1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 53 static void do_deferred_remove(struct work_struct *w); 54 55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 56 57 /* 58 * For bio-based dm. 59 * One of these is allocated per bio. 60 */ 61 struct dm_io { 62 struct mapped_device *md; 63 int error; 64 atomic_t io_count; 65 struct bio *bio; 66 unsigned long start_time; 67 spinlock_t endio_lock; 68 struct dm_stats_aux stats_aux; 69 }; 70 71 /* 72 * For request-based dm. 73 * One of these is allocated per request. 74 */ 75 struct dm_rq_target_io { 76 struct mapped_device *md; 77 struct dm_target *ti; 78 struct request *orig, clone; 79 int error; 80 union map_info info; 81 }; 82 83 /* 84 * For request-based dm - the bio clones we allocate are embedded in these 85 * structs. 86 * 87 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 88 * the bioset is created - this means the bio has to come at the end of the 89 * struct. 90 */ 91 struct dm_rq_clone_bio_info { 92 struct bio *orig; 93 struct dm_rq_target_io *tio; 94 struct bio clone; 95 }; 96 97 union map_info *dm_get_rq_mapinfo(struct request *rq) 98 { 99 if (rq && rq->end_io_data) 100 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 101 return NULL; 102 } 103 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 104 105 #define MINOR_ALLOCED ((void *)-1) 106 107 /* 108 * Bits for the md->flags field. 109 */ 110 #define DMF_BLOCK_IO_FOR_SUSPEND 0 111 #define DMF_SUSPENDED 1 112 #define DMF_FROZEN 2 113 #define DMF_FREEING 3 114 #define DMF_DELETING 4 115 #define DMF_NOFLUSH_SUSPENDING 5 116 #define DMF_MERGE_IS_OPTIONAL 6 117 #define DMF_DEFERRED_REMOVE 7 118 119 /* 120 * A dummy definition to make RCU happy. 121 * struct dm_table should never be dereferenced in this file. 122 */ 123 struct dm_table { 124 int undefined__; 125 }; 126 127 /* 128 * Work processed by per-device workqueue. 129 */ 130 struct mapped_device { 131 struct srcu_struct io_barrier; 132 struct mutex suspend_lock; 133 atomic_t holders; 134 atomic_t open_count; 135 136 /* 137 * The current mapping. 138 * Use dm_get_live_table{_fast} or take suspend_lock for 139 * dereference. 140 */ 141 struct dm_table *map; 142 143 unsigned long flags; 144 145 struct request_queue *queue; 146 unsigned type; 147 /* Protect queue and type against concurrent access. */ 148 struct mutex type_lock; 149 150 struct target_type *immutable_target_type; 151 152 struct gendisk *disk; 153 char name[16]; 154 155 void *interface_ptr; 156 157 /* 158 * A list of ios that arrived while we were suspended. 159 */ 160 atomic_t pending[2]; 161 wait_queue_head_t wait; 162 struct work_struct work; 163 struct bio_list deferred; 164 spinlock_t deferred_lock; 165 166 /* 167 * Processing queue (flush) 168 */ 169 struct workqueue_struct *wq; 170 171 /* 172 * io objects are allocated from here. 173 */ 174 mempool_t *io_pool; 175 176 struct bio_set *bs; 177 178 /* 179 * Event handling. 180 */ 181 atomic_t event_nr; 182 wait_queue_head_t eventq; 183 atomic_t uevent_seq; 184 struct list_head uevent_list; 185 spinlock_t uevent_lock; /* Protect access to uevent_list */ 186 187 /* 188 * freeze/thaw support require holding onto a super block 189 */ 190 struct super_block *frozen_sb; 191 struct block_device *bdev; 192 193 /* forced geometry settings */ 194 struct hd_geometry geometry; 195 196 /* kobject and completion */ 197 struct dm_kobject_holder kobj_holder; 198 199 /* zero-length flush that will be cloned and submitted to targets */ 200 struct bio flush_bio; 201 202 struct dm_stats stats; 203 }; 204 205 /* 206 * For mempools pre-allocation at the table loading time. 207 */ 208 struct dm_md_mempools { 209 mempool_t *io_pool; 210 struct bio_set *bs; 211 }; 212 213 #define RESERVED_BIO_BASED_IOS 16 214 #define RESERVED_REQUEST_BASED_IOS 256 215 #define RESERVED_MAX_IOS 1024 216 static struct kmem_cache *_io_cache; 217 static struct kmem_cache *_rq_tio_cache; 218 219 /* 220 * Bio-based DM's mempools' reserved IOs set by the user. 221 */ 222 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 223 224 /* 225 * Request-based DM's mempools' reserved IOs set by the user. 226 */ 227 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 228 229 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios, 230 unsigned def, unsigned max) 231 { 232 unsigned ios = ACCESS_ONCE(*reserved_ios); 233 unsigned modified_ios = 0; 234 235 if (!ios) 236 modified_ios = def; 237 else if (ios > max) 238 modified_ios = max; 239 240 if (modified_ios) { 241 (void)cmpxchg(reserved_ios, ios, modified_ios); 242 ios = modified_ios; 243 } 244 245 return ios; 246 } 247 248 unsigned dm_get_reserved_bio_based_ios(void) 249 { 250 return __dm_get_reserved_ios(&reserved_bio_based_ios, 251 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 252 } 253 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 254 255 unsigned dm_get_reserved_rq_based_ios(void) 256 { 257 return __dm_get_reserved_ios(&reserved_rq_based_ios, 258 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 259 } 260 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 261 262 static int __init local_init(void) 263 { 264 int r = -ENOMEM; 265 266 /* allocate a slab for the dm_ios */ 267 _io_cache = KMEM_CACHE(dm_io, 0); 268 if (!_io_cache) 269 return r; 270 271 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 272 if (!_rq_tio_cache) 273 goto out_free_io_cache; 274 275 r = dm_uevent_init(); 276 if (r) 277 goto out_free_rq_tio_cache; 278 279 _major = major; 280 r = register_blkdev(_major, _name); 281 if (r < 0) 282 goto out_uevent_exit; 283 284 if (!_major) 285 _major = r; 286 287 return 0; 288 289 out_uevent_exit: 290 dm_uevent_exit(); 291 out_free_rq_tio_cache: 292 kmem_cache_destroy(_rq_tio_cache); 293 out_free_io_cache: 294 kmem_cache_destroy(_io_cache); 295 296 return r; 297 } 298 299 static void local_exit(void) 300 { 301 flush_scheduled_work(); 302 303 kmem_cache_destroy(_rq_tio_cache); 304 kmem_cache_destroy(_io_cache); 305 unregister_blkdev(_major, _name); 306 dm_uevent_exit(); 307 308 _major = 0; 309 310 DMINFO("cleaned up"); 311 } 312 313 static int (*_inits[])(void) __initdata = { 314 local_init, 315 dm_target_init, 316 dm_linear_init, 317 dm_stripe_init, 318 dm_io_init, 319 dm_kcopyd_init, 320 dm_interface_init, 321 dm_statistics_init, 322 }; 323 324 static void (*_exits[])(void) = { 325 local_exit, 326 dm_target_exit, 327 dm_linear_exit, 328 dm_stripe_exit, 329 dm_io_exit, 330 dm_kcopyd_exit, 331 dm_interface_exit, 332 dm_statistics_exit, 333 }; 334 335 static int __init dm_init(void) 336 { 337 const int count = ARRAY_SIZE(_inits); 338 339 int r, i; 340 341 for (i = 0; i < count; i++) { 342 r = _inits[i](); 343 if (r) 344 goto bad; 345 } 346 347 return 0; 348 349 bad: 350 while (i--) 351 _exits[i](); 352 353 return r; 354 } 355 356 static void __exit dm_exit(void) 357 { 358 int i = ARRAY_SIZE(_exits); 359 360 while (i--) 361 _exits[i](); 362 363 /* 364 * Should be empty by this point. 365 */ 366 idr_destroy(&_minor_idr); 367 } 368 369 /* 370 * Block device functions 371 */ 372 int dm_deleting_md(struct mapped_device *md) 373 { 374 return test_bit(DMF_DELETING, &md->flags); 375 } 376 377 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 378 { 379 struct mapped_device *md; 380 381 spin_lock(&_minor_lock); 382 383 md = bdev->bd_disk->private_data; 384 if (!md) 385 goto out; 386 387 if (test_bit(DMF_FREEING, &md->flags) || 388 dm_deleting_md(md)) { 389 md = NULL; 390 goto out; 391 } 392 393 dm_get(md); 394 atomic_inc(&md->open_count); 395 396 out: 397 spin_unlock(&_minor_lock); 398 399 return md ? 0 : -ENXIO; 400 } 401 402 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 403 { 404 struct mapped_device *md = disk->private_data; 405 406 spin_lock(&_minor_lock); 407 408 if (atomic_dec_and_test(&md->open_count) && 409 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 410 schedule_work(&deferred_remove_work); 411 412 dm_put(md); 413 414 spin_unlock(&_minor_lock); 415 } 416 417 int dm_open_count(struct mapped_device *md) 418 { 419 return atomic_read(&md->open_count); 420 } 421 422 /* 423 * Guarantees nothing is using the device before it's deleted. 424 */ 425 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 426 { 427 int r = 0; 428 429 spin_lock(&_minor_lock); 430 431 if (dm_open_count(md)) { 432 r = -EBUSY; 433 if (mark_deferred) 434 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 435 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 436 r = -EEXIST; 437 else 438 set_bit(DMF_DELETING, &md->flags); 439 440 spin_unlock(&_minor_lock); 441 442 return r; 443 } 444 445 int dm_cancel_deferred_remove(struct mapped_device *md) 446 { 447 int r = 0; 448 449 spin_lock(&_minor_lock); 450 451 if (test_bit(DMF_DELETING, &md->flags)) 452 r = -EBUSY; 453 else 454 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 455 456 spin_unlock(&_minor_lock); 457 458 return r; 459 } 460 461 static void do_deferred_remove(struct work_struct *w) 462 { 463 dm_deferred_remove(); 464 } 465 466 sector_t dm_get_size(struct mapped_device *md) 467 { 468 return get_capacity(md->disk); 469 } 470 471 struct request_queue *dm_get_md_queue(struct mapped_device *md) 472 { 473 return md->queue; 474 } 475 476 struct dm_stats *dm_get_stats(struct mapped_device *md) 477 { 478 return &md->stats; 479 } 480 481 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 482 { 483 struct mapped_device *md = bdev->bd_disk->private_data; 484 485 return dm_get_geometry(md, geo); 486 } 487 488 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 489 unsigned int cmd, unsigned long arg) 490 { 491 struct mapped_device *md = bdev->bd_disk->private_data; 492 int srcu_idx; 493 struct dm_table *map; 494 struct dm_target *tgt; 495 int r = -ENOTTY; 496 497 retry: 498 map = dm_get_live_table(md, &srcu_idx); 499 500 if (!map || !dm_table_get_size(map)) 501 goto out; 502 503 /* We only support devices that have a single target */ 504 if (dm_table_get_num_targets(map) != 1) 505 goto out; 506 507 tgt = dm_table_get_target(map, 0); 508 509 if (dm_suspended_md(md)) { 510 r = -EAGAIN; 511 goto out; 512 } 513 514 if (tgt->type->ioctl) 515 r = tgt->type->ioctl(tgt, cmd, arg); 516 517 out: 518 dm_put_live_table(md, srcu_idx); 519 520 if (r == -ENOTCONN) { 521 msleep(10); 522 goto retry; 523 } 524 525 return r; 526 } 527 528 static struct dm_io *alloc_io(struct mapped_device *md) 529 { 530 return mempool_alloc(md->io_pool, GFP_NOIO); 531 } 532 533 static void free_io(struct mapped_device *md, struct dm_io *io) 534 { 535 mempool_free(io, md->io_pool); 536 } 537 538 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 539 { 540 bio_put(&tio->clone); 541 } 542 543 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 544 gfp_t gfp_mask) 545 { 546 return mempool_alloc(md->io_pool, gfp_mask); 547 } 548 549 static void free_rq_tio(struct dm_rq_target_io *tio) 550 { 551 mempool_free(tio, tio->md->io_pool); 552 } 553 554 static int md_in_flight(struct mapped_device *md) 555 { 556 return atomic_read(&md->pending[READ]) + 557 atomic_read(&md->pending[WRITE]); 558 } 559 560 static void start_io_acct(struct dm_io *io) 561 { 562 struct mapped_device *md = io->md; 563 struct bio *bio = io->bio; 564 int cpu; 565 int rw = bio_data_dir(bio); 566 567 io->start_time = jiffies; 568 569 cpu = part_stat_lock(); 570 part_round_stats(cpu, &dm_disk(md)->part0); 571 part_stat_unlock(); 572 atomic_set(&dm_disk(md)->part0.in_flight[rw], 573 atomic_inc_return(&md->pending[rw])); 574 575 if (unlikely(dm_stats_used(&md->stats))) 576 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 577 bio_sectors(bio), false, 0, &io->stats_aux); 578 } 579 580 static void end_io_acct(struct dm_io *io) 581 { 582 struct mapped_device *md = io->md; 583 struct bio *bio = io->bio; 584 unsigned long duration = jiffies - io->start_time; 585 int pending, cpu; 586 int rw = bio_data_dir(bio); 587 588 cpu = part_stat_lock(); 589 part_round_stats(cpu, &dm_disk(md)->part0); 590 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 591 part_stat_unlock(); 592 593 if (unlikely(dm_stats_used(&md->stats))) 594 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 595 bio_sectors(bio), true, duration, &io->stats_aux); 596 597 /* 598 * After this is decremented the bio must not be touched if it is 599 * a flush. 600 */ 601 pending = atomic_dec_return(&md->pending[rw]); 602 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 603 pending += atomic_read(&md->pending[rw^0x1]); 604 605 /* nudge anyone waiting on suspend queue */ 606 if (!pending) 607 wake_up(&md->wait); 608 } 609 610 /* 611 * Add the bio to the list of deferred io. 612 */ 613 static void queue_io(struct mapped_device *md, struct bio *bio) 614 { 615 unsigned long flags; 616 617 spin_lock_irqsave(&md->deferred_lock, flags); 618 bio_list_add(&md->deferred, bio); 619 spin_unlock_irqrestore(&md->deferred_lock, flags); 620 queue_work(md->wq, &md->work); 621 } 622 623 /* 624 * Everyone (including functions in this file), should use this 625 * function to access the md->map field, and make sure they call 626 * dm_put_live_table() when finished. 627 */ 628 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 629 { 630 *srcu_idx = srcu_read_lock(&md->io_barrier); 631 632 return srcu_dereference(md->map, &md->io_barrier); 633 } 634 635 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 636 { 637 srcu_read_unlock(&md->io_barrier, srcu_idx); 638 } 639 640 void dm_sync_table(struct mapped_device *md) 641 { 642 synchronize_srcu(&md->io_barrier); 643 synchronize_rcu_expedited(); 644 } 645 646 /* 647 * A fast alternative to dm_get_live_table/dm_put_live_table. 648 * The caller must not block between these two functions. 649 */ 650 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 651 { 652 rcu_read_lock(); 653 return rcu_dereference(md->map); 654 } 655 656 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 657 { 658 rcu_read_unlock(); 659 } 660 661 /* 662 * Get the geometry associated with a dm device 663 */ 664 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 665 { 666 *geo = md->geometry; 667 668 return 0; 669 } 670 671 /* 672 * Set the geometry of a device. 673 */ 674 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 675 { 676 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 677 678 if (geo->start > sz) { 679 DMWARN("Start sector is beyond the geometry limits."); 680 return -EINVAL; 681 } 682 683 md->geometry = *geo; 684 685 return 0; 686 } 687 688 /*----------------------------------------------------------------- 689 * CRUD START: 690 * A more elegant soln is in the works that uses the queue 691 * merge fn, unfortunately there are a couple of changes to 692 * the block layer that I want to make for this. So in the 693 * interests of getting something for people to use I give 694 * you this clearly demarcated crap. 695 *---------------------------------------------------------------*/ 696 697 static int __noflush_suspending(struct mapped_device *md) 698 { 699 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 700 } 701 702 /* 703 * Decrements the number of outstanding ios that a bio has been 704 * cloned into, completing the original io if necc. 705 */ 706 static void dec_pending(struct dm_io *io, int error) 707 { 708 unsigned long flags; 709 int io_error; 710 struct bio *bio; 711 struct mapped_device *md = io->md; 712 713 /* Push-back supersedes any I/O errors */ 714 if (unlikely(error)) { 715 spin_lock_irqsave(&io->endio_lock, flags); 716 if (!(io->error > 0 && __noflush_suspending(md))) 717 io->error = error; 718 spin_unlock_irqrestore(&io->endio_lock, flags); 719 } 720 721 if (atomic_dec_and_test(&io->io_count)) { 722 if (io->error == DM_ENDIO_REQUEUE) { 723 /* 724 * Target requested pushing back the I/O. 725 */ 726 spin_lock_irqsave(&md->deferred_lock, flags); 727 if (__noflush_suspending(md)) 728 bio_list_add_head(&md->deferred, io->bio); 729 else 730 /* noflush suspend was interrupted. */ 731 io->error = -EIO; 732 spin_unlock_irqrestore(&md->deferred_lock, flags); 733 } 734 735 io_error = io->error; 736 bio = io->bio; 737 end_io_acct(io); 738 free_io(md, io); 739 740 if (io_error == DM_ENDIO_REQUEUE) 741 return; 742 743 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 744 /* 745 * Preflush done for flush with data, reissue 746 * without REQ_FLUSH. 747 */ 748 bio->bi_rw &= ~REQ_FLUSH; 749 queue_io(md, bio); 750 } else { 751 /* done with normal IO or empty flush */ 752 trace_block_bio_complete(md->queue, bio, io_error); 753 bio_endio(bio, io_error); 754 } 755 } 756 } 757 758 static void disable_write_same(struct mapped_device *md) 759 { 760 struct queue_limits *limits = dm_get_queue_limits(md); 761 762 /* device doesn't really support WRITE SAME, disable it */ 763 limits->max_write_same_sectors = 0; 764 } 765 766 static void clone_endio(struct bio *bio, int error) 767 { 768 int r = 0; 769 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 770 struct dm_io *io = tio->io; 771 struct mapped_device *md = tio->io->md; 772 dm_endio_fn endio = tio->ti->type->end_io; 773 774 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 775 error = -EIO; 776 777 if (endio) { 778 r = endio(tio->ti, bio, error); 779 if (r < 0 || r == DM_ENDIO_REQUEUE) 780 /* 781 * error and requeue request are handled 782 * in dec_pending(). 783 */ 784 error = r; 785 else if (r == DM_ENDIO_INCOMPLETE) 786 /* The target will handle the io */ 787 return; 788 else if (r) { 789 DMWARN("unimplemented target endio return value: %d", r); 790 BUG(); 791 } 792 } 793 794 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && 795 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 796 disable_write_same(md); 797 798 free_tio(md, tio); 799 dec_pending(io, error); 800 } 801 802 /* 803 * Partial completion handling for request-based dm 804 */ 805 static void end_clone_bio(struct bio *clone, int error) 806 { 807 struct dm_rq_clone_bio_info *info = 808 container_of(clone, struct dm_rq_clone_bio_info, clone); 809 struct dm_rq_target_io *tio = info->tio; 810 struct bio *bio = info->orig; 811 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 812 813 bio_put(clone); 814 815 if (tio->error) 816 /* 817 * An error has already been detected on the request. 818 * Once error occurred, just let clone->end_io() handle 819 * the remainder. 820 */ 821 return; 822 else if (error) { 823 /* 824 * Don't notice the error to the upper layer yet. 825 * The error handling decision is made by the target driver, 826 * when the request is completed. 827 */ 828 tio->error = error; 829 return; 830 } 831 832 /* 833 * I/O for the bio successfully completed. 834 * Notice the data completion to the upper layer. 835 */ 836 837 /* 838 * bios are processed from the head of the list. 839 * So the completing bio should always be rq->bio. 840 * If it's not, something wrong is happening. 841 */ 842 if (tio->orig->bio != bio) 843 DMERR("bio completion is going in the middle of the request"); 844 845 /* 846 * Update the original request. 847 * Do not use blk_end_request() here, because it may complete 848 * the original request before the clone, and break the ordering. 849 */ 850 blk_update_request(tio->orig, 0, nr_bytes); 851 } 852 853 /* 854 * Don't touch any member of the md after calling this function because 855 * the md may be freed in dm_put() at the end of this function. 856 * Or do dm_get() before calling this function and dm_put() later. 857 */ 858 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 859 { 860 atomic_dec(&md->pending[rw]); 861 862 /* nudge anyone waiting on suspend queue */ 863 if (!md_in_flight(md)) 864 wake_up(&md->wait); 865 866 /* 867 * Run this off this callpath, as drivers could invoke end_io while 868 * inside their request_fn (and holding the queue lock). Calling 869 * back into ->request_fn() could deadlock attempting to grab the 870 * queue lock again. 871 */ 872 if (run_queue) 873 blk_run_queue_async(md->queue); 874 875 /* 876 * dm_put() must be at the end of this function. See the comment above 877 */ 878 dm_put(md); 879 } 880 881 static void free_rq_clone(struct request *clone) 882 { 883 struct dm_rq_target_io *tio = clone->end_io_data; 884 885 blk_rq_unprep_clone(clone); 886 free_rq_tio(tio); 887 } 888 889 /* 890 * Complete the clone and the original request. 891 * Must be called without queue lock. 892 */ 893 static void dm_end_request(struct request *clone, int error) 894 { 895 int rw = rq_data_dir(clone); 896 struct dm_rq_target_io *tio = clone->end_io_data; 897 struct mapped_device *md = tio->md; 898 struct request *rq = tio->orig; 899 900 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 901 rq->errors = clone->errors; 902 rq->resid_len = clone->resid_len; 903 904 if (rq->sense) 905 /* 906 * We are using the sense buffer of the original 907 * request. 908 * So setting the length of the sense data is enough. 909 */ 910 rq->sense_len = clone->sense_len; 911 } 912 913 free_rq_clone(clone); 914 blk_end_request_all(rq, error); 915 rq_completed(md, rw, true); 916 } 917 918 static void dm_unprep_request(struct request *rq) 919 { 920 struct request *clone = rq->special; 921 922 rq->special = NULL; 923 rq->cmd_flags &= ~REQ_DONTPREP; 924 925 free_rq_clone(clone); 926 } 927 928 /* 929 * Requeue the original request of a clone. 930 */ 931 void dm_requeue_unmapped_request(struct request *clone) 932 { 933 int rw = rq_data_dir(clone); 934 struct dm_rq_target_io *tio = clone->end_io_data; 935 struct mapped_device *md = tio->md; 936 struct request *rq = tio->orig; 937 struct request_queue *q = rq->q; 938 unsigned long flags; 939 940 dm_unprep_request(rq); 941 942 spin_lock_irqsave(q->queue_lock, flags); 943 blk_requeue_request(q, rq); 944 spin_unlock_irqrestore(q->queue_lock, flags); 945 946 rq_completed(md, rw, 0); 947 } 948 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 949 950 static void __stop_queue(struct request_queue *q) 951 { 952 blk_stop_queue(q); 953 } 954 955 static void stop_queue(struct request_queue *q) 956 { 957 unsigned long flags; 958 959 spin_lock_irqsave(q->queue_lock, flags); 960 __stop_queue(q); 961 spin_unlock_irqrestore(q->queue_lock, flags); 962 } 963 964 static void __start_queue(struct request_queue *q) 965 { 966 if (blk_queue_stopped(q)) 967 blk_start_queue(q); 968 } 969 970 static void start_queue(struct request_queue *q) 971 { 972 unsigned long flags; 973 974 spin_lock_irqsave(q->queue_lock, flags); 975 __start_queue(q); 976 spin_unlock_irqrestore(q->queue_lock, flags); 977 } 978 979 static void dm_done(struct request *clone, int error, bool mapped) 980 { 981 int r = error; 982 struct dm_rq_target_io *tio = clone->end_io_data; 983 dm_request_endio_fn rq_end_io = NULL; 984 985 if (tio->ti) { 986 rq_end_io = tio->ti->type->rq_end_io; 987 988 if (mapped && rq_end_io) 989 r = rq_end_io(tio->ti, clone, error, &tio->info); 990 } 991 992 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && 993 !clone->q->limits.max_write_same_sectors)) 994 disable_write_same(tio->md); 995 996 if (r <= 0) 997 /* The target wants to complete the I/O */ 998 dm_end_request(clone, r); 999 else if (r == DM_ENDIO_INCOMPLETE) 1000 /* The target will handle the I/O */ 1001 return; 1002 else if (r == DM_ENDIO_REQUEUE) 1003 /* The target wants to requeue the I/O */ 1004 dm_requeue_unmapped_request(clone); 1005 else { 1006 DMWARN("unimplemented target endio return value: %d", r); 1007 BUG(); 1008 } 1009 } 1010 1011 /* 1012 * Request completion handler for request-based dm 1013 */ 1014 static void dm_softirq_done(struct request *rq) 1015 { 1016 bool mapped = true; 1017 struct request *clone = rq->completion_data; 1018 struct dm_rq_target_io *tio = clone->end_io_data; 1019 1020 if (rq->cmd_flags & REQ_FAILED) 1021 mapped = false; 1022 1023 dm_done(clone, tio->error, mapped); 1024 } 1025 1026 /* 1027 * Complete the clone and the original request with the error status 1028 * through softirq context. 1029 */ 1030 static void dm_complete_request(struct request *clone, int error) 1031 { 1032 struct dm_rq_target_io *tio = clone->end_io_data; 1033 struct request *rq = tio->orig; 1034 1035 tio->error = error; 1036 rq->completion_data = clone; 1037 blk_complete_request(rq); 1038 } 1039 1040 /* 1041 * Complete the not-mapped clone and the original request with the error status 1042 * through softirq context. 1043 * Target's rq_end_io() function isn't called. 1044 * This may be used when the target's map_rq() function fails. 1045 */ 1046 void dm_kill_unmapped_request(struct request *clone, int error) 1047 { 1048 struct dm_rq_target_io *tio = clone->end_io_data; 1049 struct request *rq = tio->orig; 1050 1051 rq->cmd_flags |= REQ_FAILED; 1052 dm_complete_request(clone, error); 1053 } 1054 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 1055 1056 /* 1057 * Called with the queue lock held 1058 */ 1059 static void end_clone_request(struct request *clone, int error) 1060 { 1061 /* 1062 * For just cleaning up the information of the queue in which 1063 * the clone was dispatched. 1064 * The clone is *NOT* freed actually here because it is alloced from 1065 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 1066 */ 1067 __blk_put_request(clone->q, clone); 1068 1069 /* 1070 * Actual request completion is done in a softirq context which doesn't 1071 * hold the queue lock. Otherwise, deadlock could occur because: 1072 * - another request may be submitted by the upper level driver 1073 * of the stacking during the completion 1074 * - the submission which requires queue lock may be done 1075 * against this queue 1076 */ 1077 dm_complete_request(clone, error); 1078 } 1079 1080 /* 1081 * Return maximum size of I/O possible at the supplied sector up to the current 1082 * target boundary. 1083 */ 1084 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1085 { 1086 sector_t target_offset = dm_target_offset(ti, sector); 1087 1088 return ti->len - target_offset; 1089 } 1090 1091 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1092 { 1093 sector_t len = max_io_len_target_boundary(sector, ti); 1094 sector_t offset, max_len; 1095 1096 /* 1097 * Does the target need to split even further? 1098 */ 1099 if (ti->max_io_len) { 1100 offset = dm_target_offset(ti, sector); 1101 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1102 max_len = sector_div(offset, ti->max_io_len); 1103 else 1104 max_len = offset & (ti->max_io_len - 1); 1105 max_len = ti->max_io_len - max_len; 1106 1107 if (len > max_len) 1108 len = max_len; 1109 } 1110 1111 return len; 1112 } 1113 1114 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1115 { 1116 if (len > UINT_MAX) { 1117 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1118 (unsigned long long)len, UINT_MAX); 1119 ti->error = "Maximum size of target IO is too large"; 1120 return -EINVAL; 1121 } 1122 1123 ti->max_io_len = (uint32_t) len; 1124 1125 return 0; 1126 } 1127 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1128 1129 /* 1130 * A target may call dm_accept_partial_bio only from the map routine. It is 1131 * allowed for all bio types except REQ_FLUSH. 1132 * 1133 * dm_accept_partial_bio informs the dm that the target only wants to process 1134 * additional n_sectors sectors of the bio and the rest of the data should be 1135 * sent in a next bio. 1136 * 1137 * A diagram that explains the arithmetics: 1138 * +--------------------+---------------+-------+ 1139 * | 1 | 2 | 3 | 1140 * +--------------------+---------------+-------+ 1141 * 1142 * <-------------- *tio->len_ptr ---------------> 1143 * <------- bi_size -------> 1144 * <-- n_sectors --> 1145 * 1146 * Region 1 was already iterated over with bio_advance or similar function. 1147 * (it may be empty if the target doesn't use bio_advance) 1148 * Region 2 is the remaining bio size that the target wants to process. 1149 * (it may be empty if region 1 is non-empty, although there is no reason 1150 * to make it empty) 1151 * The target requires that region 3 is to be sent in the next bio. 1152 * 1153 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1154 * the partially processed part (the sum of regions 1+2) must be the same for all 1155 * copies of the bio. 1156 */ 1157 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1158 { 1159 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1160 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1161 BUG_ON(bio->bi_rw & REQ_FLUSH); 1162 BUG_ON(bi_size > *tio->len_ptr); 1163 BUG_ON(n_sectors > bi_size); 1164 *tio->len_ptr -= bi_size - n_sectors; 1165 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1166 } 1167 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1168 1169 static void __map_bio(struct dm_target_io *tio) 1170 { 1171 int r; 1172 sector_t sector; 1173 struct mapped_device *md; 1174 struct bio *clone = &tio->clone; 1175 struct dm_target *ti = tio->ti; 1176 1177 clone->bi_end_io = clone_endio; 1178 1179 /* 1180 * Map the clone. If r == 0 we don't need to do 1181 * anything, the target has assumed ownership of 1182 * this io. 1183 */ 1184 atomic_inc(&tio->io->io_count); 1185 sector = clone->bi_iter.bi_sector; 1186 r = ti->type->map(ti, clone); 1187 if (r == DM_MAPIO_REMAPPED) { 1188 /* the bio has been remapped so dispatch it */ 1189 1190 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1191 tio->io->bio->bi_bdev->bd_dev, sector); 1192 1193 generic_make_request(clone); 1194 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1195 /* error the io and bail out, or requeue it if needed */ 1196 md = tio->io->md; 1197 dec_pending(tio->io, r); 1198 free_tio(md, tio); 1199 } else if (r) { 1200 DMWARN("unimplemented target map return value: %d", r); 1201 BUG(); 1202 } 1203 } 1204 1205 struct clone_info { 1206 struct mapped_device *md; 1207 struct dm_table *map; 1208 struct bio *bio; 1209 struct dm_io *io; 1210 sector_t sector; 1211 unsigned sector_count; 1212 }; 1213 1214 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1215 { 1216 bio->bi_iter.bi_sector = sector; 1217 bio->bi_iter.bi_size = to_bytes(len); 1218 } 1219 1220 /* 1221 * Creates a bio that consists of range of complete bvecs. 1222 */ 1223 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1224 sector_t sector, unsigned len) 1225 { 1226 struct bio *clone = &tio->clone; 1227 1228 __bio_clone_fast(clone, bio); 1229 1230 if (bio_integrity(bio)) 1231 bio_integrity_clone(clone, bio, GFP_NOIO); 1232 1233 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1234 clone->bi_iter.bi_size = to_bytes(len); 1235 1236 if (bio_integrity(bio)) 1237 bio_integrity_trim(clone, 0, len); 1238 } 1239 1240 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1241 struct dm_target *ti, int nr_iovecs, 1242 unsigned target_bio_nr) 1243 { 1244 struct dm_target_io *tio; 1245 struct bio *clone; 1246 1247 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs); 1248 tio = container_of(clone, struct dm_target_io, clone); 1249 1250 tio->io = ci->io; 1251 tio->ti = ti; 1252 tio->target_bio_nr = target_bio_nr; 1253 1254 return tio; 1255 } 1256 1257 static void __clone_and_map_simple_bio(struct clone_info *ci, 1258 struct dm_target *ti, 1259 unsigned target_bio_nr, unsigned *len) 1260 { 1261 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr); 1262 struct bio *clone = &tio->clone; 1263 1264 tio->len_ptr = len; 1265 1266 /* 1267 * Discard requests require the bio's inline iovecs be initialized. 1268 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1269 * and discard, so no need for concern about wasted bvec allocations. 1270 */ 1271 __bio_clone_fast(clone, ci->bio); 1272 if (len) 1273 bio_setup_sector(clone, ci->sector, *len); 1274 1275 __map_bio(tio); 1276 } 1277 1278 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1279 unsigned num_bios, unsigned *len) 1280 { 1281 unsigned target_bio_nr; 1282 1283 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1284 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1285 } 1286 1287 static int __send_empty_flush(struct clone_info *ci) 1288 { 1289 unsigned target_nr = 0; 1290 struct dm_target *ti; 1291 1292 BUG_ON(bio_has_data(ci->bio)); 1293 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1294 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1295 1296 return 0; 1297 } 1298 1299 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1300 sector_t sector, unsigned *len) 1301 { 1302 struct bio *bio = ci->bio; 1303 struct dm_target_io *tio; 1304 unsigned target_bio_nr; 1305 unsigned num_target_bios = 1; 1306 1307 /* 1308 * Does the target want to receive duplicate copies of the bio? 1309 */ 1310 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1311 num_target_bios = ti->num_write_bios(ti, bio); 1312 1313 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1314 tio = alloc_tio(ci, ti, 0, target_bio_nr); 1315 tio->len_ptr = len; 1316 clone_bio(tio, bio, sector, *len); 1317 __map_bio(tio); 1318 } 1319 } 1320 1321 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1322 1323 static unsigned get_num_discard_bios(struct dm_target *ti) 1324 { 1325 return ti->num_discard_bios; 1326 } 1327 1328 static unsigned get_num_write_same_bios(struct dm_target *ti) 1329 { 1330 return ti->num_write_same_bios; 1331 } 1332 1333 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1334 1335 static bool is_split_required_for_discard(struct dm_target *ti) 1336 { 1337 return ti->split_discard_bios; 1338 } 1339 1340 static int __send_changing_extent_only(struct clone_info *ci, 1341 get_num_bios_fn get_num_bios, 1342 is_split_required_fn is_split_required) 1343 { 1344 struct dm_target *ti; 1345 unsigned len; 1346 unsigned num_bios; 1347 1348 do { 1349 ti = dm_table_find_target(ci->map, ci->sector); 1350 if (!dm_target_is_valid(ti)) 1351 return -EIO; 1352 1353 /* 1354 * Even though the device advertised support for this type of 1355 * request, that does not mean every target supports it, and 1356 * reconfiguration might also have changed that since the 1357 * check was performed. 1358 */ 1359 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1360 if (!num_bios) 1361 return -EOPNOTSUPP; 1362 1363 if (is_split_required && !is_split_required(ti)) 1364 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1365 else 1366 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1367 1368 __send_duplicate_bios(ci, ti, num_bios, &len); 1369 1370 ci->sector += len; 1371 } while (ci->sector_count -= len); 1372 1373 return 0; 1374 } 1375 1376 static int __send_discard(struct clone_info *ci) 1377 { 1378 return __send_changing_extent_only(ci, get_num_discard_bios, 1379 is_split_required_for_discard); 1380 } 1381 1382 static int __send_write_same(struct clone_info *ci) 1383 { 1384 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1385 } 1386 1387 /* 1388 * Select the correct strategy for processing a non-flush bio. 1389 */ 1390 static int __split_and_process_non_flush(struct clone_info *ci) 1391 { 1392 struct bio *bio = ci->bio; 1393 struct dm_target *ti; 1394 unsigned len; 1395 1396 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1397 return __send_discard(ci); 1398 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1399 return __send_write_same(ci); 1400 1401 ti = dm_table_find_target(ci->map, ci->sector); 1402 if (!dm_target_is_valid(ti)) 1403 return -EIO; 1404 1405 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1406 1407 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1408 1409 ci->sector += len; 1410 ci->sector_count -= len; 1411 1412 return 0; 1413 } 1414 1415 /* 1416 * Entry point to split a bio into clones and submit them to the targets. 1417 */ 1418 static void __split_and_process_bio(struct mapped_device *md, 1419 struct dm_table *map, struct bio *bio) 1420 { 1421 struct clone_info ci; 1422 int error = 0; 1423 1424 if (unlikely(!map)) { 1425 bio_io_error(bio); 1426 return; 1427 } 1428 1429 ci.map = map; 1430 ci.md = md; 1431 ci.io = alloc_io(md); 1432 ci.io->error = 0; 1433 atomic_set(&ci.io->io_count, 1); 1434 ci.io->bio = bio; 1435 ci.io->md = md; 1436 spin_lock_init(&ci.io->endio_lock); 1437 ci.sector = bio->bi_iter.bi_sector; 1438 1439 start_io_acct(ci.io); 1440 1441 if (bio->bi_rw & REQ_FLUSH) { 1442 ci.bio = &ci.md->flush_bio; 1443 ci.sector_count = 0; 1444 error = __send_empty_flush(&ci); 1445 /* dec_pending submits any data associated with flush */ 1446 } else { 1447 ci.bio = bio; 1448 ci.sector_count = bio_sectors(bio); 1449 while (ci.sector_count && !error) 1450 error = __split_and_process_non_flush(&ci); 1451 } 1452 1453 /* drop the extra reference count */ 1454 dec_pending(ci.io, error); 1455 } 1456 /*----------------------------------------------------------------- 1457 * CRUD END 1458 *---------------------------------------------------------------*/ 1459 1460 static int dm_merge_bvec(struct request_queue *q, 1461 struct bvec_merge_data *bvm, 1462 struct bio_vec *biovec) 1463 { 1464 struct mapped_device *md = q->queuedata; 1465 struct dm_table *map = dm_get_live_table_fast(md); 1466 struct dm_target *ti; 1467 sector_t max_sectors; 1468 int max_size = 0; 1469 1470 if (unlikely(!map)) 1471 goto out; 1472 1473 ti = dm_table_find_target(map, bvm->bi_sector); 1474 if (!dm_target_is_valid(ti)) 1475 goto out; 1476 1477 /* 1478 * Find maximum amount of I/O that won't need splitting 1479 */ 1480 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1481 (sector_t) BIO_MAX_SECTORS); 1482 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1483 if (max_size < 0) 1484 max_size = 0; 1485 1486 /* 1487 * merge_bvec_fn() returns number of bytes 1488 * it can accept at this offset 1489 * max is precomputed maximal io size 1490 */ 1491 if (max_size && ti->type->merge) 1492 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1493 /* 1494 * If the target doesn't support merge method and some of the devices 1495 * provided their merge_bvec method (we know this by looking at 1496 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1497 * entries. So always set max_size to 0, and the code below allows 1498 * just one page. 1499 */ 1500 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1501 max_size = 0; 1502 1503 out: 1504 dm_put_live_table_fast(md); 1505 /* 1506 * Always allow an entire first page 1507 */ 1508 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1509 max_size = biovec->bv_len; 1510 1511 return max_size; 1512 } 1513 1514 /* 1515 * The request function that just remaps the bio built up by 1516 * dm_merge_bvec. 1517 */ 1518 static void _dm_request(struct request_queue *q, struct bio *bio) 1519 { 1520 int rw = bio_data_dir(bio); 1521 struct mapped_device *md = q->queuedata; 1522 int cpu; 1523 int srcu_idx; 1524 struct dm_table *map; 1525 1526 map = dm_get_live_table(md, &srcu_idx); 1527 1528 cpu = part_stat_lock(); 1529 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1530 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1531 part_stat_unlock(); 1532 1533 /* if we're suspended, we have to queue this io for later */ 1534 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1535 dm_put_live_table(md, srcu_idx); 1536 1537 if (bio_rw(bio) != READA) 1538 queue_io(md, bio); 1539 else 1540 bio_io_error(bio); 1541 return; 1542 } 1543 1544 __split_and_process_bio(md, map, bio); 1545 dm_put_live_table(md, srcu_idx); 1546 return; 1547 } 1548 1549 int dm_request_based(struct mapped_device *md) 1550 { 1551 return blk_queue_stackable(md->queue); 1552 } 1553 1554 static void dm_request(struct request_queue *q, struct bio *bio) 1555 { 1556 struct mapped_device *md = q->queuedata; 1557 1558 if (dm_request_based(md)) 1559 blk_queue_bio(q, bio); 1560 else 1561 _dm_request(q, bio); 1562 } 1563 1564 void dm_dispatch_request(struct request *rq) 1565 { 1566 int r; 1567 1568 if (blk_queue_io_stat(rq->q)) 1569 rq->cmd_flags |= REQ_IO_STAT; 1570 1571 rq->start_time = jiffies; 1572 r = blk_insert_cloned_request(rq->q, rq); 1573 if (r) 1574 dm_complete_request(rq, r); 1575 } 1576 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1577 1578 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1579 void *data) 1580 { 1581 struct dm_rq_target_io *tio = data; 1582 struct dm_rq_clone_bio_info *info = 1583 container_of(bio, struct dm_rq_clone_bio_info, clone); 1584 1585 info->orig = bio_orig; 1586 info->tio = tio; 1587 bio->bi_end_io = end_clone_bio; 1588 1589 return 0; 1590 } 1591 1592 static int setup_clone(struct request *clone, struct request *rq, 1593 struct dm_rq_target_io *tio) 1594 { 1595 int r; 1596 1597 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1598 dm_rq_bio_constructor, tio); 1599 if (r) 1600 return r; 1601 1602 clone->cmd = rq->cmd; 1603 clone->cmd_len = rq->cmd_len; 1604 clone->sense = rq->sense; 1605 clone->end_io = end_clone_request; 1606 clone->end_io_data = tio; 1607 1608 return 0; 1609 } 1610 1611 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1612 gfp_t gfp_mask) 1613 { 1614 struct request *clone; 1615 struct dm_rq_target_io *tio; 1616 1617 tio = alloc_rq_tio(md, gfp_mask); 1618 if (!tio) 1619 return NULL; 1620 1621 tio->md = md; 1622 tio->ti = NULL; 1623 tio->orig = rq; 1624 tio->error = 0; 1625 memset(&tio->info, 0, sizeof(tio->info)); 1626 1627 clone = &tio->clone; 1628 if (setup_clone(clone, rq, tio)) { 1629 /* -ENOMEM */ 1630 free_rq_tio(tio); 1631 return NULL; 1632 } 1633 1634 return clone; 1635 } 1636 1637 /* 1638 * Called with the queue lock held. 1639 */ 1640 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1641 { 1642 struct mapped_device *md = q->queuedata; 1643 struct request *clone; 1644 1645 if (unlikely(rq->special)) { 1646 DMWARN("Already has something in rq->special."); 1647 return BLKPREP_KILL; 1648 } 1649 1650 clone = clone_rq(rq, md, GFP_ATOMIC); 1651 if (!clone) 1652 return BLKPREP_DEFER; 1653 1654 rq->special = clone; 1655 rq->cmd_flags |= REQ_DONTPREP; 1656 1657 return BLKPREP_OK; 1658 } 1659 1660 /* 1661 * Returns: 1662 * 0 : the request has been processed (not requeued) 1663 * !0 : the request has been requeued 1664 */ 1665 static int map_request(struct dm_target *ti, struct request *clone, 1666 struct mapped_device *md) 1667 { 1668 int r, requeued = 0; 1669 struct dm_rq_target_io *tio = clone->end_io_data; 1670 1671 tio->ti = ti; 1672 r = ti->type->map_rq(ti, clone, &tio->info); 1673 switch (r) { 1674 case DM_MAPIO_SUBMITTED: 1675 /* The target has taken the I/O to submit by itself later */ 1676 break; 1677 case DM_MAPIO_REMAPPED: 1678 /* The target has remapped the I/O so dispatch it */ 1679 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1680 blk_rq_pos(tio->orig)); 1681 dm_dispatch_request(clone); 1682 break; 1683 case DM_MAPIO_REQUEUE: 1684 /* The target wants to requeue the I/O */ 1685 dm_requeue_unmapped_request(clone); 1686 requeued = 1; 1687 break; 1688 default: 1689 if (r > 0) { 1690 DMWARN("unimplemented target map return value: %d", r); 1691 BUG(); 1692 } 1693 1694 /* The target wants to complete the I/O */ 1695 dm_kill_unmapped_request(clone, r); 1696 break; 1697 } 1698 1699 return requeued; 1700 } 1701 1702 static struct request *dm_start_request(struct mapped_device *md, struct request *orig) 1703 { 1704 struct request *clone; 1705 1706 blk_start_request(orig); 1707 clone = orig->special; 1708 atomic_inc(&md->pending[rq_data_dir(clone)]); 1709 1710 /* 1711 * Hold the md reference here for the in-flight I/O. 1712 * We can't rely on the reference count by device opener, 1713 * because the device may be closed during the request completion 1714 * when all bios are completed. 1715 * See the comment in rq_completed() too. 1716 */ 1717 dm_get(md); 1718 1719 return clone; 1720 } 1721 1722 /* 1723 * q->request_fn for request-based dm. 1724 * Called with the queue lock held. 1725 */ 1726 static void dm_request_fn(struct request_queue *q) 1727 { 1728 struct mapped_device *md = q->queuedata; 1729 int srcu_idx; 1730 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 1731 struct dm_target *ti; 1732 struct request *rq, *clone; 1733 sector_t pos; 1734 1735 /* 1736 * For suspend, check blk_queue_stopped() and increment 1737 * ->pending within a single queue_lock not to increment the 1738 * number of in-flight I/Os after the queue is stopped in 1739 * dm_suspend(). 1740 */ 1741 while (!blk_queue_stopped(q)) { 1742 rq = blk_peek_request(q); 1743 if (!rq) 1744 goto delay_and_out; 1745 1746 /* always use block 0 to find the target for flushes for now */ 1747 pos = 0; 1748 if (!(rq->cmd_flags & REQ_FLUSH)) 1749 pos = blk_rq_pos(rq); 1750 1751 ti = dm_table_find_target(map, pos); 1752 if (!dm_target_is_valid(ti)) { 1753 /* 1754 * Must perform setup, that dm_done() requires, 1755 * before calling dm_kill_unmapped_request 1756 */ 1757 DMERR_LIMIT("request attempted access beyond the end of device"); 1758 clone = dm_start_request(md, rq); 1759 dm_kill_unmapped_request(clone, -EIO); 1760 continue; 1761 } 1762 1763 if (ti->type->busy && ti->type->busy(ti)) 1764 goto delay_and_out; 1765 1766 clone = dm_start_request(md, rq); 1767 1768 spin_unlock(q->queue_lock); 1769 if (map_request(ti, clone, md)) 1770 goto requeued; 1771 1772 BUG_ON(!irqs_disabled()); 1773 spin_lock(q->queue_lock); 1774 } 1775 1776 goto out; 1777 1778 requeued: 1779 BUG_ON(!irqs_disabled()); 1780 spin_lock(q->queue_lock); 1781 1782 delay_and_out: 1783 blk_delay_queue(q, HZ / 10); 1784 out: 1785 dm_put_live_table(md, srcu_idx); 1786 } 1787 1788 int dm_underlying_device_busy(struct request_queue *q) 1789 { 1790 return blk_lld_busy(q); 1791 } 1792 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1793 1794 static int dm_lld_busy(struct request_queue *q) 1795 { 1796 int r; 1797 struct mapped_device *md = q->queuedata; 1798 struct dm_table *map = dm_get_live_table_fast(md); 1799 1800 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1801 r = 1; 1802 else 1803 r = dm_table_any_busy_target(map); 1804 1805 dm_put_live_table_fast(md); 1806 1807 return r; 1808 } 1809 1810 static int dm_any_congested(void *congested_data, int bdi_bits) 1811 { 1812 int r = bdi_bits; 1813 struct mapped_device *md = congested_data; 1814 struct dm_table *map; 1815 1816 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1817 map = dm_get_live_table_fast(md); 1818 if (map) { 1819 /* 1820 * Request-based dm cares about only own queue for 1821 * the query about congestion status of request_queue 1822 */ 1823 if (dm_request_based(md)) 1824 r = md->queue->backing_dev_info.state & 1825 bdi_bits; 1826 else 1827 r = dm_table_any_congested(map, bdi_bits); 1828 } 1829 dm_put_live_table_fast(md); 1830 } 1831 1832 return r; 1833 } 1834 1835 /*----------------------------------------------------------------- 1836 * An IDR is used to keep track of allocated minor numbers. 1837 *---------------------------------------------------------------*/ 1838 static void free_minor(int minor) 1839 { 1840 spin_lock(&_minor_lock); 1841 idr_remove(&_minor_idr, minor); 1842 spin_unlock(&_minor_lock); 1843 } 1844 1845 /* 1846 * See if the device with a specific minor # is free. 1847 */ 1848 static int specific_minor(int minor) 1849 { 1850 int r; 1851 1852 if (minor >= (1 << MINORBITS)) 1853 return -EINVAL; 1854 1855 idr_preload(GFP_KERNEL); 1856 spin_lock(&_minor_lock); 1857 1858 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1859 1860 spin_unlock(&_minor_lock); 1861 idr_preload_end(); 1862 if (r < 0) 1863 return r == -ENOSPC ? -EBUSY : r; 1864 return 0; 1865 } 1866 1867 static int next_free_minor(int *minor) 1868 { 1869 int r; 1870 1871 idr_preload(GFP_KERNEL); 1872 spin_lock(&_minor_lock); 1873 1874 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1875 1876 spin_unlock(&_minor_lock); 1877 idr_preload_end(); 1878 if (r < 0) 1879 return r; 1880 *minor = r; 1881 return 0; 1882 } 1883 1884 static const struct block_device_operations dm_blk_dops; 1885 1886 static void dm_wq_work(struct work_struct *work); 1887 1888 static void dm_init_md_queue(struct mapped_device *md) 1889 { 1890 /* 1891 * Request-based dm devices cannot be stacked on top of bio-based dm 1892 * devices. The type of this dm device has not been decided yet. 1893 * The type is decided at the first table loading time. 1894 * To prevent problematic device stacking, clear the queue flag 1895 * for request stacking support until then. 1896 * 1897 * This queue is new, so no concurrency on the queue_flags. 1898 */ 1899 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1900 1901 md->queue->queuedata = md; 1902 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1903 md->queue->backing_dev_info.congested_data = md; 1904 blk_queue_make_request(md->queue, dm_request); 1905 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1906 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1907 } 1908 1909 /* 1910 * Allocate and initialise a blank device with a given minor. 1911 */ 1912 static struct mapped_device *alloc_dev(int minor) 1913 { 1914 int r; 1915 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1916 void *old_md; 1917 1918 if (!md) { 1919 DMWARN("unable to allocate device, out of memory."); 1920 return NULL; 1921 } 1922 1923 if (!try_module_get(THIS_MODULE)) 1924 goto bad_module_get; 1925 1926 /* get a minor number for the dev */ 1927 if (minor == DM_ANY_MINOR) 1928 r = next_free_minor(&minor); 1929 else 1930 r = specific_minor(minor); 1931 if (r < 0) 1932 goto bad_minor; 1933 1934 r = init_srcu_struct(&md->io_barrier); 1935 if (r < 0) 1936 goto bad_io_barrier; 1937 1938 md->type = DM_TYPE_NONE; 1939 mutex_init(&md->suspend_lock); 1940 mutex_init(&md->type_lock); 1941 spin_lock_init(&md->deferred_lock); 1942 atomic_set(&md->holders, 1); 1943 atomic_set(&md->open_count, 0); 1944 atomic_set(&md->event_nr, 0); 1945 atomic_set(&md->uevent_seq, 0); 1946 INIT_LIST_HEAD(&md->uevent_list); 1947 spin_lock_init(&md->uevent_lock); 1948 1949 md->queue = blk_alloc_queue(GFP_KERNEL); 1950 if (!md->queue) 1951 goto bad_queue; 1952 1953 dm_init_md_queue(md); 1954 1955 md->disk = alloc_disk(1); 1956 if (!md->disk) 1957 goto bad_disk; 1958 1959 atomic_set(&md->pending[0], 0); 1960 atomic_set(&md->pending[1], 0); 1961 init_waitqueue_head(&md->wait); 1962 INIT_WORK(&md->work, dm_wq_work); 1963 init_waitqueue_head(&md->eventq); 1964 init_completion(&md->kobj_holder.completion); 1965 1966 md->disk->major = _major; 1967 md->disk->first_minor = minor; 1968 md->disk->fops = &dm_blk_dops; 1969 md->disk->queue = md->queue; 1970 md->disk->private_data = md; 1971 sprintf(md->disk->disk_name, "dm-%d", minor); 1972 add_disk(md->disk); 1973 format_dev_t(md->name, MKDEV(_major, minor)); 1974 1975 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1976 if (!md->wq) 1977 goto bad_thread; 1978 1979 md->bdev = bdget_disk(md->disk, 0); 1980 if (!md->bdev) 1981 goto bad_bdev; 1982 1983 bio_init(&md->flush_bio); 1984 md->flush_bio.bi_bdev = md->bdev; 1985 md->flush_bio.bi_rw = WRITE_FLUSH; 1986 1987 dm_stats_init(&md->stats); 1988 1989 /* Populate the mapping, nobody knows we exist yet */ 1990 spin_lock(&_minor_lock); 1991 old_md = idr_replace(&_minor_idr, md, minor); 1992 spin_unlock(&_minor_lock); 1993 1994 BUG_ON(old_md != MINOR_ALLOCED); 1995 1996 return md; 1997 1998 bad_bdev: 1999 destroy_workqueue(md->wq); 2000 bad_thread: 2001 del_gendisk(md->disk); 2002 put_disk(md->disk); 2003 bad_disk: 2004 blk_cleanup_queue(md->queue); 2005 bad_queue: 2006 cleanup_srcu_struct(&md->io_barrier); 2007 bad_io_barrier: 2008 free_minor(minor); 2009 bad_minor: 2010 module_put(THIS_MODULE); 2011 bad_module_get: 2012 kfree(md); 2013 return NULL; 2014 } 2015 2016 static void unlock_fs(struct mapped_device *md); 2017 2018 static void free_dev(struct mapped_device *md) 2019 { 2020 int minor = MINOR(disk_devt(md->disk)); 2021 2022 unlock_fs(md); 2023 bdput(md->bdev); 2024 destroy_workqueue(md->wq); 2025 if (md->io_pool) 2026 mempool_destroy(md->io_pool); 2027 if (md->bs) 2028 bioset_free(md->bs); 2029 blk_integrity_unregister(md->disk); 2030 del_gendisk(md->disk); 2031 cleanup_srcu_struct(&md->io_barrier); 2032 free_minor(minor); 2033 2034 spin_lock(&_minor_lock); 2035 md->disk->private_data = NULL; 2036 spin_unlock(&_minor_lock); 2037 2038 put_disk(md->disk); 2039 blk_cleanup_queue(md->queue); 2040 dm_stats_cleanup(&md->stats); 2041 module_put(THIS_MODULE); 2042 kfree(md); 2043 } 2044 2045 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2046 { 2047 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2048 2049 if (md->io_pool && md->bs) { 2050 /* The md already has necessary mempools. */ 2051 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2052 /* 2053 * Reload bioset because front_pad may have changed 2054 * because a different table was loaded. 2055 */ 2056 bioset_free(md->bs); 2057 md->bs = p->bs; 2058 p->bs = NULL; 2059 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) { 2060 /* 2061 * There's no need to reload with request-based dm 2062 * because the size of front_pad doesn't change. 2063 * Note for future: If you are to reload bioset, 2064 * prep-ed requests in the queue may refer 2065 * to bio from the old bioset, so you must walk 2066 * through the queue to unprep. 2067 */ 2068 } 2069 goto out; 2070 } 2071 2072 BUG_ON(!p || md->io_pool || md->bs); 2073 2074 md->io_pool = p->io_pool; 2075 p->io_pool = NULL; 2076 md->bs = p->bs; 2077 p->bs = NULL; 2078 2079 out: 2080 /* mempool bind completed, now no need any mempools in the table */ 2081 dm_table_free_md_mempools(t); 2082 } 2083 2084 /* 2085 * Bind a table to the device. 2086 */ 2087 static void event_callback(void *context) 2088 { 2089 unsigned long flags; 2090 LIST_HEAD(uevents); 2091 struct mapped_device *md = (struct mapped_device *) context; 2092 2093 spin_lock_irqsave(&md->uevent_lock, flags); 2094 list_splice_init(&md->uevent_list, &uevents); 2095 spin_unlock_irqrestore(&md->uevent_lock, flags); 2096 2097 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2098 2099 atomic_inc(&md->event_nr); 2100 wake_up(&md->eventq); 2101 } 2102 2103 /* 2104 * Protected by md->suspend_lock obtained by dm_swap_table(). 2105 */ 2106 static void __set_size(struct mapped_device *md, sector_t size) 2107 { 2108 set_capacity(md->disk, size); 2109 2110 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2111 } 2112 2113 /* 2114 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2115 * 2116 * If this function returns 0, then the device is either a non-dm 2117 * device without a merge_bvec_fn, or it is a dm device that is 2118 * able to split any bios it receives that are too big. 2119 */ 2120 int dm_queue_merge_is_compulsory(struct request_queue *q) 2121 { 2122 struct mapped_device *dev_md; 2123 2124 if (!q->merge_bvec_fn) 2125 return 0; 2126 2127 if (q->make_request_fn == dm_request) { 2128 dev_md = q->queuedata; 2129 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2130 return 0; 2131 } 2132 2133 return 1; 2134 } 2135 2136 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2137 struct dm_dev *dev, sector_t start, 2138 sector_t len, void *data) 2139 { 2140 struct block_device *bdev = dev->bdev; 2141 struct request_queue *q = bdev_get_queue(bdev); 2142 2143 return dm_queue_merge_is_compulsory(q); 2144 } 2145 2146 /* 2147 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2148 * on the properties of the underlying devices. 2149 */ 2150 static int dm_table_merge_is_optional(struct dm_table *table) 2151 { 2152 unsigned i = 0; 2153 struct dm_target *ti; 2154 2155 while (i < dm_table_get_num_targets(table)) { 2156 ti = dm_table_get_target(table, i++); 2157 2158 if (ti->type->iterate_devices && 2159 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2160 return 0; 2161 } 2162 2163 return 1; 2164 } 2165 2166 /* 2167 * Returns old map, which caller must destroy. 2168 */ 2169 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2170 struct queue_limits *limits) 2171 { 2172 struct dm_table *old_map; 2173 struct request_queue *q = md->queue; 2174 sector_t size; 2175 int merge_is_optional; 2176 2177 size = dm_table_get_size(t); 2178 2179 /* 2180 * Wipe any geometry if the size of the table changed. 2181 */ 2182 if (size != dm_get_size(md)) 2183 memset(&md->geometry, 0, sizeof(md->geometry)); 2184 2185 __set_size(md, size); 2186 2187 dm_table_event_callback(t, event_callback, md); 2188 2189 /* 2190 * The queue hasn't been stopped yet, if the old table type wasn't 2191 * for request-based during suspension. So stop it to prevent 2192 * I/O mapping before resume. 2193 * This must be done before setting the queue restrictions, 2194 * because request-based dm may be run just after the setting. 2195 */ 2196 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2197 stop_queue(q); 2198 2199 __bind_mempools(md, t); 2200 2201 merge_is_optional = dm_table_merge_is_optional(t); 2202 2203 old_map = md->map; 2204 rcu_assign_pointer(md->map, t); 2205 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2206 2207 dm_table_set_restrictions(t, q, limits); 2208 if (merge_is_optional) 2209 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2210 else 2211 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2212 dm_sync_table(md); 2213 2214 return old_map; 2215 } 2216 2217 /* 2218 * Returns unbound table for the caller to free. 2219 */ 2220 static struct dm_table *__unbind(struct mapped_device *md) 2221 { 2222 struct dm_table *map = md->map; 2223 2224 if (!map) 2225 return NULL; 2226 2227 dm_table_event_callback(map, NULL, NULL); 2228 RCU_INIT_POINTER(md->map, NULL); 2229 dm_sync_table(md); 2230 2231 return map; 2232 } 2233 2234 /* 2235 * Constructor for a new device. 2236 */ 2237 int dm_create(int minor, struct mapped_device **result) 2238 { 2239 struct mapped_device *md; 2240 2241 md = alloc_dev(minor); 2242 if (!md) 2243 return -ENXIO; 2244 2245 dm_sysfs_init(md); 2246 2247 *result = md; 2248 return 0; 2249 } 2250 2251 /* 2252 * Functions to manage md->type. 2253 * All are required to hold md->type_lock. 2254 */ 2255 void dm_lock_md_type(struct mapped_device *md) 2256 { 2257 mutex_lock(&md->type_lock); 2258 } 2259 2260 void dm_unlock_md_type(struct mapped_device *md) 2261 { 2262 mutex_unlock(&md->type_lock); 2263 } 2264 2265 void dm_set_md_type(struct mapped_device *md, unsigned type) 2266 { 2267 BUG_ON(!mutex_is_locked(&md->type_lock)); 2268 md->type = type; 2269 } 2270 2271 unsigned dm_get_md_type(struct mapped_device *md) 2272 { 2273 BUG_ON(!mutex_is_locked(&md->type_lock)); 2274 return md->type; 2275 } 2276 2277 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2278 { 2279 return md->immutable_target_type; 2280 } 2281 2282 /* 2283 * The queue_limits are only valid as long as you have a reference 2284 * count on 'md'. 2285 */ 2286 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2287 { 2288 BUG_ON(!atomic_read(&md->holders)); 2289 return &md->queue->limits; 2290 } 2291 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2292 2293 /* 2294 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2295 */ 2296 static int dm_init_request_based_queue(struct mapped_device *md) 2297 { 2298 struct request_queue *q = NULL; 2299 2300 if (md->queue->elevator) 2301 return 1; 2302 2303 /* Fully initialize the queue */ 2304 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2305 if (!q) 2306 return 0; 2307 2308 md->queue = q; 2309 dm_init_md_queue(md); 2310 blk_queue_softirq_done(md->queue, dm_softirq_done); 2311 blk_queue_prep_rq(md->queue, dm_prep_fn); 2312 blk_queue_lld_busy(md->queue, dm_lld_busy); 2313 2314 elv_register_queue(md->queue); 2315 2316 return 1; 2317 } 2318 2319 /* 2320 * Setup the DM device's queue based on md's type 2321 */ 2322 int dm_setup_md_queue(struct mapped_device *md) 2323 { 2324 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2325 !dm_init_request_based_queue(md)) { 2326 DMWARN("Cannot initialize queue for request-based mapped device"); 2327 return -EINVAL; 2328 } 2329 2330 return 0; 2331 } 2332 2333 static struct mapped_device *dm_find_md(dev_t dev) 2334 { 2335 struct mapped_device *md; 2336 unsigned minor = MINOR(dev); 2337 2338 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2339 return NULL; 2340 2341 spin_lock(&_minor_lock); 2342 2343 md = idr_find(&_minor_idr, minor); 2344 if (md && (md == MINOR_ALLOCED || 2345 (MINOR(disk_devt(dm_disk(md))) != minor) || 2346 dm_deleting_md(md) || 2347 test_bit(DMF_FREEING, &md->flags))) { 2348 md = NULL; 2349 goto out; 2350 } 2351 2352 out: 2353 spin_unlock(&_minor_lock); 2354 2355 return md; 2356 } 2357 2358 struct mapped_device *dm_get_md(dev_t dev) 2359 { 2360 struct mapped_device *md = dm_find_md(dev); 2361 2362 if (md) 2363 dm_get(md); 2364 2365 return md; 2366 } 2367 EXPORT_SYMBOL_GPL(dm_get_md); 2368 2369 void *dm_get_mdptr(struct mapped_device *md) 2370 { 2371 return md->interface_ptr; 2372 } 2373 2374 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2375 { 2376 md->interface_ptr = ptr; 2377 } 2378 2379 void dm_get(struct mapped_device *md) 2380 { 2381 atomic_inc(&md->holders); 2382 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2383 } 2384 2385 const char *dm_device_name(struct mapped_device *md) 2386 { 2387 return md->name; 2388 } 2389 EXPORT_SYMBOL_GPL(dm_device_name); 2390 2391 static void __dm_destroy(struct mapped_device *md, bool wait) 2392 { 2393 struct dm_table *map; 2394 int srcu_idx; 2395 2396 might_sleep(); 2397 2398 spin_lock(&_minor_lock); 2399 map = dm_get_live_table(md, &srcu_idx); 2400 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2401 set_bit(DMF_FREEING, &md->flags); 2402 spin_unlock(&_minor_lock); 2403 2404 if (!dm_suspended_md(md)) { 2405 dm_table_presuspend_targets(map); 2406 dm_table_postsuspend_targets(map); 2407 } 2408 2409 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2410 dm_put_live_table(md, srcu_idx); 2411 2412 /* 2413 * Rare, but there may be I/O requests still going to complete, 2414 * for example. Wait for all references to disappear. 2415 * No one should increment the reference count of the mapped_device, 2416 * after the mapped_device state becomes DMF_FREEING. 2417 */ 2418 if (wait) 2419 while (atomic_read(&md->holders)) 2420 msleep(1); 2421 else if (atomic_read(&md->holders)) 2422 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2423 dm_device_name(md), atomic_read(&md->holders)); 2424 2425 dm_sysfs_exit(md); 2426 dm_table_destroy(__unbind(md)); 2427 free_dev(md); 2428 } 2429 2430 void dm_destroy(struct mapped_device *md) 2431 { 2432 __dm_destroy(md, true); 2433 } 2434 2435 void dm_destroy_immediate(struct mapped_device *md) 2436 { 2437 __dm_destroy(md, false); 2438 } 2439 2440 void dm_put(struct mapped_device *md) 2441 { 2442 atomic_dec(&md->holders); 2443 } 2444 EXPORT_SYMBOL_GPL(dm_put); 2445 2446 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2447 { 2448 int r = 0; 2449 DECLARE_WAITQUEUE(wait, current); 2450 2451 add_wait_queue(&md->wait, &wait); 2452 2453 while (1) { 2454 set_current_state(interruptible); 2455 2456 if (!md_in_flight(md)) 2457 break; 2458 2459 if (interruptible == TASK_INTERRUPTIBLE && 2460 signal_pending(current)) { 2461 r = -EINTR; 2462 break; 2463 } 2464 2465 io_schedule(); 2466 } 2467 set_current_state(TASK_RUNNING); 2468 2469 remove_wait_queue(&md->wait, &wait); 2470 2471 return r; 2472 } 2473 2474 /* 2475 * Process the deferred bios 2476 */ 2477 static void dm_wq_work(struct work_struct *work) 2478 { 2479 struct mapped_device *md = container_of(work, struct mapped_device, 2480 work); 2481 struct bio *c; 2482 int srcu_idx; 2483 struct dm_table *map; 2484 2485 map = dm_get_live_table(md, &srcu_idx); 2486 2487 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2488 spin_lock_irq(&md->deferred_lock); 2489 c = bio_list_pop(&md->deferred); 2490 spin_unlock_irq(&md->deferred_lock); 2491 2492 if (!c) 2493 break; 2494 2495 if (dm_request_based(md)) 2496 generic_make_request(c); 2497 else 2498 __split_and_process_bio(md, map, c); 2499 } 2500 2501 dm_put_live_table(md, srcu_idx); 2502 } 2503 2504 static void dm_queue_flush(struct mapped_device *md) 2505 { 2506 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2507 smp_mb__after_atomic(); 2508 queue_work(md->wq, &md->work); 2509 } 2510 2511 /* 2512 * Swap in a new table, returning the old one for the caller to destroy. 2513 */ 2514 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2515 { 2516 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2517 struct queue_limits limits; 2518 int r; 2519 2520 mutex_lock(&md->suspend_lock); 2521 2522 /* device must be suspended */ 2523 if (!dm_suspended_md(md)) 2524 goto out; 2525 2526 /* 2527 * If the new table has no data devices, retain the existing limits. 2528 * This helps multipath with queue_if_no_path if all paths disappear, 2529 * then new I/O is queued based on these limits, and then some paths 2530 * reappear. 2531 */ 2532 if (dm_table_has_no_data_devices(table)) { 2533 live_map = dm_get_live_table_fast(md); 2534 if (live_map) 2535 limits = md->queue->limits; 2536 dm_put_live_table_fast(md); 2537 } 2538 2539 if (!live_map) { 2540 r = dm_calculate_queue_limits(table, &limits); 2541 if (r) { 2542 map = ERR_PTR(r); 2543 goto out; 2544 } 2545 } 2546 2547 map = __bind(md, table, &limits); 2548 2549 out: 2550 mutex_unlock(&md->suspend_lock); 2551 return map; 2552 } 2553 2554 /* 2555 * Functions to lock and unlock any filesystem running on the 2556 * device. 2557 */ 2558 static int lock_fs(struct mapped_device *md) 2559 { 2560 int r; 2561 2562 WARN_ON(md->frozen_sb); 2563 2564 md->frozen_sb = freeze_bdev(md->bdev); 2565 if (IS_ERR(md->frozen_sb)) { 2566 r = PTR_ERR(md->frozen_sb); 2567 md->frozen_sb = NULL; 2568 return r; 2569 } 2570 2571 set_bit(DMF_FROZEN, &md->flags); 2572 2573 return 0; 2574 } 2575 2576 static void unlock_fs(struct mapped_device *md) 2577 { 2578 if (!test_bit(DMF_FROZEN, &md->flags)) 2579 return; 2580 2581 thaw_bdev(md->bdev, md->frozen_sb); 2582 md->frozen_sb = NULL; 2583 clear_bit(DMF_FROZEN, &md->flags); 2584 } 2585 2586 /* 2587 * We need to be able to change a mapping table under a mounted 2588 * filesystem. For example we might want to move some data in 2589 * the background. Before the table can be swapped with 2590 * dm_bind_table, dm_suspend must be called to flush any in 2591 * flight bios and ensure that any further io gets deferred. 2592 */ 2593 /* 2594 * Suspend mechanism in request-based dm. 2595 * 2596 * 1. Flush all I/Os by lock_fs() if needed. 2597 * 2. Stop dispatching any I/O by stopping the request_queue. 2598 * 3. Wait for all in-flight I/Os to be completed or requeued. 2599 * 2600 * To abort suspend, start the request_queue. 2601 */ 2602 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2603 { 2604 struct dm_table *map = NULL; 2605 int r = 0; 2606 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2607 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2608 2609 mutex_lock(&md->suspend_lock); 2610 2611 if (dm_suspended_md(md)) { 2612 r = -EINVAL; 2613 goto out_unlock; 2614 } 2615 2616 map = md->map; 2617 2618 /* 2619 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2620 * This flag is cleared before dm_suspend returns. 2621 */ 2622 if (noflush) 2623 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2624 2625 /* This does not get reverted if there's an error later. */ 2626 dm_table_presuspend_targets(map); 2627 2628 /* 2629 * Flush I/O to the device. 2630 * Any I/O submitted after lock_fs() may not be flushed. 2631 * noflush takes precedence over do_lockfs. 2632 * (lock_fs() flushes I/Os and waits for them to complete.) 2633 */ 2634 if (!noflush && do_lockfs) { 2635 r = lock_fs(md); 2636 if (r) 2637 goto out_unlock; 2638 } 2639 2640 /* 2641 * Here we must make sure that no processes are submitting requests 2642 * to target drivers i.e. no one may be executing 2643 * __split_and_process_bio. This is called from dm_request and 2644 * dm_wq_work. 2645 * 2646 * To get all processes out of __split_and_process_bio in dm_request, 2647 * we take the write lock. To prevent any process from reentering 2648 * __split_and_process_bio from dm_request and quiesce the thread 2649 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2650 * flush_workqueue(md->wq). 2651 */ 2652 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2653 synchronize_srcu(&md->io_barrier); 2654 2655 /* 2656 * Stop md->queue before flushing md->wq in case request-based 2657 * dm defers requests to md->wq from md->queue. 2658 */ 2659 if (dm_request_based(md)) 2660 stop_queue(md->queue); 2661 2662 flush_workqueue(md->wq); 2663 2664 /* 2665 * At this point no more requests are entering target request routines. 2666 * We call dm_wait_for_completion to wait for all existing requests 2667 * to finish. 2668 */ 2669 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2670 2671 if (noflush) 2672 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2673 synchronize_srcu(&md->io_barrier); 2674 2675 /* were we interrupted ? */ 2676 if (r < 0) { 2677 dm_queue_flush(md); 2678 2679 if (dm_request_based(md)) 2680 start_queue(md->queue); 2681 2682 unlock_fs(md); 2683 goto out_unlock; /* pushback list is already flushed, so skip flush */ 2684 } 2685 2686 /* 2687 * If dm_wait_for_completion returned 0, the device is completely 2688 * quiescent now. There is no request-processing activity. All new 2689 * requests are being added to md->deferred list. 2690 */ 2691 2692 set_bit(DMF_SUSPENDED, &md->flags); 2693 2694 dm_table_postsuspend_targets(map); 2695 2696 out_unlock: 2697 mutex_unlock(&md->suspend_lock); 2698 return r; 2699 } 2700 2701 int dm_resume(struct mapped_device *md) 2702 { 2703 int r = -EINVAL; 2704 struct dm_table *map = NULL; 2705 2706 mutex_lock(&md->suspend_lock); 2707 if (!dm_suspended_md(md)) 2708 goto out; 2709 2710 map = md->map; 2711 if (!map || !dm_table_get_size(map)) 2712 goto out; 2713 2714 r = dm_table_resume_targets(map); 2715 if (r) 2716 goto out; 2717 2718 dm_queue_flush(md); 2719 2720 /* 2721 * Flushing deferred I/Os must be done after targets are resumed 2722 * so that mapping of targets can work correctly. 2723 * Request-based dm is queueing the deferred I/Os in its request_queue. 2724 */ 2725 if (dm_request_based(md)) 2726 start_queue(md->queue); 2727 2728 unlock_fs(md); 2729 2730 clear_bit(DMF_SUSPENDED, &md->flags); 2731 2732 r = 0; 2733 out: 2734 mutex_unlock(&md->suspend_lock); 2735 2736 return r; 2737 } 2738 2739 /* 2740 * Internal suspend/resume works like userspace-driven suspend. It waits 2741 * until all bios finish and prevents issuing new bios to the target drivers. 2742 * It may be used only from the kernel. 2743 * 2744 * Internal suspend holds md->suspend_lock, which prevents interaction with 2745 * userspace-driven suspend. 2746 */ 2747 2748 void dm_internal_suspend(struct mapped_device *md) 2749 { 2750 mutex_lock(&md->suspend_lock); 2751 if (dm_suspended_md(md)) 2752 return; 2753 2754 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2755 synchronize_srcu(&md->io_barrier); 2756 flush_workqueue(md->wq); 2757 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2758 } 2759 2760 void dm_internal_resume(struct mapped_device *md) 2761 { 2762 if (dm_suspended_md(md)) 2763 goto done; 2764 2765 dm_queue_flush(md); 2766 2767 done: 2768 mutex_unlock(&md->suspend_lock); 2769 } 2770 2771 /*----------------------------------------------------------------- 2772 * Event notification. 2773 *---------------------------------------------------------------*/ 2774 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2775 unsigned cookie) 2776 { 2777 char udev_cookie[DM_COOKIE_LENGTH]; 2778 char *envp[] = { udev_cookie, NULL }; 2779 2780 if (!cookie) 2781 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2782 else { 2783 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2784 DM_COOKIE_ENV_VAR_NAME, cookie); 2785 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2786 action, envp); 2787 } 2788 } 2789 2790 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2791 { 2792 return atomic_add_return(1, &md->uevent_seq); 2793 } 2794 2795 uint32_t dm_get_event_nr(struct mapped_device *md) 2796 { 2797 return atomic_read(&md->event_nr); 2798 } 2799 2800 int dm_wait_event(struct mapped_device *md, int event_nr) 2801 { 2802 return wait_event_interruptible(md->eventq, 2803 (event_nr != atomic_read(&md->event_nr))); 2804 } 2805 2806 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2807 { 2808 unsigned long flags; 2809 2810 spin_lock_irqsave(&md->uevent_lock, flags); 2811 list_add(elist, &md->uevent_list); 2812 spin_unlock_irqrestore(&md->uevent_lock, flags); 2813 } 2814 2815 /* 2816 * The gendisk is only valid as long as you have a reference 2817 * count on 'md'. 2818 */ 2819 struct gendisk *dm_disk(struct mapped_device *md) 2820 { 2821 return md->disk; 2822 } 2823 2824 struct kobject *dm_kobject(struct mapped_device *md) 2825 { 2826 return &md->kobj_holder.kobj; 2827 } 2828 2829 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2830 { 2831 struct mapped_device *md; 2832 2833 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2834 2835 if (test_bit(DMF_FREEING, &md->flags) || 2836 dm_deleting_md(md)) 2837 return NULL; 2838 2839 dm_get(md); 2840 return md; 2841 } 2842 2843 int dm_suspended_md(struct mapped_device *md) 2844 { 2845 return test_bit(DMF_SUSPENDED, &md->flags); 2846 } 2847 2848 int dm_test_deferred_remove_flag(struct mapped_device *md) 2849 { 2850 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2851 } 2852 2853 int dm_suspended(struct dm_target *ti) 2854 { 2855 return dm_suspended_md(dm_table_get_md(ti->table)); 2856 } 2857 EXPORT_SYMBOL_GPL(dm_suspended); 2858 2859 int dm_noflush_suspending(struct dm_target *ti) 2860 { 2861 return __noflush_suspending(dm_table_get_md(ti->table)); 2862 } 2863 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2864 2865 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) 2866 { 2867 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 2868 struct kmem_cache *cachep; 2869 unsigned int pool_size; 2870 unsigned int front_pad; 2871 2872 if (!pools) 2873 return NULL; 2874 2875 if (type == DM_TYPE_BIO_BASED) { 2876 cachep = _io_cache; 2877 pool_size = dm_get_reserved_bio_based_ios(); 2878 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2879 } else if (type == DM_TYPE_REQUEST_BASED) { 2880 cachep = _rq_tio_cache; 2881 pool_size = dm_get_reserved_rq_based_ios(); 2882 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2883 /* per_bio_data_size is not used. See __bind_mempools(). */ 2884 WARN_ON(per_bio_data_size != 0); 2885 } else 2886 goto out; 2887 2888 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 2889 if (!pools->io_pool) 2890 goto out; 2891 2892 pools->bs = bioset_create(pool_size, front_pad); 2893 if (!pools->bs) 2894 goto out; 2895 2896 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2897 goto out; 2898 2899 return pools; 2900 2901 out: 2902 dm_free_md_mempools(pools); 2903 2904 return NULL; 2905 } 2906 2907 void dm_free_md_mempools(struct dm_md_mempools *pools) 2908 { 2909 if (!pools) 2910 return; 2911 2912 if (pools->io_pool) 2913 mempool_destroy(pools->io_pool); 2914 2915 if (pools->bs) 2916 bioset_free(pools->bs); 2917 2918 kfree(pools); 2919 } 2920 2921 static const struct block_device_operations dm_blk_dops = { 2922 .open = dm_blk_open, 2923 .release = dm_blk_close, 2924 .ioctl = dm_blk_ioctl, 2925 .getgeo = dm_blk_getgeo, 2926 .owner = THIS_MODULE 2927 }; 2928 2929 /* 2930 * module hooks 2931 */ 2932 module_init(dm_init); 2933 module_exit(dm_exit); 2934 2935 module_param(major, uint, 0); 2936 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2937 2938 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2939 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2940 2941 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 2942 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 2943 2944 MODULE_DESCRIPTION(DM_NAME " driver"); 2945 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2946 MODULE_LICENSE("GPL"); 2947