xref: /openbmc/linux/drivers/md/dm.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set bs;
152 	struct bio_set io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
163 
164 /*
165  * Bio-based DM's mempools' reserved IOs set by the user.
166  */
167 #define RESERVED_BIO_BASED_IOS		16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169 
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 {
172 	int param = READ_ONCE(*module_param);
173 	int modified_param = 0;
174 	bool modified = true;
175 
176 	if (param < min)
177 		modified_param = min;
178 	else if (param > max)
179 		modified_param = max;
180 	else
181 		modified = false;
182 
183 	if (modified) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned __dm_get_module_param(unsigned *module_param,
192 			       unsigned def, unsigned max)
193 {
194 	unsigned param = READ_ONCE(*module_param);
195 	unsigned modified_param = 0;
196 
197 	if (!param)
198 		modified_param = def;
199 	else if (param > max)
200 		modified_param = max;
201 
202 	if (modified_param) {
203 		(void)cmpxchg(module_param, param, modified_param);
204 		param = modified_param;
205 	}
206 
207 	return param;
208 }
209 
210 unsigned dm_get_reserved_bio_based_ios(void)
211 {
212 	return __dm_get_module_param(&reserved_bio_based_ios,
213 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 }
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216 
217 static unsigned dm_get_numa_node(void)
218 {
219 	return __dm_get_module_param_int(&dm_numa_node,
220 					 DM_NUMA_NODE, num_online_nodes() - 1);
221 }
222 
223 static int __init local_init(void)
224 {
225 	int r = -ENOMEM;
226 
227 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 	if (!_rq_tio_cache)
229 		return r;
230 
231 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 				      __alignof__(struct request), 0, NULL);
233 	if (!_rq_cache)
234 		goto out_free_rq_tio_cache;
235 
236 	r = dm_uevent_init();
237 	if (r)
238 		goto out_free_rq_cache;
239 
240 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 	if (!deferred_remove_workqueue) {
242 		r = -ENOMEM;
243 		goto out_uevent_exit;
244 	}
245 
246 	_major = major;
247 	r = register_blkdev(_major, _name);
248 	if (r < 0)
249 		goto out_free_workqueue;
250 
251 	if (!_major)
252 		_major = r;
253 
254 	return 0;
255 
256 out_free_workqueue:
257 	destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 	dm_uevent_exit();
260 out_free_rq_cache:
261 	kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 	kmem_cache_destroy(_rq_tio_cache);
264 
265 	return r;
266 }
267 
268 static void local_exit(void)
269 {
270 	flush_scheduled_work();
271 	destroy_workqueue(deferred_remove_workqueue);
272 
273 	kmem_cache_destroy(_rq_cache);
274 	kmem_cache_destroy(_rq_tio_cache);
275 	unregister_blkdev(_major, _name);
276 	dm_uevent_exit();
277 
278 	_major = 0;
279 
280 	DMINFO("cleaned up");
281 }
282 
283 static int (*_inits[])(void) __initdata = {
284 	local_init,
285 	dm_target_init,
286 	dm_linear_init,
287 	dm_stripe_init,
288 	dm_io_init,
289 	dm_kcopyd_init,
290 	dm_interface_init,
291 	dm_statistics_init,
292 };
293 
294 static void (*_exits[])(void) = {
295 	local_exit,
296 	dm_target_exit,
297 	dm_linear_exit,
298 	dm_stripe_exit,
299 	dm_io_exit,
300 	dm_kcopyd_exit,
301 	dm_interface_exit,
302 	dm_statistics_exit,
303 };
304 
305 static int __init dm_init(void)
306 {
307 	const int count = ARRAY_SIZE(_inits);
308 
309 	int r, i;
310 
311 	for (i = 0; i < count; i++) {
312 		r = _inits[i]();
313 		if (r)
314 			goto bad;
315 	}
316 
317 	return 0;
318 
319       bad:
320 	while (i--)
321 		_exits[i]();
322 
323 	return r;
324 }
325 
326 static void __exit dm_exit(void)
327 {
328 	int i = ARRAY_SIZE(_exits);
329 
330 	while (i--)
331 		_exits[i]();
332 
333 	/*
334 	 * Should be empty by this point.
335 	 */
336 	idr_destroy(&_minor_idr);
337 }
338 
339 /*
340  * Block device functions
341  */
342 int dm_deleting_md(struct mapped_device *md)
343 {
344 	return test_bit(DMF_DELETING, &md->flags);
345 }
346 
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348 {
349 	struct mapped_device *md;
350 
351 	spin_lock(&_minor_lock);
352 
353 	md = bdev->bd_disk->private_data;
354 	if (!md)
355 		goto out;
356 
357 	if (test_bit(DMF_FREEING, &md->flags) ||
358 	    dm_deleting_md(md)) {
359 		md = NULL;
360 		goto out;
361 	}
362 
363 	dm_get(md);
364 	atomic_inc(&md->open_count);
365 out:
366 	spin_unlock(&_minor_lock);
367 
368 	return md ? 0 : -ENXIO;
369 }
370 
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372 {
373 	struct mapped_device *md;
374 
375 	spin_lock(&_minor_lock);
376 
377 	md = disk->private_data;
378 	if (WARN_ON(!md))
379 		goto out;
380 
381 	if (atomic_dec_and_test(&md->open_count) &&
382 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
384 
385 	dm_put(md);
386 out:
387 	spin_unlock(&_minor_lock);
388 }
389 
390 int dm_open_count(struct mapped_device *md)
391 {
392 	return atomic_read(&md->open_count);
393 }
394 
395 /*
396  * Guarantees nothing is using the device before it's deleted.
397  */
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399 {
400 	int r = 0;
401 
402 	spin_lock(&_minor_lock);
403 
404 	if (dm_open_count(md)) {
405 		r = -EBUSY;
406 		if (mark_deferred)
407 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 		r = -EEXIST;
410 	else
411 		set_bit(DMF_DELETING, &md->flags);
412 
413 	spin_unlock(&_minor_lock);
414 
415 	return r;
416 }
417 
418 int dm_cancel_deferred_remove(struct mapped_device *md)
419 {
420 	int r = 0;
421 
422 	spin_lock(&_minor_lock);
423 
424 	if (test_bit(DMF_DELETING, &md->flags))
425 		r = -EBUSY;
426 	else
427 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428 
429 	spin_unlock(&_minor_lock);
430 
431 	return r;
432 }
433 
434 static void do_deferred_remove(struct work_struct *w)
435 {
436 	dm_deferred_remove();
437 }
438 
439 sector_t dm_get_size(struct mapped_device *md)
440 {
441 	return get_capacity(md->disk);
442 }
443 
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
445 {
446 	return md->queue;
447 }
448 
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
450 {
451 	return &md->stats;
452 }
453 
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455 {
456 	struct mapped_device *md = bdev->bd_disk->private_data;
457 
458 	return dm_get_geometry(md, geo);
459 }
460 
461 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
462 			    struct block_device **bdev)
463 	__acquires(md->io_barrier)
464 {
465 	struct dm_target *tgt;
466 	struct dm_table *map;
467 	int r;
468 
469 retry:
470 	r = -ENOTTY;
471 	map = dm_get_live_table(md, srcu_idx);
472 	if (!map || !dm_table_get_size(map))
473 		return r;
474 
475 	/* We only support devices that have a single target */
476 	if (dm_table_get_num_targets(map) != 1)
477 		return r;
478 
479 	tgt = dm_table_get_target(map, 0);
480 	if (!tgt->type->prepare_ioctl)
481 		return r;
482 
483 	if (dm_suspended_md(md))
484 		return -EAGAIN;
485 
486 	r = tgt->type->prepare_ioctl(tgt, bdev);
487 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
488 		dm_put_live_table(md, *srcu_idx);
489 		msleep(10);
490 		goto retry;
491 	}
492 
493 	return r;
494 }
495 
496 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
497 	__releases(md->io_barrier)
498 {
499 	dm_put_live_table(md, srcu_idx);
500 }
501 
502 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
503 			unsigned int cmd, unsigned long arg)
504 {
505 	struct mapped_device *md = bdev->bd_disk->private_data;
506 	int r, srcu_idx;
507 
508 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
509 	if (r < 0)
510 		goto out;
511 
512 	if (r > 0) {
513 		/*
514 		 * Target determined this ioctl is being issued against a
515 		 * subset of the parent bdev; require extra privileges.
516 		 */
517 		if (!capable(CAP_SYS_RAWIO)) {
518 			DMWARN_LIMIT(
519 	"%s: sending ioctl %x to DM device without required privilege.",
520 				current->comm, cmd);
521 			r = -ENOIOCTLCMD;
522 			goto out;
523 		}
524 	}
525 
526 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
527 out:
528 	dm_unprepare_ioctl(md, srcu_idx);
529 	return r;
530 }
531 
532 static void start_io_acct(struct dm_io *io);
533 
534 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
535 {
536 	struct dm_io *io;
537 	struct dm_target_io *tio;
538 	struct bio *clone;
539 
540 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
541 	if (!clone)
542 		return NULL;
543 
544 	tio = container_of(clone, struct dm_target_io, clone);
545 	tio->inside_dm_io = true;
546 	tio->io = NULL;
547 
548 	io = container_of(tio, struct dm_io, tio);
549 	io->magic = DM_IO_MAGIC;
550 	io->status = 0;
551 	atomic_set(&io->io_count, 1);
552 	io->orig_bio = bio;
553 	io->md = md;
554 	spin_lock_init(&io->endio_lock);
555 
556 	start_io_acct(io);
557 
558 	return io;
559 }
560 
561 static void free_io(struct mapped_device *md, struct dm_io *io)
562 {
563 	bio_put(&io->tio.clone);
564 }
565 
566 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
567 				      unsigned target_bio_nr, gfp_t gfp_mask)
568 {
569 	struct dm_target_io *tio;
570 
571 	if (!ci->io->tio.io) {
572 		/* the dm_target_io embedded in ci->io is available */
573 		tio = &ci->io->tio;
574 	} else {
575 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
576 		if (!clone)
577 			return NULL;
578 
579 		tio = container_of(clone, struct dm_target_io, clone);
580 		tio->inside_dm_io = false;
581 	}
582 
583 	tio->magic = DM_TIO_MAGIC;
584 	tio->io = ci->io;
585 	tio->ti = ti;
586 	tio->target_bio_nr = target_bio_nr;
587 
588 	return tio;
589 }
590 
591 static void free_tio(struct dm_target_io *tio)
592 {
593 	if (tio->inside_dm_io)
594 		return;
595 	bio_put(&tio->clone);
596 }
597 
598 int md_in_flight(struct mapped_device *md)
599 {
600 	return atomic_read(&md->pending[READ]) +
601 	       atomic_read(&md->pending[WRITE]);
602 }
603 
604 static void start_io_acct(struct dm_io *io)
605 {
606 	struct mapped_device *md = io->md;
607 	struct bio *bio = io->orig_bio;
608 	int rw = bio_data_dir(bio);
609 
610 	io->start_time = jiffies;
611 
612 	generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
613 
614 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
615 		   atomic_inc_return(&md->pending[rw]));
616 
617 	if (unlikely(dm_stats_used(&md->stats)))
618 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
619 				    bio->bi_iter.bi_sector, bio_sectors(bio),
620 				    false, 0, &io->stats_aux);
621 }
622 
623 static void end_io_acct(struct dm_io *io)
624 {
625 	struct mapped_device *md = io->md;
626 	struct bio *bio = io->orig_bio;
627 	unsigned long duration = jiffies - io->start_time;
628 	int pending;
629 	int rw = bio_data_dir(bio);
630 
631 	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
632 
633 	if (unlikely(dm_stats_used(&md->stats)))
634 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
635 				    bio->bi_iter.bi_sector, bio_sectors(bio),
636 				    true, duration, &io->stats_aux);
637 
638 	/*
639 	 * After this is decremented the bio must not be touched if it is
640 	 * a flush.
641 	 */
642 	pending = atomic_dec_return(&md->pending[rw]);
643 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
644 	pending += atomic_read(&md->pending[rw^0x1]);
645 
646 	/* nudge anyone waiting on suspend queue */
647 	if (!pending)
648 		wake_up(&md->wait);
649 }
650 
651 /*
652  * Add the bio to the list of deferred io.
653  */
654 static void queue_io(struct mapped_device *md, struct bio *bio)
655 {
656 	unsigned long flags;
657 
658 	spin_lock_irqsave(&md->deferred_lock, flags);
659 	bio_list_add(&md->deferred, bio);
660 	spin_unlock_irqrestore(&md->deferred_lock, flags);
661 	queue_work(md->wq, &md->work);
662 }
663 
664 /*
665  * Everyone (including functions in this file), should use this
666  * function to access the md->map field, and make sure they call
667  * dm_put_live_table() when finished.
668  */
669 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
670 {
671 	*srcu_idx = srcu_read_lock(&md->io_barrier);
672 
673 	return srcu_dereference(md->map, &md->io_barrier);
674 }
675 
676 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
677 {
678 	srcu_read_unlock(&md->io_barrier, srcu_idx);
679 }
680 
681 void dm_sync_table(struct mapped_device *md)
682 {
683 	synchronize_srcu(&md->io_barrier);
684 	synchronize_rcu_expedited();
685 }
686 
687 /*
688  * A fast alternative to dm_get_live_table/dm_put_live_table.
689  * The caller must not block between these two functions.
690  */
691 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
692 {
693 	rcu_read_lock();
694 	return rcu_dereference(md->map);
695 }
696 
697 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
698 {
699 	rcu_read_unlock();
700 }
701 
702 static char *_dm_claim_ptr = "I belong to device-mapper";
703 
704 /*
705  * Open a table device so we can use it as a map destination.
706  */
707 static int open_table_device(struct table_device *td, dev_t dev,
708 			     struct mapped_device *md)
709 {
710 	struct block_device *bdev;
711 
712 	int r;
713 
714 	BUG_ON(td->dm_dev.bdev);
715 
716 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
717 	if (IS_ERR(bdev))
718 		return PTR_ERR(bdev);
719 
720 	r = bd_link_disk_holder(bdev, dm_disk(md));
721 	if (r) {
722 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
723 		return r;
724 	}
725 
726 	td->dm_dev.bdev = bdev;
727 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
728 	return 0;
729 }
730 
731 /*
732  * Close a table device that we've been using.
733  */
734 static void close_table_device(struct table_device *td, struct mapped_device *md)
735 {
736 	if (!td->dm_dev.bdev)
737 		return;
738 
739 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
740 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
741 	put_dax(td->dm_dev.dax_dev);
742 	td->dm_dev.bdev = NULL;
743 	td->dm_dev.dax_dev = NULL;
744 }
745 
746 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
747 					      fmode_t mode) {
748 	struct table_device *td;
749 
750 	list_for_each_entry(td, l, list)
751 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
752 			return td;
753 
754 	return NULL;
755 }
756 
757 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
758 			struct dm_dev **result) {
759 	int r;
760 	struct table_device *td;
761 
762 	mutex_lock(&md->table_devices_lock);
763 	td = find_table_device(&md->table_devices, dev, mode);
764 	if (!td) {
765 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
766 		if (!td) {
767 			mutex_unlock(&md->table_devices_lock);
768 			return -ENOMEM;
769 		}
770 
771 		td->dm_dev.mode = mode;
772 		td->dm_dev.bdev = NULL;
773 
774 		if ((r = open_table_device(td, dev, md))) {
775 			mutex_unlock(&md->table_devices_lock);
776 			kfree(td);
777 			return r;
778 		}
779 
780 		format_dev_t(td->dm_dev.name, dev);
781 
782 		refcount_set(&td->count, 1);
783 		list_add(&td->list, &md->table_devices);
784 	} else {
785 		refcount_inc(&td->count);
786 	}
787 	mutex_unlock(&md->table_devices_lock);
788 
789 	*result = &td->dm_dev;
790 	return 0;
791 }
792 EXPORT_SYMBOL_GPL(dm_get_table_device);
793 
794 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
795 {
796 	struct table_device *td = container_of(d, struct table_device, dm_dev);
797 
798 	mutex_lock(&md->table_devices_lock);
799 	if (refcount_dec_and_test(&td->count)) {
800 		close_table_device(td, md);
801 		list_del(&td->list);
802 		kfree(td);
803 	}
804 	mutex_unlock(&md->table_devices_lock);
805 }
806 EXPORT_SYMBOL(dm_put_table_device);
807 
808 static void free_table_devices(struct list_head *devices)
809 {
810 	struct list_head *tmp, *next;
811 
812 	list_for_each_safe(tmp, next, devices) {
813 		struct table_device *td = list_entry(tmp, struct table_device, list);
814 
815 		DMWARN("dm_destroy: %s still exists with %d references",
816 		       td->dm_dev.name, refcount_read(&td->count));
817 		kfree(td);
818 	}
819 }
820 
821 /*
822  * Get the geometry associated with a dm device
823  */
824 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
825 {
826 	*geo = md->geometry;
827 
828 	return 0;
829 }
830 
831 /*
832  * Set the geometry of a device.
833  */
834 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
835 {
836 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
837 
838 	if (geo->start > sz) {
839 		DMWARN("Start sector is beyond the geometry limits.");
840 		return -EINVAL;
841 	}
842 
843 	md->geometry = *geo;
844 
845 	return 0;
846 }
847 
848 static int __noflush_suspending(struct mapped_device *md)
849 {
850 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
851 }
852 
853 /*
854  * Decrements the number of outstanding ios that a bio has been
855  * cloned into, completing the original io if necc.
856  */
857 static void dec_pending(struct dm_io *io, blk_status_t error)
858 {
859 	unsigned long flags;
860 	blk_status_t io_error;
861 	struct bio *bio;
862 	struct mapped_device *md = io->md;
863 
864 	/* Push-back supersedes any I/O errors */
865 	if (unlikely(error)) {
866 		spin_lock_irqsave(&io->endio_lock, flags);
867 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
868 			io->status = error;
869 		spin_unlock_irqrestore(&io->endio_lock, flags);
870 	}
871 
872 	if (atomic_dec_and_test(&io->io_count)) {
873 		if (io->status == BLK_STS_DM_REQUEUE) {
874 			/*
875 			 * Target requested pushing back the I/O.
876 			 */
877 			spin_lock_irqsave(&md->deferred_lock, flags);
878 			if (__noflush_suspending(md))
879 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
880 				bio_list_add_head(&md->deferred, io->orig_bio);
881 			else
882 				/* noflush suspend was interrupted. */
883 				io->status = BLK_STS_IOERR;
884 			spin_unlock_irqrestore(&md->deferred_lock, flags);
885 		}
886 
887 		io_error = io->status;
888 		bio = io->orig_bio;
889 		end_io_acct(io);
890 		free_io(md, io);
891 
892 		if (io_error == BLK_STS_DM_REQUEUE)
893 			return;
894 
895 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
896 			/*
897 			 * Preflush done for flush with data, reissue
898 			 * without REQ_PREFLUSH.
899 			 */
900 			bio->bi_opf &= ~REQ_PREFLUSH;
901 			queue_io(md, bio);
902 		} else {
903 			/* done with normal IO or empty flush */
904 			if (io_error)
905 				bio->bi_status = io_error;
906 			bio_endio(bio);
907 		}
908 	}
909 }
910 
911 void disable_write_same(struct mapped_device *md)
912 {
913 	struct queue_limits *limits = dm_get_queue_limits(md);
914 
915 	/* device doesn't really support WRITE SAME, disable it */
916 	limits->max_write_same_sectors = 0;
917 }
918 
919 void disable_write_zeroes(struct mapped_device *md)
920 {
921 	struct queue_limits *limits = dm_get_queue_limits(md);
922 
923 	/* device doesn't really support WRITE ZEROES, disable it */
924 	limits->max_write_zeroes_sectors = 0;
925 }
926 
927 static void clone_endio(struct bio *bio)
928 {
929 	blk_status_t error = bio->bi_status;
930 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
931 	struct dm_io *io = tio->io;
932 	struct mapped_device *md = tio->io->md;
933 	dm_endio_fn endio = tio->ti->type->end_io;
934 
935 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
936 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
937 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
938 			disable_write_same(md);
939 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
940 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
941 			disable_write_zeroes(md);
942 	}
943 
944 	if (endio) {
945 		int r = endio(tio->ti, bio, &error);
946 		switch (r) {
947 		case DM_ENDIO_REQUEUE:
948 			error = BLK_STS_DM_REQUEUE;
949 			/*FALLTHRU*/
950 		case DM_ENDIO_DONE:
951 			break;
952 		case DM_ENDIO_INCOMPLETE:
953 			/* The target will handle the io */
954 			return;
955 		default:
956 			DMWARN("unimplemented target endio return value: %d", r);
957 			BUG();
958 		}
959 	}
960 
961 	free_tio(tio);
962 	dec_pending(io, error);
963 }
964 
965 /*
966  * Return maximum size of I/O possible at the supplied sector up to the current
967  * target boundary.
968  */
969 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
970 {
971 	sector_t target_offset = dm_target_offset(ti, sector);
972 
973 	return ti->len - target_offset;
974 }
975 
976 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
977 {
978 	sector_t len = max_io_len_target_boundary(sector, ti);
979 	sector_t offset, max_len;
980 
981 	/*
982 	 * Does the target need to split even further?
983 	 */
984 	if (ti->max_io_len) {
985 		offset = dm_target_offset(ti, sector);
986 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
987 			max_len = sector_div(offset, ti->max_io_len);
988 		else
989 			max_len = offset & (ti->max_io_len - 1);
990 		max_len = ti->max_io_len - max_len;
991 
992 		if (len > max_len)
993 			len = max_len;
994 	}
995 
996 	return len;
997 }
998 
999 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1000 {
1001 	if (len > UINT_MAX) {
1002 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1003 		      (unsigned long long)len, UINT_MAX);
1004 		ti->error = "Maximum size of target IO is too large";
1005 		return -EINVAL;
1006 	}
1007 
1008 	/*
1009 	 * BIO based queue uses its own splitting. When multipage bvecs
1010 	 * is switched on, size of the incoming bio may be too big to
1011 	 * be handled in some targets, such as crypt.
1012 	 *
1013 	 * When these targets are ready for the big bio, we can remove
1014 	 * the limit.
1015 	 */
1016 	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1017 
1018 	return 0;
1019 }
1020 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1021 
1022 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1023 						sector_t sector, int *srcu_idx)
1024 	__acquires(md->io_barrier)
1025 {
1026 	struct dm_table *map;
1027 	struct dm_target *ti;
1028 
1029 	map = dm_get_live_table(md, srcu_idx);
1030 	if (!map)
1031 		return NULL;
1032 
1033 	ti = dm_table_find_target(map, sector);
1034 	if (!dm_target_is_valid(ti))
1035 		return NULL;
1036 
1037 	return ti;
1038 }
1039 
1040 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1041 				 long nr_pages, void **kaddr, pfn_t *pfn)
1042 {
1043 	struct mapped_device *md = dax_get_private(dax_dev);
1044 	sector_t sector = pgoff * PAGE_SECTORS;
1045 	struct dm_target *ti;
1046 	long len, ret = -EIO;
1047 	int srcu_idx;
1048 
1049 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1050 
1051 	if (!ti)
1052 		goto out;
1053 	if (!ti->type->direct_access)
1054 		goto out;
1055 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1056 	if (len < 1)
1057 		goto out;
1058 	nr_pages = min(len, nr_pages);
1059 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1060 
1061  out:
1062 	dm_put_live_table(md, srcu_idx);
1063 
1064 	return ret;
1065 }
1066 
1067 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1068 				    void *addr, size_t bytes, struct iov_iter *i)
1069 {
1070 	struct mapped_device *md = dax_get_private(dax_dev);
1071 	sector_t sector = pgoff * PAGE_SECTORS;
1072 	struct dm_target *ti;
1073 	long ret = 0;
1074 	int srcu_idx;
1075 
1076 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1077 
1078 	if (!ti)
1079 		goto out;
1080 	if (!ti->type->dax_copy_from_iter) {
1081 		ret = copy_from_iter(addr, bytes, i);
1082 		goto out;
1083 	}
1084 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1085  out:
1086 	dm_put_live_table(md, srcu_idx);
1087 
1088 	return ret;
1089 }
1090 
1091 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1092 		void *addr, size_t bytes, struct iov_iter *i)
1093 {
1094 	struct mapped_device *md = dax_get_private(dax_dev);
1095 	sector_t sector = pgoff * PAGE_SECTORS;
1096 	struct dm_target *ti;
1097 	long ret = 0;
1098 	int srcu_idx;
1099 
1100 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1101 
1102 	if (!ti)
1103 		goto out;
1104 	if (!ti->type->dax_copy_to_iter) {
1105 		ret = copy_to_iter(addr, bytes, i);
1106 		goto out;
1107 	}
1108 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1109  out:
1110 	dm_put_live_table(md, srcu_idx);
1111 
1112 	return ret;
1113 }
1114 
1115 /*
1116  * A target may call dm_accept_partial_bio only from the map routine.  It is
1117  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1118  *
1119  * dm_accept_partial_bio informs the dm that the target only wants to process
1120  * additional n_sectors sectors of the bio and the rest of the data should be
1121  * sent in a next bio.
1122  *
1123  * A diagram that explains the arithmetics:
1124  * +--------------------+---------------+-------+
1125  * |         1          |       2       |   3   |
1126  * +--------------------+---------------+-------+
1127  *
1128  * <-------------- *tio->len_ptr --------------->
1129  *                      <------- bi_size ------->
1130  *                      <-- n_sectors -->
1131  *
1132  * Region 1 was already iterated over with bio_advance or similar function.
1133  *	(it may be empty if the target doesn't use bio_advance)
1134  * Region 2 is the remaining bio size that the target wants to process.
1135  *	(it may be empty if region 1 is non-empty, although there is no reason
1136  *	 to make it empty)
1137  * The target requires that region 3 is to be sent in the next bio.
1138  *
1139  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1140  * the partially processed part (the sum of regions 1+2) must be the same for all
1141  * copies of the bio.
1142  */
1143 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1144 {
1145 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1146 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1147 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1148 	BUG_ON(bi_size > *tio->len_ptr);
1149 	BUG_ON(n_sectors > bi_size);
1150 	*tio->len_ptr -= bi_size - n_sectors;
1151 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1152 }
1153 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1154 
1155 /*
1156  * The zone descriptors obtained with a zone report indicate
1157  * zone positions within the target device. The zone descriptors
1158  * must be remapped to match their position within the dm device.
1159  * A target may call dm_remap_zone_report after completion of a
1160  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1161  * from the target device mapping to the dm device.
1162  */
1163 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1164 {
1165 #ifdef CONFIG_BLK_DEV_ZONED
1166 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1167 	struct bio *report_bio = tio->io->orig_bio;
1168 	struct blk_zone_report_hdr *hdr = NULL;
1169 	struct blk_zone *zone;
1170 	unsigned int nr_rep = 0;
1171 	unsigned int ofst;
1172 	struct bio_vec bvec;
1173 	struct bvec_iter iter;
1174 	void *addr;
1175 
1176 	if (bio->bi_status)
1177 		return;
1178 
1179 	/*
1180 	 * Remap the start sector of the reported zones. For sequential zones,
1181 	 * also remap the write pointer position.
1182 	 */
1183 	bio_for_each_segment(bvec, report_bio, iter) {
1184 		addr = kmap_atomic(bvec.bv_page);
1185 
1186 		/* Remember the report header in the first page */
1187 		if (!hdr) {
1188 			hdr = addr;
1189 			ofst = sizeof(struct blk_zone_report_hdr);
1190 		} else
1191 			ofst = 0;
1192 
1193 		/* Set zones start sector */
1194 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1195 			zone = addr + ofst;
1196 			if (zone->start >= start + ti->len) {
1197 				hdr->nr_zones = 0;
1198 				break;
1199 			}
1200 			zone->start = zone->start + ti->begin - start;
1201 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1202 				if (zone->cond == BLK_ZONE_COND_FULL)
1203 					zone->wp = zone->start + zone->len;
1204 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1205 					zone->wp = zone->start;
1206 				else
1207 					zone->wp = zone->wp + ti->begin - start;
1208 			}
1209 			ofst += sizeof(struct blk_zone);
1210 			hdr->nr_zones--;
1211 			nr_rep++;
1212 		}
1213 
1214 		if (addr != hdr)
1215 			kunmap_atomic(addr);
1216 
1217 		if (!hdr->nr_zones)
1218 			break;
1219 	}
1220 
1221 	if (hdr) {
1222 		hdr->nr_zones = nr_rep;
1223 		kunmap_atomic(hdr);
1224 	}
1225 
1226 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1227 
1228 #else /* !CONFIG_BLK_DEV_ZONED */
1229 	bio->bi_status = BLK_STS_NOTSUPP;
1230 #endif
1231 }
1232 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1233 
1234 static blk_qc_t __map_bio(struct dm_target_io *tio)
1235 {
1236 	int r;
1237 	sector_t sector;
1238 	struct bio *clone = &tio->clone;
1239 	struct dm_io *io = tio->io;
1240 	struct mapped_device *md = io->md;
1241 	struct dm_target *ti = tio->ti;
1242 	blk_qc_t ret = BLK_QC_T_NONE;
1243 
1244 	clone->bi_end_io = clone_endio;
1245 
1246 	/*
1247 	 * Map the clone.  If r == 0 we don't need to do
1248 	 * anything, the target has assumed ownership of
1249 	 * this io.
1250 	 */
1251 	atomic_inc(&io->io_count);
1252 	sector = clone->bi_iter.bi_sector;
1253 
1254 	r = ti->type->map(ti, clone);
1255 	switch (r) {
1256 	case DM_MAPIO_SUBMITTED:
1257 		break;
1258 	case DM_MAPIO_REMAPPED:
1259 		/* the bio has been remapped so dispatch it */
1260 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1261 				      bio_dev(io->orig_bio), sector);
1262 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1263 			ret = direct_make_request(clone);
1264 		else
1265 			ret = generic_make_request(clone);
1266 		break;
1267 	case DM_MAPIO_KILL:
1268 		free_tio(tio);
1269 		dec_pending(io, BLK_STS_IOERR);
1270 		break;
1271 	case DM_MAPIO_REQUEUE:
1272 		free_tio(tio);
1273 		dec_pending(io, BLK_STS_DM_REQUEUE);
1274 		break;
1275 	default:
1276 		DMWARN("unimplemented target map return value: %d", r);
1277 		BUG();
1278 	}
1279 
1280 	return ret;
1281 }
1282 
1283 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1284 {
1285 	bio->bi_iter.bi_sector = sector;
1286 	bio->bi_iter.bi_size = to_bytes(len);
1287 }
1288 
1289 /*
1290  * Creates a bio that consists of range of complete bvecs.
1291  */
1292 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1293 		     sector_t sector, unsigned len)
1294 {
1295 	struct bio *clone = &tio->clone;
1296 
1297 	__bio_clone_fast(clone, bio);
1298 
1299 	if (unlikely(bio_integrity(bio) != NULL)) {
1300 		int r;
1301 
1302 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1303 			     !dm_target_passes_integrity(tio->ti->type))) {
1304 			DMWARN("%s: the target %s doesn't support integrity data.",
1305 				dm_device_name(tio->io->md),
1306 				tio->ti->type->name);
1307 			return -EIO;
1308 		}
1309 
1310 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1311 		if (r < 0)
1312 			return r;
1313 	}
1314 
1315 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1316 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1317 	clone->bi_iter.bi_size = to_bytes(len);
1318 
1319 	if (unlikely(bio_integrity(bio) != NULL))
1320 		bio_integrity_trim(clone);
1321 
1322 	return 0;
1323 }
1324 
1325 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1326 				struct dm_target *ti, unsigned num_bios)
1327 {
1328 	struct dm_target_io *tio;
1329 	int try;
1330 
1331 	if (!num_bios)
1332 		return;
1333 
1334 	if (num_bios == 1) {
1335 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1336 		bio_list_add(blist, &tio->clone);
1337 		return;
1338 	}
1339 
1340 	for (try = 0; try < 2; try++) {
1341 		int bio_nr;
1342 		struct bio *bio;
1343 
1344 		if (try)
1345 			mutex_lock(&ci->io->md->table_devices_lock);
1346 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1347 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1348 			if (!tio)
1349 				break;
1350 
1351 			bio_list_add(blist, &tio->clone);
1352 		}
1353 		if (try)
1354 			mutex_unlock(&ci->io->md->table_devices_lock);
1355 		if (bio_nr == num_bios)
1356 			return;
1357 
1358 		while ((bio = bio_list_pop(blist))) {
1359 			tio = container_of(bio, struct dm_target_io, clone);
1360 			free_tio(tio);
1361 		}
1362 	}
1363 }
1364 
1365 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1366 					   struct dm_target_io *tio, unsigned *len)
1367 {
1368 	struct bio *clone = &tio->clone;
1369 
1370 	tio->len_ptr = len;
1371 
1372 	__bio_clone_fast(clone, ci->bio);
1373 	if (len)
1374 		bio_setup_sector(clone, ci->sector, *len);
1375 
1376 	return __map_bio(tio);
1377 }
1378 
1379 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1380 				  unsigned num_bios, unsigned *len)
1381 {
1382 	struct bio_list blist = BIO_EMPTY_LIST;
1383 	struct bio *bio;
1384 	struct dm_target_io *tio;
1385 
1386 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1387 
1388 	while ((bio = bio_list_pop(&blist))) {
1389 		tio = container_of(bio, struct dm_target_io, clone);
1390 		(void) __clone_and_map_simple_bio(ci, tio, len);
1391 	}
1392 }
1393 
1394 static int __send_empty_flush(struct clone_info *ci)
1395 {
1396 	unsigned target_nr = 0;
1397 	struct dm_target *ti;
1398 
1399 	BUG_ON(bio_has_data(ci->bio));
1400 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1401 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1402 
1403 	return 0;
1404 }
1405 
1406 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1407 				    sector_t sector, unsigned *len)
1408 {
1409 	struct bio *bio = ci->bio;
1410 	struct dm_target_io *tio;
1411 	int r;
1412 
1413 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1414 	tio->len_ptr = len;
1415 	r = clone_bio(tio, bio, sector, *len);
1416 	if (r < 0) {
1417 		free_tio(tio);
1418 		return r;
1419 	}
1420 	(void) __map_bio(tio);
1421 
1422 	return 0;
1423 }
1424 
1425 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1426 
1427 static unsigned get_num_discard_bios(struct dm_target *ti)
1428 {
1429 	return ti->num_discard_bios;
1430 }
1431 
1432 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1433 {
1434 	return ti->num_secure_erase_bios;
1435 }
1436 
1437 static unsigned get_num_write_same_bios(struct dm_target *ti)
1438 {
1439 	return ti->num_write_same_bios;
1440 }
1441 
1442 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1443 {
1444 	return ti->num_write_zeroes_bios;
1445 }
1446 
1447 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1448 
1449 static bool is_split_required_for_discard(struct dm_target *ti)
1450 {
1451 	return ti->split_discard_bios;
1452 }
1453 
1454 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1455 				       get_num_bios_fn get_num_bios,
1456 				       is_split_required_fn is_split_required)
1457 {
1458 	unsigned len;
1459 	unsigned num_bios;
1460 
1461 	/*
1462 	 * Even though the device advertised support for this type of
1463 	 * request, that does not mean every target supports it, and
1464 	 * reconfiguration might also have changed that since the
1465 	 * check was performed.
1466 	 */
1467 	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1468 	if (!num_bios)
1469 		return -EOPNOTSUPP;
1470 
1471 	if (is_split_required && !is_split_required(ti))
1472 		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1473 	else
1474 		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1475 
1476 	__send_duplicate_bios(ci, ti, num_bios, &len);
1477 
1478 	ci->sector += len;
1479 	ci->sector_count -= len;
1480 
1481 	return 0;
1482 }
1483 
1484 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1485 {
1486 	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1487 					   is_split_required_for_discard);
1488 }
1489 
1490 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1491 {
1492 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1493 }
1494 
1495 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1496 {
1497 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1498 }
1499 
1500 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1501 {
1502 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1503 }
1504 
1505 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1506 				  int *result)
1507 {
1508 	struct bio *bio = ci->bio;
1509 
1510 	if (bio_op(bio) == REQ_OP_DISCARD)
1511 		*result = __send_discard(ci, ti);
1512 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1513 		*result = __send_secure_erase(ci, ti);
1514 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1515 		*result = __send_write_same(ci, ti);
1516 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1517 		*result = __send_write_zeroes(ci, ti);
1518 	else
1519 		return false;
1520 
1521 	return true;
1522 }
1523 
1524 /*
1525  * Select the correct strategy for processing a non-flush bio.
1526  */
1527 static int __split_and_process_non_flush(struct clone_info *ci)
1528 {
1529 	struct bio *bio = ci->bio;
1530 	struct dm_target *ti;
1531 	unsigned len;
1532 	int r;
1533 
1534 	ti = dm_table_find_target(ci->map, ci->sector);
1535 	if (!dm_target_is_valid(ti))
1536 		return -EIO;
1537 
1538 	if (unlikely(__process_abnormal_io(ci, ti, &r)))
1539 		return r;
1540 
1541 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1542 		len = ci->sector_count;
1543 	else
1544 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1545 			    ci->sector_count);
1546 
1547 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1548 	if (r < 0)
1549 		return r;
1550 
1551 	ci->sector += len;
1552 	ci->sector_count -= len;
1553 
1554 	return 0;
1555 }
1556 
1557 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1558 			    struct dm_table *map, struct bio *bio)
1559 {
1560 	ci->map = map;
1561 	ci->io = alloc_io(md, bio);
1562 	ci->sector = bio->bi_iter.bi_sector;
1563 }
1564 
1565 /*
1566  * Entry point to split a bio into clones and submit them to the targets.
1567  */
1568 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1569 					struct dm_table *map, struct bio *bio)
1570 {
1571 	struct clone_info ci;
1572 	blk_qc_t ret = BLK_QC_T_NONE;
1573 	int error = 0;
1574 
1575 	if (unlikely(!map)) {
1576 		bio_io_error(bio);
1577 		return ret;
1578 	}
1579 
1580 	init_clone_info(&ci, md, map, bio);
1581 
1582 	if (bio->bi_opf & REQ_PREFLUSH) {
1583 		ci.bio = &ci.io->md->flush_bio;
1584 		ci.sector_count = 0;
1585 		error = __send_empty_flush(&ci);
1586 		/* dec_pending submits any data associated with flush */
1587 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1588 		ci.bio = bio;
1589 		ci.sector_count = 0;
1590 		error = __split_and_process_non_flush(&ci);
1591 	} else {
1592 		ci.bio = bio;
1593 		ci.sector_count = bio_sectors(bio);
1594 		while (ci.sector_count && !error) {
1595 			error = __split_and_process_non_flush(&ci);
1596 			if (current->bio_list && ci.sector_count && !error) {
1597 				/*
1598 				 * Remainder must be passed to generic_make_request()
1599 				 * so that it gets handled *after* bios already submitted
1600 				 * have been completely processed.
1601 				 * We take a clone of the original to store in
1602 				 * ci.io->orig_bio to be used by end_io_acct() and
1603 				 * for dec_pending to use for completion handling.
1604 				 * As this path is not used for REQ_OP_ZONE_REPORT,
1605 				 * the usage of io->orig_bio in dm_remap_zone_report()
1606 				 * won't be affected by this reassignment.
1607 				 */
1608 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1609 							  GFP_NOIO, &md->queue->bio_split);
1610 				ci.io->orig_bio = b;
1611 				bio_chain(b, bio);
1612 				ret = generic_make_request(bio);
1613 				break;
1614 			}
1615 		}
1616 	}
1617 
1618 	/* drop the extra reference count */
1619 	dec_pending(ci.io, errno_to_blk_status(error));
1620 	return ret;
1621 }
1622 
1623 /*
1624  * Optimized variant of __split_and_process_bio that leverages the
1625  * fact that targets that use it do _not_ have a need to split bios.
1626  */
1627 static blk_qc_t __process_bio(struct mapped_device *md,
1628 			      struct dm_table *map, struct bio *bio)
1629 {
1630 	struct clone_info ci;
1631 	blk_qc_t ret = BLK_QC_T_NONE;
1632 	int error = 0;
1633 
1634 	if (unlikely(!map)) {
1635 		bio_io_error(bio);
1636 		return ret;
1637 	}
1638 
1639 	init_clone_info(&ci, md, map, bio);
1640 
1641 	if (bio->bi_opf & REQ_PREFLUSH) {
1642 		ci.bio = &ci.io->md->flush_bio;
1643 		ci.sector_count = 0;
1644 		error = __send_empty_flush(&ci);
1645 		/* dec_pending submits any data associated with flush */
1646 	} else {
1647 		struct dm_target *ti = md->immutable_target;
1648 		struct dm_target_io *tio;
1649 
1650 		/*
1651 		 * Defend against IO still getting in during teardown
1652 		 * - as was seen for a time with nvme-fcloop
1653 		 */
1654 		if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1655 			error = -EIO;
1656 			goto out;
1657 		}
1658 
1659 		ci.bio = bio;
1660 		ci.sector_count = bio_sectors(bio);
1661 		if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1662 			goto out;
1663 
1664 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1665 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1666 	}
1667 out:
1668 	/* drop the extra reference count */
1669 	dec_pending(ci.io, errno_to_blk_status(error));
1670 	return ret;
1671 }
1672 
1673 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1674 
1675 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1676 				  process_bio_fn process_bio)
1677 {
1678 	struct mapped_device *md = q->queuedata;
1679 	blk_qc_t ret = BLK_QC_T_NONE;
1680 	int srcu_idx;
1681 	struct dm_table *map;
1682 
1683 	map = dm_get_live_table(md, &srcu_idx);
1684 
1685 	/* if we're suspended, we have to queue this io for later */
1686 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1687 		dm_put_live_table(md, srcu_idx);
1688 
1689 		if (!(bio->bi_opf & REQ_RAHEAD))
1690 			queue_io(md, bio);
1691 		else
1692 			bio_io_error(bio);
1693 		return ret;
1694 	}
1695 
1696 	ret = process_bio(md, map, bio);
1697 
1698 	dm_put_live_table(md, srcu_idx);
1699 	return ret;
1700 }
1701 
1702 /*
1703  * The request function that remaps the bio to one target and
1704  * splits off any remainder.
1705  */
1706 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1707 {
1708 	return __dm_make_request(q, bio, __split_and_process_bio);
1709 }
1710 
1711 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1712 {
1713 	return __dm_make_request(q, bio, __process_bio);
1714 }
1715 
1716 static int dm_any_congested(void *congested_data, int bdi_bits)
1717 {
1718 	int r = bdi_bits;
1719 	struct mapped_device *md = congested_data;
1720 	struct dm_table *map;
1721 
1722 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1723 		if (dm_request_based(md)) {
1724 			/*
1725 			 * With request-based DM we only need to check the
1726 			 * top-level queue for congestion.
1727 			 */
1728 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1729 		} else {
1730 			map = dm_get_live_table_fast(md);
1731 			if (map)
1732 				r = dm_table_any_congested(map, bdi_bits);
1733 			dm_put_live_table_fast(md);
1734 		}
1735 	}
1736 
1737 	return r;
1738 }
1739 
1740 /*-----------------------------------------------------------------
1741  * An IDR is used to keep track of allocated minor numbers.
1742  *---------------------------------------------------------------*/
1743 static void free_minor(int minor)
1744 {
1745 	spin_lock(&_minor_lock);
1746 	idr_remove(&_minor_idr, minor);
1747 	spin_unlock(&_minor_lock);
1748 }
1749 
1750 /*
1751  * See if the device with a specific minor # is free.
1752  */
1753 static int specific_minor(int minor)
1754 {
1755 	int r;
1756 
1757 	if (minor >= (1 << MINORBITS))
1758 		return -EINVAL;
1759 
1760 	idr_preload(GFP_KERNEL);
1761 	spin_lock(&_minor_lock);
1762 
1763 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1764 
1765 	spin_unlock(&_minor_lock);
1766 	idr_preload_end();
1767 	if (r < 0)
1768 		return r == -ENOSPC ? -EBUSY : r;
1769 	return 0;
1770 }
1771 
1772 static int next_free_minor(int *minor)
1773 {
1774 	int r;
1775 
1776 	idr_preload(GFP_KERNEL);
1777 	spin_lock(&_minor_lock);
1778 
1779 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1780 
1781 	spin_unlock(&_minor_lock);
1782 	idr_preload_end();
1783 	if (r < 0)
1784 		return r;
1785 	*minor = r;
1786 	return 0;
1787 }
1788 
1789 static const struct block_device_operations dm_blk_dops;
1790 static const struct dax_operations dm_dax_ops;
1791 
1792 static void dm_wq_work(struct work_struct *work);
1793 
1794 static void dm_init_normal_md_queue(struct mapped_device *md)
1795 {
1796 	md->use_blk_mq = false;
1797 
1798 	/*
1799 	 * Initialize aspects of queue that aren't relevant for blk-mq
1800 	 */
1801 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1802 }
1803 
1804 static void cleanup_mapped_device(struct mapped_device *md)
1805 {
1806 	if (md->wq)
1807 		destroy_workqueue(md->wq);
1808 	if (md->kworker_task)
1809 		kthread_stop(md->kworker_task);
1810 	bioset_exit(&md->bs);
1811 	bioset_exit(&md->io_bs);
1812 
1813 	if (md->dax_dev) {
1814 		kill_dax(md->dax_dev);
1815 		put_dax(md->dax_dev);
1816 		md->dax_dev = NULL;
1817 	}
1818 
1819 	if (md->disk) {
1820 		spin_lock(&_minor_lock);
1821 		md->disk->private_data = NULL;
1822 		spin_unlock(&_minor_lock);
1823 		del_gendisk(md->disk);
1824 		put_disk(md->disk);
1825 	}
1826 
1827 	if (md->queue)
1828 		blk_cleanup_queue(md->queue);
1829 
1830 	cleanup_srcu_struct(&md->io_barrier);
1831 
1832 	if (md->bdev) {
1833 		bdput(md->bdev);
1834 		md->bdev = NULL;
1835 	}
1836 
1837 	mutex_destroy(&md->suspend_lock);
1838 	mutex_destroy(&md->type_lock);
1839 	mutex_destroy(&md->table_devices_lock);
1840 
1841 	dm_mq_cleanup_mapped_device(md);
1842 }
1843 
1844 /*
1845  * Allocate and initialise a blank device with a given minor.
1846  */
1847 static struct mapped_device *alloc_dev(int minor)
1848 {
1849 	int r, numa_node_id = dm_get_numa_node();
1850 	struct dax_device *dax_dev = NULL;
1851 	struct mapped_device *md;
1852 	void *old_md;
1853 
1854 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1855 	if (!md) {
1856 		DMWARN("unable to allocate device, out of memory.");
1857 		return NULL;
1858 	}
1859 
1860 	if (!try_module_get(THIS_MODULE))
1861 		goto bad_module_get;
1862 
1863 	/* get a minor number for the dev */
1864 	if (minor == DM_ANY_MINOR)
1865 		r = next_free_minor(&minor);
1866 	else
1867 		r = specific_minor(minor);
1868 	if (r < 0)
1869 		goto bad_minor;
1870 
1871 	r = init_srcu_struct(&md->io_barrier);
1872 	if (r < 0)
1873 		goto bad_io_barrier;
1874 
1875 	md->numa_node_id = numa_node_id;
1876 	md->use_blk_mq = dm_use_blk_mq_default();
1877 	md->init_tio_pdu = false;
1878 	md->type = DM_TYPE_NONE;
1879 	mutex_init(&md->suspend_lock);
1880 	mutex_init(&md->type_lock);
1881 	mutex_init(&md->table_devices_lock);
1882 	spin_lock_init(&md->deferred_lock);
1883 	atomic_set(&md->holders, 1);
1884 	atomic_set(&md->open_count, 0);
1885 	atomic_set(&md->event_nr, 0);
1886 	atomic_set(&md->uevent_seq, 0);
1887 	INIT_LIST_HEAD(&md->uevent_list);
1888 	INIT_LIST_HEAD(&md->table_devices);
1889 	spin_lock_init(&md->uevent_lock);
1890 
1891 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1892 	if (!md->queue)
1893 		goto bad;
1894 	md->queue->queuedata = md;
1895 	md->queue->backing_dev_info->congested_data = md;
1896 
1897 	md->disk = alloc_disk_node(1, md->numa_node_id);
1898 	if (!md->disk)
1899 		goto bad;
1900 
1901 	atomic_set(&md->pending[0], 0);
1902 	atomic_set(&md->pending[1], 0);
1903 	init_waitqueue_head(&md->wait);
1904 	INIT_WORK(&md->work, dm_wq_work);
1905 	init_waitqueue_head(&md->eventq);
1906 	init_completion(&md->kobj_holder.completion);
1907 	md->kworker_task = NULL;
1908 
1909 	md->disk->major = _major;
1910 	md->disk->first_minor = minor;
1911 	md->disk->fops = &dm_blk_dops;
1912 	md->disk->queue = md->queue;
1913 	md->disk->private_data = md;
1914 	sprintf(md->disk->disk_name, "dm-%d", minor);
1915 
1916 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1917 		dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1918 		if (!dax_dev)
1919 			goto bad;
1920 	}
1921 	md->dax_dev = dax_dev;
1922 
1923 	add_disk_no_queue_reg(md->disk);
1924 	format_dev_t(md->name, MKDEV(_major, minor));
1925 
1926 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1927 	if (!md->wq)
1928 		goto bad;
1929 
1930 	md->bdev = bdget_disk(md->disk, 0);
1931 	if (!md->bdev)
1932 		goto bad;
1933 
1934 	bio_init(&md->flush_bio, NULL, 0);
1935 	bio_set_dev(&md->flush_bio, md->bdev);
1936 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1937 
1938 	dm_stats_init(&md->stats);
1939 
1940 	/* Populate the mapping, nobody knows we exist yet */
1941 	spin_lock(&_minor_lock);
1942 	old_md = idr_replace(&_minor_idr, md, minor);
1943 	spin_unlock(&_minor_lock);
1944 
1945 	BUG_ON(old_md != MINOR_ALLOCED);
1946 
1947 	return md;
1948 
1949 bad:
1950 	cleanup_mapped_device(md);
1951 bad_io_barrier:
1952 	free_minor(minor);
1953 bad_minor:
1954 	module_put(THIS_MODULE);
1955 bad_module_get:
1956 	kvfree(md);
1957 	return NULL;
1958 }
1959 
1960 static void unlock_fs(struct mapped_device *md);
1961 
1962 static void free_dev(struct mapped_device *md)
1963 {
1964 	int minor = MINOR(disk_devt(md->disk));
1965 
1966 	unlock_fs(md);
1967 
1968 	cleanup_mapped_device(md);
1969 
1970 	free_table_devices(&md->table_devices);
1971 	dm_stats_cleanup(&md->stats);
1972 	free_minor(minor);
1973 
1974 	module_put(THIS_MODULE);
1975 	kvfree(md);
1976 }
1977 
1978 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1979 {
1980 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1981 	int ret = 0;
1982 
1983 	if (dm_table_bio_based(t)) {
1984 		/*
1985 		 * The md may already have mempools that need changing.
1986 		 * If so, reload bioset because front_pad may have changed
1987 		 * because a different table was loaded.
1988 		 */
1989 		bioset_exit(&md->bs);
1990 		bioset_exit(&md->io_bs);
1991 
1992 	} else if (bioset_initialized(&md->bs)) {
1993 		/*
1994 		 * There's no need to reload with request-based dm
1995 		 * because the size of front_pad doesn't change.
1996 		 * Note for future: If you are to reload bioset,
1997 		 * prep-ed requests in the queue may refer
1998 		 * to bio from the old bioset, so you must walk
1999 		 * through the queue to unprep.
2000 		 */
2001 		goto out;
2002 	}
2003 
2004 	BUG_ON(!p ||
2005 	       bioset_initialized(&md->bs) ||
2006 	       bioset_initialized(&md->io_bs));
2007 
2008 	ret = bioset_init_from_src(&md->bs, &p->bs);
2009 	if (ret)
2010 		goto out;
2011 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2012 	if (ret)
2013 		bioset_exit(&md->bs);
2014 out:
2015 	/* mempool bind completed, no longer need any mempools in the table */
2016 	dm_table_free_md_mempools(t);
2017 	return ret;
2018 }
2019 
2020 /*
2021  * Bind a table to the device.
2022  */
2023 static void event_callback(void *context)
2024 {
2025 	unsigned long flags;
2026 	LIST_HEAD(uevents);
2027 	struct mapped_device *md = (struct mapped_device *) context;
2028 
2029 	spin_lock_irqsave(&md->uevent_lock, flags);
2030 	list_splice_init(&md->uevent_list, &uevents);
2031 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2032 
2033 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2034 
2035 	atomic_inc(&md->event_nr);
2036 	wake_up(&md->eventq);
2037 	dm_issue_global_event();
2038 }
2039 
2040 /*
2041  * Protected by md->suspend_lock obtained by dm_swap_table().
2042  */
2043 static void __set_size(struct mapped_device *md, sector_t size)
2044 {
2045 	lockdep_assert_held(&md->suspend_lock);
2046 
2047 	set_capacity(md->disk, size);
2048 
2049 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2050 }
2051 
2052 /*
2053  * Returns old map, which caller must destroy.
2054  */
2055 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2056 			       struct queue_limits *limits)
2057 {
2058 	struct dm_table *old_map;
2059 	struct request_queue *q = md->queue;
2060 	bool request_based = dm_table_request_based(t);
2061 	sector_t size;
2062 	int ret;
2063 
2064 	lockdep_assert_held(&md->suspend_lock);
2065 
2066 	size = dm_table_get_size(t);
2067 
2068 	/*
2069 	 * Wipe any geometry if the size of the table changed.
2070 	 */
2071 	if (size != dm_get_size(md))
2072 		memset(&md->geometry, 0, sizeof(md->geometry));
2073 
2074 	__set_size(md, size);
2075 
2076 	dm_table_event_callback(t, event_callback, md);
2077 
2078 	/*
2079 	 * The queue hasn't been stopped yet, if the old table type wasn't
2080 	 * for request-based during suspension.  So stop it to prevent
2081 	 * I/O mapping before resume.
2082 	 * This must be done before setting the queue restrictions,
2083 	 * because request-based dm may be run just after the setting.
2084 	 */
2085 	if (request_based)
2086 		dm_stop_queue(q);
2087 
2088 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2089 		/*
2090 		 * Leverage the fact that request-based DM targets and
2091 		 * NVMe bio based targets are immutable singletons
2092 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2093 		 *   and __process_bio.
2094 		 */
2095 		md->immutable_target = dm_table_get_immutable_target(t);
2096 	}
2097 
2098 	ret = __bind_mempools(md, t);
2099 	if (ret) {
2100 		old_map = ERR_PTR(ret);
2101 		goto out;
2102 	}
2103 
2104 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2105 	rcu_assign_pointer(md->map, (void *)t);
2106 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2107 
2108 	dm_table_set_restrictions(t, q, limits);
2109 	if (old_map)
2110 		dm_sync_table(md);
2111 
2112 out:
2113 	return old_map;
2114 }
2115 
2116 /*
2117  * Returns unbound table for the caller to free.
2118  */
2119 static struct dm_table *__unbind(struct mapped_device *md)
2120 {
2121 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2122 
2123 	if (!map)
2124 		return NULL;
2125 
2126 	dm_table_event_callback(map, NULL, NULL);
2127 	RCU_INIT_POINTER(md->map, NULL);
2128 	dm_sync_table(md);
2129 
2130 	return map;
2131 }
2132 
2133 /*
2134  * Constructor for a new device.
2135  */
2136 int dm_create(int minor, struct mapped_device **result)
2137 {
2138 	int r;
2139 	struct mapped_device *md;
2140 
2141 	md = alloc_dev(minor);
2142 	if (!md)
2143 		return -ENXIO;
2144 
2145 	r = dm_sysfs_init(md);
2146 	if (r) {
2147 		free_dev(md);
2148 		return r;
2149 	}
2150 
2151 	*result = md;
2152 	return 0;
2153 }
2154 
2155 /*
2156  * Functions to manage md->type.
2157  * All are required to hold md->type_lock.
2158  */
2159 void dm_lock_md_type(struct mapped_device *md)
2160 {
2161 	mutex_lock(&md->type_lock);
2162 }
2163 
2164 void dm_unlock_md_type(struct mapped_device *md)
2165 {
2166 	mutex_unlock(&md->type_lock);
2167 }
2168 
2169 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2170 {
2171 	BUG_ON(!mutex_is_locked(&md->type_lock));
2172 	md->type = type;
2173 }
2174 
2175 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2176 {
2177 	return md->type;
2178 }
2179 
2180 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2181 {
2182 	return md->immutable_target_type;
2183 }
2184 
2185 /*
2186  * The queue_limits are only valid as long as you have a reference
2187  * count on 'md'.
2188  */
2189 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2190 {
2191 	BUG_ON(!atomic_read(&md->holders));
2192 	return &md->queue->limits;
2193 }
2194 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2195 
2196 /*
2197  * Setup the DM device's queue based on md's type
2198  */
2199 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2200 {
2201 	int r;
2202 	struct queue_limits limits;
2203 	enum dm_queue_mode type = dm_get_md_type(md);
2204 
2205 	switch (type) {
2206 	case DM_TYPE_REQUEST_BASED:
2207 		dm_init_normal_md_queue(md);
2208 		r = dm_old_init_request_queue(md, t);
2209 		if (r) {
2210 			DMERR("Cannot initialize queue for request-based mapped device");
2211 			return r;
2212 		}
2213 		break;
2214 	case DM_TYPE_MQ_REQUEST_BASED:
2215 		r = dm_mq_init_request_queue(md, t);
2216 		if (r) {
2217 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2218 			return r;
2219 		}
2220 		break;
2221 	case DM_TYPE_BIO_BASED:
2222 	case DM_TYPE_DAX_BIO_BASED:
2223 		dm_init_normal_md_queue(md);
2224 		blk_queue_make_request(md->queue, dm_make_request);
2225 		break;
2226 	case DM_TYPE_NVME_BIO_BASED:
2227 		dm_init_normal_md_queue(md);
2228 		blk_queue_make_request(md->queue, dm_make_request_nvme);
2229 		break;
2230 	case DM_TYPE_NONE:
2231 		WARN_ON_ONCE(true);
2232 		break;
2233 	}
2234 
2235 	r = dm_calculate_queue_limits(t, &limits);
2236 	if (r) {
2237 		DMERR("Cannot calculate initial queue limits");
2238 		return r;
2239 	}
2240 	dm_table_set_restrictions(t, md->queue, &limits);
2241 	blk_register_queue(md->disk);
2242 
2243 	return 0;
2244 }
2245 
2246 struct mapped_device *dm_get_md(dev_t dev)
2247 {
2248 	struct mapped_device *md;
2249 	unsigned minor = MINOR(dev);
2250 
2251 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2252 		return NULL;
2253 
2254 	spin_lock(&_minor_lock);
2255 
2256 	md = idr_find(&_minor_idr, minor);
2257 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2258 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2259 		md = NULL;
2260 		goto out;
2261 	}
2262 	dm_get(md);
2263 out:
2264 	spin_unlock(&_minor_lock);
2265 
2266 	return md;
2267 }
2268 EXPORT_SYMBOL_GPL(dm_get_md);
2269 
2270 void *dm_get_mdptr(struct mapped_device *md)
2271 {
2272 	return md->interface_ptr;
2273 }
2274 
2275 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2276 {
2277 	md->interface_ptr = ptr;
2278 }
2279 
2280 void dm_get(struct mapped_device *md)
2281 {
2282 	atomic_inc(&md->holders);
2283 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2284 }
2285 
2286 int dm_hold(struct mapped_device *md)
2287 {
2288 	spin_lock(&_minor_lock);
2289 	if (test_bit(DMF_FREEING, &md->flags)) {
2290 		spin_unlock(&_minor_lock);
2291 		return -EBUSY;
2292 	}
2293 	dm_get(md);
2294 	spin_unlock(&_minor_lock);
2295 	return 0;
2296 }
2297 EXPORT_SYMBOL_GPL(dm_hold);
2298 
2299 const char *dm_device_name(struct mapped_device *md)
2300 {
2301 	return md->name;
2302 }
2303 EXPORT_SYMBOL_GPL(dm_device_name);
2304 
2305 static void __dm_destroy(struct mapped_device *md, bool wait)
2306 {
2307 	struct dm_table *map;
2308 	int srcu_idx;
2309 
2310 	might_sleep();
2311 
2312 	spin_lock(&_minor_lock);
2313 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2314 	set_bit(DMF_FREEING, &md->flags);
2315 	spin_unlock(&_minor_lock);
2316 
2317 	blk_set_queue_dying(md->queue);
2318 
2319 	if (dm_request_based(md) && md->kworker_task)
2320 		kthread_flush_worker(&md->kworker);
2321 
2322 	/*
2323 	 * Take suspend_lock so that presuspend and postsuspend methods
2324 	 * do not race with internal suspend.
2325 	 */
2326 	mutex_lock(&md->suspend_lock);
2327 	map = dm_get_live_table(md, &srcu_idx);
2328 	if (!dm_suspended_md(md)) {
2329 		dm_table_presuspend_targets(map);
2330 		dm_table_postsuspend_targets(map);
2331 	}
2332 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2333 	dm_put_live_table(md, srcu_idx);
2334 	mutex_unlock(&md->suspend_lock);
2335 
2336 	/*
2337 	 * Rare, but there may be I/O requests still going to complete,
2338 	 * for example.  Wait for all references to disappear.
2339 	 * No one should increment the reference count of the mapped_device,
2340 	 * after the mapped_device state becomes DMF_FREEING.
2341 	 */
2342 	if (wait)
2343 		while (atomic_read(&md->holders))
2344 			msleep(1);
2345 	else if (atomic_read(&md->holders))
2346 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2347 		       dm_device_name(md), atomic_read(&md->holders));
2348 
2349 	dm_sysfs_exit(md);
2350 	dm_table_destroy(__unbind(md));
2351 	free_dev(md);
2352 }
2353 
2354 void dm_destroy(struct mapped_device *md)
2355 {
2356 	__dm_destroy(md, true);
2357 }
2358 
2359 void dm_destroy_immediate(struct mapped_device *md)
2360 {
2361 	__dm_destroy(md, false);
2362 }
2363 
2364 void dm_put(struct mapped_device *md)
2365 {
2366 	atomic_dec(&md->holders);
2367 }
2368 EXPORT_SYMBOL_GPL(dm_put);
2369 
2370 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2371 {
2372 	int r = 0;
2373 	DEFINE_WAIT(wait);
2374 
2375 	while (1) {
2376 		prepare_to_wait(&md->wait, &wait, task_state);
2377 
2378 		if (!md_in_flight(md))
2379 			break;
2380 
2381 		if (signal_pending_state(task_state, current)) {
2382 			r = -EINTR;
2383 			break;
2384 		}
2385 
2386 		io_schedule();
2387 	}
2388 	finish_wait(&md->wait, &wait);
2389 
2390 	return r;
2391 }
2392 
2393 /*
2394  * Process the deferred bios
2395  */
2396 static void dm_wq_work(struct work_struct *work)
2397 {
2398 	struct mapped_device *md = container_of(work, struct mapped_device,
2399 						work);
2400 	struct bio *c;
2401 	int srcu_idx;
2402 	struct dm_table *map;
2403 
2404 	map = dm_get_live_table(md, &srcu_idx);
2405 
2406 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2407 		spin_lock_irq(&md->deferred_lock);
2408 		c = bio_list_pop(&md->deferred);
2409 		spin_unlock_irq(&md->deferred_lock);
2410 
2411 		if (!c)
2412 			break;
2413 
2414 		if (dm_request_based(md))
2415 			generic_make_request(c);
2416 		else
2417 			__split_and_process_bio(md, map, c);
2418 	}
2419 
2420 	dm_put_live_table(md, srcu_idx);
2421 }
2422 
2423 static void dm_queue_flush(struct mapped_device *md)
2424 {
2425 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2426 	smp_mb__after_atomic();
2427 	queue_work(md->wq, &md->work);
2428 }
2429 
2430 /*
2431  * Swap in a new table, returning the old one for the caller to destroy.
2432  */
2433 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2434 {
2435 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2436 	struct queue_limits limits;
2437 	int r;
2438 
2439 	mutex_lock(&md->suspend_lock);
2440 
2441 	/* device must be suspended */
2442 	if (!dm_suspended_md(md))
2443 		goto out;
2444 
2445 	/*
2446 	 * If the new table has no data devices, retain the existing limits.
2447 	 * This helps multipath with queue_if_no_path if all paths disappear,
2448 	 * then new I/O is queued based on these limits, and then some paths
2449 	 * reappear.
2450 	 */
2451 	if (dm_table_has_no_data_devices(table)) {
2452 		live_map = dm_get_live_table_fast(md);
2453 		if (live_map)
2454 			limits = md->queue->limits;
2455 		dm_put_live_table_fast(md);
2456 	}
2457 
2458 	if (!live_map) {
2459 		r = dm_calculate_queue_limits(table, &limits);
2460 		if (r) {
2461 			map = ERR_PTR(r);
2462 			goto out;
2463 		}
2464 	}
2465 
2466 	map = __bind(md, table, &limits);
2467 	dm_issue_global_event();
2468 
2469 out:
2470 	mutex_unlock(&md->suspend_lock);
2471 	return map;
2472 }
2473 
2474 /*
2475  * Functions to lock and unlock any filesystem running on the
2476  * device.
2477  */
2478 static int lock_fs(struct mapped_device *md)
2479 {
2480 	int r;
2481 
2482 	WARN_ON(md->frozen_sb);
2483 
2484 	md->frozen_sb = freeze_bdev(md->bdev);
2485 	if (IS_ERR(md->frozen_sb)) {
2486 		r = PTR_ERR(md->frozen_sb);
2487 		md->frozen_sb = NULL;
2488 		return r;
2489 	}
2490 
2491 	set_bit(DMF_FROZEN, &md->flags);
2492 
2493 	return 0;
2494 }
2495 
2496 static void unlock_fs(struct mapped_device *md)
2497 {
2498 	if (!test_bit(DMF_FROZEN, &md->flags))
2499 		return;
2500 
2501 	thaw_bdev(md->bdev, md->frozen_sb);
2502 	md->frozen_sb = NULL;
2503 	clear_bit(DMF_FROZEN, &md->flags);
2504 }
2505 
2506 /*
2507  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2508  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2509  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2510  *
2511  * If __dm_suspend returns 0, the device is completely quiescent
2512  * now. There is no request-processing activity. All new requests
2513  * are being added to md->deferred list.
2514  */
2515 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2516 			unsigned suspend_flags, long task_state,
2517 			int dmf_suspended_flag)
2518 {
2519 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2520 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2521 	int r;
2522 
2523 	lockdep_assert_held(&md->suspend_lock);
2524 
2525 	/*
2526 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2527 	 * This flag is cleared before dm_suspend returns.
2528 	 */
2529 	if (noflush)
2530 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2531 	else
2532 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2533 
2534 	/*
2535 	 * This gets reverted if there's an error later and the targets
2536 	 * provide the .presuspend_undo hook.
2537 	 */
2538 	dm_table_presuspend_targets(map);
2539 
2540 	/*
2541 	 * Flush I/O to the device.
2542 	 * Any I/O submitted after lock_fs() may not be flushed.
2543 	 * noflush takes precedence over do_lockfs.
2544 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2545 	 */
2546 	if (!noflush && do_lockfs) {
2547 		r = lock_fs(md);
2548 		if (r) {
2549 			dm_table_presuspend_undo_targets(map);
2550 			return r;
2551 		}
2552 	}
2553 
2554 	/*
2555 	 * Here we must make sure that no processes are submitting requests
2556 	 * to target drivers i.e. no one may be executing
2557 	 * __split_and_process_bio. This is called from dm_request and
2558 	 * dm_wq_work.
2559 	 *
2560 	 * To get all processes out of __split_and_process_bio in dm_request,
2561 	 * we take the write lock. To prevent any process from reentering
2562 	 * __split_and_process_bio from dm_request and quiesce the thread
2563 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2564 	 * flush_workqueue(md->wq).
2565 	 */
2566 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2567 	if (map)
2568 		synchronize_srcu(&md->io_barrier);
2569 
2570 	/*
2571 	 * Stop md->queue before flushing md->wq in case request-based
2572 	 * dm defers requests to md->wq from md->queue.
2573 	 */
2574 	if (dm_request_based(md)) {
2575 		dm_stop_queue(md->queue);
2576 		if (md->kworker_task)
2577 			kthread_flush_worker(&md->kworker);
2578 	}
2579 
2580 	flush_workqueue(md->wq);
2581 
2582 	/*
2583 	 * At this point no more requests are entering target request routines.
2584 	 * We call dm_wait_for_completion to wait for all existing requests
2585 	 * to finish.
2586 	 */
2587 	r = dm_wait_for_completion(md, task_state);
2588 	if (!r)
2589 		set_bit(dmf_suspended_flag, &md->flags);
2590 
2591 	if (noflush)
2592 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2593 	if (map)
2594 		synchronize_srcu(&md->io_barrier);
2595 
2596 	/* were we interrupted ? */
2597 	if (r < 0) {
2598 		dm_queue_flush(md);
2599 
2600 		if (dm_request_based(md))
2601 			dm_start_queue(md->queue);
2602 
2603 		unlock_fs(md);
2604 		dm_table_presuspend_undo_targets(map);
2605 		/* pushback list is already flushed, so skip flush */
2606 	}
2607 
2608 	return r;
2609 }
2610 
2611 /*
2612  * We need to be able to change a mapping table under a mounted
2613  * filesystem.  For example we might want to move some data in
2614  * the background.  Before the table can be swapped with
2615  * dm_bind_table, dm_suspend must be called to flush any in
2616  * flight bios and ensure that any further io gets deferred.
2617  */
2618 /*
2619  * Suspend mechanism in request-based dm.
2620  *
2621  * 1. Flush all I/Os by lock_fs() if needed.
2622  * 2. Stop dispatching any I/O by stopping the request_queue.
2623  * 3. Wait for all in-flight I/Os to be completed or requeued.
2624  *
2625  * To abort suspend, start the request_queue.
2626  */
2627 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2628 {
2629 	struct dm_table *map = NULL;
2630 	int r = 0;
2631 
2632 retry:
2633 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2634 
2635 	if (dm_suspended_md(md)) {
2636 		r = -EINVAL;
2637 		goto out_unlock;
2638 	}
2639 
2640 	if (dm_suspended_internally_md(md)) {
2641 		/* already internally suspended, wait for internal resume */
2642 		mutex_unlock(&md->suspend_lock);
2643 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2644 		if (r)
2645 			return r;
2646 		goto retry;
2647 	}
2648 
2649 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2650 
2651 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2652 	if (r)
2653 		goto out_unlock;
2654 
2655 	dm_table_postsuspend_targets(map);
2656 
2657 out_unlock:
2658 	mutex_unlock(&md->suspend_lock);
2659 	return r;
2660 }
2661 
2662 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2663 {
2664 	if (map) {
2665 		int r = dm_table_resume_targets(map);
2666 		if (r)
2667 			return r;
2668 	}
2669 
2670 	dm_queue_flush(md);
2671 
2672 	/*
2673 	 * Flushing deferred I/Os must be done after targets are resumed
2674 	 * so that mapping of targets can work correctly.
2675 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2676 	 */
2677 	if (dm_request_based(md))
2678 		dm_start_queue(md->queue);
2679 
2680 	unlock_fs(md);
2681 
2682 	return 0;
2683 }
2684 
2685 int dm_resume(struct mapped_device *md)
2686 {
2687 	int r;
2688 	struct dm_table *map = NULL;
2689 
2690 retry:
2691 	r = -EINVAL;
2692 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2693 
2694 	if (!dm_suspended_md(md))
2695 		goto out;
2696 
2697 	if (dm_suspended_internally_md(md)) {
2698 		/* already internally suspended, wait for internal resume */
2699 		mutex_unlock(&md->suspend_lock);
2700 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2701 		if (r)
2702 			return r;
2703 		goto retry;
2704 	}
2705 
2706 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2707 	if (!map || !dm_table_get_size(map))
2708 		goto out;
2709 
2710 	r = __dm_resume(md, map);
2711 	if (r)
2712 		goto out;
2713 
2714 	clear_bit(DMF_SUSPENDED, &md->flags);
2715 out:
2716 	mutex_unlock(&md->suspend_lock);
2717 
2718 	return r;
2719 }
2720 
2721 /*
2722  * Internal suspend/resume works like userspace-driven suspend. It waits
2723  * until all bios finish and prevents issuing new bios to the target drivers.
2724  * It may be used only from the kernel.
2725  */
2726 
2727 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2728 {
2729 	struct dm_table *map = NULL;
2730 
2731 	lockdep_assert_held(&md->suspend_lock);
2732 
2733 	if (md->internal_suspend_count++)
2734 		return; /* nested internal suspend */
2735 
2736 	if (dm_suspended_md(md)) {
2737 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2738 		return; /* nest suspend */
2739 	}
2740 
2741 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2742 
2743 	/*
2744 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2745 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2746 	 * would require changing .presuspend to return an error -- avoid this
2747 	 * until there is a need for more elaborate variants of internal suspend.
2748 	 */
2749 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2750 			    DMF_SUSPENDED_INTERNALLY);
2751 
2752 	dm_table_postsuspend_targets(map);
2753 }
2754 
2755 static void __dm_internal_resume(struct mapped_device *md)
2756 {
2757 	BUG_ON(!md->internal_suspend_count);
2758 
2759 	if (--md->internal_suspend_count)
2760 		return; /* resume from nested internal suspend */
2761 
2762 	if (dm_suspended_md(md))
2763 		goto done; /* resume from nested suspend */
2764 
2765 	/*
2766 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2767 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2768 	 */
2769 	(void) __dm_resume(md, NULL);
2770 
2771 done:
2772 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2773 	smp_mb__after_atomic();
2774 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2775 }
2776 
2777 void dm_internal_suspend_noflush(struct mapped_device *md)
2778 {
2779 	mutex_lock(&md->suspend_lock);
2780 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2781 	mutex_unlock(&md->suspend_lock);
2782 }
2783 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2784 
2785 void dm_internal_resume(struct mapped_device *md)
2786 {
2787 	mutex_lock(&md->suspend_lock);
2788 	__dm_internal_resume(md);
2789 	mutex_unlock(&md->suspend_lock);
2790 }
2791 EXPORT_SYMBOL_GPL(dm_internal_resume);
2792 
2793 /*
2794  * Fast variants of internal suspend/resume hold md->suspend_lock,
2795  * which prevents interaction with userspace-driven suspend.
2796  */
2797 
2798 void dm_internal_suspend_fast(struct mapped_device *md)
2799 {
2800 	mutex_lock(&md->suspend_lock);
2801 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2802 		return;
2803 
2804 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2805 	synchronize_srcu(&md->io_barrier);
2806 	flush_workqueue(md->wq);
2807 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2808 }
2809 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2810 
2811 void dm_internal_resume_fast(struct mapped_device *md)
2812 {
2813 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2814 		goto done;
2815 
2816 	dm_queue_flush(md);
2817 
2818 done:
2819 	mutex_unlock(&md->suspend_lock);
2820 }
2821 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2822 
2823 /*-----------------------------------------------------------------
2824  * Event notification.
2825  *---------------------------------------------------------------*/
2826 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2827 		       unsigned cookie)
2828 {
2829 	char udev_cookie[DM_COOKIE_LENGTH];
2830 	char *envp[] = { udev_cookie, NULL };
2831 
2832 	if (!cookie)
2833 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2834 	else {
2835 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2836 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2837 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2838 					  action, envp);
2839 	}
2840 }
2841 
2842 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2843 {
2844 	return atomic_add_return(1, &md->uevent_seq);
2845 }
2846 
2847 uint32_t dm_get_event_nr(struct mapped_device *md)
2848 {
2849 	return atomic_read(&md->event_nr);
2850 }
2851 
2852 int dm_wait_event(struct mapped_device *md, int event_nr)
2853 {
2854 	return wait_event_interruptible(md->eventq,
2855 			(event_nr != atomic_read(&md->event_nr)));
2856 }
2857 
2858 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2859 {
2860 	unsigned long flags;
2861 
2862 	spin_lock_irqsave(&md->uevent_lock, flags);
2863 	list_add(elist, &md->uevent_list);
2864 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2865 }
2866 
2867 /*
2868  * The gendisk is only valid as long as you have a reference
2869  * count on 'md'.
2870  */
2871 struct gendisk *dm_disk(struct mapped_device *md)
2872 {
2873 	return md->disk;
2874 }
2875 EXPORT_SYMBOL_GPL(dm_disk);
2876 
2877 struct kobject *dm_kobject(struct mapped_device *md)
2878 {
2879 	return &md->kobj_holder.kobj;
2880 }
2881 
2882 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2883 {
2884 	struct mapped_device *md;
2885 
2886 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2887 
2888 	spin_lock(&_minor_lock);
2889 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2890 		md = NULL;
2891 		goto out;
2892 	}
2893 	dm_get(md);
2894 out:
2895 	spin_unlock(&_minor_lock);
2896 
2897 	return md;
2898 }
2899 
2900 int dm_suspended_md(struct mapped_device *md)
2901 {
2902 	return test_bit(DMF_SUSPENDED, &md->flags);
2903 }
2904 
2905 int dm_suspended_internally_md(struct mapped_device *md)
2906 {
2907 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2908 }
2909 
2910 int dm_test_deferred_remove_flag(struct mapped_device *md)
2911 {
2912 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2913 }
2914 
2915 int dm_suspended(struct dm_target *ti)
2916 {
2917 	return dm_suspended_md(dm_table_get_md(ti->table));
2918 }
2919 EXPORT_SYMBOL_GPL(dm_suspended);
2920 
2921 int dm_noflush_suspending(struct dm_target *ti)
2922 {
2923 	return __noflush_suspending(dm_table_get_md(ti->table));
2924 }
2925 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2926 
2927 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2928 					    unsigned integrity, unsigned per_io_data_size,
2929 					    unsigned min_pool_size)
2930 {
2931 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2932 	unsigned int pool_size = 0;
2933 	unsigned int front_pad, io_front_pad;
2934 	int ret;
2935 
2936 	if (!pools)
2937 		return NULL;
2938 
2939 	switch (type) {
2940 	case DM_TYPE_BIO_BASED:
2941 	case DM_TYPE_DAX_BIO_BASED:
2942 	case DM_TYPE_NVME_BIO_BASED:
2943 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2944 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2945 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2946 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2947 		if (ret)
2948 			goto out;
2949 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2950 			goto out;
2951 		break;
2952 	case DM_TYPE_REQUEST_BASED:
2953 	case DM_TYPE_MQ_REQUEST_BASED:
2954 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2955 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2956 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2957 		break;
2958 	default:
2959 		BUG();
2960 	}
2961 
2962 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2963 	if (ret)
2964 		goto out;
2965 
2966 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2967 		goto out;
2968 
2969 	return pools;
2970 
2971 out:
2972 	dm_free_md_mempools(pools);
2973 
2974 	return NULL;
2975 }
2976 
2977 void dm_free_md_mempools(struct dm_md_mempools *pools)
2978 {
2979 	if (!pools)
2980 		return;
2981 
2982 	bioset_exit(&pools->bs);
2983 	bioset_exit(&pools->io_bs);
2984 
2985 	kfree(pools);
2986 }
2987 
2988 struct dm_pr {
2989 	u64	old_key;
2990 	u64	new_key;
2991 	u32	flags;
2992 	bool	fail_early;
2993 };
2994 
2995 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2996 		      void *data)
2997 {
2998 	struct mapped_device *md = bdev->bd_disk->private_data;
2999 	struct dm_table *table;
3000 	struct dm_target *ti;
3001 	int ret = -ENOTTY, srcu_idx;
3002 
3003 	table = dm_get_live_table(md, &srcu_idx);
3004 	if (!table || !dm_table_get_size(table))
3005 		goto out;
3006 
3007 	/* We only support devices that have a single target */
3008 	if (dm_table_get_num_targets(table) != 1)
3009 		goto out;
3010 	ti = dm_table_get_target(table, 0);
3011 
3012 	ret = -EINVAL;
3013 	if (!ti->type->iterate_devices)
3014 		goto out;
3015 
3016 	ret = ti->type->iterate_devices(ti, fn, data);
3017 out:
3018 	dm_put_live_table(md, srcu_idx);
3019 	return ret;
3020 }
3021 
3022 /*
3023  * For register / unregister we need to manually call out to every path.
3024  */
3025 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3026 			    sector_t start, sector_t len, void *data)
3027 {
3028 	struct dm_pr *pr = data;
3029 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3030 
3031 	if (!ops || !ops->pr_register)
3032 		return -EOPNOTSUPP;
3033 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3034 }
3035 
3036 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3037 			  u32 flags)
3038 {
3039 	struct dm_pr pr = {
3040 		.old_key	= old_key,
3041 		.new_key	= new_key,
3042 		.flags		= flags,
3043 		.fail_early	= true,
3044 	};
3045 	int ret;
3046 
3047 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3048 	if (ret && new_key) {
3049 		/* unregister all paths if we failed to register any path */
3050 		pr.old_key = new_key;
3051 		pr.new_key = 0;
3052 		pr.flags = 0;
3053 		pr.fail_early = false;
3054 		dm_call_pr(bdev, __dm_pr_register, &pr);
3055 	}
3056 
3057 	return ret;
3058 }
3059 
3060 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3061 			 u32 flags)
3062 {
3063 	struct mapped_device *md = bdev->bd_disk->private_data;
3064 	const struct pr_ops *ops;
3065 	int r, srcu_idx;
3066 
3067 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3068 	if (r < 0)
3069 		goto out;
3070 
3071 	ops = bdev->bd_disk->fops->pr_ops;
3072 	if (ops && ops->pr_reserve)
3073 		r = ops->pr_reserve(bdev, key, type, flags);
3074 	else
3075 		r = -EOPNOTSUPP;
3076 out:
3077 	dm_unprepare_ioctl(md, srcu_idx);
3078 	return r;
3079 }
3080 
3081 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3082 {
3083 	struct mapped_device *md = bdev->bd_disk->private_data;
3084 	const struct pr_ops *ops;
3085 	int r, srcu_idx;
3086 
3087 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3088 	if (r < 0)
3089 		goto out;
3090 
3091 	ops = bdev->bd_disk->fops->pr_ops;
3092 	if (ops && ops->pr_release)
3093 		r = ops->pr_release(bdev, key, type);
3094 	else
3095 		r = -EOPNOTSUPP;
3096 out:
3097 	dm_unprepare_ioctl(md, srcu_idx);
3098 	return r;
3099 }
3100 
3101 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3102 			 enum pr_type type, bool abort)
3103 {
3104 	struct mapped_device *md = bdev->bd_disk->private_data;
3105 	const struct pr_ops *ops;
3106 	int r, srcu_idx;
3107 
3108 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3109 	if (r < 0)
3110 		goto out;
3111 
3112 	ops = bdev->bd_disk->fops->pr_ops;
3113 	if (ops && ops->pr_preempt)
3114 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3115 	else
3116 		r = -EOPNOTSUPP;
3117 out:
3118 	dm_unprepare_ioctl(md, srcu_idx);
3119 	return r;
3120 }
3121 
3122 static int dm_pr_clear(struct block_device *bdev, u64 key)
3123 {
3124 	struct mapped_device *md = bdev->bd_disk->private_data;
3125 	const struct pr_ops *ops;
3126 	int r, srcu_idx;
3127 
3128 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3129 	if (r < 0)
3130 		goto out;
3131 
3132 	ops = bdev->bd_disk->fops->pr_ops;
3133 	if (ops && ops->pr_clear)
3134 		r = ops->pr_clear(bdev, key);
3135 	else
3136 		r = -EOPNOTSUPP;
3137 out:
3138 	dm_unprepare_ioctl(md, srcu_idx);
3139 	return r;
3140 }
3141 
3142 static const struct pr_ops dm_pr_ops = {
3143 	.pr_register	= dm_pr_register,
3144 	.pr_reserve	= dm_pr_reserve,
3145 	.pr_release	= dm_pr_release,
3146 	.pr_preempt	= dm_pr_preempt,
3147 	.pr_clear	= dm_pr_clear,
3148 };
3149 
3150 static const struct block_device_operations dm_blk_dops = {
3151 	.open = dm_blk_open,
3152 	.release = dm_blk_close,
3153 	.ioctl = dm_blk_ioctl,
3154 	.getgeo = dm_blk_getgeo,
3155 	.pr_ops = &dm_pr_ops,
3156 	.owner = THIS_MODULE
3157 };
3158 
3159 static const struct dax_operations dm_dax_ops = {
3160 	.direct_access = dm_dax_direct_access,
3161 	.copy_from_iter = dm_dax_copy_from_iter,
3162 	.copy_to_iter = dm_dax_copy_to_iter,
3163 };
3164 
3165 /*
3166  * module hooks
3167  */
3168 module_init(dm_init);
3169 module_exit(dm_exit);
3170 
3171 module_param(major, uint, 0);
3172 MODULE_PARM_DESC(major, "The major number of the device mapper");
3173 
3174 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3175 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3176 
3177 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3178 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3179 
3180 MODULE_DESCRIPTION(DM_NAME " driver");
3181 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3182 MODULE_LICENSE("GPL");
3183