xref: /openbmc/linux/drivers/md/dm.c (revision a1e58bbd)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <linux/smp_lock.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 static const char *_name = DM_NAME;
29 
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32 
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35  * One of these is allocated per bio.
36  */
37 struct dm_io {
38 	struct mapped_device *md;
39 	int error;
40 	struct bio *bio;
41 	atomic_t io_count;
42 	unsigned long start_time;
43 };
44 
45 /*
46  * One of these is allocated per target within a bio.  Hopefully
47  * this will be simplified out one day.
48  */
49 struct dm_target_io {
50 	struct dm_io *io;
51 	struct dm_target *ti;
52 	union map_info info;
53 };
54 
55 union map_info *dm_get_mapinfo(struct bio *bio)
56 {
57 	if (bio && bio->bi_private)
58 		return &((struct dm_target_io *)bio->bi_private)->info;
59 	return NULL;
60 }
61 
62 #define MINOR_ALLOCED ((void *)-1)
63 
64 /*
65  * Bits for the md->flags field.
66  */
67 #define DMF_BLOCK_IO 0
68 #define DMF_SUSPENDED 1
69 #define DMF_FROZEN 2
70 #define DMF_FREEING 3
71 #define DMF_DELETING 4
72 #define DMF_NOFLUSH_SUSPENDING 5
73 
74 /*
75  * Work processed by per-device workqueue.
76  */
77 struct dm_wq_req {
78 	enum {
79 		DM_WQ_FLUSH_ALL,
80 		DM_WQ_FLUSH_DEFERRED,
81 	} type;
82 	struct work_struct work;
83 	struct mapped_device *md;
84 	void *context;
85 };
86 
87 struct mapped_device {
88 	struct rw_semaphore io_lock;
89 	struct mutex suspend_lock;
90 	spinlock_t pushback_lock;
91 	rwlock_t map_lock;
92 	atomic_t holders;
93 	atomic_t open_count;
94 
95 	unsigned long flags;
96 
97 	struct request_queue *queue;
98 	struct gendisk *disk;
99 	char name[16];
100 
101 	void *interface_ptr;
102 
103 	/*
104 	 * A list of ios that arrived while we were suspended.
105 	 */
106 	atomic_t pending;
107 	wait_queue_head_t wait;
108 	struct bio_list deferred;
109 	struct bio_list pushback;
110 
111 	/*
112 	 * Processing queue (flush/barriers)
113 	 */
114 	struct workqueue_struct *wq;
115 
116 	/*
117 	 * The current mapping.
118 	 */
119 	struct dm_table *map;
120 
121 	/*
122 	 * io objects are allocated from here.
123 	 */
124 	mempool_t *io_pool;
125 	mempool_t *tio_pool;
126 
127 	struct bio_set *bs;
128 
129 	/*
130 	 * Event handling.
131 	 */
132 	atomic_t event_nr;
133 	wait_queue_head_t eventq;
134 	atomic_t uevent_seq;
135 	struct list_head uevent_list;
136 	spinlock_t uevent_lock; /* Protect access to uevent_list */
137 
138 	/*
139 	 * freeze/thaw support require holding onto a super block
140 	 */
141 	struct super_block *frozen_sb;
142 	struct block_device *suspended_bdev;
143 
144 	/* forced geometry settings */
145 	struct hd_geometry geometry;
146 };
147 
148 #define MIN_IOS 256
149 static struct kmem_cache *_io_cache;
150 static struct kmem_cache *_tio_cache;
151 
152 static int __init local_init(void)
153 {
154 	int r;
155 
156 	/* allocate a slab for the dm_ios */
157 	_io_cache = KMEM_CACHE(dm_io, 0);
158 	if (!_io_cache)
159 		return -ENOMEM;
160 
161 	/* allocate a slab for the target ios */
162 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
163 	if (!_tio_cache) {
164 		kmem_cache_destroy(_io_cache);
165 		return -ENOMEM;
166 	}
167 
168 	r = dm_uevent_init();
169 	if (r) {
170 		kmem_cache_destroy(_tio_cache);
171 		kmem_cache_destroy(_io_cache);
172 		return r;
173 	}
174 
175 	_major = major;
176 	r = register_blkdev(_major, _name);
177 	if (r < 0) {
178 		kmem_cache_destroy(_tio_cache);
179 		kmem_cache_destroy(_io_cache);
180 		dm_uevent_exit();
181 		return r;
182 	}
183 
184 	if (!_major)
185 		_major = r;
186 
187 	return 0;
188 }
189 
190 static void local_exit(void)
191 {
192 	kmem_cache_destroy(_tio_cache);
193 	kmem_cache_destroy(_io_cache);
194 	unregister_blkdev(_major, _name);
195 	dm_uevent_exit();
196 
197 	_major = 0;
198 
199 	DMINFO("cleaned up");
200 }
201 
202 static int (*_inits[])(void) __initdata = {
203 	local_init,
204 	dm_target_init,
205 	dm_linear_init,
206 	dm_stripe_init,
207 	dm_interface_init,
208 };
209 
210 static void (*_exits[])(void) = {
211 	local_exit,
212 	dm_target_exit,
213 	dm_linear_exit,
214 	dm_stripe_exit,
215 	dm_interface_exit,
216 };
217 
218 static int __init dm_init(void)
219 {
220 	const int count = ARRAY_SIZE(_inits);
221 
222 	int r, i;
223 
224 	for (i = 0; i < count; i++) {
225 		r = _inits[i]();
226 		if (r)
227 			goto bad;
228 	}
229 
230 	return 0;
231 
232       bad:
233 	while (i--)
234 		_exits[i]();
235 
236 	return r;
237 }
238 
239 static void __exit dm_exit(void)
240 {
241 	int i = ARRAY_SIZE(_exits);
242 
243 	while (i--)
244 		_exits[i]();
245 }
246 
247 /*
248  * Block device functions
249  */
250 static int dm_blk_open(struct inode *inode, struct file *file)
251 {
252 	struct mapped_device *md;
253 
254 	spin_lock(&_minor_lock);
255 
256 	md = inode->i_bdev->bd_disk->private_data;
257 	if (!md)
258 		goto out;
259 
260 	if (test_bit(DMF_FREEING, &md->flags) ||
261 	    test_bit(DMF_DELETING, &md->flags)) {
262 		md = NULL;
263 		goto out;
264 	}
265 
266 	dm_get(md);
267 	atomic_inc(&md->open_count);
268 
269 out:
270 	spin_unlock(&_minor_lock);
271 
272 	return md ? 0 : -ENXIO;
273 }
274 
275 static int dm_blk_close(struct inode *inode, struct file *file)
276 {
277 	struct mapped_device *md;
278 
279 	md = inode->i_bdev->bd_disk->private_data;
280 	atomic_dec(&md->open_count);
281 	dm_put(md);
282 	return 0;
283 }
284 
285 int dm_open_count(struct mapped_device *md)
286 {
287 	return atomic_read(&md->open_count);
288 }
289 
290 /*
291  * Guarantees nothing is using the device before it's deleted.
292  */
293 int dm_lock_for_deletion(struct mapped_device *md)
294 {
295 	int r = 0;
296 
297 	spin_lock(&_minor_lock);
298 
299 	if (dm_open_count(md))
300 		r = -EBUSY;
301 	else
302 		set_bit(DMF_DELETING, &md->flags);
303 
304 	spin_unlock(&_minor_lock);
305 
306 	return r;
307 }
308 
309 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
310 {
311 	struct mapped_device *md = bdev->bd_disk->private_data;
312 
313 	return dm_get_geometry(md, geo);
314 }
315 
316 static int dm_blk_ioctl(struct inode *inode, struct file *file,
317 			unsigned int cmd, unsigned long arg)
318 {
319 	struct mapped_device *md;
320 	struct dm_table *map;
321 	struct dm_target *tgt;
322 	int r = -ENOTTY;
323 
324 	/* We don't really need this lock, but we do need 'inode'. */
325 	unlock_kernel();
326 
327 	md = inode->i_bdev->bd_disk->private_data;
328 
329 	map = dm_get_table(md);
330 
331 	if (!map || !dm_table_get_size(map))
332 		goto out;
333 
334 	/* We only support devices that have a single target */
335 	if (dm_table_get_num_targets(map) != 1)
336 		goto out;
337 
338 	tgt = dm_table_get_target(map, 0);
339 
340 	if (dm_suspended(md)) {
341 		r = -EAGAIN;
342 		goto out;
343 	}
344 
345 	if (tgt->type->ioctl)
346 		r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
347 
348 out:
349 	dm_table_put(map);
350 
351 	lock_kernel();
352 	return r;
353 }
354 
355 static struct dm_io *alloc_io(struct mapped_device *md)
356 {
357 	return mempool_alloc(md->io_pool, GFP_NOIO);
358 }
359 
360 static void free_io(struct mapped_device *md, struct dm_io *io)
361 {
362 	mempool_free(io, md->io_pool);
363 }
364 
365 static struct dm_target_io *alloc_tio(struct mapped_device *md)
366 {
367 	return mempool_alloc(md->tio_pool, GFP_NOIO);
368 }
369 
370 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
371 {
372 	mempool_free(tio, md->tio_pool);
373 }
374 
375 static void start_io_acct(struct dm_io *io)
376 {
377 	struct mapped_device *md = io->md;
378 
379 	io->start_time = jiffies;
380 
381 	preempt_disable();
382 	disk_round_stats(dm_disk(md));
383 	preempt_enable();
384 	dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
385 }
386 
387 static int end_io_acct(struct dm_io *io)
388 {
389 	struct mapped_device *md = io->md;
390 	struct bio *bio = io->bio;
391 	unsigned long duration = jiffies - io->start_time;
392 	int pending;
393 	int rw = bio_data_dir(bio);
394 
395 	preempt_disable();
396 	disk_round_stats(dm_disk(md));
397 	preempt_enable();
398 	dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
399 
400 	disk_stat_add(dm_disk(md), ticks[rw], duration);
401 
402 	return !pending;
403 }
404 
405 /*
406  * Add the bio to the list of deferred io.
407  */
408 static int queue_io(struct mapped_device *md, struct bio *bio)
409 {
410 	down_write(&md->io_lock);
411 
412 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
413 		up_write(&md->io_lock);
414 		return 1;
415 	}
416 
417 	bio_list_add(&md->deferred, bio);
418 
419 	up_write(&md->io_lock);
420 	return 0;		/* deferred successfully */
421 }
422 
423 /*
424  * Everyone (including functions in this file), should use this
425  * function to access the md->map field, and make sure they call
426  * dm_table_put() when finished.
427  */
428 struct dm_table *dm_get_table(struct mapped_device *md)
429 {
430 	struct dm_table *t;
431 
432 	read_lock(&md->map_lock);
433 	t = md->map;
434 	if (t)
435 		dm_table_get(t);
436 	read_unlock(&md->map_lock);
437 
438 	return t;
439 }
440 
441 /*
442  * Get the geometry associated with a dm device
443  */
444 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
445 {
446 	*geo = md->geometry;
447 
448 	return 0;
449 }
450 
451 /*
452  * Set the geometry of a device.
453  */
454 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
455 {
456 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
457 
458 	if (geo->start > sz) {
459 		DMWARN("Start sector is beyond the geometry limits.");
460 		return -EINVAL;
461 	}
462 
463 	md->geometry = *geo;
464 
465 	return 0;
466 }
467 
468 /*-----------------------------------------------------------------
469  * CRUD START:
470  *   A more elegant soln is in the works that uses the queue
471  *   merge fn, unfortunately there are a couple of changes to
472  *   the block layer that I want to make for this.  So in the
473  *   interests of getting something for people to use I give
474  *   you this clearly demarcated crap.
475  *---------------------------------------------------------------*/
476 
477 static int __noflush_suspending(struct mapped_device *md)
478 {
479 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
480 }
481 
482 /*
483  * Decrements the number of outstanding ios that a bio has been
484  * cloned into, completing the original io if necc.
485  */
486 static void dec_pending(struct dm_io *io, int error)
487 {
488 	unsigned long flags;
489 
490 	/* Push-back supersedes any I/O errors */
491 	if (error && !(io->error > 0 && __noflush_suspending(io->md)))
492 		io->error = error;
493 
494 	if (atomic_dec_and_test(&io->io_count)) {
495 		if (io->error == DM_ENDIO_REQUEUE) {
496 			/*
497 			 * Target requested pushing back the I/O.
498 			 * This must be handled before the sleeper on
499 			 * suspend queue merges the pushback list.
500 			 */
501 			spin_lock_irqsave(&io->md->pushback_lock, flags);
502 			if (__noflush_suspending(io->md))
503 				bio_list_add(&io->md->pushback, io->bio);
504 			else
505 				/* noflush suspend was interrupted. */
506 				io->error = -EIO;
507 			spin_unlock_irqrestore(&io->md->pushback_lock, flags);
508 		}
509 
510 		if (end_io_acct(io))
511 			/* nudge anyone waiting on suspend queue */
512 			wake_up(&io->md->wait);
513 
514 		if (io->error != DM_ENDIO_REQUEUE) {
515 			blk_add_trace_bio(io->md->queue, io->bio,
516 					  BLK_TA_COMPLETE);
517 
518 			bio_endio(io->bio, io->error);
519 		}
520 
521 		free_io(io->md, io);
522 	}
523 }
524 
525 static void clone_endio(struct bio *bio, int error)
526 {
527 	int r = 0;
528 	struct dm_target_io *tio = bio->bi_private;
529 	struct mapped_device *md = tio->io->md;
530 	dm_endio_fn endio = tio->ti->type->end_io;
531 
532 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
533 		error = -EIO;
534 
535 	if (endio) {
536 		r = endio(tio->ti, bio, error, &tio->info);
537 		if (r < 0 || r == DM_ENDIO_REQUEUE)
538 			/*
539 			 * error and requeue request are handled
540 			 * in dec_pending().
541 			 */
542 			error = r;
543 		else if (r == DM_ENDIO_INCOMPLETE)
544 			/* The target will handle the io */
545 			return;
546 		else if (r) {
547 			DMWARN("unimplemented target endio return value: %d", r);
548 			BUG();
549 		}
550 	}
551 
552 	dec_pending(tio->io, error);
553 
554 	/*
555 	 * Store md for cleanup instead of tio which is about to get freed.
556 	 */
557 	bio->bi_private = md->bs;
558 
559 	bio_put(bio);
560 	free_tio(md, tio);
561 }
562 
563 static sector_t max_io_len(struct mapped_device *md,
564 			   sector_t sector, struct dm_target *ti)
565 {
566 	sector_t offset = sector - ti->begin;
567 	sector_t len = ti->len - offset;
568 
569 	/*
570 	 * Does the target need to split even further ?
571 	 */
572 	if (ti->split_io) {
573 		sector_t boundary;
574 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
575 			   - offset;
576 		if (len > boundary)
577 			len = boundary;
578 	}
579 
580 	return len;
581 }
582 
583 static void __map_bio(struct dm_target *ti, struct bio *clone,
584 		      struct dm_target_io *tio)
585 {
586 	int r;
587 	sector_t sector;
588 	struct mapped_device *md;
589 
590 	/*
591 	 * Sanity checks.
592 	 */
593 	BUG_ON(!clone->bi_size);
594 
595 	clone->bi_end_io = clone_endio;
596 	clone->bi_private = tio;
597 
598 	/*
599 	 * Map the clone.  If r == 0 we don't need to do
600 	 * anything, the target has assumed ownership of
601 	 * this io.
602 	 */
603 	atomic_inc(&tio->io->io_count);
604 	sector = clone->bi_sector;
605 	r = ti->type->map(ti, clone, &tio->info);
606 	if (r == DM_MAPIO_REMAPPED) {
607 		/* the bio has been remapped so dispatch it */
608 
609 		blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
610 				    tio->io->bio->bi_bdev->bd_dev,
611 				    clone->bi_sector, sector);
612 
613 		generic_make_request(clone);
614 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
615 		/* error the io and bail out, or requeue it if needed */
616 		md = tio->io->md;
617 		dec_pending(tio->io, r);
618 		/*
619 		 * Store bio_set for cleanup.
620 		 */
621 		clone->bi_private = md->bs;
622 		bio_put(clone);
623 		free_tio(md, tio);
624 	} else if (r) {
625 		DMWARN("unimplemented target map return value: %d", r);
626 		BUG();
627 	}
628 }
629 
630 struct clone_info {
631 	struct mapped_device *md;
632 	struct dm_table *map;
633 	struct bio *bio;
634 	struct dm_io *io;
635 	sector_t sector;
636 	sector_t sector_count;
637 	unsigned short idx;
638 };
639 
640 static void dm_bio_destructor(struct bio *bio)
641 {
642 	struct bio_set *bs = bio->bi_private;
643 
644 	bio_free(bio, bs);
645 }
646 
647 /*
648  * Creates a little bio that is just does part of a bvec.
649  */
650 static struct bio *split_bvec(struct bio *bio, sector_t sector,
651 			      unsigned short idx, unsigned int offset,
652 			      unsigned int len, struct bio_set *bs)
653 {
654 	struct bio *clone;
655 	struct bio_vec *bv = bio->bi_io_vec + idx;
656 
657 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
658 	clone->bi_destructor = dm_bio_destructor;
659 	*clone->bi_io_vec = *bv;
660 
661 	clone->bi_sector = sector;
662 	clone->bi_bdev = bio->bi_bdev;
663 	clone->bi_rw = bio->bi_rw;
664 	clone->bi_vcnt = 1;
665 	clone->bi_size = to_bytes(len);
666 	clone->bi_io_vec->bv_offset = offset;
667 	clone->bi_io_vec->bv_len = clone->bi_size;
668 
669 	return clone;
670 }
671 
672 /*
673  * Creates a bio that consists of range of complete bvecs.
674  */
675 static struct bio *clone_bio(struct bio *bio, sector_t sector,
676 			     unsigned short idx, unsigned short bv_count,
677 			     unsigned int len, struct bio_set *bs)
678 {
679 	struct bio *clone;
680 
681 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
682 	__bio_clone(clone, bio);
683 	clone->bi_destructor = dm_bio_destructor;
684 	clone->bi_sector = sector;
685 	clone->bi_idx = idx;
686 	clone->bi_vcnt = idx + bv_count;
687 	clone->bi_size = to_bytes(len);
688 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
689 
690 	return clone;
691 }
692 
693 static int __clone_and_map(struct clone_info *ci)
694 {
695 	struct bio *clone, *bio = ci->bio;
696 	struct dm_target *ti;
697 	sector_t len = 0, max;
698 	struct dm_target_io *tio;
699 
700 	ti = dm_table_find_target(ci->map, ci->sector);
701 	if (!dm_target_is_valid(ti))
702 		return -EIO;
703 
704 	max = max_io_len(ci->md, ci->sector, ti);
705 
706 	/*
707 	 * Allocate a target io object.
708 	 */
709 	tio = alloc_tio(ci->md);
710 	tio->io = ci->io;
711 	tio->ti = ti;
712 	memset(&tio->info, 0, sizeof(tio->info));
713 
714 	if (ci->sector_count <= max) {
715 		/*
716 		 * Optimise for the simple case where we can do all of
717 		 * the remaining io with a single clone.
718 		 */
719 		clone = clone_bio(bio, ci->sector, ci->idx,
720 				  bio->bi_vcnt - ci->idx, ci->sector_count,
721 				  ci->md->bs);
722 		__map_bio(ti, clone, tio);
723 		ci->sector_count = 0;
724 
725 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
726 		/*
727 		 * There are some bvecs that don't span targets.
728 		 * Do as many of these as possible.
729 		 */
730 		int i;
731 		sector_t remaining = max;
732 		sector_t bv_len;
733 
734 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
735 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
736 
737 			if (bv_len > remaining)
738 				break;
739 
740 			remaining -= bv_len;
741 			len += bv_len;
742 		}
743 
744 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
745 				  ci->md->bs);
746 		__map_bio(ti, clone, tio);
747 
748 		ci->sector += len;
749 		ci->sector_count -= len;
750 		ci->idx = i;
751 
752 	} else {
753 		/*
754 		 * Handle a bvec that must be split between two or more targets.
755 		 */
756 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
757 		sector_t remaining = to_sector(bv->bv_len);
758 		unsigned int offset = 0;
759 
760 		do {
761 			if (offset) {
762 				ti = dm_table_find_target(ci->map, ci->sector);
763 				if (!dm_target_is_valid(ti))
764 					return -EIO;
765 
766 				max = max_io_len(ci->md, ci->sector, ti);
767 
768 				tio = alloc_tio(ci->md);
769 				tio->io = ci->io;
770 				tio->ti = ti;
771 				memset(&tio->info, 0, sizeof(tio->info));
772 			}
773 
774 			len = min(remaining, max);
775 
776 			clone = split_bvec(bio, ci->sector, ci->idx,
777 					   bv->bv_offset + offset, len,
778 					   ci->md->bs);
779 
780 			__map_bio(ti, clone, tio);
781 
782 			ci->sector += len;
783 			ci->sector_count -= len;
784 			offset += to_bytes(len);
785 		} while (remaining -= len);
786 
787 		ci->idx++;
788 	}
789 
790 	return 0;
791 }
792 
793 /*
794  * Split the bio into several clones.
795  */
796 static int __split_bio(struct mapped_device *md, struct bio *bio)
797 {
798 	struct clone_info ci;
799 	int error = 0;
800 
801 	ci.map = dm_get_table(md);
802 	if (unlikely(!ci.map))
803 		return -EIO;
804 
805 	ci.md = md;
806 	ci.bio = bio;
807 	ci.io = alloc_io(md);
808 	ci.io->error = 0;
809 	atomic_set(&ci.io->io_count, 1);
810 	ci.io->bio = bio;
811 	ci.io->md = md;
812 	ci.sector = bio->bi_sector;
813 	ci.sector_count = bio_sectors(bio);
814 	ci.idx = bio->bi_idx;
815 
816 	start_io_acct(ci.io);
817 	while (ci.sector_count && !error)
818 		error = __clone_and_map(&ci);
819 
820 	/* drop the extra reference count */
821 	dec_pending(ci.io, error);
822 	dm_table_put(ci.map);
823 
824 	return 0;
825 }
826 /*-----------------------------------------------------------------
827  * CRUD END
828  *---------------------------------------------------------------*/
829 
830 /*
831  * The request function that just remaps the bio built up by
832  * dm_merge_bvec.
833  */
834 static int dm_request(struct request_queue *q, struct bio *bio)
835 {
836 	int r = -EIO;
837 	int rw = bio_data_dir(bio);
838 	struct mapped_device *md = q->queuedata;
839 
840 	/*
841 	 * There is no use in forwarding any barrier request since we can't
842 	 * guarantee it is (or can be) handled by the targets correctly.
843 	 */
844 	if (unlikely(bio_barrier(bio))) {
845 		bio_endio(bio, -EOPNOTSUPP);
846 		return 0;
847 	}
848 
849 	down_read(&md->io_lock);
850 
851 	disk_stat_inc(dm_disk(md), ios[rw]);
852 	disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
853 
854 	/*
855 	 * If we're suspended we have to queue
856 	 * this io for later.
857 	 */
858 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
859 		up_read(&md->io_lock);
860 
861 		if (bio_rw(bio) != READA)
862 			r = queue_io(md, bio);
863 
864 		if (r <= 0)
865 			goto out_req;
866 
867 		/*
868 		 * We're in a while loop, because someone could suspend
869 		 * before we get to the following read lock.
870 		 */
871 		down_read(&md->io_lock);
872 	}
873 
874 	r = __split_bio(md, bio);
875 	up_read(&md->io_lock);
876 
877 out_req:
878 	if (r < 0)
879 		bio_io_error(bio);
880 
881 	return 0;
882 }
883 
884 static void dm_unplug_all(struct request_queue *q)
885 {
886 	struct mapped_device *md = q->queuedata;
887 	struct dm_table *map = dm_get_table(md);
888 
889 	if (map) {
890 		dm_table_unplug_all(map);
891 		dm_table_put(map);
892 	}
893 }
894 
895 static int dm_any_congested(void *congested_data, int bdi_bits)
896 {
897 	int r;
898 	struct mapped_device *md = (struct mapped_device *) congested_data;
899 	struct dm_table *map = dm_get_table(md);
900 
901 	if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
902 		r = bdi_bits;
903 	else
904 		r = dm_table_any_congested(map, bdi_bits);
905 
906 	dm_table_put(map);
907 	return r;
908 }
909 
910 /*-----------------------------------------------------------------
911  * An IDR is used to keep track of allocated minor numbers.
912  *---------------------------------------------------------------*/
913 static DEFINE_IDR(_minor_idr);
914 
915 static void free_minor(int minor)
916 {
917 	spin_lock(&_minor_lock);
918 	idr_remove(&_minor_idr, minor);
919 	spin_unlock(&_minor_lock);
920 }
921 
922 /*
923  * See if the device with a specific minor # is free.
924  */
925 static int specific_minor(struct mapped_device *md, int minor)
926 {
927 	int r, m;
928 
929 	if (minor >= (1 << MINORBITS))
930 		return -EINVAL;
931 
932 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
933 	if (!r)
934 		return -ENOMEM;
935 
936 	spin_lock(&_minor_lock);
937 
938 	if (idr_find(&_minor_idr, minor)) {
939 		r = -EBUSY;
940 		goto out;
941 	}
942 
943 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
944 	if (r)
945 		goto out;
946 
947 	if (m != minor) {
948 		idr_remove(&_minor_idr, m);
949 		r = -EBUSY;
950 		goto out;
951 	}
952 
953 out:
954 	spin_unlock(&_minor_lock);
955 	return r;
956 }
957 
958 static int next_free_minor(struct mapped_device *md, int *minor)
959 {
960 	int r, m;
961 
962 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
963 	if (!r)
964 		return -ENOMEM;
965 
966 	spin_lock(&_minor_lock);
967 
968 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
969 	if (r) {
970 		goto out;
971 	}
972 
973 	if (m >= (1 << MINORBITS)) {
974 		idr_remove(&_minor_idr, m);
975 		r = -ENOSPC;
976 		goto out;
977 	}
978 
979 	*minor = m;
980 
981 out:
982 	spin_unlock(&_minor_lock);
983 	return r;
984 }
985 
986 static struct block_device_operations dm_blk_dops;
987 
988 /*
989  * Allocate and initialise a blank device with a given minor.
990  */
991 static struct mapped_device *alloc_dev(int minor)
992 {
993 	int r;
994 	struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL);
995 	void *old_md;
996 
997 	if (!md) {
998 		DMWARN("unable to allocate device, out of memory.");
999 		return NULL;
1000 	}
1001 
1002 	if (!try_module_get(THIS_MODULE))
1003 		goto bad_module_get;
1004 
1005 	/* get a minor number for the dev */
1006 	if (minor == DM_ANY_MINOR)
1007 		r = next_free_minor(md, &minor);
1008 	else
1009 		r = specific_minor(md, minor);
1010 	if (r < 0)
1011 		goto bad_minor;
1012 
1013 	memset(md, 0, sizeof(*md));
1014 	init_rwsem(&md->io_lock);
1015 	mutex_init(&md->suspend_lock);
1016 	spin_lock_init(&md->pushback_lock);
1017 	rwlock_init(&md->map_lock);
1018 	atomic_set(&md->holders, 1);
1019 	atomic_set(&md->open_count, 0);
1020 	atomic_set(&md->event_nr, 0);
1021 	atomic_set(&md->uevent_seq, 0);
1022 	INIT_LIST_HEAD(&md->uevent_list);
1023 	spin_lock_init(&md->uevent_lock);
1024 
1025 	md->queue = blk_alloc_queue(GFP_KERNEL);
1026 	if (!md->queue)
1027 		goto bad_queue;
1028 
1029 	md->queue->queuedata = md;
1030 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1031 	md->queue->backing_dev_info.congested_data = md;
1032 	blk_queue_make_request(md->queue, dm_request);
1033 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1034 	md->queue->unplug_fn = dm_unplug_all;
1035 
1036 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1037 	if (!md->io_pool)
1038 		goto bad_io_pool;
1039 
1040 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1041 	if (!md->tio_pool)
1042 		goto bad_tio_pool;
1043 
1044 	md->bs = bioset_create(16, 16);
1045 	if (!md->bs)
1046 		goto bad_no_bioset;
1047 
1048 	md->disk = alloc_disk(1);
1049 	if (!md->disk)
1050 		goto bad_disk;
1051 
1052 	atomic_set(&md->pending, 0);
1053 	init_waitqueue_head(&md->wait);
1054 	init_waitqueue_head(&md->eventq);
1055 
1056 	md->disk->major = _major;
1057 	md->disk->first_minor = minor;
1058 	md->disk->fops = &dm_blk_dops;
1059 	md->disk->queue = md->queue;
1060 	md->disk->private_data = md;
1061 	sprintf(md->disk->disk_name, "dm-%d", minor);
1062 	add_disk(md->disk);
1063 	format_dev_t(md->name, MKDEV(_major, minor));
1064 
1065 	md->wq = create_singlethread_workqueue("kdmflush");
1066 	if (!md->wq)
1067 		goto bad_thread;
1068 
1069 	/* Populate the mapping, nobody knows we exist yet */
1070 	spin_lock(&_minor_lock);
1071 	old_md = idr_replace(&_minor_idr, md, minor);
1072 	spin_unlock(&_minor_lock);
1073 
1074 	BUG_ON(old_md != MINOR_ALLOCED);
1075 
1076 	return md;
1077 
1078 bad_thread:
1079 	put_disk(md->disk);
1080 bad_disk:
1081 	bioset_free(md->bs);
1082 bad_no_bioset:
1083 	mempool_destroy(md->tio_pool);
1084 bad_tio_pool:
1085 	mempool_destroy(md->io_pool);
1086 bad_io_pool:
1087 	blk_cleanup_queue(md->queue);
1088 bad_queue:
1089 	free_minor(minor);
1090 bad_minor:
1091 	module_put(THIS_MODULE);
1092 bad_module_get:
1093 	kfree(md);
1094 	return NULL;
1095 }
1096 
1097 static void unlock_fs(struct mapped_device *md);
1098 
1099 static void free_dev(struct mapped_device *md)
1100 {
1101 	int minor = md->disk->first_minor;
1102 
1103 	if (md->suspended_bdev) {
1104 		unlock_fs(md);
1105 		bdput(md->suspended_bdev);
1106 	}
1107 	destroy_workqueue(md->wq);
1108 	mempool_destroy(md->tio_pool);
1109 	mempool_destroy(md->io_pool);
1110 	bioset_free(md->bs);
1111 	del_gendisk(md->disk);
1112 	free_minor(minor);
1113 
1114 	spin_lock(&_minor_lock);
1115 	md->disk->private_data = NULL;
1116 	spin_unlock(&_minor_lock);
1117 
1118 	put_disk(md->disk);
1119 	blk_cleanup_queue(md->queue);
1120 	module_put(THIS_MODULE);
1121 	kfree(md);
1122 }
1123 
1124 /*
1125  * Bind a table to the device.
1126  */
1127 static void event_callback(void *context)
1128 {
1129 	unsigned long flags;
1130 	LIST_HEAD(uevents);
1131 	struct mapped_device *md = (struct mapped_device *) context;
1132 
1133 	spin_lock_irqsave(&md->uevent_lock, flags);
1134 	list_splice_init(&md->uevent_list, &uevents);
1135 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1136 
1137 	dm_send_uevents(&uevents, &md->disk->dev.kobj);
1138 
1139 	atomic_inc(&md->event_nr);
1140 	wake_up(&md->eventq);
1141 }
1142 
1143 static void __set_size(struct mapped_device *md, sector_t size)
1144 {
1145 	set_capacity(md->disk, size);
1146 
1147 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1148 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1149 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1150 }
1151 
1152 static int __bind(struct mapped_device *md, struct dm_table *t)
1153 {
1154 	struct request_queue *q = md->queue;
1155 	sector_t size;
1156 
1157 	size = dm_table_get_size(t);
1158 
1159 	/*
1160 	 * Wipe any geometry if the size of the table changed.
1161 	 */
1162 	if (size != get_capacity(md->disk))
1163 		memset(&md->geometry, 0, sizeof(md->geometry));
1164 
1165 	if (md->suspended_bdev)
1166 		__set_size(md, size);
1167 	if (size == 0)
1168 		return 0;
1169 
1170 	dm_table_get(t);
1171 	dm_table_event_callback(t, event_callback, md);
1172 
1173 	write_lock(&md->map_lock);
1174 	md->map = t;
1175 	dm_table_set_restrictions(t, q);
1176 	write_unlock(&md->map_lock);
1177 
1178 	return 0;
1179 }
1180 
1181 static void __unbind(struct mapped_device *md)
1182 {
1183 	struct dm_table *map = md->map;
1184 
1185 	if (!map)
1186 		return;
1187 
1188 	dm_table_event_callback(map, NULL, NULL);
1189 	write_lock(&md->map_lock);
1190 	md->map = NULL;
1191 	write_unlock(&md->map_lock);
1192 	dm_table_put(map);
1193 }
1194 
1195 /*
1196  * Constructor for a new device.
1197  */
1198 int dm_create(int minor, struct mapped_device **result)
1199 {
1200 	struct mapped_device *md;
1201 
1202 	md = alloc_dev(minor);
1203 	if (!md)
1204 		return -ENXIO;
1205 
1206 	*result = md;
1207 	return 0;
1208 }
1209 
1210 static struct mapped_device *dm_find_md(dev_t dev)
1211 {
1212 	struct mapped_device *md;
1213 	unsigned minor = MINOR(dev);
1214 
1215 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1216 		return NULL;
1217 
1218 	spin_lock(&_minor_lock);
1219 
1220 	md = idr_find(&_minor_idr, minor);
1221 	if (md && (md == MINOR_ALLOCED ||
1222 		   (dm_disk(md)->first_minor != minor) ||
1223 		   test_bit(DMF_FREEING, &md->flags))) {
1224 		md = NULL;
1225 		goto out;
1226 	}
1227 
1228 out:
1229 	spin_unlock(&_minor_lock);
1230 
1231 	return md;
1232 }
1233 
1234 struct mapped_device *dm_get_md(dev_t dev)
1235 {
1236 	struct mapped_device *md = dm_find_md(dev);
1237 
1238 	if (md)
1239 		dm_get(md);
1240 
1241 	return md;
1242 }
1243 
1244 void *dm_get_mdptr(struct mapped_device *md)
1245 {
1246 	return md->interface_ptr;
1247 }
1248 
1249 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1250 {
1251 	md->interface_ptr = ptr;
1252 }
1253 
1254 void dm_get(struct mapped_device *md)
1255 {
1256 	atomic_inc(&md->holders);
1257 }
1258 
1259 const char *dm_device_name(struct mapped_device *md)
1260 {
1261 	return md->name;
1262 }
1263 EXPORT_SYMBOL_GPL(dm_device_name);
1264 
1265 void dm_put(struct mapped_device *md)
1266 {
1267 	struct dm_table *map;
1268 
1269 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1270 
1271 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1272 		map = dm_get_table(md);
1273 		idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor);
1274 		set_bit(DMF_FREEING, &md->flags);
1275 		spin_unlock(&_minor_lock);
1276 		if (!dm_suspended(md)) {
1277 			dm_table_presuspend_targets(map);
1278 			dm_table_postsuspend_targets(map);
1279 		}
1280 		__unbind(md);
1281 		dm_table_put(map);
1282 		free_dev(md);
1283 	}
1284 }
1285 EXPORT_SYMBOL_GPL(dm_put);
1286 
1287 static int dm_wait_for_completion(struct mapped_device *md)
1288 {
1289 	int r = 0;
1290 
1291 	while (1) {
1292 		set_current_state(TASK_INTERRUPTIBLE);
1293 
1294 		smp_mb();
1295 		if (!atomic_read(&md->pending))
1296 			break;
1297 
1298 		if (signal_pending(current)) {
1299 			r = -EINTR;
1300 			break;
1301 		}
1302 
1303 		io_schedule();
1304 	}
1305 	set_current_state(TASK_RUNNING);
1306 
1307 	return r;
1308 }
1309 
1310 /*
1311  * Process the deferred bios
1312  */
1313 static void __flush_deferred_io(struct mapped_device *md)
1314 {
1315 	struct bio *c;
1316 
1317 	while ((c = bio_list_pop(&md->deferred))) {
1318 		if (__split_bio(md, c))
1319 			bio_io_error(c);
1320 	}
1321 
1322 	clear_bit(DMF_BLOCK_IO, &md->flags);
1323 }
1324 
1325 static void __merge_pushback_list(struct mapped_device *md)
1326 {
1327 	unsigned long flags;
1328 
1329 	spin_lock_irqsave(&md->pushback_lock, flags);
1330 	clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1331 	bio_list_merge_head(&md->deferred, &md->pushback);
1332 	bio_list_init(&md->pushback);
1333 	spin_unlock_irqrestore(&md->pushback_lock, flags);
1334 }
1335 
1336 static void dm_wq_work(struct work_struct *work)
1337 {
1338 	struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1339 	struct mapped_device *md = req->md;
1340 
1341 	down_write(&md->io_lock);
1342 	switch (req->type) {
1343 	case DM_WQ_FLUSH_ALL:
1344 		__merge_pushback_list(md);
1345 		/* pass through */
1346 	case DM_WQ_FLUSH_DEFERRED:
1347 		__flush_deferred_io(md);
1348 		break;
1349 	default:
1350 		DMERR("dm_wq_work: unrecognised work type %d", req->type);
1351 		BUG();
1352 	}
1353 	up_write(&md->io_lock);
1354 }
1355 
1356 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1357 			struct dm_wq_req *req)
1358 {
1359 	req->type = type;
1360 	req->md = md;
1361 	req->context = context;
1362 	INIT_WORK(&req->work, dm_wq_work);
1363 	queue_work(md->wq, &req->work);
1364 }
1365 
1366 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1367 {
1368 	struct dm_wq_req req;
1369 
1370 	dm_wq_queue(md, type, context, &req);
1371 	flush_workqueue(md->wq);
1372 }
1373 
1374 /*
1375  * Swap in a new table (destroying old one).
1376  */
1377 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1378 {
1379 	int r = -EINVAL;
1380 
1381 	mutex_lock(&md->suspend_lock);
1382 
1383 	/* device must be suspended */
1384 	if (!dm_suspended(md))
1385 		goto out;
1386 
1387 	/* without bdev, the device size cannot be changed */
1388 	if (!md->suspended_bdev)
1389 		if (get_capacity(md->disk) != dm_table_get_size(table))
1390 			goto out;
1391 
1392 	__unbind(md);
1393 	r = __bind(md, table);
1394 
1395 out:
1396 	mutex_unlock(&md->suspend_lock);
1397 	return r;
1398 }
1399 
1400 /*
1401  * Functions to lock and unlock any filesystem running on the
1402  * device.
1403  */
1404 static int lock_fs(struct mapped_device *md)
1405 {
1406 	int r;
1407 
1408 	WARN_ON(md->frozen_sb);
1409 
1410 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1411 	if (IS_ERR(md->frozen_sb)) {
1412 		r = PTR_ERR(md->frozen_sb);
1413 		md->frozen_sb = NULL;
1414 		return r;
1415 	}
1416 
1417 	set_bit(DMF_FROZEN, &md->flags);
1418 
1419 	/* don't bdput right now, we don't want the bdev
1420 	 * to go away while it is locked.
1421 	 */
1422 	return 0;
1423 }
1424 
1425 static void unlock_fs(struct mapped_device *md)
1426 {
1427 	if (!test_bit(DMF_FROZEN, &md->flags))
1428 		return;
1429 
1430 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1431 	md->frozen_sb = NULL;
1432 	clear_bit(DMF_FROZEN, &md->flags);
1433 }
1434 
1435 /*
1436  * We need to be able to change a mapping table under a mounted
1437  * filesystem.  For example we might want to move some data in
1438  * the background.  Before the table can be swapped with
1439  * dm_bind_table, dm_suspend must be called to flush any in
1440  * flight bios and ensure that any further io gets deferred.
1441  */
1442 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1443 {
1444 	struct dm_table *map = NULL;
1445 	DECLARE_WAITQUEUE(wait, current);
1446 	int r = 0;
1447 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1448 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1449 
1450 	mutex_lock(&md->suspend_lock);
1451 
1452 	if (dm_suspended(md)) {
1453 		r = -EINVAL;
1454 		goto out_unlock;
1455 	}
1456 
1457 	map = dm_get_table(md);
1458 
1459 	/*
1460 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1461 	 * This flag is cleared before dm_suspend returns.
1462 	 */
1463 	if (noflush)
1464 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1465 
1466 	/* This does not get reverted if there's an error later. */
1467 	dm_table_presuspend_targets(map);
1468 
1469 	/* bdget() can stall if the pending I/Os are not flushed */
1470 	if (!noflush) {
1471 		md->suspended_bdev = bdget_disk(md->disk, 0);
1472 		if (!md->suspended_bdev) {
1473 			DMWARN("bdget failed in dm_suspend");
1474 			r = -ENOMEM;
1475 			goto flush_and_out;
1476 		}
1477 
1478 		/*
1479 		 * Flush I/O to the device. noflush supersedes do_lockfs,
1480 		 * because lock_fs() needs to flush I/Os.
1481 		 */
1482 		if (do_lockfs) {
1483 			r = lock_fs(md);
1484 			if (r)
1485 				goto out;
1486 		}
1487 	}
1488 
1489 	/*
1490 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1491 	 */
1492 	down_write(&md->io_lock);
1493 	set_bit(DMF_BLOCK_IO, &md->flags);
1494 
1495 	add_wait_queue(&md->wait, &wait);
1496 	up_write(&md->io_lock);
1497 
1498 	/* unplug */
1499 	if (map)
1500 		dm_table_unplug_all(map);
1501 
1502 	/*
1503 	 * Wait for the already-mapped ios to complete.
1504 	 */
1505 	r = dm_wait_for_completion(md);
1506 
1507 	down_write(&md->io_lock);
1508 	remove_wait_queue(&md->wait, &wait);
1509 
1510 	if (noflush)
1511 		__merge_pushback_list(md);
1512 	up_write(&md->io_lock);
1513 
1514 	/* were we interrupted ? */
1515 	if (r < 0) {
1516 		dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1517 
1518 		unlock_fs(md);
1519 		goto out; /* pushback list is already flushed, so skip flush */
1520 	}
1521 
1522 	dm_table_postsuspend_targets(map);
1523 
1524 	set_bit(DMF_SUSPENDED, &md->flags);
1525 
1526 flush_and_out:
1527 	if (r && noflush)
1528 		/*
1529 		 * Because there may be already I/Os in the pushback list,
1530 		 * flush them before return.
1531 		 */
1532 		dm_queue_flush(md, DM_WQ_FLUSH_ALL, NULL);
1533 
1534 out:
1535 	if (r && md->suspended_bdev) {
1536 		bdput(md->suspended_bdev);
1537 		md->suspended_bdev = NULL;
1538 	}
1539 
1540 	dm_table_put(map);
1541 
1542 out_unlock:
1543 	mutex_unlock(&md->suspend_lock);
1544 	return r;
1545 }
1546 
1547 int dm_resume(struct mapped_device *md)
1548 {
1549 	int r = -EINVAL;
1550 	struct dm_table *map = NULL;
1551 
1552 	mutex_lock(&md->suspend_lock);
1553 	if (!dm_suspended(md))
1554 		goto out;
1555 
1556 	map = dm_get_table(md);
1557 	if (!map || !dm_table_get_size(map))
1558 		goto out;
1559 
1560 	r = dm_table_resume_targets(map);
1561 	if (r)
1562 		goto out;
1563 
1564 	dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1565 
1566 	unlock_fs(md);
1567 
1568 	if (md->suspended_bdev) {
1569 		bdput(md->suspended_bdev);
1570 		md->suspended_bdev = NULL;
1571 	}
1572 
1573 	clear_bit(DMF_SUSPENDED, &md->flags);
1574 
1575 	dm_table_unplug_all(map);
1576 
1577 	dm_kobject_uevent(md);
1578 
1579 	r = 0;
1580 
1581 out:
1582 	dm_table_put(map);
1583 	mutex_unlock(&md->suspend_lock);
1584 
1585 	return r;
1586 }
1587 
1588 /*-----------------------------------------------------------------
1589  * Event notification.
1590  *---------------------------------------------------------------*/
1591 void dm_kobject_uevent(struct mapped_device *md)
1592 {
1593 	kobject_uevent(&md->disk->dev.kobj, KOBJ_CHANGE);
1594 }
1595 
1596 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1597 {
1598 	return atomic_add_return(1, &md->uevent_seq);
1599 }
1600 
1601 uint32_t dm_get_event_nr(struct mapped_device *md)
1602 {
1603 	return atomic_read(&md->event_nr);
1604 }
1605 
1606 int dm_wait_event(struct mapped_device *md, int event_nr)
1607 {
1608 	return wait_event_interruptible(md->eventq,
1609 			(event_nr != atomic_read(&md->event_nr)));
1610 }
1611 
1612 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1613 {
1614 	unsigned long flags;
1615 
1616 	spin_lock_irqsave(&md->uevent_lock, flags);
1617 	list_add(elist, &md->uevent_list);
1618 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1619 }
1620 
1621 /*
1622  * The gendisk is only valid as long as you have a reference
1623  * count on 'md'.
1624  */
1625 struct gendisk *dm_disk(struct mapped_device *md)
1626 {
1627 	return md->disk;
1628 }
1629 
1630 int dm_suspended(struct mapped_device *md)
1631 {
1632 	return test_bit(DMF_SUSPENDED, &md->flags);
1633 }
1634 
1635 int dm_noflush_suspending(struct dm_target *ti)
1636 {
1637 	struct mapped_device *md = dm_table_get_md(ti->table);
1638 	int r = __noflush_suspending(md);
1639 
1640 	dm_put(md);
1641 
1642 	return r;
1643 }
1644 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1645 
1646 static struct block_device_operations dm_blk_dops = {
1647 	.open = dm_blk_open,
1648 	.release = dm_blk_close,
1649 	.ioctl = dm_blk_ioctl,
1650 	.getgeo = dm_blk_getgeo,
1651 	.owner = THIS_MODULE
1652 };
1653 
1654 EXPORT_SYMBOL(dm_get_mapinfo);
1655 
1656 /*
1657  * module hooks
1658  */
1659 module_init(dm_init);
1660 module_exit(dm_exit);
1661 
1662 module_param(major, uint, 0);
1663 MODULE_PARM_DESC(major, "The major number of the device mapper");
1664 MODULE_DESCRIPTION(DM_NAME " driver");
1665 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1666 MODULE_LICENSE("GPL");
1667