped_device(md); 1815 bad_io_barrier: 1816 free_minor(minor); 1817 bad_minor: 1818 module_put(THIS_MODULE); 1819 bad_module_get: 1820 kvfree(md); 1821 return NULL; 1822 } 1823 1824 static void unlock_fs(struct mapped_device *md); 1825 1826 static void free_dev(struct mapped_device *md) 1827 { 1828 int minor = MINOR(disk_devt(md->disk)); 1829 1830 unlock_fs(md); 1831 1832 cleanup_mapped_device(md); 1833 1834 free_table_devices(&md->table_devices); 1835 dm_stats_cleanup(&md->stats); 1836 free_minor(minor); 1837 1838 module_put(THIS_MODULE); 1839 kvfree(md); 1840 } 1841 1842 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1843 { 1844 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1845 int ret = 0; 1846 1847 if (dm_table_bio_based(t)) { 1848 /* 1849 * The md may already have mempools that need changing. 1850 * If so, reload bioset because front_pad may have changed 1851 * because a different table was loaded. 1852 */ 1853 bioset_exit(&md->bs); 1854 bioset_exit(&md->io_bs); 1855 1856 } else if (bioset_initialized(&md->bs)) { 1857 /* 1858 * There's no need to reload with request-based dm 1859 * because the size of front_pad doesn't change. 1860 * Note for future: If you are to reload bioset, 1861 * prep-ed requests in the queue may refer 1862 * to bio from the old bioset, so you must walk 1863 * through the queue to unprep. 1864 */ 1865 goto out; 1866 } 1867 1868 BUG_ON(!p || 1869 bioset_initialized(&md->bs) || 1870 bioset_initialized(&md->io_bs)); 1871 1872 ret = bioset_init_from_src(&md->bs, &p->bs); 1873 if (ret) 1874 goto out; 1875 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1876 if (ret) 1877 bioset_exit(&md->bs); 1878 out: 1879 /* mempool bind completed, no longer need any mempools in the table */ 1880 dm_table_free_md_mempools(t); 1881 return ret; 1882 } 1883 1884 /* 1885 * Bind a table to the device. 1886 */ 1887 static void event_callback(void *context) 1888 { 1889 unsigned long flags; 1890 LIST_HEAD(uevents); 1891 struct mapped_device *md = (struct mapped_device *) context; 1892 1893 spin_lock_irqsave(&md->uevent_lock, flags); 1894 list_splice_init(&md->uevent_list, &uevents); 1895 spin_unlock_irqrestore(&md->uevent_lock, flags); 1896 1897 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1898 1899 atomic_inc(&md->event_nr); 1900 wake_up(&md->eventq); 1901 dm_issue_global_event(); 1902 } 1903 1904 /* 1905 * Returns old map, which caller must destroy. 1906 */ 1907 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1908 struct queue_limits *limits) 1909 { 1910 struct dm_table *old_map; 1911 struct request_queue *q = md->queue; 1912 bool request_based = dm_table_request_based(t); 1913 sector_t size; 1914 int ret; 1915 1916 lockdep_assert_held(&md->suspend_lock); 1917 1918 size = dm_table_get_size(t); 1919 1920 /* 1921 * Wipe any geometry if the size of the table changed. 1922 */ 1923 if (size != dm_get_size(md)) 1924 memset(&md->geometry, 0, sizeof(md->geometry)); 1925 1926 if (!get_capacity(md->disk)) 1927 set_capacity(md->disk, size); 1928 else 1929 set_capacity_and_notify(md->disk, size); 1930 1931 dm_table_event_callback(t, event_callback, md); 1932 1933 /* 1934 * The queue hasn't been stopped yet, if the old table type wasn't 1935 * for request-based during suspension. So stop it to prevent 1936 * I/O mapping before resume. 1937 * This must be done before setting the queue restrictions, 1938 * because request-based dm may be run just after the setting. 1939 */ 1940 if (request_based) 1941 dm_stop_queue(q); 1942 1943 if (request_based) { 1944 /* 1945 * Leverage the fact that request-based DM targets are 1946 * immutable singletons - used to optimize dm_mq_queue_rq. 1947 */ 1948 md->immutable_target = dm_table_get_immutable_target(t); 1949 } 1950 1951 ret = __bind_mempools(md, t); 1952 if (ret) { 1953 old_map = ERR_PTR(ret); 1954 goto out; 1955 } 1956 1957 ret = dm_table_set_restrictions(t, q, limits); 1958 if (ret) { 1959 old_map = ERR_PTR(ret); 1960 goto out; 1961 } 1962 1963 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1964 rcu_assign_pointer(md->map, (void *)t); 1965 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1966 1967 if (old_map) 1968 dm_sync_table(md); 1969 1970 out: 1971 return old_map; 1972 } 1973 1974 /* 1975 * Returns unbound table for the caller to free. 1976 */ 1977 static struct dm_table *__unbind(struct mapped_device *md) 1978 { 1979 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1980 1981 if (!map) 1982 return NULL; 1983 1984 dm_table_event_callback(map, NULL, NULL); 1985 RCU_INIT_POINTER(md->map, NULL); 1986 dm_sync_table(md); 1987 1988 return map; 1989 } 1990 1991 /* 1992 * Constructor for a new device. 1993 */ 1994 int dm_create(int minor, struct mapped_device **result) 1995 { 1996 int r; 1997 struct mapped_device *md; 1998 1999 md = alloc_dev(minor); 2000 if (!md) 2001 return -ENXIO; 2002 2003 r = dm_sysfs_init(md); 2004 if (r) { 2005 free_dev(md); 2006 return r; 2007 } 2008 2009 *result = md; 2010 return 0; 2011 } 2012 2013 /* 2014 * Functions to manage md->type. 2015 * All are required to hold md->type_lock. 2016 */ 2017 void dm_lock_md_type(struct mapped_device *md) 2018 { 2019 mutex_lock(&md->type_lock); 2020 } 2021 2022 void dm_unlock_md_type(struct mapped_device *md) 2023 { 2024 mutex_unlock(&md->type_lock); 2025 } 2026 2027 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2028 { 2029 BUG_ON(!mutex_is_locked(&md->type_lock)); 2030 md->type = type; 2031 } 2032 2033 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2034 { 2035 return md->type; 2036 } 2037 2038 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2039 { 2040 return md->immutable_target_type; 2041 } 2042 2043 /* 2044 * The queue_limits are only valid as long as you have a reference 2045 * count on 'md'. 2046 */ 2047 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2048 { 2049 BUG_ON(!atomic_read(&md->holders)); 2050 return &md->queue->limits; 2051 } 2052 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2053 2054 /* 2055 * Setup the DM device's queue based on md's type 2056 */ 2057 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2058 { 2059 int r; 2060 struct queue_limits limits; 2061 enum dm_queue_mode type = dm_get_md_type(md); 2062 2063 switch (type) { 2064 case DM_TYPE_REQUEST_BASED: 2065 md->disk->fops = &dm_rq_blk_dops; 2066 r = dm_mq_init_request_queue(md, t); 2067 if (r) { 2068 DMERR("Cannot initialize queue for request-based dm mapped device"); 2069 return r; 2070 } 2071 break; 2072 case DM_TYPE_BIO_BASED: 2073 case DM_TYPE_DAX_BIO_BASED: 2074 break; 2075 case DM_TYPE_NONE: 2076 WARN_ON_ONCE(true); 2077 break; 2078 } 2079 2080 r = dm_calculate_queue_limits(t, &limits); 2081 if (r) { 2082 DMERR("Cannot calculate initial queue limits"); 2083 return r; 2084 } 2085 r = dm_table_set_restrictions(t, md->queue, &limits); 2086 if (r) 2087 return r; 2088 2089 blk_register_queue(md->disk); 2090 2091 return 0; 2092 } 2093 2094 struct mapped_device *dm_get_md(dev_t dev) 2095 { 2096 struct mapped_device *md; 2097 unsigned minor = MINOR(dev); 2098 2099 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2100 return NULL; 2101 2102 spin_lock(&_minor_lock); 2103 2104 md = idr_find(&_minor_idr, minor); 2105 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2106 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2107 md = NULL; 2108 goto out; 2109 } 2110 dm_get(md); 2111 out: 2112 spin_unlock(&_minor_lock); 2113 2114 return md; 2115 } 2116 EXPORT_SYMBOL_GPL(dm_get_md); 2117 2118 void *dm_get_mdptr(struct mapped_device *md) 2119 { 2120 return md->interface_ptr; 2121 } 2122 2123 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2124 { 2125 md->interface_ptr = ptr; 2126 } 2127 2128 void dm_get(struct mapped_device *md) 2129 { 2130 atomic_inc(&md->holders); 2131 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2132 } 2133 2134 int dm_hold(struct mapped_device *md) 2135 { 2136 spin_lock(&_minor_lock); 2137 if (test_bit(DMF_FREEING, &md->flags)) { 2138 spin_unlock(&_minor_lock); 2139 return -EBUSY; 2140 } 2141 dm_get(md); 2142 spin_unlock(&_minor_lock); 2143 return 0; 2144 } 2145 EXPORT_SYMBOL_GPL(dm_hold); 2146 2147 const char *dm_device_name(struct mapped_device *md) 2148 { 2149 return md->name; 2150 } 2151 EXPORT_SYMBOL_GPL(dm_device_name); 2152 2153 static void __dm_destroy(struct mapped_device *md, bool wait) 2154 { 2155 struct dm_table *map; 2156 int srcu_idx; 2157 2158 might_sleep(); 2159 2160 spin_lock(&_minor_lock); 2161 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2162 set_bit(DMF_FREEING, &md->flags); 2163 spin_unlock(&_minor_lock); 2164 2165 blk_set_queue_dying(md->queue); 2166 2167 /* 2168 * Take suspend_lock so that presuspend and postsuspend methods 2169 * do not race with internal suspend. 2170 */ 2171 mutex_lock(&md->suspend_lock); 2172 map = dm_get_live_table(md, &srcu_idx); 2173 if (!dm_suspended_md(md)) { 2174 dm_table_presuspend_targets(map); 2175 set_bit(DMF_SUSPENDED, &md->flags); 2176 set_bit(DMF_POST_SUSPENDING, &md->flags); 2177 dm_table_postsuspend_targets(map); 2178 } 2179 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2180 dm_put_live_table(md, srcu_idx); 2181 mutex_unlock(&md->suspend_lock); 2182 2183 /* 2184 * Rare, but there may be I/O requests still going to complete, 2185 * for example. Wait for all references to disappear. 2186 * No one should increment the reference count of the mapped_device, 2187 * after the mapped_device state becomes DMF_FREEING. 2188 */ 2189 if (wait) 2190 while (atomic_read(&md->holders)) 2191 msleep(1); 2192 else if (atomic_read(&md->holders)) 2193 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2194 dm_device_name(md), atomic_read(&md->holders)); 2195 2196 dm_sysfs_exit(md); 2197 dm_table_destroy(__unbind(md)); 2198 free_dev(md); 2199 } 2200 2201 void dm_destroy(struct mapped_device *md) 2202 { 2203 __dm_destroy(md, true); 2204 } 2205 2206 void dm_destroy_immediate(struct mapped_device *md) 2207 { 2208 __dm_destroy(md, false); 2209 } 2210 2211 void dm_put(struct mapped_device *md) 2212 { 2213 atomic_dec(&md->holders); 2214 } 2215 EXPORT_SYMBOL_GPL(dm_put); 2216 2217 static bool md_in_flight_bios(struct mapped_device *md) 2218 { 2219 int cpu; 2220 struct block_device *part = dm_disk(md)->part0; 2221 long sum = 0; 2222 2223 for_each_possible_cpu(cpu) { 2224 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 2225 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 2226 } 2227 2228 return sum != 0; 2229 } 2230 2231 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2232 { 2233 int r = 0; 2234 DEFINE_WAIT(wait); 2235 2236 while (true) { 2237 prepare_to_wait(&md->wait, &wait, task_state); 2238 2239 if (!md_in_flight_bios(md)) 2240 break; 2241 2242 if (signal_pending_state(task_state, current)) { 2243 r = -EINTR; 2244 break; 2245 } 2246 2247 io_schedule(); 2248 } 2249 finish_wait(&md->wait, &wait); 2250 2251 return r; 2252 } 2253 2254 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2255 { 2256 int r = 0; 2257 2258 if (!queue_is_mq(md->queue)) 2259 return dm_wait_for_bios_completion(md, task_state); 2260 2261 while (true) { 2262 if (!blk_mq_queue_inflight(md->queue)) 2263 break; 2264 2265 if (signal_pending_state(task_state, current)) { 2266 r = -EINTR; 2267 break; 2268 } 2269 2270 msleep(5); 2271 } 2272 2273 return r; 2274 } 2275 2276 /* 2277 * Process the deferred bios 2278 */ 2279 static void dm_wq_work(struct work_struct *work) 2280 { 2281 struct mapped_device *md = container_of(work, struct mapped_device, work); 2282 struct bio *bio; 2283 2284 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2285 spin_lock_irq(&md->deferred_lock); 2286 bio = bio_list_pop(&md->deferred); 2287 spin_unlock_irq(&md->deferred_lock); 2288 2289 if (!bio) 2290 break; 2291 2292 submit_bio_noacct(bio); 2293 } 2294 } 2295 2296 static void dm_queue_flush(struct mapped_device *md) 2297 { 2298 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2299 smp_mb__after_atomic(); 2300 queue_work(md->wq, &md->work); 2301 } 2302 2303 /* 2304 * Swap in a new table, returning the old one for the caller to destroy. 2305 */ 2306 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2307 { 2308 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2309 struct queue_limits limits; 2310 int r; 2311 2312 mutex_lock(&md->suspend_lock); 2313 2314 /* device must be suspended */ 2315 if (!dm_suspended_md(md)) 2316 goto out; 2317 2318 /* 2319 * If the new table has no data devices, retain the existing limits. 2320 * This helps multipath with queue_if_no_path if all paths disappear, 2321 * then new I/O is queued based on these limits, and then some paths 2322 * reappear. 2323 */ 2324 if (dm_table_has_no_data_devices(table)) { 2325 live_map = dm_get_live_table_fast(md); 2326 if (live_map) 2327 limits = md->queue->limits; 2328 dm_put_live_table_fast(md); 2329 } 2330 2331 if (!live_map) { 2332 r = dm_calculate_queue_limits(table, &limits); 2333 if (r) { 2334 map = ERR_PTR(r); 2335 goto out; 2336 } 2337 } 2338 2339 map = __bind(md, table, &limits); 2340 dm_issue_global_event(); 2341 2342 out: 2343 mutex_unlock(&md->suspend_lock); 2344 return map; 2345 } 2346 2347 /* 2348 * Functions to lock and unlock any filesystem running on the 2349 * device. 2350 */ 2351 static int lock_fs(struct mapped_device *md) 2352 { 2353 int r; 2354 2355 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2356 2357 r = freeze_bdev(md->disk->part0); 2358 if (!r) 2359 set_bit(DMF_FROZEN, &md->flags); 2360 return r; 2361 } 2362 2363 static void unlock_fs(struct mapped_device *md) 2364 { 2365 if (!test_bit(DMF_FROZEN, &md->flags)) 2366 return; 2367 thaw_bdev(md->disk->part0); 2368 clear_bit(DMF_FROZEN, &md->flags); 2369 } 2370 2371 /* 2372 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2373 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2374 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2375 * 2376 * If __dm_suspend returns 0, the device is completely quiescent 2377 * now. There is no request-processing activity. All new requests 2378 * are being added to md->deferred list. 2379 */ 2380 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2381 unsigned suspend_flags, unsigned int task_state, 2382 int dmf_suspended_flag) 2383 { 2384 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2385 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2386 int r; 2387 2388 lockdep_assert_held(&md->suspend_lock); 2389 2390 /* 2391 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2392 * This flag is cleared before dm_suspend returns. 2393 */ 2394 if (noflush) 2395 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2396 else 2397 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2398 2399 /* 2400 * This gets reverted if there's an error later and the targets 2401 * provide the .presuspend_undo hook. 2402 */ 2403 dm_table_presuspend_targets(map); 2404 2405 /* 2406 * Flush I/O to the device. 2407 * Any I/O submitted after lock_fs() may not be flushed. 2408 * noflush takes precedence over do_lockfs. 2409 * (lock_fs() flushes I/Os and waits for them to complete.) 2410 */ 2411 if (!noflush && do_lockfs) { 2412 r = lock_fs(md); 2413 if (r) { 2414 dm_table_presuspend_undo_targets(map); 2415 return r; 2416 } 2417 } 2418 2419 /* 2420 * Here we must make sure that no processes are submitting requests 2421 * to target drivers i.e. no one may be executing 2422 * __split_and_process_bio from dm_submit_bio. 2423 * 2424 * To get all processes out of __split_and_process_bio in dm_submit_bio, 2425 * we take the write lock. To prevent any process from reentering 2426 * __split_and_process_bio from dm_submit_bio and quiesce the thread 2427 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2428 * flush_workqueue(md->wq). 2429 */ 2430 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2431 if (map) 2432 synchronize_srcu(&md->io_barrier); 2433 2434 /* 2435 * Stop md->queue before flushing md->wq in case request-based 2436 * dm defers requests to md->wq from md->queue. 2437 */ 2438 if (dm_request_based(md)) 2439 dm_stop_queue(md->queue); 2440 2441 flush_workqueue(md->wq); 2442 2443 /* 2444 * At this point no more requests are entering target request routines. 2445 * We call dm_wait_for_completion to wait for all existing requests 2446 * to finish. 2447 */ 2448 r = dm_wait_for_completion(md, task_state); 2449 if (!r) 2450 set_bit(dmf_suspended_flag, &md->flags); 2451 2452 if (noflush) 2453 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2454 if (map) 2455 synchronize_srcu(&md->io_barrier); 2456 2457 /* were we interrupted ? */ 2458 if (r < 0) { 2459 dm_queue_flush(md); 2460 2461 if (dm_request_based(md)) 2462 dm_start_queue(md->queue); 2463 2464 unlock_fs(md); 2465 dm_table_presuspend_undo_targets(map); 2466 /* pushback list is already flushed, so skip flush */ 2467 } 2468 2469 return r; 2470 } 2471 2472 /* 2473 * We need to be able to change a mapping table under a mounted 2474 * filesystem. For example we might want to move some data in 2475 * the background. Before the table can be swapped with 2476 * dm_bind_table, dm_suspend must be called to flush any in 2477 * flight bios and ensure that any further io gets deferred. 2478 */ 2479 /* 2480 * Suspend mechanism in request-based dm. 2481 * 2482 * 1. Flush all I/Os by lock_fs() if needed. 2483 * 2. Stop dispatching any I/O by stopping the request_queue. 2484 * 3. Wait for all in-flight I/Os to be completed or requeued. 2485 * 2486 * To abort suspend, start the request_queue. 2487 */ 2488 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2489 { 2490 struct dm_table *map = NULL; 2491 int r = 0; 2492 2493 retry: 2494 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2495 2496 if (dm_suspended_md(md)) { 2497 r = -EINVAL; 2498 goto out_unlock; 2499 } 2500 2501 if (dm_suspended_internally_md(md)) { 2502 /* already internally suspended, wait for internal resume */ 2503 mutex_unlock(&md->suspend_lock); 2504 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2505 if (r) 2506 return r; 2507 goto retry; 2508 } 2509 2510 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2511 2512 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2513 if (r) 2514 goto out_unlock; 2515 2516 set_bit(DMF_POST_SUSPENDING, &md->flags); 2517 dm_table_postsuspend_targets(map); 2518 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2519 2520 out_unlock: 2521 mutex_unlock(&md->suspend_lock); 2522 return r; 2523 } 2524 2525 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2526 { 2527 if (map) { 2528 int r = dm_table_resume_targets(map); 2529 if (r) 2530 return r; 2531 } 2532 2533 dm_queue_flush(md); 2534 2535 /* 2536 * Flushing deferred I/Os must be done after targets are resumed 2537 * so that mapping of targets can work correctly. 2538 * Request-based dm is queueing the deferred I/Os in its request_queue. 2539 */ 2540 if (dm_request_based(md)) 2541 dm_start_queue(md->queue); 2542 2543 unlock_fs(md); 2544 2545 return 0; 2546 } 2547 2548 int dm_resume(struct mapped_device *md) 2549 { 2550 int r; 2551 struct dm_table *map = NULL; 2552 2553 retry: 2554 r = -EINVAL; 2555 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2556 2557 if (!dm_suspended_md(md)) 2558 goto out; 2559 2560 if (dm_suspended_internally_md(md)) { 2561 /* already internally suspended, wait for internal resume */ 2562 mutex_unlock(&md->suspend_lock); 2563 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2564 if (r) 2565 return r; 2566 goto retry; 2567 } 2568 2569 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2570 if (!map || !dm_table_get_size(map)) 2571 goto out; 2572 2573 r = __dm_resume(md, map); 2574 if (r) 2575 goto out; 2576 2577 clear_bit(DMF_SUSPENDED, &md->flags); 2578 out: 2579 mutex_unlock(&md->suspend_lock); 2580 2581 return r; 2582 } 2583 2584 /* 2585 * Internal suspend/resume works like userspace-driven suspend. It waits 2586 * until all bios finish and prevents issuing new bios to the target drivers. 2587 * It may be used only from the kernel. 2588 */ 2589 2590 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2591 { 2592 struct dm_table *map = NULL; 2593 2594 lockdep_assert_held(&md->suspend_lock); 2595 2596 if (md->internal_suspend_count++) 2597 return; /* nested internal suspend */ 2598 2599 if (dm_suspended_md(md)) { 2600 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2601 return; /* nest suspend */ 2602 } 2603 2604 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2605 2606 /* 2607 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2608 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2609 * would require changing .presuspend to return an error -- avoid this 2610 * until there is a need for more elaborate variants of internal suspend. 2611 */ 2612 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2613 DMF_SUSPENDED_INTERNALLY); 2614 2615 set_bit(DMF_POST_SUSPENDING, &md->flags); 2616 dm_table_postsuspend_targets(map); 2617 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2618 } 2619 2620 static void __dm_internal_resume(struct mapped_device *md) 2621 { 2622 BUG_ON(!md->internal_suspend_count); 2623 2624 if (--md->internal_suspend_count) 2625 return; /* resume from nested internal suspend */ 2626 2627 if (dm_suspended_md(md)) 2628 goto done; /* resume from nested suspend */ 2629 2630 /* 2631 * NOTE: existing callers don't need to call dm_table_resume_targets 2632 * (which may fail -- so best to avoid it for now by passing NULL map) 2633 */ 2634 (void) __dm_resume(md, NULL); 2635 2636 done: 2637 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2638 smp_mb__after_atomic(); 2639 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2640 } 2641 2642 void dm_internal_suspend_noflush(struct mapped_device *md) 2643 { 2644 mutex_lock(&md->suspend_lock); 2645 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2646 mutex_unlock(&md->suspend_lock); 2647 } 2648 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2649 2650 void dm_internal_resume(struct mapped_device *md) 2651 { 2652 mutex_lock(&md->suspend_lock); 2653 __dm_internal_resume(md); 2654 mutex_unlock(&md->suspend_lock); 2655 } 2656 EXPORT_SYMBOL_GPL(dm_internal_resume); 2657 2658 /* 2659 * Fast variants of internal suspend/resume hold md->suspend_lock, 2660 * which prevents interaction with userspace-driven suspend. 2661 */ 2662 2663 void dm_internal_suspend_fast(struct mapped_device *md) 2664 { 2665 mutex_lock(&md->suspend_lock); 2666 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2667 return; 2668 2669 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2670 synchronize_srcu(&md->io_barrier); 2671 flush_workqueue(md->wq); 2672 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2673 } 2674 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2675 2676 void dm_internal_resume_fast(struct mapped_device *md) 2677 { 2678 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2679 goto done; 2680 2681 dm_queue_flush(md); 2682 2683 done: 2684 mutex_unlock(&md->suspend_lock); 2685 } 2686 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2687 2688 /*----------------------------------------------------------------- 2689 * Event notification. 2690 *---------------------------------------------------------------*/ 2691 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2692 unsigned cookie) 2693 { 2694 int r; 2695 unsigned noio_flag; 2696 char udev_cookie[DM_COOKIE_LENGTH]; 2697 char *envp[] = { udev_cookie, NULL }; 2698 2699 noio_flag = memalloc_noio_save(); 2700 2701 if (!cookie) 2702 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2703 else { 2704 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2705 DM_COOKIE_ENV_VAR_NAME, cookie); 2706 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2707 action, envp); 2708 } 2709 2710 memalloc_noio_restore(noio_flag); 2711 2712 return r; 2713 } 2714 2715 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2716 { 2717 return atomic_add_return(1, &md->uevent_seq); 2718 } 2719 2720 uint32_t dm_get_event_nr(struct mapped_device *md) 2721 { 2722 return atomic_read(&md->event_nr); 2723 } 2724 2725 int dm_wait_event(struct mapped_device *md, int event_nr) 2726 { 2727 return wait_event_interruptible(md->eventq, 2728 (event_nr != atomic_read(&md->event_nr))); 2729 } 2730 2731 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2732 { 2733 unsigned long flags; 2734 2735 spin_lock_irqsave(&md->uevent_lock, flags); 2736 list_add(elist, &md->uevent_list); 2737 spin_unlock_irqrestore(&md->uevent_lock, flags); 2738 } 2739 2740 /* 2741 * The gendisk is only valid as long as you have a reference 2742 * count on 'md'. 2743 */ 2744 struct gendisk *dm_disk(struct mapped_device *md) 2745 { 2746 return md->disk; 2747 } 2748 EXPORT_SYMBOL_GPL(dm_disk); 2749 2750 struct kobject *dm_kobject(struct mapped_device *md) 2751 { 2752 return &md->kobj_holder.kobj; 2753 } 2754 2755 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2756 { 2757 struct mapped_device *md; 2758 2759 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2760 2761 spin_lock(&_minor_lock); 2762 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2763 md = NULL; 2764 goto out; 2765 } 2766 dm_get(md); 2767 out: 2768 spin_unlock(&_minor_lock); 2769 2770 return md; 2771 } 2772 2773 int dm_suspended_md(struct mapped_device *md) 2774 { 2775 return test_bit(DMF_SUSPENDED, &md->flags); 2776 } 2777 2778 static int dm_post_suspending_md(struct mapped_device *md) 2779 { 2780 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2781 } 2782 2783 int dm_suspended_internally_md(struct mapped_device *md) 2784 { 2785 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2786 } 2787 2788 int dm_test_deferred_remove_flag(struct mapped_device *md) 2789 { 2790 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2791 } 2792 2793 int dm_suspended(struct dm_target *ti) 2794 { 2795 return dm_suspended_md(ti->table->md); 2796 } 2797 EXPORT_SYMBOL_GPL(dm_suspended); 2798 2799 int dm_post_suspending(struct dm_target *ti) 2800 { 2801 return dm_post_suspending_md(ti->table->md); 2802 } 2803 EXPORT_SYMBOL_GPL(dm_post_suspending); 2804 2805 int dm_noflush_suspending(struct dm_target *ti) 2806 { 2807 return __noflush_suspending(ti->table->md); 2808 } 2809 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2810 2811 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2812 unsigned integrity, unsigned per_io_data_size, 2813 unsigned min_pool_size) 2814 { 2815 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2816 unsigned int pool_size = 0; 2817 unsigned int front_pad, io_front_pad; 2818 int ret; 2819 2820 if (!pools) 2821 return NULL; 2822 2823 switch (type) { 2824 case DM_TYPE_BIO_BASED: 2825 case DM_TYPE_DAX_BIO_BASED: 2826 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2827 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 2828 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 2829 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2830 if (ret) 2831 goto out; 2832 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2833 goto out; 2834 break; 2835 case DM_TYPE_REQUEST_BASED: 2836 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2837 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2838 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2839 break; 2840 default: 2841 BUG(); 2842 } 2843 2844 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2845 if (ret) 2846 goto out; 2847 2848 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2849 goto out; 2850 2851 return pools; 2852 2853 out: 2854 dm_free_md_mempools(pools); 2855 2856 return NULL; 2857 } 2858 2859 void dm_free_md_mempools(struct dm_md_mempools *pools) 2860 { 2861 if (!pools) 2862 return; 2863 2864 bioset_exit(&pools->bs); 2865 bioset_exit(&pools->io_bs); 2866 2867 kfree(pools); 2868 } 2869 2870 struct dm_pr { 2871 u64 old_key; 2872 u64 new_key; 2873 u32 flags; 2874 bool fail_early; 2875 }; 2876 2877 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2878 void *data) 2879 { 2880 struct mapped_device *md = bdev->bd_disk->private_data; 2881 struct dm_table *table; 2882 struct dm_target *ti; 2883 int ret = -ENOTTY, srcu_idx; 2884 2885 table = dm_get_live_table(md, &srcu_idx); 2886 if (!table || !dm_table_get_size(table)) 2887 goto out; 2888 2889 /* We only support devices that have a single target */ 2890 if (dm_table_get_num_targets(table) != 1) 2891 goto out; 2892 ti = dm_table_get_target(table, 0); 2893 2894 ret = -EINVAL; 2895 if (!ti->type->iterate_devices) 2896 goto out; 2897 2898 ret = ti->type->iterate_devices(ti, fn, data); 2899 out: 2900 dm_put_live_table(md, srcu_idx); 2901 return ret; 2902 } 2903 2904 /* 2905 * For register / unregister we need to manually call out to every path. 2906 */ 2907 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2908 sector_t start, sector_t len, void *data) 2909 { 2910 struct dm_pr *pr = data; 2911 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2912 2913 if (!ops || !ops->pr_register) 2914 return -EOPNOTSUPP; 2915 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2916 } 2917 2918 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2919 u32 flags) 2920 { 2921 struct dm_pr pr = { 2922 .old_key = old_key, 2923 .new_key = new_key, 2924 .flags = flags, 2925 .fail_early = true, 2926 }; 2927 int ret; 2928 2929 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2930 if (ret && new_key) { 2931 /* unregister all paths if we failed to register any path */ 2932 pr.old_key = new_key; 2933 pr.new_key = 0; 2934 pr.flags = 0; 2935 pr.fail_early = false; 2936 dm_call_pr(bdev, __dm_pr_register, &pr); 2937 } 2938 2939 return ret; 2940 } 2941 2942 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2943 u32 flags) 2944 { 2945 struct mapped_device *md = bdev->bd_disk->private_data; 2946 const struct pr_ops *ops; 2947 int r, srcu_idx; 2948 2949 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2950 if (r < 0) 2951 goto out; 2952 2953 ops = bdev->bd_disk->fops->pr_ops; 2954 if (ops && ops->pr_reserve) 2955 r = ops->pr_reserve(bdev, key, type, flags); 2956 else 2957 r = -EOPNOTSUPP; 2958 out: 2959 dm_unprepare_ioctl(md, srcu_idx); 2960 return r; 2961 } 2962 2963 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2964 { 2965 struct mapped_device *md = bdev->bd_disk->private_data; 2966 const struct pr_ops *ops; 2967 int r, srcu_idx; 2968 2969 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2970 if (r < 0) 2971 goto out; 2972 2973 ops = bdev->bd_disk->fops->pr_ops; 2974 if (ops && ops->pr_release) 2975 r = ops->pr_release(bdev, key, type); 2976 else 2977 r = -EOPNOTSUPP; 2978 out: 2979 dm_unprepare_ioctl(md, srcu_idx); 2980 return r; 2981 } 2982 2983 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2984 enum pr_type type, bool abort) 2985 { 2986 struct mapped_device *md = bdev->bd_disk->private_data; 2987 const struct pr_ops *ops; 2988 int r, srcu_idx; 2989 2990 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2991 if (r < 0) 2992 goto out; 2993 2994 ops = bdev->bd_disk->fops->pr_ops; 2995 if (ops && ops->pr_preempt) 2996 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2997 else 2998 r = -EOPNOTSUPP; 2999 out: 3000 dm_unprepare_ioctl(md, srcu_idx); 3001 return r; 3002 } 3003 3004 static int dm_pr_clear(struct block_device *bdev, u64 key) 3005 { 3006 struct mapped_device *md = bdev->bd_disk->private_data; 3007 const struct pr_ops *ops; 3008 int r, srcu_idx; 3009 3010 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3011 if (r < 0) 3012 goto out; 3013 3014 ops = bdev->bd_disk->fops->pr_ops; 3015 if (ops && ops->pr_clear) 3016 r = ops->pr_clear(bdev, key); 3017 else 3018 r = -EOPNOTSUPP; 3019 out: 3020 dm_unprepare_ioctl(md, srcu_idx); 3021 return r; 3022 } 3023 3024 static const struct pr_ops dm_pr_ops = { 3025 .pr_register = dm_pr_register, 3026 .pr_reserve = dm_pr_reserve, 3027 .pr_release = dm_pr_release, 3028 .pr_preempt = dm_pr_preempt, 3029 .pr_clear = dm_pr_clear, 3030 }; 3031 3032 static const struct block_device_operations dm_blk_dops = { 3033 .submit_bio = dm_submit_bio, 3034 .open = dm_blk_open, 3035 .release = dm_blk_close, 3036 .ioctl = dm_blk_ioctl, 3037 .getgeo = dm_blk_getgeo, 3038 .report_zones = dm_blk_report_zones, 3039 .pr_ops = &dm_pr_ops, 3040 .owner = THIS_MODULE 3041 }; 3042 3043 static const struct block_device_operations dm_rq_blk_dops = { 3044 .open = dm_blk_open, 3045 .release = dm_blk_close, 3046 .ioctl = dm_blk_ioctl, 3047 .getgeo = dm_blk_getgeo, 3048 .pr_ops = &dm_pr_ops, 3049 .owner = THIS_MODULE 3050 }; 3051 3052 static const struct dax_operations dm_dax_ops = { 3053 .direct_access = dm_dax_direct_access, 3054 .dax_supported = dm_dax_supported, 3055 .copy_from_iter = dm_dax_copy_from_iter, 3056 .copy_to_iter = dm_dax_copy_to_iter, 3057 .zero_page_range = dm_dax_zero_page_range, 3058 }; 3059 3060 /* 3061 * module hooks 3062 */ 3063 module_init(dm_init); 3064 module_exit(dm_exit); 3065 3066 module_param(major, uint, 0); 3067 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3068 3069 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3070 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3071 3072 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3073 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3074 3075 module_param(swap_bios, int, S_IRUGO | S_IWUSR); 3076 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3077 3078 MODULE_DESCRIPTION(DM_NAME " driver"); 3079 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3080 MODULE_LICENSE("GPL"); 3081