xref: /openbmc/linux/drivers/md/dm.c (revision a90fa0ad)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12 
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33 
34 #define DM_MSG_PREFIX "core"
35 
36 /*
37  * Cookies are numeric values sent with CHANGE and REMOVE
38  * uevents while resuming, removing or renaming the device.
39  */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42 
43 /*
44  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45  * dm_io into one list, and reuse bio->bi_private as the list head. Before
46  * ending this fs bio, we will recover its ->bi_private.
47  */
48 #define REQ_DM_POLL_LIST	REQ_DRV
49 
50 static const char *_name = DM_NAME;
51 
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54 
55 static DEFINE_IDR(_minor_idr);
56 
57 static DEFINE_SPINLOCK(_minor_lock);
58 
59 static void do_deferred_remove(struct work_struct *w);
60 
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62 
63 static struct workqueue_struct *deferred_remove_workqueue;
64 
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67 
68 void dm_issue_global_event(void)
69 {
70 	atomic_inc(&dm_global_event_nr);
71 	wake_up(&dm_global_eventq);
72 }
73 
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
77 
78 /*
79  * One of these is allocated (on-stack) per original bio.
80  */
81 struct clone_info {
82 	struct dm_table *map;
83 	struct bio *bio;
84 	struct dm_io *io;
85 	sector_t sector;
86 	unsigned sector_count;
87 	bool is_abnormal_io:1;
88 	bool submit_as_polled:1;
89 };
90 
91 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
92 {
93 	return container_of(clone, struct dm_target_io, clone);
94 }
95 
96 void *dm_per_bio_data(struct bio *bio, size_t data_size)
97 {
98 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
99 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
100 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
101 }
102 EXPORT_SYMBOL_GPL(dm_per_bio_data);
103 
104 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
105 {
106 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
107 	if (io->magic == DM_IO_MAGIC)
108 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
109 	BUG_ON(io->magic != DM_TIO_MAGIC);
110 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
111 }
112 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
113 
114 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
115 {
116 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
117 }
118 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
119 
120 #define MINOR_ALLOCED ((void *)-1)
121 
122 #define DM_NUMA_NODE NUMA_NO_NODE
123 static int dm_numa_node = DM_NUMA_NODE;
124 
125 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
126 static int swap_bios = DEFAULT_SWAP_BIOS;
127 static int get_swap_bios(void)
128 {
129 	int latch = READ_ONCE(swap_bios);
130 	if (unlikely(latch <= 0))
131 		latch = DEFAULT_SWAP_BIOS;
132 	return latch;
133 }
134 
135 struct table_device {
136 	struct list_head list;
137 	refcount_t count;
138 	struct dm_dev dm_dev;
139 };
140 
141 /*
142  * Bio-based DM's mempools' reserved IOs set by the user.
143  */
144 #define RESERVED_BIO_BASED_IOS		16
145 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
146 
147 static int __dm_get_module_param_int(int *module_param, int min, int max)
148 {
149 	int param = READ_ONCE(*module_param);
150 	int modified_param = 0;
151 	bool modified = true;
152 
153 	if (param < min)
154 		modified_param = min;
155 	else if (param > max)
156 		modified_param = max;
157 	else
158 		modified = false;
159 
160 	if (modified) {
161 		(void)cmpxchg(module_param, param, modified_param);
162 		param = modified_param;
163 	}
164 
165 	return param;
166 }
167 
168 unsigned __dm_get_module_param(unsigned *module_param,
169 			       unsigned def, unsigned max)
170 {
171 	unsigned param = READ_ONCE(*module_param);
172 	unsigned modified_param = 0;
173 
174 	if (!param)
175 		modified_param = def;
176 	else if (param > max)
177 		modified_param = max;
178 
179 	if (modified_param) {
180 		(void)cmpxchg(module_param, param, modified_param);
181 		param = modified_param;
182 	}
183 
184 	return param;
185 }
186 
187 unsigned dm_get_reserved_bio_based_ios(void)
188 {
189 	return __dm_get_module_param(&reserved_bio_based_ios,
190 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
191 }
192 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
193 
194 static unsigned dm_get_numa_node(void)
195 {
196 	return __dm_get_module_param_int(&dm_numa_node,
197 					 DM_NUMA_NODE, num_online_nodes() - 1);
198 }
199 
200 static int __init local_init(void)
201 {
202 	int r;
203 
204 	r = dm_uevent_init();
205 	if (r)
206 		return r;
207 
208 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
209 	if (!deferred_remove_workqueue) {
210 		r = -ENOMEM;
211 		goto out_uevent_exit;
212 	}
213 
214 	_major = major;
215 	r = register_blkdev(_major, _name);
216 	if (r < 0)
217 		goto out_free_workqueue;
218 
219 	if (!_major)
220 		_major = r;
221 
222 	return 0;
223 
224 out_free_workqueue:
225 	destroy_workqueue(deferred_remove_workqueue);
226 out_uevent_exit:
227 	dm_uevent_exit();
228 
229 	return r;
230 }
231 
232 static void local_exit(void)
233 {
234 	flush_scheduled_work();
235 	destroy_workqueue(deferred_remove_workqueue);
236 
237 	unregister_blkdev(_major, _name);
238 	dm_uevent_exit();
239 
240 	_major = 0;
241 
242 	DMINFO("cleaned up");
243 }
244 
245 static int (*_inits[])(void) __initdata = {
246 	local_init,
247 	dm_target_init,
248 	dm_linear_init,
249 	dm_stripe_init,
250 	dm_io_init,
251 	dm_kcopyd_init,
252 	dm_interface_init,
253 	dm_statistics_init,
254 };
255 
256 static void (*_exits[])(void) = {
257 	local_exit,
258 	dm_target_exit,
259 	dm_linear_exit,
260 	dm_stripe_exit,
261 	dm_io_exit,
262 	dm_kcopyd_exit,
263 	dm_interface_exit,
264 	dm_statistics_exit,
265 };
266 
267 static int __init dm_init(void)
268 {
269 	const int count = ARRAY_SIZE(_inits);
270 	int r, i;
271 
272 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
273 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
274 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
275 #endif
276 
277 	for (i = 0; i < count; i++) {
278 		r = _inits[i]();
279 		if (r)
280 			goto bad;
281 	}
282 
283 	return 0;
284 bad:
285 	while (i--)
286 		_exits[i]();
287 
288 	return r;
289 }
290 
291 static void __exit dm_exit(void)
292 {
293 	int i = ARRAY_SIZE(_exits);
294 
295 	while (i--)
296 		_exits[i]();
297 
298 	/*
299 	 * Should be empty by this point.
300 	 */
301 	idr_destroy(&_minor_idr);
302 }
303 
304 /*
305  * Block device functions
306  */
307 int dm_deleting_md(struct mapped_device *md)
308 {
309 	return test_bit(DMF_DELETING, &md->flags);
310 }
311 
312 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
313 {
314 	struct mapped_device *md;
315 
316 	spin_lock(&_minor_lock);
317 
318 	md = bdev->bd_disk->private_data;
319 	if (!md)
320 		goto out;
321 
322 	if (test_bit(DMF_FREEING, &md->flags) ||
323 	    dm_deleting_md(md)) {
324 		md = NULL;
325 		goto out;
326 	}
327 
328 	dm_get(md);
329 	atomic_inc(&md->open_count);
330 out:
331 	spin_unlock(&_minor_lock);
332 
333 	return md ? 0 : -ENXIO;
334 }
335 
336 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
337 {
338 	struct mapped_device *md;
339 
340 	spin_lock(&_minor_lock);
341 
342 	md = disk->private_data;
343 	if (WARN_ON(!md))
344 		goto out;
345 
346 	if (atomic_dec_and_test(&md->open_count) &&
347 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
348 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
349 
350 	dm_put(md);
351 out:
352 	spin_unlock(&_minor_lock);
353 }
354 
355 int dm_open_count(struct mapped_device *md)
356 {
357 	return atomic_read(&md->open_count);
358 }
359 
360 /*
361  * Guarantees nothing is using the device before it's deleted.
362  */
363 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
364 {
365 	int r = 0;
366 
367 	spin_lock(&_minor_lock);
368 
369 	if (dm_open_count(md)) {
370 		r = -EBUSY;
371 		if (mark_deferred)
372 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
373 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
374 		r = -EEXIST;
375 	else
376 		set_bit(DMF_DELETING, &md->flags);
377 
378 	spin_unlock(&_minor_lock);
379 
380 	return r;
381 }
382 
383 int dm_cancel_deferred_remove(struct mapped_device *md)
384 {
385 	int r = 0;
386 
387 	spin_lock(&_minor_lock);
388 
389 	if (test_bit(DMF_DELETING, &md->flags))
390 		r = -EBUSY;
391 	else
392 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
393 
394 	spin_unlock(&_minor_lock);
395 
396 	return r;
397 }
398 
399 static void do_deferred_remove(struct work_struct *w)
400 {
401 	dm_deferred_remove();
402 }
403 
404 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
405 {
406 	struct mapped_device *md = bdev->bd_disk->private_data;
407 
408 	return dm_get_geometry(md, geo);
409 }
410 
411 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
412 			    struct block_device **bdev)
413 {
414 	struct dm_target *ti;
415 	struct dm_table *map;
416 	int r;
417 
418 retry:
419 	r = -ENOTTY;
420 	map = dm_get_live_table(md, srcu_idx);
421 	if (!map || !dm_table_get_size(map))
422 		return r;
423 
424 	/* We only support devices that have a single target */
425 	if (map->num_targets != 1)
426 		return r;
427 
428 	ti = dm_table_get_target(map, 0);
429 	if (!ti->type->prepare_ioctl)
430 		return r;
431 
432 	if (dm_suspended_md(md))
433 		return -EAGAIN;
434 
435 	r = ti->type->prepare_ioctl(ti, bdev);
436 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
437 		dm_put_live_table(md, *srcu_idx);
438 		msleep(10);
439 		goto retry;
440 	}
441 
442 	return r;
443 }
444 
445 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
446 {
447 	dm_put_live_table(md, srcu_idx);
448 }
449 
450 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
451 			unsigned int cmd, unsigned long arg)
452 {
453 	struct mapped_device *md = bdev->bd_disk->private_data;
454 	int r, srcu_idx;
455 
456 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
457 	if (r < 0)
458 		goto out;
459 
460 	if (r > 0) {
461 		/*
462 		 * Target determined this ioctl is being issued against a
463 		 * subset of the parent bdev; require extra privileges.
464 		 */
465 		if (!capable(CAP_SYS_RAWIO)) {
466 			DMDEBUG_LIMIT(
467 	"%s: sending ioctl %x to DM device without required privilege.",
468 				current->comm, cmd);
469 			r = -ENOIOCTLCMD;
470 			goto out;
471 		}
472 	}
473 
474 	if (!bdev->bd_disk->fops->ioctl)
475 		r = -ENOTTY;
476 	else
477 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
478 out:
479 	dm_unprepare_ioctl(md, srcu_idx);
480 	return r;
481 }
482 
483 u64 dm_start_time_ns_from_clone(struct bio *bio)
484 {
485 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
486 }
487 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
488 
489 static bool bio_is_flush_with_data(struct bio *bio)
490 {
491 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
492 }
493 
494 static void dm_io_acct(struct dm_io *io, bool end)
495 {
496 	struct dm_stats_aux *stats_aux = &io->stats_aux;
497 	unsigned long start_time = io->start_time;
498 	struct mapped_device *md = io->md;
499 	struct bio *bio = io->orig_bio;
500 	unsigned int sectors;
501 
502 	/*
503 	 * If REQ_PREFLUSH set, don't account payload, it will be
504 	 * submitted (and accounted) after this flush completes.
505 	 */
506 	if (bio_is_flush_with_data(bio))
507 		sectors = 0;
508 	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
509 		sectors = bio_sectors(bio);
510 	else
511 		sectors = io->sectors;
512 
513 	if (!end)
514 		bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
515 				   start_time);
516 	else
517 		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
518 
519 	if (static_branch_unlikely(&stats_enabled) &&
520 	    unlikely(dm_stats_used(&md->stats))) {
521 		sector_t sector;
522 
523 		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
524 			sector = bio->bi_iter.bi_sector;
525 		else
526 			sector = bio_end_sector(bio) - io->sector_offset;
527 
528 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
529 				    sector, sectors,
530 				    end, start_time, stats_aux);
531 	}
532 }
533 
534 static void __dm_start_io_acct(struct dm_io *io)
535 {
536 	dm_io_acct(io, false);
537 }
538 
539 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
540 {
541 	/*
542 	 * Ensure IO accounting is only ever started once.
543 	 */
544 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
545 		return;
546 
547 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
548 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
549 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
550 	} else {
551 		unsigned long flags;
552 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
553 		spin_lock_irqsave(&io->lock, flags);
554 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
555 			spin_unlock_irqrestore(&io->lock, flags);
556 			return;
557 		}
558 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
559 		spin_unlock_irqrestore(&io->lock, flags);
560 	}
561 
562 	__dm_start_io_acct(io);
563 }
564 
565 static void dm_end_io_acct(struct dm_io *io)
566 {
567 	dm_io_acct(io, true);
568 }
569 
570 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
571 {
572 	struct dm_io *io;
573 	struct dm_target_io *tio;
574 	struct bio *clone;
575 
576 	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
577 	tio = clone_to_tio(clone);
578 	tio->flags = 0;
579 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
580 	tio->io = NULL;
581 
582 	io = container_of(tio, struct dm_io, tio);
583 	io->magic = DM_IO_MAGIC;
584 	io->status = BLK_STS_OK;
585 
586 	/* one ref is for submission, the other is for completion */
587 	atomic_set(&io->io_count, 2);
588 	this_cpu_inc(*md->pending_io);
589 	io->orig_bio = bio;
590 	io->md = md;
591 	spin_lock_init(&io->lock);
592 	io->start_time = jiffies;
593 	io->flags = 0;
594 
595 	if (static_branch_unlikely(&stats_enabled))
596 		dm_stats_record_start(&md->stats, &io->stats_aux);
597 
598 	return io;
599 }
600 
601 static void free_io(struct dm_io *io)
602 {
603 	bio_put(&io->tio.clone);
604 }
605 
606 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
607 			     unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
608 {
609 	struct mapped_device *md = ci->io->md;
610 	struct dm_target_io *tio;
611 	struct bio *clone;
612 
613 	if (!ci->io->tio.io) {
614 		/* the dm_target_io embedded in ci->io is available */
615 		tio = &ci->io->tio;
616 		/* alloc_io() already initialized embedded clone */
617 		clone = &tio->clone;
618 	} else {
619 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
620 					&md->mempools->bs);
621 		if (!clone)
622 			return NULL;
623 
624 		/* REQ_DM_POLL_LIST shouldn't be inherited */
625 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
626 
627 		tio = clone_to_tio(clone);
628 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
629 	}
630 
631 	tio->magic = DM_TIO_MAGIC;
632 	tio->io = ci->io;
633 	tio->ti = ti;
634 	tio->target_bio_nr = target_bio_nr;
635 	tio->len_ptr = len;
636 	tio->old_sector = 0;
637 
638 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
639 	clone->bi_bdev = md->disk->part0;
640 	if (unlikely(ti->needs_bio_set_dev))
641 		bio_set_dev(clone, md->disk->part0);
642 
643 	if (len) {
644 		clone->bi_iter.bi_size = to_bytes(*len);
645 		if (bio_integrity(clone))
646 			bio_integrity_trim(clone);
647 	}
648 
649 	return clone;
650 }
651 
652 static void free_tio(struct bio *clone)
653 {
654 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
655 		return;
656 	bio_put(clone);
657 }
658 
659 /*
660  * Add the bio to the list of deferred io.
661  */
662 static void queue_io(struct mapped_device *md, struct bio *bio)
663 {
664 	unsigned long flags;
665 
666 	spin_lock_irqsave(&md->deferred_lock, flags);
667 	bio_list_add(&md->deferred, bio);
668 	spin_unlock_irqrestore(&md->deferred_lock, flags);
669 	queue_work(md->wq, &md->work);
670 }
671 
672 /*
673  * Everyone (including functions in this file), should use this
674  * function to access the md->map field, and make sure they call
675  * dm_put_live_table() when finished.
676  */
677 struct dm_table *dm_get_live_table(struct mapped_device *md,
678 				   int *srcu_idx) __acquires(md->io_barrier)
679 {
680 	*srcu_idx = srcu_read_lock(&md->io_barrier);
681 
682 	return srcu_dereference(md->map, &md->io_barrier);
683 }
684 
685 void dm_put_live_table(struct mapped_device *md,
686 		       int srcu_idx) __releases(md->io_barrier)
687 {
688 	srcu_read_unlock(&md->io_barrier, srcu_idx);
689 }
690 
691 void dm_sync_table(struct mapped_device *md)
692 {
693 	synchronize_srcu(&md->io_barrier);
694 	synchronize_rcu_expedited();
695 }
696 
697 /*
698  * A fast alternative to dm_get_live_table/dm_put_live_table.
699  * The caller must not block between these two functions.
700  */
701 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
702 {
703 	rcu_read_lock();
704 	return rcu_dereference(md->map);
705 }
706 
707 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
708 {
709 	rcu_read_unlock();
710 }
711 
712 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
713 					int *srcu_idx, blk_opf_t bio_opf)
714 {
715 	if (bio_opf & REQ_NOWAIT)
716 		return dm_get_live_table_fast(md);
717 	else
718 		return dm_get_live_table(md, srcu_idx);
719 }
720 
721 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
722 					 blk_opf_t bio_opf)
723 {
724 	if (bio_opf & REQ_NOWAIT)
725 		dm_put_live_table_fast(md);
726 	else
727 		dm_put_live_table(md, srcu_idx);
728 }
729 
730 static char *_dm_claim_ptr = "I belong to device-mapper";
731 
732 /*
733  * Open a table device so we can use it as a map destination.
734  */
735 static struct table_device *open_table_device(struct mapped_device *md,
736 		dev_t dev, fmode_t mode)
737 {
738 	struct table_device *td;
739 	struct block_device *bdev;
740 	u64 part_off;
741 	int r;
742 
743 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
744 	if (!td)
745 		return ERR_PTR(-ENOMEM);
746 	refcount_set(&td->count, 1);
747 
748 	bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
749 	if (IS_ERR(bdev)) {
750 		r = PTR_ERR(bdev);
751 		goto out_free_td;
752 	}
753 
754 	/*
755 	 * We can be called before the dm disk is added.  In that case we can't
756 	 * register the holder relation here.  It will be done once add_disk was
757 	 * called.
758 	 */
759 	if (md->disk->slave_dir) {
760 		r = bd_link_disk_holder(bdev, md->disk);
761 		if (r)
762 			goto out_blkdev_put;
763 	}
764 
765 	td->dm_dev.mode = mode;
766 	td->dm_dev.bdev = bdev;
767 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
768 	format_dev_t(td->dm_dev.name, dev);
769 	list_add(&td->list, &md->table_devices);
770 	return td;
771 
772 out_blkdev_put:
773 	blkdev_put(bdev, mode | FMODE_EXCL);
774 out_free_td:
775 	kfree(td);
776 	return ERR_PTR(r);
777 }
778 
779 /*
780  * Close a table device that we've been using.
781  */
782 static void close_table_device(struct table_device *td, struct mapped_device *md)
783 {
784 	if (md->disk->slave_dir)
785 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
786 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
787 	put_dax(td->dm_dev.dax_dev);
788 	list_del(&td->list);
789 	kfree(td);
790 }
791 
792 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
793 					      fmode_t mode)
794 {
795 	struct table_device *td;
796 
797 	list_for_each_entry(td, l, list)
798 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
799 			return td;
800 
801 	return NULL;
802 }
803 
804 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
805 			struct dm_dev **result)
806 {
807 	struct table_device *td;
808 
809 	mutex_lock(&md->table_devices_lock);
810 	td = find_table_device(&md->table_devices, dev, mode);
811 	if (!td) {
812 		td = open_table_device(md, dev, mode);
813 		if (IS_ERR(td)) {
814 			mutex_unlock(&md->table_devices_lock);
815 			return PTR_ERR(td);
816 		}
817 	} else {
818 		refcount_inc(&td->count);
819 	}
820 	mutex_unlock(&md->table_devices_lock);
821 
822 	*result = &td->dm_dev;
823 	return 0;
824 }
825 
826 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
827 {
828 	struct table_device *td = container_of(d, struct table_device, dm_dev);
829 
830 	mutex_lock(&md->table_devices_lock);
831 	if (refcount_dec_and_test(&td->count))
832 		close_table_device(td, md);
833 	mutex_unlock(&md->table_devices_lock);
834 }
835 
836 /*
837  * Get the geometry associated with a dm device
838  */
839 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
840 {
841 	*geo = md->geometry;
842 
843 	return 0;
844 }
845 
846 /*
847  * Set the geometry of a device.
848  */
849 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
850 {
851 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
852 
853 	if (geo->start > sz) {
854 		DMERR("Start sector is beyond the geometry limits.");
855 		return -EINVAL;
856 	}
857 
858 	md->geometry = *geo;
859 
860 	return 0;
861 }
862 
863 static int __noflush_suspending(struct mapped_device *md)
864 {
865 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
866 }
867 
868 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
869 {
870 	struct mapped_device *md = io->md;
871 
872 	if (first_stage) {
873 		struct dm_io *next = md->requeue_list;
874 
875 		md->requeue_list = io;
876 		io->next = next;
877 	} else {
878 		bio_list_add_head(&md->deferred, io->orig_bio);
879 	}
880 }
881 
882 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
883 {
884 	if (first_stage)
885 		queue_work(md->wq, &md->requeue_work);
886 	else
887 		queue_work(md->wq, &md->work);
888 }
889 
890 /*
891  * Return true if the dm_io's original bio is requeued.
892  * io->status is updated with error if requeue disallowed.
893  */
894 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
895 {
896 	struct bio *bio = io->orig_bio;
897 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
898 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
899 				     (bio->bi_opf & REQ_POLLED));
900 	struct mapped_device *md = io->md;
901 	bool requeued = false;
902 
903 	if (handle_requeue || handle_polled_eagain) {
904 		unsigned long flags;
905 
906 		if (bio->bi_opf & REQ_POLLED) {
907 			/*
908 			 * Upper layer won't help us poll split bio
909 			 * (io->orig_bio may only reflect a subset of the
910 			 * pre-split original) so clear REQ_POLLED.
911 			 */
912 			bio_clear_polled(bio);
913 		}
914 
915 		/*
916 		 * Target requested pushing back the I/O or
917 		 * polled IO hit BLK_STS_AGAIN.
918 		 */
919 		spin_lock_irqsave(&md->deferred_lock, flags);
920 		if ((__noflush_suspending(md) &&
921 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
922 		    handle_polled_eagain || first_stage) {
923 			dm_requeue_add_io(io, first_stage);
924 			requeued = true;
925 		} else {
926 			/*
927 			 * noflush suspend was interrupted or this is
928 			 * a write to a zoned target.
929 			 */
930 			io->status = BLK_STS_IOERR;
931 		}
932 		spin_unlock_irqrestore(&md->deferred_lock, flags);
933 	}
934 
935 	if (requeued)
936 		dm_kick_requeue(md, first_stage);
937 
938 	return requeued;
939 }
940 
941 static void __dm_io_complete(struct dm_io *io, bool first_stage)
942 {
943 	struct bio *bio = io->orig_bio;
944 	struct mapped_device *md = io->md;
945 	blk_status_t io_error;
946 	bool requeued;
947 
948 	requeued = dm_handle_requeue(io, first_stage);
949 	if (requeued && first_stage)
950 		return;
951 
952 	io_error = io->status;
953 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
954 		dm_end_io_acct(io);
955 	else if (!io_error) {
956 		/*
957 		 * Must handle target that DM_MAPIO_SUBMITTED only to
958 		 * then bio_endio() rather than dm_submit_bio_remap()
959 		 */
960 		__dm_start_io_acct(io);
961 		dm_end_io_acct(io);
962 	}
963 	free_io(io);
964 	smp_wmb();
965 	this_cpu_dec(*md->pending_io);
966 
967 	/* nudge anyone waiting on suspend queue */
968 	if (unlikely(wq_has_sleeper(&md->wait)))
969 		wake_up(&md->wait);
970 
971 	/* Return early if the original bio was requeued */
972 	if (requeued)
973 		return;
974 
975 	if (bio_is_flush_with_data(bio)) {
976 		/*
977 		 * Preflush done for flush with data, reissue
978 		 * without REQ_PREFLUSH.
979 		 */
980 		bio->bi_opf &= ~REQ_PREFLUSH;
981 		queue_io(md, bio);
982 	} else {
983 		/* done with normal IO or empty flush */
984 		if (io_error)
985 			bio->bi_status = io_error;
986 		bio_endio(bio);
987 	}
988 }
989 
990 static void dm_wq_requeue_work(struct work_struct *work)
991 {
992 	struct mapped_device *md = container_of(work, struct mapped_device,
993 						requeue_work);
994 	unsigned long flags;
995 	struct dm_io *io;
996 
997 	/* reuse deferred lock to simplify dm_handle_requeue */
998 	spin_lock_irqsave(&md->deferred_lock, flags);
999 	io = md->requeue_list;
1000 	md->requeue_list = NULL;
1001 	spin_unlock_irqrestore(&md->deferred_lock, flags);
1002 
1003 	while (io) {
1004 		struct dm_io *next = io->next;
1005 
1006 		dm_io_rewind(io, &md->disk->bio_split);
1007 
1008 		io->next = NULL;
1009 		__dm_io_complete(io, false);
1010 		io = next;
1011 	}
1012 }
1013 
1014 /*
1015  * Two staged requeue:
1016  *
1017  * 1) io->orig_bio points to the real original bio, and the part mapped to
1018  *    this io must be requeued, instead of other parts of the original bio.
1019  *
1020  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1021  */
1022 static void dm_io_complete(struct dm_io *io)
1023 {
1024 	bool first_requeue;
1025 
1026 	/*
1027 	 * Only dm_io that has been split needs two stage requeue, otherwise
1028 	 * we may run into long bio clone chain during suspend and OOM could
1029 	 * be triggered.
1030 	 *
1031 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1032 	 * also aren't handled via the first stage requeue.
1033 	 */
1034 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1035 		first_requeue = true;
1036 	else
1037 		first_requeue = false;
1038 
1039 	__dm_io_complete(io, first_requeue);
1040 }
1041 
1042 /*
1043  * Decrements the number of outstanding ios that a bio has been
1044  * cloned into, completing the original io if necc.
1045  */
1046 static inline void __dm_io_dec_pending(struct dm_io *io)
1047 {
1048 	if (atomic_dec_and_test(&io->io_count))
1049 		dm_io_complete(io);
1050 }
1051 
1052 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1053 {
1054 	unsigned long flags;
1055 
1056 	/* Push-back supersedes any I/O errors */
1057 	spin_lock_irqsave(&io->lock, flags);
1058 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1059 	      __noflush_suspending(io->md))) {
1060 		io->status = error;
1061 	}
1062 	spin_unlock_irqrestore(&io->lock, flags);
1063 }
1064 
1065 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1066 {
1067 	if (unlikely(error))
1068 		dm_io_set_error(io, error);
1069 
1070 	__dm_io_dec_pending(io);
1071 }
1072 
1073 void disable_discard(struct mapped_device *md)
1074 {
1075 	struct queue_limits *limits = dm_get_queue_limits(md);
1076 
1077 	/* device doesn't really support DISCARD, disable it */
1078 	limits->max_discard_sectors = 0;
1079 }
1080 
1081 void disable_write_zeroes(struct mapped_device *md)
1082 {
1083 	struct queue_limits *limits = dm_get_queue_limits(md);
1084 
1085 	/* device doesn't really support WRITE ZEROES, disable it */
1086 	limits->max_write_zeroes_sectors = 0;
1087 }
1088 
1089 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1090 {
1091 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1092 }
1093 
1094 static void clone_endio(struct bio *bio)
1095 {
1096 	blk_status_t error = bio->bi_status;
1097 	struct dm_target_io *tio = clone_to_tio(bio);
1098 	struct dm_target *ti = tio->ti;
1099 	dm_endio_fn endio = ti->type->end_io;
1100 	struct dm_io *io = tio->io;
1101 	struct mapped_device *md = io->md;
1102 
1103 	if (unlikely(error == BLK_STS_TARGET)) {
1104 		if (bio_op(bio) == REQ_OP_DISCARD &&
1105 		    !bdev_max_discard_sectors(bio->bi_bdev))
1106 			disable_discard(md);
1107 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1108 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1109 			disable_write_zeroes(md);
1110 	}
1111 
1112 	if (static_branch_unlikely(&zoned_enabled) &&
1113 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1114 		dm_zone_endio(io, bio);
1115 
1116 	if (endio) {
1117 		int r = endio(ti, bio, &error);
1118 		switch (r) {
1119 		case DM_ENDIO_REQUEUE:
1120 			if (static_branch_unlikely(&zoned_enabled)) {
1121 				/*
1122 				 * Requeuing writes to a sequential zone of a zoned
1123 				 * target will break the sequential write pattern:
1124 				 * fail such IO.
1125 				 */
1126 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1127 					error = BLK_STS_IOERR;
1128 				else
1129 					error = BLK_STS_DM_REQUEUE;
1130 			} else
1131 				error = BLK_STS_DM_REQUEUE;
1132 			fallthrough;
1133 		case DM_ENDIO_DONE:
1134 			break;
1135 		case DM_ENDIO_INCOMPLETE:
1136 			/* The target will handle the io */
1137 			return;
1138 		default:
1139 			DMCRIT("unimplemented target endio return value: %d", r);
1140 			BUG();
1141 		}
1142 	}
1143 
1144 	if (static_branch_unlikely(&swap_bios_enabled) &&
1145 	    unlikely(swap_bios_limit(ti, bio)))
1146 		up(&md->swap_bios_semaphore);
1147 
1148 	free_tio(bio);
1149 	dm_io_dec_pending(io, error);
1150 }
1151 
1152 /*
1153  * Return maximum size of I/O possible at the supplied sector up to the current
1154  * target boundary.
1155  */
1156 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1157 						  sector_t target_offset)
1158 {
1159 	return ti->len - target_offset;
1160 }
1161 
1162 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1163 {
1164 	sector_t target_offset = dm_target_offset(ti, sector);
1165 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1166 
1167 	/*
1168 	 * Does the target need to split IO even further?
1169 	 * - varied (per target) IO splitting is a tenet of DM; this
1170 	 *   explains why stacked chunk_sectors based splitting via
1171 	 *   bio_split_to_limits() isn't possible here.
1172 	 */
1173 	if (!ti->max_io_len)
1174 		return len;
1175 	return min_t(sector_t, len,
1176 		min(queue_max_sectors(ti->table->md->queue),
1177 		    blk_chunk_sectors_left(target_offset, ti->max_io_len)));
1178 }
1179 
1180 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1181 {
1182 	if (len > UINT_MAX) {
1183 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1184 		      (unsigned long long)len, UINT_MAX);
1185 		ti->error = "Maximum size of target IO is too large";
1186 		return -EINVAL;
1187 	}
1188 
1189 	ti->max_io_len = (uint32_t) len;
1190 
1191 	return 0;
1192 }
1193 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1194 
1195 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1196 						sector_t sector, int *srcu_idx)
1197 	__acquires(md->io_barrier)
1198 {
1199 	struct dm_table *map;
1200 	struct dm_target *ti;
1201 
1202 	map = dm_get_live_table(md, srcu_idx);
1203 	if (!map)
1204 		return NULL;
1205 
1206 	ti = dm_table_find_target(map, sector);
1207 	if (!ti)
1208 		return NULL;
1209 
1210 	return ti;
1211 }
1212 
1213 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1214 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1215 		pfn_t *pfn)
1216 {
1217 	struct mapped_device *md = dax_get_private(dax_dev);
1218 	sector_t sector = pgoff * PAGE_SECTORS;
1219 	struct dm_target *ti;
1220 	long len, ret = -EIO;
1221 	int srcu_idx;
1222 
1223 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1224 
1225 	if (!ti)
1226 		goto out;
1227 	if (!ti->type->direct_access)
1228 		goto out;
1229 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1230 	if (len < 1)
1231 		goto out;
1232 	nr_pages = min(len, nr_pages);
1233 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1234 
1235  out:
1236 	dm_put_live_table(md, srcu_idx);
1237 
1238 	return ret;
1239 }
1240 
1241 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1242 				  size_t nr_pages)
1243 {
1244 	struct mapped_device *md = dax_get_private(dax_dev);
1245 	sector_t sector = pgoff * PAGE_SECTORS;
1246 	struct dm_target *ti;
1247 	int ret = -EIO;
1248 	int srcu_idx;
1249 
1250 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1251 
1252 	if (!ti)
1253 		goto out;
1254 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1255 		/*
1256 		 * ->zero_page_range() is mandatory dax operation. If we are
1257 		 *  here, something is wrong.
1258 		 */
1259 		goto out;
1260 	}
1261 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1262  out:
1263 	dm_put_live_table(md, srcu_idx);
1264 
1265 	return ret;
1266 }
1267 
1268 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1269 		void *addr, size_t bytes, struct iov_iter *i)
1270 {
1271 	struct mapped_device *md = dax_get_private(dax_dev);
1272 	sector_t sector = pgoff * PAGE_SECTORS;
1273 	struct dm_target *ti;
1274 	int srcu_idx;
1275 	long ret = 0;
1276 
1277 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1278 	if (!ti || !ti->type->dax_recovery_write)
1279 		goto out;
1280 
1281 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1282 out:
1283 	dm_put_live_table(md, srcu_idx);
1284 	return ret;
1285 }
1286 
1287 /*
1288  * A target may call dm_accept_partial_bio only from the map routine.  It is
1289  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1290  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1291  * __send_duplicate_bios().
1292  *
1293  * dm_accept_partial_bio informs the dm that the target only wants to process
1294  * additional n_sectors sectors of the bio and the rest of the data should be
1295  * sent in a next bio.
1296  *
1297  * A diagram that explains the arithmetics:
1298  * +--------------------+---------------+-------+
1299  * |         1          |       2       |   3   |
1300  * +--------------------+---------------+-------+
1301  *
1302  * <-------------- *tio->len_ptr --------------->
1303  *                      <----- bio_sectors ----->
1304  *                      <-- n_sectors -->
1305  *
1306  * Region 1 was already iterated over with bio_advance or similar function.
1307  *	(it may be empty if the target doesn't use bio_advance)
1308  * Region 2 is the remaining bio size that the target wants to process.
1309  *	(it may be empty if region 1 is non-empty, although there is no reason
1310  *	 to make it empty)
1311  * The target requires that region 3 is to be sent in the next bio.
1312  *
1313  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1314  * the partially processed part (the sum of regions 1+2) must be the same for all
1315  * copies of the bio.
1316  */
1317 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1318 {
1319 	struct dm_target_io *tio = clone_to_tio(bio);
1320 	struct dm_io *io = tio->io;
1321 	unsigned bio_sectors = bio_sectors(bio);
1322 
1323 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1324 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1325 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1326 	BUG_ON(bio_sectors > *tio->len_ptr);
1327 	BUG_ON(n_sectors > bio_sectors);
1328 
1329 	*tio->len_ptr -= bio_sectors - n_sectors;
1330 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1331 
1332 	/*
1333 	 * __split_and_process_bio() may have already saved mapped part
1334 	 * for accounting but it is being reduced so update accordingly.
1335 	 */
1336 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1337 	io->sectors = n_sectors;
1338 	io->sector_offset = bio_sectors(io->orig_bio);
1339 }
1340 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1341 
1342 /*
1343  * @clone: clone bio that DM core passed to target's .map function
1344  * @tgt_clone: clone of @clone bio that target needs submitted
1345  *
1346  * Targets should use this interface to submit bios they take
1347  * ownership of when returning DM_MAPIO_SUBMITTED.
1348  *
1349  * Target should also enable ti->accounts_remapped_io
1350  */
1351 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1352 {
1353 	struct dm_target_io *tio = clone_to_tio(clone);
1354 	struct dm_io *io = tio->io;
1355 
1356 	/* establish bio that will get submitted */
1357 	if (!tgt_clone)
1358 		tgt_clone = clone;
1359 
1360 	/*
1361 	 * Account io->origin_bio to DM dev on behalf of target
1362 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1363 	 */
1364 	dm_start_io_acct(io, clone);
1365 
1366 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1367 			      tio->old_sector);
1368 	submit_bio_noacct(tgt_clone);
1369 }
1370 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1371 
1372 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1373 {
1374 	mutex_lock(&md->swap_bios_lock);
1375 	while (latch < md->swap_bios) {
1376 		cond_resched();
1377 		down(&md->swap_bios_semaphore);
1378 		md->swap_bios--;
1379 	}
1380 	while (latch > md->swap_bios) {
1381 		cond_resched();
1382 		up(&md->swap_bios_semaphore);
1383 		md->swap_bios++;
1384 	}
1385 	mutex_unlock(&md->swap_bios_lock);
1386 }
1387 
1388 static void __map_bio(struct bio *clone)
1389 {
1390 	struct dm_target_io *tio = clone_to_tio(clone);
1391 	struct dm_target *ti = tio->ti;
1392 	struct dm_io *io = tio->io;
1393 	struct mapped_device *md = io->md;
1394 	int r;
1395 
1396 	clone->bi_end_io = clone_endio;
1397 
1398 	/*
1399 	 * Map the clone.
1400 	 */
1401 	tio->old_sector = clone->bi_iter.bi_sector;
1402 
1403 	if (static_branch_unlikely(&swap_bios_enabled) &&
1404 	    unlikely(swap_bios_limit(ti, clone))) {
1405 		int latch = get_swap_bios();
1406 		if (unlikely(latch != md->swap_bios))
1407 			__set_swap_bios_limit(md, latch);
1408 		down(&md->swap_bios_semaphore);
1409 	}
1410 
1411 	if (static_branch_unlikely(&zoned_enabled)) {
1412 		/*
1413 		 * Check if the IO needs a special mapping due to zone append
1414 		 * emulation on zoned target. In this case, dm_zone_map_bio()
1415 		 * calls the target map operation.
1416 		 */
1417 		if (unlikely(dm_emulate_zone_append(md)))
1418 			r = dm_zone_map_bio(tio);
1419 		else
1420 			r = ti->type->map(ti, clone);
1421 	} else
1422 		r = ti->type->map(ti, clone);
1423 
1424 	switch (r) {
1425 	case DM_MAPIO_SUBMITTED:
1426 		/* target has assumed ownership of this io */
1427 		if (!ti->accounts_remapped_io)
1428 			dm_start_io_acct(io, clone);
1429 		break;
1430 	case DM_MAPIO_REMAPPED:
1431 		dm_submit_bio_remap(clone, NULL);
1432 		break;
1433 	case DM_MAPIO_KILL:
1434 	case DM_MAPIO_REQUEUE:
1435 		if (static_branch_unlikely(&swap_bios_enabled) &&
1436 		    unlikely(swap_bios_limit(ti, clone)))
1437 			up(&md->swap_bios_semaphore);
1438 		free_tio(clone);
1439 		if (r == DM_MAPIO_KILL)
1440 			dm_io_dec_pending(io, BLK_STS_IOERR);
1441 		else
1442 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1443 		break;
1444 	default:
1445 		DMCRIT("unimplemented target map return value: %d", r);
1446 		BUG();
1447 	}
1448 }
1449 
1450 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1451 {
1452 	struct dm_io *io = ci->io;
1453 
1454 	if (ci->sector_count > len) {
1455 		/*
1456 		 * Split needed, save the mapped part for accounting.
1457 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1458 		 */
1459 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1460 		io->sectors = len;
1461 		io->sector_offset = bio_sectors(ci->bio);
1462 	}
1463 }
1464 
1465 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1466 				struct dm_target *ti, unsigned num_bios)
1467 {
1468 	struct bio *bio;
1469 	int try;
1470 
1471 	for (try = 0; try < 2; try++) {
1472 		int bio_nr;
1473 
1474 		if (try)
1475 			mutex_lock(&ci->io->md->table_devices_lock);
1476 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1477 			bio = alloc_tio(ci, ti, bio_nr, NULL,
1478 					try ? GFP_NOIO : GFP_NOWAIT);
1479 			if (!bio)
1480 				break;
1481 
1482 			bio_list_add(blist, bio);
1483 		}
1484 		if (try)
1485 			mutex_unlock(&ci->io->md->table_devices_lock);
1486 		if (bio_nr == num_bios)
1487 			return;
1488 
1489 		while ((bio = bio_list_pop(blist)))
1490 			free_tio(bio);
1491 	}
1492 }
1493 
1494 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1495 				 unsigned int num_bios, unsigned *len)
1496 {
1497 	struct bio_list blist = BIO_EMPTY_LIST;
1498 	struct bio *clone;
1499 	unsigned int ret = 0;
1500 
1501 	switch (num_bios) {
1502 	case 0:
1503 		break;
1504 	case 1:
1505 		if (len)
1506 			setup_split_accounting(ci, *len);
1507 		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1508 		__map_bio(clone);
1509 		ret = 1;
1510 		break;
1511 	default:
1512 		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1513 		alloc_multiple_bios(&blist, ci, ti, num_bios);
1514 		while ((clone = bio_list_pop(&blist))) {
1515 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1516 			__map_bio(clone);
1517 			ret += 1;
1518 		}
1519 		break;
1520 	}
1521 
1522 	return ret;
1523 }
1524 
1525 static void __send_empty_flush(struct clone_info *ci)
1526 {
1527 	struct dm_table *t = ci->map;
1528 	struct bio flush_bio;
1529 
1530 	/*
1531 	 * Use an on-stack bio for this, it's safe since we don't
1532 	 * need to reference it after submit. It's just used as
1533 	 * the basis for the clone(s).
1534 	 */
1535 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1536 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1537 
1538 	ci->bio = &flush_bio;
1539 	ci->sector_count = 0;
1540 	ci->io->tio.clone.bi_iter.bi_size = 0;
1541 
1542 	for (unsigned int i = 0; i < t->num_targets; i++) {
1543 		unsigned int bios;
1544 		struct dm_target *ti = dm_table_get_target(t, i);
1545 
1546 		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1547 		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1548 		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1549 	}
1550 
1551 	/*
1552 	 * alloc_io() takes one extra reference for submission, so the
1553 	 * reference won't reach 0 without the following subtraction
1554 	 */
1555 	atomic_sub(1, &ci->io->io_count);
1556 
1557 	bio_uninit(ci->bio);
1558 }
1559 
1560 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1561 					unsigned num_bios)
1562 {
1563 	unsigned len;
1564 	unsigned int bios;
1565 
1566 	len = min_t(sector_t, ci->sector_count,
1567 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1568 
1569 	atomic_add(num_bios, &ci->io->io_count);
1570 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1571 	/*
1572 	 * alloc_io() takes one extra reference for submission, so the
1573 	 * reference won't reach 0 without the following (+1) subtraction
1574 	 */
1575 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1576 
1577 	ci->sector += len;
1578 	ci->sector_count -= len;
1579 }
1580 
1581 static bool is_abnormal_io(struct bio *bio)
1582 {
1583 	enum req_op op = bio_op(bio);
1584 
1585 	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1586 		switch (op) {
1587 		case REQ_OP_DISCARD:
1588 		case REQ_OP_SECURE_ERASE:
1589 		case REQ_OP_WRITE_ZEROES:
1590 			return true;
1591 		default:
1592 			break;
1593 		}
1594 	}
1595 
1596 	return false;
1597 }
1598 
1599 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1600 					  struct dm_target *ti)
1601 {
1602 	unsigned num_bios = 0;
1603 
1604 	switch (bio_op(ci->bio)) {
1605 	case REQ_OP_DISCARD:
1606 		num_bios = ti->num_discard_bios;
1607 		break;
1608 	case REQ_OP_SECURE_ERASE:
1609 		num_bios = ti->num_secure_erase_bios;
1610 		break;
1611 	case REQ_OP_WRITE_ZEROES:
1612 		num_bios = ti->num_write_zeroes_bios;
1613 		break;
1614 	default:
1615 		break;
1616 	}
1617 
1618 	/*
1619 	 * Even though the device advertised support for this type of
1620 	 * request, that does not mean every target supports it, and
1621 	 * reconfiguration might also have changed that since the
1622 	 * check was performed.
1623 	 */
1624 	if (unlikely(!num_bios))
1625 		return BLK_STS_NOTSUPP;
1626 
1627 	__send_changing_extent_only(ci, ti, num_bios);
1628 	return BLK_STS_OK;
1629 }
1630 
1631 /*
1632  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1633  * associated with this bio, and this bio's bi_private needs to be
1634  * stored in dm_io->data before the reuse.
1635  *
1636  * bio->bi_private is owned by fs or upper layer, so block layer won't
1637  * touch it after splitting. Meantime it won't be changed by anyone after
1638  * bio is submitted. So this reuse is safe.
1639  */
1640 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1641 {
1642 	return (struct dm_io **)&bio->bi_private;
1643 }
1644 
1645 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1646 {
1647 	struct dm_io **head = dm_poll_list_head(bio);
1648 
1649 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1650 		bio->bi_opf |= REQ_DM_POLL_LIST;
1651 		/*
1652 		 * Save .bi_private into dm_io, so that we can reuse
1653 		 * .bi_private as dm_io list head for storing dm_io list
1654 		 */
1655 		io->data = bio->bi_private;
1656 
1657 		/* tell block layer to poll for completion */
1658 		bio->bi_cookie = ~BLK_QC_T_NONE;
1659 
1660 		io->next = NULL;
1661 	} else {
1662 		/*
1663 		 * bio recursed due to split, reuse original poll list,
1664 		 * and save bio->bi_private too.
1665 		 */
1666 		io->data = (*head)->data;
1667 		io->next = *head;
1668 	}
1669 
1670 	*head = io;
1671 }
1672 
1673 /*
1674  * Select the correct strategy for processing a non-flush bio.
1675  */
1676 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1677 {
1678 	struct bio *clone;
1679 	struct dm_target *ti;
1680 	unsigned len;
1681 
1682 	ti = dm_table_find_target(ci->map, ci->sector);
1683 	if (unlikely(!ti))
1684 		return BLK_STS_IOERR;
1685 
1686 	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1687 	    unlikely(!dm_target_supports_nowait(ti->type)))
1688 		return BLK_STS_NOTSUPP;
1689 
1690 	if (unlikely(ci->is_abnormal_io))
1691 		return __process_abnormal_io(ci, ti);
1692 
1693 	/*
1694 	 * Only support bio polling for normal IO, and the target io is
1695 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1696 	 */
1697 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1698 
1699 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1700 	setup_split_accounting(ci, len);
1701 	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1702 	__map_bio(clone);
1703 
1704 	ci->sector += len;
1705 	ci->sector_count -= len;
1706 
1707 	return BLK_STS_OK;
1708 }
1709 
1710 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1711 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1712 {
1713 	ci->map = map;
1714 	ci->io = alloc_io(md, bio);
1715 	ci->bio = bio;
1716 	ci->is_abnormal_io = is_abnormal;
1717 	ci->submit_as_polled = false;
1718 	ci->sector = bio->bi_iter.bi_sector;
1719 	ci->sector_count = bio_sectors(bio);
1720 
1721 	/* Shouldn't happen but sector_count was being set to 0 so... */
1722 	if (static_branch_unlikely(&zoned_enabled) &&
1723 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1724 		ci->sector_count = 0;
1725 }
1726 
1727 /*
1728  * Entry point to split a bio into clones and submit them to the targets.
1729  */
1730 static void dm_split_and_process_bio(struct mapped_device *md,
1731 				     struct dm_table *map, struct bio *bio)
1732 {
1733 	struct clone_info ci;
1734 	struct dm_io *io;
1735 	blk_status_t error = BLK_STS_OK;
1736 	bool is_abnormal;
1737 
1738 	is_abnormal = is_abnormal_io(bio);
1739 	if (unlikely(is_abnormal)) {
1740 		/*
1741 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1742 		 * otherwise associated queue_limits won't be imposed.
1743 		 */
1744 		bio = bio_split_to_limits(bio);
1745 		if (!bio)
1746 			return;
1747 	}
1748 
1749 	init_clone_info(&ci, md, map, bio, is_abnormal);
1750 	io = ci.io;
1751 
1752 	if (bio->bi_opf & REQ_PREFLUSH) {
1753 		__send_empty_flush(&ci);
1754 		/* dm_io_complete submits any data associated with flush */
1755 		goto out;
1756 	}
1757 
1758 	error = __split_and_process_bio(&ci);
1759 	if (error || !ci.sector_count)
1760 		goto out;
1761 	/*
1762 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1763 	 * *after* bios already submitted have been completely processed.
1764 	 */
1765 	bio_trim(bio, io->sectors, ci.sector_count);
1766 	trace_block_split(bio, bio->bi_iter.bi_sector);
1767 	bio_inc_remaining(bio);
1768 	submit_bio_noacct(bio);
1769 out:
1770 	/*
1771 	 * Drop the extra reference count for non-POLLED bio, and hold one
1772 	 * reference for POLLED bio, which will be released in dm_poll_bio
1773 	 *
1774 	 * Add every dm_io instance into the dm_io list head which is stored
1775 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1776 	 */
1777 	if (error || !ci.submit_as_polled) {
1778 		/*
1779 		 * In case of submission failure, the extra reference for
1780 		 * submitting io isn't consumed yet
1781 		 */
1782 		if (error)
1783 			atomic_dec(&io->io_count);
1784 		dm_io_dec_pending(io, error);
1785 	} else
1786 		dm_queue_poll_io(bio, io);
1787 }
1788 
1789 static void dm_submit_bio(struct bio *bio)
1790 {
1791 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1792 	int srcu_idx;
1793 	struct dm_table *map;
1794 	blk_opf_t bio_opf = bio->bi_opf;
1795 
1796 	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1797 
1798 	/* If suspended, or map not yet available, queue this IO for later */
1799 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1800 	    unlikely(!map)) {
1801 		if (bio->bi_opf & REQ_NOWAIT)
1802 			bio_wouldblock_error(bio);
1803 		else if (bio->bi_opf & REQ_RAHEAD)
1804 			bio_io_error(bio);
1805 		else
1806 			queue_io(md, bio);
1807 		goto out;
1808 	}
1809 
1810 	dm_split_and_process_bio(md, map, bio);
1811 out:
1812 	dm_put_live_table_bio(md, srcu_idx, bio_opf);
1813 }
1814 
1815 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1816 			  unsigned int flags)
1817 {
1818 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1819 
1820 	/* don't poll if the mapped io is done */
1821 	if (atomic_read(&io->io_count) > 1)
1822 		bio_poll(&io->tio.clone, iob, flags);
1823 
1824 	/* bio_poll holds the last reference */
1825 	return atomic_read(&io->io_count) == 1;
1826 }
1827 
1828 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1829 		       unsigned int flags)
1830 {
1831 	struct dm_io **head = dm_poll_list_head(bio);
1832 	struct dm_io *list = *head;
1833 	struct dm_io *tmp = NULL;
1834 	struct dm_io *curr, *next;
1835 
1836 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1837 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1838 		return 0;
1839 
1840 	WARN_ON_ONCE(!list);
1841 
1842 	/*
1843 	 * Restore .bi_private before possibly completing dm_io.
1844 	 *
1845 	 * bio_poll() is only possible once @bio has been completely
1846 	 * submitted via submit_bio_noacct()'s depth-first submission.
1847 	 * So there is no dm_queue_poll_io() race associated with
1848 	 * clearing REQ_DM_POLL_LIST here.
1849 	 */
1850 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1851 	bio->bi_private = list->data;
1852 
1853 	for (curr = list, next = curr->next; curr; curr = next, next =
1854 			curr ? curr->next : NULL) {
1855 		if (dm_poll_dm_io(curr, iob, flags)) {
1856 			/*
1857 			 * clone_endio() has already occurred, so no
1858 			 * error handling is needed here.
1859 			 */
1860 			__dm_io_dec_pending(curr);
1861 		} else {
1862 			curr->next = tmp;
1863 			tmp = curr;
1864 		}
1865 	}
1866 
1867 	/* Not done? */
1868 	if (tmp) {
1869 		bio->bi_opf |= REQ_DM_POLL_LIST;
1870 		/* Reset bio->bi_private to dm_io list head */
1871 		*head = tmp;
1872 		return 0;
1873 	}
1874 	return 1;
1875 }
1876 
1877 /*-----------------------------------------------------------------
1878  * An IDR is used to keep track of allocated minor numbers.
1879  *---------------------------------------------------------------*/
1880 static void free_minor(int minor)
1881 {
1882 	spin_lock(&_minor_lock);
1883 	idr_remove(&_minor_idr, minor);
1884 	spin_unlock(&_minor_lock);
1885 }
1886 
1887 /*
1888  * See if the device with a specific minor # is free.
1889  */
1890 static int specific_minor(int minor)
1891 {
1892 	int r;
1893 
1894 	if (minor >= (1 << MINORBITS))
1895 		return -EINVAL;
1896 
1897 	idr_preload(GFP_KERNEL);
1898 	spin_lock(&_minor_lock);
1899 
1900 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1901 
1902 	spin_unlock(&_minor_lock);
1903 	idr_preload_end();
1904 	if (r < 0)
1905 		return r == -ENOSPC ? -EBUSY : r;
1906 	return 0;
1907 }
1908 
1909 static int next_free_minor(int *minor)
1910 {
1911 	int r;
1912 
1913 	idr_preload(GFP_KERNEL);
1914 	spin_lock(&_minor_lock);
1915 
1916 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1917 
1918 	spin_unlock(&_minor_lock);
1919 	idr_preload_end();
1920 	if (r < 0)
1921 		return r;
1922 	*minor = r;
1923 	return 0;
1924 }
1925 
1926 static const struct block_device_operations dm_blk_dops;
1927 static const struct block_device_operations dm_rq_blk_dops;
1928 static const struct dax_operations dm_dax_ops;
1929 
1930 static void dm_wq_work(struct work_struct *work);
1931 
1932 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1933 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1934 {
1935 	dm_destroy_crypto_profile(q->crypto_profile);
1936 }
1937 
1938 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1939 
1940 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1941 {
1942 }
1943 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1944 
1945 static void cleanup_mapped_device(struct mapped_device *md)
1946 {
1947 	if (md->wq)
1948 		destroy_workqueue(md->wq);
1949 	dm_free_md_mempools(md->mempools);
1950 
1951 	if (md->dax_dev) {
1952 		dax_remove_host(md->disk);
1953 		kill_dax(md->dax_dev);
1954 		put_dax(md->dax_dev);
1955 		md->dax_dev = NULL;
1956 	}
1957 
1958 	dm_cleanup_zoned_dev(md);
1959 	if (md->disk) {
1960 		spin_lock(&_minor_lock);
1961 		md->disk->private_data = NULL;
1962 		spin_unlock(&_minor_lock);
1963 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1964 			struct table_device *td;
1965 
1966 			dm_sysfs_exit(md);
1967 			list_for_each_entry(td, &md->table_devices, list) {
1968 				bd_unlink_disk_holder(td->dm_dev.bdev,
1969 						      md->disk);
1970 			}
1971 
1972 			/*
1973 			 * Hold lock to make sure del_gendisk() won't concurrent
1974 			 * with open/close_table_device().
1975 			 */
1976 			mutex_lock(&md->table_devices_lock);
1977 			del_gendisk(md->disk);
1978 			mutex_unlock(&md->table_devices_lock);
1979 		}
1980 		dm_queue_destroy_crypto_profile(md->queue);
1981 		put_disk(md->disk);
1982 	}
1983 
1984 	if (md->pending_io) {
1985 		free_percpu(md->pending_io);
1986 		md->pending_io = NULL;
1987 	}
1988 
1989 	cleanup_srcu_struct(&md->io_barrier);
1990 
1991 	mutex_destroy(&md->suspend_lock);
1992 	mutex_destroy(&md->type_lock);
1993 	mutex_destroy(&md->table_devices_lock);
1994 	mutex_destroy(&md->swap_bios_lock);
1995 
1996 	dm_mq_cleanup_mapped_device(md);
1997 }
1998 
1999 /*
2000  * Allocate and initialise a blank device with a given minor.
2001  */
2002 static struct mapped_device *alloc_dev(int minor)
2003 {
2004 	int r, numa_node_id = dm_get_numa_node();
2005 	struct mapped_device *md;
2006 	void *old_md;
2007 
2008 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2009 	if (!md) {
2010 		DMERR("unable to allocate device, out of memory.");
2011 		return NULL;
2012 	}
2013 
2014 	if (!try_module_get(THIS_MODULE))
2015 		goto bad_module_get;
2016 
2017 	/* get a minor number for the dev */
2018 	if (minor == DM_ANY_MINOR)
2019 		r = next_free_minor(&minor);
2020 	else
2021 		r = specific_minor(minor);
2022 	if (r < 0)
2023 		goto bad_minor;
2024 
2025 	r = init_srcu_struct(&md->io_barrier);
2026 	if (r < 0)
2027 		goto bad_io_barrier;
2028 
2029 	md->numa_node_id = numa_node_id;
2030 	md->init_tio_pdu = false;
2031 	md->type = DM_TYPE_NONE;
2032 	mutex_init(&md->suspend_lock);
2033 	mutex_init(&md->type_lock);
2034 	mutex_init(&md->table_devices_lock);
2035 	spin_lock_init(&md->deferred_lock);
2036 	atomic_set(&md->holders, 1);
2037 	atomic_set(&md->open_count, 0);
2038 	atomic_set(&md->event_nr, 0);
2039 	atomic_set(&md->uevent_seq, 0);
2040 	INIT_LIST_HEAD(&md->uevent_list);
2041 	INIT_LIST_HEAD(&md->table_devices);
2042 	spin_lock_init(&md->uevent_lock);
2043 
2044 	/*
2045 	 * default to bio-based until DM table is loaded and md->type
2046 	 * established. If request-based table is loaded: blk-mq will
2047 	 * override accordingly.
2048 	 */
2049 	md->disk = blk_alloc_disk(md->numa_node_id);
2050 	if (!md->disk)
2051 		goto bad;
2052 	md->queue = md->disk->queue;
2053 
2054 	init_waitqueue_head(&md->wait);
2055 	INIT_WORK(&md->work, dm_wq_work);
2056 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2057 	init_waitqueue_head(&md->eventq);
2058 	init_completion(&md->kobj_holder.completion);
2059 
2060 	md->requeue_list = NULL;
2061 	md->swap_bios = get_swap_bios();
2062 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2063 	mutex_init(&md->swap_bios_lock);
2064 
2065 	md->disk->major = _major;
2066 	md->disk->first_minor = minor;
2067 	md->disk->minors = 1;
2068 	md->disk->flags |= GENHD_FL_NO_PART;
2069 	md->disk->fops = &dm_blk_dops;
2070 	md->disk->private_data = md;
2071 	sprintf(md->disk->disk_name, "dm-%d", minor);
2072 
2073 	if (IS_ENABLED(CONFIG_FS_DAX)) {
2074 		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2075 		if (IS_ERR(md->dax_dev)) {
2076 			md->dax_dev = NULL;
2077 			goto bad;
2078 		}
2079 		set_dax_nocache(md->dax_dev);
2080 		set_dax_nomc(md->dax_dev);
2081 		if (dax_add_host(md->dax_dev, md->disk))
2082 			goto bad;
2083 	}
2084 
2085 	format_dev_t(md->name, MKDEV(_major, minor));
2086 
2087 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2088 	if (!md->wq)
2089 		goto bad;
2090 
2091 	md->pending_io = alloc_percpu(unsigned long);
2092 	if (!md->pending_io)
2093 		goto bad;
2094 
2095 	dm_stats_init(&md->stats);
2096 
2097 	/* Populate the mapping, nobody knows we exist yet */
2098 	spin_lock(&_minor_lock);
2099 	old_md = idr_replace(&_minor_idr, md, minor);
2100 	spin_unlock(&_minor_lock);
2101 
2102 	BUG_ON(old_md != MINOR_ALLOCED);
2103 
2104 	return md;
2105 
2106 bad:
2107 	cleanup_mapped_device(md);
2108 bad_io_barrier:
2109 	free_minor(minor);
2110 bad_minor:
2111 	module_put(THIS_MODULE);
2112 bad_module_get:
2113 	kvfree(md);
2114 	return NULL;
2115 }
2116 
2117 static void unlock_fs(struct mapped_device *md);
2118 
2119 static void free_dev(struct mapped_device *md)
2120 {
2121 	int minor = MINOR(disk_devt(md->disk));
2122 
2123 	unlock_fs(md);
2124 
2125 	cleanup_mapped_device(md);
2126 
2127 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2128 	dm_stats_cleanup(&md->stats);
2129 	free_minor(minor);
2130 
2131 	module_put(THIS_MODULE);
2132 	kvfree(md);
2133 }
2134 
2135 /*
2136  * Bind a table to the device.
2137  */
2138 static void event_callback(void *context)
2139 {
2140 	unsigned long flags;
2141 	LIST_HEAD(uevents);
2142 	struct mapped_device *md = (struct mapped_device *) context;
2143 
2144 	spin_lock_irqsave(&md->uevent_lock, flags);
2145 	list_splice_init(&md->uevent_list, &uevents);
2146 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2147 
2148 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2149 
2150 	atomic_inc(&md->event_nr);
2151 	wake_up(&md->eventq);
2152 	dm_issue_global_event();
2153 }
2154 
2155 /*
2156  * Returns old map, which caller must destroy.
2157  */
2158 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2159 			       struct queue_limits *limits)
2160 {
2161 	struct dm_table *old_map;
2162 	sector_t size;
2163 	int ret;
2164 
2165 	lockdep_assert_held(&md->suspend_lock);
2166 
2167 	size = dm_table_get_size(t);
2168 
2169 	/*
2170 	 * Wipe any geometry if the size of the table changed.
2171 	 */
2172 	if (size != dm_get_size(md))
2173 		memset(&md->geometry, 0, sizeof(md->geometry));
2174 
2175 	if (!get_capacity(md->disk))
2176 		set_capacity(md->disk, size);
2177 	else
2178 		set_capacity_and_notify(md->disk, size);
2179 
2180 	dm_table_event_callback(t, event_callback, md);
2181 
2182 	if (dm_table_request_based(t)) {
2183 		/*
2184 		 * Leverage the fact that request-based DM targets are
2185 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2186 		 */
2187 		md->immutable_target = dm_table_get_immutable_target(t);
2188 
2189 		/*
2190 		 * There is no need to reload with request-based dm because the
2191 		 * size of front_pad doesn't change.
2192 		 *
2193 		 * Note for future: If you are to reload bioset, prep-ed
2194 		 * requests in the queue may refer to bio from the old bioset,
2195 		 * so you must walk through the queue to unprep.
2196 		 */
2197 		if (!md->mempools) {
2198 			md->mempools = t->mempools;
2199 			t->mempools = NULL;
2200 		}
2201 	} else {
2202 		/*
2203 		 * The md may already have mempools that need changing.
2204 		 * If so, reload bioset because front_pad may have changed
2205 		 * because a different table was loaded.
2206 		 */
2207 		dm_free_md_mempools(md->mempools);
2208 		md->mempools = t->mempools;
2209 		t->mempools = NULL;
2210 	}
2211 
2212 	ret = dm_table_set_restrictions(t, md->queue, limits);
2213 	if (ret) {
2214 		old_map = ERR_PTR(ret);
2215 		goto out;
2216 	}
2217 
2218 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2219 	rcu_assign_pointer(md->map, (void *)t);
2220 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2221 
2222 	if (old_map)
2223 		dm_sync_table(md);
2224 out:
2225 	return old_map;
2226 }
2227 
2228 /*
2229  * Returns unbound table for the caller to free.
2230  */
2231 static struct dm_table *__unbind(struct mapped_device *md)
2232 {
2233 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2234 
2235 	if (!map)
2236 		return NULL;
2237 
2238 	dm_table_event_callback(map, NULL, NULL);
2239 	RCU_INIT_POINTER(md->map, NULL);
2240 	dm_sync_table(md);
2241 
2242 	return map;
2243 }
2244 
2245 /*
2246  * Constructor for a new device.
2247  */
2248 int dm_create(int minor, struct mapped_device **result)
2249 {
2250 	struct mapped_device *md;
2251 
2252 	md = alloc_dev(minor);
2253 	if (!md)
2254 		return -ENXIO;
2255 
2256 	dm_ima_reset_data(md);
2257 
2258 	*result = md;
2259 	return 0;
2260 }
2261 
2262 /*
2263  * Functions to manage md->type.
2264  * All are required to hold md->type_lock.
2265  */
2266 void dm_lock_md_type(struct mapped_device *md)
2267 {
2268 	mutex_lock(&md->type_lock);
2269 }
2270 
2271 void dm_unlock_md_type(struct mapped_device *md)
2272 {
2273 	mutex_unlock(&md->type_lock);
2274 }
2275 
2276 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2277 {
2278 	BUG_ON(!mutex_is_locked(&md->type_lock));
2279 	md->type = type;
2280 }
2281 
2282 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2283 {
2284 	return md->type;
2285 }
2286 
2287 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2288 {
2289 	return md->immutable_target_type;
2290 }
2291 
2292 /*
2293  * The queue_limits are only valid as long as you have a reference
2294  * count on 'md'.
2295  */
2296 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2297 {
2298 	BUG_ON(!atomic_read(&md->holders));
2299 	return &md->queue->limits;
2300 }
2301 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2302 
2303 /*
2304  * Setup the DM device's queue based on md's type
2305  */
2306 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2307 {
2308 	enum dm_queue_mode type = dm_table_get_type(t);
2309 	struct queue_limits limits;
2310 	struct table_device *td;
2311 	int r;
2312 
2313 	switch (type) {
2314 	case DM_TYPE_REQUEST_BASED:
2315 		md->disk->fops = &dm_rq_blk_dops;
2316 		r = dm_mq_init_request_queue(md, t);
2317 		if (r) {
2318 			DMERR("Cannot initialize queue for request-based dm mapped device");
2319 			return r;
2320 		}
2321 		break;
2322 	case DM_TYPE_BIO_BASED:
2323 	case DM_TYPE_DAX_BIO_BASED:
2324 		break;
2325 	case DM_TYPE_NONE:
2326 		WARN_ON_ONCE(true);
2327 		break;
2328 	}
2329 
2330 	r = dm_calculate_queue_limits(t, &limits);
2331 	if (r) {
2332 		DMERR("Cannot calculate initial queue limits");
2333 		return r;
2334 	}
2335 	r = dm_table_set_restrictions(t, md->queue, &limits);
2336 	if (r)
2337 		return r;
2338 
2339 	/*
2340 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2341 	 * with open_table_device() and close_table_device().
2342 	 */
2343 	mutex_lock(&md->table_devices_lock);
2344 	r = add_disk(md->disk);
2345 	mutex_unlock(&md->table_devices_lock);
2346 	if (r)
2347 		return r;
2348 
2349 	/*
2350 	 * Register the holder relationship for devices added before the disk
2351 	 * was live.
2352 	 */
2353 	list_for_each_entry(td, &md->table_devices, list) {
2354 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2355 		if (r)
2356 			goto out_undo_holders;
2357 	}
2358 
2359 	r = dm_sysfs_init(md);
2360 	if (r)
2361 		goto out_undo_holders;
2362 
2363 	md->type = type;
2364 	return 0;
2365 
2366 out_undo_holders:
2367 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2368 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2369 	mutex_lock(&md->table_devices_lock);
2370 	del_gendisk(md->disk);
2371 	mutex_unlock(&md->table_devices_lock);
2372 	return r;
2373 }
2374 
2375 struct mapped_device *dm_get_md(dev_t dev)
2376 {
2377 	struct mapped_device *md;
2378 	unsigned minor = MINOR(dev);
2379 
2380 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2381 		return NULL;
2382 
2383 	spin_lock(&_minor_lock);
2384 
2385 	md = idr_find(&_minor_idr, minor);
2386 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2387 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2388 		md = NULL;
2389 		goto out;
2390 	}
2391 	dm_get(md);
2392 out:
2393 	spin_unlock(&_minor_lock);
2394 
2395 	return md;
2396 }
2397 EXPORT_SYMBOL_GPL(dm_get_md);
2398 
2399 void *dm_get_mdptr(struct mapped_device *md)
2400 {
2401 	return md->interface_ptr;
2402 }
2403 
2404 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2405 {
2406 	md->interface_ptr = ptr;
2407 }
2408 
2409 void dm_get(struct mapped_device *md)
2410 {
2411 	atomic_inc(&md->holders);
2412 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2413 }
2414 
2415 int dm_hold(struct mapped_device *md)
2416 {
2417 	spin_lock(&_minor_lock);
2418 	if (test_bit(DMF_FREEING, &md->flags)) {
2419 		spin_unlock(&_minor_lock);
2420 		return -EBUSY;
2421 	}
2422 	dm_get(md);
2423 	spin_unlock(&_minor_lock);
2424 	return 0;
2425 }
2426 EXPORT_SYMBOL_GPL(dm_hold);
2427 
2428 const char *dm_device_name(struct mapped_device *md)
2429 {
2430 	return md->name;
2431 }
2432 EXPORT_SYMBOL_GPL(dm_device_name);
2433 
2434 static void __dm_destroy(struct mapped_device *md, bool wait)
2435 {
2436 	struct dm_table *map;
2437 	int srcu_idx;
2438 
2439 	might_sleep();
2440 
2441 	spin_lock(&_minor_lock);
2442 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2443 	set_bit(DMF_FREEING, &md->flags);
2444 	spin_unlock(&_minor_lock);
2445 
2446 	blk_mark_disk_dead(md->disk);
2447 
2448 	/*
2449 	 * Take suspend_lock so that presuspend and postsuspend methods
2450 	 * do not race with internal suspend.
2451 	 */
2452 	mutex_lock(&md->suspend_lock);
2453 	map = dm_get_live_table(md, &srcu_idx);
2454 	if (!dm_suspended_md(md)) {
2455 		dm_table_presuspend_targets(map);
2456 		set_bit(DMF_SUSPENDED, &md->flags);
2457 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2458 		dm_table_postsuspend_targets(map);
2459 	}
2460 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2461 	dm_put_live_table(md, srcu_idx);
2462 	mutex_unlock(&md->suspend_lock);
2463 
2464 	/*
2465 	 * Rare, but there may be I/O requests still going to complete,
2466 	 * for example.  Wait for all references to disappear.
2467 	 * No one should increment the reference count of the mapped_device,
2468 	 * after the mapped_device state becomes DMF_FREEING.
2469 	 */
2470 	if (wait)
2471 		while (atomic_read(&md->holders))
2472 			msleep(1);
2473 	else if (atomic_read(&md->holders))
2474 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2475 		       dm_device_name(md), atomic_read(&md->holders));
2476 
2477 	dm_table_destroy(__unbind(md));
2478 	free_dev(md);
2479 }
2480 
2481 void dm_destroy(struct mapped_device *md)
2482 {
2483 	__dm_destroy(md, true);
2484 }
2485 
2486 void dm_destroy_immediate(struct mapped_device *md)
2487 {
2488 	__dm_destroy(md, false);
2489 }
2490 
2491 void dm_put(struct mapped_device *md)
2492 {
2493 	atomic_dec(&md->holders);
2494 }
2495 EXPORT_SYMBOL_GPL(dm_put);
2496 
2497 static bool dm_in_flight_bios(struct mapped_device *md)
2498 {
2499 	int cpu;
2500 	unsigned long sum = 0;
2501 
2502 	for_each_possible_cpu(cpu)
2503 		sum += *per_cpu_ptr(md->pending_io, cpu);
2504 
2505 	return sum != 0;
2506 }
2507 
2508 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2509 {
2510 	int r = 0;
2511 	DEFINE_WAIT(wait);
2512 
2513 	while (true) {
2514 		prepare_to_wait(&md->wait, &wait, task_state);
2515 
2516 		if (!dm_in_flight_bios(md))
2517 			break;
2518 
2519 		if (signal_pending_state(task_state, current)) {
2520 			r = -EINTR;
2521 			break;
2522 		}
2523 
2524 		io_schedule();
2525 	}
2526 	finish_wait(&md->wait, &wait);
2527 
2528 	smp_rmb();
2529 
2530 	return r;
2531 }
2532 
2533 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2534 {
2535 	int r = 0;
2536 
2537 	if (!queue_is_mq(md->queue))
2538 		return dm_wait_for_bios_completion(md, task_state);
2539 
2540 	while (true) {
2541 		if (!blk_mq_queue_inflight(md->queue))
2542 			break;
2543 
2544 		if (signal_pending_state(task_state, current)) {
2545 			r = -EINTR;
2546 			break;
2547 		}
2548 
2549 		msleep(5);
2550 	}
2551 
2552 	return r;
2553 }
2554 
2555 /*
2556  * Process the deferred bios
2557  */
2558 static void dm_wq_work(struct work_struct *work)
2559 {
2560 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2561 	struct bio *bio;
2562 
2563 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2564 		spin_lock_irq(&md->deferred_lock);
2565 		bio = bio_list_pop(&md->deferred);
2566 		spin_unlock_irq(&md->deferred_lock);
2567 
2568 		if (!bio)
2569 			break;
2570 
2571 		submit_bio_noacct(bio);
2572 	}
2573 }
2574 
2575 static void dm_queue_flush(struct mapped_device *md)
2576 {
2577 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2578 	smp_mb__after_atomic();
2579 	queue_work(md->wq, &md->work);
2580 }
2581 
2582 /*
2583  * Swap in a new table, returning the old one for the caller to destroy.
2584  */
2585 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2586 {
2587 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2588 	struct queue_limits limits;
2589 	int r;
2590 
2591 	mutex_lock(&md->suspend_lock);
2592 
2593 	/* device must be suspended */
2594 	if (!dm_suspended_md(md))
2595 		goto out;
2596 
2597 	/*
2598 	 * If the new table has no data devices, retain the existing limits.
2599 	 * This helps multipath with queue_if_no_path if all paths disappear,
2600 	 * then new I/O is queued based on these limits, and then some paths
2601 	 * reappear.
2602 	 */
2603 	if (dm_table_has_no_data_devices(table)) {
2604 		live_map = dm_get_live_table_fast(md);
2605 		if (live_map)
2606 			limits = md->queue->limits;
2607 		dm_put_live_table_fast(md);
2608 	}
2609 
2610 	if (!live_map) {
2611 		r = dm_calculate_queue_limits(table, &limits);
2612 		if (r) {
2613 			map = ERR_PTR(r);
2614 			goto out;
2615 		}
2616 	}
2617 
2618 	map = __bind(md, table, &limits);
2619 	dm_issue_global_event();
2620 
2621 out:
2622 	mutex_unlock(&md->suspend_lock);
2623 	return map;
2624 }
2625 
2626 /*
2627  * Functions to lock and unlock any filesystem running on the
2628  * device.
2629  */
2630 static int lock_fs(struct mapped_device *md)
2631 {
2632 	int r;
2633 
2634 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2635 
2636 	r = freeze_bdev(md->disk->part0);
2637 	if (!r)
2638 		set_bit(DMF_FROZEN, &md->flags);
2639 	return r;
2640 }
2641 
2642 static void unlock_fs(struct mapped_device *md)
2643 {
2644 	if (!test_bit(DMF_FROZEN, &md->flags))
2645 		return;
2646 	thaw_bdev(md->disk->part0);
2647 	clear_bit(DMF_FROZEN, &md->flags);
2648 }
2649 
2650 /*
2651  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2652  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2653  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2654  *
2655  * If __dm_suspend returns 0, the device is completely quiescent
2656  * now. There is no request-processing activity. All new requests
2657  * are being added to md->deferred list.
2658  */
2659 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2660 			unsigned suspend_flags, unsigned int task_state,
2661 			int dmf_suspended_flag)
2662 {
2663 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2664 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2665 	int r;
2666 
2667 	lockdep_assert_held(&md->suspend_lock);
2668 
2669 	/*
2670 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2671 	 * This flag is cleared before dm_suspend returns.
2672 	 */
2673 	if (noflush)
2674 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2675 	else
2676 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2677 
2678 	/*
2679 	 * This gets reverted if there's an error later and the targets
2680 	 * provide the .presuspend_undo hook.
2681 	 */
2682 	dm_table_presuspend_targets(map);
2683 
2684 	/*
2685 	 * Flush I/O to the device.
2686 	 * Any I/O submitted after lock_fs() may not be flushed.
2687 	 * noflush takes precedence over do_lockfs.
2688 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2689 	 */
2690 	if (!noflush && do_lockfs) {
2691 		r = lock_fs(md);
2692 		if (r) {
2693 			dm_table_presuspend_undo_targets(map);
2694 			return r;
2695 		}
2696 	}
2697 
2698 	/*
2699 	 * Here we must make sure that no processes are submitting requests
2700 	 * to target drivers i.e. no one may be executing
2701 	 * dm_split_and_process_bio from dm_submit_bio.
2702 	 *
2703 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2704 	 * we take the write lock. To prevent any process from reentering
2705 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2706 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2707 	 * flush_workqueue(md->wq).
2708 	 */
2709 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2710 	if (map)
2711 		synchronize_srcu(&md->io_barrier);
2712 
2713 	/*
2714 	 * Stop md->queue before flushing md->wq in case request-based
2715 	 * dm defers requests to md->wq from md->queue.
2716 	 */
2717 	if (dm_request_based(md))
2718 		dm_stop_queue(md->queue);
2719 
2720 	flush_workqueue(md->wq);
2721 
2722 	/*
2723 	 * At this point no more requests are entering target request routines.
2724 	 * We call dm_wait_for_completion to wait for all existing requests
2725 	 * to finish.
2726 	 */
2727 	r = dm_wait_for_completion(md, task_state);
2728 	if (!r)
2729 		set_bit(dmf_suspended_flag, &md->flags);
2730 
2731 	if (noflush)
2732 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2733 	if (map)
2734 		synchronize_srcu(&md->io_barrier);
2735 
2736 	/* were we interrupted ? */
2737 	if (r < 0) {
2738 		dm_queue_flush(md);
2739 
2740 		if (dm_request_based(md))
2741 			dm_start_queue(md->queue);
2742 
2743 		unlock_fs(md);
2744 		dm_table_presuspend_undo_targets(map);
2745 		/* pushback list is already flushed, so skip flush */
2746 	}
2747 
2748 	return r;
2749 }
2750 
2751 /*
2752  * We need to be able to change a mapping table under a mounted
2753  * filesystem.  For example we might want to move some data in
2754  * the background.  Before the table can be swapped with
2755  * dm_bind_table, dm_suspend must be called to flush any in
2756  * flight bios and ensure that any further io gets deferred.
2757  */
2758 /*
2759  * Suspend mechanism in request-based dm.
2760  *
2761  * 1. Flush all I/Os by lock_fs() if needed.
2762  * 2. Stop dispatching any I/O by stopping the request_queue.
2763  * 3. Wait for all in-flight I/Os to be completed or requeued.
2764  *
2765  * To abort suspend, start the request_queue.
2766  */
2767 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2768 {
2769 	struct dm_table *map = NULL;
2770 	int r = 0;
2771 
2772 retry:
2773 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2774 
2775 	if (dm_suspended_md(md)) {
2776 		r = -EINVAL;
2777 		goto out_unlock;
2778 	}
2779 
2780 	if (dm_suspended_internally_md(md)) {
2781 		/* already internally suspended, wait for internal resume */
2782 		mutex_unlock(&md->suspend_lock);
2783 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2784 		if (r)
2785 			return r;
2786 		goto retry;
2787 	}
2788 
2789 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2790 
2791 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2792 	if (r)
2793 		goto out_unlock;
2794 
2795 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2796 	dm_table_postsuspend_targets(map);
2797 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2798 
2799 out_unlock:
2800 	mutex_unlock(&md->suspend_lock);
2801 	return r;
2802 }
2803 
2804 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2805 {
2806 	if (map) {
2807 		int r = dm_table_resume_targets(map);
2808 		if (r)
2809 			return r;
2810 	}
2811 
2812 	dm_queue_flush(md);
2813 
2814 	/*
2815 	 * Flushing deferred I/Os must be done after targets are resumed
2816 	 * so that mapping of targets can work correctly.
2817 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2818 	 */
2819 	if (dm_request_based(md))
2820 		dm_start_queue(md->queue);
2821 
2822 	unlock_fs(md);
2823 
2824 	return 0;
2825 }
2826 
2827 int dm_resume(struct mapped_device *md)
2828 {
2829 	int r;
2830 	struct dm_table *map = NULL;
2831 
2832 retry:
2833 	r = -EINVAL;
2834 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2835 
2836 	if (!dm_suspended_md(md))
2837 		goto out;
2838 
2839 	if (dm_suspended_internally_md(md)) {
2840 		/* already internally suspended, wait for internal resume */
2841 		mutex_unlock(&md->suspend_lock);
2842 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2843 		if (r)
2844 			return r;
2845 		goto retry;
2846 	}
2847 
2848 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2849 	if (!map || !dm_table_get_size(map))
2850 		goto out;
2851 
2852 	r = __dm_resume(md, map);
2853 	if (r)
2854 		goto out;
2855 
2856 	clear_bit(DMF_SUSPENDED, &md->flags);
2857 out:
2858 	mutex_unlock(&md->suspend_lock);
2859 
2860 	return r;
2861 }
2862 
2863 /*
2864  * Internal suspend/resume works like userspace-driven suspend. It waits
2865  * until all bios finish and prevents issuing new bios to the target drivers.
2866  * It may be used only from the kernel.
2867  */
2868 
2869 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2870 {
2871 	struct dm_table *map = NULL;
2872 
2873 	lockdep_assert_held(&md->suspend_lock);
2874 
2875 	if (md->internal_suspend_count++)
2876 		return; /* nested internal suspend */
2877 
2878 	if (dm_suspended_md(md)) {
2879 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2880 		return; /* nest suspend */
2881 	}
2882 
2883 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2884 
2885 	/*
2886 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2887 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2888 	 * would require changing .presuspend to return an error -- avoid this
2889 	 * until there is a need for more elaborate variants of internal suspend.
2890 	 */
2891 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2892 			    DMF_SUSPENDED_INTERNALLY);
2893 
2894 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2895 	dm_table_postsuspend_targets(map);
2896 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2897 }
2898 
2899 static void __dm_internal_resume(struct mapped_device *md)
2900 {
2901 	BUG_ON(!md->internal_suspend_count);
2902 
2903 	if (--md->internal_suspend_count)
2904 		return; /* resume from nested internal suspend */
2905 
2906 	if (dm_suspended_md(md))
2907 		goto done; /* resume from nested suspend */
2908 
2909 	/*
2910 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2911 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2912 	 */
2913 	(void) __dm_resume(md, NULL);
2914 
2915 done:
2916 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2917 	smp_mb__after_atomic();
2918 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2919 }
2920 
2921 void dm_internal_suspend_noflush(struct mapped_device *md)
2922 {
2923 	mutex_lock(&md->suspend_lock);
2924 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2925 	mutex_unlock(&md->suspend_lock);
2926 }
2927 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2928 
2929 void dm_internal_resume(struct mapped_device *md)
2930 {
2931 	mutex_lock(&md->suspend_lock);
2932 	__dm_internal_resume(md);
2933 	mutex_unlock(&md->suspend_lock);
2934 }
2935 EXPORT_SYMBOL_GPL(dm_internal_resume);
2936 
2937 /*
2938  * Fast variants of internal suspend/resume hold md->suspend_lock,
2939  * which prevents interaction with userspace-driven suspend.
2940  */
2941 
2942 void dm_internal_suspend_fast(struct mapped_device *md)
2943 {
2944 	mutex_lock(&md->suspend_lock);
2945 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2946 		return;
2947 
2948 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2949 	synchronize_srcu(&md->io_barrier);
2950 	flush_workqueue(md->wq);
2951 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2952 }
2953 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2954 
2955 void dm_internal_resume_fast(struct mapped_device *md)
2956 {
2957 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2958 		goto done;
2959 
2960 	dm_queue_flush(md);
2961 
2962 done:
2963 	mutex_unlock(&md->suspend_lock);
2964 }
2965 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2966 
2967 /*-----------------------------------------------------------------
2968  * Event notification.
2969  *---------------------------------------------------------------*/
2970 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2971 		       unsigned cookie)
2972 {
2973 	int r;
2974 	unsigned noio_flag;
2975 	char udev_cookie[DM_COOKIE_LENGTH];
2976 	char *envp[] = { udev_cookie, NULL };
2977 
2978 	noio_flag = memalloc_noio_save();
2979 
2980 	if (!cookie)
2981 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2982 	else {
2983 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2984 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2985 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2986 				       action, envp);
2987 	}
2988 
2989 	memalloc_noio_restore(noio_flag);
2990 
2991 	return r;
2992 }
2993 
2994 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2995 {
2996 	return atomic_add_return(1, &md->uevent_seq);
2997 }
2998 
2999 uint32_t dm_get_event_nr(struct mapped_device *md)
3000 {
3001 	return atomic_read(&md->event_nr);
3002 }
3003 
3004 int dm_wait_event(struct mapped_device *md, int event_nr)
3005 {
3006 	return wait_event_interruptible(md->eventq,
3007 			(event_nr != atomic_read(&md->event_nr)));
3008 }
3009 
3010 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3011 {
3012 	unsigned long flags;
3013 
3014 	spin_lock_irqsave(&md->uevent_lock, flags);
3015 	list_add(elist, &md->uevent_list);
3016 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3017 }
3018 
3019 /*
3020  * The gendisk is only valid as long as you have a reference
3021  * count on 'md'.
3022  */
3023 struct gendisk *dm_disk(struct mapped_device *md)
3024 {
3025 	return md->disk;
3026 }
3027 EXPORT_SYMBOL_GPL(dm_disk);
3028 
3029 struct kobject *dm_kobject(struct mapped_device *md)
3030 {
3031 	return &md->kobj_holder.kobj;
3032 }
3033 
3034 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3035 {
3036 	struct mapped_device *md;
3037 
3038 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3039 
3040 	spin_lock(&_minor_lock);
3041 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3042 		md = NULL;
3043 		goto out;
3044 	}
3045 	dm_get(md);
3046 out:
3047 	spin_unlock(&_minor_lock);
3048 
3049 	return md;
3050 }
3051 
3052 int dm_suspended_md(struct mapped_device *md)
3053 {
3054 	return test_bit(DMF_SUSPENDED, &md->flags);
3055 }
3056 
3057 static int dm_post_suspending_md(struct mapped_device *md)
3058 {
3059 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3060 }
3061 
3062 int dm_suspended_internally_md(struct mapped_device *md)
3063 {
3064 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3065 }
3066 
3067 int dm_test_deferred_remove_flag(struct mapped_device *md)
3068 {
3069 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3070 }
3071 
3072 int dm_suspended(struct dm_target *ti)
3073 {
3074 	return dm_suspended_md(ti->table->md);
3075 }
3076 EXPORT_SYMBOL_GPL(dm_suspended);
3077 
3078 int dm_post_suspending(struct dm_target *ti)
3079 {
3080 	return dm_post_suspending_md(ti->table->md);
3081 }
3082 EXPORT_SYMBOL_GPL(dm_post_suspending);
3083 
3084 int dm_noflush_suspending(struct dm_target *ti)
3085 {
3086 	return __noflush_suspending(ti->table->md);
3087 }
3088 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3089 
3090 void dm_free_md_mempools(struct dm_md_mempools *pools)
3091 {
3092 	if (!pools)
3093 		return;
3094 
3095 	bioset_exit(&pools->bs);
3096 	bioset_exit(&pools->io_bs);
3097 
3098 	kfree(pools);
3099 }
3100 
3101 struct dm_pr {
3102 	u64	old_key;
3103 	u64	new_key;
3104 	u32	flags;
3105 	bool	abort;
3106 	bool	fail_early;
3107 	int	ret;
3108 	enum pr_type type;
3109 };
3110 
3111 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3112 		      struct dm_pr *pr)
3113 {
3114 	struct mapped_device *md = bdev->bd_disk->private_data;
3115 	struct dm_table *table;
3116 	struct dm_target *ti;
3117 	int ret = -ENOTTY, srcu_idx;
3118 
3119 	table = dm_get_live_table(md, &srcu_idx);
3120 	if (!table || !dm_table_get_size(table))
3121 		goto out;
3122 
3123 	/* We only support devices that have a single target */
3124 	if (table->num_targets != 1)
3125 		goto out;
3126 	ti = dm_table_get_target(table, 0);
3127 
3128 	if (dm_suspended_md(md)) {
3129 		ret = -EAGAIN;
3130 		goto out;
3131 	}
3132 
3133 	ret = -EINVAL;
3134 	if (!ti->type->iterate_devices)
3135 		goto out;
3136 
3137 	ti->type->iterate_devices(ti, fn, pr);
3138 	ret = 0;
3139 out:
3140 	dm_put_live_table(md, srcu_idx);
3141 	return ret;
3142 }
3143 
3144 /*
3145  * For register / unregister we need to manually call out to every path.
3146  */
3147 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3148 			    sector_t start, sector_t len, void *data)
3149 {
3150 	struct dm_pr *pr = data;
3151 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3152 	int ret;
3153 
3154 	if (!ops || !ops->pr_register) {
3155 		pr->ret = -EOPNOTSUPP;
3156 		return -1;
3157 	}
3158 
3159 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3160 	if (!ret)
3161 		return 0;
3162 
3163 	if (!pr->ret)
3164 		pr->ret = ret;
3165 
3166 	if (pr->fail_early)
3167 		return -1;
3168 
3169 	return 0;
3170 }
3171 
3172 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3173 			  u32 flags)
3174 {
3175 	struct dm_pr pr = {
3176 		.old_key	= old_key,
3177 		.new_key	= new_key,
3178 		.flags		= flags,
3179 		.fail_early	= true,
3180 		.ret		= 0,
3181 	};
3182 	int ret;
3183 
3184 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3185 	if (ret) {
3186 		/* Didn't even get to register a path */
3187 		return ret;
3188 	}
3189 
3190 	if (!pr.ret)
3191 		return 0;
3192 	ret = pr.ret;
3193 
3194 	if (!new_key)
3195 		return ret;
3196 
3197 	/* unregister all paths if we failed to register any path */
3198 	pr.old_key = new_key;
3199 	pr.new_key = 0;
3200 	pr.flags = 0;
3201 	pr.fail_early = false;
3202 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3203 	return ret;
3204 }
3205 
3206 
3207 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3208 			   sector_t start, sector_t len, void *data)
3209 {
3210 	struct dm_pr *pr = data;
3211 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3212 
3213 	if (!ops || !ops->pr_reserve) {
3214 		pr->ret = -EOPNOTSUPP;
3215 		return -1;
3216 	}
3217 
3218 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3219 	if (!pr->ret)
3220 		return -1;
3221 
3222 	return 0;
3223 }
3224 
3225 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3226 			 u32 flags)
3227 {
3228 	struct dm_pr pr = {
3229 		.old_key	= key,
3230 		.flags		= flags,
3231 		.type		= type,
3232 		.fail_early	= false,
3233 		.ret		= 0,
3234 	};
3235 	int ret;
3236 
3237 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3238 	if (ret)
3239 		return ret;
3240 
3241 	return pr.ret;
3242 }
3243 
3244 /*
3245  * If there is a non-All Registrants type of reservation, the release must be
3246  * sent down the holding path. For the cases where there is no reservation or
3247  * the path is not the holder the device will also return success, so we must
3248  * try each path to make sure we got the correct path.
3249  */
3250 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3251 			   sector_t start, sector_t len, void *data)
3252 {
3253 	struct dm_pr *pr = data;
3254 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3255 
3256 	if (!ops || !ops->pr_release) {
3257 		pr->ret = -EOPNOTSUPP;
3258 		return -1;
3259 	}
3260 
3261 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3262 	if (pr->ret)
3263 		return -1;
3264 
3265 	return 0;
3266 }
3267 
3268 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3269 {
3270 	struct dm_pr pr = {
3271 		.old_key	= key,
3272 		.type		= type,
3273 		.fail_early	= false,
3274 	};
3275 	int ret;
3276 
3277 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3278 	if (ret)
3279 		return ret;
3280 
3281 	return pr.ret;
3282 }
3283 
3284 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3285 			   sector_t start, sector_t len, void *data)
3286 {
3287 	struct dm_pr *pr = data;
3288 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3289 
3290 	if (!ops || !ops->pr_preempt) {
3291 		pr->ret = -EOPNOTSUPP;
3292 		return -1;
3293 	}
3294 
3295 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3296 				  pr->abort);
3297 	if (!pr->ret)
3298 		return -1;
3299 
3300 	return 0;
3301 }
3302 
3303 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3304 			 enum pr_type type, bool abort)
3305 {
3306 	struct dm_pr pr = {
3307 		.new_key	= new_key,
3308 		.old_key	= old_key,
3309 		.type		= type,
3310 		.fail_early	= false,
3311 	};
3312 	int ret;
3313 
3314 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3315 	if (ret)
3316 		return ret;
3317 
3318 	return pr.ret;
3319 }
3320 
3321 static int dm_pr_clear(struct block_device *bdev, u64 key)
3322 {
3323 	struct mapped_device *md = bdev->bd_disk->private_data;
3324 	const struct pr_ops *ops;
3325 	int r, srcu_idx;
3326 
3327 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3328 	if (r < 0)
3329 		goto out;
3330 
3331 	ops = bdev->bd_disk->fops->pr_ops;
3332 	if (ops && ops->pr_clear)
3333 		r = ops->pr_clear(bdev, key);
3334 	else
3335 		r = -EOPNOTSUPP;
3336 out:
3337 	dm_unprepare_ioctl(md, srcu_idx);
3338 	return r;
3339 }
3340 
3341 static const struct pr_ops dm_pr_ops = {
3342 	.pr_register	= dm_pr_register,
3343 	.pr_reserve	= dm_pr_reserve,
3344 	.pr_release	= dm_pr_release,
3345 	.pr_preempt	= dm_pr_preempt,
3346 	.pr_clear	= dm_pr_clear,
3347 };
3348 
3349 static const struct block_device_operations dm_blk_dops = {
3350 	.submit_bio = dm_submit_bio,
3351 	.poll_bio = dm_poll_bio,
3352 	.open = dm_blk_open,
3353 	.release = dm_blk_close,
3354 	.ioctl = dm_blk_ioctl,
3355 	.getgeo = dm_blk_getgeo,
3356 	.report_zones = dm_blk_report_zones,
3357 	.pr_ops = &dm_pr_ops,
3358 	.owner = THIS_MODULE
3359 };
3360 
3361 static const struct block_device_operations dm_rq_blk_dops = {
3362 	.open = dm_blk_open,
3363 	.release = dm_blk_close,
3364 	.ioctl = dm_blk_ioctl,
3365 	.getgeo = dm_blk_getgeo,
3366 	.pr_ops = &dm_pr_ops,
3367 	.owner = THIS_MODULE
3368 };
3369 
3370 static const struct dax_operations dm_dax_ops = {
3371 	.direct_access = dm_dax_direct_access,
3372 	.zero_page_range = dm_dax_zero_page_range,
3373 	.recovery_write = dm_dax_recovery_write,
3374 };
3375 
3376 /*
3377  * module hooks
3378  */
3379 module_init(dm_init);
3380 module_exit(dm_exit);
3381 
3382 module_param(major, uint, 0);
3383 MODULE_PARM_DESC(major, "The major number of the device mapper");
3384 
3385 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3386 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3387 
3388 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3389 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3390 
3391 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3392 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3393 
3394 MODULE_DESCRIPTION(DM_NAME " driver");
3395 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3396 MODULE_LICENSE("GPL");
3397