1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/mm.h> 16 #include <linux/sched/signal.h> 17 #include <linux/blkpg.h> 18 #include <linux/bio.h> 19 #include <linux/mempool.h> 20 #include <linux/dax.h> 21 #include <linux/slab.h> 22 #include <linux/idr.h> 23 #include <linux/uio.h> 24 #include <linux/hdreg.h> 25 #include <linux/delay.h> 26 #include <linux/wait.h> 27 #include <linux/pr.h> 28 #include <linux/refcount.h> 29 #include <linux/part_stat.h> 30 #include <linux/blk-crypto.h> 31 32 #define DM_MSG_PREFIX "core" 33 34 /* 35 * Cookies are numeric values sent with CHANGE and REMOVE 36 * uevents while resuming, removing or renaming the device. 37 */ 38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 39 #define DM_COOKIE_LENGTH 24 40 41 static const char *_name = DM_NAME; 42 43 static unsigned int major = 0; 44 static unsigned int _major = 0; 45 46 static DEFINE_IDR(_minor_idr); 47 48 static DEFINE_SPINLOCK(_minor_lock); 49 50 static void do_deferred_remove(struct work_struct *w); 51 52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 53 54 static struct workqueue_struct *deferred_remove_workqueue; 55 56 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 58 59 void dm_issue_global_event(void) 60 { 61 atomic_inc(&dm_global_event_nr); 62 wake_up(&dm_global_eventq); 63 } 64 65 /* 66 * One of these is allocated (on-stack) per original bio. 67 */ 68 struct clone_info { 69 struct dm_table *map; 70 struct bio *bio; 71 struct dm_io *io; 72 sector_t sector; 73 unsigned sector_count; 74 }; 75 76 /* 77 * One of these is allocated per clone bio. 78 */ 79 #define DM_TIO_MAGIC 7282014 80 struct dm_target_io { 81 unsigned magic; 82 struct dm_io *io; 83 struct dm_target *ti; 84 unsigned target_bio_nr; 85 unsigned *len_ptr; 86 bool inside_dm_io; 87 struct bio clone; 88 }; 89 90 /* 91 * One of these is allocated per original bio. 92 * It contains the first clone used for that original. 93 */ 94 #define DM_IO_MAGIC 5191977 95 struct dm_io { 96 unsigned magic; 97 struct mapped_device *md; 98 blk_status_t status; 99 atomic_t io_count; 100 struct bio *orig_bio; 101 unsigned long start_time; 102 spinlock_t endio_lock; 103 struct dm_stats_aux stats_aux; 104 /* last member of dm_target_io is 'struct bio' */ 105 struct dm_target_io tio; 106 }; 107 108 void *dm_per_bio_data(struct bio *bio, size_t data_size) 109 { 110 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 111 if (!tio->inside_dm_io) 112 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 113 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 114 } 115 EXPORT_SYMBOL_GPL(dm_per_bio_data); 116 117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 118 { 119 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 120 if (io->magic == DM_IO_MAGIC) 121 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 122 BUG_ON(io->magic != DM_TIO_MAGIC); 123 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 124 } 125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 126 127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 128 { 129 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 130 } 131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 132 133 #define MINOR_ALLOCED ((void *)-1) 134 135 /* 136 * Bits for the md->flags field. 137 */ 138 #define DMF_BLOCK_IO_FOR_SUSPEND 0 139 #define DMF_SUSPENDED 1 140 #define DMF_FROZEN 2 141 #define DMF_FREEING 3 142 #define DMF_DELETING 4 143 #define DMF_NOFLUSH_SUSPENDING 5 144 #define DMF_DEFERRED_REMOVE 6 145 #define DMF_SUSPENDED_INTERNALLY 7 146 #define DMF_POST_SUSPENDING 8 147 148 #define DM_NUMA_NODE NUMA_NO_NODE 149 static int dm_numa_node = DM_NUMA_NODE; 150 151 /* 152 * For mempools pre-allocation at the table loading time. 153 */ 154 struct dm_md_mempools { 155 struct bio_set bs; 156 struct bio_set io_bs; 157 }; 158 159 struct table_device { 160 struct list_head list; 161 refcount_t count; 162 struct dm_dev dm_dev; 163 }; 164 165 /* 166 * Bio-based DM's mempools' reserved IOs set by the user. 167 */ 168 #define RESERVED_BIO_BASED_IOS 16 169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 170 171 static int __dm_get_module_param_int(int *module_param, int min, int max) 172 { 173 int param = READ_ONCE(*module_param); 174 int modified_param = 0; 175 bool modified = true; 176 177 if (param < min) 178 modified_param = min; 179 else if (param > max) 180 modified_param = max; 181 else 182 modified = false; 183 184 if (modified) { 185 (void)cmpxchg(module_param, param, modified_param); 186 param = modified_param; 187 } 188 189 return param; 190 } 191 192 unsigned __dm_get_module_param(unsigned *module_param, 193 unsigned def, unsigned max) 194 { 195 unsigned param = READ_ONCE(*module_param); 196 unsigned modified_param = 0; 197 198 if (!param) 199 modified_param = def; 200 else if (param > max) 201 modified_param = max; 202 203 if (modified_param) { 204 (void)cmpxchg(module_param, param, modified_param); 205 param = modified_param; 206 } 207 208 return param; 209 } 210 211 unsigned dm_get_reserved_bio_based_ios(void) 212 { 213 return __dm_get_module_param(&reserved_bio_based_ios, 214 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 215 } 216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 217 218 static unsigned dm_get_numa_node(void) 219 { 220 return __dm_get_module_param_int(&dm_numa_node, 221 DM_NUMA_NODE, num_online_nodes() - 1); 222 } 223 224 static int __init local_init(void) 225 { 226 int r; 227 228 r = dm_uevent_init(); 229 if (r) 230 return r; 231 232 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 233 if (!deferred_remove_workqueue) { 234 r = -ENOMEM; 235 goto out_uevent_exit; 236 } 237 238 _major = major; 239 r = register_blkdev(_major, _name); 240 if (r < 0) 241 goto out_free_workqueue; 242 243 if (!_major) 244 _major = r; 245 246 return 0; 247 248 out_free_workqueue: 249 destroy_workqueue(deferred_remove_workqueue); 250 out_uevent_exit: 251 dm_uevent_exit(); 252 253 return r; 254 } 255 256 static void local_exit(void) 257 { 258 flush_scheduled_work(); 259 destroy_workqueue(deferred_remove_workqueue); 260 261 unregister_blkdev(_major, _name); 262 dm_uevent_exit(); 263 264 _major = 0; 265 266 DMINFO("cleaned up"); 267 } 268 269 static int (*_inits[])(void) __initdata = { 270 local_init, 271 dm_target_init, 272 dm_linear_init, 273 dm_stripe_init, 274 dm_io_init, 275 dm_kcopyd_init, 276 dm_interface_init, 277 dm_statistics_init, 278 }; 279 280 static void (*_exits[])(void) = { 281 local_exit, 282 dm_target_exit, 283 dm_linear_exit, 284 dm_stripe_exit, 285 dm_io_exit, 286 dm_kcopyd_exit, 287 dm_interface_exit, 288 dm_statistics_exit, 289 }; 290 291 static int __init dm_init(void) 292 { 293 const int count = ARRAY_SIZE(_inits); 294 295 int r, i; 296 297 for (i = 0; i < count; i++) { 298 r = _inits[i](); 299 if (r) 300 goto bad; 301 } 302 303 return 0; 304 305 bad: 306 while (i--) 307 _exits[i](); 308 309 return r; 310 } 311 312 static void __exit dm_exit(void) 313 { 314 int i = ARRAY_SIZE(_exits); 315 316 while (i--) 317 _exits[i](); 318 319 /* 320 * Should be empty by this point. 321 */ 322 idr_destroy(&_minor_idr); 323 } 324 325 /* 326 * Block device functions 327 */ 328 int dm_deleting_md(struct mapped_device *md) 329 { 330 return test_bit(DMF_DELETING, &md->flags); 331 } 332 333 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 334 { 335 struct mapped_device *md; 336 337 spin_lock(&_minor_lock); 338 339 md = bdev->bd_disk->private_data; 340 if (!md) 341 goto out; 342 343 if (test_bit(DMF_FREEING, &md->flags) || 344 dm_deleting_md(md)) { 345 md = NULL; 346 goto out; 347 } 348 349 dm_get(md); 350 atomic_inc(&md->open_count); 351 out: 352 spin_unlock(&_minor_lock); 353 354 return md ? 0 : -ENXIO; 355 } 356 357 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 358 { 359 struct mapped_device *md; 360 361 spin_lock(&_minor_lock); 362 363 md = disk->private_data; 364 if (WARN_ON(!md)) 365 goto out; 366 367 if (atomic_dec_and_test(&md->open_count) && 368 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 369 queue_work(deferred_remove_workqueue, &deferred_remove_work); 370 371 dm_put(md); 372 out: 373 spin_unlock(&_minor_lock); 374 } 375 376 int dm_open_count(struct mapped_device *md) 377 { 378 return atomic_read(&md->open_count); 379 } 380 381 /* 382 * Guarantees nothing is using the device before it's deleted. 383 */ 384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (dm_open_count(md)) { 391 r = -EBUSY; 392 if (mark_deferred) 393 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 395 r = -EEXIST; 396 else 397 set_bit(DMF_DELETING, &md->flags); 398 399 spin_unlock(&_minor_lock); 400 401 return r; 402 } 403 404 int dm_cancel_deferred_remove(struct mapped_device *md) 405 { 406 int r = 0; 407 408 spin_lock(&_minor_lock); 409 410 if (test_bit(DMF_DELETING, &md->flags)) 411 r = -EBUSY; 412 else 413 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 414 415 spin_unlock(&_minor_lock); 416 417 return r; 418 } 419 420 static void do_deferred_remove(struct work_struct *w) 421 { 422 dm_deferred_remove(); 423 } 424 425 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 426 { 427 struct mapped_device *md = bdev->bd_disk->private_data; 428 429 return dm_get_geometry(md, geo); 430 } 431 432 #ifdef CONFIG_BLK_DEV_ZONED 433 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data) 434 { 435 struct dm_report_zones_args *args = data; 436 sector_t sector_diff = args->tgt->begin - args->start; 437 438 /* 439 * Ignore zones beyond the target range. 440 */ 441 if (zone->start >= args->start + args->tgt->len) 442 return 0; 443 444 /* 445 * Remap the start sector and write pointer position of the zone 446 * to match its position in the target range. 447 */ 448 zone->start += sector_diff; 449 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 450 if (zone->cond == BLK_ZONE_COND_FULL) 451 zone->wp = zone->start + zone->len; 452 else if (zone->cond == BLK_ZONE_COND_EMPTY) 453 zone->wp = zone->start; 454 else 455 zone->wp += sector_diff; 456 } 457 458 args->next_sector = zone->start + zone->len; 459 return args->orig_cb(zone, args->zone_idx++, args->orig_data); 460 } 461 EXPORT_SYMBOL_GPL(dm_report_zones_cb); 462 463 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 464 unsigned int nr_zones, report_zones_cb cb, void *data) 465 { 466 struct mapped_device *md = disk->private_data; 467 struct dm_table *map; 468 int srcu_idx, ret; 469 struct dm_report_zones_args args = { 470 .next_sector = sector, 471 .orig_data = data, 472 .orig_cb = cb, 473 }; 474 475 if (dm_suspended_md(md)) 476 return -EAGAIN; 477 478 map = dm_get_live_table(md, &srcu_idx); 479 if (!map) { 480 ret = -EIO; 481 goto out; 482 } 483 484 do { 485 struct dm_target *tgt; 486 487 tgt = dm_table_find_target(map, args.next_sector); 488 if (WARN_ON_ONCE(!tgt->type->report_zones)) { 489 ret = -EIO; 490 goto out; 491 } 492 493 args.tgt = tgt; 494 ret = tgt->type->report_zones(tgt, &args, 495 nr_zones - args.zone_idx); 496 if (ret < 0) 497 goto out; 498 } while (args.zone_idx < nr_zones && 499 args.next_sector < get_capacity(disk)); 500 501 ret = args.zone_idx; 502 out: 503 dm_put_live_table(md, srcu_idx); 504 return ret; 505 } 506 #else 507 #define dm_blk_report_zones NULL 508 #endif /* CONFIG_BLK_DEV_ZONED */ 509 510 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 511 struct block_device **bdev) 512 { 513 struct dm_target *tgt; 514 struct dm_table *map; 515 int r; 516 517 retry: 518 r = -ENOTTY; 519 map = dm_get_live_table(md, srcu_idx); 520 if (!map || !dm_table_get_size(map)) 521 return r; 522 523 /* We only support devices that have a single target */ 524 if (dm_table_get_num_targets(map) != 1) 525 return r; 526 527 tgt = dm_table_get_target(map, 0); 528 if (!tgt->type->prepare_ioctl) 529 return r; 530 531 if (dm_suspended_md(md)) 532 return -EAGAIN; 533 534 r = tgt->type->prepare_ioctl(tgt, bdev); 535 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 536 dm_put_live_table(md, *srcu_idx); 537 msleep(10); 538 goto retry; 539 } 540 541 return r; 542 } 543 544 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 545 { 546 dm_put_live_table(md, srcu_idx); 547 } 548 549 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 550 unsigned int cmd, unsigned long arg) 551 { 552 struct mapped_device *md = bdev->bd_disk->private_data; 553 int r, srcu_idx; 554 555 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 556 if (r < 0) 557 goto out; 558 559 if (r > 0) { 560 /* 561 * Target determined this ioctl is being issued against a 562 * subset of the parent bdev; require extra privileges. 563 */ 564 if (!capable(CAP_SYS_RAWIO)) { 565 DMWARN_LIMIT( 566 "%s: sending ioctl %x to DM device without required privilege.", 567 current->comm, cmd); 568 r = -ENOIOCTLCMD; 569 goto out; 570 } 571 } 572 573 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 574 out: 575 dm_unprepare_ioctl(md, srcu_idx); 576 return r; 577 } 578 579 u64 dm_start_time_ns_from_clone(struct bio *bio) 580 { 581 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 582 struct dm_io *io = tio->io; 583 584 return jiffies_to_nsecs(io->start_time); 585 } 586 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 587 588 static void start_io_acct(struct dm_io *io) 589 { 590 struct mapped_device *md = io->md; 591 struct bio *bio = io->orig_bio; 592 593 io->start_time = bio_start_io_acct(bio); 594 if (unlikely(dm_stats_used(&md->stats))) 595 dm_stats_account_io(&md->stats, bio_data_dir(bio), 596 bio->bi_iter.bi_sector, bio_sectors(bio), 597 false, 0, &io->stats_aux); 598 } 599 600 static void end_io_acct(struct dm_io *io) 601 { 602 struct mapped_device *md = io->md; 603 struct bio *bio = io->orig_bio; 604 unsigned long duration = jiffies - io->start_time; 605 606 bio_end_io_acct(bio, io->start_time); 607 608 if (unlikely(dm_stats_used(&md->stats))) 609 dm_stats_account_io(&md->stats, bio_data_dir(bio), 610 bio->bi_iter.bi_sector, bio_sectors(bio), 611 true, duration, &io->stats_aux); 612 613 /* nudge anyone waiting on suspend queue */ 614 if (unlikely(wq_has_sleeper(&md->wait))) 615 wake_up(&md->wait); 616 } 617 618 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 619 { 620 struct dm_io *io; 621 struct dm_target_io *tio; 622 struct bio *clone; 623 624 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 625 if (!clone) 626 return NULL; 627 628 tio = container_of(clone, struct dm_target_io, clone); 629 tio->inside_dm_io = true; 630 tio->io = NULL; 631 632 io = container_of(tio, struct dm_io, tio); 633 io->magic = DM_IO_MAGIC; 634 io->status = 0; 635 atomic_set(&io->io_count, 1); 636 io->orig_bio = bio; 637 io->md = md; 638 spin_lock_init(&io->endio_lock); 639 640 start_io_acct(io); 641 642 return io; 643 } 644 645 static void free_io(struct mapped_device *md, struct dm_io *io) 646 { 647 bio_put(&io->tio.clone); 648 } 649 650 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 651 unsigned target_bio_nr, gfp_t gfp_mask) 652 { 653 struct dm_target_io *tio; 654 655 if (!ci->io->tio.io) { 656 /* the dm_target_io embedded in ci->io is available */ 657 tio = &ci->io->tio; 658 } else { 659 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 660 if (!clone) 661 return NULL; 662 663 tio = container_of(clone, struct dm_target_io, clone); 664 tio->inside_dm_io = false; 665 } 666 667 tio->magic = DM_TIO_MAGIC; 668 tio->io = ci->io; 669 tio->ti = ti; 670 tio->target_bio_nr = target_bio_nr; 671 672 return tio; 673 } 674 675 static void free_tio(struct dm_target_io *tio) 676 { 677 if (tio->inside_dm_io) 678 return; 679 bio_put(&tio->clone); 680 } 681 682 /* 683 * Add the bio to the list of deferred io. 684 */ 685 static void queue_io(struct mapped_device *md, struct bio *bio) 686 { 687 unsigned long flags; 688 689 spin_lock_irqsave(&md->deferred_lock, flags); 690 bio_list_add(&md->deferred, bio); 691 spin_unlock_irqrestore(&md->deferred_lock, flags); 692 queue_work(md->wq, &md->work); 693 } 694 695 /* 696 * Everyone (including functions in this file), should use this 697 * function to access the md->map field, and make sure they call 698 * dm_put_live_table() when finished. 699 */ 700 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 701 { 702 *srcu_idx = srcu_read_lock(&md->io_barrier); 703 704 return srcu_dereference(md->map, &md->io_barrier); 705 } 706 707 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 708 { 709 srcu_read_unlock(&md->io_barrier, srcu_idx); 710 } 711 712 void dm_sync_table(struct mapped_device *md) 713 { 714 synchronize_srcu(&md->io_barrier); 715 synchronize_rcu_expedited(); 716 } 717 718 /* 719 * A fast alternative to dm_get_live_table/dm_put_live_table. 720 * The caller must not block between these two functions. 721 */ 722 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 723 { 724 rcu_read_lock(); 725 return rcu_dereference(md->map); 726 } 727 728 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 729 { 730 rcu_read_unlock(); 731 } 732 733 static char *_dm_claim_ptr = "I belong to device-mapper"; 734 735 /* 736 * Open a table device so we can use it as a map destination. 737 */ 738 static int open_table_device(struct table_device *td, dev_t dev, 739 struct mapped_device *md) 740 { 741 struct block_device *bdev; 742 743 int r; 744 745 BUG_ON(td->dm_dev.bdev); 746 747 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 748 if (IS_ERR(bdev)) 749 return PTR_ERR(bdev); 750 751 r = bd_link_disk_holder(bdev, dm_disk(md)); 752 if (r) { 753 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 754 return r; 755 } 756 757 td->dm_dev.bdev = bdev; 758 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 759 return 0; 760 } 761 762 /* 763 * Close a table device that we've been using. 764 */ 765 static void close_table_device(struct table_device *td, struct mapped_device *md) 766 { 767 if (!td->dm_dev.bdev) 768 return; 769 770 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 771 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 772 put_dax(td->dm_dev.dax_dev); 773 td->dm_dev.bdev = NULL; 774 td->dm_dev.dax_dev = NULL; 775 } 776 777 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 778 fmode_t mode) 779 { 780 struct table_device *td; 781 782 list_for_each_entry(td, l, list) 783 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 784 return td; 785 786 return NULL; 787 } 788 789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 790 struct dm_dev **result) 791 { 792 int r; 793 struct table_device *td; 794 795 mutex_lock(&md->table_devices_lock); 796 td = find_table_device(&md->table_devices, dev, mode); 797 if (!td) { 798 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 799 if (!td) { 800 mutex_unlock(&md->table_devices_lock); 801 return -ENOMEM; 802 } 803 804 td->dm_dev.mode = mode; 805 td->dm_dev.bdev = NULL; 806 807 if ((r = open_table_device(td, dev, md))) { 808 mutex_unlock(&md->table_devices_lock); 809 kfree(td); 810 return r; 811 } 812 813 format_dev_t(td->dm_dev.name, dev); 814 815 refcount_set(&td->count, 1); 816 list_add(&td->list, &md->table_devices); 817 } else { 818 refcount_inc(&td->count); 819 } 820 mutex_unlock(&md->table_devices_lock); 821 822 *result = &td->dm_dev; 823 return 0; 824 } 825 EXPORT_SYMBOL_GPL(dm_get_table_device); 826 827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 828 { 829 struct table_device *td = container_of(d, struct table_device, dm_dev); 830 831 mutex_lock(&md->table_devices_lock); 832 if (refcount_dec_and_test(&td->count)) { 833 close_table_device(td, md); 834 list_del(&td->list); 835 kfree(td); 836 } 837 mutex_unlock(&md->table_devices_lock); 838 } 839 EXPORT_SYMBOL(dm_put_table_device); 840 841 static void free_table_devices(struct list_head *devices) 842 { 843 struct list_head *tmp, *next; 844 845 list_for_each_safe(tmp, next, devices) { 846 struct table_device *td = list_entry(tmp, struct table_device, list); 847 848 DMWARN("dm_destroy: %s still exists with %d references", 849 td->dm_dev.name, refcount_read(&td->count)); 850 kfree(td); 851 } 852 } 853 854 /* 855 * Get the geometry associated with a dm device 856 */ 857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 858 { 859 *geo = md->geometry; 860 861 return 0; 862 } 863 864 /* 865 * Set the geometry of a device. 866 */ 867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 868 { 869 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 870 871 if (geo->start > sz) { 872 DMWARN("Start sector is beyond the geometry limits."); 873 return -EINVAL; 874 } 875 876 md->geometry = *geo; 877 878 return 0; 879 } 880 881 static int __noflush_suspending(struct mapped_device *md) 882 { 883 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 884 } 885 886 /* 887 * Decrements the number of outstanding ios that a bio has been 888 * cloned into, completing the original io if necc. 889 */ 890 static void dec_pending(struct dm_io *io, blk_status_t error) 891 { 892 unsigned long flags; 893 blk_status_t io_error; 894 struct bio *bio; 895 struct mapped_device *md = io->md; 896 897 /* Push-back supersedes any I/O errors */ 898 if (unlikely(error)) { 899 spin_lock_irqsave(&io->endio_lock, flags); 900 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 901 io->status = error; 902 spin_unlock_irqrestore(&io->endio_lock, flags); 903 } 904 905 if (atomic_dec_and_test(&io->io_count)) { 906 if (io->status == BLK_STS_DM_REQUEUE) { 907 /* 908 * Target requested pushing back the I/O. 909 */ 910 spin_lock_irqsave(&md->deferred_lock, flags); 911 if (__noflush_suspending(md)) 912 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 913 bio_list_add_head(&md->deferred, io->orig_bio); 914 else 915 /* noflush suspend was interrupted. */ 916 io->status = BLK_STS_IOERR; 917 spin_unlock_irqrestore(&md->deferred_lock, flags); 918 } 919 920 io_error = io->status; 921 bio = io->orig_bio; 922 end_io_acct(io); 923 free_io(md, io); 924 925 if (io_error == BLK_STS_DM_REQUEUE) 926 return; 927 928 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 929 /* 930 * Preflush done for flush with data, reissue 931 * without REQ_PREFLUSH. 932 */ 933 bio->bi_opf &= ~REQ_PREFLUSH; 934 queue_io(md, bio); 935 } else { 936 /* done with normal IO or empty flush */ 937 if (io_error) 938 bio->bi_status = io_error; 939 bio_endio(bio); 940 } 941 } 942 } 943 944 void disable_discard(struct mapped_device *md) 945 { 946 struct queue_limits *limits = dm_get_queue_limits(md); 947 948 /* device doesn't really support DISCARD, disable it */ 949 limits->max_discard_sectors = 0; 950 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 951 } 952 953 void disable_write_same(struct mapped_device *md) 954 { 955 struct queue_limits *limits = dm_get_queue_limits(md); 956 957 /* device doesn't really support WRITE SAME, disable it */ 958 limits->max_write_same_sectors = 0; 959 } 960 961 void disable_write_zeroes(struct mapped_device *md) 962 { 963 struct queue_limits *limits = dm_get_queue_limits(md); 964 965 /* device doesn't really support WRITE ZEROES, disable it */ 966 limits->max_write_zeroes_sectors = 0; 967 } 968 969 static void clone_endio(struct bio *bio) 970 { 971 blk_status_t error = bio->bi_status; 972 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 973 struct dm_io *io = tio->io; 974 struct mapped_device *md = tio->io->md; 975 dm_endio_fn endio = tio->ti->type->end_io; 976 struct bio *orig_bio = io->orig_bio; 977 978 if (unlikely(error == BLK_STS_TARGET)) { 979 if (bio_op(bio) == REQ_OP_DISCARD && 980 !bio->bi_disk->queue->limits.max_discard_sectors) 981 disable_discard(md); 982 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 983 !bio->bi_disk->queue->limits.max_write_same_sectors) 984 disable_write_same(md); 985 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 986 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 987 disable_write_zeroes(md); 988 } 989 990 /* 991 * For zone-append bios get offset in zone of the written 992 * sector and add that to the original bio sector pos. 993 */ 994 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) { 995 sector_t written_sector = bio->bi_iter.bi_sector; 996 struct request_queue *q = orig_bio->bi_disk->queue; 997 u64 mask = (u64)blk_queue_zone_sectors(q) - 1; 998 999 orig_bio->bi_iter.bi_sector += written_sector & mask; 1000 } 1001 1002 if (endio) { 1003 int r = endio(tio->ti, bio, &error); 1004 switch (r) { 1005 case DM_ENDIO_REQUEUE: 1006 error = BLK_STS_DM_REQUEUE; 1007 fallthrough; 1008 case DM_ENDIO_DONE: 1009 break; 1010 case DM_ENDIO_INCOMPLETE: 1011 /* The target will handle the io */ 1012 return; 1013 default: 1014 DMWARN("unimplemented target endio return value: %d", r); 1015 BUG(); 1016 } 1017 } 1018 1019 free_tio(tio); 1020 dec_pending(io, error); 1021 } 1022 1023 /* 1024 * Return maximum size of I/O possible at the supplied sector up to the current 1025 * target boundary. 1026 */ 1027 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1028 sector_t target_offset) 1029 { 1030 return ti->len - target_offset; 1031 } 1032 1033 static sector_t max_io_len(struct dm_target *ti, sector_t sector) 1034 { 1035 sector_t target_offset = dm_target_offset(ti, sector); 1036 sector_t len = max_io_len_target_boundary(ti, target_offset); 1037 sector_t max_len; 1038 1039 /* 1040 * Does the target need to split IO even further? 1041 * - varied (per target) IO splitting is a tenet of DM; this 1042 * explains why stacked chunk_sectors based splitting via 1043 * blk_max_size_offset() isn't possible here. So pass in 1044 * ti->max_io_len to override stacked chunk_sectors. 1045 */ 1046 if (ti->max_io_len) { 1047 max_len = blk_max_size_offset(ti->table->md->queue, 1048 target_offset, ti->max_io_len); 1049 if (len > max_len) 1050 len = max_len; 1051 } 1052 1053 return len; 1054 } 1055 1056 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1057 { 1058 if (len > UINT_MAX) { 1059 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1060 (unsigned long long)len, UINT_MAX); 1061 ti->error = "Maximum size of target IO is too large"; 1062 return -EINVAL; 1063 } 1064 1065 ti->max_io_len = (uint32_t) len; 1066 1067 return 0; 1068 } 1069 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1070 1071 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1072 sector_t sector, int *srcu_idx) 1073 __acquires(md->io_barrier) 1074 { 1075 struct dm_table *map; 1076 struct dm_target *ti; 1077 1078 map = dm_get_live_table(md, srcu_idx); 1079 if (!map) 1080 return NULL; 1081 1082 ti = dm_table_find_target(map, sector); 1083 if (!ti) 1084 return NULL; 1085 1086 return ti; 1087 } 1088 1089 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1090 long nr_pages, void **kaddr, pfn_t *pfn) 1091 { 1092 struct mapped_device *md = dax_get_private(dax_dev); 1093 sector_t sector = pgoff * PAGE_SECTORS; 1094 struct dm_target *ti; 1095 long len, ret = -EIO; 1096 int srcu_idx; 1097 1098 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1099 1100 if (!ti) 1101 goto out; 1102 if (!ti->type->direct_access) 1103 goto out; 1104 len = max_io_len(ti, sector) / PAGE_SECTORS; 1105 if (len < 1) 1106 goto out; 1107 nr_pages = min(len, nr_pages); 1108 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1109 1110 out: 1111 dm_put_live_table(md, srcu_idx); 1112 1113 return ret; 1114 } 1115 1116 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1117 int blocksize, sector_t start, sector_t len) 1118 { 1119 struct mapped_device *md = dax_get_private(dax_dev); 1120 struct dm_table *map; 1121 bool ret = false; 1122 int srcu_idx; 1123 1124 map = dm_get_live_table(md, &srcu_idx); 1125 if (!map) 1126 goto out; 1127 1128 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize); 1129 1130 out: 1131 dm_put_live_table(md, srcu_idx); 1132 1133 return ret; 1134 } 1135 1136 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1137 void *addr, size_t bytes, struct iov_iter *i) 1138 { 1139 struct mapped_device *md = dax_get_private(dax_dev); 1140 sector_t sector = pgoff * PAGE_SECTORS; 1141 struct dm_target *ti; 1142 long ret = 0; 1143 int srcu_idx; 1144 1145 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1146 1147 if (!ti) 1148 goto out; 1149 if (!ti->type->dax_copy_from_iter) { 1150 ret = copy_from_iter(addr, bytes, i); 1151 goto out; 1152 } 1153 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1154 out: 1155 dm_put_live_table(md, srcu_idx); 1156 1157 return ret; 1158 } 1159 1160 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1161 void *addr, size_t bytes, struct iov_iter *i) 1162 { 1163 struct mapped_device *md = dax_get_private(dax_dev); 1164 sector_t sector = pgoff * PAGE_SECTORS; 1165 struct dm_target *ti; 1166 long ret = 0; 1167 int srcu_idx; 1168 1169 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1170 1171 if (!ti) 1172 goto out; 1173 if (!ti->type->dax_copy_to_iter) { 1174 ret = copy_to_iter(addr, bytes, i); 1175 goto out; 1176 } 1177 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1178 out: 1179 dm_put_live_table(md, srcu_idx); 1180 1181 return ret; 1182 } 1183 1184 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1185 size_t nr_pages) 1186 { 1187 struct mapped_device *md = dax_get_private(dax_dev); 1188 sector_t sector = pgoff * PAGE_SECTORS; 1189 struct dm_target *ti; 1190 int ret = -EIO; 1191 int srcu_idx; 1192 1193 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1194 1195 if (!ti) 1196 goto out; 1197 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1198 /* 1199 * ->zero_page_range() is mandatory dax operation. If we are 1200 * here, something is wrong. 1201 */ 1202 goto out; 1203 } 1204 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1205 out: 1206 dm_put_live_table(md, srcu_idx); 1207 1208 return ret; 1209 } 1210 1211 /* 1212 * A target may call dm_accept_partial_bio only from the map routine. It is 1213 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET, 1214 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH. 1215 * 1216 * dm_accept_partial_bio informs the dm that the target only wants to process 1217 * additional n_sectors sectors of the bio and the rest of the data should be 1218 * sent in a next bio. 1219 * 1220 * A diagram that explains the arithmetics: 1221 * +--------------------+---------------+-------+ 1222 * | 1 | 2 | 3 | 1223 * +--------------------+---------------+-------+ 1224 * 1225 * <-------------- *tio->len_ptr ---------------> 1226 * <------- bi_size -------> 1227 * <-- n_sectors --> 1228 * 1229 * Region 1 was already iterated over with bio_advance or similar function. 1230 * (it may be empty if the target doesn't use bio_advance) 1231 * Region 2 is the remaining bio size that the target wants to process. 1232 * (it may be empty if region 1 is non-empty, although there is no reason 1233 * to make it empty) 1234 * The target requires that region 3 is to be sent in the next bio. 1235 * 1236 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1237 * the partially processed part (the sum of regions 1+2) must be the same for all 1238 * copies of the bio. 1239 */ 1240 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1241 { 1242 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1243 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1244 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1245 BUG_ON(bi_size > *tio->len_ptr); 1246 BUG_ON(n_sectors > bi_size); 1247 *tio->len_ptr -= bi_size - n_sectors; 1248 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1249 } 1250 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1251 1252 static blk_qc_t __map_bio(struct dm_target_io *tio) 1253 { 1254 int r; 1255 sector_t sector; 1256 struct bio *clone = &tio->clone; 1257 struct dm_io *io = tio->io; 1258 struct dm_target *ti = tio->ti; 1259 blk_qc_t ret = BLK_QC_T_NONE; 1260 1261 clone->bi_end_io = clone_endio; 1262 1263 /* 1264 * Map the clone. If r == 0 we don't need to do 1265 * anything, the target has assumed ownership of 1266 * this io. 1267 */ 1268 atomic_inc(&io->io_count); 1269 sector = clone->bi_iter.bi_sector; 1270 1271 r = ti->type->map(ti, clone); 1272 switch (r) { 1273 case DM_MAPIO_SUBMITTED: 1274 break; 1275 case DM_MAPIO_REMAPPED: 1276 /* the bio has been remapped so dispatch it */ 1277 trace_block_bio_remap(clone->bi_disk->queue, clone, 1278 bio_dev(io->orig_bio), sector); 1279 ret = submit_bio_noacct(clone); 1280 break; 1281 case DM_MAPIO_KILL: 1282 free_tio(tio); 1283 dec_pending(io, BLK_STS_IOERR); 1284 break; 1285 case DM_MAPIO_REQUEUE: 1286 free_tio(tio); 1287 dec_pending(io, BLK_STS_DM_REQUEUE); 1288 break; 1289 default: 1290 DMWARN("unimplemented target map return value: %d", r); 1291 BUG(); 1292 } 1293 1294 return ret; 1295 } 1296 1297 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1298 { 1299 bio->bi_iter.bi_sector = sector; 1300 bio->bi_iter.bi_size = to_bytes(len); 1301 } 1302 1303 /* 1304 * Creates a bio that consists of range of complete bvecs. 1305 */ 1306 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1307 sector_t sector, unsigned len) 1308 { 1309 struct bio *clone = &tio->clone; 1310 int r; 1311 1312 __bio_clone_fast(clone, bio); 1313 1314 r = bio_crypt_clone(clone, bio, GFP_NOIO); 1315 if (r < 0) 1316 return r; 1317 1318 if (bio_integrity(bio)) { 1319 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1320 !dm_target_passes_integrity(tio->ti->type))) { 1321 DMWARN("%s: the target %s doesn't support integrity data.", 1322 dm_device_name(tio->io->md), 1323 tio->ti->type->name); 1324 return -EIO; 1325 } 1326 1327 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1328 if (r < 0) 1329 return r; 1330 } 1331 1332 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1333 clone->bi_iter.bi_size = to_bytes(len); 1334 1335 if (bio_integrity(bio)) 1336 bio_integrity_trim(clone); 1337 1338 return 0; 1339 } 1340 1341 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1342 struct dm_target *ti, unsigned num_bios) 1343 { 1344 struct dm_target_io *tio; 1345 int try; 1346 1347 if (!num_bios) 1348 return; 1349 1350 if (num_bios == 1) { 1351 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1352 bio_list_add(blist, &tio->clone); 1353 return; 1354 } 1355 1356 for (try = 0; try < 2; try++) { 1357 int bio_nr; 1358 struct bio *bio; 1359 1360 if (try) 1361 mutex_lock(&ci->io->md->table_devices_lock); 1362 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1363 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1364 if (!tio) 1365 break; 1366 1367 bio_list_add(blist, &tio->clone); 1368 } 1369 if (try) 1370 mutex_unlock(&ci->io->md->table_devices_lock); 1371 if (bio_nr == num_bios) 1372 return; 1373 1374 while ((bio = bio_list_pop(blist))) { 1375 tio = container_of(bio, struct dm_target_io, clone); 1376 free_tio(tio); 1377 } 1378 } 1379 } 1380 1381 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1382 struct dm_target_io *tio, unsigned *len) 1383 { 1384 struct bio *clone = &tio->clone; 1385 1386 tio->len_ptr = len; 1387 1388 __bio_clone_fast(clone, ci->bio); 1389 if (len) 1390 bio_setup_sector(clone, ci->sector, *len); 1391 1392 return __map_bio(tio); 1393 } 1394 1395 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1396 unsigned num_bios, unsigned *len) 1397 { 1398 struct bio_list blist = BIO_EMPTY_LIST; 1399 struct bio *bio; 1400 struct dm_target_io *tio; 1401 1402 alloc_multiple_bios(&blist, ci, ti, num_bios); 1403 1404 while ((bio = bio_list_pop(&blist))) { 1405 tio = container_of(bio, struct dm_target_io, clone); 1406 (void) __clone_and_map_simple_bio(ci, tio, len); 1407 } 1408 } 1409 1410 static int __send_empty_flush(struct clone_info *ci) 1411 { 1412 unsigned target_nr = 0; 1413 struct dm_target *ti; 1414 struct bio flush_bio; 1415 1416 /* 1417 * Use an on-stack bio for this, it's safe since we don't 1418 * need to reference it after submit. It's just used as 1419 * the basis for the clone(s). 1420 */ 1421 bio_init(&flush_bio, NULL, 0); 1422 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1423 ci->bio = &flush_bio; 1424 ci->sector_count = 0; 1425 1426 /* 1427 * Empty flush uses a statically initialized bio, as the base for 1428 * cloning. However, blkg association requires that a bdev is 1429 * associated with a gendisk, which doesn't happen until the bdev is 1430 * opened. So, blkg association is done at issue time of the flush 1431 * rather than when the device is created in alloc_dev(). 1432 */ 1433 bio_set_dev(ci->bio, ci->io->md->bdev); 1434 1435 BUG_ON(bio_has_data(ci->bio)); 1436 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1437 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1438 1439 bio_uninit(ci->bio); 1440 return 0; 1441 } 1442 1443 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1444 sector_t sector, unsigned *len) 1445 { 1446 struct bio *bio = ci->bio; 1447 struct dm_target_io *tio; 1448 int r; 1449 1450 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1451 tio->len_ptr = len; 1452 r = clone_bio(tio, bio, sector, *len); 1453 if (r < 0) { 1454 free_tio(tio); 1455 return r; 1456 } 1457 (void) __map_bio(tio); 1458 1459 return 0; 1460 } 1461 1462 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1463 unsigned num_bios) 1464 { 1465 unsigned len; 1466 1467 /* 1468 * Even though the device advertised support for this type of 1469 * request, that does not mean every target supports it, and 1470 * reconfiguration might also have changed that since the 1471 * check was performed. 1472 */ 1473 if (!num_bios) 1474 return -EOPNOTSUPP; 1475 1476 len = min_t(sector_t, ci->sector_count, 1477 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector))); 1478 1479 __send_duplicate_bios(ci, ti, num_bios, &len); 1480 1481 ci->sector += len; 1482 ci->sector_count -= len; 1483 1484 return 0; 1485 } 1486 1487 static bool is_abnormal_io(struct bio *bio) 1488 { 1489 bool r = false; 1490 1491 switch (bio_op(bio)) { 1492 case REQ_OP_DISCARD: 1493 case REQ_OP_SECURE_ERASE: 1494 case REQ_OP_WRITE_SAME: 1495 case REQ_OP_WRITE_ZEROES: 1496 r = true; 1497 break; 1498 } 1499 1500 return r; 1501 } 1502 1503 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1504 int *result) 1505 { 1506 struct bio *bio = ci->bio; 1507 unsigned num_bios = 0; 1508 1509 switch (bio_op(bio)) { 1510 case REQ_OP_DISCARD: 1511 num_bios = ti->num_discard_bios; 1512 break; 1513 case REQ_OP_SECURE_ERASE: 1514 num_bios = ti->num_secure_erase_bios; 1515 break; 1516 case REQ_OP_WRITE_SAME: 1517 num_bios = ti->num_write_same_bios; 1518 break; 1519 case REQ_OP_WRITE_ZEROES: 1520 num_bios = ti->num_write_zeroes_bios; 1521 break; 1522 default: 1523 return false; 1524 } 1525 1526 *result = __send_changing_extent_only(ci, ti, num_bios); 1527 return true; 1528 } 1529 1530 /* 1531 * Select the correct strategy for processing a non-flush bio. 1532 */ 1533 static int __split_and_process_non_flush(struct clone_info *ci) 1534 { 1535 struct dm_target *ti; 1536 unsigned len; 1537 int r; 1538 1539 ti = dm_table_find_target(ci->map, ci->sector); 1540 if (!ti) 1541 return -EIO; 1542 1543 if (__process_abnormal_io(ci, ti, &r)) 1544 return r; 1545 1546 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1547 1548 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1549 if (r < 0) 1550 return r; 1551 1552 ci->sector += len; 1553 ci->sector_count -= len; 1554 1555 return 0; 1556 } 1557 1558 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1559 struct dm_table *map, struct bio *bio) 1560 { 1561 ci->map = map; 1562 ci->io = alloc_io(md, bio); 1563 ci->sector = bio->bi_iter.bi_sector; 1564 } 1565 1566 #define __dm_part_stat_sub(part, field, subnd) \ 1567 (part_stat_get(part, field) -= (subnd)) 1568 1569 /* 1570 * Entry point to split a bio into clones and submit them to the targets. 1571 */ 1572 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1573 struct dm_table *map, struct bio *bio) 1574 { 1575 struct clone_info ci; 1576 blk_qc_t ret = BLK_QC_T_NONE; 1577 int error = 0; 1578 1579 init_clone_info(&ci, md, map, bio); 1580 1581 if (bio->bi_opf & REQ_PREFLUSH) { 1582 error = __send_empty_flush(&ci); 1583 /* dec_pending submits any data associated with flush */ 1584 } else if (op_is_zone_mgmt(bio_op(bio))) { 1585 ci.bio = bio; 1586 ci.sector_count = 0; 1587 error = __split_and_process_non_flush(&ci); 1588 } else { 1589 ci.bio = bio; 1590 ci.sector_count = bio_sectors(bio); 1591 while (ci.sector_count && !error) { 1592 error = __split_and_process_non_flush(&ci); 1593 if (current->bio_list && ci.sector_count && !error) { 1594 /* 1595 * Remainder must be passed to submit_bio_noacct() 1596 * so that it gets handled *after* bios already submitted 1597 * have been completely processed. 1598 * We take a clone of the original to store in 1599 * ci.io->orig_bio to be used by end_io_acct() and 1600 * for dec_pending to use for completion handling. 1601 */ 1602 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1603 GFP_NOIO, &md->queue->bio_split); 1604 ci.io->orig_bio = b; 1605 1606 /* 1607 * Adjust IO stats for each split, otherwise upon queue 1608 * reentry there will be redundant IO accounting. 1609 * NOTE: this is a stop-gap fix, a proper fix involves 1610 * significant refactoring of DM core's bio splitting 1611 * (by eliminating DM's splitting and just using bio_split) 1612 */ 1613 part_stat_lock(); 1614 __dm_part_stat_sub(&dm_disk(md)->part0, 1615 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1616 part_stat_unlock(); 1617 1618 bio_chain(b, bio); 1619 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1620 ret = submit_bio_noacct(bio); 1621 break; 1622 } 1623 } 1624 } 1625 1626 /* drop the extra reference count */ 1627 dec_pending(ci.io, errno_to_blk_status(error)); 1628 return ret; 1629 } 1630 1631 static blk_qc_t dm_submit_bio(struct bio *bio) 1632 { 1633 struct mapped_device *md = bio->bi_disk->private_data; 1634 blk_qc_t ret = BLK_QC_T_NONE; 1635 int srcu_idx; 1636 struct dm_table *map; 1637 1638 map = dm_get_live_table(md, &srcu_idx); 1639 if (unlikely(!map)) { 1640 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 1641 dm_device_name(md)); 1642 bio_io_error(bio); 1643 goto out; 1644 } 1645 1646 /* If suspended, queue this IO for later */ 1647 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1648 if (bio->bi_opf & REQ_NOWAIT) 1649 bio_wouldblock_error(bio); 1650 else if (bio->bi_opf & REQ_RAHEAD) 1651 bio_io_error(bio); 1652 else 1653 queue_io(md, bio); 1654 goto out; 1655 } 1656 1657 /* 1658 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc) 1659 * otherwise associated queue_limits won't be imposed. 1660 */ 1661 if (is_abnormal_io(bio)) 1662 blk_queue_split(&bio); 1663 1664 ret = __split_and_process_bio(md, map, bio); 1665 out: 1666 dm_put_live_table(md, srcu_idx); 1667 return ret; 1668 } 1669 1670 /*----------------------------------------------------------------- 1671 * An IDR is used to keep track of allocated minor numbers. 1672 *---------------------------------------------------------------*/ 1673 static void free_minor(int minor) 1674 { 1675 spin_lock(&_minor_lock); 1676 idr_remove(&_minor_idr, minor); 1677 spin_unlock(&_minor_lock); 1678 } 1679 1680 /* 1681 * See if the device with a specific minor # is free. 1682 */ 1683 static int specific_minor(int minor) 1684 { 1685 int r; 1686 1687 if (minor >= (1 << MINORBITS)) 1688 return -EINVAL; 1689 1690 idr_preload(GFP_KERNEL); 1691 spin_lock(&_minor_lock); 1692 1693 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1694 1695 spin_unlock(&_minor_lock); 1696 idr_preload_end(); 1697 if (r < 0) 1698 return r == -ENOSPC ? -EBUSY : r; 1699 return 0; 1700 } 1701 1702 static int next_free_minor(int *minor) 1703 { 1704 int r; 1705 1706 idr_preload(GFP_KERNEL); 1707 spin_lock(&_minor_lock); 1708 1709 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1710 1711 spin_unlock(&_minor_lock); 1712 idr_preload_end(); 1713 if (r < 0) 1714 return r; 1715 *minor = r; 1716 return 0; 1717 } 1718 1719 static const struct block_device_operations dm_blk_dops; 1720 static const struct block_device_operations dm_rq_blk_dops; 1721 static const struct dax_operations dm_dax_ops; 1722 1723 static void dm_wq_work(struct work_struct *work); 1724 1725 static void cleanup_mapped_device(struct mapped_device *md) 1726 { 1727 if (md->wq) 1728 destroy_workqueue(md->wq); 1729 bioset_exit(&md->bs); 1730 bioset_exit(&md->io_bs); 1731 1732 if (md->dax_dev) { 1733 kill_dax(md->dax_dev); 1734 put_dax(md->dax_dev); 1735 md->dax_dev = NULL; 1736 } 1737 1738 if (md->disk) { 1739 spin_lock(&_minor_lock); 1740 md->disk->private_data = NULL; 1741 spin_unlock(&_minor_lock); 1742 del_gendisk(md->disk); 1743 put_disk(md->disk); 1744 } 1745 1746 if (md->queue) 1747 blk_cleanup_queue(md->queue); 1748 1749 cleanup_srcu_struct(&md->io_barrier); 1750 1751 if (md->bdev) { 1752 bdput(md->bdev); 1753 md->bdev = NULL; 1754 } 1755 1756 mutex_destroy(&md->suspend_lock); 1757 mutex_destroy(&md->type_lock); 1758 mutex_destroy(&md->table_devices_lock); 1759 1760 dm_mq_cleanup_mapped_device(md); 1761 } 1762 1763 /* 1764 * Allocate and initialise a blank device with a given minor. 1765 */ 1766 static struct mapped_device *alloc_dev(int minor) 1767 { 1768 int r, numa_node_id = dm_get_numa_node(); 1769 struct mapped_device *md; 1770 void *old_md; 1771 1772 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1773 if (!md) { 1774 DMWARN("unable to allocate device, out of memory."); 1775 return NULL; 1776 } 1777 1778 if (!try_module_get(THIS_MODULE)) 1779 goto bad_module_get; 1780 1781 /* get a minor number for the dev */ 1782 if (minor == DM_ANY_MINOR) 1783 r = next_free_minor(&minor); 1784 else 1785 r = specific_minor(minor); 1786 if (r < 0) 1787 goto bad_minor; 1788 1789 r = init_srcu_struct(&md->io_barrier); 1790 if (r < 0) 1791 goto bad_io_barrier; 1792 1793 md->numa_node_id = numa_node_id; 1794 md->init_tio_pdu = false; 1795 md->type = DM_TYPE_NONE; 1796 mutex_init(&md->suspend_lock); 1797 mutex_init(&md->type_lock); 1798 mutex_init(&md->table_devices_lock); 1799 spin_lock_init(&md->deferred_lock); 1800 atomic_set(&md->holders, 1); 1801 atomic_set(&md->open_count, 0); 1802 atomic_set(&md->event_nr, 0); 1803 atomic_set(&md->uevent_seq, 0); 1804 INIT_LIST_HEAD(&md->uevent_list); 1805 INIT_LIST_HEAD(&md->table_devices); 1806 spin_lock_init(&md->uevent_lock); 1807 1808 /* 1809 * default to bio-based until DM table is loaded and md->type 1810 * established. If request-based table is loaded: blk-mq will 1811 * override accordingly. 1812 */ 1813 md->queue = blk_alloc_queue(numa_node_id); 1814 if (!md->queue) 1815 goto bad; 1816 1817 md->disk = alloc_disk_node(1, md->numa_node_id); 1818 if (!md->disk) 1819 goto bad; 1820 1821 init_waitqueue_head(&md->wait); 1822 INIT_WORK(&md->work, dm_wq_work); 1823 init_waitqueue_head(&md->eventq); 1824 init_completion(&md->kobj_holder.completion); 1825 1826 md->disk->major = _major; 1827 md->disk->first_minor = minor; 1828 md->disk->fops = &dm_blk_dops; 1829 md->disk->queue = md->queue; 1830 md->disk->private_data = md; 1831 sprintf(md->disk->disk_name, "dm-%d", minor); 1832 1833 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1834 md->dax_dev = alloc_dax(md, md->disk->disk_name, 1835 &dm_dax_ops, 0); 1836 if (IS_ERR(md->dax_dev)) 1837 goto bad; 1838 } 1839 1840 add_disk_no_queue_reg(md->disk); 1841 format_dev_t(md->name, MKDEV(_major, minor)); 1842 1843 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1844 if (!md->wq) 1845 goto bad; 1846 1847 md->bdev = bdget_disk(md->disk, 0); 1848 if (!md->bdev) 1849 goto bad; 1850 1851 dm_stats_init(&md->stats); 1852 1853 /* Populate the mapping, nobody knows we exist yet */ 1854 spin_lock(&_minor_lock); 1855 old_md = idr_replace(&_minor_idr, md, minor); 1856 spin_unlock(&_minor_lock); 1857 1858 BUG_ON(old_md != MINOR_ALLOCED); 1859 1860 return md; 1861 1862 bad: 1863 cleanup_mapped_device(md); 1864 bad_io_barrier: 1865 free_minor(minor); 1866 bad_minor: 1867 module_put(THIS_MODULE); 1868 bad_module_get: 1869 kvfree(md); 1870 return NULL; 1871 } 1872 1873 static void unlock_fs(struct mapped_device *md); 1874 1875 static void free_dev(struct mapped_device *md) 1876 { 1877 int minor = MINOR(disk_devt(md->disk)); 1878 1879 unlock_fs(md); 1880 1881 cleanup_mapped_device(md); 1882 1883 free_table_devices(&md->table_devices); 1884 dm_stats_cleanup(&md->stats); 1885 free_minor(minor); 1886 1887 module_put(THIS_MODULE); 1888 kvfree(md); 1889 } 1890 1891 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 1892 { 1893 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1894 int ret = 0; 1895 1896 if (dm_table_bio_based(t)) { 1897 /* 1898 * The md may already have mempools that need changing. 1899 * If so, reload bioset because front_pad may have changed 1900 * because a different table was loaded. 1901 */ 1902 bioset_exit(&md->bs); 1903 bioset_exit(&md->io_bs); 1904 1905 } else if (bioset_initialized(&md->bs)) { 1906 /* 1907 * There's no need to reload with request-based dm 1908 * because the size of front_pad doesn't change. 1909 * Note for future: If you are to reload bioset, 1910 * prep-ed requests in the queue may refer 1911 * to bio from the old bioset, so you must walk 1912 * through the queue to unprep. 1913 */ 1914 goto out; 1915 } 1916 1917 BUG_ON(!p || 1918 bioset_initialized(&md->bs) || 1919 bioset_initialized(&md->io_bs)); 1920 1921 ret = bioset_init_from_src(&md->bs, &p->bs); 1922 if (ret) 1923 goto out; 1924 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 1925 if (ret) 1926 bioset_exit(&md->bs); 1927 out: 1928 /* mempool bind completed, no longer need any mempools in the table */ 1929 dm_table_free_md_mempools(t); 1930 return ret; 1931 } 1932 1933 /* 1934 * Bind a table to the device. 1935 */ 1936 static void event_callback(void *context) 1937 { 1938 unsigned long flags; 1939 LIST_HEAD(uevents); 1940 struct mapped_device *md = (struct mapped_device *) context; 1941 1942 spin_lock_irqsave(&md->uevent_lock, flags); 1943 list_splice_init(&md->uevent_list, &uevents); 1944 spin_unlock_irqrestore(&md->uevent_lock, flags); 1945 1946 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1947 1948 atomic_inc(&md->event_nr); 1949 wake_up(&md->eventq); 1950 dm_issue_global_event(); 1951 } 1952 1953 /* 1954 * Returns old map, which caller must destroy. 1955 */ 1956 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1957 struct queue_limits *limits) 1958 { 1959 struct dm_table *old_map; 1960 struct request_queue *q = md->queue; 1961 bool request_based = dm_table_request_based(t); 1962 sector_t size; 1963 int ret; 1964 1965 lockdep_assert_held(&md->suspend_lock); 1966 1967 size = dm_table_get_size(t); 1968 1969 /* 1970 * Wipe any geometry if the size of the table changed. 1971 */ 1972 if (size != dm_get_size(md)) 1973 memset(&md->geometry, 0, sizeof(md->geometry)); 1974 1975 set_capacity(md->disk, size); 1976 bd_set_nr_sectors(md->bdev, size); 1977 1978 dm_table_event_callback(t, event_callback, md); 1979 1980 /* 1981 * The queue hasn't been stopped yet, if the old table type wasn't 1982 * for request-based during suspension. So stop it to prevent 1983 * I/O mapping before resume. 1984 * This must be done before setting the queue restrictions, 1985 * because request-based dm may be run just after the setting. 1986 */ 1987 if (request_based) 1988 dm_stop_queue(q); 1989 1990 if (request_based) { 1991 /* 1992 * Leverage the fact that request-based DM targets are 1993 * immutable singletons - used to optimize dm_mq_queue_rq. 1994 */ 1995 md->immutable_target = dm_table_get_immutable_target(t); 1996 } 1997 1998 ret = __bind_mempools(md, t); 1999 if (ret) { 2000 old_map = ERR_PTR(ret); 2001 goto out; 2002 } 2003 2004 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2005 rcu_assign_pointer(md->map, (void *)t); 2006 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2007 2008 dm_table_set_restrictions(t, q, limits); 2009 if (old_map) 2010 dm_sync_table(md); 2011 2012 out: 2013 return old_map; 2014 } 2015 2016 /* 2017 * Returns unbound table for the caller to free. 2018 */ 2019 static struct dm_table *__unbind(struct mapped_device *md) 2020 { 2021 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2022 2023 if (!map) 2024 return NULL; 2025 2026 dm_table_event_callback(map, NULL, NULL); 2027 RCU_INIT_POINTER(md->map, NULL); 2028 dm_sync_table(md); 2029 2030 return map; 2031 } 2032 2033 /* 2034 * Constructor for a new device. 2035 */ 2036 int dm_create(int minor, struct mapped_device **result) 2037 { 2038 int r; 2039 struct mapped_device *md; 2040 2041 md = alloc_dev(minor); 2042 if (!md) 2043 return -ENXIO; 2044 2045 r = dm_sysfs_init(md); 2046 if (r) { 2047 free_dev(md); 2048 return r; 2049 } 2050 2051 *result = md; 2052 return 0; 2053 } 2054 2055 /* 2056 * Functions to manage md->type. 2057 * All are required to hold md->type_lock. 2058 */ 2059 void dm_lock_md_type(struct mapped_device *md) 2060 { 2061 mutex_lock(&md->type_lock); 2062 } 2063 2064 void dm_unlock_md_type(struct mapped_device *md) 2065 { 2066 mutex_unlock(&md->type_lock); 2067 } 2068 2069 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2070 { 2071 BUG_ON(!mutex_is_locked(&md->type_lock)); 2072 md->type = type; 2073 } 2074 2075 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2076 { 2077 return md->type; 2078 } 2079 2080 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2081 { 2082 return md->immutable_target_type; 2083 } 2084 2085 /* 2086 * The queue_limits are only valid as long as you have a reference 2087 * count on 'md'. 2088 */ 2089 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2090 { 2091 BUG_ON(!atomic_read(&md->holders)); 2092 return &md->queue->limits; 2093 } 2094 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2095 2096 /* 2097 * Setup the DM device's queue based on md's type 2098 */ 2099 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2100 { 2101 int r; 2102 struct queue_limits limits; 2103 enum dm_queue_mode type = dm_get_md_type(md); 2104 2105 switch (type) { 2106 case DM_TYPE_REQUEST_BASED: 2107 md->disk->fops = &dm_rq_blk_dops; 2108 r = dm_mq_init_request_queue(md, t); 2109 if (r) { 2110 DMERR("Cannot initialize queue for request-based dm mapped device"); 2111 return r; 2112 } 2113 break; 2114 case DM_TYPE_BIO_BASED: 2115 case DM_TYPE_DAX_BIO_BASED: 2116 break; 2117 case DM_TYPE_NONE: 2118 WARN_ON_ONCE(true); 2119 break; 2120 } 2121 2122 r = dm_calculate_queue_limits(t, &limits); 2123 if (r) { 2124 DMERR("Cannot calculate initial queue limits"); 2125 return r; 2126 } 2127 dm_table_set_restrictions(t, md->queue, &limits); 2128 blk_register_queue(md->disk); 2129 2130 return 0; 2131 } 2132 2133 struct mapped_device *dm_get_md(dev_t dev) 2134 { 2135 struct mapped_device *md; 2136 unsigned minor = MINOR(dev); 2137 2138 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2139 return NULL; 2140 2141 spin_lock(&_minor_lock); 2142 2143 md = idr_find(&_minor_idr, minor); 2144 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2145 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2146 md = NULL; 2147 goto out; 2148 } 2149 dm_get(md); 2150 out: 2151 spin_unlock(&_minor_lock); 2152 2153 return md; 2154 } 2155 EXPORT_SYMBOL_GPL(dm_get_md); 2156 2157 void *dm_get_mdptr(struct mapped_device *md) 2158 { 2159 return md->interface_ptr; 2160 } 2161 2162 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2163 { 2164 md->interface_ptr = ptr; 2165 } 2166 2167 void dm_get(struct mapped_device *md) 2168 { 2169 atomic_inc(&md->holders); 2170 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2171 } 2172 2173 int dm_hold(struct mapped_device *md) 2174 { 2175 spin_lock(&_minor_lock); 2176 if (test_bit(DMF_FREEING, &md->flags)) { 2177 spin_unlock(&_minor_lock); 2178 return -EBUSY; 2179 } 2180 dm_get(md); 2181 spin_unlock(&_minor_lock); 2182 return 0; 2183 } 2184 EXPORT_SYMBOL_GPL(dm_hold); 2185 2186 const char *dm_device_name(struct mapped_device *md) 2187 { 2188 return md->name; 2189 } 2190 EXPORT_SYMBOL_GPL(dm_device_name); 2191 2192 static void __dm_destroy(struct mapped_device *md, bool wait) 2193 { 2194 struct dm_table *map; 2195 int srcu_idx; 2196 2197 might_sleep(); 2198 2199 spin_lock(&_minor_lock); 2200 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2201 set_bit(DMF_FREEING, &md->flags); 2202 spin_unlock(&_minor_lock); 2203 2204 blk_set_queue_dying(md->queue); 2205 2206 /* 2207 * Take suspend_lock so that presuspend and postsuspend methods 2208 * do not race with internal suspend. 2209 */ 2210 mutex_lock(&md->suspend_lock); 2211 map = dm_get_live_table(md, &srcu_idx); 2212 if (!dm_suspended_md(md)) { 2213 dm_table_presuspend_targets(map); 2214 set_bit(DMF_SUSPENDED, &md->flags); 2215 set_bit(DMF_POST_SUSPENDING, &md->flags); 2216 dm_table_postsuspend_targets(map); 2217 } 2218 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2219 dm_put_live_table(md, srcu_idx); 2220 mutex_unlock(&md->suspend_lock); 2221 2222 /* 2223 * Rare, but there may be I/O requests still going to complete, 2224 * for example. Wait for all references to disappear. 2225 * No one should increment the reference count of the mapped_device, 2226 * after the mapped_device state becomes DMF_FREEING. 2227 */ 2228 if (wait) 2229 while (atomic_read(&md->holders)) 2230 msleep(1); 2231 else if (atomic_read(&md->holders)) 2232 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2233 dm_device_name(md), atomic_read(&md->holders)); 2234 2235 dm_sysfs_exit(md); 2236 dm_table_destroy(__unbind(md)); 2237 free_dev(md); 2238 } 2239 2240 void dm_destroy(struct mapped_device *md) 2241 { 2242 __dm_destroy(md, true); 2243 } 2244 2245 void dm_destroy_immediate(struct mapped_device *md) 2246 { 2247 __dm_destroy(md, false); 2248 } 2249 2250 void dm_put(struct mapped_device *md) 2251 { 2252 atomic_dec(&md->holders); 2253 } 2254 EXPORT_SYMBOL_GPL(dm_put); 2255 2256 static bool md_in_flight_bios(struct mapped_device *md) 2257 { 2258 int cpu; 2259 struct hd_struct *part = &dm_disk(md)->part0; 2260 long sum = 0; 2261 2262 for_each_possible_cpu(cpu) { 2263 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 2264 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 2265 } 2266 2267 return sum != 0; 2268 } 2269 2270 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state) 2271 { 2272 int r = 0; 2273 DEFINE_WAIT(wait); 2274 2275 while (true) { 2276 prepare_to_wait(&md->wait, &wait, task_state); 2277 2278 if (!md_in_flight_bios(md)) 2279 break; 2280 2281 if (signal_pending_state(task_state, current)) { 2282 r = -EINTR; 2283 break; 2284 } 2285 2286 io_schedule(); 2287 } 2288 finish_wait(&md->wait, &wait); 2289 2290 return r; 2291 } 2292 2293 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2294 { 2295 int r = 0; 2296 2297 if (!queue_is_mq(md->queue)) 2298 return dm_wait_for_bios_completion(md, task_state); 2299 2300 while (true) { 2301 if (!blk_mq_queue_inflight(md->queue)) 2302 break; 2303 2304 if (signal_pending_state(task_state, current)) { 2305 r = -EINTR; 2306 break; 2307 } 2308 2309 msleep(5); 2310 } 2311 2312 return r; 2313 } 2314 2315 /* 2316 * Process the deferred bios 2317 */ 2318 static void dm_wq_work(struct work_struct *work) 2319 { 2320 struct mapped_device *md = container_of(work, struct mapped_device, work); 2321 struct bio *bio; 2322 2323 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2324 spin_lock_irq(&md->deferred_lock); 2325 bio = bio_list_pop(&md->deferred); 2326 spin_unlock_irq(&md->deferred_lock); 2327 2328 if (!bio) 2329 break; 2330 2331 submit_bio_noacct(bio); 2332 } 2333 } 2334 2335 static void dm_queue_flush(struct mapped_device *md) 2336 { 2337 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2338 smp_mb__after_atomic(); 2339 queue_work(md->wq, &md->work); 2340 } 2341 2342 /* 2343 * Swap in a new table, returning the old one for the caller to destroy. 2344 */ 2345 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2346 { 2347 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2348 struct queue_limits limits; 2349 int r; 2350 2351 mutex_lock(&md->suspend_lock); 2352 2353 /* device must be suspended */ 2354 if (!dm_suspended_md(md)) 2355 goto out; 2356 2357 /* 2358 * If the new table has no data devices, retain the existing limits. 2359 * This helps multipath with queue_if_no_path if all paths disappear, 2360 * then new I/O is queued based on these limits, and then some paths 2361 * reappear. 2362 */ 2363 if (dm_table_has_no_data_devices(table)) { 2364 live_map = dm_get_live_table_fast(md); 2365 if (live_map) 2366 limits = md->queue->limits; 2367 dm_put_live_table_fast(md); 2368 } 2369 2370 if (!live_map) { 2371 r = dm_calculate_queue_limits(table, &limits); 2372 if (r) { 2373 map = ERR_PTR(r); 2374 goto out; 2375 } 2376 } 2377 2378 map = __bind(md, table, &limits); 2379 dm_issue_global_event(); 2380 2381 out: 2382 mutex_unlock(&md->suspend_lock); 2383 return map; 2384 } 2385 2386 /* 2387 * Functions to lock and unlock any filesystem running on the 2388 * device. 2389 */ 2390 static int lock_fs(struct mapped_device *md) 2391 { 2392 int r; 2393 2394 WARN_ON(md->frozen_sb); 2395 2396 md->frozen_sb = freeze_bdev(md->bdev); 2397 if (IS_ERR(md->frozen_sb)) { 2398 r = PTR_ERR(md->frozen_sb); 2399 md->frozen_sb = NULL; 2400 return r; 2401 } 2402 2403 set_bit(DMF_FROZEN, &md->flags); 2404 2405 return 0; 2406 } 2407 2408 static void unlock_fs(struct mapped_device *md) 2409 { 2410 if (!test_bit(DMF_FROZEN, &md->flags)) 2411 return; 2412 2413 thaw_bdev(md->bdev, md->frozen_sb); 2414 md->frozen_sb = NULL; 2415 clear_bit(DMF_FROZEN, &md->flags); 2416 } 2417 2418 /* 2419 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2420 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2421 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2422 * 2423 * If __dm_suspend returns 0, the device is completely quiescent 2424 * now. There is no request-processing activity. All new requests 2425 * are being added to md->deferred list. 2426 */ 2427 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2428 unsigned suspend_flags, long task_state, 2429 int dmf_suspended_flag) 2430 { 2431 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2432 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2433 int r; 2434 2435 lockdep_assert_held(&md->suspend_lock); 2436 2437 /* 2438 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2439 * This flag is cleared before dm_suspend returns. 2440 */ 2441 if (noflush) 2442 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2443 else 2444 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2445 2446 /* 2447 * This gets reverted if there's an error later and the targets 2448 * provide the .presuspend_undo hook. 2449 */ 2450 dm_table_presuspend_targets(map); 2451 2452 /* 2453 * Flush I/O to the device. 2454 * Any I/O submitted after lock_fs() may not be flushed. 2455 * noflush takes precedence over do_lockfs. 2456 * (lock_fs() flushes I/Os and waits for them to complete.) 2457 */ 2458 if (!noflush && do_lockfs) { 2459 r = lock_fs(md); 2460 if (r) { 2461 dm_table_presuspend_undo_targets(map); 2462 return r; 2463 } 2464 } 2465 2466 /* 2467 * Here we must make sure that no processes are submitting requests 2468 * to target drivers i.e. no one may be executing 2469 * __split_and_process_bio from dm_submit_bio. 2470 * 2471 * To get all processes out of __split_and_process_bio in dm_submit_bio, 2472 * we take the write lock. To prevent any process from reentering 2473 * __split_and_process_bio from dm_submit_bio and quiesce the thread 2474 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2475 * flush_workqueue(md->wq). 2476 */ 2477 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2478 if (map) 2479 synchronize_srcu(&md->io_barrier); 2480 2481 /* 2482 * Stop md->queue before flushing md->wq in case request-based 2483 * dm defers requests to md->wq from md->queue. 2484 */ 2485 if (dm_request_based(md)) 2486 dm_stop_queue(md->queue); 2487 2488 flush_workqueue(md->wq); 2489 2490 /* 2491 * At this point no more requests are entering target request routines. 2492 * We call dm_wait_for_completion to wait for all existing requests 2493 * to finish. 2494 */ 2495 r = dm_wait_for_completion(md, task_state); 2496 if (!r) 2497 set_bit(dmf_suspended_flag, &md->flags); 2498 2499 if (noflush) 2500 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2501 if (map) 2502 synchronize_srcu(&md->io_barrier); 2503 2504 /* were we interrupted ? */ 2505 if (r < 0) { 2506 dm_queue_flush(md); 2507 2508 if (dm_request_based(md)) 2509 dm_start_queue(md->queue); 2510 2511 unlock_fs(md); 2512 dm_table_presuspend_undo_targets(map); 2513 /* pushback list is already flushed, so skip flush */ 2514 } 2515 2516 return r; 2517 } 2518 2519 /* 2520 * We need to be able to change a mapping table under a mounted 2521 * filesystem. For example we might want to move some data in 2522 * the background. Before the table can be swapped with 2523 * dm_bind_table, dm_suspend must be called to flush any in 2524 * flight bios and ensure that any further io gets deferred. 2525 */ 2526 /* 2527 * Suspend mechanism in request-based dm. 2528 * 2529 * 1. Flush all I/Os by lock_fs() if needed. 2530 * 2. Stop dispatching any I/O by stopping the request_queue. 2531 * 3. Wait for all in-flight I/Os to be completed or requeued. 2532 * 2533 * To abort suspend, start the request_queue. 2534 */ 2535 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2536 { 2537 struct dm_table *map = NULL; 2538 int r = 0; 2539 2540 retry: 2541 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2542 2543 if (dm_suspended_md(md)) { 2544 r = -EINVAL; 2545 goto out_unlock; 2546 } 2547 2548 if (dm_suspended_internally_md(md)) { 2549 /* already internally suspended, wait for internal resume */ 2550 mutex_unlock(&md->suspend_lock); 2551 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2552 if (r) 2553 return r; 2554 goto retry; 2555 } 2556 2557 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2558 2559 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2560 if (r) 2561 goto out_unlock; 2562 2563 set_bit(DMF_POST_SUSPENDING, &md->flags); 2564 dm_table_postsuspend_targets(map); 2565 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2566 2567 out_unlock: 2568 mutex_unlock(&md->suspend_lock); 2569 return r; 2570 } 2571 2572 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2573 { 2574 if (map) { 2575 int r = dm_table_resume_targets(map); 2576 if (r) 2577 return r; 2578 } 2579 2580 dm_queue_flush(md); 2581 2582 /* 2583 * Flushing deferred I/Os must be done after targets are resumed 2584 * so that mapping of targets can work correctly. 2585 * Request-based dm is queueing the deferred I/Os in its request_queue. 2586 */ 2587 if (dm_request_based(md)) 2588 dm_start_queue(md->queue); 2589 2590 unlock_fs(md); 2591 2592 return 0; 2593 } 2594 2595 int dm_resume(struct mapped_device *md) 2596 { 2597 int r; 2598 struct dm_table *map = NULL; 2599 2600 retry: 2601 r = -EINVAL; 2602 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2603 2604 if (!dm_suspended_md(md)) 2605 goto out; 2606 2607 if (dm_suspended_internally_md(md)) { 2608 /* already internally suspended, wait for internal resume */ 2609 mutex_unlock(&md->suspend_lock); 2610 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2611 if (r) 2612 return r; 2613 goto retry; 2614 } 2615 2616 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2617 if (!map || !dm_table_get_size(map)) 2618 goto out; 2619 2620 r = __dm_resume(md, map); 2621 if (r) 2622 goto out; 2623 2624 clear_bit(DMF_SUSPENDED, &md->flags); 2625 out: 2626 mutex_unlock(&md->suspend_lock); 2627 2628 return r; 2629 } 2630 2631 /* 2632 * Internal suspend/resume works like userspace-driven suspend. It waits 2633 * until all bios finish and prevents issuing new bios to the target drivers. 2634 * It may be used only from the kernel. 2635 */ 2636 2637 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2638 { 2639 struct dm_table *map = NULL; 2640 2641 lockdep_assert_held(&md->suspend_lock); 2642 2643 if (md->internal_suspend_count++) 2644 return; /* nested internal suspend */ 2645 2646 if (dm_suspended_md(md)) { 2647 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2648 return; /* nest suspend */ 2649 } 2650 2651 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2652 2653 /* 2654 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2655 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2656 * would require changing .presuspend to return an error -- avoid this 2657 * until there is a need for more elaborate variants of internal suspend. 2658 */ 2659 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2660 DMF_SUSPENDED_INTERNALLY); 2661 2662 set_bit(DMF_POST_SUSPENDING, &md->flags); 2663 dm_table_postsuspend_targets(map); 2664 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2665 } 2666 2667 static void __dm_internal_resume(struct mapped_device *md) 2668 { 2669 BUG_ON(!md->internal_suspend_count); 2670 2671 if (--md->internal_suspend_count) 2672 return; /* resume from nested internal suspend */ 2673 2674 if (dm_suspended_md(md)) 2675 goto done; /* resume from nested suspend */ 2676 2677 /* 2678 * NOTE: existing callers don't need to call dm_table_resume_targets 2679 * (which may fail -- so best to avoid it for now by passing NULL map) 2680 */ 2681 (void) __dm_resume(md, NULL); 2682 2683 done: 2684 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2685 smp_mb__after_atomic(); 2686 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2687 } 2688 2689 void dm_internal_suspend_noflush(struct mapped_device *md) 2690 { 2691 mutex_lock(&md->suspend_lock); 2692 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2693 mutex_unlock(&md->suspend_lock); 2694 } 2695 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2696 2697 void dm_internal_resume(struct mapped_device *md) 2698 { 2699 mutex_lock(&md->suspend_lock); 2700 __dm_internal_resume(md); 2701 mutex_unlock(&md->suspend_lock); 2702 } 2703 EXPORT_SYMBOL_GPL(dm_internal_resume); 2704 2705 /* 2706 * Fast variants of internal suspend/resume hold md->suspend_lock, 2707 * which prevents interaction with userspace-driven suspend. 2708 */ 2709 2710 void dm_internal_suspend_fast(struct mapped_device *md) 2711 { 2712 mutex_lock(&md->suspend_lock); 2713 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2714 return; 2715 2716 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2717 synchronize_srcu(&md->io_barrier); 2718 flush_workqueue(md->wq); 2719 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2720 } 2721 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2722 2723 void dm_internal_resume_fast(struct mapped_device *md) 2724 { 2725 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2726 goto done; 2727 2728 dm_queue_flush(md); 2729 2730 done: 2731 mutex_unlock(&md->suspend_lock); 2732 } 2733 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2734 2735 /*----------------------------------------------------------------- 2736 * Event notification. 2737 *---------------------------------------------------------------*/ 2738 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2739 unsigned cookie) 2740 { 2741 int r; 2742 unsigned noio_flag; 2743 char udev_cookie[DM_COOKIE_LENGTH]; 2744 char *envp[] = { udev_cookie, NULL }; 2745 2746 noio_flag = memalloc_noio_save(); 2747 2748 if (!cookie) 2749 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2750 else { 2751 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2752 DM_COOKIE_ENV_VAR_NAME, cookie); 2753 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2754 action, envp); 2755 } 2756 2757 memalloc_noio_restore(noio_flag); 2758 2759 return r; 2760 } 2761 2762 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2763 { 2764 return atomic_add_return(1, &md->uevent_seq); 2765 } 2766 2767 uint32_t dm_get_event_nr(struct mapped_device *md) 2768 { 2769 return atomic_read(&md->event_nr); 2770 } 2771 2772 int dm_wait_event(struct mapped_device *md, int event_nr) 2773 { 2774 return wait_event_interruptible(md->eventq, 2775 (event_nr != atomic_read(&md->event_nr))); 2776 } 2777 2778 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2779 { 2780 unsigned long flags; 2781 2782 spin_lock_irqsave(&md->uevent_lock, flags); 2783 list_add(elist, &md->uevent_list); 2784 spin_unlock_irqrestore(&md->uevent_lock, flags); 2785 } 2786 2787 /* 2788 * The gendisk is only valid as long as you have a reference 2789 * count on 'md'. 2790 */ 2791 struct gendisk *dm_disk(struct mapped_device *md) 2792 { 2793 return md->disk; 2794 } 2795 EXPORT_SYMBOL_GPL(dm_disk); 2796 2797 struct kobject *dm_kobject(struct mapped_device *md) 2798 { 2799 return &md->kobj_holder.kobj; 2800 } 2801 2802 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2803 { 2804 struct mapped_device *md; 2805 2806 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2807 2808 spin_lock(&_minor_lock); 2809 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2810 md = NULL; 2811 goto out; 2812 } 2813 dm_get(md); 2814 out: 2815 spin_unlock(&_minor_lock); 2816 2817 return md; 2818 } 2819 2820 int dm_suspended_md(struct mapped_device *md) 2821 { 2822 return test_bit(DMF_SUSPENDED, &md->flags); 2823 } 2824 2825 static int dm_post_suspending_md(struct mapped_device *md) 2826 { 2827 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2828 } 2829 2830 int dm_suspended_internally_md(struct mapped_device *md) 2831 { 2832 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2833 } 2834 2835 int dm_test_deferred_remove_flag(struct mapped_device *md) 2836 { 2837 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2838 } 2839 2840 int dm_suspended(struct dm_target *ti) 2841 { 2842 return dm_suspended_md(ti->table->md); 2843 } 2844 EXPORT_SYMBOL_GPL(dm_suspended); 2845 2846 int dm_post_suspending(struct dm_target *ti) 2847 { 2848 return dm_post_suspending_md(ti->table->md); 2849 } 2850 EXPORT_SYMBOL_GPL(dm_post_suspending); 2851 2852 int dm_noflush_suspending(struct dm_target *ti) 2853 { 2854 return __noflush_suspending(ti->table->md); 2855 } 2856 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2857 2858 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2859 unsigned integrity, unsigned per_io_data_size, 2860 unsigned min_pool_size) 2861 { 2862 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2863 unsigned int pool_size = 0; 2864 unsigned int front_pad, io_front_pad; 2865 int ret; 2866 2867 if (!pools) 2868 return NULL; 2869 2870 switch (type) { 2871 case DM_TYPE_BIO_BASED: 2872 case DM_TYPE_DAX_BIO_BASED: 2873 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2874 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2875 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2876 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2877 if (ret) 2878 goto out; 2879 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2880 goto out; 2881 break; 2882 case DM_TYPE_REQUEST_BASED: 2883 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2884 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2885 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2886 break; 2887 default: 2888 BUG(); 2889 } 2890 2891 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2892 if (ret) 2893 goto out; 2894 2895 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2896 goto out; 2897 2898 return pools; 2899 2900 out: 2901 dm_free_md_mempools(pools); 2902 2903 return NULL; 2904 } 2905 2906 void dm_free_md_mempools(struct dm_md_mempools *pools) 2907 { 2908 if (!pools) 2909 return; 2910 2911 bioset_exit(&pools->bs); 2912 bioset_exit(&pools->io_bs); 2913 2914 kfree(pools); 2915 } 2916 2917 struct dm_pr { 2918 u64 old_key; 2919 u64 new_key; 2920 u32 flags; 2921 bool fail_early; 2922 }; 2923 2924 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2925 void *data) 2926 { 2927 struct mapped_device *md = bdev->bd_disk->private_data; 2928 struct dm_table *table; 2929 struct dm_target *ti; 2930 int ret = -ENOTTY, srcu_idx; 2931 2932 table = dm_get_live_table(md, &srcu_idx); 2933 if (!table || !dm_table_get_size(table)) 2934 goto out; 2935 2936 /* We only support devices that have a single target */ 2937 if (dm_table_get_num_targets(table) != 1) 2938 goto out; 2939 ti = dm_table_get_target(table, 0); 2940 2941 ret = -EINVAL; 2942 if (!ti->type->iterate_devices) 2943 goto out; 2944 2945 ret = ti->type->iterate_devices(ti, fn, data); 2946 out: 2947 dm_put_live_table(md, srcu_idx); 2948 return ret; 2949 } 2950 2951 /* 2952 * For register / unregister we need to manually call out to every path. 2953 */ 2954 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2955 sector_t start, sector_t len, void *data) 2956 { 2957 struct dm_pr *pr = data; 2958 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2959 2960 if (!ops || !ops->pr_register) 2961 return -EOPNOTSUPP; 2962 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2963 } 2964 2965 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2966 u32 flags) 2967 { 2968 struct dm_pr pr = { 2969 .old_key = old_key, 2970 .new_key = new_key, 2971 .flags = flags, 2972 .fail_early = true, 2973 }; 2974 int ret; 2975 2976 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2977 if (ret && new_key) { 2978 /* unregister all paths if we failed to register any path */ 2979 pr.old_key = new_key; 2980 pr.new_key = 0; 2981 pr.flags = 0; 2982 pr.fail_early = false; 2983 dm_call_pr(bdev, __dm_pr_register, &pr); 2984 } 2985 2986 return ret; 2987 } 2988 2989 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2990 u32 flags) 2991 { 2992 struct mapped_device *md = bdev->bd_disk->private_data; 2993 const struct pr_ops *ops; 2994 int r, srcu_idx; 2995 2996 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 2997 if (r < 0) 2998 goto out; 2999 3000 ops = bdev->bd_disk->fops->pr_ops; 3001 if (ops && ops->pr_reserve) 3002 r = ops->pr_reserve(bdev, key, type, flags); 3003 else 3004 r = -EOPNOTSUPP; 3005 out: 3006 dm_unprepare_ioctl(md, srcu_idx); 3007 return r; 3008 } 3009 3010 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3011 { 3012 struct mapped_device *md = bdev->bd_disk->private_data; 3013 const struct pr_ops *ops; 3014 int r, srcu_idx; 3015 3016 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3017 if (r < 0) 3018 goto out; 3019 3020 ops = bdev->bd_disk->fops->pr_ops; 3021 if (ops && ops->pr_release) 3022 r = ops->pr_release(bdev, key, type); 3023 else 3024 r = -EOPNOTSUPP; 3025 out: 3026 dm_unprepare_ioctl(md, srcu_idx); 3027 return r; 3028 } 3029 3030 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3031 enum pr_type type, bool abort) 3032 { 3033 struct mapped_device *md = bdev->bd_disk->private_data; 3034 const struct pr_ops *ops; 3035 int r, srcu_idx; 3036 3037 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3038 if (r < 0) 3039 goto out; 3040 3041 ops = bdev->bd_disk->fops->pr_ops; 3042 if (ops && ops->pr_preempt) 3043 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3044 else 3045 r = -EOPNOTSUPP; 3046 out: 3047 dm_unprepare_ioctl(md, srcu_idx); 3048 return r; 3049 } 3050 3051 static int dm_pr_clear(struct block_device *bdev, u64 key) 3052 { 3053 struct mapped_device *md = bdev->bd_disk->private_data; 3054 const struct pr_ops *ops; 3055 int r, srcu_idx; 3056 3057 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3058 if (r < 0) 3059 goto out; 3060 3061 ops = bdev->bd_disk->fops->pr_ops; 3062 if (ops && ops->pr_clear) 3063 r = ops->pr_clear(bdev, key); 3064 else 3065 r = -EOPNOTSUPP; 3066 out: 3067 dm_unprepare_ioctl(md, srcu_idx); 3068 return r; 3069 } 3070 3071 static const struct pr_ops dm_pr_ops = { 3072 .pr_register = dm_pr_register, 3073 .pr_reserve = dm_pr_reserve, 3074 .pr_release = dm_pr_release, 3075 .pr_preempt = dm_pr_preempt, 3076 .pr_clear = dm_pr_clear, 3077 }; 3078 3079 static const struct block_device_operations dm_blk_dops = { 3080 .submit_bio = dm_submit_bio, 3081 .open = dm_blk_open, 3082 .release = dm_blk_close, 3083 .ioctl = dm_blk_ioctl, 3084 .getgeo = dm_blk_getgeo, 3085 .report_zones = dm_blk_report_zones, 3086 .pr_ops = &dm_pr_ops, 3087 .owner = THIS_MODULE 3088 }; 3089 3090 static const struct block_device_operations dm_rq_blk_dops = { 3091 .open = dm_blk_open, 3092 .release = dm_blk_close, 3093 .ioctl = dm_blk_ioctl, 3094 .getgeo = dm_blk_getgeo, 3095 .pr_ops = &dm_pr_ops, 3096 .owner = THIS_MODULE 3097 }; 3098 3099 static const struct dax_operations dm_dax_ops = { 3100 .direct_access = dm_dax_direct_access, 3101 .dax_supported = dm_dax_supported, 3102 .copy_from_iter = dm_dax_copy_from_iter, 3103 .copy_to_iter = dm_dax_copy_to_iter, 3104 .zero_page_range = dm_dax_zero_page_range, 3105 }; 3106 3107 /* 3108 * module hooks 3109 */ 3110 module_init(dm_init); 3111 module_exit(dm_exit); 3112 3113 module_param(major, uint, 0); 3114 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3115 3116 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3117 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3118 3119 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3120 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3121 3122 MODULE_DESCRIPTION(DM_NAME " driver"); 3123 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3124 MODULE_LICENSE("GPL"); 3125