xref: /openbmc/linux/drivers/md/dm.c (revision a86854d0)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set bs;
152 	struct bio_set io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
163 
164 /*
165  * Bio-based DM's mempools' reserved IOs set by the user.
166  */
167 #define RESERVED_BIO_BASED_IOS		16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169 
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 {
172 	int param = READ_ONCE(*module_param);
173 	int modified_param = 0;
174 	bool modified = true;
175 
176 	if (param < min)
177 		modified_param = min;
178 	else if (param > max)
179 		modified_param = max;
180 	else
181 		modified = false;
182 
183 	if (modified) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned __dm_get_module_param(unsigned *module_param,
192 			       unsigned def, unsigned max)
193 {
194 	unsigned param = READ_ONCE(*module_param);
195 	unsigned modified_param = 0;
196 
197 	if (!param)
198 		modified_param = def;
199 	else if (param > max)
200 		modified_param = max;
201 
202 	if (modified_param) {
203 		(void)cmpxchg(module_param, param, modified_param);
204 		param = modified_param;
205 	}
206 
207 	return param;
208 }
209 
210 unsigned dm_get_reserved_bio_based_ios(void)
211 {
212 	return __dm_get_module_param(&reserved_bio_based_ios,
213 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 }
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216 
217 static unsigned dm_get_numa_node(void)
218 {
219 	return __dm_get_module_param_int(&dm_numa_node,
220 					 DM_NUMA_NODE, num_online_nodes() - 1);
221 }
222 
223 static int __init local_init(void)
224 {
225 	int r = -ENOMEM;
226 
227 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 	if (!_rq_tio_cache)
229 		return r;
230 
231 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 				      __alignof__(struct request), 0, NULL);
233 	if (!_rq_cache)
234 		goto out_free_rq_tio_cache;
235 
236 	r = dm_uevent_init();
237 	if (r)
238 		goto out_free_rq_cache;
239 
240 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 	if (!deferred_remove_workqueue) {
242 		r = -ENOMEM;
243 		goto out_uevent_exit;
244 	}
245 
246 	_major = major;
247 	r = register_blkdev(_major, _name);
248 	if (r < 0)
249 		goto out_free_workqueue;
250 
251 	if (!_major)
252 		_major = r;
253 
254 	return 0;
255 
256 out_free_workqueue:
257 	destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 	dm_uevent_exit();
260 out_free_rq_cache:
261 	kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 	kmem_cache_destroy(_rq_tio_cache);
264 
265 	return r;
266 }
267 
268 static void local_exit(void)
269 {
270 	flush_scheduled_work();
271 	destroy_workqueue(deferred_remove_workqueue);
272 
273 	kmem_cache_destroy(_rq_cache);
274 	kmem_cache_destroy(_rq_tio_cache);
275 	unregister_blkdev(_major, _name);
276 	dm_uevent_exit();
277 
278 	_major = 0;
279 
280 	DMINFO("cleaned up");
281 }
282 
283 static int (*_inits[])(void) __initdata = {
284 	local_init,
285 	dm_target_init,
286 	dm_linear_init,
287 	dm_stripe_init,
288 	dm_io_init,
289 	dm_kcopyd_init,
290 	dm_interface_init,
291 	dm_statistics_init,
292 };
293 
294 static void (*_exits[])(void) = {
295 	local_exit,
296 	dm_target_exit,
297 	dm_linear_exit,
298 	dm_stripe_exit,
299 	dm_io_exit,
300 	dm_kcopyd_exit,
301 	dm_interface_exit,
302 	dm_statistics_exit,
303 };
304 
305 static int __init dm_init(void)
306 {
307 	const int count = ARRAY_SIZE(_inits);
308 
309 	int r, i;
310 
311 	for (i = 0; i < count; i++) {
312 		r = _inits[i]();
313 		if (r)
314 			goto bad;
315 	}
316 
317 	return 0;
318 
319       bad:
320 	while (i--)
321 		_exits[i]();
322 
323 	return r;
324 }
325 
326 static void __exit dm_exit(void)
327 {
328 	int i = ARRAY_SIZE(_exits);
329 
330 	while (i--)
331 		_exits[i]();
332 
333 	/*
334 	 * Should be empty by this point.
335 	 */
336 	idr_destroy(&_minor_idr);
337 }
338 
339 /*
340  * Block device functions
341  */
342 int dm_deleting_md(struct mapped_device *md)
343 {
344 	return test_bit(DMF_DELETING, &md->flags);
345 }
346 
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348 {
349 	struct mapped_device *md;
350 
351 	spin_lock(&_minor_lock);
352 
353 	md = bdev->bd_disk->private_data;
354 	if (!md)
355 		goto out;
356 
357 	if (test_bit(DMF_FREEING, &md->flags) ||
358 	    dm_deleting_md(md)) {
359 		md = NULL;
360 		goto out;
361 	}
362 
363 	dm_get(md);
364 	atomic_inc(&md->open_count);
365 out:
366 	spin_unlock(&_minor_lock);
367 
368 	return md ? 0 : -ENXIO;
369 }
370 
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372 {
373 	struct mapped_device *md;
374 
375 	spin_lock(&_minor_lock);
376 
377 	md = disk->private_data;
378 	if (WARN_ON(!md))
379 		goto out;
380 
381 	if (atomic_dec_and_test(&md->open_count) &&
382 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
384 
385 	dm_put(md);
386 out:
387 	spin_unlock(&_minor_lock);
388 }
389 
390 int dm_open_count(struct mapped_device *md)
391 {
392 	return atomic_read(&md->open_count);
393 }
394 
395 /*
396  * Guarantees nothing is using the device before it's deleted.
397  */
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399 {
400 	int r = 0;
401 
402 	spin_lock(&_minor_lock);
403 
404 	if (dm_open_count(md)) {
405 		r = -EBUSY;
406 		if (mark_deferred)
407 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 		r = -EEXIST;
410 	else
411 		set_bit(DMF_DELETING, &md->flags);
412 
413 	spin_unlock(&_minor_lock);
414 
415 	return r;
416 }
417 
418 int dm_cancel_deferred_remove(struct mapped_device *md)
419 {
420 	int r = 0;
421 
422 	spin_lock(&_minor_lock);
423 
424 	if (test_bit(DMF_DELETING, &md->flags))
425 		r = -EBUSY;
426 	else
427 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428 
429 	spin_unlock(&_minor_lock);
430 
431 	return r;
432 }
433 
434 static void do_deferred_remove(struct work_struct *w)
435 {
436 	dm_deferred_remove();
437 }
438 
439 sector_t dm_get_size(struct mapped_device *md)
440 {
441 	return get_capacity(md->disk);
442 }
443 
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
445 {
446 	return md->queue;
447 }
448 
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
450 {
451 	return &md->stats;
452 }
453 
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455 {
456 	struct mapped_device *md = bdev->bd_disk->private_data;
457 
458 	return dm_get_geometry(md, geo);
459 }
460 
461 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
462 			    struct block_device **bdev)
463 	__acquires(md->io_barrier)
464 {
465 	struct dm_target *tgt;
466 	struct dm_table *map;
467 	int r;
468 
469 retry:
470 	r = -ENOTTY;
471 	map = dm_get_live_table(md, srcu_idx);
472 	if (!map || !dm_table_get_size(map))
473 		return r;
474 
475 	/* We only support devices that have a single target */
476 	if (dm_table_get_num_targets(map) != 1)
477 		return r;
478 
479 	tgt = dm_table_get_target(map, 0);
480 	if (!tgt->type->prepare_ioctl)
481 		return r;
482 
483 	if (dm_suspended_md(md))
484 		return -EAGAIN;
485 
486 	r = tgt->type->prepare_ioctl(tgt, bdev);
487 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
488 		dm_put_live_table(md, *srcu_idx);
489 		msleep(10);
490 		goto retry;
491 	}
492 
493 	return r;
494 }
495 
496 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
497 	__releases(md->io_barrier)
498 {
499 	dm_put_live_table(md, srcu_idx);
500 }
501 
502 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
503 			unsigned int cmd, unsigned long arg)
504 {
505 	struct mapped_device *md = bdev->bd_disk->private_data;
506 	int r, srcu_idx;
507 
508 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
509 	if (r < 0)
510 		goto out;
511 
512 	if (r > 0) {
513 		/*
514 		 * Target determined this ioctl is being issued against a
515 		 * subset of the parent bdev; require extra privileges.
516 		 */
517 		if (!capable(CAP_SYS_RAWIO)) {
518 			DMWARN_LIMIT(
519 	"%s: sending ioctl %x to DM device without required privilege.",
520 				current->comm, cmd);
521 			r = -ENOIOCTLCMD;
522 			goto out;
523 		}
524 	}
525 
526 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
527 out:
528 	dm_unprepare_ioctl(md, srcu_idx);
529 	return r;
530 }
531 
532 static void start_io_acct(struct dm_io *io);
533 
534 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
535 {
536 	struct dm_io *io;
537 	struct dm_target_io *tio;
538 	struct bio *clone;
539 
540 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
541 	if (!clone)
542 		return NULL;
543 
544 	tio = container_of(clone, struct dm_target_io, clone);
545 	tio->inside_dm_io = true;
546 	tio->io = NULL;
547 
548 	io = container_of(tio, struct dm_io, tio);
549 	io->magic = DM_IO_MAGIC;
550 	io->status = 0;
551 	atomic_set(&io->io_count, 1);
552 	io->orig_bio = bio;
553 	io->md = md;
554 	spin_lock_init(&io->endio_lock);
555 
556 	start_io_acct(io);
557 
558 	return io;
559 }
560 
561 static void free_io(struct mapped_device *md, struct dm_io *io)
562 {
563 	bio_put(&io->tio.clone);
564 }
565 
566 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
567 				      unsigned target_bio_nr, gfp_t gfp_mask)
568 {
569 	struct dm_target_io *tio;
570 
571 	if (!ci->io->tio.io) {
572 		/* the dm_target_io embedded in ci->io is available */
573 		tio = &ci->io->tio;
574 	} else {
575 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
576 		if (!clone)
577 			return NULL;
578 
579 		tio = container_of(clone, struct dm_target_io, clone);
580 		tio->inside_dm_io = false;
581 	}
582 
583 	tio->magic = DM_TIO_MAGIC;
584 	tio->io = ci->io;
585 	tio->ti = ti;
586 	tio->target_bio_nr = target_bio_nr;
587 
588 	return tio;
589 }
590 
591 static void free_tio(struct dm_target_io *tio)
592 {
593 	if (tio->inside_dm_io)
594 		return;
595 	bio_put(&tio->clone);
596 }
597 
598 int md_in_flight(struct mapped_device *md)
599 {
600 	return atomic_read(&md->pending[READ]) +
601 	       atomic_read(&md->pending[WRITE]);
602 }
603 
604 static void start_io_acct(struct dm_io *io)
605 {
606 	struct mapped_device *md = io->md;
607 	struct bio *bio = io->orig_bio;
608 	int rw = bio_data_dir(bio);
609 
610 	io->start_time = jiffies;
611 
612 	generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
613 
614 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
615 		   atomic_inc_return(&md->pending[rw]));
616 
617 	if (unlikely(dm_stats_used(&md->stats)))
618 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
619 				    bio->bi_iter.bi_sector, bio_sectors(bio),
620 				    false, 0, &io->stats_aux);
621 }
622 
623 static void end_io_acct(struct dm_io *io)
624 {
625 	struct mapped_device *md = io->md;
626 	struct bio *bio = io->orig_bio;
627 	unsigned long duration = jiffies - io->start_time;
628 	int pending;
629 	int rw = bio_data_dir(bio);
630 
631 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
632 
633 	if (unlikely(dm_stats_used(&md->stats)))
634 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
635 				    bio->bi_iter.bi_sector, bio_sectors(bio),
636 				    true, duration, &io->stats_aux);
637 
638 	/*
639 	 * After this is decremented the bio must not be touched if it is
640 	 * a flush.
641 	 */
642 	pending = atomic_dec_return(&md->pending[rw]);
643 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
644 	pending += atomic_read(&md->pending[rw^0x1]);
645 
646 	/* nudge anyone waiting on suspend queue */
647 	if (!pending)
648 		wake_up(&md->wait);
649 }
650 
651 /*
652  * Add the bio to the list of deferred io.
653  */
654 static void queue_io(struct mapped_device *md, struct bio *bio)
655 {
656 	unsigned long flags;
657 
658 	spin_lock_irqsave(&md->deferred_lock, flags);
659 	bio_list_add(&md->deferred, bio);
660 	spin_unlock_irqrestore(&md->deferred_lock, flags);
661 	queue_work(md->wq, &md->work);
662 }
663 
664 /*
665  * Everyone (including functions in this file), should use this
666  * function to access the md->map field, and make sure they call
667  * dm_put_live_table() when finished.
668  */
669 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
670 {
671 	*srcu_idx = srcu_read_lock(&md->io_barrier);
672 
673 	return srcu_dereference(md->map, &md->io_barrier);
674 }
675 
676 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
677 {
678 	srcu_read_unlock(&md->io_barrier, srcu_idx);
679 }
680 
681 void dm_sync_table(struct mapped_device *md)
682 {
683 	synchronize_srcu(&md->io_barrier);
684 	synchronize_rcu_expedited();
685 }
686 
687 /*
688  * A fast alternative to dm_get_live_table/dm_put_live_table.
689  * The caller must not block between these two functions.
690  */
691 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
692 {
693 	rcu_read_lock();
694 	return rcu_dereference(md->map);
695 }
696 
697 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
698 {
699 	rcu_read_unlock();
700 }
701 
702 static char *_dm_claim_ptr = "I belong to device-mapper";
703 
704 /*
705  * Open a table device so we can use it as a map destination.
706  */
707 static int open_table_device(struct table_device *td, dev_t dev,
708 			     struct mapped_device *md)
709 {
710 	struct block_device *bdev;
711 
712 	int r;
713 
714 	BUG_ON(td->dm_dev.bdev);
715 
716 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
717 	if (IS_ERR(bdev))
718 		return PTR_ERR(bdev);
719 
720 	r = bd_link_disk_holder(bdev, dm_disk(md));
721 	if (r) {
722 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
723 		return r;
724 	}
725 
726 	td->dm_dev.bdev = bdev;
727 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
728 	return 0;
729 }
730 
731 /*
732  * Close a table device that we've been using.
733  */
734 static void close_table_device(struct table_device *td, struct mapped_device *md)
735 {
736 	if (!td->dm_dev.bdev)
737 		return;
738 
739 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
740 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
741 	put_dax(td->dm_dev.dax_dev);
742 	td->dm_dev.bdev = NULL;
743 	td->dm_dev.dax_dev = NULL;
744 }
745 
746 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
747 					      fmode_t mode) {
748 	struct table_device *td;
749 
750 	list_for_each_entry(td, l, list)
751 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
752 			return td;
753 
754 	return NULL;
755 }
756 
757 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
758 			struct dm_dev **result) {
759 	int r;
760 	struct table_device *td;
761 
762 	mutex_lock(&md->table_devices_lock);
763 	td = find_table_device(&md->table_devices, dev, mode);
764 	if (!td) {
765 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
766 		if (!td) {
767 			mutex_unlock(&md->table_devices_lock);
768 			return -ENOMEM;
769 		}
770 
771 		td->dm_dev.mode = mode;
772 		td->dm_dev.bdev = NULL;
773 
774 		if ((r = open_table_device(td, dev, md))) {
775 			mutex_unlock(&md->table_devices_lock);
776 			kfree(td);
777 			return r;
778 		}
779 
780 		format_dev_t(td->dm_dev.name, dev);
781 
782 		refcount_set(&td->count, 1);
783 		list_add(&td->list, &md->table_devices);
784 	} else {
785 		refcount_inc(&td->count);
786 	}
787 	mutex_unlock(&md->table_devices_lock);
788 
789 	*result = &td->dm_dev;
790 	return 0;
791 }
792 EXPORT_SYMBOL_GPL(dm_get_table_device);
793 
794 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
795 {
796 	struct table_device *td = container_of(d, struct table_device, dm_dev);
797 
798 	mutex_lock(&md->table_devices_lock);
799 	if (refcount_dec_and_test(&td->count)) {
800 		close_table_device(td, md);
801 		list_del(&td->list);
802 		kfree(td);
803 	}
804 	mutex_unlock(&md->table_devices_lock);
805 }
806 EXPORT_SYMBOL(dm_put_table_device);
807 
808 static void free_table_devices(struct list_head *devices)
809 {
810 	struct list_head *tmp, *next;
811 
812 	list_for_each_safe(tmp, next, devices) {
813 		struct table_device *td = list_entry(tmp, struct table_device, list);
814 
815 		DMWARN("dm_destroy: %s still exists with %d references",
816 		       td->dm_dev.name, refcount_read(&td->count));
817 		kfree(td);
818 	}
819 }
820 
821 /*
822  * Get the geometry associated with a dm device
823  */
824 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
825 {
826 	*geo = md->geometry;
827 
828 	return 0;
829 }
830 
831 /*
832  * Set the geometry of a device.
833  */
834 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
835 {
836 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
837 
838 	if (geo->start > sz) {
839 		DMWARN("Start sector is beyond the geometry limits.");
840 		return -EINVAL;
841 	}
842 
843 	md->geometry = *geo;
844 
845 	return 0;
846 }
847 
848 static int __noflush_suspending(struct mapped_device *md)
849 {
850 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
851 }
852 
853 /*
854  * Decrements the number of outstanding ios that a bio has been
855  * cloned into, completing the original io if necc.
856  */
857 static void dec_pending(struct dm_io *io, blk_status_t error)
858 {
859 	unsigned long flags;
860 	blk_status_t io_error;
861 	struct bio *bio;
862 	struct mapped_device *md = io->md;
863 
864 	/* Push-back supersedes any I/O errors */
865 	if (unlikely(error)) {
866 		spin_lock_irqsave(&io->endio_lock, flags);
867 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
868 			io->status = error;
869 		spin_unlock_irqrestore(&io->endio_lock, flags);
870 	}
871 
872 	if (atomic_dec_and_test(&io->io_count)) {
873 		if (io->status == BLK_STS_DM_REQUEUE) {
874 			/*
875 			 * Target requested pushing back the I/O.
876 			 */
877 			spin_lock_irqsave(&md->deferred_lock, flags);
878 			if (__noflush_suspending(md))
879 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
880 				bio_list_add_head(&md->deferred, io->orig_bio);
881 			else
882 				/* noflush suspend was interrupted. */
883 				io->status = BLK_STS_IOERR;
884 			spin_unlock_irqrestore(&md->deferred_lock, flags);
885 		}
886 
887 		io_error = io->status;
888 		bio = io->orig_bio;
889 		end_io_acct(io);
890 		free_io(md, io);
891 
892 		if (io_error == BLK_STS_DM_REQUEUE)
893 			return;
894 
895 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
896 			/*
897 			 * Preflush done for flush with data, reissue
898 			 * without REQ_PREFLUSH.
899 			 */
900 			bio->bi_opf &= ~REQ_PREFLUSH;
901 			queue_io(md, bio);
902 		} else {
903 			/* done with normal IO or empty flush */
904 			if (io_error)
905 				bio->bi_status = io_error;
906 			bio_endio(bio);
907 		}
908 	}
909 }
910 
911 void disable_write_same(struct mapped_device *md)
912 {
913 	struct queue_limits *limits = dm_get_queue_limits(md);
914 
915 	/* device doesn't really support WRITE SAME, disable it */
916 	limits->max_write_same_sectors = 0;
917 }
918 
919 void disable_write_zeroes(struct mapped_device *md)
920 {
921 	struct queue_limits *limits = dm_get_queue_limits(md);
922 
923 	/* device doesn't really support WRITE ZEROES, disable it */
924 	limits->max_write_zeroes_sectors = 0;
925 }
926 
927 static void clone_endio(struct bio *bio)
928 {
929 	blk_status_t error = bio->bi_status;
930 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
931 	struct dm_io *io = tio->io;
932 	struct mapped_device *md = tio->io->md;
933 	dm_endio_fn endio = tio->ti->type->end_io;
934 
935 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
936 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
937 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
938 			disable_write_same(md);
939 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
940 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
941 			disable_write_zeroes(md);
942 	}
943 
944 	if (endio) {
945 		int r = endio(tio->ti, bio, &error);
946 		switch (r) {
947 		case DM_ENDIO_REQUEUE:
948 			error = BLK_STS_DM_REQUEUE;
949 			/*FALLTHRU*/
950 		case DM_ENDIO_DONE:
951 			break;
952 		case DM_ENDIO_INCOMPLETE:
953 			/* The target will handle the io */
954 			return;
955 		default:
956 			DMWARN("unimplemented target endio return value: %d", r);
957 			BUG();
958 		}
959 	}
960 
961 	free_tio(tio);
962 	dec_pending(io, error);
963 }
964 
965 /*
966  * Return maximum size of I/O possible at the supplied sector up to the current
967  * target boundary.
968  */
969 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
970 {
971 	sector_t target_offset = dm_target_offset(ti, sector);
972 
973 	return ti->len - target_offset;
974 }
975 
976 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
977 {
978 	sector_t len = max_io_len_target_boundary(sector, ti);
979 	sector_t offset, max_len;
980 
981 	/*
982 	 * Does the target need to split even further?
983 	 */
984 	if (ti->max_io_len) {
985 		offset = dm_target_offset(ti, sector);
986 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
987 			max_len = sector_div(offset, ti->max_io_len);
988 		else
989 			max_len = offset & (ti->max_io_len - 1);
990 		max_len = ti->max_io_len - max_len;
991 
992 		if (len > max_len)
993 			len = max_len;
994 	}
995 
996 	return len;
997 }
998 
999 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1000 {
1001 	if (len > UINT_MAX) {
1002 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1003 		      (unsigned long long)len, UINT_MAX);
1004 		ti->error = "Maximum size of target IO is too large";
1005 		return -EINVAL;
1006 	}
1007 
1008 	/*
1009 	 * BIO based queue uses its own splitting. When multipage bvecs
1010 	 * is switched on, size of the incoming bio may be too big to
1011 	 * be handled in some targets, such as crypt.
1012 	 *
1013 	 * When these targets are ready for the big bio, we can remove
1014 	 * the limit.
1015 	 */
1016 	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1017 
1018 	return 0;
1019 }
1020 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1021 
1022 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1023 						sector_t sector, int *srcu_idx)
1024 	__acquires(md->io_barrier)
1025 {
1026 	struct dm_table *map;
1027 	struct dm_target *ti;
1028 
1029 	map = dm_get_live_table(md, srcu_idx);
1030 	if (!map)
1031 		return NULL;
1032 
1033 	ti = dm_table_find_target(map, sector);
1034 	if (!dm_target_is_valid(ti))
1035 		return NULL;
1036 
1037 	return ti;
1038 }
1039 
1040 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1041 				 long nr_pages, void **kaddr, pfn_t *pfn)
1042 {
1043 	struct mapped_device *md = dax_get_private(dax_dev);
1044 	sector_t sector = pgoff * PAGE_SECTORS;
1045 	struct dm_target *ti;
1046 	long len, ret = -EIO;
1047 	int srcu_idx;
1048 
1049 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1050 
1051 	if (!ti)
1052 		goto out;
1053 	if (!ti->type->direct_access)
1054 		goto out;
1055 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1056 	if (len < 1)
1057 		goto out;
1058 	nr_pages = min(len, nr_pages);
1059 	if (ti->type->direct_access)
1060 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1061 
1062  out:
1063 	dm_put_live_table(md, srcu_idx);
1064 
1065 	return ret;
1066 }
1067 
1068 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1069 				    void *addr, size_t bytes, struct iov_iter *i)
1070 {
1071 	struct mapped_device *md = dax_get_private(dax_dev);
1072 	sector_t sector = pgoff * PAGE_SECTORS;
1073 	struct dm_target *ti;
1074 	long ret = 0;
1075 	int srcu_idx;
1076 
1077 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1078 
1079 	if (!ti)
1080 		goto out;
1081 	if (!ti->type->dax_copy_from_iter) {
1082 		ret = copy_from_iter(addr, bytes, i);
1083 		goto out;
1084 	}
1085 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1086  out:
1087 	dm_put_live_table(md, srcu_idx);
1088 
1089 	return ret;
1090 }
1091 
1092 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1093 		void *addr, size_t bytes, struct iov_iter *i)
1094 {
1095 	struct mapped_device *md = dax_get_private(dax_dev);
1096 	sector_t sector = pgoff * PAGE_SECTORS;
1097 	struct dm_target *ti;
1098 	long ret = 0;
1099 	int srcu_idx;
1100 
1101 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1102 
1103 	if (!ti)
1104 		goto out;
1105 	if (!ti->type->dax_copy_to_iter) {
1106 		ret = copy_to_iter(addr, bytes, i);
1107 		goto out;
1108 	}
1109 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1110  out:
1111 	dm_put_live_table(md, srcu_idx);
1112 
1113 	return ret;
1114 }
1115 
1116 /*
1117  * A target may call dm_accept_partial_bio only from the map routine.  It is
1118  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1119  *
1120  * dm_accept_partial_bio informs the dm that the target only wants to process
1121  * additional n_sectors sectors of the bio and the rest of the data should be
1122  * sent in a next bio.
1123  *
1124  * A diagram that explains the arithmetics:
1125  * +--------------------+---------------+-------+
1126  * |         1          |       2       |   3   |
1127  * +--------------------+---------------+-------+
1128  *
1129  * <-------------- *tio->len_ptr --------------->
1130  *                      <------- bi_size ------->
1131  *                      <-- n_sectors -->
1132  *
1133  * Region 1 was already iterated over with bio_advance or similar function.
1134  *	(it may be empty if the target doesn't use bio_advance)
1135  * Region 2 is the remaining bio size that the target wants to process.
1136  *	(it may be empty if region 1 is non-empty, although there is no reason
1137  *	 to make it empty)
1138  * The target requires that region 3 is to be sent in the next bio.
1139  *
1140  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1141  * the partially processed part (the sum of regions 1+2) must be the same for all
1142  * copies of the bio.
1143  */
1144 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1145 {
1146 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1147 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1148 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1149 	BUG_ON(bi_size > *tio->len_ptr);
1150 	BUG_ON(n_sectors > bi_size);
1151 	*tio->len_ptr -= bi_size - n_sectors;
1152 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1153 }
1154 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1155 
1156 /*
1157  * The zone descriptors obtained with a zone report indicate
1158  * zone positions within the target device. The zone descriptors
1159  * must be remapped to match their position within the dm device.
1160  * A target may call dm_remap_zone_report after completion of a
1161  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1162  * from the target device mapping to the dm device.
1163  */
1164 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1165 {
1166 #ifdef CONFIG_BLK_DEV_ZONED
1167 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1168 	struct bio *report_bio = tio->io->orig_bio;
1169 	struct blk_zone_report_hdr *hdr = NULL;
1170 	struct blk_zone *zone;
1171 	unsigned int nr_rep = 0;
1172 	unsigned int ofst;
1173 	struct bio_vec bvec;
1174 	struct bvec_iter iter;
1175 	void *addr;
1176 
1177 	if (bio->bi_status)
1178 		return;
1179 
1180 	/*
1181 	 * Remap the start sector of the reported zones. For sequential zones,
1182 	 * also remap the write pointer position.
1183 	 */
1184 	bio_for_each_segment(bvec, report_bio, iter) {
1185 		addr = kmap_atomic(bvec.bv_page);
1186 
1187 		/* Remember the report header in the first page */
1188 		if (!hdr) {
1189 			hdr = addr;
1190 			ofst = sizeof(struct blk_zone_report_hdr);
1191 		} else
1192 			ofst = 0;
1193 
1194 		/* Set zones start sector */
1195 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1196 			zone = addr + ofst;
1197 			if (zone->start >= start + ti->len) {
1198 				hdr->nr_zones = 0;
1199 				break;
1200 			}
1201 			zone->start = zone->start + ti->begin - start;
1202 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1203 				if (zone->cond == BLK_ZONE_COND_FULL)
1204 					zone->wp = zone->start + zone->len;
1205 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1206 					zone->wp = zone->start;
1207 				else
1208 					zone->wp = zone->wp + ti->begin - start;
1209 			}
1210 			ofst += sizeof(struct blk_zone);
1211 			hdr->nr_zones--;
1212 			nr_rep++;
1213 		}
1214 
1215 		if (addr != hdr)
1216 			kunmap_atomic(addr);
1217 
1218 		if (!hdr->nr_zones)
1219 			break;
1220 	}
1221 
1222 	if (hdr) {
1223 		hdr->nr_zones = nr_rep;
1224 		kunmap_atomic(hdr);
1225 	}
1226 
1227 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1228 
1229 #else /* !CONFIG_BLK_DEV_ZONED */
1230 	bio->bi_status = BLK_STS_NOTSUPP;
1231 #endif
1232 }
1233 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1234 
1235 static blk_qc_t __map_bio(struct dm_target_io *tio)
1236 {
1237 	int r;
1238 	sector_t sector;
1239 	struct bio *clone = &tio->clone;
1240 	struct dm_io *io = tio->io;
1241 	struct mapped_device *md = io->md;
1242 	struct dm_target *ti = tio->ti;
1243 	blk_qc_t ret = BLK_QC_T_NONE;
1244 
1245 	clone->bi_end_io = clone_endio;
1246 
1247 	/*
1248 	 * Map the clone.  If r == 0 we don't need to do
1249 	 * anything, the target has assumed ownership of
1250 	 * this io.
1251 	 */
1252 	atomic_inc(&io->io_count);
1253 	sector = clone->bi_iter.bi_sector;
1254 
1255 	r = ti->type->map(ti, clone);
1256 	switch (r) {
1257 	case DM_MAPIO_SUBMITTED:
1258 		break;
1259 	case DM_MAPIO_REMAPPED:
1260 		/* the bio has been remapped so dispatch it */
1261 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1262 				      bio_dev(io->orig_bio), sector);
1263 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1264 			ret = direct_make_request(clone);
1265 		else
1266 			ret = generic_make_request(clone);
1267 		break;
1268 	case DM_MAPIO_KILL:
1269 		free_tio(tio);
1270 		dec_pending(io, BLK_STS_IOERR);
1271 		break;
1272 	case DM_MAPIO_REQUEUE:
1273 		free_tio(tio);
1274 		dec_pending(io, BLK_STS_DM_REQUEUE);
1275 		break;
1276 	default:
1277 		DMWARN("unimplemented target map return value: %d", r);
1278 		BUG();
1279 	}
1280 
1281 	return ret;
1282 }
1283 
1284 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1285 {
1286 	bio->bi_iter.bi_sector = sector;
1287 	bio->bi_iter.bi_size = to_bytes(len);
1288 }
1289 
1290 /*
1291  * Creates a bio that consists of range of complete bvecs.
1292  */
1293 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1294 		     sector_t sector, unsigned len)
1295 {
1296 	struct bio *clone = &tio->clone;
1297 
1298 	__bio_clone_fast(clone, bio);
1299 
1300 	if (unlikely(bio_integrity(bio) != NULL)) {
1301 		int r;
1302 
1303 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1304 			     !dm_target_passes_integrity(tio->ti->type))) {
1305 			DMWARN("%s: the target %s doesn't support integrity data.",
1306 				dm_device_name(tio->io->md),
1307 				tio->ti->type->name);
1308 			return -EIO;
1309 		}
1310 
1311 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1312 		if (r < 0)
1313 			return r;
1314 	}
1315 
1316 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1317 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1318 	clone->bi_iter.bi_size = to_bytes(len);
1319 
1320 	if (unlikely(bio_integrity(bio) != NULL))
1321 		bio_integrity_trim(clone);
1322 
1323 	return 0;
1324 }
1325 
1326 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1327 				struct dm_target *ti, unsigned num_bios)
1328 {
1329 	struct dm_target_io *tio;
1330 	int try;
1331 
1332 	if (!num_bios)
1333 		return;
1334 
1335 	if (num_bios == 1) {
1336 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1337 		bio_list_add(blist, &tio->clone);
1338 		return;
1339 	}
1340 
1341 	for (try = 0; try < 2; try++) {
1342 		int bio_nr;
1343 		struct bio *bio;
1344 
1345 		if (try)
1346 			mutex_lock(&ci->io->md->table_devices_lock);
1347 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1348 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1349 			if (!tio)
1350 				break;
1351 
1352 			bio_list_add(blist, &tio->clone);
1353 		}
1354 		if (try)
1355 			mutex_unlock(&ci->io->md->table_devices_lock);
1356 		if (bio_nr == num_bios)
1357 			return;
1358 
1359 		while ((bio = bio_list_pop(blist))) {
1360 			tio = container_of(bio, struct dm_target_io, clone);
1361 			free_tio(tio);
1362 		}
1363 	}
1364 }
1365 
1366 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1367 					   struct dm_target_io *tio, unsigned *len)
1368 {
1369 	struct bio *clone = &tio->clone;
1370 
1371 	tio->len_ptr = len;
1372 
1373 	__bio_clone_fast(clone, ci->bio);
1374 	if (len)
1375 		bio_setup_sector(clone, ci->sector, *len);
1376 
1377 	return __map_bio(tio);
1378 }
1379 
1380 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1381 				  unsigned num_bios, unsigned *len)
1382 {
1383 	struct bio_list blist = BIO_EMPTY_LIST;
1384 	struct bio *bio;
1385 	struct dm_target_io *tio;
1386 
1387 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1388 
1389 	while ((bio = bio_list_pop(&blist))) {
1390 		tio = container_of(bio, struct dm_target_io, clone);
1391 		(void) __clone_and_map_simple_bio(ci, tio, len);
1392 	}
1393 }
1394 
1395 static int __send_empty_flush(struct clone_info *ci)
1396 {
1397 	unsigned target_nr = 0;
1398 	struct dm_target *ti;
1399 
1400 	BUG_ON(bio_has_data(ci->bio));
1401 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1402 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1403 
1404 	return 0;
1405 }
1406 
1407 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1408 				    sector_t sector, unsigned *len)
1409 {
1410 	struct bio *bio = ci->bio;
1411 	struct dm_target_io *tio;
1412 	int r;
1413 
1414 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1415 	tio->len_ptr = len;
1416 	r = clone_bio(tio, bio, sector, *len);
1417 	if (r < 0) {
1418 		free_tio(tio);
1419 		return r;
1420 	}
1421 	(void) __map_bio(tio);
1422 
1423 	return 0;
1424 }
1425 
1426 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1427 
1428 static unsigned get_num_discard_bios(struct dm_target *ti)
1429 {
1430 	return ti->num_discard_bios;
1431 }
1432 
1433 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1434 {
1435 	return ti->num_secure_erase_bios;
1436 }
1437 
1438 static unsigned get_num_write_same_bios(struct dm_target *ti)
1439 {
1440 	return ti->num_write_same_bios;
1441 }
1442 
1443 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1444 {
1445 	return ti->num_write_zeroes_bios;
1446 }
1447 
1448 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1449 
1450 static bool is_split_required_for_discard(struct dm_target *ti)
1451 {
1452 	return ti->split_discard_bios;
1453 }
1454 
1455 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1456 				       get_num_bios_fn get_num_bios,
1457 				       is_split_required_fn is_split_required)
1458 {
1459 	unsigned len;
1460 	unsigned num_bios;
1461 
1462 	/*
1463 	 * Even though the device advertised support for this type of
1464 	 * request, that does not mean every target supports it, and
1465 	 * reconfiguration might also have changed that since the
1466 	 * check was performed.
1467 	 */
1468 	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1469 	if (!num_bios)
1470 		return -EOPNOTSUPP;
1471 
1472 	if (is_split_required && !is_split_required(ti))
1473 		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1474 	else
1475 		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1476 
1477 	__send_duplicate_bios(ci, ti, num_bios, &len);
1478 
1479 	ci->sector += len;
1480 	ci->sector_count -= len;
1481 
1482 	return 0;
1483 }
1484 
1485 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1486 {
1487 	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1488 					   is_split_required_for_discard);
1489 }
1490 
1491 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1492 {
1493 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1494 }
1495 
1496 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1497 {
1498 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1499 }
1500 
1501 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1502 {
1503 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1504 }
1505 
1506 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1507 				  int *result)
1508 {
1509 	struct bio *bio = ci->bio;
1510 
1511 	if (bio_op(bio) == REQ_OP_DISCARD)
1512 		*result = __send_discard(ci, ti);
1513 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1514 		*result = __send_secure_erase(ci, ti);
1515 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1516 		*result = __send_write_same(ci, ti);
1517 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1518 		*result = __send_write_zeroes(ci, ti);
1519 	else
1520 		return false;
1521 
1522 	return true;
1523 }
1524 
1525 /*
1526  * Select the correct strategy for processing a non-flush bio.
1527  */
1528 static int __split_and_process_non_flush(struct clone_info *ci)
1529 {
1530 	struct bio *bio = ci->bio;
1531 	struct dm_target *ti;
1532 	unsigned len;
1533 	int r;
1534 
1535 	ti = dm_table_find_target(ci->map, ci->sector);
1536 	if (!dm_target_is_valid(ti))
1537 		return -EIO;
1538 
1539 	if (unlikely(__process_abnormal_io(ci, ti, &r)))
1540 		return r;
1541 
1542 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1543 		len = ci->sector_count;
1544 	else
1545 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1546 			    ci->sector_count);
1547 
1548 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1549 	if (r < 0)
1550 		return r;
1551 
1552 	ci->sector += len;
1553 	ci->sector_count -= len;
1554 
1555 	return 0;
1556 }
1557 
1558 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1559 			    struct dm_table *map, struct bio *bio)
1560 {
1561 	ci->map = map;
1562 	ci->io = alloc_io(md, bio);
1563 	ci->sector = bio->bi_iter.bi_sector;
1564 }
1565 
1566 /*
1567  * Entry point to split a bio into clones and submit them to the targets.
1568  */
1569 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1570 					struct dm_table *map, struct bio *bio)
1571 {
1572 	struct clone_info ci;
1573 	blk_qc_t ret = BLK_QC_T_NONE;
1574 	int error = 0;
1575 
1576 	if (unlikely(!map)) {
1577 		bio_io_error(bio);
1578 		return ret;
1579 	}
1580 
1581 	init_clone_info(&ci, md, map, bio);
1582 
1583 	if (bio->bi_opf & REQ_PREFLUSH) {
1584 		ci.bio = &ci.io->md->flush_bio;
1585 		ci.sector_count = 0;
1586 		error = __send_empty_flush(&ci);
1587 		/* dec_pending submits any data associated with flush */
1588 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1589 		ci.bio = bio;
1590 		ci.sector_count = 0;
1591 		error = __split_and_process_non_flush(&ci);
1592 	} else {
1593 		ci.bio = bio;
1594 		ci.sector_count = bio_sectors(bio);
1595 		while (ci.sector_count && !error) {
1596 			error = __split_and_process_non_flush(&ci);
1597 			if (current->bio_list && ci.sector_count && !error) {
1598 				/*
1599 				 * Remainder must be passed to generic_make_request()
1600 				 * so that it gets handled *after* bios already submitted
1601 				 * have been completely processed.
1602 				 * We take a clone of the original to store in
1603 				 * ci.io->orig_bio to be used by end_io_acct() and
1604 				 * for dec_pending to use for completion handling.
1605 				 * As this path is not used for REQ_OP_ZONE_REPORT,
1606 				 * the usage of io->orig_bio in dm_remap_zone_report()
1607 				 * won't be affected by this reassignment.
1608 				 */
1609 				struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1610 								 &md->queue->bio_split);
1611 				ci.io->orig_bio = b;
1612 				bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1613 				bio_chain(b, bio);
1614 				ret = generic_make_request(bio);
1615 				break;
1616 			}
1617 		}
1618 	}
1619 
1620 	/* drop the extra reference count */
1621 	dec_pending(ci.io, errno_to_blk_status(error));
1622 	return ret;
1623 }
1624 
1625 /*
1626  * Optimized variant of __split_and_process_bio that leverages the
1627  * fact that targets that use it do _not_ have a need to split bios.
1628  */
1629 static blk_qc_t __process_bio(struct mapped_device *md,
1630 			      struct dm_table *map, struct bio *bio)
1631 {
1632 	struct clone_info ci;
1633 	blk_qc_t ret = BLK_QC_T_NONE;
1634 	int error = 0;
1635 
1636 	if (unlikely(!map)) {
1637 		bio_io_error(bio);
1638 		return ret;
1639 	}
1640 
1641 	init_clone_info(&ci, md, map, bio);
1642 
1643 	if (bio->bi_opf & REQ_PREFLUSH) {
1644 		ci.bio = &ci.io->md->flush_bio;
1645 		ci.sector_count = 0;
1646 		error = __send_empty_flush(&ci);
1647 		/* dec_pending submits any data associated with flush */
1648 	} else {
1649 		struct dm_target *ti = md->immutable_target;
1650 		struct dm_target_io *tio;
1651 
1652 		/*
1653 		 * Defend against IO still getting in during teardown
1654 		 * - as was seen for a time with nvme-fcloop
1655 		 */
1656 		if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1657 			error = -EIO;
1658 			goto out;
1659 		}
1660 
1661 		ci.bio = bio;
1662 		ci.sector_count = bio_sectors(bio);
1663 		if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1664 			goto out;
1665 
1666 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1667 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1668 	}
1669 out:
1670 	/* drop the extra reference count */
1671 	dec_pending(ci.io, errno_to_blk_status(error));
1672 	return ret;
1673 }
1674 
1675 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1676 
1677 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1678 				  process_bio_fn process_bio)
1679 {
1680 	struct mapped_device *md = q->queuedata;
1681 	blk_qc_t ret = BLK_QC_T_NONE;
1682 	int srcu_idx;
1683 	struct dm_table *map;
1684 
1685 	map = dm_get_live_table(md, &srcu_idx);
1686 
1687 	/* if we're suspended, we have to queue this io for later */
1688 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1689 		dm_put_live_table(md, srcu_idx);
1690 
1691 		if (!(bio->bi_opf & REQ_RAHEAD))
1692 			queue_io(md, bio);
1693 		else
1694 			bio_io_error(bio);
1695 		return ret;
1696 	}
1697 
1698 	ret = process_bio(md, map, bio);
1699 
1700 	dm_put_live_table(md, srcu_idx);
1701 	return ret;
1702 }
1703 
1704 /*
1705  * The request function that remaps the bio to one target and
1706  * splits off any remainder.
1707  */
1708 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1709 {
1710 	return __dm_make_request(q, bio, __split_and_process_bio);
1711 }
1712 
1713 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1714 {
1715 	return __dm_make_request(q, bio, __process_bio);
1716 }
1717 
1718 static int dm_any_congested(void *congested_data, int bdi_bits)
1719 {
1720 	int r = bdi_bits;
1721 	struct mapped_device *md = congested_data;
1722 	struct dm_table *map;
1723 
1724 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1725 		if (dm_request_based(md)) {
1726 			/*
1727 			 * With request-based DM we only need to check the
1728 			 * top-level queue for congestion.
1729 			 */
1730 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1731 		} else {
1732 			map = dm_get_live_table_fast(md);
1733 			if (map)
1734 				r = dm_table_any_congested(map, bdi_bits);
1735 			dm_put_live_table_fast(md);
1736 		}
1737 	}
1738 
1739 	return r;
1740 }
1741 
1742 /*-----------------------------------------------------------------
1743  * An IDR is used to keep track of allocated minor numbers.
1744  *---------------------------------------------------------------*/
1745 static void free_minor(int minor)
1746 {
1747 	spin_lock(&_minor_lock);
1748 	idr_remove(&_minor_idr, minor);
1749 	spin_unlock(&_minor_lock);
1750 }
1751 
1752 /*
1753  * See if the device with a specific minor # is free.
1754  */
1755 static int specific_minor(int minor)
1756 {
1757 	int r;
1758 
1759 	if (minor >= (1 << MINORBITS))
1760 		return -EINVAL;
1761 
1762 	idr_preload(GFP_KERNEL);
1763 	spin_lock(&_minor_lock);
1764 
1765 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1766 
1767 	spin_unlock(&_minor_lock);
1768 	idr_preload_end();
1769 	if (r < 0)
1770 		return r == -ENOSPC ? -EBUSY : r;
1771 	return 0;
1772 }
1773 
1774 static int next_free_minor(int *minor)
1775 {
1776 	int r;
1777 
1778 	idr_preload(GFP_KERNEL);
1779 	spin_lock(&_minor_lock);
1780 
1781 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1782 
1783 	spin_unlock(&_minor_lock);
1784 	idr_preload_end();
1785 	if (r < 0)
1786 		return r;
1787 	*minor = r;
1788 	return 0;
1789 }
1790 
1791 static const struct block_device_operations dm_blk_dops;
1792 static const struct dax_operations dm_dax_ops;
1793 
1794 static void dm_wq_work(struct work_struct *work);
1795 
1796 static void dm_init_normal_md_queue(struct mapped_device *md)
1797 {
1798 	md->use_blk_mq = false;
1799 
1800 	/*
1801 	 * Initialize aspects of queue that aren't relevant for blk-mq
1802 	 */
1803 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1804 }
1805 
1806 static void cleanup_mapped_device(struct mapped_device *md)
1807 {
1808 	if (md->wq)
1809 		destroy_workqueue(md->wq);
1810 	if (md->kworker_task)
1811 		kthread_stop(md->kworker_task);
1812 	bioset_exit(&md->bs);
1813 	bioset_exit(&md->io_bs);
1814 
1815 	if (md->dax_dev) {
1816 		kill_dax(md->dax_dev);
1817 		put_dax(md->dax_dev);
1818 		md->dax_dev = NULL;
1819 	}
1820 
1821 	if (md->disk) {
1822 		spin_lock(&_minor_lock);
1823 		md->disk->private_data = NULL;
1824 		spin_unlock(&_minor_lock);
1825 		del_gendisk(md->disk);
1826 		put_disk(md->disk);
1827 	}
1828 
1829 	if (md->queue)
1830 		blk_cleanup_queue(md->queue);
1831 
1832 	cleanup_srcu_struct(&md->io_barrier);
1833 
1834 	if (md->bdev) {
1835 		bdput(md->bdev);
1836 		md->bdev = NULL;
1837 	}
1838 
1839 	mutex_destroy(&md->suspend_lock);
1840 	mutex_destroy(&md->type_lock);
1841 	mutex_destroy(&md->table_devices_lock);
1842 
1843 	dm_mq_cleanup_mapped_device(md);
1844 }
1845 
1846 /*
1847  * Allocate and initialise a blank device with a given minor.
1848  */
1849 static struct mapped_device *alloc_dev(int minor)
1850 {
1851 	int r, numa_node_id = dm_get_numa_node();
1852 	struct dax_device *dax_dev = NULL;
1853 	struct mapped_device *md;
1854 	void *old_md;
1855 
1856 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1857 	if (!md) {
1858 		DMWARN("unable to allocate device, out of memory.");
1859 		return NULL;
1860 	}
1861 
1862 	if (!try_module_get(THIS_MODULE))
1863 		goto bad_module_get;
1864 
1865 	/* get a minor number for the dev */
1866 	if (minor == DM_ANY_MINOR)
1867 		r = next_free_minor(&minor);
1868 	else
1869 		r = specific_minor(minor);
1870 	if (r < 0)
1871 		goto bad_minor;
1872 
1873 	r = init_srcu_struct(&md->io_barrier);
1874 	if (r < 0)
1875 		goto bad_io_barrier;
1876 
1877 	md->numa_node_id = numa_node_id;
1878 	md->use_blk_mq = dm_use_blk_mq_default();
1879 	md->init_tio_pdu = false;
1880 	md->type = DM_TYPE_NONE;
1881 	mutex_init(&md->suspend_lock);
1882 	mutex_init(&md->type_lock);
1883 	mutex_init(&md->table_devices_lock);
1884 	spin_lock_init(&md->deferred_lock);
1885 	atomic_set(&md->holders, 1);
1886 	atomic_set(&md->open_count, 0);
1887 	atomic_set(&md->event_nr, 0);
1888 	atomic_set(&md->uevent_seq, 0);
1889 	INIT_LIST_HEAD(&md->uevent_list);
1890 	INIT_LIST_HEAD(&md->table_devices);
1891 	spin_lock_init(&md->uevent_lock);
1892 
1893 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1894 	if (!md->queue)
1895 		goto bad;
1896 	md->queue->queuedata = md;
1897 	md->queue->backing_dev_info->congested_data = md;
1898 
1899 	md->disk = alloc_disk_node(1, md->numa_node_id);
1900 	if (!md->disk)
1901 		goto bad;
1902 
1903 	atomic_set(&md->pending[0], 0);
1904 	atomic_set(&md->pending[1], 0);
1905 	init_waitqueue_head(&md->wait);
1906 	INIT_WORK(&md->work, dm_wq_work);
1907 	init_waitqueue_head(&md->eventq);
1908 	init_completion(&md->kobj_holder.completion);
1909 	md->kworker_task = NULL;
1910 
1911 	md->disk->major = _major;
1912 	md->disk->first_minor = minor;
1913 	md->disk->fops = &dm_blk_dops;
1914 	md->disk->queue = md->queue;
1915 	md->disk->private_data = md;
1916 	sprintf(md->disk->disk_name, "dm-%d", minor);
1917 
1918 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1919 		dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1920 		if (!dax_dev)
1921 			goto bad;
1922 	}
1923 	md->dax_dev = dax_dev;
1924 
1925 	add_disk_no_queue_reg(md->disk);
1926 	format_dev_t(md->name, MKDEV(_major, minor));
1927 
1928 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1929 	if (!md->wq)
1930 		goto bad;
1931 
1932 	md->bdev = bdget_disk(md->disk, 0);
1933 	if (!md->bdev)
1934 		goto bad;
1935 
1936 	bio_init(&md->flush_bio, NULL, 0);
1937 	bio_set_dev(&md->flush_bio, md->bdev);
1938 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1939 
1940 	dm_stats_init(&md->stats);
1941 
1942 	/* Populate the mapping, nobody knows we exist yet */
1943 	spin_lock(&_minor_lock);
1944 	old_md = idr_replace(&_minor_idr, md, minor);
1945 	spin_unlock(&_minor_lock);
1946 
1947 	BUG_ON(old_md != MINOR_ALLOCED);
1948 
1949 	return md;
1950 
1951 bad:
1952 	cleanup_mapped_device(md);
1953 bad_io_barrier:
1954 	free_minor(minor);
1955 bad_minor:
1956 	module_put(THIS_MODULE);
1957 bad_module_get:
1958 	kvfree(md);
1959 	return NULL;
1960 }
1961 
1962 static void unlock_fs(struct mapped_device *md);
1963 
1964 static void free_dev(struct mapped_device *md)
1965 {
1966 	int minor = MINOR(disk_devt(md->disk));
1967 
1968 	unlock_fs(md);
1969 
1970 	cleanup_mapped_device(md);
1971 
1972 	free_table_devices(&md->table_devices);
1973 	dm_stats_cleanup(&md->stats);
1974 	free_minor(minor);
1975 
1976 	module_put(THIS_MODULE);
1977 	kvfree(md);
1978 }
1979 
1980 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1981 {
1982 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1983 	int ret = 0;
1984 
1985 	if (dm_table_bio_based(t)) {
1986 		/*
1987 		 * The md may already have mempools that need changing.
1988 		 * If so, reload bioset because front_pad may have changed
1989 		 * because a different table was loaded.
1990 		 */
1991 		bioset_exit(&md->bs);
1992 		bioset_exit(&md->io_bs);
1993 
1994 	} else if (bioset_initialized(&md->bs)) {
1995 		/*
1996 		 * There's no need to reload with request-based dm
1997 		 * because the size of front_pad doesn't change.
1998 		 * Note for future: If you are to reload bioset,
1999 		 * prep-ed requests in the queue may refer
2000 		 * to bio from the old bioset, so you must walk
2001 		 * through the queue to unprep.
2002 		 */
2003 		goto out;
2004 	}
2005 
2006 	BUG_ON(!p ||
2007 	       bioset_initialized(&md->bs) ||
2008 	       bioset_initialized(&md->io_bs));
2009 
2010 	ret = bioset_init_from_src(&md->bs, &p->bs);
2011 	if (ret)
2012 		goto out;
2013 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2014 	if (ret)
2015 		bioset_exit(&md->bs);
2016 out:
2017 	/* mempool bind completed, no longer need any mempools in the table */
2018 	dm_table_free_md_mempools(t);
2019 	return ret;
2020 }
2021 
2022 /*
2023  * Bind a table to the device.
2024  */
2025 static void event_callback(void *context)
2026 {
2027 	unsigned long flags;
2028 	LIST_HEAD(uevents);
2029 	struct mapped_device *md = (struct mapped_device *) context;
2030 
2031 	spin_lock_irqsave(&md->uevent_lock, flags);
2032 	list_splice_init(&md->uevent_list, &uevents);
2033 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2034 
2035 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2036 
2037 	atomic_inc(&md->event_nr);
2038 	wake_up(&md->eventq);
2039 	dm_issue_global_event();
2040 }
2041 
2042 /*
2043  * Protected by md->suspend_lock obtained by dm_swap_table().
2044  */
2045 static void __set_size(struct mapped_device *md, sector_t size)
2046 {
2047 	lockdep_assert_held(&md->suspend_lock);
2048 
2049 	set_capacity(md->disk, size);
2050 
2051 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2052 }
2053 
2054 /*
2055  * Returns old map, which caller must destroy.
2056  */
2057 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2058 			       struct queue_limits *limits)
2059 {
2060 	struct dm_table *old_map;
2061 	struct request_queue *q = md->queue;
2062 	bool request_based = dm_table_request_based(t);
2063 	sector_t size;
2064 	int ret;
2065 
2066 	lockdep_assert_held(&md->suspend_lock);
2067 
2068 	size = dm_table_get_size(t);
2069 
2070 	/*
2071 	 * Wipe any geometry if the size of the table changed.
2072 	 */
2073 	if (size != dm_get_size(md))
2074 		memset(&md->geometry, 0, sizeof(md->geometry));
2075 
2076 	__set_size(md, size);
2077 
2078 	dm_table_event_callback(t, event_callback, md);
2079 
2080 	/*
2081 	 * The queue hasn't been stopped yet, if the old table type wasn't
2082 	 * for request-based during suspension.  So stop it to prevent
2083 	 * I/O mapping before resume.
2084 	 * This must be done before setting the queue restrictions,
2085 	 * because request-based dm may be run just after the setting.
2086 	 */
2087 	if (request_based)
2088 		dm_stop_queue(q);
2089 
2090 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2091 		/*
2092 		 * Leverage the fact that request-based DM targets and
2093 		 * NVMe bio based targets are immutable singletons
2094 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2095 		 *   and __process_bio.
2096 		 */
2097 		md->immutable_target = dm_table_get_immutable_target(t);
2098 	}
2099 
2100 	ret = __bind_mempools(md, t);
2101 	if (ret) {
2102 		old_map = ERR_PTR(ret);
2103 		goto out;
2104 	}
2105 
2106 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2107 	rcu_assign_pointer(md->map, (void *)t);
2108 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2109 
2110 	dm_table_set_restrictions(t, q, limits);
2111 	if (old_map)
2112 		dm_sync_table(md);
2113 
2114 out:
2115 	return old_map;
2116 }
2117 
2118 /*
2119  * Returns unbound table for the caller to free.
2120  */
2121 static struct dm_table *__unbind(struct mapped_device *md)
2122 {
2123 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2124 
2125 	if (!map)
2126 		return NULL;
2127 
2128 	dm_table_event_callback(map, NULL, NULL);
2129 	RCU_INIT_POINTER(md->map, NULL);
2130 	dm_sync_table(md);
2131 
2132 	return map;
2133 }
2134 
2135 /*
2136  * Constructor for a new device.
2137  */
2138 int dm_create(int minor, struct mapped_device **result)
2139 {
2140 	int r;
2141 	struct mapped_device *md;
2142 
2143 	md = alloc_dev(minor);
2144 	if (!md)
2145 		return -ENXIO;
2146 
2147 	r = dm_sysfs_init(md);
2148 	if (r) {
2149 		free_dev(md);
2150 		return r;
2151 	}
2152 
2153 	*result = md;
2154 	return 0;
2155 }
2156 
2157 /*
2158  * Functions to manage md->type.
2159  * All are required to hold md->type_lock.
2160  */
2161 void dm_lock_md_type(struct mapped_device *md)
2162 {
2163 	mutex_lock(&md->type_lock);
2164 }
2165 
2166 void dm_unlock_md_type(struct mapped_device *md)
2167 {
2168 	mutex_unlock(&md->type_lock);
2169 }
2170 
2171 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2172 {
2173 	BUG_ON(!mutex_is_locked(&md->type_lock));
2174 	md->type = type;
2175 }
2176 
2177 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2178 {
2179 	return md->type;
2180 }
2181 
2182 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2183 {
2184 	return md->immutable_target_type;
2185 }
2186 
2187 /*
2188  * The queue_limits are only valid as long as you have a reference
2189  * count on 'md'.
2190  */
2191 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2192 {
2193 	BUG_ON(!atomic_read(&md->holders));
2194 	return &md->queue->limits;
2195 }
2196 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2197 
2198 /*
2199  * Setup the DM device's queue based on md's type
2200  */
2201 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2202 {
2203 	int r;
2204 	struct queue_limits limits;
2205 	enum dm_queue_mode type = dm_get_md_type(md);
2206 
2207 	switch (type) {
2208 	case DM_TYPE_REQUEST_BASED:
2209 		dm_init_normal_md_queue(md);
2210 		r = dm_old_init_request_queue(md, t);
2211 		if (r) {
2212 			DMERR("Cannot initialize queue for request-based mapped device");
2213 			return r;
2214 		}
2215 		break;
2216 	case DM_TYPE_MQ_REQUEST_BASED:
2217 		r = dm_mq_init_request_queue(md, t);
2218 		if (r) {
2219 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2220 			return r;
2221 		}
2222 		break;
2223 	case DM_TYPE_BIO_BASED:
2224 	case DM_TYPE_DAX_BIO_BASED:
2225 		dm_init_normal_md_queue(md);
2226 		blk_queue_make_request(md->queue, dm_make_request);
2227 		break;
2228 	case DM_TYPE_NVME_BIO_BASED:
2229 		dm_init_normal_md_queue(md);
2230 		blk_queue_make_request(md->queue, dm_make_request_nvme);
2231 		break;
2232 	case DM_TYPE_NONE:
2233 		WARN_ON_ONCE(true);
2234 		break;
2235 	}
2236 
2237 	r = dm_calculate_queue_limits(t, &limits);
2238 	if (r) {
2239 		DMERR("Cannot calculate initial queue limits");
2240 		return r;
2241 	}
2242 	dm_table_set_restrictions(t, md->queue, &limits);
2243 	blk_register_queue(md->disk);
2244 
2245 	return 0;
2246 }
2247 
2248 struct mapped_device *dm_get_md(dev_t dev)
2249 {
2250 	struct mapped_device *md;
2251 	unsigned minor = MINOR(dev);
2252 
2253 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2254 		return NULL;
2255 
2256 	spin_lock(&_minor_lock);
2257 
2258 	md = idr_find(&_minor_idr, minor);
2259 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2260 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2261 		md = NULL;
2262 		goto out;
2263 	}
2264 	dm_get(md);
2265 out:
2266 	spin_unlock(&_minor_lock);
2267 
2268 	return md;
2269 }
2270 EXPORT_SYMBOL_GPL(dm_get_md);
2271 
2272 void *dm_get_mdptr(struct mapped_device *md)
2273 {
2274 	return md->interface_ptr;
2275 }
2276 
2277 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2278 {
2279 	md->interface_ptr = ptr;
2280 }
2281 
2282 void dm_get(struct mapped_device *md)
2283 {
2284 	atomic_inc(&md->holders);
2285 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2286 }
2287 
2288 int dm_hold(struct mapped_device *md)
2289 {
2290 	spin_lock(&_minor_lock);
2291 	if (test_bit(DMF_FREEING, &md->flags)) {
2292 		spin_unlock(&_minor_lock);
2293 		return -EBUSY;
2294 	}
2295 	dm_get(md);
2296 	spin_unlock(&_minor_lock);
2297 	return 0;
2298 }
2299 EXPORT_SYMBOL_GPL(dm_hold);
2300 
2301 const char *dm_device_name(struct mapped_device *md)
2302 {
2303 	return md->name;
2304 }
2305 EXPORT_SYMBOL_GPL(dm_device_name);
2306 
2307 static void __dm_destroy(struct mapped_device *md, bool wait)
2308 {
2309 	struct dm_table *map;
2310 	int srcu_idx;
2311 
2312 	might_sleep();
2313 
2314 	spin_lock(&_minor_lock);
2315 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2316 	set_bit(DMF_FREEING, &md->flags);
2317 	spin_unlock(&_minor_lock);
2318 
2319 	blk_set_queue_dying(md->queue);
2320 
2321 	if (dm_request_based(md) && md->kworker_task)
2322 		kthread_flush_worker(&md->kworker);
2323 
2324 	/*
2325 	 * Take suspend_lock so that presuspend and postsuspend methods
2326 	 * do not race with internal suspend.
2327 	 */
2328 	mutex_lock(&md->suspend_lock);
2329 	map = dm_get_live_table(md, &srcu_idx);
2330 	if (!dm_suspended_md(md)) {
2331 		dm_table_presuspend_targets(map);
2332 		dm_table_postsuspend_targets(map);
2333 	}
2334 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2335 	dm_put_live_table(md, srcu_idx);
2336 	mutex_unlock(&md->suspend_lock);
2337 
2338 	/*
2339 	 * Rare, but there may be I/O requests still going to complete,
2340 	 * for example.  Wait for all references to disappear.
2341 	 * No one should increment the reference count of the mapped_device,
2342 	 * after the mapped_device state becomes DMF_FREEING.
2343 	 */
2344 	if (wait)
2345 		while (atomic_read(&md->holders))
2346 			msleep(1);
2347 	else if (atomic_read(&md->holders))
2348 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2349 		       dm_device_name(md), atomic_read(&md->holders));
2350 
2351 	dm_sysfs_exit(md);
2352 	dm_table_destroy(__unbind(md));
2353 	free_dev(md);
2354 }
2355 
2356 void dm_destroy(struct mapped_device *md)
2357 {
2358 	__dm_destroy(md, true);
2359 }
2360 
2361 void dm_destroy_immediate(struct mapped_device *md)
2362 {
2363 	__dm_destroy(md, false);
2364 }
2365 
2366 void dm_put(struct mapped_device *md)
2367 {
2368 	atomic_dec(&md->holders);
2369 }
2370 EXPORT_SYMBOL_GPL(dm_put);
2371 
2372 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2373 {
2374 	int r = 0;
2375 	DEFINE_WAIT(wait);
2376 
2377 	while (1) {
2378 		prepare_to_wait(&md->wait, &wait, task_state);
2379 
2380 		if (!md_in_flight(md))
2381 			break;
2382 
2383 		if (signal_pending_state(task_state, current)) {
2384 			r = -EINTR;
2385 			break;
2386 		}
2387 
2388 		io_schedule();
2389 	}
2390 	finish_wait(&md->wait, &wait);
2391 
2392 	return r;
2393 }
2394 
2395 /*
2396  * Process the deferred bios
2397  */
2398 static void dm_wq_work(struct work_struct *work)
2399 {
2400 	struct mapped_device *md = container_of(work, struct mapped_device,
2401 						work);
2402 	struct bio *c;
2403 	int srcu_idx;
2404 	struct dm_table *map;
2405 
2406 	map = dm_get_live_table(md, &srcu_idx);
2407 
2408 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2409 		spin_lock_irq(&md->deferred_lock);
2410 		c = bio_list_pop(&md->deferred);
2411 		spin_unlock_irq(&md->deferred_lock);
2412 
2413 		if (!c)
2414 			break;
2415 
2416 		if (dm_request_based(md))
2417 			generic_make_request(c);
2418 		else
2419 			__split_and_process_bio(md, map, c);
2420 	}
2421 
2422 	dm_put_live_table(md, srcu_idx);
2423 }
2424 
2425 static void dm_queue_flush(struct mapped_device *md)
2426 {
2427 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2428 	smp_mb__after_atomic();
2429 	queue_work(md->wq, &md->work);
2430 }
2431 
2432 /*
2433  * Swap in a new table, returning the old one for the caller to destroy.
2434  */
2435 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2436 {
2437 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2438 	struct queue_limits limits;
2439 	int r;
2440 
2441 	mutex_lock(&md->suspend_lock);
2442 
2443 	/* device must be suspended */
2444 	if (!dm_suspended_md(md))
2445 		goto out;
2446 
2447 	/*
2448 	 * If the new table has no data devices, retain the existing limits.
2449 	 * This helps multipath with queue_if_no_path if all paths disappear,
2450 	 * then new I/O is queued based on these limits, and then some paths
2451 	 * reappear.
2452 	 */
2453 	if (dm_table_has_no_data_devices(table)) {
2454 		live_map = dm_get_live_table_fast(md);
2455 		if (live_map)
2456 			limits = md->queue->limits;
2457 		dm_put_live_table_fast(md);
2458 	}
2459 
2460 	if (!live_map) {
2461 		r = dm_calculate_queue_limits(table, &limits);
2462 		if (r) {
2463 			map = ERR_PTR(r);
2464 			goto out;
2465 		}
2466 	}
2467 
2468 	map = __bind(md, table, &limits);
2469 	dm_issue_global_event();
2470 
2471 out:
2472 	mutex_unlock(&md->suspend_lock);
2473 	return map;
2474 }
2475 
2476 /*
2477  * Functions to lock and unlock any filesystem running on the
2478  * device.
2479  */
2480 static int lock_fs(struct mapped_device *md)
2481 {
2482 	int r;
2483 
2484 	WARN_ON(md->frozen_sb);
2485 
2486 	md->frozen_sb = freeze_bdev(md->bdev);
2487 	if (IS_ERR(md->frozen_sb)) {
2488 		r = PTR_ERR(md->frozen_sb);
2489 		md->frozen_sb = NULL;
2490 		return r;
2491 	}
2492 
2493 	set_bit(DMF_FROZEN, &md->flags);
2494 
2495 	return 0;
2496 }
2497 
2498 static void unlock_fs(struct mapped_device *md)
2499 {
2500 	if (!test_bit(DMF_FROZEN, &md->flags))
2501 		return;
2502 
2503 	thaw_bdev(md->bdev, md->frozen_sb);
2504 	md->frozen_sb = NULL;
2505 	clear_bit(DMF_FROZEN, &md->flags);
2506 }
2507 
2508 /*
2509  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2510  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2511  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2512  *
2513  * If __dm_suspend returns 0, the device is completely quiescent
2514  * now. There is no request-processing activity. All new requests
2515  * are being added to md->deferred list.
2516  */
2517 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2518 			unsigned suspend_flags, long task_state,
2519 			int dmf_suspended_flag)
2520 {
2521 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2522 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2523 	int r;
2524 
2525 	lockdep_assert_held(&md->suspend_lock);
2526 
2527 	/*
2528 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2529 	 * This flag is cleared before dm_suspend returns.
2530 	 */
2531 	if (noflush)
2532 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2533 	else
2534 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2535 
2536 	/*
2537 	 * This gets reverted if there's an error later and the targets
2538 	 * provide the .presuspend_undo hook.
2539 	 */
2540 	dm_table_presuspend_targets(map);
2541 
2542 	/*
2543 	 * Flush I/O to the device.
2544 	 * Any I/O submitted after lock_fs() may not be flushed.
2545 	 * noflush takes precedence over do_lockfs.
2546 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2547 	 */
2548 	if (!noflush && do_lockfs) {
2549 		r = lock_fs(md);
2550 		if (r) {
2551 			dm_table_presuspend_undo_targets(map);
2552 			return r;
2553 		}
2554 	}
2555 
2556 	/*
2557 	 * Here we must make sure that no processes are submitting requests
2558 	 * to target drivers i.e. no one may be executing
2559 	 * __split_and_process_bio. This is called from dm_request and
2560 	 * dm_wq_work.
2561 	 *
2562 	 * To get all processes out of __split_and_process_bio in dm_request,
2563 	 * we take the write lock. To prevent any process from reentering
2564 	 * __split_and_process_bio from dm_request and quiesce the thread
2565 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2566 	 * flush_workqueue(md->wq).
2567 	 */
2568 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2569 	if (map)
2570 		synchronize_srcu(&md->io_barrier);
2571 
2572 	/*
2573 	 * Stop md->queue before flushing md->wq in case request-based
2574 	 * dm defers requests to md->wq from md->queue.
2575 	 */
2576 	if (dm_request_based(md)) {
2577 		dm_stop_queue(md->queue);
2578 		if (md->kworker_task)
2579 			kthread_flush_worker(&md->kworker);
2580 	}
2581 
2582 	flush_workqueue(md->wq);
2583 
2584 	/*
2585 	 * At this point no more requests are entering target request routines.
2586 	 * We call dm_wait_for_completion to wait for all existing requests
2587 	 * to finish.
2588 	 */
2589 	r = dm_wait_for_completion(md, task_state);
2590 	if (!r)
2591 		set_bit(dmf_suspended_flag, &md->flags);
2592 
2593 	if (noflush)
2594 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2595 	if (map)
2596 		synchronize_srcu(&md->io_barrier);
2597 
2598 	/* were we interrupted ? */
2599 	if (r < 0) {
2600 		dm_queue_flush(md);
2601 
2602 		if (dm_request_based(md))
2603 			dm_start_queue(md->queue);
2604 
2605 		unlock_fs(md);
2606 		dm_table_presuspend_undo_targets(map);
2607 		/* pushback list is already flushed, so skip flush */
2608 	}
2609 
2610 	return r;
2611 }
2612 
2613 /*
2614  * We need to be able to change a mapping table under a mounted
2615  * filesystem.  For example we might want to move some data in
2616  * the background.  Before the table can be swapped with
2617  * dm_bind_table, dm_suspend must be called to flush any in
2618  * flight bios and ensure that any further io gets deferred.
2619  */
2620 /*
2621  * Suspend mechanism in request-based dm.
2622  *
2623  * 1. Flush all I/Os by lock_fs() if needed.
2624  * 2. Stop dispatching any I/O by stopping the request_queue.
2625  * 3. Wait for all in-flight I/Os to be completed or requeued.
2626  *
2627  * To abort suspend, start the request_queue.
2628  */
2629 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2630 {
2631 	struct dm_table *map = NULL;
2632 	int r = 0;
2633 
2634 retry:
2635 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2636 
2637 	if (dm_suspended_md(md)) {
2638 		r = -EINVAL;
2639 		goto out_unlock;
2640 	}
2641 
2642 	if (dm_suspended_internally_md(md)) {
2643 		/* already internally suspended, wait for internal resume */
2644 		mutex_unlock(&md->suspend_lock);
2645 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2646 		if (r)
2647 			return r;
2648 		goto retry;
2649 	}
2650 
2651 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2652 
2653 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2654 	if (r)
2655 		goto out_unlock;
2656 
2657 	dm_table_postsuspend_targets(map);
2658 
2659 out_unlock:
2660 	mutex_unlock(&md->suspend_lock);
2661 	return r;
2662 }
2663 
2664 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2665 {
2666 	if (map) {
2667 		int r = dm_table_resume_targets(map);
2668 		if (r)
2669 			return r;
2670 	}
2671 
2672 	dm_queue_flush(md);
2673 
2674 	/*
2675 	 * Flushing deferred I/Os must be done after targets are resumed
2676 	 * so that mapping of targets can work correctly.
2677 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2678 	 */
2679 	if (dm_request_based(md))
2680 		dm_start_queue(md->queue);
2681 
2682 	unlock_fs(md);
2683 
2684 	return 0;
2685 }
2686 
2687 int dm_resume(struct mapped_device *md)
2688 {
2689 	int r;
2690 	struct dm_table *map = NULL;
2691 
2692 retry:
2693 	r = -EINVAL;
2694 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2695 
2696 	if (!dm_suspended_md(md))
2697 		goto out;
2698 
2699 	if (dm_suspended_internally_md(md)) {
2700 		/* already internally suspended, wait for internal resume */
2701 		mutex_unlock(&md->suspend_lock);
2702 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2703 		if (r)
2704 			return r;
2705 		goto retry;
2706 	}
2707 
2708 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2709 	if (!map || !dm_table_get_size(map))
2710 		goto out;
2711 
2712 	r = __dm_resume(md, map);
2713 	if (r)
2714 		goto out;
2715 
2716 	clear_bit(DMF_SUSPENDED, &md->flags);
2717 out:
2718 	mutex_unlock(&md->suspend_lock);
2719 
2720 	return r;
2721 }
2722 
2723 /*
2724  * Internal suspend/resume works like userspace-driven suspend. It waits
2725  * until all bios finish and prevents issuing new bios to the target drivers.
2726  * It may be used only from the kernel.
2727  */
2728 
2729 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2730 {
2731 	struct dm_table *map = NULL;
2732 
2733 	lockdep_assert_held(&md->suspend_lock);
2734 
2735 	if (md->internal_suspend_count++)
2736 		return; /* nested internal suspend */
2737 
2738 	if (dm_suspended_md(md)) {
2739 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2740 		return; /* nest suspend */
2741 	}
2742 
2743 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2744 
2745 	/*
2746 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2747 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2748 	 * would require changing .presuspend to return an error -- avoid this
2749 	 * until there is a need for more elaborate variants of internal suspend.
2750 	 */
2751 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2752 			    DMF_SUSPENDED_INTERNALLY);
2753 
2754 	dm_table_postsuspend_targets(map);
2755 }
2756 
2757 static void __dm_internal_resume(struct mapped_device *md)
2758 {
2759 	BUG_ON(!md->internal_suspend_count);
2760 
2761 	if (--md->internal_suspend_count)
2762 		return; /* resume from nested internal suspend */
2763 
2764 	if (dm_suspended_md(md))
2765 		goto done; /* resume from nested suspend */
2766 
2767 	/*
2768 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2769 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2770 	 */
2771 	(void) __dm_resume(md, NULL);
2772 
2773 done:
2774 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2775 	smp_mb__after_atomic();
2776 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2777 }
2778 
2779 void dm_internal_suspend_noflush(struct mapped_device *md)
2780 {
2781 	mutex_lock(&md->suspend_lock);
2782 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2783 	mutex_unlock(&md->suspend_lock);
2784 }
2785 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2786 
2787 void dm_internal_resume(struct mapped_device *md)
2788 {
2789 	mutex_lock(&md->suspend_lock);
2790 	__dm_internal_resume(md);
2791 	mutex_unlock(&md->suspend_lock);
2792 }
2793 EXPORT_SYMBOL_GPL(dm_internal_resume);
2794 
2795 /*
2796  * Fast variants of internal suspend/resume hold md->suspend_lock,
2797  * which prevents interaction with userspace-driven suspend.
2798  */
2799 
2800 void dm_internal_suspend_fast(struct mapped_device *md)
2801 {
2802 	mutex_lock(&md->suspend_lock);
2803 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2804 		return;
2805 
2806 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2807 	synchronize_srcu(&md->io_barrier);
2808 	flush_workqueue(md->wq);
2809 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2810 }
2811 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2812 
2813 void dm_internal_resume_fast(struct mapped_device *md)
2814 {
2815 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2816 		goto done;
2817 
2818 	dm_queue_flush(md);
2819 
2820 done:
2821 	mutex_unlock(&md->suspend_lock);
2822 }
2823 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2824 
2825 /*-----------------------------------------------------------------
2826  * Event notification.
2827  *---------------------------------------------------------------*/
2828 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2829 		       unsigned cookie)
2830 {
2831 	char udev_cookie[DM_COOKIE_LENGTH];
2832 	char *envp[] = { udev_cookie, NULL };
2833 
2834 	if (!cookie)
2835 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2836 	else {
2837 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2838 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2839 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2840 					  action, envp);
2841 	}
2842 }
2843 
2844 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2845 {
2846 	return atomic_add_return(1, &md->uevent_seq);
2847 }
2848 
2849 uint32_t dm_get_event_nr(struct mapped_device *md)
2850 {
2851 	return atomic_read(&md->event_nr);
2852 }
2853 
2854 int dm_wait_event(struct mapped_device *md, int event_nr)
2855 {
2856 	return wait_event_interruptible(md->eventq,
2857 			(event_nr != atomic_read(&md->event_nr)));
2858 }
2859 
2860 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2861 {
2862 	unsigned long flags;
2863 
2864 	spin_lock_irqsave(&md->uevent_lock, flags);
2865 	list_add(elist, &md->uevent_list);
2866 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2867 }
2868 
2869 /*
2870  * The gendisk is only valid as long as you have a reference
2871  * count on 'md'.
2872  */
2873 struct gendisk *dm_disk(struct mapped_device *md)
2874 {
2875 	return md->disk;
2876 }
2877 EXPORT_SYMBOL_GPL(dm_disk);
2878 
2879 struct kobject *dm_kobject(struct mapped_device *md)
2880 {
2881 	return &md->kobj_holder.kobj;
2882 }
2883 
2884 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2885 {
2886 	struct mapped_device *md;
2887 
2888 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2889 
2890 	spin_lock(&_minor_lock);
2891 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2892 		md = NULL;
2893 		goto out;
2894 	}
2895 	dm_get(md);
2896 out:
2897 	spin_unlock(&_minor_lock);
2898 
2899 	return md;
2900 }
2901 
2902 int dm_suspended_md(struct mapped_device *md)
2903 {
2904 	return test_bit(DMF_SUSPENDED, &md->flags);
2905 }
2906 
2907 int dm_suspended_internally_md(struct mapped_device *md)
2908 {
2909 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2910 }
2911 
2912 int dm_test_deferred_remove_flag(struct mapped_device *md)
2913 {
2914 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2915 }
2916 
2917 int dm_suspended(struct dm_target *ti)
2918 {
2919 	return dm_suspended_md(dm_table_get_md(ti->table));
2920 }
2921 EXPORT_SYMBOL_GPL(dm_suspended);
2922 
2923 int dm_noflush_suspending(struct dm_target *ti)
2924 {
2925 	return __noflush_suspending(dm_table_get_md(ti->table));
2926 }
2927 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2928 
2929 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2930 					    unsigned integrity, unsigned per_io_data_size,
2931 					    unsigned min_pool_size)
2932 {
2933 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2934 	unsigned int pool_size = 0;
2935 	unsigned int front_pad, io_front_pad;
2936 	int ret;
2937 
2938 	if (!pools)
2939 		return NULL;
2940 
2941 	switch (type) {
2942 	case DM_TYPE_BIO_BASED:
2943 	case DM_TYPE_DAX_BIO_BASED:
2944 	case DM_TYPE_NVME_BIO_BASED:
2945 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2946 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2947 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2948 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2949 		if (ret)
2950 			goto out;
2951 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2952 			goto out;
2953 		break;
2954 	case DM_TYPE_REQUEST_BASED:
2955 	case DM_TYPE_MQ_REQUEST_BASED:
2956 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2957 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2958 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2959 		break;
2960 	default:
2961 		BUG();
2962 	}
2963 
2964 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2965 	if (ret)
2966 		goto out;
2967 
2968 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2969 		goto out;
2970 
2971 	return pools;
2972 
2973 out:
2974 	dm_free_md_mempools(pools);
2975 
2976 	return NULL;
2977 }
2978 
2979 void dm_free_md_mempools(struct dm_md_mempools *pools)
2980 {
2981 	if (!pools)
2982 		return;
2983 
2984 	bioset_exit(&pools->bs);
2985 	bioset_exit(&pools->io_bs);
2986 
2987 	kfree(pools);
2988 }
2989 
2990 struct dm_pr {
2991 	u64	old_key;
2992 	u64	new_key;
2993 	u32	flags;
2994 	bool	fail_early;
2995 };
2996 
2997 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2998 		      void *data)
2999 {
3000 	struct mapped_device *md = bdev->bd_disk->private_data;
3001 	struct dm_table *table;
3002 	struct dm_target *ti;
3003 	int ret = -ENOTTY, srcu_idx;
3004 
3005 	table = dm_get_live_table(md, &srcu_idx);
3006 	if (!table || !dm_table_get_size(table))
3007 		goto out;
3008 
3009 	/* We only support devices that have a single target */
3010 	if (dm_table_get_num_targets(table) != 1)
3011 		goto out;
3012 	ti = dm_table_get_target(table, 0);
3013 
3014 	ret = -EINVAL;
3015 	if (!ti->type->iterate_devices)
3016 		goto out;
3017 
3018 	ret = ti->type->iterate_devices(ti, fn, data);
3019 out:
3020 	dm_put_live_table(md, srcu_idx);
3021 	return ret;
3022 }
3023 
3024 /*
3025  * For register / unregister we need to manually call out to every path.
3026  */
3027 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3028 			    sector_t start, sector_t len, void *data)
3029 {
3030 	struct dm_pr *pr = data;
3031 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3032 
3033 	if (!ops || !ops->pr_register)
3034 		return -EOPNOTSUPP;
3035 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3036 }
3037 
3038 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3039 			  u32 flags)
3040 {
3041 	struct dm_pr pr = {
3042 		.old_key	= old_key,
3043 		.new_key	= new_key,
3044 		.flags		= flags,
3045 		.fail_early	= true,
3046 	};
3047 	int ret;
3048 
3049 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3050 	if (ret && new_key) {
3051 		/* unregister all paths if we failed to register any path */
3052 		pr.old_key = new_key;
3053 		pr.new_key = 0;
3054 		pr.flags = 0;
3055 		pr.fail_early = false;
3056 		dm_call_pr(bdev, __dm_pr_register, &pr);
3057 	}
3058 
3059 	return ret;
3060 }
3061 
3062 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3063 			 u32 flags)
3064 {
3065 	struct mapped_device *md = bdev->bd_disk->private_data;
3066 	const struct pr_ops *ops;
3067 	int r, srcu_idx;
3068 
3069 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3070 	if (r < 0)
3071 		goto out;
3072 
3073 	ops = bdev->bd_disk->fops->pr_ops;
3074 	if (ops && ops->pr_reserve)
3075 		r = ops->pr_reserve(bdev, key, type, flags);
3076 	else
3077 		r = -EOPNOTSUPP;
3078 out:
3079 	dm_unprepare_ioctl(md, srcu_idx);
3080 	return r;
3081 }
3082 
3083 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3084 {
3085 	struct mapped_device *md = bdev->bd_disk->private_data;
3086 	const struct pr_ops *ops;
3087 	int r, srcu_idx;
3088 
3089 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3090 	if (r < 0)
3091 		goto out;
3092 
3093 	ops = bdev->bd_disk->fops->pr_ops;
3094 	if (ops && ops->pr_release)
3095 		r = ops->pr_release(bdev, key, type);
3096 	else
3097 		r = -EOPNOTSUPP;
3098 out:
3099 	dm_unprepare_ioctl(md, srcu_idx);
3100 	return r;
3101 }
3102 
3103 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3104 			 enum pr_type type, bool abort)
3105 {
3106 	struct mapped_device *md = bdev->bd_disk->private_data;
3107 	const struct pr_ops *ops;
3108 	int r, srcu_idx;
3109 
3110 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3111 	if (r < 0)
3112 		goto out;
3113 
3114 	ops = bdev->bd_disk->fops->pr_ops;
3115 	if (ops && ops->pr_preempt)
3116 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3117 	else
3118 		r = -EOPNOTSUPP;
3119 out:
3120 	dm_unprepare_ioctl(md, srcu_idx);
3121 	return r;
3122 }
3123 
3124 static int dm_pr_clear(struct block_device *bdev, u64 key)
3125 {
3126 	struct mapped_device *md = bdev->bd_disk->private_data;
3127 	const struct pr_ops *ops;
3128 	int r, srcu_idx;
3129 
3130 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3131 	if (r < 0)
3132 		goto out;
3133 
3134 	ops = bdev->bd_disk->fops->pr_ops;
3135 	if (ops && ops->pr_clear)
3136 		r = ops->pr_clear(bdev, key);
3137 	else
3138 		r = -EOPNOTSUPP;
3139 out:
3140 	dm_unprepare_ioctl(md, srcu_idx);
3141 	return r;
3142 }
3143 
3144 static const struct pr_ops dm_pr_ops = {
3145 	.pr_register	= dm_pr_register,
3146 	.pr_reserve	= dm_pr_reserve,
3147 	.pr_release	= dm_pr_release,
3148 	.pr_preempt	= dm_pr_preempt,
3149 	.pr_clear	= dm_pr_clear,
3150 };
3151 
3152 static const struct block_device_operations dm_blk_dops = {
3153 	.open = dm_blk_open,
3154 	.release = dm_blk_close,
3155 	.ioctl = dm_blk_ioctl,
3156 	.getgeo = dm_blk_getgeo,
3157 	.pr_ops = &dm_pr_ops,
3158 	.owner = THIS_MODULE
3159 };
3160 
3161 static const struct dax_operations dm_dax_ops = {
3162 	.direct_access = dm_dax_direct_access,
3163 	.copy_from_iter = dm_dax_copy_from_iter,
3164 	.copy_to_iter = dm_dax_copy_to_iter,
3165 };
3166 
3167 /*
3168  * module hooks
3169  */
3170 module_init(dm_init);
3171 module_exit(dm_exit);
3172 
3173 module_param(major, uint, 0);
3174 MODULE_PARM_DESC(major, "The major number of the device mapper");
3175 
3176 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3177 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3178 
3179 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3180 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3181 
3182 MODULE_DESCRIPTION(DM_NAME " driver");
3183 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3184 MODULE_LICENSE("GPL");
3185