xref: /openbmc/linux/drivers/md/dm.c (revision a8a28aff)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 
53 static void do_deferred_remove(struct work_struct *w);
54 
55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
56 
57 /*
58  * For bio-based dm.
59  * One of these is allocated per bio.
60  */
61 struct dm_io {
62 	struct mapped_device *md;
63 	int error;
64 	atomic_t io_count;
65 	struct bio *bio;
66 	unsigned long start_time;
67 	spinlock_t endio_lock;
68 	struct dm_stats_aux stats_aux;
69 };
70 
71 /*
72  * For request-based dm.
73  * One of these is allocated per request.
74  */
75 struct dm_rq_target_io {
76 	struct mapped_device *md;
77 	struct dm_target *ti;
78 	struct request *orig, clone;
79 	int error;
80 	union map_info info;
81 };
82 
83 /*
84  * For request-based dm - the bio clones we allocate are embedded in these
85  * structs.
86  *
87  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
88  * the bioset is created - this means the bio has to come at the end of the
89  * struct.
90  */
91 struct dm_rq_clone_bio_info {
92 	struct bio *orig;
93 	struct dm_rq_target_io *tio;
94 	struct bio clone;
95 };
96 
97 union map_info *dm_get_rq_mapinfo(struct request *rq)
98 {
99 	if (rq && rq->end_io_data)
100 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
101 	return NULL;
102 }
103 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
104 
105 #define MINOR_ALLOCED ((void *)-1)
106 
107 /*
108  * Bits for the md->flags field.
109  */
110 #define DMF_BLOCK_IO_FOR_SUSPEND 0
111 #define DMF_SUSPENDED 1
112 #define DMF_FROZEN 2
113 #define DMF_FREEING 3
114 #define DMF_DELETING 4
115 #define DMF_NOFLUSH_SUSPENDING 5
116 #define DMF_MERGE_IS_OPTIONAL 6
117 #define DMF_DEFERRED_REMOVE 7
118 
119 /*
120  * A dummy definition to make RCU happy.
121  * struct dm_table should never be dereferenced in this file.
122  */
123 struct dm_table {
124 	int undefined__;
125 };
126 
127 /*
128  * Work processed by per-device workqueue.
129  */
130 struct mapped_device {
131 	struct srcu_struct io_barrier;
132 	struct mutex suspend_lock;
133 	atomic_t holders;
134 	atomic_t open_count;
135 
136 	/*
137 	 * The current mapping.
138 	 * Use dm_get_live_table{_fast} or take suspend_lock for
139 	 * dereference.
140 	 */
141 	struct dm_table *map;
142 
143 	unsigned long flags;
144 
145 	struct request_queue *queue;
146 	unsigned type;
147 	/* Protect queue and type against concurrent access. */
148 	struct mutex type_lock;
149 
150 	struct target_type *immutable_target_type;
151 
152 	struct gendisk *disk;
153 	char name[16];
154 
155 	void *interface_ptr;
156 
157 	/*
158 	 * A list of ios that arrived while we were suspended.
159 	 */
160 	atomic_t pending[2];
161 	wait_queue_head_t wait;
162 	struct work_struct work;
163 	struct bio_list deferred;
164 	spinlock_t deferred_lock;
165 
166 	/*
167 	 * Processing queue (flush)
168 	 */
169 	struct workqueue_struct *wq;
170 
171 	/*
172 	 * io objects are allocated from here.
173 	 */
174 	mempool_t *io_pool;
175 
176 	struct bio_set *bs;
177 
178 	/*
179 	 * Event handling.
180 	 */
181 	atomic_t event_nr;
182 	wait_queue_head_t eventq;
183 	atomic_t uevent_seq;
184 	struct list_head uevent_list;
185 	spinlock_t uevent_lock; /* Protect access to uevent_list */
186 
187 	/*
188 	 * freeze/thaw support require holding onto a super block
189 	 */
190 	struct super_block *frozen_sb;
191 	struct block_device *bdev;
192 
193 	/* forced geometry settings */
194 	struct hd_geometry geometry;
195 
196 	/* kobject and completion */
197 	struct dm_kobject_holder kobj_holder;
198 
199 	/* zero-length flush that will be cloned and submitted to targets */
200 	struct bio flush_bio;
201 
202 	struct dm_stats stats;
203 };
204 
205 /*
206  * For mempools pre-allocation at the table loading time.
207  */
208 struct dm_md_mempools {
209 	mempool_t *io_pool;
210 	struct bio_set *bs;
211 };
212 
213 #define RESERVED_BIO_BASED_IOS		16
214 #define RESERVED_REQUEST_BASED_IOS	256
215 #define RESERVED_MAX_IOS		1024
216 static struct kmem_cache *_io_cache;
217 static struct kmem_cache *_rq_tio_cache;
218 
219 /*
220  * Bio-based DM's mempools' reserved IOs set by the user.
221  */
222 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
223 
224 /*
225  * Request-based DM's mempools' reserved IOs set by the user.
226  */
227 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
228 
229 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
230 				      unsigned def, unsigned max)
231 {
232 	unsigned ios = ACCESS_ONCE(*reserved_ios);
233 	unsigned modified_ios = 0;
234 
235 	if (!ios)
236 		modified_ios = def;
237 	else if (ios > max)
238 		modified_ios = max;
239 
240 	if (modified_ios) {
241 		(void)cmpxchg(reserved_ios, ios, modified_ios);
242 		ios = modified_ios;
243 	}
244 
245 	return ios;
246 }
247 
248 unsigned dm_get_reserved_bio_based_ios(void)
249 {
250 	return __dm_get_reserved_ios(&reserved_bio_based_ios,
251 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
252 }
253 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
254 
255 unsigned dm_get_reserved_rq_based_ios(void)
256 {
257 	return __dm_get_reserved_ios(&reserved_rq_based_ios,
258 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
259 }
260 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
261 
262 static int __init local_init(void)
263 {
264 	int r = -ENOMEM;
265 
266 	/* allocate a slab for the dm_ios */
267 	_io_cache = KMEM_CACHE(dm_io, 0);
268 	if (!_io_cache)
269 		return r;
270 
271 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
272 	if (!_rq_tio_cache)
273 		goto out_free_io_cache;
274 
275 	r = dm_uevent_init();
276 	if (r)
277 		goto out_free_rq_tio_cache;
278 
279 	_major = major;
280 	r = register_blkdev(_major, _name);
281 	if (r < 0)
282 		goto out_uevent_exit;
283 
284 	if (!_major)
285 		_major = r;
286 
287 	return 0;
288 
289 out_uevent_exit:
290 	dm_uevent_exit();
291 out_free_rq_tio_cache:
292 	kmem_cache_destroy(_rq_tio_cache);
293 out_free_io_cache:
294 	kmem_cache_destroy(_io_cache);
295 
296 	return r;
297 }
298 
299 static void local_exit(void)
300 {
301 	flush_scheduled_work();
302 
303 	kmem_cache_destroy(_rq_tio_cache);
304 	kmem_cache_destroy(_io_cache);
305 	unregister_blkdev(_major, _name);
306 	dm_uevent_exit();
307 
308 	_major = 0;
309 
310 	DMINFO("cleaned up");
311 }
312 
313 static int (*_inits[])(void) __initdata = {
314 	local_init,
315 	dm_target_init,
316 	dm_linear_init,
317 	dm_stripe_init,
318 	dm_io_init,
319 	dm_kcopyd_init,
320 	dm_interface_init,
321 	dm_statistics_init,
322 };
323 
324 static void (*_exits[])(void) = {
325 	local_exit,
326 	dm_target_exit,
327 	dm_linear_exit,
328 	dm_stripe_exit,
329 	dm_io_exit,
330 	dm_kcopyd_exit,
331 	dm_interface_exit,
332 	dm_statistics_exit,
333 };
334 
335 static int __init dm_init(void)
336 {
337 	const int count = ARRAY_SIZE(_inits);
338 
339 	int r, i;
340 
341 	for (i = 0; i < count; i++) {
342 		r = _inits[i]();
343 		if (r)
344 			goto bad;
345 	}
346 
347 	return 0;
348 
349       bad:
350 	while (i--)
351 		_exits[i]();
352 
353 	return r;
354 }
355 
356 static void __exit dm_exit(void)
357 {
358 	int i = ARRAY_SIZE(_exits);
359 
360 	while (i--)
361 		_exits[i]();
362 
363 	/*
364 	 * Should be empty by this point.
365 	 */
366 	idr_destroy(&_minor_idr);
367 }
368 
369 /*
370  * Block device functions
371  */
372 int dm_deleting_md(struct mapped_device *md)
373 {
374 	return test_bit(DMF_DELETING, &md->flags);
375 }
376 
377 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
378 {
379 	struct mapped_device *md;
380 
381 	spin_lock(&_minor_lock);
382 
383 	md = bdev->bd_disk->private_data;
384 	if (!md)
385 		goto out;
386 
387 	if (test_bit(DMF_FREEING, &md->flags) ||
388 	    dm_deleting_md(md)) {
389 		md = NULL;
390 		goto out;
391 	}
392 
393 	dm_get(md);
394 	atomic_inc(&md->open_count);
395 
396 out:
397 	spin_unlock(&_minor_lock);
398 
399 	return md ? 0 : -ENXIO;
400 }
401 
402 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
403 {
404 	struct mapped_device *md = disk->private_data;
405 
406 	spin_lock(&_minor_lock);
407 
408 	if (atomic_dec_and_test(&md->open_count) &&
409 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
410 		schedule_work(&deferred_remove_work);
411 
412 	dm_put(md);
413 
414 	spin_unlock(&_minor_lock);
415 }
416 
417 int dm_open_count(struct mapped_device *md)
418 {
419 	return atomic_read(&md->open_count);
420 }
421 
422 /*
423  * Guarantees nothing is using the device before it's deleted.
424  */
425 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
426 {
427 	int r = 0;
428 
429 	spin_lock(&_minor_lock);
430 
431 	if (dm_open_count(md)) {
432 		r = -EBUSY;
433 		if (mark_deferred)
434 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
435 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
436 		r = -EEXIST;
437 	else
438 		set_bit(DMF_DELETING, &md->flags);
439 
440 	spin_unlock(&_minor_lock);
441 
442 	return r;
443 }
444 
445 int dm_cancel_deferred_remove(struct mapped_device *md)
446 {
447 	int r = 0;
448 
449 	spin_lock(&_minor_lock);
450 
451 	if (test_bit(DMF_DELETING, &md->flags))
452 		r = -EBUSY;
453 	else
454 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
455 
456 	spin_unlock(&_minor_lock);
457 
458 	return r;
459 }
460 
461 static void do_deferred_remove(struct work_struct *w)
462 {
463 	dm_deferred_remove();
464 }
465 
466 sector_t dm_get_size(struct mapped_device *md)
467 {
468 	return get_capacity(md->disk);
469 }
470 
471 struct request_queue *dm_get_md_queue(struct mapped_device *md)
472 {
473 	return md->queue;
474 }
475 
476 struct dm_stats *dm_get_stats(struct mapped_device *md)
477 {
478 	return &md->stats;
479 }
480 
481 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
482 {
483 	struct mapped_device *md = bdev->bd_disk->private_data;
484 
485 	return dm_get_geometry(md, geo);
486 }
487 
488 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
489 			unsigned int cmd, unsigned long arg)
490 {
491 	struct mapped_device *md = bdev->bd_disk->private_data;
492 	int srcu_idx;
493 	struct dm_table *map;
494 	struct dm_target *tgt;
495 	int r = -ENOTTY;
496 
497 retry:
498 	map = dm_get_live_table(md, &srcu_idx);
499 
500 	if (!map || !dm_table_get_size(map))
501 		goto out;
502 
503 	/* We only support devices that have a single target */
504 	if (dm_table_get_num_targets(map) != 1)
505 		goto out;
506 
507 	tgt = dm_table_get_target(map, 0);
508 
509 	if (dm_suspended_md(md)) {
510 		r = -EAGAIN;
511 		goto out;
512 	}
513 
514 	if (tgt->type->ioctl)
515 		r = tgt->type->ioctl(tgt, cmd, arg);
516 
517 out:
518 	dm_put_live_table(md, srcu_idx);
519 
520 	if (r == -ENOTCONN) {
521 		msleep(10);
522 		goto retry;
523 	}
524 
525 	return r;
526 }
527 
528 static struct dm_io *alloc_io(struct mapped_device *md)
529 {
530 	return mempool_alloc(md->io_pool, GFP_NOIO);
531 }
532 
533 static void free_io(struct mapped_device *md, struct dm_io *io)
534 {
535 	mempool_free(io, md->io_pool);
536 }
537 
538 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
539 {
540 	bio_put(&tio->clone);
541 }
542 
543 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
544 					    gfp_t gfp_mask)
545 {
546 	return mempool_alloc(md->io_pool, gfp_mask);
547 }
548 
549 static void free_rq_tio(struct dm_rq_target_io *tio)
550 {
551 	mempool_free(tio, tio->md->io_pool);
552 }
553 
554 static int md_in_flight(struct mapped_device *md)
555 {
556 	return atomic_read(&md->pending[READ]) +
557 	       atomic_read(&md->pending[WRITE]);
558 }
559 
560 static void start_io_acct(struct dm_io *io)
561 {
562 	struct mapped_device *md = io->md;
563 	struct bio *bio = io->bio;
564 	int cpu;
565 	int rw = bio_data_dir(bio);
566 
567 	io->start_time = jiffies;
568 
569 	cpu = part_stat_lock();
570 	part_round_stats(cpu, &dm_disk(md)->part0);
571 	part_stat_unlock();
572 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
573 		atomic_inc_return(&md->pending[rw]));
574 
575 	if (unlikely(dm_stats_used(&md->stats)))
576 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
577 				    bio_sectors(bio), false, 0, &io->stats_aux);
578 }
579 
580 static void end_io_acct(struct dm_io *io)
581 {
582 	struct mapped_device *md = io->md;
583 	struct bio *bio = io->bio;
584 	unsigned long duration = jiffies - io->start_time;
585 	int pending, cpu;
586 	int rw = bio_data_dir(bio);
587 
588 	cpu = part_stat_lock();
589 	part_round_stats(cpu, &dm_disk(md)->part0);
590 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
591 	part_stat_unlock();
592 
593 	if (unlikely(dm_stats_used(&md->stats)))
594 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
595 				    bio_sectors(bio), true, duration, &io->stats_aux);
596 
597 	/*
598 	 * After this is decremented the bio must not be touched if it is
599 	 * a flush.
600 	 */
601 	pending = atomic_dec_return(&md->pending[rw]);
602 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
603 	pending += atomic_read(&md->pending[rw^0x1]);
604 
605 	/* nudge anyone waiting on suspend queue */
606 	if (!pending)
607 		wake_up(&md->wait);
608 }
609 
610 /*
611  * Add the bio to the list of deferred io.
612  */
613 static void queue_io(struct mapped_device *md, struct bio *bio)
614 {
615 	unsigned long flags;
616 
617 	spin_lock_irqsave(&md->deferred_lock, flags);
618 	bio_list_add(&md->deferred, bio);
619 	spin_unlock_irqrestore(&md->deferred_lock, flags);
620 	queue_work(md->wq, &md->work);
621 }
622 
623 /*
624  * Everyone (including functions in this file), should use this
625  * function to access the md->map field, and make sure they call
626  * dm_put_live_table() when finished.
627  */
628 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
629 {
630 	*srcu_idx = srcu_read_lock(&md->io_barrier);
631 
632 	return srcu_dereference(md->map, &md->io_barrier);
633 }
634 
635 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
636 {
637 	srcu_read_unlock(&md->io_barrier, srcu_idx);
638 }
639 
640 void dm_sync_table(struct mapped_device *md)
641 {
642 	synchronize_srcu(&md->io_barrier);
643 	synchronize_rcu_expedited();
644 }
645 
646 /*
647  * A fast alternative to dm_get_live_table/dm_put_live_table.
648  * The caller must not block between these two functions.
649  */
650 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
651 {
652 	rcu_read_lock();
653 	return rcu_dereference(md->map);
654 }
655 
656 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
657 {
658 	rcu_read_unlock();
659 }
660 
661 /*
662  * Get the geometry associated with a dm device
663  */
664 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
665 {
666 	*geo = md->geometry;
667 
668 	return 0;
669 }
670 
671 /*
672  * Set the geometry of a device.
673  */
674 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
675 {
676 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
677 
678 	if (geo->start > sz) {
679 		DMWARN("Start sector is beyond the geometry limits.");
680 		return -EINVAL;
681 	}
682 
683 	md->geometry = *geo;
684 
685 	return 0;
686 }
687 
688 /*-----------------------------------------------------------------
689  * CRUD START:
690  *   A more elegant soln is in the works that uses the queue
691  *   merge fn, unfortunately there are a couple of changes to
692  *   the block layer that I want to make for this.  So in the
693  *   interests of getting something for people to use I give
694  *   you this clearly demarcated crap.
695  *---------------------------------------------------------------*/
696 
697 static int __noflush_suspending(struct mapped_device *md)
698 {
699 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
700 }
701 
702 /*
703  * Decrements the number of outstanding ios that a bio has been
704  * cloned into, completing the original io if necc.
705  */
706 static void dec_pending(struct dm_io *io, int error)
707 {
708 	unsigned long flags;
709 	int io_error;
710 	struct bio *bio;
711 	struct mapped_device *md = io->md;
712 
713 	/* Push-back supersedes any I/O errors */
714 	if (unlikely(error)) {
715 		spin_lock_irqsave(&io->endio_lock, flags);
716 		if (!(io->error > 0 && __noflush_suspending(md)))
717 			io->error = error;
718 		spin_unlock_irqrestore(&io->endio_lock, flags);
719 	}
720 
721 	if (atomic_dec_and_test(&io->io_count)) {
722 		if (io->error == DM_ENDIO_REQUEUE) {
723 			/*
724 			 * Target requested pushing back the I/O.
725 			 */
726 			spin_lock_irqsave(&md->deferred_lock, flags);
727 			if (__noflush_suspending(md))
728 				bio_list_add_head(&md->deferred, io->bio);
729 			else
730 				/* noflush suspend was interrupted. */
731 				io->error = -EIO;
732 			spin_unlock_irqrestore(&md->deferred_lock, flags);
733 		}
734 
735 		io_error = io->error;
736 		bio = io->bio;
737 		end_io_acct(io);
738 		free_io(md, io);
739 
740 		if (io_error == DM_ENDIO_REQUEUE)
741 			return;
742 
743 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
744 			/*
745 			 * Preflush done for flush with data, reissue
746 			 * without REQ_FLUSH.
747 			 */
748 			bio->bi_rw &= ~REQ_FLUSH;
749 			queue_io(md, bio);
750 		} else {
751 			/* done with normal IO or empty flush */
752 			trace_block_bio_complete(md->queue, bio, io_error);
753 			bio_endio(bio, io_error);
754 		}
755 	}
756 }
757 
758 static void disable_write_same(struct mapped_device *md)
759 {
760 	struct queue_limits *limits = dm_get_queue_limits(md);
761 
762 	/* device doesn't really support WRITE SAME, disable it */
763 	limits->max_write_same_sectors = 0;
764 }
765 
766 static void clone_endio(struct bio *bio, int error)
767 {
768 	int r = 0;
769 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
770 	struct dm_io *io = tio->io;
771 	struct mapped_device *md = tio->io->md;
772 	dm_endio_fn endio = tio->ti->type->end_io;
773 
774 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
775 		error = -EIO;
776 
777 	if (endio) {
778 		r = endio(tio->ti, bio, error);
779 		if (r < 0 || r == DM_ENDIO_REQUEUE)
780 			/*
781 			 * error and requeue request are handled
782 			 * in dec_pending().
783 			 */
784 			error = r;
785 		else if (r == DM_ENDIO_INCOMPLETE)
786 			/* The target will handle the io */
787 			return;
788 		else if (r) {
789 			DMWARN("unimplemented target endio return value: %d", r);
790 			BUG();
791 		}
792 	}
793 
794 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
795 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
796 		disable_write_same(md);
797 
798 	free_tio(md, tio);
799 	dec_pending(io, error);
800 }
801 
802 /*
803  * Partial completion handling for request-based dm
804  */
805 static void end_clone_bio(struct bio *clone, int error)
806 {
807 	struct dm_rq_clone_bio_info *info =
808 		container_of(clone, struct dm_rq_clone_bio_info, clone);
809 	struct dm_rq_target_io *tio = info->tio;
810 	struct bio *bio = info->orig;
811 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
812 
813 	bio_put(clone);
814 
815 	if (tio->error)
816 		/*
817 		 * An error has already been detected on the request.
818 		 * Once error occurred, just let clone->end_io() handle
819 		 * the remainder.
820 		 */
821 		return;
822 	else if (error) {
823 		/*
824 		 * Don't notice the error to the upper layer yet.
825 		 * The error handling decision is made by the target driver,
826 		 * when the request is completed.
827 		 */
828 		tio->error = error;
829 		return;
830 	}
831 
832 	/*
833 	 * I/O for the bio successfully completed.
834 	 * Notice the data completion to the upper layer.
835 	 */
836 
837 	/*
838 	 * bios are processed from the head of the list.
839 	 * So the completing bio should always be rq->bio.
840 	 * If it's not, something wrong is happening.
841 	 */
842 	if (tio->orig->bio != bio)
843 		DMERR("bio completion is going in the middle of the request");
844 
845 	/*
846 	 * Update the original request.
847 	 * Do not use blk_end_request() here, because it may complete
848 	 * the original request before the clone, and break the ordering.
849 	 */
850 	blk_update_request(tio->orig, 0, nr_bytes);
851 }
852 
853 /*
854  * Don't touch any member of the md after calling this function because
855  * the md may be freed in dm_put() at the end of this function.
856  * Or do dm_get() before calling this function and dm_put() later.
857  */
858 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
859 {
860 	atomic_dec(&md->pending[rw]);
861 
862 	/* nudge anyone waiting on suspend queue */
863 	if (!md_in_flight(md))
864 		wake_up(&md->wait);
865 
866 	/*
867 	 * Run this off this callpath, as drivers could invoke end_io while
868 	 * inside their request_fn (and holding the queue lock). Calling
869 	 * back into ->request_fn() could deadlock attempting to grab the
870 	 * queue lock again.
871 	 */
872 	if (run_queue)
873 		blk_run_queue_async(md->queue);
874 
875 	/*
876 	 * dm_put() must be at the end of this function. See the comment above
877 	 */
878 	dm_put(md);
879 }
880 
881 static void free_rq_clone(struct request *clone)
882 {
883 	struct dm_rq_target_io *tio = clone->end_io_data;
884 
885 	blk_rq_unprep_clone(clone);
886 	free_rq_tio(tio);
887 }
888 
889 /*
890  * Complete the clone and the original request.
891  * Must be called without queue lock.
892  */
893 static void dm_end_request(struct request *clone, int error)
894 {
895 	int rw = rq_data_dir(clone);
896 	struct dm_rq_target_io *tio = clone->end_io_data;
897 	struct mapped_device *md = tio->md;
898 	struct request *rq = tio->orig;
899 
900 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
901 		rq->errors = clone->errors;
902 		rq->resid_len = clone->resid_len;
903 
904 		if (rq->sense)
905 			/*
906 			 * We are using the sense buffer of the original
907 			 * request.
908 			 * So setting the length of the sense data is enough.
909 			 */
910 			rq->sense_len = clone->sense_len;
911 	}
912 
913 	free_rq_clone(clone);
914 	blk_end_request_all(rq, error);
915 	rq_completed(md, rw, true);
916 }
917 
918 static void dm_unprep_request(struct request *rq)
919 {
920 	struct request *clone = rq->special;
921 
922 	rq->special = NULL;
923 	rq->cmd_flags &= ~REQ_DONTPREP;
924 
925 	free_rq_clone(clone);
926 }
927 
928 /*
929  * Requeue the original request of a clone.
930  */
931 void dm_requeue_unmapped_request(struct request *clone)
932 {
933 	int rw = rq_data_dir(clone);
934 	struct dm_rq_target_io *tio = clone->end_io_data;
935 	struct mapped_device *md = tio->md;
936 	struct request *rq = tio->orig;
937 	struct request_queue *q = rq->q;
938 	unsigned long flags;
939 
940 	dm_unprep_request(rq);
941 
942 	spin_lock_irqsave(q->queue_lock, flags);
943 	blk_requeue_request(q, rq);
944 	spin_unlock_irqrestore(q->queue_lock, flags);
945 
946 	rq_completed(md, rw, 0);
947 }
948 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
949 
950 static void __stop_queue(struct request_queue *q)
951 {
952 	blk_stop_queue(q);
953 }
954 
955 static void stop_queue(struct request_queue *q)
956 {
957 	unsigned long flags;
958 
959 	spin_lock_irqsave(q->queue_lock, flags);
960 	__stop_queue(q);
961 	spin_unlock_irqrestore(q->queue_lock, flags);
962 }
963 
964 static void __start_queue(struct request_queue *q)
965 {
966 	if (blk_queue_stopped(q))
967 		blk_start_queue(q);
968 }
969 
970 static void start_queue(struct request_queue *q)
971 {
972 	unsigned long flags;
973 
974 	spin_lock_irqsave(q->queue_lock, flags);
975 	__start_queue(q);
976 	spin_unlock_irqrestore(q->queue_lock, flags);
977 }
978 
979 static void dm_done(struct request *clone, int error, bool mapped)
980 {
981 	int r = error;
982 	struct dm_rq_target_io *tio = clone->end_io_data;
983 	dm_request_endio_fn rq_end_io = NULL;
984 
985 	if (tio->ti) {
986 		rq_end_io = tio->ti->type->rq_end_io;
987 
988 		if (mapped && rq_end_io)
989 			r = rq_end_io(tio->ti, clone, error, &tio->info);
990 	}
991 
992 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
993 		     !clone->q->limits.max_write_same_sectors))
994 		disable_write_same(tio->md);
995 
996 	if (r <= 0)
997 		/* The target wants to complete the I/O */
998 		dm_end_request(clone, r);
999 	else if (r == DM_ENDIO_INCOMPLETE)
1000 		/* The target will handle the I/O */
1001 		return;
1002 	else if (r == DM_ENDIO_REQUEUE)
1003 		/* The target wants to requeue the I/O */
1004 		dm_requeue_unmapped_request(clone);
1005 	else {
1006 		DMWARN("unimplemented target endio return value: %d", r);
1007 		BUG();
1008 	}
1009 }
1010 
1011 /*
1012  * Request completion handler for request-based dm
1013  */
1014 static void dm_softirq_done(struct request *rq)
1015 {
1016 	bool mapped = true;
1017 	struct request *clone = rq->completion_data;
1018 	struct dm_rq_target_io *tio = clone->end_io_data;
1019 
1020 	if (rq->cmd_flags & REQ_FAILED)
1021 		mapped = false;
1022 
1023 	dm_done(clone, tio->error, mapped);
1024 }
1025 
1026 /*
1027  * Complete the clone and the original request with the error status
1028  * through softirq context.
1029  */
1030 static void dm_complete_request(struct request *clone, int error)
1031 {
1032 	struct dm_rq_target_io *tio = clone->end_io_data;
1033 	struct request *rq = tio->orig;
1034 
1035 	tio->error = error;
1036 	rq->completion_data = clone;
1037 	blk_complete_request(rq);
1038 }
1039 
1040 /*
1041  * Complete the not-mapped clone and the original request with the error status
1042  * through softirq context.
1043  * Target's rq_end_io() function isn't called.
1044  * This may be used when the target's map_rq() function fails.
1045  */
1046 void dm_kill_unmapped_request(struct request *clone, int error)
1047 {
1048 	struct dm_rq_target_io *tio = clone->end_io_data;
1049 	struct request *rq = tio->orig;
1050 
1051 	rq->cmd_flags |= REQ_FAILED;
1052 	dm_complete_request(clone, error);
1053 }
1054 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1055 
1056 /*
1057  * Called with the queue lock held
1058  */
1059 static void end_clone_request(struct request *clone, int error)
1060 {
1061 	/*
1062 	 * For just cleaning up the information of the queue in which
1063 	 * the clone was dispatched.
1064 	 * The clone is *NOT* freed actually here because it is alloced from
1065 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1066 	 */
1067 	__blk_put_request(clone->q, clone);
1068 
1069 	/*
1070 	 * Actual request completion is done in a softirq context which doesn't
1071 	 * hold the queue lock.  Otherwise, deadlock could occur because:
1072 	 *     - another request may be submitted by the upper level driver
1073 	 *       of the stacking during the completion
1074 	 *     - the submission which requires queue lock may be done
1075 	 *       against this queue
1076 	 */
1077 	dm_complete_request(clone, error);
1078 }
1079 
1080 /*
1081  * Return maximum size of I/O possible at the supplied sector up to the current
1082  * target boundary.
1083  */
1084 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1085 {
1086 	sector_t target_offset = dm_target_offset(ti, sector);
1087 
1088 	return ti->len - target_offset;
1089 }
1090 
1091 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1092 {
1093 	sector_t len = max_io_len_target_boundary(sector, ti);
1094 	sector_t offset, max_len;
1095 
1096 	/*
1097 	 * Does the target need to split even further?
1098 	 */
1099 	if (ti->max_io_len) {
1100 		offset = dm_target_offset(ti, sector);
1101 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1102 			max_len = sector_div(offset, ti->max_io_len);
1103 		else
1104 			max_len = offset & (ti->max_io_len - 1);
1105 		max_len = ti->max_io_len - max_len;
1106 
1107 		if (len > max_len)
1108 			len = max_len;
1109 	}
1110 
1111 	return len;
1112 }
1113 
1114 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1115 {
1116 	if (len > UINT_MAX) {
1117 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1118 		      (unsigned long long)len, UINT_MAX);
1119 		ti->error = "Maximum size of target IO is too large";
1120 		return -EINVAL;
1121 	}
1122 
1123 	ti->max_io_len = (uint32_t) len;
1124 
1125 	return 0;
1126 }
1127 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1128 
1129 /*
1130  * A target may call dm_accept_partial_bio only from the map routine.  It is
1131  * allowed for all bio types except REQ_FLUSH.
1132  *
1133  * dm_accept_partial_bio informs the dm that the target only wants to process
1134  * additional n_sectors sectors of the bio and the rest of the data should be
1135  * sent in a next bio.
1136  *
1137  * A diagram that explains the arithmetics:
1138  * +--------------------+---------------+-------+
1139  * |         1          |       2       |   3   |
1140  * +--------------------+---------------+-------+
1141  *
1142  * <-------------- *tio->len_ptr --------------->
1143  *                      <------- bi_size ------->
1144  *                      <-- n_sectors -->
1145  *
1146  * Region 1 was already iterated over with bio_advance or similar function.
1147  *	(it may be empty if the target doesn't use bio_advance)
1148  * Region 2 is the remaining bio size that the target wants to process.
1149  *	(it may be empty if region 1 is non-empty, although there is no reason
1150  *	 to make it empty)
1151  * The target requires that region 3 is to be sent in the next bio.
1152  *
1153  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1154  * the partially processed part (the sum of regions 1+2) must be the same for all
1155  * copies of the bio.
1156  */
1157 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1158 {
1159 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1160 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1161 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1162 	BUG_ON(bi_size > *tio->len_ptr);
1163 	BUG_ON(n_sectors > bi_size);
1164 	*tio->len_ptr -= bi_size - n_sectors;
1165 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1166 }
1167 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1168 
1169 static void __map_bio(struct dm_target_io *tio)
1170 {
1171 	int r;
1172 	sector_t sector;
1173 	struct mapped_device *md;
1174 	struct bio *clone = &tio->clone;
1175 	struct dm_target *ti = tio->ti;
1176 
1177 	clone->bi_end_io = clone_endio;
1178 
1179 	/*
1180 	 * Map the clone.  If r == 0 we don't need to do
1181 	 * anything, the target has assumed ownership of
1182 	 * this io.
1183 	 */
1184 	atomic_inc(&tio->io->io_count);
1185 	sector = clone->bi_iter.bi_sector;
1186 	r = ti->type->map(ti, clone);
1187 	if (r == DM_MAPIO_REMAPPED) {
1188 		/* the bio has been remapped so dispatch it */
1189 
1190 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1191 				      tio->io->bio->bi_bdev->bd_dev, sector);
1192 
1193 		generic_make_request(clone);
1194 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1195 		/* error the io and bail out, or requeue it if needed */
1196 		md = tio->io->md;
1197 		dec_pending(tio->io, r);
1198 		free_tio(md, tio);
1199 	} else if (r) {
1200 		DMWARN("unimplemented target map return value: %d", r);
1201 		BUG();
1202 	}
1203 }
1204 
1205 struct clone_info {
1206 	struct mapped_device *md;
1207 	struct dm_table *map;
1208 	struct bio *bio;
1209 	struct dm_io *io;
1210 	sector_t sector;
1211 	unsigned sector_count;
1212 };
1213 
1214 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1215 {
1216 	bio->bi_iter.bi_sector = sector;
1217 	bio->bi_iter.bi_size = to_bytes(len);
1218 }
1219 
1220 /*
1221  * Creates a bio that consists of range of complete bvecs.
1222  */
1223 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1224 		      sector_t sector, unsigned len)
1225 {
1226 	struct bio *clone = &tio->clone;
1227 
1228 	__bio_clone_fast(clone, bio);
1229 
1230 	if (bio_integrity(bio))
1231 		bio_integrity_clone(clone, bio, GFP_NOIO);
1232 
1233 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1234 	clone->bi_iter.bi_size = to_bytes(len);
1235 
1236 	if (bio_integrity(bio))
1237 		bio_integrity_trim(clone, 0, len);
1238 }
1239 
1240 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1241 				      struct dm_target *ti, int nr_iovecs,
1242 				      unsigned target_bio_nr)
1243 {
1244 	struct dm_target_io *tio;
1245 	struct bio *clone;
1246 
1247 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1248 	tio = container_of(clone, struct dm_target_io, clone);
1249 
1250 	tio->io = ci->io;
1251 	tio->ti = ti;
1252 	tio->target_bio_nr = target_bio_nr;
1253 
1254 	return tio;
1255 }
1256 
1257 static void __clone_and_map_simple_bio(struct clone_info *ci,
1258 				       struct dm_target *ti,
1259 				       unsigned target_bio_nr, unsigned *len)
1260 {
1261 	struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1262 	struct bio *clone = &tio->clone;
1263 
1264 	tio->len_ptr = len;
1265 
1266 	/*
1267 	 * Discard requests require the bio's inline iovecs be initialized.
1268 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1269 	 * and discard, so no need for concern about wasted bvec allocations.
1270 	 */
1271 	 __bio_clone_fast(clone, ci->bio);
1272 	if (len)
1273 		bio_setup_sector(clone, ci->sector, *len);
1274 
1275 	__map_bio(tio);
1276 }
1277 
1278 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1279 				  unsigned num_bios, unsigned *len)
1280 {
1281 	unsigned target_bio_nr;
1282 
1283 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1284 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1285 }
1286 
1287 static int __send_empty_flush(struct clone_info *ci)
1288 {
1289 	unsigned target_nr = 0;
1290 	struct dm_target *ti;
1291 
1292 	BUG_ON(bio_has_data(ci->bio));
1293 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1294 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1295 
1296 	return 0;
1297 }
1298 
1299 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1300 				     sector_t sector, unsigned *len)
1301 {
1302 	struct bio *bio = ci->bio;
1303 	struct dm_target_io *tio;
1304 	unsigned target_bio_nr;
1305 	unsigned num_target_bios = 1;
1306 
1307 	/*
1308 	 * Does the target want to receive duplicate copies of the bio?
1309 	 */
1310 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1311 		num_target_bios = ti->num_write_bios(ti, bio);
1312 
1313 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1314 		tio = alloc_tio(ci, ti, 0, target_bio_nr);
1315 		tio->len_ptr = len;
1316 		clone_bio(tio, bio, sector, *len);
1317 		__map_bio(tio);
1318 	}
1319 }
1320 
1321 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1322 
1323 static unsigned get_num_discard_bios(struct dm_target *ti)
1324 {
1325 	return ti->num_discard_bios;
1326 }
1327 
1328 static unsigned get_num_write_same_bios(struct dm_target *ti)
1329 {
1330 	return ti->num_write_same_bios;
1331 }
1332 
1333 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1334 
1335 static bool is_split_required_for_discard(struct dm_target *ti)
1336 {
1337 	return ti->split_discard_bios;
1338 }
1339 
1340 static int __send_changing_extent_only(struct clone_info *ci,
1341 				       get_num_bios_fn get_num_bios,
1342 				       is_split_required_fn is_split_required)
1343 {
1344 	struct dm_target *ti;
1345 	unsigned len;
1346 	unsigned num_bios;
1347 
1348 	do {
1349 		ti = dm_table_find_target(ci->map, ci->sector);
1350 		if (!dm_target_is_valid(ti))
1351 			return -EIO;
1352 
1353 		/*
1354 		 * Even though the device advertised support for this type of
1355 		 * request, that does not mean every target supports it, and
1356 		 * reconfiguration might also have changed that since the
1357 		 * check was performed.
1358 		 */
1359 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1360 		if (!num_bios)
1361 			return -EOPNOTSUPP;
1362 
1363 		if (is_split_required && !is_split_required(ti))
1364 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1365 		else
1366 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1367 
1368 		__send_duplicate_bios(ci, ti, num_bios, &len);
1369 
1370 		ci->sector += len;
1371 	} while (ci->sector_count -= len);
1372 
1373 	return 0;
1374 }
1375 
1376 static int __send_discard(struct clone_info *ci)
1377 {
1378 	return __send_changing_extent_only(ci, get_num_discard_bios,
1379 					   is_split_required_for_discard);
1380 }
1381 
1382 static int __send_write_same(struct clone_info *ci)
1383 {
1384 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1385 }
1386 
1387 /*
1388  * Select the correct strategy for processing a non-flush bio.
1389  */
1390 static int __split_and_process_non_flush(struct clone_info *ci)
1391 {
1392 	struct bio *bio = ci->bio;
1393 	struct dm_target *ti;
1394 	unsigned len;
1395 
1396 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1397 		return __send_discard(ci);
1398 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1399 		return __send_write_same(ci);
1400 
1401 	ti = dm_table_find_target(ci->map, ci->sector);
1402 	if (!dm_target_is_valid(ti))
1403 		return -EIO;
1404 
1405 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1406 
1407 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1408 
1409 	ci->sector += len;
1410 	ci->sector_count -= len;
1411 
1412 	return 0;
1413 }
1414 
1415 /*
1416  * Entry point to split a bio into clones and submit them to the targets.
1417  */
1418 static void __split_and_process_bio(struct mapped_device *md,
1419 				    struct dm_table *map, struct bio *bio)
1420 {
1421 	struct clone_info ci;
1422 	int error = 0;
1423 
1424 	if (unlikely(!map)) {
1425 		bio_io_error(bio);
1426 		return;
1427 	}
1428 
1429 	ci.map = map;
1430 	ci.md = md;
1431 	ci.io = alloc_io(md);
1432 	ci.io->error = 0;
1433 	atomic_set(&ci.io->io_count, 1);
1434 	ci.io->bio = bio;
1435 	ci.io->md = md;
1436 	spin_lock_init(&ci.io->endio_lock);
1437 	ci.sector = bio->bi_iter.bi_sector;
1438 
1439 	start_io_acct(ci.io);
1440 
1441 	if (bio->bi_rw & REQ_FLUSH) {
1442 		ci.bio = &ci.md->flush_bio;
1443 		ci.sector_count = 0;
1444 		error = __send_empty_flush(&ci);
1445 		/* dec_pending submits any data associated with flush */
1446 	} else {
1447 		ci.bio = bio;
1448 		ci.sector_count = bio_sectors(bio);
1449 		while (ci.sector_count && !error)
1450 			error = __split_and_process_non_flush(&ci);
1451 	}
1452 
1453 	/* drop the extra reference count */
1454 	dec_pending(ci.io, error);
1455 }
1456 /*-----------------------------------------------------------------
1457  * CRUD END
1458  *---------------------------------------------------------------*/
1459 
1460 static int dm_merge_bvec(struct request_queue *q,
1461 			 struct bvec_merge_data *bvm,
1462 			 struct bio_vec *biovec)
1463 {
1464 	struct mapped_device *md = q->queuedata;
1465 	struct dm_table *map = dm_get_live_table_fast(md);
1466 	struct dm_target *ti;
1467 	sector_t max_sectors;
1468 	int max_size = 0;
1469 
1470 	if (unlikely(!map))
1471 		goto out;
1472 
1473 	ti = dm_table_find_target(map, bvm->bi_sector);
1474 	if (!dm_target_is_valid(ti))
1475 		goto out;
1476 
1477 	/*
1478 	 * Find maximum amount of I/O that won't need splitting
1479 	 */
1480 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1481 			  (sector_t) BIO_MAX_SECTORS);
1482 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1483 	if (max_size < 0)
1484 		max_size = 0;
1485 
1486 	/*
1487 	 * merge_bvec_fn() returns number of bytes
1488 	 * it can accept at this offset
1489 	 * max is precomputed maximal io size
1490 	 */
1491 	if (max_size && ti->type->merge)
1492 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1493 	/*
1494 	 * If the target doesn't support merge method and some of the devices
1495 	 * provided their merge_bvec method (we know this by looking at
1496 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1497 	 * entries.  So always set max_size to 0, and the code below allows
1498 	 * just one page.
1499 	 */
1500 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1501 		max_size = 0;
1502 
1503 out:
1504 	dm_put_live_table_fast(md);
1505 	/*
1506 	 * Always allow an entire first page
1507 	 */
1508 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1509 		max_size = biovec->bv_len;
1510 
1511 	return max_size;
1512 }
1513 
1514 /*
1515  * The request function that just remaps the bio built up by
1516  * dm_merge_bvec.
1517  */
1518 static void _dm_request(struct request_queue *q, struct bio *bio)
1519 {
1520 	int rw = bio_data_dir(bio);
1521 	struct mapped_device *md = q->queuedata;
1522 	int cpu;
1523 	int srcu_idx;
1524 	struct dm_table *map;
1525 
1526 	map = dm_get_live_table(md, &srcu_idx);
1527 
1528 	cpu = part_stat_lock();
1529 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1530 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1531 	part_stat_unlock();
1532 
1533 	/* if we're suspended, we have to queue this io for later */
1534 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1535 		dm_put_live_table(md, srcu_idx);
1536 
1537 		if (bio_rw(bio) != READA)
1538 			queue_io(md, bio);
1539 		else
1540 			bio_io_error(bio);
1541 		return;
1542 	}
1543 
1544 	__split_and_process_bio(md, map, bio);
1545 	dm_put_live_table(md, srcu_idx);
1546 	return;
1547 }
1548 
1549 int dm_request_based(struct mapped_device *md)
1550 {
1551 	return blk_queue_stackable(md->queue);
1552 }
1553 
1554 static void dm_request(struct request_queue *q, struct bio *bio)
1555 {
1556 	struct mapped_device *md = q->queuedata;
1557 
1558 	if (dm_request_based(md))
1559 		blk_queue_bio(q, bio);
1560 	else
1561 		_dm_request(q, bio);
1562 }
1563 
1564 void dm_dispatch_request(struct request *rq)
1565 {
1566 	int r;
1567 
1568 	if (blk_queue_io_stat(rq->q))
1569 		rq->cmd_flags |= REQ_IO_STAT;
1570 
1571 	rq->start_time = jiffies;
1572 	r = blk_insert_cloned_request(rq->q, rq);
1573 	if (r)
1574 		dm_complete_request(rq, r);
1575 }
1576 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1577 
1578 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1579 				 void *data)
1580 {
1581 	struct dm_rq_target_io *tio = data;
1582 	struct dm_rq_clone_bio_info *info =
1583 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1584 
1585 	info->orig = bio_orig;
1586 	info->tio = tio;
1587 	bio->bi_end_io = end_clone_bio;
1588 
1589 	return 0;
1590 }
1591 
1592 static int setup_clone(struct request *clone, struct request *rq,
1593 		       struct dm_rq_target_io *tio)
1594 {
1595 	int r;
1596 
1597 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1598 			      dm_rq_bio_constructor, tio);
1599 	if (r)
1600 		return r;
1601 
1602 	clone->cmd = rq->cmd;
1603 	clone->cmd_len = rq->cmd_len;
1604 	clone->sense = rq->sense;
1605 	clone->end_io = end_clone_request;
1606 	clone->end_io_data = tio;
1607 
1608 	return 0;
1609 }
1610 
1611 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1612 				gfp_t gfp_mask)
1613 {
1614 	struct request *clone;
1615 	struct dm_rq_target_io *tio;
1616 
1617 	tio = alloc_rq_tio(md, gfp_mask);
1618 	if (!tio)
1619 		return NULL;
1620 
1621 	tio->md = md;
1622 	tio->ti = NULL;
1623 	tio->orig = rq;
1624 	tio->error = 0;
1625 	memset(&tio->info, 0, sizeof(tio->info));
1626 
1627 	clone = &tio->clone;
1628 	if (setup_clone(clone, rq, tio)) {
1629 		/* -ENOMEM */
1630 		free_rq_tio(tio);
1631 		return NULL;
1632 	}
1633 
1634 	return clone;
1635 }
1636 
1637 /*
1638  * Called with the queue lock held.
1639  */
1640 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1641 {
1642 	struct mapped_device *md = q->queuedata;
1643 	struct request *clone;
1644 
1645 	if (unlikely(rq->special)) {
1646 		DMWARN("Already has something in rq->special.");
1647 		return BLKPREP_KILL;
1648 	}
1649 
1650 	clone = clone_rq(rq, md, GFP_ATOMIC);
1651 	if (!clone)
1652 		return BLKPREP_DEFER;
1653 
1654 	rq->special = clone;
1655 	rq->cmd_flags |= REQ_DONTPREP;
1656 
1657 	return BLKPREP_OK;
1658 }
1659 
1660 /*
1661  * Returns:
1662  * 0  : the request has been processed (not requeued)
1663  * !0 : the request has been requeued
1664  */
1665 static int map_request(struct dm_target *ti, struct request *clone,
1666 		       struct mapped_device *md)
1667 {
1668 	int r, requeued = 0;
1669 	struct dm_rq_target_io *tio = clone->end_io_data;
1670 
1671 	tio->ti = ti;
1672 	r = ti->type->map_rq(ti, clone, &tio->info);
1673 	switch (r) {
1674 	case DM_MAPIO_SUBMITTED:
1675 		/* The target has taken the I/O to submit by itself later */
1676 		break;
1677 	case DM_MAPIO_REMAPPED:
1678 		/* The target has remapped the I/O so dispatch it */
1679 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1680 				     blk_rq_pos(tio->orig));
1681 		dm_dispatch_request(clone);
1682 		break;
1683 	case DM_MAPIO_REQUEUE:
1684 		/* The target wants to requeue the I/O */
1685 		dm_requeue_unmapped_request(clone);
1686 		requeued = 1;
1687 		break;
1688 	default:
1689 		if (r > 0) {
1690 			DMWARN("unimplemented target map return value: %d", r);
1691 			BUG();
1692 		}
1693 
1694 		/* The target wants to complete the I/O */
1695 		dm_kill_unmapped_request(clone, r);
1696 		break;
1697 	}
1698 
1699 	return requeued;
1700 }
1701 
1702 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1703 {
1704 	struct request *clone;
1705 
1706 	blk_start_request(orig);
1707 	clone = orig->special;
1708 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1709 
1710 	/*
1711 	 * Hold the md reference here for the in-flight I/O.
1712 	 * We can't rely on the reference count by device opener,
1713 	 * because the device may be closed during the request completion
1714 	 * when all bios are completed.
1715 	 * See the comment in rq_completed() too.
1716 	 */
1717 	dm_get(md);
1718 
1719 	return clone;
1720 }
1721 
1722 /*
1723  * q->request_fn for request-based dm.
1724  * Called with the queue lock held.
1725  */
1726 static void dm_request_fn(struct request_queue *q)
1727 {
1728 	struct mapped_device *md = q->queuedata;
1729 	int srcu_idx;
1730 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1731 	struct dm_target *ti;
1732 	struct request *rq, *clone;
1733 	sector_t pos;
1734 
1735 	/*
1736 	 * For suspend, check blk_queue_stopped() and increment
1737 	 * ->pending within a single queue_lock not to increment the
1738 	 * number of in-flight I/Os after the queue is stopped in
1739 	 * dm_suspend().
1740 	 */
1741 	while (!blk_queue_stopped(q)) {
1742 		rq = blk_peek_request(q);
1743 		if (!rq)
1744 			goto delay_and_out;
1745 
1746 		/* always use block 0 to find the target for flushes for now */
1747 		pos = 0;
1748 		if (!(rq->cmd_flags & REQ_FLUSH))
1749 			pos = blk_rq_pos(rq);
1750 
1751 		ti = dm_table_find_target(map, pos);
1752 		if (!dm_target_is_valid(ti)) {
1753 			/*
1754 			 * Must perform setup, that dm_done() requires,
1755 			 * before calling dm_kill_unmapped_request
1756 			 */
1757 			DMERR_LIMIT("request attempted access beyond the end of device");
1758 			clone = dm_start_request(md, rq);
1759 			dm_kill_unmapped_request(clone, -EIO);
1760 			continue;
1761 		}
1762 
1763 		if (ti->type->busy && ti->type->busy(ti))
1764 			goto delay_and_out;
1765 
1766 		clone = dm_start_request(md, rq);
1767 
1768 		spin_unlock(q->queue_lock);
1769 		if (map_request(ti, clone, md))
1770 			goto requeued;
1771 
1772 		BUG_ON(!irqs_disabled());
1773 		spin_lock(q->queue_lock);
1774 	}
1775 
1776 	goto out;
1777 
1778 requeued:
1779 	BUG_ON(!irqs_disabled());
1780 	spin_lock(q->queue_lock);
1781 
1782 delay_and_out:
1783 	blk_delay_queue(q, HZ / 10);
1784 out:
1785 	dm_put_live_table(md, srcu_idx);
1786 }
1787 
1788 int dm_underlying_device_busy(struct request_queue *q)
1789 {
1790 	return blk_lld_busy(q);
1791 }
1792 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1793 
1794 static int dm_lld_busy(struct request_queue *q)
1795 {
1796 	int r;
1797 	struct mapped_device *md = q->queuedata;
1798 	struct dm_table *map = dm_get_live_table_fast(md);
1799 
1800 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1801 		r = 1;
1802 	else
1803 		r = dm_table_any_busy_target(map);
1804 
1805 	dm_put_live_table_fast(md);
1806 
1807 	return r;
1808 }
1809 
1810 static int dm_any_congested(void *congested_data, int bdi_bits)
1811 {
1812 	int r = bdi_bits;
1813 	struct mapped_device *md = congested_data;
1814 	struct dm_table *map;
1815 
1816 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1817 		map = dm_get_live_table_fast(md);
1818 		if (map) {
1819 			/*
1820 			 * Request-based dm cares about only own queue for
1821 			 * the query about congestion status of request_queue
1822 			 */
1823 			if (dm_request_based(md))
1824 				r = md->queue->backing_dev_info.state &
1825 				    bdi_bits;
1826 			else
1827 				r = dm_table_any_congested(map, bdi_bits);
1828 		}
1829 		dm_put_live_table_fast(md);
1830 	}
1831 
1832 	return r;
1833 }
1834 
1835 /*-----------------------------------------------------------------
1836  * An IDR is used to keep track of allocated minor numbers.
1837  *---------------------------------------------------------------*/
1838 static void free_minor(int minor)
1839 {
1840 	spin_lock(&_minor_lock);
1841 	idr_remove(&_minor_idr, minor);
1842 	spin_unlock(&_minor_lock);
1843 }
1844 
1845 /*
1846  * See if the device with a specific minor # is free.
1847  */
1848 static int specific_minor(int minor)
1849 {
1850 	int r;
1851 
1852 	if (minor >= (1 << MINORBITS))
1853 		return -EINVAL;
1854 
1855 	idr_preload(GFP_KERNEL);
1856 	spin_lock(&_minor_lock);
1857 
1858 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1859 
1860 	spin_unlock(&_minor_lock);
1861 	idr_preload_end();
1862 	if (r < 0)
1863 		return r == -ENOSPC ? -EBUSY : r;
1864 	return 0;
1865 }
1866 
1867 static int next_free_minor(int *minor)
1868 {
1869 	int r;
1870 
1871 	idr_preload(GFP_KERNEL);
1872 	spin_lock(&_minor_lock);
1873 
1874 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1875 
1876 	spin_unlock(&_minor_lock);
1877 	idr_preload_end();
1878 	if (r < 0)
1879 		return r;
1880 	*minor = r;
1881 	return 0;
1882 }
1883 
1884 static const struct block_device_operations dm_blk_dops;
1885 
1886 static void dm_wq_work(struct work_struct *work);
1887 
1888 static void dm_init_md_queue(struct mapped_device *md)
1889 {
1890 	/*
1891 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1892 	 * devices.  The type of this dm device has not been decided yet.
1893 	 * The type is decided at the first table loading time.
1894 	 * To prevent problematic device stacking, clear the queue flag
1895 	 * for request stacking support until then.
1896 	 *
1897 	 * This queue is new, so no concurrency on the queue_flags.
1898 	 */
1899 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1900 
1901 	md->queue->queuedata = md;
1902 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1903 	md->queue->backing_dev_info.congested_data = md;
1904 	blk_queue_make_request(md->queue, dm_request);
1905 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1906 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1907 }
1908 
1909 /*
1910  * Allocate and initialise a blank device with a given minor.
1911  */
1912 static struct mapped_device *alloc_dev(int minor)
1913 {
1914 	int r;
1915 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1916 	void *old_md;
1917 
1918 	if (!md) {
1919 		DMWARN("unable to allocate device, out of memory.");
1920 		return NULL;
1921 	}
1922 
1923 	if (!try_module_get(THIS_MODULE))
1924 		goto bad_module_get;
1925 
1926 	/* get a minor number for the dev */
1927 	if (minor == DM_ANY_MINOR)
1928 		r = next_free_minor(&minor);
1929 	else
1930 		r = specific_minor(minor);
1931 	if (r < 0)
1932 		goto bad_minor;
1933 
1934 	r = init_srcu_struct(&md->io_barrier);
1935 	if (r < 0)
1936 		goto bad_io_barrier;
1937 
1938 	md->type = DM_TYPE_NONE;
1939 	mutex_init(&md->suspend_lock);
1940 	mutex_init(&md->type_lock);
1941 	spin_lock_init(&md->deferred_lock);
1942 	atomic_set(&md->holders, 1);
1943 	atomic_set(&md->open_count, 0);
1944 	atomic_set(&md->event_nr, 0);
1945 	atomic_set(&md->uevent_seq, 0);
1946 	INIT_LIST_HEAD(&md->uevent_list);
1947 	spin_lock_init(&md->uevent_lock);
1948 
1949 	md->queue = blk_alloc_queue(GFP_KERNEL);
1950 	if (!md->queue)
1951 		goto bad_queue;
1952 
1953 	dm_init_md_queue(md);
1954 
1955 	md->disk = alloc_disk(1);
1956 	if (!md->disk)
1957 		goto bad_disk;
1958 
1959 	atomic_set(&md->pending[0], 0);
1960 	atomic_set(&md->pending[1], 0);
1961 	init_waitqueue_head(&md->wait);
1962 	INIT_WORK(&md->work, dm_wq_work);
1963 	init_waitqueue_head(&md->eventq);
1964 	init_completion(&md->kobj_holder.completion);
1965 
1966 	md->disk->major = _major;
1967 	md->disk->first_minor = minor;
1968 	md->disk->fops = &dm_blk_dops;
1969 	md->disk->queue = md->queue;
1970 	md->disk->private_data = md;
1971 	sprintf(md->disk->disk_name, "dm-%d", minor);
1972 	add_disk(md->disk);
1973 	format_dev_t(md->name, MKDEV(_major, minor));
1974 
1975 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1976 	if (!md->wq)
1977 		goto bad_thread;
1978 
1979 	md->bdev = bdget_disk(md->disk, 0);
1980 	if (!md->bdev)
1981 		goto bad_bdev;
1982 
1983 	bio_init(&md->flush_bio);
1984 	md->flush_bio.bi_bdev = md->bdev;
1985 	md->flush_bio.bi_rw = WRITE_FLUSH;
1986 
1987 	dm_stats_init(&md->stats);
1988 
1989 	/* Populate the mapping, nobody knows we exist yet */
1990 	spin_lock(&_minor_lock);
1991 	old_md = idr_replace(&_minor_idr, md, minor);
1992 	spin_unlock(&_minor_lock);
1993 
1994 	BUG_ON(old_md != MINOR_ALLOCED);
1995 
1996 	return md;
1997 
1998 bad_bdev:
1999 	destroy_workqueue(md->wq);
2000 bad_thread:
2001 	del_gendisk(md->disk);
2002 	put_disk(md->disk);
2003 bad_disk:
2004 	blk_cleanup_queue(md->queue);
2005 bad_queue:
2006 	cleanup_srcu_struct(&md->io_barrier);
2007 bad_io_barrier:
2008 	free_minor(minor);
2009 bad_minor:
2010 	module_put(THIS_MODULE);
2011 bad_module_get:
2012 	kfree(md);
2013 	return NULL;
2014 }
2015 
2016 static void unlock_fs(struct mapped_device *md);
2017 
2018 static void free_dev(struct mapped_device *md)
2019 {
2020 	int minor = MINOR(disk_devt(md->disk));
2021 
2022 	unlock_fs(md);
2023 	bdput(md->bdev);
2024 	destroy_workqueue(md->wq);
2025 	if (md->io_pool)
2026 		mempool_destroy(md->io_pool);
2027 	if (md->bs)
2028 		bioset_free(md->bs);
2029 	blk_integrity_unregister(md->disk);
2030 	del_gendisk(md->disk);
2031 	cleanup_srcu_struct(&md->io_barrier);
2032 	free_minor(minor);
2033 
2034 	spin_lock(&_minor_lock);
2035 	md->disk->private_data = NULL;
2036 	spin_unlock(&_minor_lock);
2037 
2038 	put_disk(md->disk);
2039 	blk_cleanup_queue(md->queue);
2040 	dm_stats_cleanup(&md->stats);
2041 	module_put(THIS_MODULE);
2042 	kfree(md);
2043 }
2044 
2045 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2046 {
2047 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2048 
2049 	if (md->io_pool && md->bs) {
2050 		/* The md already has necessary mempools. */
2051 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2052 			/*
2053 			 * Reload bioset because front_pad may have changed
2054 			 * because a different table was loaded.
2055 			 */
2056 			bioset_free(md->bs);
2057 			md->bs = p->bs;
2058 			p->bs = NULL;
2059 		} else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2060 			/*
2061 			 * There's no need to reload with request-based dm
2062 			 * because the size of front_pad doesn't change.
2063 			 * Note for future: If you are to reload bioset,
2064 			 * prep-ed requests in the queue may refer
2065 			 * to bio from the old bioset, so you must walk
2066 			 * through the queue to unprep.
2067 			 */
2068 		}
2069 		goto out;
2070 	}
2071 
2072 	BUG_ON(!p || md->io_pool || md->bs);
2073 
2074 	md->io_pool = p->io_pool;
2075 	p->io_pool = NULL;
2076 	md->bs = p->bs;
2077 	p->bs = NULL;
2078 
2079 out:
2080 	/* mempool bind completed, now no need any mempools in the table */
2081 	dm_table_free_md_mempools(t);
2082 }
2083 
2084 /*
2085  * Bind a table to the device.
2086  */
2087 static void event_callback(void *context)
2088 {
2089 	unsigned long flags;
2090 	LIST_HEAD(uevents);
2091 	struct mapped_device *md = (struct mapped_device *) context;
2092 
2093 	spin_lock_irqsave(&md->uevent_lock, flags);
2094 	list_splice_init(&md->uevent_list, &uevents);
2095 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2096 
2097 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2098 
2099 	atomic_inc(&md->event_nr);
2100 	wake_up(&md->eventq);
2101 }
2102 
2103 /*
2104  * Protected by md->suspend_lock obtained by dm_swap_table().
2105  */
2106 static void __set_size(struct mapped_device *md, sector_t size)
2107 {
2108 	set_capacity(md->disk, size);
2109 
2110 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2111 }
2112 
2113 /*
2114  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2115  *
2116  * If this function returns 0, then the device is either a non-dm
2117  * device without a merge_bvec_fn, or it is a dm device that is
2118  * able to split any bios it receives that are too big.
2119  */
2120 int dm_queue_merge_is_compulsory(struct request_queue *q)
2121 {
2122 	struct mapped_device *dev_md;
2123 
2124 	if (!q->merge_bvec_fn)
2125 		return 0;
2126 
2127 	if (q->make_request_fn == dm_request) {
2128 		dev_md = q->queuedata;
2129 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2130 			return 0;
2131 	}
2132 
2133 	return 1;
2134 }
2135 
2136 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2137 					 struct dm_dev *dev, sector_t start,
2138 					 sector_t len, void *data)
2139 {
2140 	struct block_device *bdev = dev->bdev;
2141 	struct request_queue *q = bdev_get_queue(bdev);
2142 
2143 	return dm_queue_merge_is_compulsory(q);
2144 }
2145 
2146 /*
2147  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2148  * on the properties of the underlying devices.
2149  */
2150 static int dm_table_merge_is_optional(struct dm_table *table)
2151 {
2152 	unsigned i = 0;
2153 	struct dm_target *ti;
2154 
2155 	while (i < dm_table_get_num_targets(table)) {
2156 		ti = dm_table_get_target(table, i++);
2157 
2158 		if (ti->type->iterate_devices &&
2159 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2160 			return 0;
2161 	}
2162 
2163 	return 1;
2164 }
2165 
2166 /*
2167  * Returns old map, which caller must destroy.
2168  */
2169 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2170 			       struct queue_limits *limits)
2171 {
2172 	struct dm_table *old_map;
2173 	struct request_queue *q = md->queue;
2174 	sector_t size;
2175 	int merge_is_optional;
2176 
2177 	size = dm_table_get_size(t);
2178 
2179 	/*
2180 	 * Wipe any geometry if the size of the table changed.
2181 	 */
2182 	if (size != dm_get_size(md))
2183 		memset(&md->geometry, 0, sizeof(md->geometry));
2184 
2185 	__set_size(md, size);
2186 
2187 	dm_table_event_callback(t, event_callback, md);
2188 
2189 	/*
2190 	 * The queue hasn't been stopped yet, if the old table type wasn't
2191 	 * for request-based during suspension.  So stop it to prevent
2192 	 * I/O mapping before resume.
2193 	 * This must be done before setting the queue restrictions,
2194 	 * because request-based dm may be run just after the setting.
2195 	 */
2196 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2197 		stop_queue(q);
2198 
2199 	__bind_mempools(md, t);
2200 
2201 	merge_is_optional = dm_table_merge_is_optional(t);
2202 
2203 	old_map = md->map;
2204 	rcu_assign_pointer(md->map, t);
2205 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2206 
2207 	dm_table_set_restrictions(t, q, limits);
2208 	if (merge_is_optional)
2209 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2210 	else
2211 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2212 	dm_sync_table(md);
2213 
2214 	return old_map;
2215 }
2216 
2217 /*
2218  * Returns unbound table for the caller to free.
2219  */
2220 static struct dm_table *__unbind(struct mapped_device *md)
2221 {
2222 	struct dm_table *map = md->map;
2223 
2224 	if (!map)
2225 		return NULL;
2226 
2227 	dm_table_event_callback(map, NULL, NULL);
2228 	RCU_INIT_POINTER(md->map, NULL);
2229 	dm_sync_table(md);
2230 
2231 	return map;
2232 }
2233 
2234 /*
2235  * Constructor for a new device.
2236  */
2237 int dm_create(int minor, struct mapped_device **result)
2238 {
2239 	struct mapped_device *md;
2240 
2241 	md = alloc_dev(minor);
2242 	if (!md)
2243 		return -ENXIO;
2244 
2245 	dm_sysfs_init(md);
2246 
2247 	*result = md;
2248 	return 0;
2249 }
2250 
2251 /*
2252  * Functions to manage md->type.
2253  * All are required to hold md->type_lock.
2254  */
2255 void dm_lock_md_type(struct mapped_device *md)
2256 {
2257 	mutex_lock(&md->type_lock);
2258 }
2259 
2260 void dm_unlock_md_type(struct mapped_device *md)
2261 {
2262 	mutex_unlock(&md->type_lock);
2263 }
2264 
2265 void dm_set_md_type(struct mapped_device *md, unsigned type)
2266 {
2267 	BUG_ON(!mutex_is_locked(&md->type_lock));
2268 	md->type = type;
2269 }
2270 
2271 unsigned dm_get_md_type(struct mapped_device *md)
2272 {
2273 	BUG_ON(!mutex_is_locked(&md->type_lock));
2274 	return md->type;
2275 }
2276 
2277 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2278 {
2279 	return md->immutable_target_type;
2280 }
2281 
2282 /*
2283  * The queue_limits are only valid as long as you have a reference
2284  * count on 'md'.
2285  */
2286 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2287 {
2288 	BUG_ON(!atomic_read(&md->holders));
2289 	return &md->queue->limits;
2290 }
2291 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2292 
2293 /*
2294  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2295  */
2296 static int dm_init_request_based_queue(struct mapped_device *md)
2297 {
2298 	struct request_queue *q = NULL;
2299 
2300 	if (md->queue->elevator)
2301 		return 1;
2302 
2303 	/* Fully initialize the queue */
2304 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2305 	if (!q)
2306 		return 0;
2307 
2308 	md->queue = q;
2309 	dm_init_md_queue(md);
2310 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2311 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2312 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2313 
2314 	elv_register_queue(md->queue);
2315 
2316 	return 1;
2317 }
2318 
2319 /*
2320  * Setup the DM device's queue based on md's type
2321  */
2322 int dm_setup_md_queue(struct mapped_device *md)
2323 {
2324 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2325 	    !dm_init_request_based_queue(md)) {
2326 		DMWARN("Cannot initialize queue for request-based mapped device");
2327 		return -EINVAL;
2328 	}
2329 
2330 	return 0;
2331 }
2332 
2333 static struct mapped_device *dm_find_md(dev_t dev)
2334 {
2335 	struct mapped_device *md;
2336 	unsigned minor = MINOR(dev);
2337 
2338 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2339 		return NULL;
2340 
2341 	spin_lock(&_minor_lock);
2342 
2343 	md = idr_find(&_minor_idr, minor);
2344 	if (md && (md == MINOR_ALLOCED ||
2345 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2346 		   dm_deleting_md(md) ||
2347 		   test_bit(DMF_FREEING, &md->flags))) {
2348 		md = NULL;
2349 		goto out;
2350 	}
2351 
2352 out:
2353 	spin_unlock(&_minor_lock);
2354 
2355 	return md;
2356 }
2357 
2358 struct mapped_device *dm_get_md(dev_t dev)
2359 {
2360 	struct mapped_device *md = dm_find_md(dev);
2361 
2362 	if (md)
2363 		dm_get(md);
2364 
2365 	return md;
2366 }
2367 EXPORT_SYMBOL_GPL(dm_get_md);
2368 
2369 void *dm_get_mdptr(struct mapped_device *md)
2370 {
2371 	return md->interface_ptr;
2372 }
2373 
2374 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2375 {
2376 	md->interface_ptr = ptr;
2377 }
2378 
2379 void dm_get(struct mapped_device *md)
2380 {
2381 	atomic_inc(&md->holders);
2382 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2383 }
2384 
2385 const char *dm_device_name(struct mapped_device *md)
2386 {
2387 	return md->name;
2388 }
2389 EXPORT_SYMBOL_GPL(dm_device_name);
2390 
2391 static void __dm_destroy(struct mapped_device *md, bool wait)
2392 {
2393 	struct dm_table *map;
2394 	int srcu_idx;
2395 
2396 	might_sleep();
2397 
2398 	spin_lock(&_minor_lock);
2399 	map = dm_get_live_table(md, &srcu_idx);
2400 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2401 	set_bit(DMF_FREEING, &md->flags);
2402 	spin_unlock(&_minor_lock);
2403 
2404 	if (!dm_suspended_md(md)) {
2405 		dm_table_presuspend_targets(map);
2406 		dm_table_postsuspend_targets(map);
2407 	}
2408 
2409 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2410 	dm_put_live_table(md, srcu_idx);
2411 
2412 	/*
2413 	 * Rare, but there may be I/O requests still going to complete,
2414 	 * for example.  Wait for all references to disappear.
2415 	 * No one should increment the reference count of the mapped_device,
2416 	 * after the mapped_device state becomes DMF_FREEING.
2417 	 */
2418 	if (wait)
2419 		while (atomic_read(&md->holders))
2420 			msleep(1);
2421 	else if (atomic_read(&md->holders))
2422 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2423 		       dm_device_name(md), atomic_read(&md->holders));
2424 
2425 	dm_sysfs_exit(md);
2426 	dm_table_destroy(__unbind(md));
2427 	free_dev(md);
2428 }
2429 
2430 void dm_destroy(struct mapped_device *md)
2431 {
2432 	__dm_destroy(md, true);
2433 }
2434 
2435 void dm_destroy_immediate(struct mapped_device *md)
2436 {
2437 	__dm_destroy(md, false);
2438 }
2439 
2440 void dm_put(struct mapped_device *md)
2441 {
2442 	atomic_dec(&md->holders);
2443 }
2444 EXPORT_SYMBOL_GPL(dm_put);
2445 
2446 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2447 {
2448 	int r = 0;
2449 	DECLARE_WAITQUEUE(wait, current);
2450 
2451 	add_wait_queue(&md->wait, &wait);
2452 
2453 	while (1) {
2454 		set_current_state(interruptible);
2455 
2456 		if (!md_in_flight(md))
2457 			break;
2458 
2459 		if (interruptible == TASK_INTERRUPTIBLE &&
2460 		    signal_pending(current)) {
2461 			r = -EINTR;
2462 			break;
2463 		}
2464 
2465 		io_schedule();
2466 	}
2467 	set_current_state(TASK_RUNNING);
2468 
2469 	remove_wait_queue(&md->wait, &wait);
2470 
2471 	return r;
2472 }
2473 
2474 /*
2475  * Process the deferred bios
2476  */
2477 static void dm_wq_work(struct work_struct *work)
2478 {
2479 	struct mapped_device *md = container_of(work, struct mapped_device,
2480 						work);
2481 	struct bio *c;
2482 	int srcu_idx;
2483 	struct dm_table *map;
2484 
2485 	map = dm_get_live_table(md, &srcu_idx);
2486 
2487 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2488 		spin_lock_irq(&md->deferred_lock);
2489 		c = bio_list_pop(&md->deferred);
2490 		spin_unlock_irq(&md->deferred_lock);
2491 
2492 		if (!c)
2493 			break;
2494 
2495 		if (dm_request_based(md))
2496 			generic_make_request(c);
2497 		else
2498 			__split_and_process_bio(md, map, c);
2499 	}
2500 
2501 	dm_put_live_table(md, srcu_idx);
2502 }
2503 
2504 static void dm_queue_flush(struct mapped_device *md)
2505 {
2506 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2507 	smp_mb__after_atomic();
2508 	queue_work(md->wq, &md->work);
2509 }
2510 
2511 /*
2512  * Swap in a new table, returning the old one for the caller to destroy.
2513  */
2514 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2515 {
2516 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2517 	struct queue_limits limits;
2518 	int r;
2519 
2520 	mutex_lock(&md->suspend_lock);
2521 
2522 	/* device must be suspended */
2523 	if (!dm_suspended_md(md))
2524 		goto out;
2525 
2526 	/*
2527 	 * If the new table has no data devices, retain the existing limits.
2528 	 * This helps multipath with queue_if_no_path if all paths disappear,
2529 	 * then new I/O is queued based on these limits, and then some paths
2530 	 * reappear.
2531 	 */
2532 	if (dm_table_has_no_data_devices(table)) {
2533 		live_map = dm_get_live_table_fast(md);
2534 		if (live_map)
2535 			limits = md->queue->limits;
2536 		dm_put_live_table_fast(md);
2537 	}
2538 
2539 	if (!live_map) {
2540 		r = dm_calculate_queue_limits(table, &limits);
2541 		if (r) {
2542 			map = ERR_PTR(r);
2543 			goto out;
2544 		}
2545 	}
2546 
2547 	map = __bind(md, table, &limits);
2548 
2549 out:
2550 	mutex_unlock(&md->suspend_lock);
2551 	return map;
2552 }
2553 
2554 /*
2555  * Functions to lock and unlock any filesystem running on the
2556  * device.
2557  */
2558 static int lock_fs(struct mapped_device *md)
2559 {
2560 	int r;
2561 
2562 	WARN_ON(md->frozen_sb);
2563 
2564 	md->frozen_sb = freeze_bdev(md->bdev);
2565 	if (IS_ERR(md->frozen_sb)) {
2566 		r = PTR_ERR(md->frozen_sb);
2567 		md->frozen_sb = NULL;
2568 		return r;
2569 	}
2570 
2571 	set_bit(DMF_FROZEN, &md->flags);
2572 
2573 	return 0;
2574 }
2575 
2576 static void unlock_fs(struct mapped_device *md)
2577 {
2578 	if (!test_bit(DMF_FROZEN, &md->flags))
2579 		return;
2580 
2581 	thaw_bdev(md->bdev, md->frozen_sb);
2582 	md->frozen_sb = NULL;
2583 	clear_bit(DMF_FROZEN, &md->flags);
2584 }
2585 
2586 /*
2587  * We need to be able to change a mapping table under a mounted
2588  * filesystem.  For example we might want to move some data in
2589  * the background.  Before the table can be swapped with
2590  * dm_bind_table, dm_suspend must be called to flush any in
2591  * flight bios and ensure that any further io gets deferred.
2592  */
2593 /*
2594  * Suspend mechanism in request-based dm.
2595  *
2596  * 1. Flush all I/Os by lock_fs() if needed.
2597  * 2. Stop dispatching any I/O by stopping the request_queue.
2598  * 3. Wait for all in-flight I/Os to be completed or requeued.
2599  *
2600  * To abort suspend, start the request_queue.
2601  */
2602 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2603 {
2604 	struct dm_table *map = NULL;
2605 	int r = 0;
2606 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2607 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2608 
2609 	mutex_lock(&md->suspend_lock);
2610 
2611 	if (dm_suspended_md(md)) {
2612 		r = -EINVAL;
2613 		goto out_unlock;
2614 	}
2615 
2616 	map = md->map;
2617 
2618 	/*
2619 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2620 	 * This flag is cleared before dm_suspend returns.
2621 	 */
2622 	if (noflush)
2623 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2624 
2625 	/* This does not get reverted if there's an error later. */
2626 	dm_table_presuspend_targets(map);
2627 
2628 	/*
2629 	 * Flush I/O to the device.
2630 	 * Any I/O submitted after lock_fs() may not be flushed.
2631 	 * noflush takes precedence over do_lockfs.
2632 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2633 	 */
2634 	if (!noflush && do_lockfs) {
2635 		r = lock_fs(md);
2636 		if (r)
2637 			goto out_unlock;
2638 	}
2639 
2640 	/*
2641 	 * Here we must make sure that no processes are submitting requests
2642 	 * to target drivers i.e. no one may be executing
2643 	 * __split_and_process_bio. This is called from dm_request and
2644 	 * dm_wq_work.
2645 	 *
2646 	 * To get all processes out of __split_and_process_bio in dm_request,
2647 	 * we take the write lock. To prevent any process from reentering
2648 	 * __split_and_process_bio from dm_request and quiesce the thread
2649 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2650 	 * flush_workqueue(md->wq).
2651 	 */
2652 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2653 	synchronize_srcu(&md->io_barrier);
2654 
2655 	/*
2656 	 * Stop md->queue before flushing md->wq in case request-based
2657 	 * dm defers requests to md->wq from md->queue.
2658 	 */
2659 	if (dm_request_based(md))
2660 		stop_queue(md->queue);
2661 
2662 	flush_workqueue(md->wq);
2663 
2664 	/*
2665 	 * At this point no more requests are entering target request routines.
2666 	 * We call dm_wait_for_completion to wait for all existing requests
2667 	 * to finish.
2668 	 */
2669 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2670 
2671 	if (noflush)
2672 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2673 	synchronize_srcu(&md->io_barrier);
2674 
2675 	/* were we interrupted ? */
2676 	if (r < 0) {
2677 		dm_queue_flush(md);
2678 
2679 		if (dm_request_based(md))
2680 			start_queue(md->queue);
2681 
2682 		unlock_fs(md);
2683 		goto out_unlock; /* pushback list is already flushed, so skip flush */
2684 	}
2685 
2686 	/*
2687 	 * If dm_wait_for_completion returned 0, the device is completely
2688 	 * quiescent now. There is no request-processing activity. All new
2689 	 * requests are being added to md->deferred list.
2690 	 */
2691 
2692 	set_bit(DMF_SUSPENDED, &md->flags);
2693 
2694 	dm_table_postsuspend_targets(map);
2695 
2696 out_unlock:
2697 	mutex_unlock(&md->suspend_lock);
2698 	return r;
2699 }
2700 
2701 int dm_resume(struct mapped_device *md)
2702 {
2703 	int r = -EINVAL;
2704 	struct dm_table *map = NULL;
2705 
2706 	mutex_lock(&md->suspend_lock);
2707 	if (!dm_suspended_md(md))
2708 		goto out;
2709 
2710 	map = md->map;
2711 	if (!map || !dm_table_get_size(map))
2712 		goto out;
2713 
2714 	r = dm_table_resume_targets(map);
2715 	if (r)
2716 		goto out;
2717 
2718 	dm_queue_flush(md);
2719 
2720 	/*
2721 	 * Flushing deferred I/Os must be done after targets are resumed
2722 	 * so that mapping of targets can work correctly.
2723 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2724 	 */
2725 	if (dm_request_based(md))
2726 		start_queue(md->queue);
2727 
2728 	unlock_fs(md);
2729 
2730 	clear_bit(DMF_SUSPENDED, &md->flags);
2731 
2732 	r = 0;
2733 out:
2734 	mutex_unlock(&md->suspend_lock);
2735 
2736 	return r;
2737 }
2738 
2739 /*
2740  * Internal suspend/resume works like userspace-driven suspend. It waits
2741  * until all bios finish and prevents issuing new bios to the target drivers.
2742  * It may be used only from the kernel.
2743  *
2744  * Internal suspend holds md->suspend_lock, which prevents interaction with
2745  * userspace-driven suspend.
2746  */
2747 
2748 void dm_internal_suspend(struct mapped_device *md)
2749 {
2750 	mutex_lock(&md->suspend_lock);
2751 	if (dm_suspended_md(md))
2752 		return;
2753 
2754 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2755 	synchronize_srcu(&md->io_barrier);
2756 	flush_workqueue(md->wq);
2757 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2758 }
2759 
2760 void dm_internal_resume(struct mapped_device *md)
2761 {
2762 	if (dm_suspended_md(md))
2763 		goto done;
2764 
2765 	dm_queue_flush(md);
2766 
2767 done:
2768 	mutex_unlock(&md->suspend_lock);
2769 }
2770 
2771 /*-----------------------------------------------------------------
2772  * Event notification.
2773  *---------------------------------------------------------------*/
2774 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2775 		       unsigned cookie)
2776 {
2777 	char udev_cookie[DM_COOKIE_LENGTH];
2778 	char *envp[] = { udev_cookie, NULL };
2779 
2780 	if (!cookie)
2781 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2782 	else {
2783 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2784 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2785 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2786 					  action, envp);
2787 	}
2788 }
2789 
2790 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2791 {
2792 	return atomic_add_return(1, &md->uevent_seq);
2793 }
2794 
2795 uint32_t dm_get_event_nr(struct mapped_device *md)
2796 {
2797 	return atomic_read(&md->event_nr);
2798 }
2799 
2800 int dm_wait_event(struct mapped_device *md, int event_nr)
2801 {
2802 	return wait_event_interruptible(md->eventq,
2803 			(event_nr != atomic_read(&md->event_nr)));
2804 }
2805 
2806 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2807 {
2808 	unsigned long flags;
2809 
2810 	spin_lock_irqsave(&md->uevent_lock, flags);
2811 	list_add(elist, &md->uevent_list);
2812 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2813 }
2814 
2815 /*
2816  * The gendisk is only valid as long as you have a reference
2817  * count on 'md'.
2818  */
2819 struct gendisk *dm_disk(struct mapped_device *md)
2820 {
2821 	return md->disk;
2822 }
2823 
2824 struct kobject *dm_kobject(struct mapped_device *md)
2825 {
2826 	return &md->kobj_holder.kobj;
2827 }
2828 
2829 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2830 {
2831 	struct mapped_device *md;
2832 
2833 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2834 
2835 	if (test_bit(DMF_FREEING, &md->flags) ||
2836 	    dm_deleting_md(md))
2837 		return NULL;
2838 
2839 	dm_get(md);
2840 	return md;
2841 }
2842 
2843 int dm_suspended_md(struct mapped_device *md)
2844 {
2845 	return test_bit(DMF_SUSPENDED, &md->flags);
2846 }
2847 
2848 int dm_test_deferred_remove_flag(struct mapped_device *md)
2849 {
2850 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2851 }
2852 
2853 int dm_suspended(struct dm_target *ti)
2854 {
2855 	return dm_suspended_md(dm_table_get_md(ti->table));
2856 }
2857 EXPORT_SYMBOL_GPL(dm_suspended);
2858 
2859 int dm_noflush_suspending(struct dm_target *ti)
2860 {
2861 	return __noflush_suspending(dm_table_get_md(ti->table));
2862 }
2863 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2864 
2865 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2866 {
2867 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2868 	struct kmem_cache *cachep;
2869 	unsigned int pool_size;
2870 	unsigned int front_pad;
2871 
2872 	if (!pools)
2873 		return NULL;
2874 
2875 	if (type == DM_TYPE_BIO_BASED) {
2876 		cachep = _io_cache;
2877 		pool_size = dm_get_reserved_bio_based_ios();
2878 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2879 	} else if (type == DM_TYPE_REQUEST_BASED) {
2880 		cachep = _rq_tio_cache;
2881 		pool_size = dm_get_reserved_rq_based_ios();
2882 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2883 		/* per_bio_data_size is not used. See __bind_mempools(). */
2884 		WARN_ON(per_bio_data_size != 0);
2885 	} else
2886 		goto out;
2887 
2888 	pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2889 	if (!pools->io_pool)
2890 		goto out;
2891 
2892 	pools->bs = bioset_create(pool_size, front_pad);
2893 	if (!pools->bs)
2894 		goto out;
2895 
2896 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2897 		goto out;
2898 
2899 	return pools;
2900 
2901 out:
2902 	dm_free_md_mempools(pools);
2903 
2904 	return NULL;
2905 }
2906 
2907 void dm_free_md_mempools(struct dm_md_mempools *pools)
2908 {
2909 	if (!pools)
2910 		return;
2911 
2912 	if (pools->io_pool)
2913 		mempool_destroy(pools->io_pool);
2914 
2915 	if (pools->bs)
2916 		bioset_free(pools->bs);
2917 
2918 	kfree(pools);
2919 }
2920 
2921 static const struct block_device_operations dm_blk_dops = {
2922 	.open = dm_blk_open,
2923 	.release = dm_blk_close,
2924 	.ioctl = dm_blk_ioctl,
2925 	.getgeo = dm_blk_getgeo,
2926 	.owner = THIS_MODULE
2927 };
2928 
2929 /*
2930  * module hooks
2931  */
2932 module_init(dm_init);
2933 module_exit(dm_exit);
2934 
2935 module_param(major, uint, 0);
2936 MODULE_PARM_DESC(major, "The major number of the device mapper");
2937 
2938 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2939 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2940 
2941 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
2942 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
2943 
2944 MODULE_DESCRIPTION(DM_NAME " driver");
2945 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2946 MODULE_LICENSE("GPL");
2947