xref: /openbmc/linux/drivers/md/dm.c (revision 980b4503)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 
28 #define DM_MSG_PREFIX "core"
29 
30 #ifdef CONFIG_PRINTK
31 /*
32  * ratelimit state to be used in DMXXX_LIMIT().
33  */
34 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
35 		       DEFAULT_RATELIMIT_INTERVAL,
36 		       DEFAULT_RATELIMIT_BURST);
37 EXPORT_SYMBOL(dm_ratelimit_state);
38 #endif
39 
40 /*
41  * Cookies are numeric values sent with CHANGE and REMOVE
42  * uevents while resuming, removing or renaming the device.
43  */
44 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
45 #define DM_COOKIE_LENGTH 24
46 
47 static const char *_name = DM_NAME;
48 
49 static unsigned int major = 0;
50 static unsigned int _major = 0;
51 
52 static DEFINE_IDR(_minor_idr);
53 
54 static DEFINE_SPINLOCK(_minor_lock);
55 
56 static void do_deferred_remove(struct work_struct *w);
57 
58 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
59 
60 static struct workqueue_struct *deferred_remove_workqueue;
61 
62 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
63 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
64 
65 /*
66  * One of these is allocated per bio.
67  */
68 struct dm_io {
69 	struct mapped_device *md;
70 	blk_status_t status;
71 	atomic_t io_count;
72 	struct bio *bio;
73 	unsigned long start_time;
74 	spinlock_t endio_lock;
75 	struct dm_stats_aux stats_aux;
76 };
77 
78 #define MINOR_ALLOCED ((void *)-1)
79 
80 /*
81  * Bits for the md->flags field.
82  */
83 #define DMF_BLOCK_IO_FOR_SUSPEND 0
84 #define DMF_SUSPENDED 1
85 #define DMF_FROZEN 2
86 #define DMF_FREEING 3
87 #define DMF_DELETING 4
88 #define DMF_NOFLUSH_SUSPENDING 5
89 #define DMF_DEFERRED_REMOVE 6
90 #define DMF_SUSPENDED_INTERNALLY 7
91 
92 #define DM_NUMA_NODE NUMA_NO_NODE
93 static int dm_numa_node = DM_NUMA_NODE;
94 
95 /*
96  * For mempools pre-allocation at the table loading time.
97  */
98 struct dm_md_mempools {
99 	mempool_t *io_pool;
100 	struct bio_set *bs;
101 };
102 
103 struct table_device {
104 	struct list_head list;
105 	atomic_t count;
106 	struct dm_dev dm_dev;
107 };
108 
109 static struct kmem_cache *_io_cache;
110 static struct kmem_cache *_rq_tio_cache;
111 static struct kmem_cache *_rq_cache;
112 
113 /*
114  * Bio-based DM's mempools' reserved IOs set by the user.
115  */
116 #define RESERVED_BIO_BASED_IOS		16
117 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
118 
119 static int __dm_get_module_param_int(int *module_param, int min, int max)
120 {
121 	int param = ACCESS_ONCE(*module_param);
122 	int modified_param = 0;
123 	bool modified = true;
124 
125 	if (param < min)
126 		modified_param = min;
127 	else if (param > max)
128 		modified_param = max;
129 	else
130 		modified = false;
131 
132 	if (modified) {
133 		(void)cmpxchg(module_param, param, modified_param);
134 		param = modified_param;
135 	}
136 
137 	return param;
138 }
139 
140 unsigned __dm_get_module_param(unsigned *module_param,
141 			       unsigned def, unsigned max)
142 {
143 	unsigned param = ACCESS_ONCE(*module_param);
144 	unsigned modified_param = 0;
145 
146 	if (!param)
147 		modified_param = def;
148 	else if (param > max)
149 		modified_param = max;
150 
151 	if (modified_param) {
152 		(void)cmpxchg(module_param, param, modified_param);
153 		param = modified_param;
154 	}
155 
156 	return param;
157 }
158 
159 unsigned dm_get_reserved_bio_based_ios(void)
160 {
161 	return __dm_get_module_param(&reserved_bio_based_ios,
162 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
163 }
164 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
165 
166 static unsigned dm_get_numa_node(void)
167 {
168 	return __dm_get_module_param_int(&dm_numa_node,
169 					 DM_NUMA_NODE, num_online_nodes() - 1);
170 }
171 
172 static int __init local_init(void)
173 {
174 	int r = -ENOMEM;
175 
176 	/* allocate a slab for the dm_ios */
177 	_io_cache = KMEM_CACHE(dm_io, 0);
178 	if (!_io_cache)
179 		return r;
180 
181 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
182 	if (!_rq_tio_cache)
183 		goto out_free_io_cache;
184 
185 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
186 				      __alignof__(struct request), 0, NULL);
187 	if (!_rq_cache)
188 		goto out_free_rq_tio_cache;
189 
190 	r = dm_uevent_init();
191 	if (r)
192 		goto out_free_rq_cache;
193 
194 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
195 	if (!deferred_remove_workqueue) {
196 		r = -ENOMEM;
197 		goto out_uevent_exit;
198 	}
199 
200 	_major = major;
201 	r = register_blkdev(_major, _name);
202 	if (r < 0)
203 		goto out_free_workqueue;
204 
205 	if (!_major)
206 		_major = r;
207 
208 	return 0;
209 
210 out_free_workqueue:
211 	destroy_workqueue(deferred_remove_workqueue);
212 out_uevent_exit:
213 	dm_uevent_exit();
214 out_free_rq_cache:
215 	kmem_cache_destroy(_rq_cache);
216 out_free_rq_tio_cache:
217 	kmem_cache_destroy(_rq_tio_cache);
218 out_free_io_cache:
219 	kmem_cache_destroy(_io_cache);
220 
221 	return r;
222 }
223 
224 static void local_exit(void)
225 {
226 	flush_scheduled_work();
227 	destroy_workqueue(deferred_remove_workqueue);
228 
229 	kmem_cache_destroy(_rq_cache);
230 	kmem_cache_destroy(_rq_tio_cache);
231 	kmem_cache_destroy(_io_cache);
232 	unregister_blkdev(_major, _name);
233 	dm_uevent_exit();
234 
235 	_major = 0;
236 
237 	DMINFO("cleaned up");
238 }
239 
240 static int (*_inits[])(void) __initdata = {
241 	local_init,
242 	dm_target_init,
243 	dm_linear_init,
244 	dm_stripe_init,
245 	dm_io_init,
246 	dm_kcopyd_init,
247 	dm_interface_init,
248 	dm_statistics_init,
249 };
250 
251 static void (*_exits[])(void) = {
252 	local_exit,
253 	dm_target_exit,
254 	dm_linear_exit,
255 	dm_stripe_exit,
256 	dm_io_exit,
257 	dm_kcopyd_exit,
258 	dm_interface_exit,
259 	dm_statistics_exit,
260 };
261 
262 static int __init dm_init(void)
263 {
264 	const int count = ARRAY_SIZE(_inits);
265 
266 	int r, i;
267 
268 	for (i = 0; i < count; i++) {
269 		r = _inits[i]();
270 		if (r)
271 			goto bad;
272 	}
273 
274 	return 0;
275 
276       bad:
277 	while (i--)
278 		_exits[i]();
279 
280 	return r;
281 }
282 
283 static void __exit dm_exit(void)
284 {
285 	int i = ARRAY_SIZE(_exits);
286 
287 	while (i--)
288 		_exits[i]();
289 
290 	/*
291 	 * Should be empty by this point.
292 	 */
293 	idr_destroy(&_minor_idr);
294 }
295 
296 /*
297  * Block device functions
298  */
299 int dm_deleting_md(struct mapped_device *md)
300 {
301 	return test_bit(DMF_DELETING, &md->flags);
302 }
303 
304 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
305 {
306 	struct mapped_device *md;
307 
308 	spin_lock(&_minor_lock);
309 
310 	md = bdev->bd_disk->private_data;
311 	if (!md)
312 		goto out;
313 
314 	if (test_bit(DMF_FREEING, &md->flags) ||
315 	    dm_deleting_md(md)) {
316 		md = NULL;
317 		goto out;
318 	}
319 
320 	dm_get(md);
321 	atomic_inc(&md->open_count);
322 out:
323 	spin_unlock(&_minor_lock);
324 
325 	return md ? 0 : -ENXIO;
326 }
327 
328 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
329 {
330 	struct mapped_device *md;
331 
332 	spin_lock(&_minor_lock);
333 
334 	md = disk->private_data;
335 	if (WARN_ON(!md))
336 		goto out;
337 
338 	if (atomic_dec_and_test(&md->open_count) &&
339 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
340 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
341 
342 	dm_put(md);
343 out:
344 	spin_unlock(&_minor_lock);
345 }
346 
347 int dm_open_count(struct mapped_device *md)
348 {
349 	return atomic_read(&md->open_count);
350 }
351 
352 /*
353  * Guarantees nothing is using the device before it's deleted.
354  */
355 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
356 {
357 	int r = 0;
358 
359 	spin_lock(&_minor_lock);
360 
361 	if (dm_open_count(md)) {
362 		r = -EBUSY;
363 		if (mark_deferred)
364 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
365 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
366 		r = -EEXIST;
367 	else
368 		set_bit(DMF_DELETING, &md->flags);
369 
370 	spin_unlock(&_minor_lock);
371 
372 	return r;
373 }
374 
375 int dm_cancel_deferred_remove(struct mapped_device *md)
376 {
377 	int r = 0;
378 
379 	spin_lock(&_minor_lock);
380 
381 	if (test_bit(DMF_DELETING, &md->flags))
382 		r = -EBUSY;
383 	else
384 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
385 
386 	spin_unlock(&_minor_lock);
387 
388 	return r;
389 }
390 
391 static void do_deferred_remove(struct work_struct *w)
392 {
393 	dm_deferred_remove();
394 }
395 
396 sector_t dm_get_size(struct mapped_device *md)
397 {
398 	return get_capacity(md->disk);
399 }
400 
401 struct request_queue *dm_get_md_queue(struct mapped_device *md)
402 {
403 	return md->queue;
404 }
405 
406 struct dm_stats *dm_get_stats(struct mapped_device *md)
407 {
408 	return &md->stats;
409 }
410 
411 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
412 {
413 	struct mapped_device *md = bdev->bd_disk->private_data;
414 
415 	return dm_get_geometry(md, geo);
416 }
417 
418 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
419 				  struct block_device **bdev,
420 				  fmode_t *mode)
421 {
422 	struct dm_target *tgt;
423 	struct dm_table *map;
424 	int srcu_idx, r;
425 
426 retry:
427 	r = -ENOTTY;
428 	map = dm_get_live_table(md, &srcu_idx);
429 	if (!map || !dm_table_get_size(map))
430 		goto out;
431 
432 	/* We only support devices that have a single target */
433 	if (dm_table_get_num_targets(map) != 1)
434 		goto out;
435 
436 	tgt = dm_table_get_target(map, 0);
437 	if (!tgt->type->prepare_ioctl)
438 		goto out;
439 
440 	if (dm_suspended_md(md)) {
441 		r = -EAGAIN;
442 		goto out;
443 	}
444 
445 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
446 	if (r < 0)
447 		goto out;
448 
449 	bdgrab(*bdev);
450 	dm_put_live_table(md, srcu_idx);
451 	return r;
452 
453 out:
454 	dm_put_live_table(md, srcu_idx);
455 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
456 		msleep(10);
457 		goto retry;
458 	}
459 	return r;
460 }
461 
462 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
463 			unsigned int cmd, unsigned long arg)
464 {
465 	struct mapped_device *md = bdev->bd_disk->private_data;
466 	int r;
467 
468 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
469 	if (r < 0)
470 		return r;
471 
472 	if (r > 0) {
473 		/*
474 		 * Target determined this ioctl is being issued against a
475 		 * subset of the parent bdev; require extra privileges.
476 		 */
477 		if (!capable(CAP_SYS_RAWIO)) {
478 			DMWARN_LIMIT(
479 	"%s: sending ioctl %x to DM device without required privilege.",
480 				current->comm, cmd);
481 			r = -ENOIOCTLCMD;
482 			goto out;
483 		}
484 	}
485 
486 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
487 out:
488 	bdput(bdev);
489 	return r;
490 }
491 
492 static struct dm_io *alloc_io(struct mapped_device *md)
493 {
494 	return mempool_alloc(md->io_pool, GFP_NOIO);
495 }
496 
497 static void free_io(struct mapped_device *md, struct dm_io *io)
498 {
499 	mempool_free(io, md->io_pool);
500 }
501 
502 static void free_tio(struct dm_target_io *tio)
503 {
504 	bio_put(&tio->clone);
505 }
506 
507 int md_in_flight(struct mapped_device *md)
508 {
509 	return atomic_read(&md->pending[READ]) +
510 	       atomic_read(&md->pending[WRITE]);
511 }
512 
513 static void start_io_acct(struct dm_io *io)
514 {
515 	struct mapped_device *md = io->md;
516 	struct bio *bio = io->bio;
517 	int cpu;
518 	int rw = bio_data_dir(bio);
519 
520 	io->start_time = jiffies;
521 
522 	cpu = part_stat_lock();
523 	part_round_stats(cpu, &dm_disk(md)->part0);
524 	part_stat_unlock();
525 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
526 		atomic_inc_return(&md->pending[rw]));
527 
528 	if (unlikely(dm_stats_used(&md->stats)))
529 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
530 				    bio->bi_iter.bi_sector, bio_sectors(bio),
531 				    false, 0, &io->stats_aux);
532 }
533 
534 static void end_io_acct(struct dm_io *io)
535 {
536 	struct mapped_device *md = io->md;
537 	struct bio *bio = io->bio;
538 	unsigned long duration = jiffies - io->start_time;
539 	int pending;
540 	int rw = bio_data_dir(bio);
541 
542 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
543 
544 	if (unlikely(dm_stats_used(&md->stats)))
545 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
546 				    bio->bi_iter.bi_sector, bio_sectors(bio),
547 				    true, duration, &io->stats_aux);
548 
549 	/*
550 	 * After this is decremented the bio must not be touched if it is
551 	 * a flush.
552 	 */
553 	pending = atomic_dec_return(&md->pending[rw]);
554 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
555 	pending += atomic_read(&md->pending[rw^0x1]);
556 
557 	/* nudge anyone waiting on suspend queue */
558 	if (!pending)
559 		wake_up(&md->wait);
560 }
561 
562 /*
563  * Add the bio to the list of deferred io.
564  */
565 static void queue_io(struct mapped_device *md, struct bio *bio)
566 {
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(&md->deferred_lock, flags);
570 	bio_list_add(&md->deferred, bio);
571 	spin_unlock_irqrestore(&md->deferred_lock, flags);
572 	queue_work(md->wq, &md->work);
573 }
574 
575 /*
576  * Everyone (including functions in this file), should use this
577  * function to access the md->map field, and make sure they call
578  * dm_put_live_table() when finished.
579  */
580 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
581 {
582 	*srcu_idx = srcu_read_lock(&md->io_barrier);
583 
584 	return srcu_dereference(md->map, &md->io_barrier);
585 }
586 
587 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
588 {
589 	srcu_read_unlock(&md->io_barrier, srcu_idx);
590 }
591 
592 void dm_sync_table(struct mapped_device *md)
593 {
594 	synchronize_srcu(&md->io_barrier);
595 	synchronize_rcu_expedited();
596 }
597 
598 /*
599  * A fast alternative to dm_get_live_table/dm_put_live_table.
600  * The caller must not block between these two functions.
601  */
602 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
603 {
604 	rcu_read_lock();
605 	return rcu_dereference(md->map);
606 }
607 
608 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
609 {
610 	rcu_read_unlock();
611 }
612 
613 /*
614  * Open a table device so we can use it as a map destination.
615  */
616 static int open_table_device(struct table_device *td, dev_t dev,
617 			     struct mapped_device *md)
618 {
619 	static char *_claim_ptr = "I belong to device-mapper";
620 	struct block_device *bdev;
621 
622 	int r;
623 
624 	BUG_ON(td->dm_dev.bdev);
625 
626 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
627 	if (IS_ERR(bdev))
628 		return PTR_ERR(bdev);
629 
630 	r = bd_link_disk_holder(bdev, dm_disk(md));
631 	if (r) {
632 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
633 		return r;
634 	}
635 
636 	td->dm_dev.bdev = bdev;
637 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
638 	return 0;
639 }
640 
641 /*
642  * Close a table device that we've been using.
643  */
644 static void close_table_device(struct table_device *td, struct mapped_device *md)
645 {
646 	if (!td->dm_dev.bdev)
647 		return;
648 
649 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
650 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
651 	put_dax(td->dm_dev.dax_dev);
652 	td->dm_dev.bdev = NULL;
653 	td->dm_dev.dax_dev = NULL;
654 }
655 
656 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
657 					      fmode_t mode) {
658 	struct table_device *td;
659 
660 	list_for_each_entry(td, l, list)
661 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
662 			return td;
663 
664 	return NULL;
665 }
666 
667 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
668 			struct dm_dev **result) {
669 	int r;
670 	struct table_device *td;
671 
672 	mutex_lock(&md->table_devices_lock);
673 	td = find_table_device(&md->table_devices, dev, mode);
674 	if (!td) {
675 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
676 		if (!td) {
677 			mutex_unlock(&md->table_devices_lock);
678 			return -ENOMEM;
679 		}
680 
681 		td->dm_dev.mode = mode;
682 		td->dm_dev.bdev = NULL;
683 
684 		if ((r = open_table_device(td, dev, md))) {
685 			mutex_unlock(&md->table_devices_lock);
686 			kfree(td);
687 			return r;
688 		}
689 
690 		format_dev_t(td->dm_dev.name, dev);
691 
692 		atomic_set(&td->count, 0);
693 		list_add(&td->list, &md->table_devices);
694 	}
695 	atomic_inc(&td->count);
696 	mutex_unlock(&md->table_devices_lock);
697 
698 	*result = &td->dm_dev;
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(dm_get_table_device);
702 
703 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
704 {
705 	struct table_device *td = container_of(d, struct table_device, dm_dev);
706 
707 	mutex_lock(&md->table_devices_lock);
708 	if (atomic_dec_and_test(&td->count)) {
709 		close_table_device(td, md);
710 		list_del(&td->list);
711 		kfree(td);
712 	}
713 	mutex_unlock(&md->table_devices_lock);
714 }
715 EXPORT_SYMBOL(dm_put_table_device);
716 
717 static void free_table_devices(struct list_head *devices)
718 {
719 	struct list_head *tmp, *next;
720 
721 	list_for_each_safe(tmp, next, devices) {
722 		struct table_device *td = list_entry(tmp, struct table_device, list);
723 
724 		DMWARN("dm_destroy: %s still exists with %d references",
725 		       td->dm_dev.name, atomic_read(&td->count));
726 		kfree(td);
727 	}
728 }
729 
730 /*
731  * Get the geometry associated with a dm device
732  */
733 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
734 {
735 	*geo = md->geometry;
736 
737 	return 0;
738 }
739 
740 /*
741  * Set the geometry of a device.
742  */
743 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
744 {
745 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
746 
747 	if (geo->start > sz) {
748 		DMWARN("Start sector is beyond the geometry limits.");
749 		return -EINVAL;
750 	}
751 
752 	md->geometry = *geo;
753 
754 	return 0;
755 }
756 
757 /*-----------------------------------------------------------------
758  * CRUD START:
759  *   A more elegant soln is in the works that uses the queue
760  *   merge fn, unfortunately there are a couple of changes to
761  *   the block layer that I want to make for this.  So in the
762  *   interests of getting something for people to use I give
763  *   you this clearly demarcated crap.
764  *---------------------------------------------------------------*/
765 
766 static int __noflush_suspending(struct mapped_device *md)
767 {
768 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
769 }
770 
771 /*
772  * Decrements the number of outstanding ios that a bio has been
773  * cloned into, completing the original io if necc.
774  */
775 static void dec_pending(struct dm_io *io, blk_status_t error)
776 {
777 	unsigned long flags;
778 	blk_status_t io_error;
779 	struct bio *bio;
780 	struct mapped_device *md = io->md;
781 
782 	/* Push-back supersedes any I/O errors */
783 	if (unlikely(error)) {
784 		spin_lock_irqsave(&io->endio_lock, flags);
785 		if (!(io->status == BLK_STS_DM_REQUEUE &&
786 				__noflush_suspending(md)))
787 			io->status = error;
788 		spin_unlock_irqrestore(&io->endio_lock, flags);
789 	}
790 
791 	if (atomic_dec_and_test(&io->io_count)) {
792 		if (io->status == BLK_STS_DM_REQUEUE) {
793 			/*
794 			 * Target requested pushing back the I/O.
795 			 */
796 			spin_lock_irqsave(&md->deferred_lock, flags);
797 			if (__noflush_suspending(md))
798 				bio_list_add_head(&md->deferred, io->bio);
799 			else
800 				/* noflush suspend was interrupted. */
801 				io->status = BLK_STS_IOERR;
802 			spin_unlock_irqrestore(&md->deferred_lock, flags);
803 		}
804 
805 		io_error = io->status;
806 		bio = io->bio;
807 		end_io_acct(io);
808 		free_io(md, io);
809 
810 		if (io_error == BLK_STS_DM_REQUEUE)
811 			return;
812 
813 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
814 			/*
815 			 * Preflush done for flush with data, reissue
816 			 * without REQ_PREFLUSH.
817 			 */
818 			bio->bi_opf &= ~REQ_PREFLUSH;
819 			queue_io(md, bio);
820 		} else {
821 			/* done with normal IO or empty flush */
822 			bio->bi_status = io_error;
823 			bio_endio(bio);
824 		}
825 	}
826 }
827 
828 void disable_write_same(struct mapped_device *md)
829 {
830 	struct queue_limits *limits = dm_get_queue_limits(md);
831 
832 	/* device doesn't really support WRITE SAME, disable it */
833 	limits->max_write_same_sectors = 0;
834 }
835 
836 void disable_write_zeroes(struct mapped_device *md)
837 {
838 	struct queue_limits *limits = dm_get_queue_limits(md);
839 
840 	/* device doesn't really support WRITE ZEROES, disable it */
841 	limits->max_write_zeroes_sectors = 0;
842 }
843 
844 static void clone_endio(struct bio *bio)
845 {
846 	blk_status_t error = bio->bi_status;
847 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
848 	struct dm_io *io = tio->io;
849 	struct mapped_device *md = tio->io->md;
850 	dm_endio_fn endio = tio->ti->type->end_io;
851 
852 	if (unlikely(error == BLK_STS_TARGET)) {
853 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
854 		    !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)
855 			disable_write_same(md);
856 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
857 		    !bdev_get_queue(bio->bi_bdev)->limits.max_write_zeroes_sectors)
858 			disable_write_zeroes(md);
859 	}
860 
861 	if (endio) {
862 		int r = endio(tio->ti, bio, &error);
863 		switch (r) {
864 		case DM_ENDIO_REQUEUE:
865 			error = BLK_STS_DM_REQUEUE;
866 			/*FALLTHRU*/
867 		case DM_ENDIO_DONE:
868 			break;
869 		case DM_ENDIO_INCOMPLETE:
870 			/* The target will handle the io */
871 			return;
872 		default:
873 			DMWARN("unimplemented target endio return value: %d", r);
874 			BUG();
875 		}
876 	}
877 
878 	free_tio(tio);
879 	dec_pending(io, error);
880 }
881 
882 /*
883  * Return maximum size of I/O possible at the supplied sector up to the current
884  * target boundary.
885  */
886 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
887 {
888 	sector_t target_offset = dm_target_offset(ti, sector);
889 
890 	return ti->len - target_offset;
891 }
892 
893 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
894 {
895 	sector_t len = max_io_len_target_boundary(sector, ti);
896 	sector_t offset, max_len;
897 
898 	/*
899 	 * Does the target need to split even further?
900 	 */
901 	if (ti->max_io_len) {
902 		offset = dm_target_offset(ti, sector);
903 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
904 			max_len = sector_div(offset, ti->max_io_len);
905 		else
906 			max_len = offset & (ti->max_io_len - 1);
907 		max_len = ti->max_io_len - max_len;
908 
909 		if (len > max_len)
910 			len = max_len;
911 	}
912 
913 	return len;
914 }
915 
916 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
917 {
918 	if (len > UINT_MAX) {
919 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
920 		      (unsigned long long)len, UINT_MAX);
921 		ti->error = "Maximum size of target IO is too large";
922 		return -EINVAL;
923 	}
924 
925 	ti->max_io_len = (uint32_t) len;
926 
927 	return 0;
928 }
929 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
930 
931 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
932 		sector_t sector, int *srcu_idx)
933 {
934 	struct dm_table *map;
935 	struct dm_target *ti;
936 
937 	map = dm_get_live_table(md, srcu_idx);
938 	if (!map)
939 		return NULL;
940 
941 	ti = dm_table_find_target(map, sector);
942 	if (!dm_target_is_valid(ti))
943 		return NULL;
944 
945 	return ti;
946 }
947 
948 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
949 		long nr_pages, void **kaddr, pfn_t *pfn)
950 {
951 	struct mapped_device *md = dax_get_private(dax_dev);
952 	sector_t sector = pgoff * PAGE_SECTORS;
953 	struct dm_target *ti;
954 	long len, ret = -EIO;
955 	int srcu_idx;
956 
957 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
958 
959 	if (!ti)
960 		goto out;
961 	if (!ti->type->direct_access)
962 		goto out;
963 	len = max_io_len(sector, ti) / PAGE_SECTORS;
964 	if (len < 1)
965 		goto out;
966 	nr_pages = min(len, nr_pages);
967 	if (ti->type->direct_access)
968 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
969 
970  out:
971 	dm_put_live_table(md, srcu_idx);
972 
973 	return ret;
974 }
975 
976 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
977 		void *addr, size_t bytes, struct iov_iter *i)
978 {
979 	struct mapped_device *md = dax_get_private(dax_dev);
980 	sector_t sector = pgoff * PAGE_SECTORS;
981 	struct dm_target *ti;
982 	long ret = 0;
983 	int srcu_idx;
984 
985 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
986 
987 	if (!ti)
988 		goto out;
989 	if (!ti->type->dax_copy_from_iter) {
990 		ret = copy_from_iter(addr, bytes, i);
991 		goto out;
992 	}
993 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
994  out:
995 	dm_put_live_table(md, srcu_idx);
996 
997 	return ret;
998 }
999 
1000 static void dm_dax_flush(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
1001 		size_t size)
1002 {
1003 	struct mapped_device *md = dax_get_private(dax_dev);
1004 	sector_t sector = pgoff * PAGE_SECTORS;
1005 	struct dm_target *ti;
1006 	int srcu_idx;
1007 
1008 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1009 
1010 	if (!ti)
1011 		goto out;
1012 	if (ti->type->dax_flush)
1013 		ti->type->dax_flush(ti, pgoff, addr, size);
1014  out:
1015 	dm_put_live_table(md, srcu_idx);
1016 }
1017 
1018 /*
1019  * A target may call dm_accept_partial_bio only from the map routine.  It is
1020  * allowed for all bio types except REQ_PREFLUSH.
1021  *
1022  * dm_accept_partial_bio informs the dm that the target only wants to process
1023  * additional n_sectors sectors of the bio and the rest of the data should be
1024  * sent in a next bio.
1025  *
1026  * A diagram that explains the arithmetics:
1027  * +--------------------+---------------+-------+
1028  * |         1          |       2       |   3   |
1029  * +--------------------+---------------+-------+
1030  *
1031  * <-------------- *tio->len_ptr --------------->
1032  *                      <------- bi_size ------->
1033  *                      <-- n_sectors -->
1034  *
1035  * Region 1 was already iterated over with bio_advance or similar function.
1036  *	(it may be empty if the target doesn't use bio_advance)
1037  * Region 2 is the remaining bio size that the target wants to process.
1038  *	(it may be empty if region 1 is non-empty, although there is no reason
1039  *	 to make it empty)
1040  * The target requires that region 3 is to be sent in the next bio.
1041  *
1042  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1043  * the partially processed part (the sum of regions 1+2) must be the same for all
1044  * copies of the bio.
1045  */
1046 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1047 {
1048 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1049 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1050 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1051 	BUG_ON(bi_size > *tio->len_ptr);
1052 	BUG_ON(n_sectors > bi_size);
1053 	*tio->len_ptr -= bi_size - n_sectors;
1054 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1055 }
1056 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1057 
1058 /*
1059  * The zone descriptors obtained with a zone report indicate
1060  * zone positions within the target device. The zone descriptors
1061  * must be remapped to match their position within the dm device.
1062  * A target may call dm_remap_zone_report after completion of a
1063  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1064  * from the target device mapping to the dm device.
1065  */
1066 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1067 {
1068 #ifdef CONFIG_BLK_DEV_ZONED
1069 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1070 	struct bio *report_bio = tio->io->bio;
1071 	struct blk_zone_report_hdr *hdr = NULL;
1072 	struct blk_zone *zone;
1073 	unsigned int nr_rep = 0;
1074 	unsigned int ofst;
1075 	struct bio_vec bvec;
1076 	struct bvec_iter iter;
1077 	void *addr;
1078 
1079 	if (bio->bi_status)
1080 		return;
1081 
1082 	/*
1083 	 * Remap the start sector of the reported zones. For sequential zones,
1084 	 * also remap the write pointer position.
1085 	 */
1086 	bio_for_each_segment(bvec, report_bio, iter) {
1087 		addr = kmap_atomic(bvec.bv_page);
1088 
1089 		/* Remember the report header in the first page */
1090 		if (!hdr) {
1091 			hdr = addr;
1092 			ofst = sizeof(struct blk_zone_report_hdr);
1093 		} else
1094 			ofst = 0;
1095 
1096 		/* Set zones start sector */
1097 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1098 			zone = addr + ofst;
1099 			if (zone->start >= start + ti->len) {
1100 				hdr->nr_zones = 0;
1101 				break;
1102 			}
1103 			zone->start = zone->start + ti->begin - start;
1104 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1105 				if (zone->cond == BLK_ZONE_COND_FULL)
1106 					zone->wp = zone->start + zone->len;
1107 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1108 					zone->wp = zone->start;
1109 				else
1110 					zone->wp = zone->wp + ti->begin - start;
1111 			}
1112 			ofst += sizeof(struct blk_zone);
1113 			hdr->nr_zones--;
1114 			nr_rep++;
1115 		}
1116 
1117 		if (addr != hdr)
1118 			kunmap_atomic(addr);
1119 
1120 		if (!hdr->nr_zones)
1121 			break;
1122 	}
1123 
1124 	if (hdr) {
1125 		hdr->nr_zones = nr_rep;
1126 		kunmap_atomic(hdr);
1127 	}
1128 
1129 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1130 
1131 #else /* !CONFIG_BLK_DEV_ZONED */
1132 	bio->bi_status = BLK_STS_NOTSUPP;
1133 #endif
1134 }
1135 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1136 
1137 /*
1138  * Flush current->bio_list when the target map method blocks.
1139  * This fixes deadlocks in snapshot and possibly in other targets.
1140  */
1141 struct dm_offload {
1142 	struct blk_plug plug;
1143 	struct blk_plug_cb cb;
1144 };
1145 
1146 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1147 {
1148 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1149 	struct bio_list list;
1150 	struct bio *bio;
1151 	int i;
1152 
1153 	INIT_LIST_HEAD(&o->cb.list);
1154 
1155 	if (unlikely(!current->bio_list))
1156 		return;
1157 
1158 	for (i = 0; i < 2; i++) {
1159 		list = current->bio_list[i];
1160 		bio_list_init(&current->bio_list[i]);
1161 
1162 		while ((bio = bio_list_pop(&list))) {
1163 			struct bio_set *bs = bio->bi_pool;
1164 			if (unlikely(!bs) || bs == fs_bio_set ||
1165 			    !bs->rescue_workqueue) {
1166 				bio_list_add(&current->bio_list[i], bio);
1167 				continue;
1168 			}
1169 
1170 			spin_lock(&bs->rescue_lock);
1171 			bio_list_add(&bs->rescue_list, bio);
1172 			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1173 			spin_unlock(&bs->rescue_lock);
1174 		}
1175 	}
1176 }
1177 
1178 static void dm_offload_start(struct dm_offload *o)
1179 {
1180 	blk_start_plug(&o->plug);
1181 	o->cb.callback = flush_current_bio_list;
1182 	list_add(&o->cb.list, &current->plug->cb_list);
1183 }
1184 
1185 static void dm_offload_end(struct dm_offload *o)
1186 {
1187 	list_del(&o->cb.list);
1188 	blk_finish_plug(&o->plug);
1189 }
1190 
1191 static void __map_bio(struct dm_target_io *tio)
1192 {
1193 	int r;
1194 	sector_t sector;
1195 	struct dm_offload o;
1196 	struct bio *clone = &tio->clone;
1197 	struct dm_target *ti = tio->ti;
1198 
1199 	clone->bi_end_io = clone_endio;
1200 
1201 	/*
1202 	 * Map the clone.  If r == 0 we don't need to do
1203 	 * anything, the target has assumed ownership of
1204 	 * this io.
1205 	 */
1206 	atomic_inc(&tio->io->io_count);
1207 	sector = clone->bi_iter.bi_sector;
1208 
1209 	dm_offload_start(&o);
1210 	r = ti->type->map(ti, clone);
1211 	dm_offload_end(&o);
1212 
1213 	switch (r) {
1214 	case DM_MAPIO_SUBMITTED:
1215 		break;
1216 	case DM_MAPIO_REMAPPED:
1217 		/* the bio has been remapped so dispatch it */
1218 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1219 				      tio->io->bio->bi_bdev->bd_dev, sector);
1220 		generic_make_request(clone);
1221 		break;
1222 	case DM_MAPIO_KILL:
1223 		dec_pending(tio->io, BLK_STS_IOERR);
1224 		free_tio(tio);
1225 		break;
1226 	case DM_MAPIO_REQUEUE:
1227 		dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1228 		free_tio(tio);
1229 		break;
1230 	default:
1231 		DMWARN("unimplemented target map return value: %d", r);
1232 		BUG();
1233 	}
1234 }
1235 
1236 struct clone_info {
1237 	struct mapped_device *md;
1238 	struct dm_table *map;
1239 	struct bio *bio;
1240 	struct dm_io *io;
1241 	sector_t sector;
1242 	unsigned sector_count;
1243 };
1244 
1245 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1246 {
1247 	bio->bi_iter.bi_sector = sector;
1248 	bio->bi_iter.bi_size = to_bytes(len);
1249 }
1250 
1251 /*
1252  * Creates a bio that consists of range of complete bvecs.
1253  */
1254 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1255 		     sector_t sector, unsigned len)
1256 {
1257 	struct bio *clone = &tio->clone;
1258 
1259 	__bio_clone_fast(clone, bio);
1260 
1261 	if (unlikely(bio_integrity(bio) != NULL)) {
1262 		int r;
1263 
1264 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1265 			     !dm_target_passes_integrity(tio->ti->type))) {
1266 			DMWARN("%s: the target %s doesn't support integrity data.",
1267 				dm_device_name(tio->io->md),
1268 				tio->ti->type->name);
1269 			return -EIO;
1270 		}
1271 
1272 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1273 		if (r < 0)
1274 			return r;
1275 	}
1276 
1277 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1278 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1279 	clone->bi_iter.bi_size = to_bytes(len);
1280 
1281 	if (unlikely(bio_integrity(bio) != NULL))
1282 		bio_integrity_trim(clone);
1283 
1284 	return 0;
1285 }
1286 
1287 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1288 				      struct dm_target *ti,
1289 				      unsigned target_bio_nr)
1290 {
1291 	struct dm_target_io *tio;
1292 	struct bio *clone;
1293 
1294 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1295 	tio = container_of(clone, struct dm_target_io, clone);
1296 
1297 	tio->io = ci->io;
1298 	tio->ti = ti;
1299 	tio->target_bio_nr = target_bio_nr;
1300 
1301 	return tio;
1302 }
1303 
1304 static void __clone_and_map_simple_bio(struct clone_info *ci,
1305 				       struct dm_target *ti,
1306 				       unsigned target_bio_nr, unsigned *len)
1307 {
1308 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1309 	struct bio *clone = &tio->clone;
1310 
1311 	tio->len_ptr = len;
1312 
1313 	__bio_clone_fast(clone, ci->bio);
1314 	if (len)
1315 		bio_setup_sector(clone, ci->sector, *len);
1316 
1317 	__map_bio(tio);
1318 }
1319 
1320 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1321 				  unsigned num_bios, unsigned *len)
1322 {
1323 	unsigned target_bio_nr;
1324 
1325 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1326 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1327 }
1328 
1329 static int __send_empty_flush(struct clone_info *ci)
1330 {
1331 	unsigned target_nr = 0;
1332 	struct dm_target *ti;
1333 
1334 	BUG_ON(bio_has_data(ci->bio));
1335 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1336 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1337 
1338 	return 0;
1339 }
1340 
1341 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1342 				     sector_t sector, unsigned *len)
1343 {
1344 	struct bio *bio = ci->bio;
1345 	struct dm_target_io *tio;
1346 	unsigned target_bio_nr;
1347 	unsigned num_target_bios = 1;
1348 	int r = 0;
1349 
1350 	/*
1351 	 * Does the target want to receive duplicate copies of the bio?
1352 	 */
1353 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1354 		num_target_bios = ti->num_write_bios(ti, bio);
1355 
1356 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1357 		tio = alloc_tio(ci, ti, target_bio_nr);
1358 		tio->len_ptr = len;
1359 		r = clone_bio(tio, bio, sector, *len);
1360 		if (r < 0) {
1361 			free_tio(tio);
1362 			break;
1363 		}
1364 		__map_bio(tio);
1365 	}
1366 
1367 	return r;
1368 }
1369 
1370 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1371 
1372 static unsigned get_num_discard_bios(struct dm_target *ti)
1373 {
1374 	return ti->num_discard_bios;
1375 }
1376 
1377 static unsigned get_num_write_same_bios(struct dm_target *ti)
1378 {
1379 	return ti->num_write_same_bios;
1380 }
1381 
1382 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1383 {
1384 	return ti->num_write_zeroes_bios;
1385 }
1386 
1387 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1388 
1389 static bool is_split_required_for_discard(struct dm_target *ti)
1390 {
1391 	return ti->split_discard_bios;
1392 }
1393 
1394 static int __send_changing_extent_only(struct clone_info *ci,
1395 				       get_num_bios_fn get_num_bios,
1396 				       is_split_required_fn is_split_required)
1397 {
1398 	struct dm_target *ti;
1399 	unsigned len;
1400 	unsigned num_bios;
1401 
1402 	do {
1403 		ti = dm_table_find_target(ci->map, ci->sector);
1404 		if (!dm_target_is_valid(ti))
1405 			return -EIO;
1406 
1407 		/*
1408 		 * Even though the device advertised support for this type of
1409 		 * request, that does not mean every target supports it, and
1410 		 * reconfiguration might also have changed that since the
1411 		 * check was performed.
1412 		 */
1413 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1414 		if (!num_bios)
1415 			return -EOPNOTSUPP;
1416 
1417 		if (is_split_required && !is_split_required(ti))
1418 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1419 		else
1420 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1421 
1422 		__send_duplicate_bios(ci, ti, num_bios, &len);
1423 
1424 		ci->sector += len;
1425 	} while (ci->sector_count -= len);
1426 
1427 	return 0;
1428 }
1429 
1430 static int __send_discard(struct clone_info *ci)
1431 {
1432 	return __send_changing_extent_only(ci, get_num_discard_bios,
1433 					   is_split_required_for_discard);
1434 }
1435 
1436 static int __send_write_same(struct clone_info *ci)
1437 {
1438 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1439 }
1440 
1441 static int __send_write_zeroes(struct clone_info *ci)
1442 {
1443 	return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1444 }
1445 
1446 /*
1447  * Select the correct strategy for processing a non-flush bio.
1448  */
1449 static int __split_and_process_non_flush(struct clone_info *ci)
1450 {
1451 	struct bio *bio = ci->bio;
1452 	struct dm_target *ti;
1453 	unsigned len;
1454 	int r;
1455 
1456 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1457 		return __send_discard(ci);
1458 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1459 		return __send_write_same(ci);
1460 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1461 		return __send_write_zeroes(ci);
1462 
1463 	ti = dm_table_find_target(ci->map, ci->sector);
1464 	if (!dm_target_is_valid(ti))
1465 		return -EIO;
1466 
1467 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1468 		len = ci->sector_count;
1469 	else
1470 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1471 			    ci->sector_count);
1472 
1473 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1474 	if (r < 0)
1475 		return r;
1476 
1477 	ci->sector += len;
1478 	ci->sector_count -= len;
1479 
1480 	return 0;
1481 }
1482 
1483 /*
1484  * Entry point to split a bio into clones and submit them to the targets.
1485  */
1486 static void __split_and_process_bio(struct mapped_device *md,
1487 				    struct dm_table *map, struct bio *bio)
1488 {
1489 	struct clone_info ci;
1490 	int error = 0;
1491 
1492 	if (unlikely(!map)) {
1493 		bio_io_error(bio);
1494 		return;
1495 	}
1496 
1497 	ci.map = map;
1498 	ci.md = md;
1499 	ci.io = alloc_io(md);
1500 	ci.io->status = 0;
1501 	atomic_set(&ci.io->io_count, 1);
1502 	ci.io->bio = bio;
1503 	ci.io->md = md;
1504 	spin_lock_init(&ci.io->endio_lock);
1505 	ci.sector = bio->bi_iter.bi_sector;
1506 
1507 	start_io_acct(ci.io);
1508 
1509 	if (bio->bi_opf & REQ_PREFLUSH) {
1510 		ci.bio = &ci.md->flush_bio;
1511 		ci.sector_count = 0;
1512 		error = __send_empty_flush(&ci);
1513 		/* dec_pending submits any data associated with flush */
1514 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1515 		ci.bio = bio;
1516 		ci.sector_count = 0;
1517 		error = __split_and_process_non_flush(&ci);
1518 	} else {
1519 		ci.bio = bio;
1520 		ci.sector_count = bio_sectors(bio);
1521 		while (ci.sector_count && !error)
1522 			error = __split_and_process_non_flush(&ci);
1523 	}
1524 
1525 	/* drop the extra reference count */
1526 	dec_pending(ci.io, error);
1527 }
1528 /*-----------------------------------------------------------------
1529  * CRUD END
1530  *---------------------------------------------------------------*/
1531 
1532 /*
1533  * The request function that just remaps the bio built up by
1534  * dm_merge_bvec.
1535  */
1536 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1537 {
1538 	int rw = bio_data_dir(bio);
1539 	struct mapped_device *md = q->queuedata;
1540 	int srcu_idx;
1541 	struct dm_table *map;
1542 
1543 	map = dm_get_live_table(md, &srcu_idx);
1544 
1545 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1546 
1547 	/* if we're suspended, we have to queue this io for later */
1548 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1549 		dm_put_live_table(md, srcu_idx);
1550 
1551 		if (!(bio->bi_opf & REQ_RAHEAD))
1552 			queue_io(md, bio);
1553 		else
1554 			bio_io_error(bio);
1555 		return BLK_QC_T_NONE;
1556 	}
1557 
1558 	__split_and_process_bio(md, map, bio);
1559 	dm_put_live_table(md, srcu_idx);
1560 	return BLK_QC_T_NONE;
1561 }
1562 
1563 static int dm_any_congested(void *congested_data, int bdi_bits)
1564 {
1565 	int r = bdi_bits;
1566 	struct mapped_device *md = congested_data;
1567 	struct dm_table *map;
1568 
1569 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1570 		if (dm_request_based(md)) {
1571 			/*
1572 			 * With request-based DM we only need to check the
1573 			 * top-level queue for congestion.
1574 			 */
1575 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1576 		} else {
1577 			map = dm_get_live_table_fast(md);
1578 			if (map)
1579 				r = dm_table_any_congested(map, bdi_bits);
1580 			dm_put_live_table_fast(md);
1581 		}
1582 	}
1583 
1584 	return r;
1585 }
1586 
1587 /*-----------------------------------------------------------------
1588  * An IDR is used to keep track of allocated minor numbers.
1589  *---------------------------------------------------------------*/
1590 static void free_minor(int minor)
1591 {
1592 	spin_lock(&_minor_lock);
1593 	idr_remove(&_minor_idr, minor);
1594 	spin_unlock(&_minor_lock);
1595 }
1596 
1597 /*
1598  * See if the device with a specific minor # is free.
1599  */
1600 static int specific_minor(int minor)
1601 {
1602 	int r;
1603 
1604 	if (minor >= (1 << MINORBITS))
1605 		return -EINVAL;
1606 
1607 	idr_preload(GFP_KERNEL);
1608 	spin_lock(&_minor_lock);
1609 
1610 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1611 
1612 	spin_unlock(&_minor_lock);
1613 	idr_preload_end();
1614 	if (r < 0)
1615 		return r == -ENOSPC ? -EBUSY : r;
1616 	return 0;
1617 }
1618 
1619 static int next_free_minor(int *minor)
1620 {
1621 	int r;
1622 
1623 	idr_preload(GFP_KERNEL);
1624 	spin_lock(&_minor_lock);
1625 
1626 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1627 
1628 	spin_unlock(&_minor_lock);
1629 	idr_preload_end();
1630 	if (r < 0)
1631 		return r;
1632 	*minor = r;
1633 	return 0;
1634 }
1635 
1636 static const struct block_device_operations dm_blk_dops;
1637 static const struct dax_operations dm_dax_ops;
1638 
1639 static void dm_wq_work(struct work_struct *work);
1640 
1641 void dm_init_md_queue(struct mapped_device *md)
1642 {
1643 	/*
1644 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1645 	 * devices.  The type of this dm device may not have been decided yet.
1646 	 * The type is decided at the first table loading time.
1647 	 * To prevent problematic device stacking, clear the queue flag
1648 	 * for request stacking support until then.
1649 	 *
1650 	 * This queue is new, so no concurrency on the queue_flags.
1651 	 */
1652 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1653 
1654 	/*
1655 	 * Initialize data that will only be used by a non-blk-mq DM queue
1656 	 * - must do so here (in alloc_dev callchain) before queue is used
1657 	 */
1658 	md->queue->queuedata = md;
1659 	md->queue->backing_dev_info->congested_data = md;
1660 }
1661 
1662 void dm_init_normal_md_queue(struct mapped_device *md)
1663 {
1664 	md->use_blk_mq = false;
1665 	dm_init_md_queue(md);
1666 
1667 	/*
1668 	 * Initialize aspects of queue that aren't relevant for blk-mq
1669 	 */
1670 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1671 }
1672 
1673 static void cleanup_mapped_device(struct mapped_device *md)
1674 {
1675 	if (md->wq)
1676 		destroy_workqueue(md->wq);
1677 	if (md->kworker_task)
1678 		kthread_stop(md->kworker_task);
1679 	mempool_destroy(md->io_pool);
1680 	if (md->bs)
1681 		bioset_free(md->bs);
1682 
1683 	if (md->dax_dev) {
1684 		kill_dax(md->dax_dev);
1685 		put_dax(md->dax_dev);
1686 		md->dax_dev = NULL;
1687 	}
1688 
1689 	if (md->disk) {
1690 		spin_lock(&_minor_lock);
1691 		md->disk->private_data = NULL;
1692 		spin_unlock(&_minor_lock);
1693 		del_gendisk(md->disk);
1694 		put_disk(md->disk);
1695 	}
1696 
1697 	if (md->queue)
1698 		blk_cleanup_queue(md->queue);
1699 
1700 	cleanup_srcu_struct(&md->io_barrier);
1701 
1702 	if (md->bdev) {
1703 		bdput(md->bdev);
1704 		md->bdev = NULL;
1705 	}
1706 
1707 	dm_mq_cleanup_mapped_device(md);
1708 }
1709 
1710 /*
1711  * Allocate and initialise a blank device with a given minor.
1712  */
1713 static struct mapped_device *alloc_dev(int minor)
1714 {
1715 	int r, numa_node_id = dm_get_numa_node();
1716 	struct dax_device *dax_dev;
1717 	struct mapped_device *md;
1718 	void *old_md;
1719 
1720 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1721 	if (!md) {
1722 		DMWARN("unable to allocate device, out of memory.");
1723 		return NULL;
1724 	}
1725 
1726 	if (!try_module_get(THIS_MODULE))
1727 		goto bad_module_get;
1728 
1729 	/* get a minor number for the dev */
1730 	if (minor == DM_ANY_MINOR)
1731 		r = next_free_minor(&minor);
1732 	else
1733 		r = specific_minor(minor);
1734 	if (r < 0)
1735 		goto bad_minor;
1736 
1737 	r = init_srcu_struct(&md->io_barrier);
1738 	if (r < 0)
1739 		goto bad_io_barrier;
1740 
1741 	md->numa_node_id = numa_node_id;
1742 	md->use_blk_mq = dm_use_blk_mq_default();
1743 	md->init_tio_pdu = false;
1744 	md->type = DM_TYPE_NONE;
1745 	mutex_init(&md->suspend_lock);
1746 	mutex_init(&md->type_lock);
1747 	mutex_init(&md->table_devices_lock);
1748 	spin_lock_init(&md->deferred_lock);
1749 	atomic_set(&md->holders, 1);
1750 	atomic_set(&md->open_count, 0);
1751 	atomic_set(&md->event_nr, 0);
1752 	atomic_set(&md->uevent_seq, 0);
1753 	INIT_LIST_HEAD(&md->uevent_list);
1754 	INIT_LIST_HEAD(&md->table_devices);
1755 	spin_lock_init(&md->uevent_lock);
1756 
1757 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1758 	if (!md->queue)
1759 		goto bad;
1760 
1761 	dm_init_md_queue(md);
1762 
1763 	md->disk = alloc_disk_node(1, numa_node_id);
1764 	if (!md->disk)
1765 		goto bad;
1766 
1767 	atomic_set(&md->pending[0], 0);
1768 	atomic_set(&md->pending[1], 0);
1769 	init_waitqueue_head(&md->wait);
1770 	INIT_WORK(&md->work, dm_wq_work);
1771 	init_waitqueue_head(&md->eventq);
1772 	init_completion(&md->kobj_holder.completion);
1773 	md->kworker_task = NULL;
1774 
1775 	md->disk->major = _major;
1776 	md->disk->first_minor = minor;
1777 	md->disk->fops = &dm_blk_dops;
1778 	md->disk->queue = md->queue;
1779 	md->disk->private_data = md;
1780 	sprintf(md->disk->disk_name, "dm-%d", minor);
1781 
1782 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1783 	if (!dax_dev)
1784 		goto bad;
1785 	md->dax_dev = dax_dev;
1786 
1787 	add_disk(md->disk);
1788 	format_dev_t(md->name, MKDEV(_major, minor));
1789 
1790 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1791 	if (!md->wq)
1792 		goto bad;
1793 
1794 	md->bdev = bdget_disk(md->disk, 0);
1795 	if (!md->bdev)
1796 		goto bad;
1797 
1798 	bio_init(&md->flush_bio, NULL, 0);
1799 	md->flush_bio.bi_bdev = md->bdev;
1800 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1801 
1802 	dm_stats_init(&md->stats);
1803 
1804 	/* Populate the mapping, nobody knows we exist yet */
1805 	spin_lock(&_minor_lock);
1806 	old_md = idr_replace(&_minor_idr, md, minor);
1807 	spin_unlock(&_minor_lock);
1808 
1809 	BUG_ON(old_md != MINOR_ALLOCED);
1810 
1811 	return md;
1812 
1813 bad:
1814 	cleanup_mapped_device(md);
1815 bad_io_barrier:
1816 	free_minor(minor);
1817 bad_minor:
1818 	module_put(THIS_MODULE);
1819 bad_module_get:
1820 	kfree(md);
1821 	return NULL;
1822 }
1823 
1824 static void unlock_fs(struct mapped_device *md);
1825 
1826 static void free_dev(struct mapped_device *md)
1827 {
1828 	int minor = MINOR(disk_devt(md->disk));
1829 
1830 	unlock_fs(md);
1831 
1832 	cleanup_mapped_device(md);
1833 
1834 	free_table_devices(&md->table_devices);
1835 	dm_stats_cleanup(&md->stats);
1836 	free_minor(minor);
1837 
1838 	module_put(THIS_MODULE);
1839 	kfree(md);
1840 }
1841 
1842 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1843 {
1844 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1845 
1846 	if (md->bs) {
1847 		/* The md already has necessary mempools. */
1848 		if (dm_table_bio_based(t)) {
1849 			/*
1850 			 * Reload bioset because front_pad may have changed
1851 			 * because a different table was loaded.
1852 			 */
1853 			bioset_free(md->bs);
1854 			md->bs = p->bs;
1855 			p->bs = NULL;
1856 		}
1857 		/*
1858 		 * There's no need to reload with request-based dm
1859 		 * because the size of front_pad doesn't change.
1860 		 * Note for future: If you are to reload bioset,
1861 		 * prep-ed requests in the queue may refer
1862 		 * to bio from the old bioset, so you must walk
1863 		 * through the queue to unprep.
1864 		 */
1865 		goto out;
1866 	}
1867 
1868 	BUG_ON(!p || md->io_pool || md->bs);
1869 
1870 	md->io_pool = p->io_pool;
1871 	p->io_pool = NULL;
1872 	md->bs = p->bs;
1873 	p->bs = NULL;
1874 
1875 out:
1876 	/* mempool bind completed, no longer need any mempools in the table */
1877 	dm_table_free_md_mempools(t);
1878 }
1879 
1880 /*
1881  * Bind a table to the device.
1882  */
1883 static void event_callback(void *context)
1884 {
1885 	unsigned long flags;
1886 	LIST_HEAD(uevents);
1887 	struct mapped_device *md = (struct mapped_device *) context;
1888 
1889 	spin_lock_irqsave(&md->uevent_lock, flags);
1890 	list_splice_init(&md->uevent_list, &uevents);
1891 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1892 
1893 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1894 
1895 	atomic_inc(&md->event_nr);
1896 	atomic_inc(&dm_global_event_nr);
1897 	wake_up(&md->eventq);
1898 	wake_up(&dm_global_eventq);
1899 }
1900 
1901 /*
1902  * Protected by md->suspend_lock obtained by dm_swap_table().
1903  */
1904 static void __set_size(struct mapped_device *md, sector_t size)
1905 {
1906 	lockdep_assert_held(&md->suspend_lock);
1907 
1908 	set_capacity(md->disk, size);
1909 
1910 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1911 }
1912 
1913 /*
1914  * Returns old map, which caller must destroy.
1915  */
1916 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1917 			       struct queue_limits *limits)
1918 {
1919 	struct dm_table *old_map;
1920 	struct request_queue *q = md->queue;
1921 	sector_t size;
1922 
1923 	lockdep_assert_held(&md->suspend_lock);
1924 
1925 	size = dm_table_get_size(t);
1926 
1927 	/*
1928 	 * Wipe any geometry if the size of the table changed.
1929 	 */
1930 	if (size != dm_get_size(md))
1931 		memset(&md->geometry, 0, sizeof(md->geometry));
1932 
1933 	__set_size(md, size);
1934 
1935 	dm_table_event_callback(t, event_callback, md);
1936 
1937 	/*
1938 	 * The queue hasn't been stopped yet, if the old table type wasn't
1939 	 * for request-based during suspension.  So stop it to prevent
1940 	 * I/O mapping before resume.
1941 	 * This must be done before setting the queue restrictions,
1942 	 * because request-based dm may be run just after the setting.
1943 	 */
1944 	if (dm_table_request_based(t)) {
1945 		dm_stop_queue(q);
1946 		/*
1947 		 * Leverage the fact that request-based DM targets are
1948 		 * immutable singletons and establish md->immutable_target
1949 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1950 		 */
1951 		md->immutable_target = dm_table_get_immutable_target(t);
1952 	}
1953 
1954 	__bind_mempools(md, t);
1955 
1956 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1957 	rcu_assign_pointer(md->map, (void *)t);
1958 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1959 
1960 	dm_table_set_restrictions(t, q, limits);
1961 	if (old_map)
1962 		dm_sync_table(md);
1963 
1964 	return old_map;
1965 }
1966 
1967 /*
1968  * Returns unbound table for the caller to free.
1969  */
1970 static struct dm_table *__unbind(struct mapped_device *md)
1971 {
1972 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1973 
1974 	if (!map)
1975 		return NULL;
1976 
1977 	dm_table_event_callback(map, NULL, NULL);
1978 	RCU_INIT_POINTER(md->map, NULL);
1979 	dm_sync_table(md);
1980 
1981 	return map;
1982 }
1983 
1984 /*
1985  * Constructor for a new device.
1986  */
1987 int dm_create(int minor, struct mapped_device **result)
1988 {
1989 	struct mapped_device *md;
1990 
1991 	md = alloc_dev(minor);
1992 	if (!md)
1993 		return -ENXIO;
1994 
1995 	dm_sysfs_init(md);
1996 
1997 	*result = md;
1998 	return 0;
1999 }
2000 
2001 /*
2002  * Functions to manage md->type.
2003  * All are required to hold md->type_lock.
2004  */
2005 void dm_lock_md_type(struct mapped_device *md)
2006 {
2007 	mutex_lock(&md->type_lock);
2008 }
2009 
2010 void dm_unlock_md_type(struct mapped_device *md)
2011 {
2012 	mutex_unlock(&md->type_lock);
2013 }
2014 
2015 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2016 {
2017 	BUG_ON(!mutex_is_locked(&md->type_lock));
2018 	md->type = type;
2019 }
2020 
2021 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2022 {
2023 	return md->type;
2024 }
2025 
2026 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2027 {
2028 	return md->immutable_target_type;
2029 }
2030 
2031 /*
2032  * The queue_limits are only valid as long as you have a reference
2033  * count on 'md'.
2034  */
2035 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2036 {
2037 	BUG_ON(!atomic_read(&md->holders));
2038 	return &md->queue->limits;
2039 }
2040 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2041 
2042 /*
2043  * Setup the DM device's queue based on md's type
2044  */
2045 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2046 {
2047 	int r;
2048 	enum dm_queue_mode type = dm_get_md_type(md);
2049 
2050 	switch (type) {
2051 	case DM_TYPE_REQUEST_BASED:
2052 		r = dm_old_init_request_queue(md, t);
2053 		if (r) {
2054 			DMERR("Cannot initialize queue for request-based mapped device");
2055 			return r;
2056 		}
2057 		break;
2058 	case DM_TYPE_MQ_REQUEST_BASED:
2059 		r = dm_mq_init_request_queue(md, t);
2060 		if (r) {
2061 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2062 			return r;
2063 		}
2064 		break;
2065 	case DM_TYPE_BIO_BASED:
2066 	case DM_TYPE_DAX_BIO_BASED:
2067 		dm_init_normal_md_queue(md);
2068 		blk_queue_make_request(md->queue, dm_make_request);
2069 		/*
2070 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2071 		 * since it won't be used (saves 1 process per bio-based DM device).
2072 		 */
2073 		bioset_free(md->queue->bio_split);
2074 		md->queue->bio_split = NULL;
2075 
2076 		if (type == DM_TYPE_DAX_BIO_BASED)
2077 			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
2078 		break;
2079 	case DM_TYPE_NONE:
2080 		WARN_ON_ONCE(true);
2081 		break;
2082 	}
2083 
2084 	return 0;
2085 }
2086 
2087 struct mapped_device *dm_get_md(dev_t dev)
2088 {
2089 	struct mapped_device *md;
2090 	unsigned minor = MINOR(dev);
2091 
2092 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2093 		return NULL;
2094 
2095 	spin_lock(&_minor_lock);
2096 
2097 	md = idr_find(&_minor_idr, minor);
2098 	if (md) {
2099 		if ((md == MINOR_ALLOCED ||
2100 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2101 		     dm_deleting_md(md) ||
2102 		     test_bit(DMF_FREEING, &md->flags))) {
2103 			md = NULL;
2104 			goto out;
2105 		}
2106 		dm_get(md);
2107 	}
2108 
2109 out:
2110 	spin_unlock(&_minor_lock);
2111 
2112 	return md;
2113 }
2114 EXPORT_SYMBOL_GPL(dm_get_md);
2115 
2116 void *dm_get_mdptr(struct mapped_device *md)
2117 {
2118 	return md->interface_ptr;
2119 }
2120 
2121 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2122 {
2123 	md->interface_ptr = ptr;
2124 }
2125 
2126 void dm_get(struct mapped_device *md)
2127 {
2128 	atomic_inc(&md->holders);
2129 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2130 }
2131 
2132 int dm_hold(struct mapped_device *md)
2133 {
2134 	spin_lock(&_minor_lock);
2135 	if (test_bit(DMF_FREEING, &md->flags)) {
2136 		spin_unlock(&_minor_lock);
2137 		return -EBUSY;
2138 	}
2139 	dm_get(md);
2140 	spin_unlock(&_minor_lock);
2141 	return 0;
2142 }
2143 EXPORT_SYMBOL_GPL(dm_hold);
2144 
2145 const char *dm_device_name(struct mapped_device *md)
2146 {
2147 	return md->name;
2148 }
2149 EXPORT_SYMBOL_GPL(dm_device_name);
2150 
2151 static void __dm_destroy(struct mapped_device *md, bool wait)
2152 {
2153 	struct request_queue *q = dm_get_md_queue(md);
2154 	struct dm_table *map;
2155 	int srcu_idx;
2156 
2157 	might_sleep();
2158 
2159 	spin_lock(&_minor_lock);
2160 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2161 	set_bit(DMF_FREEING, &md->flags);
2162 	spin_unlock(&_minor_lock);
2163 
2164 	blk_set_queue_dying(q);
2165 
2166 	if (dm_request_based(md) && md->kworker_task)
2167 		kthread_flush_worker(&md->kworker);
2168 
2169 	/*
2170 	 * Take suspend_lock so that presuspend and postsuspend methods
2171 	 * do not race with internal suspend.
2172 	 */
2173 	mutex_lock(&md->suspend_lock);
2174 	map = dm_get_live_table(md, &srcu_idx);
2175 	if (!dm_suspended_md(md)) {
2176 		dm_table_presuspend_targets(map);
2177 		dm_table_postsuspend_targets(map);
2178 	}
2179 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2180 	dm_put_live_table(md, srcu_idx);
2181 	mutex_unlock(&md->suspend_lock);
2182 
2183 	/*
2184 	 * Rare, but there may be I/O requests still going to complete,
2185 	 * for example.  Wait for all references to disappear.
2186 	 * No one should increment the reference count of the mapped_device,
2187 	 * after the mapped_device state becomes DMF_FREEING.
2188 	 */
2189 	if (wait)
2190 		while (atomic_read(&md->holders))
2191 			msleep(1);
2192 	else if (atomic_read(&md->holders))
2193 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2194 		       dm_device_name(md), atomic_read(&md->holders));
2195 
2196 	dm_sysfs_exit(md);
2197 	dm_table_destroy(__unbind(md));
2198 	free_dev(md);
2199 }
2200 
2201 void dm_destroy(struct mapped_device *md)
2202 {
2203 	__dm_destroy(md, true);
2204 }
2205 
2206 void dm_destroy_immediate(struct mapped_device *md)
2207 {
2208 	__dm_destroy(md, false);
2209 }
2210 
2211 void dm_put(struct mapped_device *md)
2212 {
2213 	atomic_dec(&md->holders);
2214 }
2215 EXPORT_SYMBOL_GPL(dm_put);
2216 
2217 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2218 {
2219 	int r = 0;
2220 	DEFINE_WAIT(wait);
2221 
2222 	while (1) {
2223 		prepare_to_wait(&md->wait, &wait, task_state);
2224 
2225 		if (!md_in_flight(md))
2226 			break;
2227 
2228 		if (signal_pending_state(task_state, current)) {
2229 			r = -EINTR;
2230 			break;
2231 		}
2232 
2233 		io_schedule();
2234 	}
2235 	finish_wait(&md->wait, &wait);
2236 
2237 	return r;
2238 }
2239 
2240 /*
2241  * Process the deferred bios
2242  */
2243 static void dm_wq_work(struct work_struct *work)
2244 {
2245 	struct mapped_device *md = container_of(work, struct mapped_device,
2246 						work);
2247 	struct bio *c;
2248 	int srcu_idx;
2249 	struct dm_table *map;
2250 
2251 	map = dm_get_live_table(md, &srcu_idx);
2252 
2253 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2254 		spin_lock_irq(&md->deferred_lock);
2255 		c = bio_list_pop(&md->deferred);
2256 		spin_unlock_irq(&md->deferred_lock);
2257 
2258 		if (!c)
2259 			break;
2260 
2261 		if (dm_request_based(md))
2262 			generic_make_request(c);
2263 		else
2264 			__split_and_process_bio(md, map, c);
2265 	}
2266 
2267 	dm_put_live_table(md, srcu_idx);
2268 }
2269 
2270 static void dm_queue_flush(struct mapped_device *md)
2271 {
2272 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2273 	smp_mb__after_atomic();
2274 	queue_work(md->wq, &md->work);
2275 }
2276 
2277 /*
2278  * Swap in a new table, returning the old one for the caller to destroy.
2279  */
2280 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2281 {
2282 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2283 	struct queue_limits limits;
2284 	int r;
2285 
2286 	mutex_lock(&md->suspend_lock);
2287 
2288 	/* device must be suspended */
2289 	if (!dm_suspended_md(md))
2290 		goto out;
2291 
2292 	/*
2293 	 * If the new table has no data devices, retain the existing limits.
2294 	 * This helps multipath with queue_if_no_path if all paths disappear,
2295 	 * then new I/O is queued based on these limits, and then some paths
2296 	 * reappear.
2297 	 */
2298 	if (dm_table_has_no_data_devices(table)) {
2299 		live_map = dm_get_live_table_fast(md);
2300 		if (live_map)
2301 			limits = md->queue->limits;
2302 		dm_put_live_table_fast(md);
2303 	}
2304 
2305 	if (!live_map) {
2306 		r = dm_calculate_queue_limits(table, &limits);
2307 		if (r) {
2308 			map = ERR_PTR(r);
2309 			goto out;
2310 		}
2311 	}
2312 
2313 	map = __bind(md, table, &limits);
2314 
2315 out:
2316 	mutex_unlock(&md->suspend_lock);
2317 	return map;
2318 }
2319 
2320 /*
2321  * Functions to lock and unlock any filesystem running on the
2322  * device.
2323  */
2324 static int lock_fs(struct mapped_device *md)
2325 {
2326 	int r;
2327 
2328 	WARN_ON(md->frozen_sb);
2329 
2330 	md->frozen_sb = freeze_bdev(md->bdev);
2331 	if (IS_ERR(md->frozen_sb)) {
2332 		r = PTR_ERR(md->frozen_sb);
2333 		md->frozen_sb = NULL;
2334 		return r;
2335 	}
2336 
2337 	set_bit(DMF_FROZEN, &md->flags);
2338 
2339 	return 0;
2340 }
2341 
2342 static void unlock_fs(struct mapped_device *md)
2343 {
2344 	if (!test_bit(DMF_FROZEN, &md->flags))
2345 		return;
2346 
2347 	thaw_bdev(md->bdev, md->frozen_sb);
2348 	md->frozen_sb = NULL;
2349 	clear_bit(DMF_FROZEN, &md->flags);
2350 }
2351 
2352 /*
2353  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2354  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2355  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2356  *
2357  * If __dm_suspend returns 0, the device is completely quiescent
2358  * now. There is no request-processing activity. All new requests
2359  * are being added to md->deferred list.
2360  */
2361 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2362 			unsigned suspend_flags, long task_state,
2363 			int dmf_suspended_flag)
2364 {
2365 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2366 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2367 	int r;
2368 
2369 	lockdep_assert_held(&md->suspend_lock);
2370 
2371 	/*
2372 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2373 	 * This flag is cleared before dm_suspend returns.
2374 	 */
2375 	if (noflush)
2376 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2377 	else
2378 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2379 
2380 	/*
2381 	 * This gets reverted if there's an error later and the targets
2382 	 * provide the .presuspend_undo hook.
2383 	 */
2384 	dm_table_presuspend_targets(map);
2385 
2386 	/*
2387 	 * Flush I/O to the device.
2388 	 * Any I/O submitted after lock_fs() may not be flushed.
2389 	 * noflush takes precedence over do_lockfs.
2390 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2391 	 */
2392 	if (!noflush && do_lockfs) {
2393 		r = lock_fs(md);
2394 		if (r) {
2395 			dm_table_presuspend_undo_targets(map);
2396 			return r;
2397 		}
2398 	}
2399 
2400 	/*
2401 	 * Here we must make sure that no processes are submitting requests
2402 	 * to target drivers i.e. no one may be executing
2403 	 * __split_and_process_bio. This is called from dm_request and
2404 	 * dm_wq_work.
2405 	 *
2406 	 * To get all processes out of __split_and_process_bio in dm_request,
2407 	 * we take the write lock. To prevent any process from reentering
2408 	 * __split_and_process_bio from dm_request and quiesce the thread
2409 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2410 	 * flush_workqueue(md->wq).
2411 	 */
2412 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2413 	if (map)
2414 		synchronize_srcu(&md->io_barrier);
2415 
2416 	/*
2417 	 * Stop md->queue before flushing md->wq in case request-based
2418 	 * dm defers requests to md->wq from md->queue.
2419 	 */
2420 	if (dm_request_based(md)) {
2421 		dm_stop_queue(md->queue);
2422 		if (md->kworker_task)
2423 			kthread_flush_worker(&md->kworker);
2424 	}
2425 
2426 	flush_workqueue(md->wq);
2427 
2428 	/*
2429 	 * At this point no more requests are entering target request routines.
2430 	 * We call dm_wait_for_completion to wait for all existing requests
2431 	 * to finish.
2432 	 */
2433 	r = dm_wait_for_completion(md, task_state);
2434 	if (!r)
2435 		set_bit(dmf_suspended_flag, &md->flags);
2436 
2437 	if (noflush)
2438 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2439 	if (map)
2440 		synchronize_srcu(&md->io_barrier);
2441 
2442 	/* were we interrupted ? */
2443 	if (r < 0) {
2444 		dm_queue_flush(md);
2445 
2446 		if (dm_request_based(md))
2447 			dm_start_queue(md->queue);
2448 
2449 		unlock_fs(md);
2450 		dm_table_presuspend_undo_targets(map);
2451 		/* pushback list is already flushed, so skip flush */
2452 	}
2453 
2454 	return r;
2455 }
2456 
2457 /*
2458  * We need to be able to change a mapping table under a mounted
2459  * filesystem.  For example we might want to move some data in
2460  * the background.  Before the table can be swapped with
2461  * dm_bind_table, dm_suspend must be called to flush any in
2462  * flight bios and ensure that any further io gets deferred.
2463  */
2464 /*
2465  * Suspend mechanism in request-based dm.
2466  *
2467  * 1. Flush all I/Os by lock_fs() if needed.
2468  * 2. Stop dispatching any I/O by stopping the request_queue.
2469  * 3. Wait for all in-flight I/Os to be completed or requeued.
2470  *
2471  * To abort suspend, start the request_queue.
2472  */
2473 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2474 {
2475 	struct dm_table *map = NULL;
2476 	int r = 0;
2477 
2478 retry:
2479 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2480 
2481 	if (dm_suspended_md(md)) {
2482 		r = -EINVAL;
2483 		goto out_unlock;
2484 	}
2485 
2486 	if (dm_suspended_internally_md(md)) {
2487 		/* already internally suspended, wait for internal resume */
2488 		mutex_unlock(&md->suspend_lock);
2489 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2490 		if (r)
2491 			return r;
2492 		goto retry;
2493 	}
2494 
2495 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2496 
2497 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2498 	if (r)
2499 		goto out_unlock;
2500 
2501 	dm_table_postsuspend_targets(map);
2502 
2503 out_unlock:
2504 	mutex_unlock(&md->suspend_lock);
2505 	return r;
2506 }
2507 
2508 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2509 {
2510 	if (map) {
2511 		int r = dm_table_resume_targets(map);
2512 		if (r)
2513 			return r;
2514 	}
2515 
2516 	dm_queue_flush(md);
2517 
2518 	/*
2519 	 * Flushing deferred I/Os must be done after targets are resumed
2520 	 * so that mapping of targets can work correctly.
2521 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2522 	 */
2523 	if (dm_request_based(md))
2524 		dm_start_queue(md->queue);
2525 
2526 	unlock_fs(md);
2527 
2528 	return 0;
2529 }
2530 
2531 int dm_resume(struct mapped_device *md)
2532 {
2533 	int r;
2534 	struct dm_table *map = NULL;
2535 
2536 retry:
2537 	r = -EINVAL;
2538 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2539 
2540 	if (!dm_suspended_md(md))
2541 		goto out;
2542 
2543 	if (dm_suspended_internally_md(md)) {
2544 		/* already internally suspended, wait for internal resume */
2545 		mutex_unlock(&md->suspend_lock);
2546 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2547 		if (r)
2548 			return r;
2549 		goto retry;
2550 	}
2551 
2552 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2553 	if (!map || !dm_table_get_size(map))
2554 		goto out;
2555 
2556 	r = __dm_resume(md, map);
2557 	if (r)
2558 		goto out;
2559 
2560 	clear_bit(DMF_SUSPENDED, &md->flags);
2561 out:
2562 	mutex_unlock(&md->suspend_lock);
2563 
2564 	return r;
2565 }
2566 
2567 /*
2568  * Internal suspend/resume works like userspace-driven suspend. It waits
2569  * until all bios finish and prevents issuing new bios to the target drivers.
2570  * It may be used only from the kernel.
2571  */
2572 
2573 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2574 {
2575 	struct dm_table *map = NULL;
2576 
2577 	lockdep_assert_held(&md->suspend_lock);
2578 
2579 	if (md->internal_suspend_count++)
2580 		return; /* nested internal suspend */
2581 
2582 	if (dm_suspended_md(md)) {
2583 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2584 		return; /* nest suspend */
2585 	}
2586 
2587 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2588 
2589 	/*
2590 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2591 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2592 	 * would require changing .presuspend to return an error -- avoid this
2593 	 * until there is a need for more elaborate variants of internal suspend.
2594 	 */
2595 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2596 			    DMF_SUSPENDED_INTERNALLY);
2597 
2598 	dm_table_postsuspend_targets(map);
2599 }
2600 
2601 static void __dm_internal_resume(struct mapped_device *md)
2602 {
2603 	BUG_ON(!md->internal_suspend_count);
2604 
2605 	if (--md->internal_suspend_count)
2606 		return; /* resume from nested internal suspend */
2607 
2608 	if (dm_suspended_md(md))
2609 		goto done; /* resume from nested suspend */
2610 
2611 	/*
2612 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2613 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2614 	 */
2615 	(void) __dm_resume(md, NULL);
2616 
2617 done:
2618 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2619 	smp_mb__after_atomic();
2620 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2621 }
2622 
2623 void dm_internal_suspend_noflush(struct mapped_device *md)
2624 {
2625 	mutex_lock(&md->suspend_lock);
2626 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2627 	mutex_unlock(&md->suspend_lock);
2628 }
2629 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2630 
2631 void dm_internal_resume(struct mapped_device *md)
2632 {
2633 	mutex_lock(&md->suspend_lock);
2634 	__dm_internal_resume(md);
2635 	mutex_unlock(&md->suspend_lock);
2636 }
2637 EXPORT_SYMBOL_GPL(dm_internal_resume);
2638 
2639 /*
2640  * Fast variants of internal suspend/resume hold md->suspend_lock,
2641  * which prevents interaction with userspace-driven suspend.
2642  */
2643 
2644 void dm_internal_suspend_fast(struct mapped_device *md)
2645 {
2646 	mutex_lock(&md->suspend_lock);
2647 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2648 		return;
2649 
2650 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2651 	synchronize_srcu(&md->io_barrier);
2652 	flush_workqueue(md->wq);
2653 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2654 }
2655 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2656 
2657 void dm_internal_resume_fast(struct mapped_device *md)
2658 {
2659 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2660 		goto done;
2661 
2662 	dm_queue_flush(md);
2663 
2664 done:
2665 	mutex_unlock(&md->suspend_lock);
2666 }
2667 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2668 
2669 /*-----------------------------------------------------------------
2670  * Event notification.
2671  *---------------------------------------------------------------*/
2672 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2673 		       unsigned cookie)
2674 {
2675 	char udev_cookie[DM_COOKIE_LENGTH];
2676 	char *envp[] = { udev_cookie, NULL };
2677 
2678 	if (!cookie)
2679 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2680 	else {
2681 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2682 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2683 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2684 					  action, envp);
2685 	}
2686 }
2687 
2688 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2689 {
2690 	return atomic_add_return(1, &md->uevent_seq);
2691 }
2692 
2693 uint32_t dm_get_event_nr(struct mapped_device *md)
2694 {
2695 	return atomic_read(&md->event_nr);
2696 }
2697 
2698 int dm_wait_event(struct mapped_device *md, int event_nr)
2699 {
2700 	return wait_event_interruptible(md->eventq,
2701 			(event_nr != atomic_read(&md->event_nr)));
2702 }
2703 
2704 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2705 {
2706 	unsigned long flags;
2707 
2708 	spin_lock_irqsave(&md->uevent_lock, flags);
2709 	list_add(elist, &md->uevent_list);
2710 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2711 }
2712 
2713 /*
2714  * The gendisk is only valid as long as you have a reference
2715  * count on 'md'.
2716  */
2717 struct gendisk *dm_disk(struct mapped_device *md)
2718 {
2719 	return md->disk;
2720 }
2721 EXPORT_SYMBOL_GPL(dm_disk);
2722 
2723 struct kobject *dm_kobject(struct mapped_device *md)
2724 {
2725 	return &md->kobj_holder.kobj;
2726 }
2727 
2728 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2729 {
2730 	struct mapped_device *md;
2731 
2732 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2733 
2734 	if (test_bit(DMF_FREEING, &md->flags) ||
2735 	    dm_deleting_md(md))
2736 		return NULL;
2737 
2738 	dm_get(md);
2739 	return md;
2740 }
2741 
2742 int dm_suspended_md(struct mapped_device *md)
2743 {
2744 	return test_bit(DMF_SUSPENDED, &md->flags);
2745 }
2746 
2747 int dm_suspended_internally_md(struct mapped_device *md)
2748 {
2749 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2750 }
2751 
2752 int dm_test_deferred_remove_flag(struct mapped_device *md)
2753 {
2754 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2755 }
2756 
2757 int dm_suspended(struct dm_target *ti)
2758 {
2759 	return dm_suspended_md(dm_table_get_md(ti->table));
2760 }
2761 EXPORT_SYMBOL_GPL(dm_suspended);
2762 
2763 int dm_noflush_suspending(struct dm_target *ti)
2764 {
2765 	return __noflush_suspending(dm_table_get_md(ti->table));
2766 }
2767 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2768 
2769 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2770 					    unsigned integrity, unsigned per_io_data_size)
2771 {
2772 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2773 	unsigned int pool_size = 0;
2774 	unsigned int front_pad;
2775 
2776 	if (!pools)
2777 		return NULL;
2778 
2779 	switch (type) {
2780 	case DM_TYPE_BIO_BASED:
2781 	case DM_TYPE_DAX_BIO_BASED:
2782 		pool_size = dm_get_reserved_bio_based_ios();
2783 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2784 
2785 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2786 		if (!pools->io_pool)
2787 			goto out;
2788 		break;
2789 	case DM_TYPE_REQUEST_BASED:
2790 	case DM_TYPE_MQ_REQUEST_BASED:
2791 		pool_size = dm_get_reserved_rq_based_ios();
2792 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2793 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2794 		break;
2795 	default:
2796 		BUG();
2797 	}
2798 
2799 	pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2800 	if (!pools->bs)
2801 		goto out;
2802 
2803 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2804 		goto out;
2805 
2806 	return pools;
2807 
2808 out:
2809 	dm_free_md_mempools(pools);
2810 
2811 	return NULL;
2812 }
2813 
2814 void dm_free_md_mempools(struct dm_md_mempools *pools)
2815 {
2816 	if (!pools)
2817 		return;
2818 
2819 	mempool_destroy(pools->io_pool);
2820 
2821 	if (pools->bs)
2822 		bioset_free(pools->bs);
2823 
2824 	kfree(pools);
2825 }
2826 
2827 struct dm_pr {
2828 	u64	old_key;
2829 	u64	new_key;
2830 	u32	flags;
2831 	bool	fail_early;
2832 };
2833 
2834 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2835 		      void *data)
2836 {
2837 	struct mapped_device *md = bdev->bd_disk->private_data;
2838 	struct dm_table *table;
2839 	struct dm_target *ti;
2840 	int ret = -ENOTTY, srcu_idx;
2841 
2842 	table = dm_get_live_table(md, &srcu_idx);
2843 	if (!table || !dm_table_get_size(table))
2844 		goto out;
2845 
2846 	/* We only support devices that have a single target */
2847 	if (dm_table_get_num_targets(table) != 1)
2848 		goto out;
2849 	ti = dm_table_get_target(table, 0);
2850 
2851 	ret = -EINVAL;
2852 	if (!ti->type->iterate_devices)
2853 		goto out;
2854 
2855 	ret = ti->type->iterate_devices(ti, fn, data);
2856 out:
2857 	dm_put_live_table(md, srcu_idx);
2858 	return ret;
2859 }
2860 
2861 /*
2862  * For register / unregister we need to manually call out to every path.
2863  */
2864 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2865 			    sector_t start, sector_t len, void *data)
2866 {
2867 	struct dm_pr *pr = data;
2868 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2869 
2870 	if (!ops || !ops->pr_register)
2871 		return -EOPNOTSUPP;
2872 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2873 }
2874 
2875 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2876 			  u32 flags)
2877 {
2878 	struct dm_pr pr = {
2879 		.old_key	= old_key,
2880 		.new_key	= new_key,
2881 		.flags		= flags,
2882 		.fail_early	= true,
2883 	};
2884 	int ret;
2885 
2886 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2887 	if (ret && new_key) {
2888 		/* unregister all paths if we failed to register any path */
2889 		pr.old_key = new_key;
2890 		pr.new_key = 0;
2891 		pr.flags = 0;
2892 		pr.fail_early = false;
2893 		dm_call_pr(bdev, __dm_pr_register, &pr);
2894 	}
2895 
2896 	return ret;
2897 }
2898 
2899 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2900 			 u32 flags)
2901 {
2902 	struct mapped_device *md = bdev->bd_disk->private_data;
2903 	const struct pr_ops *ops;
2904 	fmode_t mode;
2905 	int r;
2906 
2907 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2908 	if (r < 0)
2909 		return r;
2910 
2911 	ops = bdev->bd_disk->fops->pr_ops;
2912 	if (ops && ops->pr_reserve)
2913 		r = ops->pr_reserve(bdev, key, type, flags);
2914 	else
2915 		r = -EOPNOTSUPP;
2916 
2917 	bdput(bdev);
2918 	return r;
2919 }
2920 
2921 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2922 {
2923 	struct mapped_device *md = bdev->bd_disk->private_data;
2924 	const struct pr_ops *ops;
2925 	fmode_t mode;
2926 	int r;
2927 
2928 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2929 	if (r < 0)
2930 		return r;
2931 
2932 	ops = bdev->bd_disk->fops->pr_ops;
2933 	if (ops && ops->pr_release)
2934 		r = ops->pr_release(bdev, key, type);
2935 	else
2936 		r = -EOPNOTSUPP;
2937 
2938 	bdput(bdev);
2939 	return r;
2940 }
2941 
2942 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2943 			 enum pr_type type, bool abort)
2944 {
2945 	struct mapped_device *md = bdev->bd_disk->private_data;
2946 	const struct pr_ops *ops;
2947 	fmode_t mode;
2948 	int r;
2949 
2950 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2951 	if (r < 0)
2952 		return r;
2953 
2954 	ops = bdev->bd_disk->fops->pr_ops;
2955 	if (ops && ops->pr_preempt)
2956 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2957 	else
2958 		r = -EOPNOTSUPP;
2959 
2960 	bdput(bdev);
2961 	return r;
2962 }
2963 
2964 static int dm_pr_clear(struct block_device *bdev, u64 key)
2965 {
2966 	struct mapped_device *md = bdev->bd_disk->private_data;
2967 	const struct pr_ops *ops;
2968 	fmode_t mode;
2969 	int r;
2970 
2971 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2972 	if (r < 0)
2973 		return r;
2974 
2975 	ops = bdev->bd_disk->fops->pr_ops;
2976 	if (ops && ops->pr_clear)
2977 		r = ops->pr_clear(bdev, key);
2978 	else
2979 		r = -EOPNOTSUPP;
2980 
2981 	bdput(bdev);
2982 	return r;
2983 }
2984 
2985 static const struct pr_ops dm_pr_ops = {
2986 	.pr_register	= dm_pr_register,
2987 	.pr_reserve	= dm_pr_reserve,
2988 	.pr_release	= dm_pr_release,
2989 	.pr_preempt	= dm_pr_preempt,
2990 	.pr_clear	= dm_pr_clear,
2991 };
2992 
2993 static const struct block_device_operations dm_blk_dops = {
2994 	.open = dm_blk_open,
2995 	.release = dm_blk_close,
2996 	.ioctl = dm_blk_ioctl,
2997 	.getgeo = dm_blk_getgeo,
2998 	.pr_ops = &dm_pr_ops,
2999 	.owner = THIS_MODULE
3000 };
3001 
3002 static const struct dax_operations dm_dax_ops = {
3003 	.direct_access = dm_dax_direct_access,
3004 	.copy_from_iter = dm_dax_copy_from_iter,
3005 	.flush = dm_dax_flush,
3006 };
3007 
3008 /*
3009  * module hooks
3010  */
3011 module_init(dm_init);
3012 module_exit(dm_exit);
3013 
3014 module_param(major, uint, 0);
3015 MODULE_PARM_DESC(major, "The major number of the device mapper");
3016 
3017 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3018 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3019 
3020 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3021 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3022 
3023 MODULE_DESCRIPTION(DM_NAME " driver");
3024 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3025 MODULE_LICENSE("GPL");
3026