1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-bio-list.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/moduleparam.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/buffer_head.h> 19 #include <linux/mempool.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/hdreg.h> 23 #include <linux/blktrace_api.h> 24 #include <linux/smp_lock.h> 25 26 #define DM_MSG_PREFIX "core" 27 28 static const char *_name = DM_NAME; 29 30 static unsigned int major = 0; 31 static unsigned int _major = 0; 32 33 static DEFINE_SPINLOCK(_minor_lock); 34 /* 35 * One of these is allocated per bio. 36 */ 37 struct dm_io { 38 struct mapped_device *md; 39 int error; 40 struct bio *bio; 41 atomic_t io_count; 42 unsigned long start_time; 43 }; 44 45 /* 46 * One of these is allocated per target within a bio. Hopefully 47 * this will be simplified out one day. 48 */ 49 struct dm_target_io { 50 struct dm_io *io; 51 struct dm_target *ti; 52 union map_info info; 53 }; 54 55 union map_info *dm_get_mapinfo(struct bio *bio) 56 { 57 if (bio && bio->bi_private) 58 return &((struct dm_target_io *)bio->bi_private)->info; 59 return NULL; 60 } 61 62 #define MINOR_ALLOCED ((void *)-1) 63 64 /* 65 * Bits for the md->flags field. 66 */ 67 #define DMF_BLOCK_IO 0 68 #define DMF_SUSPENDED 1 69 #define DMF_FROZEN 2 70 #define DMF_FREEING 3 71 #define DMF_DELETING 4 72 #define DMF_NOFLUSH_SUSPENDING 5 73 74 /* 75 * Work processed by per-device workqueue. 76 */ 77 struct dm_wq_req { 78 enum { 79 DM_WQ_FLUSH_ALL, 80 DM_WQ_FLUSH_DEFERRED, 81 } type; 82 struct work_struct work; 83 struct mapped_device *md; 84 void *context; 85 }; 86 87 struct mapped_device { 88 struct rw_semaphore io_lock; 89 struct mutex suspend_lock; 90 spinlock_t pushback_lock; 91 rwlock_t map_lock; 92 atomic_t holders; 93 atomic_t open_count; 94 95 unsigned long flags; 96 97 struct request_queue *queue; 98 struct gendisk *disk; 99 char name[16]; 100 101 void *interface_ptr; 102 103 /* 104 * A list of ios that arrived while we were suspended. 105 */ 106 atomic_t pending; 107 wait_queue_head_t wait; 108 struct bio_list deferred; 109 struct bio_list pushback; 110 111 /* 112 * Processing queue (flush/barriers) 113 */ 114 struct workqueue_struct *wq; 115 116 /* 117 * The current mapping. 118 */ 119 struct dm_table *map; 120 121 /* 122 * io objects are allocated from here. 123 */ 124 mempool_t *io_pool; 125 mempool_t *tio_pool; 126 127 struct bio_set *bs; 128 129 /* 130 * Event handling. 131 */ 132 atomic_t event_nr; 133 wait_queue_head_t eventq; 134 atomic_t uevent_seq; 135 struct list_head uevent_list; 136 spinlock_t uevent_lock; /* Protect access to uevent_list */ 137 138 /* 139 * freeze/thaw support require holding onto a super block 140 */ 141 struct super_block *frozen_sb; 142 struct block_device *suspended_bdev; 143 144 /* forced geometry settings */ 145 struct hd_geometry geometry; 146 }; 147 148 #define MIN_IOS 256 149 static struct kmem_cache *_io_cache; 150 static struct kmem_cache *_tio_cache; 151 152 static int __init local_init(void) 153 { 154 int r; 155 156 /* allocate a slab for the dm_ios */ 157 _io_cache = KMEM_CACHE(dm_io, 0); 158 if (!_io_cache) 159 return -ENOMEM; 160 161 /* allocate a slab for the target ios */ 162 _tio_cache = KMEM_CACHE(dm_target_io, 0); 163 if (!_tio_cache) { 164 kmem_cache_destroy(_io_cache); 165 return -ENOMEM; 166 } 167 168 r = dm_uevent_init(); 169 if (r) { 170 kmem_cache_destroy(_tio_cache); 171 kmem_cache_destroy(_io_cache); 172 return r; 173 } 174 175 _major = major; 176 r = register_blkdev(_major, _name); 177 if (r < 0) { 178 kmem_cache_destroy(_tio_cache); 179 kmem_cache_destroy(_io_cache); 180 dm_uevent_exit(); 181 return r; 182 } 183 184 if (!_major) 185 _major = r; 186 187 return 0; 188 } 189 190 static void local_exit(void) 191 { 192 kmem_cache_destroy(_tio_cache); 193 kmem_cache_destroy(_io_cache); 194 unregister_blkdev(_major, _name); 195 dm_uevent_exit(); 196 197 _major = 0; 198 199 DMINFO("cleaned up"); 200 } 201 202 static int (*_inits[])(void) __initdata = { 203 local_init, 204 dm_target_init, 205 dm_linear_init, 206 dm_stripe_init, 207 dm_interface_init, 208 }; 209 210 static void (*_exits[])(void) = { 211 local_exit, 212 dm_target_exit, 213 dm_linear_exit, 214 dm_stripe_exit, 215 dm_interface_exit, 216 }; 217 218 static int __init dm_init(void) 219 { 220 const int count = ARRAY_SIZE(_inits); 221 222 int r, i; 223 224 for (i = 0; i < count; i++) { 225 r = _inits[i](); 226 if (r) 227 goto bad; 228 } 229 230 return 0; 231 232 bad: 233 while (i--) 234 _exits[i](); 235 236 return r; 237 } 238 239 static void __exit dm_exit(void) 240 { 241 int i = ARRAY_SIZE(_exits); 242 243 while (i--) 244 _exits[i](); 245 } 246 247 /* 248 * Block device functions 249 */ 250 static int dm_blk_open(struct inode *inode, struct file *file) 251 { 252 struct mapped_device *md; 253 254 spin_lock(&_minor_lock); 255 256 md = inode->i_bdev->bd_disk->private_data; 257 if (!md) 258 goto out; 259 260 if (test_bit(DMF_FREEING, &md->flags) || 261 test_bit(DMF_DELETING, &md->flags)) { 262 md = NULL; 263 goto out; 264 } 265 266 dm_get(md); 267 atomic_inc(&md->open_count); 268 269 out: 270 spin_unlock(&_minor_lock); 271 272 return md ? 0 : -ENXIO; 273 } 274 275 static int dm_blk_close(struct inode *inode, struct file *file) 276 { 277 struct mapped_device *md; 278 279 md = inode->i_bdev->bd_disk->private_data; 280 atomic_dec(&md->open_count); 281 dm_put(md); 282 return 0; 283 } 284 285 int dm_open_count(struct mapped_device *md) 286 { 287 return atomic_read(&md->open_count); 288 } 289 290 /* 291 * Guarantees nothing is using the device before it's deleted. 292 */ 293 int dm_lock_for_deletion(struct mapped_device *md) 294 { 295 int r = 0; 296 297 spin_lock(&_minor_lock); 298 299 if (dm_open_count(md)) 300 r = -EBUSY; 301 else 302 set_bit(DMF_DELETING, &md->flags); 303 304 spin_unlock(&_minor_lock); 305 306 return r; 307 } 308 309 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 310 { 311 struct mapped_device *md = bdev->bd_disk->private_data; 312 313 return dm_get_geometry(md, geo); 314 } 315 316 static int dm_blk_ioctl(struct inode *inode, struct file *file, 317 unsigned int cmd, unsigned long arg) 318 { 319 struct mapped_device *md; 320 struct dm_table *map; 321 struct dm_target *tgt; 322 int r = -ENOTTY; 323 324 /* We don't really need this lock, but we do need 'inode'. */ 325 unlock_kernel(); 326 327 md = inode->i_bdev->bd_disk->private_data; 328 329 map = dm_get_table(md); 330 331 if (!map || !dm_table_get_size(map)) 332 goto out; 333 334 /* We only support devices that have a single target */ 335 if (dm_table_get_num_targets(map) != 1) 336 goto out; 337 338 tgt = dm_table_get_target(map, 0); 339 340 if (dm_suspended(md)) { 341 r = -EAGAIN; 342 goto out; 343 } 344 345 if (tgt->type->ioctl) 346 r = tgt->type->ioctl(tgt, inode, file, cmd, arg); 347 348 out: 349 dm_table_put(map); 350 351 lock_kernel(); 352 return r; 353 } 354 355 static struct dm_io *alloc_io(struct mapped_device *md) 356 { 357 return mempool_alloc(md->io_pool, GFP_NOIO); 358 } 359 360 static void free_io(struct mapped_device *md, struct dm_io *io) 361 { 362 mempool_free(io, md->io_pool); 363 } 364 365 static struct dm_target_io *alloc_tio(struct mapped_device *md) 366 { 367 return mempool_alloc(md->tio_pool, GFP_NOIO); 368 } 369 370 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 371 { 372 mempool_free(tio, md->tio_pool); 373 } 374 375 static void start_io_acct(struct dm_io *io) 376 { 377 struct mapped_device *md = io->md; 378 379 io->start_time = jiffies; 380 381 preempt_disable(); 382 disk_round_stats(dm_disk(md)); 383 preempt_enable(); 384 dm_disk(md)->in_flight = atomic_inc_return(&md->pending); 385 } 386 387 static int end_io_acct(struct dm_io *io) 388 { 389 struct mapped_device *md = io->md; 390 struct bio *bio = io->bio; 391 unsigned long duration = jiffies - io->start_time; 392 int pending; 393 int rw = bio_data_dir(bio); 394 395 preempt_disable(); 396 disk_round_stats(dm_disk(md)); 397 preempt_enable(); 398 dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending); 399 400 disk_stat_add(dm_disk(md), ticks[rw], duration); 401 402 return !pending; 403 } 404 405 /* 406 * Add the bio to the list of deferred io. 407 */ 408 static int queue_io(struct mapped_device *md, struct bio *bio) 409 { 410 down_write(&md->io_lock); 411 412 if (!test_bit(DMF_BLOCK_IO, &md->flags)) { 413 up_write(&md->io_lock); 414 return 1; 415 } 416 417 bio_list_add(&md->deferred, bio); 418 419 up_write(&md->io_lock); 420 return 0; /* deferred successfully */ 421 } 422 423 /* 424 * Everyone (including functions in this file), should use this 425 * function to access the md->map field, and make sure they call 426 * dm_table_put() when finished. 427 */ 428 struct dm_table *dm_get_table(struct mapped_device *md) 429 { 430 struct dm_table *t; 431 432 read_lock(&md->map_lock); 433 t = md->map; 434 if (t) 435 dm_table_get(t); 436 read_unlock(&md->map_lock); 437 438 return t; 439 } 440 441 /* 442 * Get the geometry associated with a dm device 443 */ 444 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 445 { 446 *geo = md->geometry; 447 448 return 0; 449 } 450 451 /* 452 * Set the geometry of a device. 453 */ 454 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 455 { 456 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 457 458 if (geo->start > sz) { 459 DMWARN("Start sector is beyond the geometry limits."); 460 return -EINVAL; 461 } 462 463 md->geometry = *geo; 464 465 return 0; 466 } 467 468 /*----------------------------------------------------------------- 469 * CRUD START: 470 * A more elegant soln is in the works that uses the queue 471 * merge fn, unfortunately there are a couple of changes to 472 * the block layer that I want to make for this. So in the 473 * interests of getting something for people to use I give 474 * you this clearly demarcated crap. 475 *---------------------------------------------------------------*/ 476 477 static int __noflush_suspending(struct mapped_device *md) 478 { 479 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 480 } 481 482 /* 483 * Decrements the number of outstanding ios that a bio has been 484 * cloned into, completing the original io if necc. 485 */ 486 static void dec_pending(struct dm_io *io, int error) 487 { 488 unsigned long flags; 489 490 /* Push-back supersedes any I/O errors */ 491 if (error && !(io->error > 0 && __noflush_suspending(io->md))) 492 io->error = error; 493 494 if (atomic_dec_and_test(&io->io_count)) { 495 if (io->error == DM_ENDIO_REQUEUE) { 496 /* 497 * Target requested pushing back the I/O. 498 * This must be handled before the sleeper on 499 * suspend queue merges the pushback list. 500 */ 501 spin_lock_irqsave(&io->md->pushback_lock, flags); 502 if (__noflush_suspending(io->md)) 503 bio_list_add(&io->md->pushback, io->bio); 504 else 505 /* noflush suspend was interrupted. */ 506 io->error = -EIO; 507 spin_unlock_irqrestore(&io->md->pushback_lock, flags); 508 } 509 510 if (end_io_acct(io)) 511 /* nudge anyone waiting on suspend queue */ 512 wake_up(&io->md->wait); 513 514 if (io->error != DM_ENDIO_REQUEUE) { 515 blk_add_trace_bio(io->md->queue, io->bio, 516 BLK_TA_COMPLETE); 517 518 bio_endio(io->bio, io->error); 519 } 520 521 free_io(io->md, io); 522 } 523 } 524 525 static void clone_endio(struct bio *bio, int error) 526 { 527 int r = 0; 528 struct dm_target_io *tio = bio->bi_private; 529 struct mapped_device *md = tio->io->md; 530 dm_endio_fn endio = tio->ti->type->end_io; 531 532 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 533 error = -EIO; 534 535 if (endio) { 536 r = endio(tio->ti, bio, error, &tio->info); 537 if (r < 0 || r == DM_ENDIO_REQUEUE) 538 /* 539 * error and requeue request are handled 540 * in dec_pending(). 541 */ 542 error = r; 543 else if (r == DM_ENDIO_INCOMPLETE) 544 /* The target will handle the io */ 545 return; 546 else if (r) { 547 DMWARN("unimplemented target endio return value: %d", r); 548 BUG(); 549 } 550 } 551 552 dec_pending(tio->io, error); 553 554 /* 555 * Store md for cleanup instead of tio which is about to get freed. 556 */ 557 bio->bi_private = md->bs; 558 559 bio_put(bio); 560 free_tio(md, tio); 561 } 562 563 static sector_t max_io_len(struct mapped_device *md, 564 sector_t sector, struct dm_target *ti) 565 { 566 sector_t offset = sector - ti->begin; 567 sector_t len = ti->len - offset; 568 569 /* 570 * Does the target need to split even further ? 571 */ 572 if (ti->split_io) { 573 sector_t boundary; 574 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 575 - offset; 576 if (len > boundary) 577 len = boundary; 578 } 579 580 return len; 581 } 582 583 static void __map_bio(struct dm_target *ti, struct bio *clone, 584 struct dm_target_io *tio) 585 { 586 int r; 587 sector_t sector; 588 struct mapped_device *md; 589 590 /* 591 * Sanity checks. 592 */ 593 BUG_ON(!clone->bi_size); 594 595 clone->bi_end_io = clone_endio; 596 clone->bi_private = tio; 597 598 /* 599 * Map the clone. If r == 0 we don't need to do 600 * anything, the target has assumed ownership of 601 * this io. 602 */ 603 atomic_inc(&tio->io->io_count); 604 sector = clone->bi_sector; 605 r = ti->type->map(ti, clone, &tio->info); 606 if (r == DM_MAPIO_REMAPPED) { 607 /* the bio has been remapped so dispatch it */ 608 609 blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone, 610 tio->io->bio->bi_bdev->bd_dev, 611 clone->bi_sector, sector); 612 613 generic_make_request(clone); 614 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 615 /* error the io and bail out, or requeue it if needed */ 616 md = tio->io->md; 617 dec_pending(tio->io, r); 618 /* 619 * Store bio_set for cleanup. 620 */ 621 clone->bi_private = md->bs; 622 bio_put(clone); 623 free_tio(md, tio); 624 } else if (r) { 625 DMWARN("unimplemented target map return value: %d", r); 626 BUG(); 627 } 628 } 629 630 struct clone_info { 631 struct mapped_device *md; 632 struct dm_table *map; 633 struct bio *bio; 634 struct dm_io *io; 635 sector_t sector; 636 sector_t sector_count; 637 unsigned short idx; 638 }; 639 640 static void dm_bio_destructor(struct bio *bio) 641 { 642 struct bio_set *bs = bio->bi_private; 643 644 bio_free(bio, bs); 645 } 646 647 /* 648 * Creates a little bio that is just does part of a bvec. 649 */ 650 static struct bio *split_bvec(struct bio *bio, sector_t sector, 651 unsigned short idx, unsigned int offset, 652 unsigned int len, struct bio_set *bs) 653 { 654 struct bio *clone; 655 struct bio_vec *bv = bio->bi_io_vec + idx; 656 657 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 658 clone->bi_destructor = dm_bio_destructor; 659 *clone->bi_io_vec = *bv; 660 661 clone->bi_sector = sector; 662 clone->bi_bdev = bio->bi_bdev; 663 clone->bi_rw = bio->bi_rw; 664 clone->bi_vcnt = 1; 665 clone->bi_size = to_bytes(len); 666 clone->bi_io_vec->bv_offset = offset; 667 clone->bi_io_vec->bv_len = clone->bi_size; 668 669 return clone; 670 } 671 672 /* 673 * Creates a bio that consists of range of complete bvecs. 674 */ 675 static struct bio *clone_bio(struct bio *bio, sector_t sector, 676 unsigned short idx, unsigned short bv_count, 677 unsigned int len, struct bio_set *bs) 678 { 679 struct bio *clone; 680 681 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 682 __bio_clone(clone, bio); 683 clone->bi_destructor = dm_bio_destructor; 684 clone->bi_sector = sector; 685 clone->bi_idx = idx; 686 clone->bi_vcnt = idx + bv_count; 687 clone->bi_size = to_bytes(len); 688 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 689 690 return clone; 691 } 692 693 static int __clone_and_map(struct clone_info *ci) 694 { 695 struct bio *clone, *bio = ci->bio; 696 struct dm_target *ti; 697 sector_t len = 0, max; 698 struct dm_target_io *tio; 699 700 ti = dm_table_find_target(ci->map, ci->sector); 701 if (!dm_target_is_valid(ti)) 702 return -EIO; 703 704 max = max_io_len(ci->md, ci->sector, ti); 705 706 /* 707 * Allocate a target io object. 708 */ 709 tio = alloc_tio(ci->md); 710 tio->io = ci->io; 711 tio->ti = ti; 712 memset(&tio->info, 0, sizeof(tio->info)); 713 714 if (ci->sector_count <= max) { 715 /* 716 * Optimise for the simple case where we can do all of 717 * the remaining io with a single clone. 718 */ 719 clone = clone_bio(bio, ci->sector, ci->idx, 720 bio->bi_vcnt - ci->idx, ci->sector_count, 721 ci->md->bs); 722 __map_bio(ti, clone, tio); 723 ci->sector_count = 0; 724 725 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 726 /* 727 * There are some bvecs that don't span targets. 728 * Do as many of these as possible. 729 */ 730 int i; 731 sector_t remaining = max; 732 sector_t bv_len; 733 734 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 735 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 736 737 if (bv_len > remaining) 738 break; 739 740 remaining -= bv_len; 741 len += bv_len; 742 } 743 744 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 745 ci->md->bs); 746 __map_bio(ti, clone, tio); 747 748 ci->sector += len; 749 ci->sector_count -= len; 750 ci->idx = i; 751 752 } else { 753 /* 754 * Handle a bvec that must be split between two or more targets. 755 */ 756 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 757 sector_t remaining = to_sector(bv->bv_len); 758 unsigned int offset = 0; 759 760 do { 761 if (offset) { 762 ti = dm_table_find_target(ci->map, ci->sector); 763 if (!dm_target_is_valid(ti)) 764 return -EIO; 765 766 max = max_io_len(ci->md, ci->sector, ti); 767 768 tio = alloc_tio(ci->md); 769 tio->io = ci->io; 770 tio->ti = ti; 771 memset(&tio->info, 0, sizeof(tio->info)); 772 } 773 774 len = min(remaining, max); 775 776 clone = split_bvec(bio, ci->sector, ci->idx, 777 bv->bv_offset + offset, len, 778 ci->md->bs); 779 780 __map_bio(ti, clone, tio); 781 782 ci->sector += len; 783 ci->sector_count -= len; 784 offset += to_bytes(len); 785 } while (remaining -= len); 786 787 ci->idx++; 788 } 789 790 return 0; 791 } 792 793 /* 794 * Split the bio into several clones. 795 */ 796 static int __split_bio(struct mapped_device *md, struct bio *bio) 797 { 798 struct clone_info ci; 799 int error = 0; 800 801 ci.map = dm_get_table(md); 802 if (unlikely(!ci.map)) 803 return -EIO; 804 805 ci.md = md; 806 ci.bio = bio; 807 ci.io = alloc_io(md); 808 ci.io->error = 0; 809 atomic_set(&ci.io->io_count, 1); 810 ci.io->bio = bio; 811 ci.io->md = md; 812 ci.sector = bio->bi_sector; 813 ci.sector_count = bio_sectors(bio); 814 ci.idx = bio->bi_idx; 815 816 start_io_acct(ci.io); 817 while (ci.sector_count && !error) 818 error = __clone_and_map(&ci); 819 820 /* drop the extra reference count */ 821 dec_pending(ci.io, error); 822 dm_table_put(ci.map); 823 824 return 0; 825 } 826 /*----------------------------------------------------------------- 827 * CRUD END 828 *---------------------------------------------------------------*/ 829 830 /* 831 * The request function that just remaps the bio built up by 832 * dm_merge_bvec. 833 */ 834 static int dm_request(struct request_queue *q, struct bio *bio) 835 { 836 int r = -EIO; 837 int rw = bio_data_dir(bio); 838 struct mapped_device *md = q->queuedata; 839 840 /* 841 * There is no use in forwarding any barrier request since we can't 842 * guarantee it is (or can be) handled by the targets correctly. 843 */ 844 if (unlikely(bio_barrier(bio))) { 845 bio_endio(bio, -EOPNOTSUPP); 846 return 0; 847 } 848 849 down_read(&md->io_lock); 850 851 disk_stat_inc(dm_disk(md), ios[rw]); 852 disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio)); 853 854 /* 855 * If we're suspended we have to queue 856 * this io for later. 857 */ 858 while (test_bit(DMF_BLOCK_IO, &md->flags)) { 859 up_read(&md->io_lock); 860 861 if (bio_rw(bio) != READA) 862 r = queue_io(md, bio); 863 864 if (r <= 0) 865 goto out_req; 866 867 /* 868 * We're in a while loop, because someone could suspend 869 * before we get to the following read lock. 870 */ 871 down_read(&md->io_lock); 872 } 873 874 r = __split_bio(md, bio); 875 up_read(&md->io_lock); 876 877 out_req: 878 if (r < 0) 879 bio_io_error(bio); 880 881 return 0; 882 } 883 884 static void dm_unplug_all(struct request_queue *q) 885 { 886 struct mapped_device *md = q->queuedata; 887 struct dm_table *map = dm_get_table(md); 888 889 if (map) { 890 dm_table_unplug_all(map); 891 dm_table_put(map); 892 } 893 } 894 895 static int dm_any_congested(void *congested_data, int bdi_bits) 896 { 897 int r; 898 struct mapped_device *md = (struct mapped_device *) congested_data; 899 struct dm_table *map = dm_get_table(md); 900 901 if (!map || test_bit(DMF_BLOCK_IO, &md->flags)) 902 r = bdi_bits; 903 else 904 r = dm_table_any_congested(map, bdi_bits); 905 906 dm_table_put(map); 907 return r; 908 } 909 910 /*----------------------------------------------------------------- 911 * An IDR is used to keep track of allocated minor numbers. 912 *---------------------------------------------------------------*/ 913 static DEFINE_IDR(_minor_idr); 914 915 static void free_minor(int minor) 916 { 917 spin_lock(&_minor_lock); 918 idr_remove(&_minor_idr, minor); 919 spin_unlock(&_minor_lock); 920 } 921 922 /* 923 * See if the device with a specific minor # is free. 924 */ 925 static int specific_minor(struct mapped_device *md, int minor) 926 { 927 int r, m; 928 929 if (minor >= (1 << MINORBITS)) 930 return -EINVAL; 931 932 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 933 if (!r) 934 return -ENOMEM; 935 936 spin_lock(&_minor_lock); 937 938 if (idr_find(&_minor_idr, minor)) { 939 r = -EBUSY; 940 goto out; 941 } 942 943 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 944 if (r) 945 goto out; 946 947 if (m != minor) { 948 idr_remove(&_minor_idr, m); 949 r = -EBUSY; 950 goto out; 951 } 952 953 out: 954 spin_unlock(&_minor_lock); 955 return r; 956 } 957 958 static int next_free_minor(struct mapped_device *md, int *minor) 959 { 960 int r, m; 961 962 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 963 if (!r) 964 return -ENOMEM; 965 966 spin_lock(&_minor_lock); 967 968 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 969 if (r) { 970 goto out; 971 } 972 973 if (m >= (1 << MINORBITS)) { 974 idr_remove(&_minor_idr, m); 975 r = -ENOSPC; 976 goto out; 977 } 978 979 *minor = m; 980 981 out: 982 spin_unlock(&_minor_lock); 983 return r; 984 } 985 986 static struct block_device_operations dm_blk_dops; 987 988 /* 989 * Allocate and initialise a blank device with a given minor. 990 */ 991 static struct mapped_device *alloc_dev(int minor) 992 { 993 int r; 994 struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL); 995 void *old_md; 996 997 if (!md) { 998 DMWARN("unable to allocate device, out of memory."); 999 return NULL; 1000 } 1001 1002 if (!try_module_get(THIS_MODULE)) 1003 goto bad_module_get; 1004 1005 /* get a minor number for the dev */ 1006 if (minor == DM_ANY_MINOR) 1007 r = next_free_minor(md, &minor); 1008 else 1009 r = specific_minor(md, minor); 1010 if (r < 0) 1011 goto bad_minor; 1012 1013 memset(md, 0, sizeof(*md)); 1014 init_rwsem(&md->io_lock); 1015 mutex_init(&md->suspend_lock); 1016 spin_lock_init(&md->pushback_lock); 1017 rwlock_init(&md->map_lock); 1018 atomic_set(&md->holders, 1); 1019 atomic_set(&md->open_count, 0); 1020 atomic_set(&md->event_nr, 0); 1021 atomic_set(&md->uevent_seq, 0); 1022 INIT_LIST_HEAD(&md->uevent_list); 1023 spin_lock_init(&md->uevent_lock); 1024 1025 md->queue = blk_alloc_queue(GFP_KERNEL); 1026 if (!md->queue) 1027 goto bad_queue; 1028 1029 md->queue->queuedata = md; 1030 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1031 md->queue->backing_dev_info.congested_data = md; 1032 blk_queue_make_request(md->queue, dm_request); 1033 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1034 md->queue->unplug_fn = dm_unplug_all; 1035 1036 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache); 1037 if (!md->io_pool) 1038 goto bad_io_pool; 1039 1040 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache); 1041 if (!md->tio_pool) 1042 goto bad_tio_pool; 1043 1044 md->bs = bioset_create(16, 16); 1045 if (!md->bs) 1046 goto bad_no_bioset; 1047 1048 md->disk = alloc_disk(1); 1049 if (!md->disk) 1050 goto bad_disk; 1051 1052 atomic_set(&md->pending, 0); 1053 init_waitqueue_head(&md->wait); 1054 init_waitqueue_head(&md->eventq); 1055 1056 md->disk->major = _major; 1057 md->disk->first_minor = minor; 1058 md->disk->fops = &dm_blk_dops; 1059 md->disk->queue = md->queue; 1060 md->disk->private_data = md; 1061 sprintf(md->disk->disk_name, "dm-%d", minor); 1062 add_disk(md->disk); 1063 format_dev_t(md->name, MKDEV(_major, minor)); 1064 1065 md->wq = create_singlethread_workqueue("kdmflush"); 1066 if (!md->wq) 1067 goto bad_thread; 1068 1069 /* Populate the mapping, nobody knows we exist yet */ 1070 spin_lock(&_minor_lock); 1071 old_md = idr_replace(&_minor_idr, md, minor); 1072 spin_unlock(&_minor_lock); 1073 1074 BUG_ON(old_md != MINOR_ALLOCED); 1075 1076 return md; 1077 1078 bad_thread: 1079 put_disk(md->disk); 1080 bad_disk: 1081 bioset_free(md->bs); 1082 bad_no_bioset: 1083 mempool_destroy(md->tio_pool); 1084 bad_tio_pool: 1085 mempool_destroy(md->io_pool); 1086 bad_io_pool: 1087 blk_cleanup_queue(md->queue); 1088 bad_queue: 1089 free_minor(minor); 1090 bad_minor: 1091 module_put(THIS_MODULE); 1092 bad_module_get: 1093 kfree(md); 1094 return NULL; 1095 } 1096 1097 static void unlock_fs(struct mapped_device *md); 1098 1099 static void free_dev(struct mapped_device *md) 1100 { 1101 int minor = md->disk->first_minor; 1102 1103 if (md->suspended_bdev) { 1104 unlock_fs(md); 1105 bdput(md->suspended_bdev); 1106 } 1107 destroy_workqueue(md->wq); 1108 mempool_destroy(md->tio_pool); 1109 mempool_destroy(md->io_pool); 1110 bioset_free(md->bs); 1111 del_gendisk(md->disk); 1112 free_minor(minor); 1113 1114 spin_lock(&_minor_lock); 1115 md->disk->private_data = NULL; 1116 spin_unlock(&_minor_lock); 1117 1118 put_disk(md->disk); 1119 blk_cleanup_queue(md->queue); 1120 module_put(THIS_MODULE); 1121 kfree(md); 1122 } 1123 1124 /* 1125 * Bind a table to the device. 1126 */ 1127 static void event_callback(void *context) 1128 { 1129 unsigned long flags; 1130 LIST_HEAD(uevents); 1131 struct mapped_device *md = (struct mapped_device *) context; 1132 1133 spin_lock_irqsave(&md->uevent_lock, flags); 1134 list_splice_init(&md->uevent_list, &uevents); 1135 spin_unlock_irqrestore(&md->uevent_lock, flags); 1136 1137 dm_send_uevents(&uevents, &md->disk->dev.kobj); 1138 1139 atomic_inc(&md->event_nr); 1140 wake_up(&md->eventq); 1141 } 1142 1143 static void __set_size(struct mapped_device *md, sector_t size) 1144 { 1145 set_capacity(md->disk, size); 1146 1147 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex); 1148 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1149 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex); 1150 } 1151 1152 static int __bind(struct mapped_device *md, struct dm_table *t) 1153 { 1154 struct request_queue *q = md->queue; 1155 sector_t size; 1156 1157 size = dm_table_get_size(t); 1158 1159 /* 1160 * Wipe any geometry if the size of the table changed. 1161 */ 1162 if (size != get_capacity(md->disk)) 1163 memset(&md->geometry, 0, sizeof(md->geometry)); 1164 1165 if (md->suspended_bdev) 1166 __set_size(md, size); 1167 if (size == 0) 1168 return 0; 1169 1170 dm_table_get(t); 1171 dm_table_event_callback(t, event_callback, md); 1172 1173 write_lock(&md->map_lock); 1174 md->map = t; 1175 dm_table_set_restrictions(t, q); 1176 write_unlock(&md->map_lock); 1177 1178 return 0; 1179 } 1180 1181 static void __unbind(struct mapped_device *md) 1182 { 1183 struct dm_table *map = md->map; 1184 1185 if (!map) 1186 return; 1187 1188 dm_table_event_callback(map, NULL, NULL); 1189 write_lock(&md->map_lock); 1190 md->map = NULL; 1191 write_unlock(&md->map_lock); 1192 dm_table_put(map); 1193 } 1194 1195 /* 1196 * Constructor for a new device. 1197 */ 1198 int dm_create(int minor, struct mapped_device **result) 1199 { 1200 struct mapped_device *md; 1201 1202 md = alloc_dev(minor); 1203 if (!md) 1204 return -ENXIO; 1205 1206 *result = md; 1207 return 0; 1208 } 1209 1210 static struct mapped_device *dm_find_md(dev_t dev) 1211 { 1212 struct mapped_device *md; 1213 unsigned minor = MINOR(dev); 1214 1215 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1216 return NULL; 1217 1218 spin_lock(&_minor_lock); 1219 1220 md = idr_find(&_minor_idr, minor); 1221 if (md && (md == MINOR_ALLOCED || 1222 (dm_disk(md)->first_minor != minor) || 1223 test_bit(DMF_FREEING, &md->flags))) { 1224 md = NULL; 1225 goto out; 1226 } 1227 1228 out: 1229 spin_unlock(&_minor_lock); 1230 1231 return md; 1232 } 1233 1234 struct mapped_device *dm_get_md(dev_t dev) 1235 { 1236 struct mapped_device *md = dm_find_md(dev); 1237 1238 if (md) 1239 dm_get(md); 1240 1241 return md; 1242 } 1243 1244 void *dm_get_mdptr(struct mapped_device *md) 1245 { 1246 return md->interface_ptr; 1247 } 1248 1249 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1250 { 1251 md->interface_ptr = ptr; 1252 } 1253 1254 void dm_get(struct mapped_device *md) 1255 { 1256 atomic_inc(&md->holders); 1257 } 1258 1259 const char *dm_device_name(struct mapped_device *md) 1260 { 1261 return md->name; 1262 } 1263 EXPORT_SYMBOL_GPL(dm_device_name); 1264 1265 void dm_put(struct mapped_device *md) 1266 { 1267 struct dm_table *map; 1268 1269 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1270 1271 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) { 1272 map = dm_get_table(md); 1273 idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor); 1274 set_bit(DMF_FREEING, &md->flags); 1275 spin_unlock(&_minor_lock); 1276 if (!dm_suspended(md)) { 1277 dm_table_presuspend_targets(map); 1278 dm_table_postsuspend_targets(map); 1279 } 1280 __unbind(md); 1281 dm_table_put(map); 1282 free_dev(md); 1283 } 1284 } 1285 EXPORT_SYMBOL_GPL(dm_put); 1286 1287 static int dm_wait_for_completion(struct mapped_device *md) 1288 { 1289 int r = 0; 1290 1291 while (1) { 1292 set_current_state(TASK_INTERRUPTIBLE); 1293 1294 smp_mb(); 1295 if (!atomic_read(&md->pending)) 1296 break; 1297 1298 if (signal_pending(current)) { 1299 r = -EINTR; 1300 break; 1301 } 1302 1303 io_schedule(); 1304 } 1305 set_current_state(TASK_RUNNING); 1306 1307 return r; 1308 } 1309 1310 /* 1311 * Process the deferred bios 1312 */ 1313 static void __flush_deferred_io(struct mapped_device *md) 1314 { 1315 struct bio *c; 1316 1317 while ((c = bio_list_pop(&md->deferred))) { 1318 if (__split_bio(md, c)) 1319 bio_io_error(c); 1320 } 1321 1322 clear_bit(DMF_BLOCK_IO, &md->flags); 1323 } 1324 1325 static void __merge_pushback_list(struct mapped_device *md) 1326 { 1327 unsigned long flags; 1328 1329 spin_lock_irqsave(&md->pushback_lock, flags); 1330 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 1331 bio_list_merge_head(&md->deferred, &md->pushback); 1332 bio_list_init(&md->pushback); 1333 spin_unlock_irqrestore(&md->pushback_lock, flags); 1334 } 1335 1336 static void dm_wq_work(struct work_struct *work) 1337 { 1338 struct dm_wq_req *req = container_of(work, struct dm_wq_req, work); 1339 struct mapped_device *md = req->md; 1340 1341 down_write(&md->io_lock); 1342 switch (req->type) { 1343 case DM_WQ_FLUSH_ALL: 1344 __merge_pushback_list(md); 1345 /* pass through */ 1346 case DM_WQ_FLUSH_DEFERRED: 1347 __flush_deferred_io(md); 1348 break; 1349 default: 1350 DMERR("dm_wq_work: unrecognised work type %d", req->type); 1351 BUG(); 1352 } 1353 up_write(&md->io_lock); 1354 } 1355 1356 static void dm_wq_queue(struct mapped_device *md, int type, void *context, 1357 struct dm_wq_req *req) 1358 { 1359 req->type = type; 1360 req->md = md; 1361 req->context = context; 1362 INIT_WORK(&req->work, dm_wq_work); 1363 queue_work(md->wq, &req->work); 1364 } 1365 1366 static void dm_queue_flush(struct mapped_device *md, int type, void *context) 1367 { 1368 struct dm_wq_req req; 1369 1370 dm_wq_queue(md, type, context, &req); 1371 flush_workqueue(md->wq); 1372 } 1373 1374 /* 1375 * Swap in a new table (destroying old one). 1376 */ 1377 int dm_swap_table(struct mapped_device *md, struct dm_table *table) 1378 { 1379 int r = -EINVAL; 1380 1381 mutex_lock(&md->suspend_lock); 1382 1383 /* device must be suspended */ 1384 if (!dm_suspended(md)) 1385 goto out; 1386 1387 /* without bdev, the device size cannot be changed */ 1388 if (!md->suspended_bdev) 1389 if (get_capacity(md->disk) != dm_table_get_size(table)) 1390 goto out; 1391 1392 __unbind(md); 1393 r = __bind(md, table); 1394 1395 out: 1396 mutex_unlock(&md->suspend_lock); 1397 return r; 1398 } 1399 1400 /* 1401 * Functions to lock and unlock any filesystem running on the 1402 * device. 1403 */ 1404 static int lock_fs(struct mapped_device *md) 1405 { 1406 int r; 1407 1408 WARN_ON(md->frozen_sb); 1409 1410 md->frozen_sb = freeze_bdev(md->suspended_bdev); 1411 if (IS_ERR(md->frozen_sb)) { 1412 r = PTR_ERR(md->frozen_sb); 1413 md->frozen_sb = NULL; 1414 return r; 1415 } 1416 1417 set_bit(DMF_FROZEN, &md->flags); 1418 1419 /* don't bdput right now, we don't want the bdev 1420 * to go away while it is locked. 1421 */ 1422 return 0; 1423 } 1424 1425 static void unlock_fs(struct mapped_device *md) 1426 { 1427 if (!test_bit(DMF_FROZEN, &md->flags)) 1428 return; 1429 1430 thaw_bdev(md->suspended_bdev, md->frozen_sb); 1431 md->frozen_sb = NULL; 1432 clear_bit(DMF_FROZEN, &md->flags); 1433 } 1434 1435 /* 1436 * We need to be able to change a mapping table under a mounted 1437 * filesystem. For example we might want to move some data in 1438 * the background. Before the table can be swapped with 1439 * dm_bind_table, dm_suspend must be called to flush any in 1440 * flight bios and ensure that any further io gets deferred. 1441 */ 1442 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 1443 { 1444 struct dm_table *map = NULL; 1445 DECLARE_WAITQUEUE(wait, current); 1446 int r = 0; 1447 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 1448 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 1449 1450 mutex_lock(&md->suspend_lock); 1451 1452 if (dm_suspended(md)) { 1453 r = -EINVAL; 1454 goto out_unlock; 1455 } 1456 1457 map = dm_get_table(md); 1458 1459 /* 1460 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 1461 * This flag is cleared before dm_suspend returns. 1462 */ 1463 if (noflush) 1464 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 1465 1466 /* This does not get reverted if there's an error later. */ 1467 dm_table_presuspend_targets(map); 1468 1469 /* bdget() can stall if the pending I/Os are not flushed */ 1470 if (!noflush) { 1471 md->suspended_bdev = bdget_disk(md->disk, 0); 1472 if (!md->suspended_bdev) { 1473 DMWARN("bdget failed in dm_suspend"); 1474 r = -ENOMEM; 1475 goto flush_and_out; 1476 } 1477 1478 /* 1479 * Flush I/O to the device. noflush supersedes do_lockfs, 1480 * because lock_fs() needs to flush I/Os. 1481 */ 1482 if (do_lockfs) { 1483 r = lock_fs(md); 1484 if (r) 1485 goto out; 1486 } 1487 } 1488 1489 /* 1490 * First we set the BLOCK_IO flag so no more ios will be mapped. 1491 */ 1492 down_write(&md->io_lock); 1493 set_bit(DMF_BLOCK_IO, &md->flags); 1494 1495 add_wait_queue(&md->wait, &wait); 1496 up_write(&md->io_lock); 1497 1498 /* unplug */ 1499 if (map) 1500 dm_table_unplug_all(map); 1501 1502 /* 1503 * Wait for the already-mapped ios to complete. 1504 */ 1505 r = dm_wait_for_completion(md); 1506 1507 down_write(&md->io_lock); 1508 remove_wait_queue(&md->wait, &wait); 1509 1510 if (noflush) 1511 __merge_pushback_list(md); 1512 up_write(&md->io_lock); 1513 1514 /* were we interrupted ? */ 1515 if (r < 0) { 1516 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL); 1517 1518 unlock_fs(md); 1519 goto out; /* pushback list is already flushed, so skip flush */ 1520 } 1521 1522 dm_table_postsuspend_targets(map); 1523 1524 set_bit(DMF_SUSPENDED, &md->flags); 1525 1526 flush_and_out: 1527 if (r && noflush) 1528 /* 1529 * Because there may be already I/Os in the pushback list, 1530 * flush them before return. 1531 */ 1532 dm_queue_flush(md, DM_WQ_FLUSH_ALL, NULL); 1533 1534 out: 1535 if (r && md->suspended_bdev) { 1536 bdput(md->suspended_bdev); 1537 md->suspended_bdev = NULL; 1538 } 1539 1540 dm_table_put(map); 1541 1542 out_unlock: 1543 mutex_unlock(&md->suspend_lock); 1544 return r; 1545 } 1546 1547 int dm_resume(struct mapped_device *md) 1548 { 1549 int r = -EINVAL; 1550 struct dm_table *map = NULL; 1551 1552 mutex_lock(&md->suspend_lock); 1553 if (!dm_suspended(md)) 1554 goto out; 1555 1556 map = dm_get_table(md); 1557 if (!map || !dm_table_get_size(map)) 1558 goto out; 1559 1560 r = dm_table_resume_targets(map); 1561 if (r) 1562 goto out; 1563 1564 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL); 1565 1566 unlock_fs(md); 1567 1568 if (md->suspended_bdev) { 1569 bdput(md->suspended_bdev); 1570 md->suspended_bdev = NULL; 1571 } 1572 1573 clear_bit(DMF_SUSPENDED, &md->flags); 1574 1575 dm_table_unplug_all(map); 1576 1577 dm_kobject_uevent(md); 1578 1579 r = 0; 1580 1581 out: 1582 dm_table_put(map); 1583 mutex_unlock(&md->suspend_lock); 1584 1585 return r; 1586 } 1587 1588 /*----------------------------------------------------------------- 1589 * Event notification. 1590 *---------------------------------------------------------------*/ 1591 void dm_kobject_uevent(struct mapped_device *md) 1592 { 1593 kobject_uevent(&md->disk->dev.kobj, KOBJ_CHANGE); 1594 } 1595 1596 uint32_t dm_next_uevent_seq(struct mapped_device *md) 1597 { 1598 return atomic_add_return(1, &md->uevent_seq); 1599 } 1600 1601 uint32_t dm_get_event_nr(struct mapped_device *md) 1602 { 1603 return atomic_read(&md->event_nr); 1604 } 1605 1606 int dm_wait_event(struct mapped_device *md, int event_nr) 1607 { 1608 return wait_event_interruptible(md->eventq, 1609 (event_nr != atomic_read(&md->event_nr))); 1610 } 1611 1612 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 1613 { 1614 unsigned long flags; 1615 1616 spin_lock_irqsave(&md->uevent_lock, flags); 1617 list_add(elist, &md->uevent_list); 1618 spin_unlock_irqrestore(&md->uevent_lock, flags); 1619 } 1620 1621 /* 1622 * The gendisk is only valid as long as you have a reference 1623 * count on 'md'. 1624 */ 1625 struct gendisk *dm_disk(struct mapped_device *md) 1626 { 1627 return md->disk; 1628 } 1629 1630 int dm_suspended(struct mapped_device *md) 1631 { 1632 return test_bit(DMF_SUSPENDED, &md->flags); 1633 } 1634 1635 int dm_noflush_suspending(struct dm_target *ti) 1636 { 1637 struct mapped_device *md = dm_table_get_md(ti->table); 1638 int r = __noflush_suspending(md); 1639 1640 dm_put(md); 1641 1642 return r; 1643 } 1644 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 1645 1646 static struct block_device_operations dm_blk_dops = { 1647 .open = dm_blk_open, 1648 .release = dm_blk_close, 1649 .ioctl = dm_blk_ioctl, 1650 .getgeo = dm_blk_getgeo, 1651 .owner = THIS_MODULE 1652 }; 1653 1654 EXPORT_SYMBOL(dm_get_mapinfo); 1655 1656 /* 1657 * module hooks 1658 */ 1659 module_init(dm_init); 1660 module_exit(dm_exit); 1661 1662 module_param(major, uint, 0); 1663 MODULE_PARM_DESC(major, "The major number of the device mapper"); 1664 MODULE_DESCRIPTION(DM_NAME " driver"); 1665 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 1666 MODULE_LICENSE("GPL"); 1667