xref: /openbmc/linux/drivers/md/dm.c (revision 97da55fc)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57 	struct mapped_device *md;
58 	int error;
59 	atomic_t io_count;
60 	struct bio *bio;
61 	unsigned long start_time;
62 	spinlock_t endio_lock;
63 };
64 
65 /*
66  * For request-based dm.
67  * One of these is allocated per request.
68  */
69 struct dm_rq_target_io {
70 	struct mapped_device *md;
71 	struct dm_target *ti;
72 	struct request *orig, clone;
73 	int error;
74 	union map_info info;
75 };
76 
77 /*
78  * For request-based dm - the bio clones we allocate are embedded in these
79  * structs.
80  *
81  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82  * the bioset is created - this means the bio has to come at the end of the
83  * struct.
84  */
85 struct dm_rq_clone_bio_info {
86 	struct bio *orig;
87 	struct dm_rq_target_io *tio;
88 	struct bio clone;
89 };
90 
91 union map_info *dm_get_mapinfo(struct bio *bio)
92 {
93 	if (bio && bio->bi_private)
94 		return &((struct dm_target_io *)bio->bi_private)->info;
95 	return NULL;
96 }
97 
98 union map_info *dm_get_rq_mapinfo(struct request *rq)
99 {
100 	if (rq && rq->end_io_data)
101 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
102 	return NULL;
103 }
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
105 
106 #define MINOR_ALLOCED ((void *)-1)
107 
108 /*
109  * Bits for the md->flags field.
110  */
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
113 #define DMF_FROZEN 2
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
118 
119 /*
120  * Work processed by per-device workqueue.
121  */
122 struct mapped_device {
123 	struct rw_semaphore io_lock;
124 	struct mutex suspend_lock;
125 	rwlock_t map_lock;
126 	atomic_t holders;
127 	atomic_t open_count;
128 
129 	unsigned long flags;
130 
131 	struct request_queue *queue;
132 	unsigned type;
133 	/* Protect queue and type against concurrent access. */
134 	struct mutex type_lock;
135 
136 	struct target_type *immutable_target_type;
137 
138 	struct gendisk *disk;
139 	char name[16];
140 
141 	void *interface_ptr;
142 
143 	/*
144 	 * A list of ios that arrived while we were suspended.
145 	 */
146 	atomic_t pending[2];
147 	wait_queue_head_t wait;
148 	struct work_struct work;
149 	struct bio_list deferred;
150 	spinlock_t deferred_lock;
151 
152 	/*
153 	 * Processing queue (flush)
154 	 */
155 	struct workqueue_struct *wq;
156 
157 	/*
158 	 * The current mapping.
159 	 */
160 	struct dm_table *map;
161 
162 	/*
163 	 * io objects are allocated from here.
164 	 */
165 	mempool_t *io_pool;
166 
167 	struct bio_set *bs;
168 
169 	/*
170 	 * Event handling.
171 	 */
172 	atomic_t event_nr;
173 	wait_queue_head_t eventq;
174 	atomic_t uevent_seq;
175 	struct list_head uevent_list;
176 	spinlock_t uevent_lock; /* Protect access to uevent_list */
177 
178 	/*
179 	 * freeze/thaw support require holding onto a super block
180 	 */
181 	struct super_block *frozen_sb;
182 	struct block_device *bdev;
183 
184 	/* forced geometry settings */
185 	struct hd_geometry geometry;
186 
187 	/* sysfs handle */
188 	struct kobject kobj;
189 
190 	/* zero-length flush that will be cloned and submitted to targets */
191 	struct bio flush_bio;
192 };
193 
194 /*
195  * For mempools pre-allocation at the table loading time.
196  */
197 struct dm_md_mempools {
198 	mempool_t *io_pool;
199 	struct bio_set *bs;
200 };
201 
202 #define MIN_IOS 256
203 static struct kmem_cache *_io_cache;
204 static struct kmem_cache *_rq_tio_cache;
205 
206 static int __init local_init(void)
207 {
208 	int r = -ENOMEM;
209 
210 	/* allocate a slab for the dm_ios */
211 	_io_cache = KMEM_CACHE(dm_io, 0);
212 	if (!_io_cache)
213 		return r;
214 
215 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
216 	if (!_rq_tio_cache)
217 		goto out_free_io_cache;
218 
219 	r = dm_uevent_init();
220 	if (r)
221 		goto out_free_rq_tio_cache;
222 
223 	_major = major;
224 	r = register_blkdev(_major, _name);
225 	if (r < 0)
226 		goto out_uevent_exit;
227 
228 	if (!_major)
229 		_major = r;
230 
231 	return 0;
232 
233 out_uevent_exit:
234 	dm_uevent_exit();
235 out_free_rq_tio_cache:
236 	kmem_cache_destroy(_rq_tio_cache);
237 out_free_io_cache:
238 	kmem_cache_destroy(_io_cache);
239 
240 	return r;
241 }
242 
243 static void local_exit(void)
244 {
245 	kmem_cache_destroy(_rq_tio_cache);
246 	kmem_cache_destroy(_io_cache);
247 	unregister_blkdev(_major, _name);
248 	dm_uevent_exit();
249 
250 	_major = 0;
251 
252 	DMINFO("cleaned up");
253 }
254 
255 static int (*_inits[])(void) __initdata = {
256 	local_init,
257 	dm_target_init,
258 	dm_linear_init,
259 	dm_stripe_init,
260 	dm_io_init,
261 	dm_kcopyd_init,
262 	dm_interface_init,
263 };
264 
265 static void (*_exits[])(void) = {
266 	local_exit,
267 	dm_target_exit,
268 	dm_linear_exit,
269 	dm_stripe_exit,
270 	dm_io_exit,
271 	dm_kcopyd_exit,
272 	dm_interface_exit,
273 };
274 
275 static int __init dm_init(void)
276 {
277 	const int count = ARRAY_SIZE(_inits);
278 
279 	int r, i;
280 
281 	for (i = 0; i < count; i++) {
282 		r = _inits[i]();
283 		if (r)
284 			goto bad;
285 	}
286 
287 	return 0;
288 
289       bad:
290 	while (i--)
291 		_exits[i]();
292 
293 	return r;
294 }
295 
296 static void __exit dm_exit(void)
297 {
298 	int i = ARRAY_SIZE(_exits);
299 
300 	while (i--)
301 		_exits[i]();
302 
303 	/*
304 	 * Should be empty by this point.
305 	 */
306 	idr_destroy(&_minor_idr);
307 }
308 
309 /*
310  * Block device functions
311  */
312 int dm_deleting_md(struct mapped_device *md)
313 {
314 	return test_bit(DMF_DELETING, &md->flags);
315 }
316 
317 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
318 {
319 	struct mapped_device *md;
320 
321 	spin_lock(&_minor_lock);
322 
323 	md = bdev->bd_disk->private_data;
324 	if (!md)
325 		goto out;
326 
327 	if (test_bit(DMF_FREEING, &md->flags) ||
328 	    dm_deleting_md(md)) {
329 		md = NULL;
330 		goto out;
331 	}
332 
333 	dm_get(md);
334 	atomic_inc(&md->open_count);
335 
336 out:
337 	spin_unlock(&_minor_lock);
338 
339 	return md ? 0 : -ENXIO;
340 }
341 
342 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
343 {
344 	struct mapped_device *md = disk->private_data;
345 
346 	spin_lock(&_minor_lock);
347 
348 	atomic_dec(&md->open_count);
349 	dm_put(md);
350 
351 	spin_unlock(&_minor_lock);
352 
353 	return 0;
354 }
355 
356 int dm_open_count(struct mapped_device *md)
357 {
358 	return atomic_read(&md->open_count);
359 }
360 
361 /*
362  * Guarantees nothing is using the device before it's deleted.
363  */
364 int dm_lock_for_deletion(struct mapped_device *md)
365 {
366 	int r = 0;
367 
368 	spin_lock(&_minor_lock);
369 
370 	if (dm_open_count(md))
371 		r = -EBUSY;
372 	else
373 		set_bit(DMF_DELETING, &md->flags);
374 
375 	spin_unlock(&_minor_lock);
376 
377 	return r;
378 }
379 
380 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
381 {
382 	struct mapped_device *md = bdev->bd_disk->private_data;
383 
384 	return dm_get_geometry(md, geo);
385 }
386 
387 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
388 			unsigned int cmd, unsigned long arg)
389 {
390 	struct mapped_device *md = bdev->bd_disk->private_data;
391 	struct dm_table *map = dm_get_live_table(md);
392 	struct dm_target *tgt;
393 	int r = -ENOTTY;
394 
395 	if (!map || !dm_table_get_size(map))
396 		goto out;
397 
398 	/* We only support devices that have a single target */
399 	if (dm_table_get_num_targets(map) != 1)
400 		goto out;
401 
402 	tgt = dm_table_get_target(map, 0);
403 
404 	if (dm_suspended_md(md)) {
405 		r = -EAGAIN;
406 		goto out;
407 	}
408 
409 	if (tgt->type->ioctl)
410 		r = tgt->type->ioctl(tgt, cmd, arg);
411 
412 out:
413 	dm_table_put(map);
414 
415 	return r;
416 }
417 
418 static struct dm_io *alloc_io(struct mapped_device *md)
419 {
420 	return mempool_alloc(md->io_pool, GFP_NOIO);
421 }
422 
423 static void free_io(struct mapped_device *md, struct dm_io *io)
424 {
425 	mempool_free(io, md->io_pool);
426 }
427 
428 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
429 {
430 	bio_put(&tio->clone);
431 }
432 
433 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
434 					    gfp_t gfp_mask)
435 {
436 	return mempool_alloc(md->io_pool, gfp_mask);
437 }
438 
439 static void free_rq_tio(struct dm_rq_target_io *tio)
440 {
441 	mempool_free(tio, tio->md->io_pool);
442 }
443 
444 static int md_in_flight(struct mapped_device *md)
445 {
446 	return atomic_read(&md->pending[READ]) +
447 	       atomic_read(&md->pending[WRITE]);
448 }
449 
450 static void start_io_acct(struct dm_io *io)
451 {
452 	struct mapped_device *md = io->md;
453 	int cpu;
454 	int rw = bio_data_dir(io->bio);
455 
456 	io->start_time = jiffies;
457 
458 	cpu = part_stat_lock();
459 	part_round_stats(cpu, &dm_disk(md)->part0);
460 	part_stat_unlock();
461 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
462 		atomic_inc_return(&md->pending[rw]));
463 }
464 
465 static void end_io_acct(struct dm_io *io)
466 {
467 	struct mapped_device *md = io->md;
468 	struct bio *bio = io->bio;
469 	unsigned long duration = jiffies - io->start_time;
470 	int pending, cpu;
471 	int rw = bio_data_dir(bio);
472 
473 	cpu = part_stat_lock();
474 	part_round_stats(cpu, &dm_disk(md)->part0);
475 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
476 	part_stat_unlock();
477 
478 	/*
479 	 * After this is decremented the bio must not be touched if it is
480 	 * a flush.
481 	 */
482 	pending = atomic_dec_return(&md->pending[rw]);
483 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
484 	pending += atomic_read(&md->pending[rw^0x1]);
485 
486 	/* nudge anyone waiting on suspend queue */
487 	if (!pending)
488 		wake_up(&md->wait);
489 }
490 
491 /*
492  * Add the bio to the list of deferred io.
493  */
494 static void queue_io(struct mapped_device *md, struct bio *bio)
495 {
496 	unsigned long flags;
497 
498 	spin_lock_irqsave(&md->deferred_lock, flags);
499 	bio_list_add(&md->deferred, bio);
500 	spin_unlock_irqrestore(&md->deferred_lock, flags);
501 	queue_work(md->wq, &md->work);
502 }
503 
504 /*
505  * Everyone (including functions in this file), should use this
506  * function to access the md->map field, and make sure they call
507  * dm_table_put() when finished.
508  */
509 struct dm_table *dm_get_live_table(struct mapped_device *md)
510 {
511 	struct dm_table *t;
512 	unsigned long flags;
513 
514 	read_lock_irqsave(&md->map_lock, flags);
515 	t = md->map;
516 	if (t)
517 		dm_table_get(t);
518 	read_unlock_irqrestore(&md->map_lock, flags);
519 
520 	return t;
521 }
522 
523 /*
524  * Get the geometry associated with a dm device
525  */
526 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
527 {
528 	*geo = md->geometry;
529 
530 	return 0;
531 }
532 
533 /*
534  * Set the geometry of a device.
535  */
536 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
537 {
538 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
539 
540 	if (geo->start > sz) {
541 		DMWARN("Start sector is beyond the geometry limits.");
542 		return -EINVAL;
543 	}
544 
545 	md->geometry = *geo;
546 
547 	return 0;
548 }
549 
550 /*-----------------------------------------------------------------
551  * CRUD START:
552  *   A more elegant soln is in the works that uses the queue
553  *   merge fn, unfortunately there are a couple of changes to
554  *   the block layer that I want to make for this.  So in the
555  *   interests of getting something for people to use I give
556  *   you this clearly demarcated crap.
557  *---------------------------------------------------------------*/
558 
559 static int __noflush_suspending(struct mapped_device *md)
560 {
561 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
562 }
563 
564 /*
565  * Decrements the number of outstanding ios that a bio has been
566  * cloned into, completing the original io if necc.
567  */
568 static void dec_pending(struct dm_io *io, int error)
569 {
570 	unsigned long flags;
571 	int io_error;
572 	struct bio *bio;
573 	struct mapped_device *md = io->md;
574 
575 	/* Push-back supersedes any I/O errors */
576 	if (unlikely(error)) {
577 		spin_lock_irqsave(&io->endio_lock, flags);
578 		if (!(io->error > 0 && __noflush_suspending(md)))
579 			io->error = error;
580 		spin_unlock_irqrestore(&io->endio_lock, flags);
581 	}
582 
583 	if (atomic_dec_and_test(&io->io_count)) {
584 		if (io->error == DM_ENDIO_REQUEUE) {
585 			/*
586 			 * Target requested pushing back the I/O.
587 			 */
588 			spin_lock_irqsave(&md->deferred_lock, flags);
589 			if (__noflush_suspending(md))
590 				bio_list_add_head(&md->deferred, io->bio);
591 			else
592 				/* noflush suspend was interrupted. */
593 				io->error = -EIO;
594 			spin_unlock_irqrestore(&md->deferred_lock, flags);
595 		}
596 
597 		io_error = io->error;
598 		bio = io->bio;
599 		end_io_acct(io);
600 		free_io(md, io);
601 
602 		if (io_error == DM_ENDIO_REQUEUE)
603 			return;
604 
605 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
606 			/*
607 			 * Preflush done for flush with data, reissue
608 			 * without REQ_FLUSH.
609 			 */
610 			bio->bi_rw &= ~REQ_FLUSH;
611 			queue_io(md, bio);
612 		} else {
613 			/* done with normal IO or empty flush */
614 			bio_endio(bio, io_error);
615 		}
616 	}
617 }
618 
619 static void clone_endio(struct bio *bio, int error)
620 {
621 	int r = 0;
622 	struct dm_target_io *tio = bio->bi_private;
623 	struct dm_io *io = tio->io;
624 	struct mapped_device *md = tio->io->md;
625 	dm_endio_fn endio = tio->ti->type->end_io;
626 
627 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
628 		error = -EIO;
629 
630 	if (endio) {
631 		r = endio(tio->ti, bio, error);
632 		if (r < 0 || r == DM_ENDIO_REQUEUE)
633 			/*
634 			 * error and requeue request are handled
635 			 * in dec_pending().
636 			 */
637 			error = r;
638 		else if (r == DM_ENDIO_INCOMPLETE)
639 			/* The target will handle the io */
640 			return;
641 		else if (r) {
642 			DMWARN("unimplemented target endio return value: %d", r);
643 			BUG();
644 		}
645 	}
646 
647 	free_tio(md, tio);
648 	dec_pending(io, error);
649 }
650 
651 /*
652  * Partial completion handling for request-based dm
653  */
654 static void end_clone_bio(struct bio *clone, int error)
655 {
656 	struct dm_rq_clone_bio_info *info = clone->bi_private;
657 	struct dm_rq_target_io *tio = info->tio;
658 	struct bio *bio = info->orig;
659 	unsigned int nr_bytes = info->orig->bi_size;
660 
661 	bio_put(clone);
662 
663 	if (tio->error)
664 		/*
665 		 * An error has already been detected on the request.
666 		 * Once error occurred, just let clone->end_io() handle
667 		 * the remainder.
668 		 */
669 		return;
670 	else if (error) {
671 		/*
672 		 * Don't notice the error to the upper layer yet.
673 		 * The error handling decision is made by the target driver,
674 		 * when the request is completed.
675 		 */
676 		tio->error = error;
677 		return;
678 	}
679 
680 	/*
681 	 * I/O for the bio successfully completed.
682 	 * Notice the data completion to the upper layer.
683 	 */
684 
685 	/*
686 	 * bios are processed from the head of the list.
687 	 * So the completing bio should always be rq->bio.
688 	 * If it's not, something wrong is happening.
689 	 */
690 	if (tio->orig->bio != bio)
691 		DMERR("bio completion is going in the middle of the request");
692 
693 	/*
694 	 * Update the original request.
695 	 * Do not use blk_end_request() here, because it may complete
696 	 * the original request before the clone, and break the ordering.
697 	 */
698 	blk_update_request(tio->orig, 0, nr_bytes);
699 }
700 
701 /*
702  * Don't touch any member of the md after calling this function because
703  * the md may be freed in dm_put() at the end of this function.
704  * Or do dm_get() before calling this function and dm_put() later.
705  */
706 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
707 {
708 	atomic_dec(&md->pending[rw]);
709 
710 	/* nudge anyone waiting on suspend queue */
711 	if (!md_in_flight(md))
712 		wake_up(&md->wait);
713 
714 	/*
715 	 * Run this off this callpath, as drivers could invoke end_io while
716 	 * inside their request_fn (and holding the queue lock). Calling
717 	 * back into ->request_fn() could deadlock attempting to grab the
718 	 * queue lock again.
719 	 */
720 	if (run_queue)
721 		blk_run_queue_async(md->queue);
722 
723 	/*
724 	 * dm_put() must be at the end of this function. See the comment above
725 	 */
726 	dm_put(md);
727 }
728 
729 static void free_rq_clone(struct request *clone)
730 {
731 	struct dm_rq_target_io *tio = clone->end_io_data;
732 
733 	blk_rq_unprep_clone(clone);
734 	free_rq_tio(tio);
735 }
736 
737 /*
738  * Complete the clone and the original request.
739  * Must be called without queue lock.
740  */
741 static void dm_end_request(struct request *clone, int error)
742 {
743 	int rw = rq_data_dir(clone);
744 	struct dm_rq_target_io *tio = clone->end_io_data;
745 	struct mapped_device *md = tio->md;
746 	struct request *rq = tio->orig;
747 
748 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
749 		rq->errors = clone->errors;
750 		rq->resid_len = clone->resid_len;
751 
752 		if (rq->sense)
753 			/*
754 			 * We are using the sense buffer of the original
755 			 * request.
756 			 * So setting the length of the sense data is enough.
757 			 */
758 			rq->sense_len = clone->sense_len;
759 	}
760 
761 	free_rq_clone(clone);
762 	blk_end_request_all(rq, error);
763 	rq_completed(md, rw, true);
764 }
765 
766 static void dm_unprep_request(struct request *rq)
767 {
768 	struct request *clone = rq->special;
769 
770 	rq->special = NULL;
771 	rq->cmd_flags &= ~REQ_DONTPREP;
772 
773 	free_rq_clone(clone);
774 }
775 
776 /*
777  * Requeue the original request of a clone.
778  */
779 void dm_requeue_unmapped_request(struct request *clone)
780 {
781 	int rw = rq_data_dir(clone);
782 	struct dm_rq_target_io *tio = clone->end_io_data;
783 	struct mapped_device *md = tio->md;
784 	struct request *rq = tio->orig;
785 	struct request_queue *q = rq->q;
786 	unsigned long flags;
787 
788 	dm_unprep_request(rq);
789 
790 	spin_lock_irqsave(q->queue_lock, flags);
791 	blk_requeue_request(q, rq);
792 	spin_unlock_irqrestore(q->queue_lock, flags);
793 
794 	rq_completed(md, rw, 0);
795 }
796 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
797 
798 static void __stop_queue(struct request_queue *q)
799 {
800 	blk_stop_queue(q);
801 }
802 
803 static void stop_queue(struct request_queue *q)
804 {
805 	unsigned long flags;
806 
807 	spin_lock_irqsave(q->queue_lock, flags);
808 	__stop_queue(q);
809 	spin_unlock_irqrestore(q->queue_lock, flags);
810 }
811 
812 static void __start_queue(struct request_queue *q)
813 {
814 	if (blk_queue_stopped(q))
815 		blk_start_queue(q);
816 }
817 
818 static void start_queue(struct request_queue *q)
819 {
820 	unsigned long flags;
821 
822 	spin_lock_irqsave(q->queue_lock, flags);
823 	__start_queue(q);
824 	spin_unlock_irqrestore(q->queue_lock, flags);
825 }
826 
827 static void dm_done(struct request *clone, int error, bool mapped)
828 {
829 	int r = error;
830 	struct dm_rq_target_io *tio = clone->end_io_data;
831 	dm_request_endio_fn rq_end_io = NULL;
832 
833 	if (tio->ti) {
834 		rq_end_io = tio->ti->type->rq_end_io;
835 
836 		if (mapped && rq_end_io)
837 			r = rq_end_io(tio->ti, clone, error, &tio->info);
838 	}
839 
840 	if (r <= 0)
841 		/* The target wants to complete the I/O */
842 		dm_end_request(clone, r);
843 	else if (r == DM_ENDIO_INCOMPLETE)
844 		/* The target will handle the I/O */
845 		return;
846 	else if (r == DM_ENDIO_REQUEUE)
847 		/* The target wants to requeue the I/O */
848 		dm_requeue_unmapped_request(clone);
849 	else {
850 		DMWARN("unimplemented target endio return value: %d", r);
851 		BUG();
852 	}
853 }
854 
855 /*
856  * Request completion handler for request-based dm
857  */
858 static void dm_softirq_done(struct request *rq)
859 {
860 	bool mapped = true;
861 	struct request *clone = rq->completion_data;
862 	struct dm_rq_target_io *tio = clone->end_io_data;
863 
864 	if (rq->cmd_flags & REQ_FAILED)
865 		mapped = false;
866 
867 	dm_done(clone, tio->error, mapped);
868 }
869 
870 /*
871  * Complete the clone and the original request with the error status
872  * through softirq context.
873  */
874 static void dm_complete_request(struct request *clone, int error)
875 {
876 	struct dm_rq_target_io *tio = clone->end_io_data;
877 	struct request *rq = tio->orig;
878 
879 	tio->error = error;
880 	rq->completion_data = clone;
881 	blk_complete_request(rq);
882 }
883 
884 /*
885  * Complete the not-mapped clone and the original request with the error status
886  * through softirq context.
887  * Target's rq_end_io() function isn't called.
888  * This may be used when the target's map_rq() function fails.
889  */
890 void dm_kill_unmapped_request(struct request *clone, int error)
891 {
892 	struct dm_rq_target_io *tio = clone->end_io_data;
893 	struct request *rq = tio->orig;
894 
895 	rq->cmd_flags |= REQ_FAILED;
896 	dm_complete_request(clone, error);
897 }
898 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
899 
900 /*
901  * Called with the queue lock held
902  */
903 static void end_clone_request(struct request *clone, int error)
904 {
905 	/*
906 	 * For just cleaning up the information of the queue in which
907 	 * the clone was dispatched.
908 	 * The clone is *NOT* freed actually here because it is alloced from
909 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
910 	 */
911 	__blk_put_request(clone->q, clone);
912 
913 	/*
914 	 * Actual request completion is done in a softirq context which doesn't
915 	 * hold the queue lock.  Otherwise, deadlock could occur because:
916 	 *     - another request may be submitted by the upper level driver
917 	 *       of the stacking during the completion
918 	 *     - the submission which requires queue lock may be done
919 	 *       against this queue
920 	 */
921 	dm_complete_request(clone, error);
922 }
923 
924 /*
925  * Return maximum size of I/O possible at the supplied sector up to the current
926  * target boundary.
927  */
928 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
929 {
930 	sector_t target_offset = dm_target_offset(ti, sector);
931 
932 	return ti->len - target_offset;
933 }
934 
935 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
936 {
937 	sector_t len = max_io_len_target_boundary(sector, ti);
938 	sector_t offset, max_len;
939 
940 	/*
941 	 * Does the target need to split even further?
942 	 */
943 	if (ti->max_io_len) {
944 		offset = dm_target_offset(ti, sector);
945 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
946 			max_len = sector_div(offset, ti->max_io_len);
947 		else
948 			max_len = offset & (ti->max_io_len - 1);
949 		max_len = ti->max_io_len - max_len;
950 
951 		if (len > max_len)
952 			len = max_len;
953 	}
954 
955 	return len;
956 }
957 
958 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
959 {
960 	if (len > UINT_MAX) {
961 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
962 		      (unsigned long long)len, UINT_MAX);
963 		ti->error = "Maximum size of target IO is too large";
964 		return -EINVAL;
965 	}
966 
967 	ti->max_io_len = (uint32_t) len;
968 
969 	return 0;
970 }
971 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
972 
973 static void __map_bio(struct dm_target_io *tio)
974 {
975 	int r;
976 	sector_t sector;
977 	struct mapped_device *md;
978 	struct bio *clone = &tio->clone;
979 	struct dm_target *ti = tio->ti;
980 
981 	clone->bi_end_io = clone_endio;
982 	clone->bi_private = tio;
983 
984 	/*
985 	 * Map the clone.  If r == 0 we don't need to do
986 	 * anything, the target has assumed ownership of
987 	 * this io.
988 	 */
989 	atomic_inc(&tio->io->io_count);
990 	sector = clone->bi_sector;
991 	r = ti->type->map(ti, clone);
992 	if (r == DM_MAPIO_REMAPPED) {
993 		/* the bio has been remapped so dispatch it */
994 
995 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
996 				      tio->io->bio->bi_bdev->bd_dev, sector);
997 
998 		generic_make_request(clone);
999 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1000 		/* error the io and bail out, or requeue it if needed */
1001 		md = tio->io->md;
1002 		dec_pending(tio->io, r);
1003 		free_tio(md, tio);
1004 	} else if (r) {
1005 		DMWARN("unimplemented target map return value: %d", r);
1006 		BUG();
1007 	}
1008 }
1009 
1010 struct clone_info {
1011 	struct mapped_device *md;
1012 	struct dm_table *map;
1013 	struct bio *bio;
1014 	struct dm_io *io;
1015 	sector_t sector;
1016 	sector_t sector_count;
1017 	unsigned short idx;
1018 };
1019 
1020 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1021 {
1022 	bio->bi_sector = sector;
1023 	bio->bi_size = to_bytes(len);
1024 }
1025 
1026 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
1027 {
1028 	bio->bi_idx = idx;
1029 	bio->bi_vcnt = idx + bv_count;
1030 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
1031 }
1032 
1033 static void clone_bio_integrity(struct bio *bio, struct bio *clone,
1034 				unsigned short idx, unsigned len, unsigned offset,
1035 				unsigned trim)
1036 {
1037 	if (!bio_integrity(bio))
1038 		return;
1039 
1040 	bio_integrity_clone(clone, bio, GFP_NOIO);
1041 
1042 	if (trim)
1043 		bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
1044 }
1045 
1046 /*
1047  * Creates a little bio that just does part of a bvec.
1048  */
1049 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio,
1050 			    sector_t sector, unsigned short idx,
1051 			    unsigned offset, unsigned len)
1052 {
1053 	struct bio *clone = &tio->clone;
1054 	struct bio_vec *bv = bio->bi_io_vec + idx;
1055 
1056 	*clone->bi_io_vec = *bv;
1057 
1058 	bio_setup_sector(clone, sector, len);
1059 
1060 	clone->bi_bdev = bio->bi_bdev;
1061 	clone->bi_rw = bio->bi_rw;
1062 	clone->bi_vcnt = 1;
1063 	clone->bi_io_vec->bv_offset = offset;
1064 	clone->bi_io_vec->bv_len = clone->bi_size;
1065 	clone->bi_flags |= 1 << BIO_CLONED;
1066 
1067 	clone_bio_integrity(bio, clone, idx, len, offset, 1);
1068 }
1069 
1070 /*
1071  * Creates a bio that consists of range of complete bvecs.
1072  */
1073 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1074 		      sector_t sector, unsigned short idx,
1075 		      unsigned short bv_count, unsigned len)
1076 {
1077 	struct bio *clone = &tio->clone;
1078 	unsigned trim = 0;
1079 
1080 	__bio_clone(clone, bio);
1081 	bio_setup_sector(clone, sector, len);
1082 	bio_setup_bv(clone, idx, bv_count);
1083 
1084 	if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1085 		trim = 1;
1086 	clone_bio_integrity(bio, clone, idx, len, 0, trim);
1087 }
1088 
1089 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1090 				      struct dm_target *ti, int nr_iovecs,
1091 				      unsigned target_bio_nr)
1092 {
1093 	struct dm_target_io *tio;
1094 	struct bio *clone;
1095 
1096 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1097 	tio = container_of(clone, struct dm_target_io, clone);
1098 
1099 	tio->io = ci->io;
1100 	tio->ti = ti;
1101 	memset(&tio->info, 0, sizeof(tio->info));
1102 	tio->target_bio_nr = target_bio_nr;
1103 
1104 	return tio;
1105 }
1106 
1107 static void __clone_and_map_simple_bio(struct clone_info *ci,
1108 				       struct dm_target *ti,
1109 				       unsigned target_bio_nr, sector_t len)
1110 {
1111 	struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1112 	struct bio *clone = &tio->clone;
1113 
1114 	/*
1115 	 * Discard requests require the bio's inline iovecs be initialized.
1116 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1117 	 * and discard, so no need for concern about wasted bvec allocations.
1118 	 */
1119 	 __bio_clone(clone, ci->bio);
1120 	if (len)
1121 		bio_setup_sector(clone, ci->sector, len);
1122 
1123 	__map_bio(tio);
1124 }
1125 
1126 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1127 				  unsigned num_bios, sector_t len)
1128 {
1129 	unsigned target_bio_nr;
1130 
1131 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1132 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1133 }
1134 
1135 static int __send_empty_flush(struct clone_info *ci)
1136 {
1137 	unsigned target_nr = 0;
1138 	struct dm_target *ti;
1139 
1140 	BUG_ON(bio_has_data(ci->bio));
1141 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1142 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1143 
1144 	return 0;
1145 }
1146 
1147 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1148 				     sector_t sector, int nr_iovecs,
1149 				     unsigned short idx, unsigned short bv_count,
1150 				     unsigned offset, unsigned len,
1151 				     unsigned split_bvec)
1152 {
1153 	struct bio *bio = ci->bio;
1154 	struct dm_target_io *tio;
1155 	unsigned target_bio_nr;
1156 	unsigned num_target_bios = 1;
1157 
1158 	/*
1159 	 * Does the target want to receive duplicate copies of the bio?
1160 	 */
1161 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1162 		num_target_bios = ti->num_write_bios(ti, bio);
1163 
1164 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1165 		tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr);
1166 		if (split_bvec)
1167 			clone_split_bio(tio, bio, sector, idx, offset, len);
1168 		else
1169 			clone_bio(tio, bio, sector, idx, bv_count, len);
1170 		__map_bio(tio);
1171 	}
1172 }
1173 
1174 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1175 
1176 static unsigned get_num_discard_bios(struct dm_target *ti)
1177 {
1178 	return ti->num_discard_bios;
1179 }
1180 
1181 static unsigned get_num_write_same_bios(struct dm_target *ti)
1182 {
1183 	return ti->num_write_same_bios;
1184 }
1185 
1186 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1187 
1188 static bool is_split_required_for_discard(struct dm_target *ti)
1189 {
1190 	return ti->split_discard_bios;
1191 }
1192 
1193 static int __send_changing_extent_only(struct clone_info *ci,
1194 				       get_num_bios_fn get_num_bios,
1195 				       is_split_required_fn is_split_required)
1196 {
1197 	struct dm_target *ti;
1198 	sector_t len;
1199 	unsigned num_bios;
1200 
1201 	do {
1202 		ti = dm_table_find_target(ci->map, ci->sector);
1203 		if (!dm_target_is_valid(ti))
1204 			return -EIO;
1205 
1206 		/*
1207 		 * Even though the device advertised support for this type of
1208 		 * request, that does not mean every target supports it, and
1209 		 * reconfiguration might also have changed that since the
1210 		 * check was performed.
1211 		 */
1212 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1213 		if (!num_bios)
1214 			return -EOPNOTSUPP;
1215 
1216 		if (is_split_required && !is_split_required(ti))
1217 			len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1218 		else
1219 			len = min(ci->sector_count, max_io_len(ci->sector, ti));
1220 
1221 		__send_duplicate_bios(ci, ti, num_bios, len);
1222 
1223 		ci->sector += len;
1224 	} while (ci->sector_count -= len);
1225 
1226 	return 0;
1227 }
1228 
1229 static int __send_discard(struct clone_info *ci)
1230 {
1231 	return __send_changing_extent_only(ci, get_num_discard_bios,
1232 					   is_split_required_for_discard);
1233 }
1234 
1235 static int __send_write_same(struct clone_info *ci)
1236 {
1237 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1238 }
1239 
1240 /*
1241  * Find maximum number of sectors / bvecs we can process with a single bio.
1242  */
1243 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx)
1244 {
1245 	struct bio *bio = ci->bio;
1246 	sector_t bv_len, total_len = 0;
1247 
1248 	for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) {
1249 		bv_len = to_sector(bio->bi_io_vec[*idx].bv_len);
1250 
1251 		if (bv_len > max)
1252 			break;
1253 
1254 		max -= bv_len;
1255 		total_len += bv_len;
1256 	}
1257 
1258 	return total_len;
1259 }
1260 
1261 static int __split_bvec_across_targets(struct clone_info *ci,
1262 				       struct dm_target *ti, sector_t max)
1263 {
1264 	struct bio *bio = ci->bio;
1265 	struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1266 	sector_t remaining = to_sector(bv->bv_len);
1267 	unsigned offset = 0;
1268 	sector_t len;
1269 
1270 	do {
1271 		if (offset) {
1272 			ti = dm_table_find_target(ci->map, ci->sector);
1273 			if (!dm_target_is_valid(ti))
1274 				return -EIO;
1275 
1276 			max = max_io_len(ci->sector, ti);
1277 		}
1278 
1279 		len = min(remaining, max);
1280 
1281 		__clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0,
1282 					 bv->bv_offset + offset, len, 1);
1283 
1284 		ci->sector += len;
1285 		ci->sector_count -= len;
1286 		offset += to_bytes(len);
1287 	} while (remaining -= len);
1288 
1289 	ci->idx++;
1290 
1291 	return 0;
1292 }
1293 
1294 /*
1295  * Select the correct strategy for processing a non-flush bio.
1296  */
1297 static int __split_and_process_non_flush(struct clone_info *ci)
1298 {
1299 	struct bio *bio = ci->bio;
1300 	struct dm_target *ti;
1301 	sector_t len, max;
1302 	int idx;
1303 
1304 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1305 		return __send_discard(ci);
1306 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1307 		return __send_write_same(ci);
1308 
1309 	ti = dm_table_find_target(ci->map, ci->sector);
1310 	if (!dm_target_is_valid(ti))
1311 		return -EIO;
1312 
1313 	max = max_io_len(ci->sector, ti);
1314 
1315 	/*
1316 	 * Optimise for the simple case where we can do all of
1317 	 * the remaining io with a single clone.
1318 	 */
1319 	if (ci->sector_count <= max) {
1320 		__clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1321 					 ci->idx, bio->bi_vcnt - ci->idx, 0,
1322 					 ci->sector_count, 0);
1323 		ci->sector_count = 0;
1324 		return 0;
1325 	}
1326 
1327 	/*
1328 	 * There are some bvecs that don't span targets.
1329 	 * Do as many of these as possible.
1330 	 */
1331 	if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1332 		len = __len_within_target(ci, max, &idx);
1333 
1334 		__clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1335 					 ci->idx, idx - ci->idx, 0, len, 0);
1336 
1337 		ci->sector += len;
1338 		ci->sector_count -= len;
1339 		ci->idx = idx;
1340 
1341 		return 0;
1342 	}
1343 
1344 	/*
1345 	 * Handle a bvec that must be split between two or more targets.
1346 	 */
1347 	return __split_bvec_across_targets(ci, ti, max);
1348 }
1349 
1350 /*
1351  * Entry point to split a bio into clones and submit them to the targets.
1352  */
1353 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1354 {
1355 	struct clone_info ci;
1356 	int error = 0;
1357 
1358 	ci.map = dm_get_live_table(md);
1359 	if (unlikely(!ci.map)) {
1360 		bio_io_error(bio);
1361 		return;
1362 	}
1363 
1364 	ci.md = md;
1365 	ci.io = alloc_io(md);
1366 	ci.io->error = 0;
1367 	atomic_set(&ci.io->io_count, 1);
1368 	ci.io->bio = bio;
1369 	ci.io->md = md;
1370 	spin_lock_init(&ci.io->endio_lock);
1371 	ci.sector = bio->bi_sector;
1372 	ci.idx = bio->bi_idx;
1373 
1374 	start_io_acct(ci.io);
1375 
1376 	if (bio->bi_rw & REQ_FLUSH) {
1377 		ci.bio = &ci.md->flush_bio;
1378 		ci.sector_count = 0;
1379 		error = __send_empty_flush(&ci);
1380 		/* dec_pending submits any data associated with flush */
1381 	} else {
1382 		ci.bio = bio;
1383 		ci.sector_count = bio_sectors(bio);
1384 		while (ci.sector_count && !error)
1385 			error = __split_and_process_non_flush(&ci);
1386 	}
1387 
1388 	/* drop the extra reference count */
1389 	dec_pending(ci.io, error);
1390 	dm_table_put(ci.map);
1391 }
1392 /*-----------------------------------------------------------------
1393  * CRUD END
1394  *---------------------------------------------------------------*/
1395 
1396 static int dm_merge_bvec(struct request_queue *q,
1397 			 struct bvec_merge_data *bvm,
1398 			 struct bio_vec *biovec)
1399 {
1400 	struct mapped_device *md = q->queuedata;
1401 	struct dm_table *map = dm_get_live_table(md);
1402 	struct dm_target *ti;
1403 	sector_t max_sectors;
1404 	int max_size = 0;
1405 
1406 	if (unlikely(!map))
1407 		goto out;
1408 
1409 	ti = dm_table_find_target(map, bvm->bi_sector);
1410 	if (!dm_target_is_valid(ti))
1411 		goto out_table;
1412 
1413 	/*
1414 	 * Find maximum amount of I/O that won't need splitting
1415 	 */
1416 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1417 			  (sector_t) BIO_MAX_SECTORS);
1418 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1419 	if (max_size < 0)
1420 		max_size = 0;
1421 
1422 	/*
1423 	 * merge_bvec_fn() returns number of bytes
1424 	 * it can accept at this offset
1425 	 * max is precomputed maximal io size
1426 	 */
1427 	if (max_size && ti->type->merge)
1428 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1429 	/*
1430 	 * If the target doesn't support merge method and some of the devices
1431 	 * provided their merge_bvec method (we know this by looking at
1432 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1433 	 * entries.  So always set max_size to 0, and the code below allows
1434 	 * just one page.
1435 	 */
1436 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1437 
1438 		max_size = 0;
1439 
1440 out_table:
1441 	dm_table_put(map);
1442 
1443 out:
1444 	/*
1445 	 * Always allow an entire first page
1446 	 */
1447 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1448 		max_size = biovec->bv_len;
1449 
1450 	return max_size;
1451 }
1452 
1453 /*
1454  * The request function that just remaps the bio built up by
1455  * dm_merge_bvec.
1456  */
1457 static void _dm_request(struct request_queue *q, struct bio *bio)
1458 {
1459 	int rw = bio_data_dir(bio);
1460 	struct mapped_device *md = q->queuedata;
1461 	int cpu;
1462 
1463 	down_read(&md->io_lock);
1464 
1465 	cpu = part_stat_lock();
1466 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1467 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1468 	part_stat_unlock();
1469 
1470 	/* if we're suspended, we have to queue this io for later */
1471 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1472 		up_read(&md->io_lock);
1473 
1474 		if (bio_rw(bio) != READA)
1475 			queue_io(md, bio);
1476 		else
1477 			bio_io_error(bio);
1478 		return;
1479 	}
1480 
1481 	__split_and_process_bio(md, bio);
1482 	up_read(&md->io_lock);
1483 	return;
1484 }
1485 
1486 static int dm_request_based(struct mapped_device *md)
1487 {
1488 	return blk_queue_stackable(md->queue);
1489 }
1490 
1491 static void dm_request(struct request_queue *q, struct bio *bio)
1492 {
1493 	struct mapped_device *md = q->queuedata;
1494 
1495 	if (dm_request_based(md))
1496 		blk_queue_bio(q, bio);
1497 	else
1498 		_dm_request(q, bio);
1499 }
1500 
1501 void dm_dispatch_request(struct request *rq)
1502 {
1503 	int r;
1504 
1505 	if (blk_queue_io_stat(rq->q))
1506 		rq->cmd_flags |= REQ_IO_STAT;
1507 
1508 	rq->start_time = jiffies;
1509 	r = blk_insert_cloned_request(rq->q, rq);
1510 	if (r)
1511 		dm_complete_request(rq, r);
1512 }
1513 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1514 
1515 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1516 				 void *data)
1517 {
1518 	struct dm_rq_target_io *tio = data;
1519 	struct dm_rq_clone_bio_info *info =
1520 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1521 
1522 	info->orig = bio_orig;
1523 	info->tio = tio;
1524 	bio->bi_end_io = end_clone_bio;
1525 	bio->bi_private = info;
1526 
1527 	return 0;
1528 }
1529 
1530 static int setup_clone(struct request *clone, struct request *rq,
1531 		       struct dm_rq_target_io *tio)
1532 {
1533 	int r;
1534 
1535 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1536 			      dm_rq_bio_constructor, tio);
1537 	if (r)
1538 		return r;
1539 
1540 	clone->cmd = rq->cmd;
1541 	clone->cmd_len = rq->cmd_len;
1542 	clone->sense = rq->sense;
1543 	clone->buffer = rq->buffer;
1544 	clone->end_io = end_clone_request;
1545 	clone->end_io_data = tio;
1546 
1547 	return 0;
1548 }
1549 
1550 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1551 				gfp_t gfp_mask)
1552 {
1553 	struct request *clone;
1554 	struct dm_rq_target_io *tio;
1555 
1556 	tio = alloc_rq_tio(md, gfp_mask);
1557 	if (!tio)
1558 		return NULL;
1559 
1560 	tio->md = md;
1561 	tio->ti = NULL;
1562 	tio->orig = rq;
1563 	tio->error = 0;
1564 	memset(&tio->info, 0, sizeof(tio->info));
1565 
1566 	clone = &tio->clone;
1567 	if (setup_clone(clone, rq, tio)) {
1568 		/* -ENOMEM */
1569 		free_rq_tio(tio);
1570 		return NULL;
1571 	}
1572 
1573 	return clone;
1574 }
1575 
1576 /*
1577  * Called with the queue lock held.
1578  */
1579 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1580 {
1581 	struct mapped_device *md = q->queuedata;
1582 	struct request *clone;
1583 
1584 	if (unlikely(rq->special)) {
1585 		DMWARN("Already has something in rq->special.");
1586 		return BLKPREP_KILL;
1587 	}
1588 
1589 	clone = clone_rq(rq, md, GFP_ATOMIC);
1590 	if (!clone)
1591 		return BLKPREP_DEFER;
1592 
1593 	rq->special = clone;
1594 	rq->cmd_flags |= REQ_DONTPREP;
1595 
1596 	return BLKPREP_OK;
1597 }
1598 
1599 /*
1600  * Returns:
1601  * 0  : the request has been processed (not requeued)
1602  * !0 : the request has been requeued
1603  */
1604 static int map_request(struct dm_target *ti, struct request *clone,
1605 		       struct mapped_device *md)
1606 {
1607 	int r, requeued = 0;
1608 	struct dm_rq_target_io *tio = clone->end_io_data;
1609 
1610 	tio->ti = ti;
1611 	r = ti->type->map_rq(ti, clone, &tio->info);
1612 	switch (r) {
1613 	case DM_MAPIO_SUBMITTED:
1614 		/* The target has taken the I/O to submit by itself later */
1615 		break;
1616 	case DM_MAPIO_REMAPPED:
1617 		/* The target has remapped the I/O so dispatch it */
1618 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1619 				     blk_rq_pos(tio->orig));
1620 		dm_dispatch_request(clone);
1621 		break;
1622 	case DM_MAPIO_REQUEUE:
1623 		/* The target wants to requeue the I/O */
1624 		dm_requeue_unmapped_request(clone);
1625 		requeued = 1;
1626 		break;
1627 	default:
1628 		if (r > 0) {
1629 			DMWARN("unimplemented target map return value: %d", r);
1630 			BUG();
1631 		}
1632 
1633 		/* The target wants to complete the I/O */
1634 		dm_kill_unmapped_request(clone, r);
1635 		break;
1636 	}
1637 
1638 	return requeued;
1639 }
1640 
1641 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1642 {
1643 	struct request *clone;
1644 
1645 	blk_start_request(orig);
1646 	clone = orig->special;
1647 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1648 
1649 	/*
1650 	 * Hold the md reference here for the in-flight I/O.
1651 	 * We can't rely on the reference count by device opener,
1652 	 * because the device may be closed during the request completion
1653 	 * when all bios are completed.
1654 	 * See the comment in rq_completed() too.
1655 	 */
1656 	dm_get(md);
1657 
1658 	return clone;
1659 }
1660 
1661 /*
1662  * q->request_fn for request-based dm.
1663  * Called with the queue lock held.
1664  */
1665 static void dm_request_fn(struct request_queue *q)
1666 {
1667 	struct mapped_device *md = q->queuedata;
1668 	struct dm_table *map = dm_get_live_table(md);
1669 	struct dm_target *ti;
1670 	struct request *rq, *clone;
1671 	sector_t pos;
1672 
1673 	/*
1674 	 * For suspend, check blk_queue_stopped() and increment
1675 	 * ->pending within a single queue_lock not to increment the
1676 	 * number of in-flight I/Os after the queue is stopped in
1677 	 * dm_suspend().
1678 	 */
1679 	while (!blk_queue_stopped(q)) {
1680 		rq = blk_peek_request(q);
1681 		if (!rq)
1682 			goto delay_and_out;
1683 
1684 		/* always use block 0 to find the target for flushes for now */
1685 		pos = 0;
1686 		if (!(rq->cmd_flags & REQ_FLUSH))
1687 			pos = blk_rq_pos(rq);
1688 
1689 		ti = dm_table_find_target(map, pos);
1690 		if (!dm_target_is_valid(ti)) {
1691 			/*
1692 			 * Must perform setup, that dm_done() requires,
1693 			 * before calling dm_kill_unmapped_request
1694 			 */
1695 			DMERR_LIMIT("request attempted access beyond the end of device");
1696 			clone = dm_start_request(md, rq);
1697 			dm_kill_unmapped_request(clone, -EIO);
1698 			continue;
1699 		}
1700 
1701 		if (ti->type->busy && ti->type->busy(ti))
1702 			goto delay_and_out;
1703 
1704 		clone = dm_start_request(md, rq);
1705 
1706 		spin_unlock(q->queue_lock);
1707 		if (map_request(ti, clone, md))
1708 			goto requeued;
1709 
1710 		BUG_ON(!irqs_disabled());
1711 		spin_lock(q->queue_lock);
1712 	}
1713 
1714 	goto out;
1715 
1716 requeued:
1717 	BUG_ON(!irqs_disabled());
1718 	spin_lock(q->queue_lock);
1719 
1720 delay_and_out:
1721 	blk_delay_queue(q, HZ / 10);
1722 out:
1723 	dm_table_put(map);
1724 }
1725 
1726 int dm_underlying_device_busy(struct request_queue *q)
1727 {
1728 	return blk_lld_busy(q);
1729 }
1730 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1731 
1732 static int dm_lld_busy(struct request_queue *q)
1733 {
1734 	int r;
1735 	struct mapped_device *md = q->queuedata;
1736 	struct dm_table *map = dm_get_live_table(md);
1737 
1738 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1739 		r = 1;
1740 	else
1741 		r = dm_table_any_busy_target(map);
1742 
1743 	dm_table_put(map);
1744 
1745 	return r;
1746 }
1747 
1748 static int dm_any_congested(void *congested_data, int bdi_bits)
1749 {
1750 	int r = bdi_bits;
1751 	struct mapped_device *md = congested_data;
1752 	struct dm_table *map;
1753 
1754 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1755 		map = dm_get_live_table(md);
1756 		if (map) {
1757 			/*
1758 			 * Request-based dm cares about only own queue for
1759 			 * the query about congestion status of request_queue
1760 			 */
1761 			if (dm_request_based(md))
1762 				r = md->queue->backing_dev_info.state &
1763 				    bdi_bits;
1764 			else
1765 				r = dm_table_any_congested(map, bdi_bits);
1766 
1767 			dm_table_put(map);
1768 		}
1769 	}
1770 
1771 	return r;
1772 }
1773 
1774 /*-----------------------------------------------------------------
1775  * An IDR is used to keep track of allocated minor numbers.
1776  *---------------------------------------------------------------*/
1777 static void free_minor(int minor)
1778 {
1779 	spin_lock(&_minor_lock);
1780 	idr_remove(&_minor_idr, minor);
1781 	spin_unlock(&_minor_lock);
1782 }
1783 
1784 /*
1785  * See if the device with a specific minor # is free.
1786  */
1787 static int specific_minor(int minor)
1788 {
1789 	int r;
1790 
1791 	if (minor >= (1 << MINORBITS))
1792 		return -EINVAL;
1793 
1794 	idr_preload(GFP_KERNEL);
1795 	spin_lock(&_minor_lock);
1796 
1797 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1798 
1799 	spin_unlock(&_minor_lock);
1800 	idr_preload_end();
1801 	if (r < 0)
1802 		return r == -ENOSPC ? -EBUSY : r;
1803 	return 0;
1804 }
1805 
1806 static int next_free_minor(int *minor)
1807 {
1808 	int r;
1809 
1810 	idr_preload(GFP_KERNEL);
1811 	spin_lock(&_minor_lock);
1812 
1813 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1814 
1815 	spin_unlock(&_minor_lock);
1816 	idr_preload_end();
1817 	if (r < 0)
1818 		return r;
1819 	*minor = r;
1820 	return 0;
1821 }
1822 
1823 static const struct block_device_operations dm_blk_dops;
1824 
1825 static void dm_wq_work(struct work_struct *work);
1826 
1827 static void dm_init_md_queue(struct mapped_device *md)
1828 {
1829 	/*
1830 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1831 	 * devices.  The type of this dm device has not been decided yet.
1832 	 * The type is decided at the first table loading time.
1833 	 * To prevent problematic device stacking, clear the queue flag
1834 	 * for request stacking support until then.
1835 	 *
1836 	 * This queue is new, so no concurrency on the queue_flags.
1837 	 */
1838 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1839 
1840 	md->queue->queuedata = md;
1841 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1842 	md->queue->backing_dev_info.congested_data = md;
1843 	blk_queue_make_request(md->queue, dm_request);
1844 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1845 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1846 }
1847 
1848 /*
1849  * Allocate and initialise a blank device with a given minor.
1850  */
1851 static struct mapped_device *alloc_dev(int minor)
1852 {
1853 	int r;
1854 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1855 	void *old_md;
1856 
1857 	if (!md) {
1858 		DMWARN("unable to allocate device, out of memory.");
1859 		return NULL;
1860 	}
1861 
1862 	if (!try_module_get(THIS_MODULE))
1863 		goto bad_module_get;
1864 
1865 	/* get a minor number for the dev */
1866 	if (minor == DM_ANY_MINOR)
1867 		r = next_free_minor(&minor);
1868 	else
1869 		r = specific_minor(minor);
1870 	if (r < 0)
1871 		goto bad_minor;
1872 
1873 	md->type = DM_TYPE_NONE;
1874 	init_rwsem(&md->io_lock);
1875 	mutex_init(&md->suspend_lock);
1876 	mutex_init(&md->type_lock);
1877 	spin_lock_init(&md->deferred_lock);
1878 	rwlock_init(&md->map_lock);
1879 	atomic_set(&md->holders, 1);
1880 	atomic_set(&md->open_count, 0);
1881 	atomic_set(&md->event_nr, 0);
1882 	atomic_set(&md->uevent_seq, 0);
1883 	INIT_LIST_HEAD(&md->uevent_list);
1884 	spin_lock_init(&md->uevent_lock);
1885 
1886 	md->queue = blk_alloc_queue(GFP_KERNEL);
1887 	if (!md->queue)
1888 		goto bad_queue;
1889 
1890 	dm_init_md_queue(md);
1891 
1892 	md->disk = alloc_disk(1);
1893 	if (!md->disk)
1894 		goto bad_disk;
1895 
1896 	atomic_set(&md->pending[0], 0);
1897 	atomic_set(&md->pending[1], 0);
1898 	init_waitqueue_head(&md->wait);
1899 	INIT_WORK(&md->work, dm_wq_work);
1900 	init_waitqueue_head(&md->eventq);
1901 
1902 	md->disk->major = _major;
1903 	md->disk->first_minor = minor;
1904 	md->disk->fops = &dm_blk_dops;
1905 	md->disk->queue = md->queue;
1906 	md->disk->private_data = md;
1907 	sprintf(md->disk->disk_name, "dm-%d", minor);
1908 	add_disk(md->disk);
1909 	format_dev_t(md->name, MKDEV(_major, minor));
1910 
1911 	md->wq = alloc_workqueue("kdmflush",
1912 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1913 	if (!md->wq)
1914 		goto bad_thread;
1915 
1916 	md->bdev = bdget_disk(md->disk, 0);
1917 	if (!md->bdev)
1918 		goto bad_bdev;
1919 
1920 	bio_init(&md->flush_bio);
1921 	md->flush_bio.bi_bdev = md->bdev;
1922 	md->flush_bio.bi_rw = WRITE_FLUSH;
1923 
1924 	/* Populate the mapping, nobody knows we exist yet */
1925 	spin_lock(&_minor_lock);
1926 	old_md = idr_replace(&_minor_idr, md, minor);
1927 	spin_unlock(&_minor_lock);
1928 
1929 	BUG_ON(old_md != MINOR_ALLOCED);
1930 
1931 	return md;
1932 
1933 bad_bdev:
1934 	destroy_workqueue(md->wq);
1935 bad_thread:
1936 	del_gendisk(md->disk);
1937 	put_disk(md->disk);
1938 bad_disk:
1939 	blk_cleanup_queue(md->queue);
1940 bad_queue:
1941 	free_minor(minor);
1942 bad_minor:
1943 	module_put(THIS_MODULE);
1944 bad_module_get:
1945 	kfree(md);
1946 	return NULL;
1947 }
1948 
1949 static void unlock_fs(struct mapped_device *md);
1950 
1951 static void free_dev(struct mapped_device *md)
1952 {
1953 	int minor = MINOR(disk_devt(md->disk));
1954 
1955 	unlock_fs(md);
1956 	bdput(md->bdev);
1957 	destroy_workqueue(md->wq);
1958 	if (md->io_pool)
1959 		mempool_destroy(md->io_pool);
1960 	if (md->bs)
1961 		bioset_free(md->bs);
1962 	blk_integrity_unregister(md->disk);
1963 	del_gendisk(md->disk);
1964 	free_minor(minor);
1965 
1966 	spin_lock(&_minor_lock);
1967 	md->disk->private_data = NULL;
1968 	spin_unlock(&_minor_lock);
1969 
1970 	put_disk(md->disk);
1971 	blk_cleanup_queue(md->queue);
1972 	module_put(THIS_MODULE);
1973 	kfree(md);
1974 }
1975 
1976 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1977 {
1978 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1979 
1980 	if (md->io_pool && md->bs) {
1981 		/* The md already has necessary mempools. */
1982 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
1983 			/*
1984 			 * Reload bioset because front_pad may have changed
1985 			 * because a different table was loaded.
1986 			 */
1987 			bioset_free(md->bs);
1988 			md->bs = p->bs;
1989 			p->bs = NULL;
1990 		} else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
1991 			/*
1992 			 * There's no need to reload with request-based dm
1993 			 * because the size of front_pad doesn't change.
1994 			 * Note for future: If you are to reload bioset,
1995 			 * prep-ed requests in the queue may refer
1996 			 * to bio from the old bioset, so you must walk
1997 			 * through the queue to unprep.
1998 			 */
1999 		}
2000 		goto out;
2001 	}
2002 
2003 	BUG_ON(!p || md->io_pool || md->bs);
2004 
2005 	md->io_pool = p->io_pool;
2006 	p->io_pool = NULL;
2007 	md->bs = p->bs;
2008 	p->bs = NULL;
2009 
2010 out:
2011 	/* mempool bind completed, now no need any mempools in the table */
2012 	dm_table_free_md_mempools(t);
2013 }
2014 
2015 /*
2016  * Bind a table to the device.
2017  */
2018 static void event_callback(void *context)
2019 {
2020 	unsigned long flags;
2021 	LIST_HEAD(uevents);
2022 	struct mapped_device *md = (struct mapped_device *) context;
2023 
2024 	spin_lock_irqsave(&md->uevent_lock, flags);
2025 	list_splice_init(&md->uevent_list, &uevents);
2026 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2027 
2028 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2029 
2030 	atomic_inc(&md->event_nr);
2031 	wake_up(&md->eventq);
2032 }
2033 
2034 /*
2035  * Protected by md->suspend_lock obtained by dm_swap_table().
2036  */
2037 static void __set_size(struct mapped_device *md, sector_t size)
2038 {
2039 	set_capacity(md->disk, size);
2040 
2041 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2042 }
2043 
2044 /*
2045  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2046  *
2047  * If this function returns 0, then the device is either a non-dm
2048  * device without a merge_bvec_fn, or it is a dm device that is
2049  * able to split any bios it receives that are too big.
2050  */
2051 int dm_queue_merge_is_compulsory(struct request_queue *q)
2052 {
2053 	struct mapped_device *dev_md;
2054 
2055 	if (!q->merge_bvec_fn)
2056 		return 0;
2057 
2058 	if (q->make_request_fn == dm_request) {
2059 		dev_md = q->queuedata;
2060 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2061 			return 0;
2062 	}
2063 
2064 	return 1;
2065 }
2066 
2067 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2068 					 struct dm_dev *dev, sector_t start,
2069 					 sector_t len, void *data)
2070 {
2071 	struct block_device *bdev = dev->bdev;
2072 	struct request_queue *q = bdev_get_queue(bdev);
2073 
2074 	return dm_queue_merge_is_compulsory(q);
2075 }
2076 
2077 /*
2078  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2079  * on the properties of the underlying devices.
2080  */
2081 static int dm_table_merge_is_optional(struct dm_table *table)
2082 {
2083 	unsigned i = 0;
2084 	struct dm_target *ti;
2085 
2086 	while (i < dm_table_get_num_targets(table)) {
2087 		ti = dm_table_get_target(table, i++);
2088 
2089 		if (ti->type->iterate_devices &&
2090 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2091 			return 0;
2092 	}
2093 
2094 	return 1;
2095 }
2096 
2097 /*
2098  * Returns old map, which caller must destroy.
2099  */
2100 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2101 			       struct queue_limits *limits)
2102 {
2103 	struct dm_table *old_map;
2104 	struct request_queue *q = md->queue;
2105 	sector_t size;
2106 	unsigned long flags;
2107 	int merge_is_optional;
2108 
2109 	size = dm_table_get_size(t);
2110 
2111 	/*
2112 	 * Wipe any geometry if the size of the table changed.
2113 	 */
2114 	if (size != get_capacity(md->disk))
2115 		memset(&md->geometry, 0, sizeof(md->geometry));
2116 
2117 	__set_size(md, size);
2118 
2119 	dm_table_event_callback(t, event_callback, md);
2120 
2121 	/*
2122 	 * The queue hasn't been stopped yet, if the old table type wasn't
2123 	 * for request-based during suspension.  So stop it to prevent
2124 	 * I/O mapping before resume.
2125 	 * This must be done before setting the queue restrictions,
2126 	 * because request-based dm may be run just after the setting.
2127 	 */
2128 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2129 		stop_queue(q);
2130 
2131 	__bind_mempools(md, t);
2132 
2133 	merge_is_optional = dm_table_merge_is_optional(t);
2134 
2135 	write_lock_irqsave(&md->map_lock, flags);
2136 	old_map = md->map;
2137 	md->map = t;
2138 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2139 
2140 	dm_table_set_restrictions(t, q, limits);
2141 	if (merge_is_optional)
2142 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2143 	else
2144 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2145 	write_unlock_irqrestore(&md->map_lock, flags);
2146 
2147 	return old_map;
2148 }
2149 
2150 /*
2151  * Returns unbound table for the caller to free.
2152  */
2153 static struct dm_table *__unbind(struct mapped_device *md)
2154 {
2155 	struct dm_table *map = md->map;
2156 	unsigned long flags;
2157 
2158 	if (!map)
2159 		return NULL;
2160 
2161 	dm_table_event_callback(map, NULL, NULL);
2162 	write_lock_irqsave(&md->map_lock, flags);
2163 	md->map = NULL;
2164 	write_unlock_irqrestore(&md->map_lock, flags);
2165 
2166 	return map;
2167 }
2168 
2169 /*
2170  * Constructor for a new device.
2171  */
2172 int dm_create(int minor, struct mapped_device **result)
2173 {
2174 	struct mapped_device *md;
2175 
2176 	md = alloc_dev(minor);
2177 	if (!md)
2178 		return -ENXIO;
2179 
2180 	dm_sysfs_init(md);
2181 
2182 	*result = md;
2183 	return 0;
2184 }
2185 
2186 /*
2187  * Functions to manage md->type.
2188  * All are required to hold md->type_lock.
2189  */
2190 void dm_lock_md_type(struct mapped_device *md)
2191 {
2192 	mutex_lock(&md->type_lock);
2193 }
2194 
2195 void dm_unlock_md_type(struct mapped_device *md)
2196 {
2197 	mutex_unlock(&md->type_lock);
2198 }
2199 
2200 void dm_set_md_type(struct mapped_device *md, unsigned type)
2201 {
2202 	md->type = type;
2203 }
2204 
2205 unsigned dm_get_md_type(struct mapped_device *md)
2206 {
2207 	return md->type;
2208 }
2209 
2210 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2211 {
2212 	return md->immutable_target_type;
2213 }
2214 
2215 /*
2216  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2217  */
2218 static int dm_init_request_based_queue(struct mapped_device *md)
2219 {
2220 	struct request_queue *q = NULL;
2221 
2222 	if (md->queue->elevator)
2223 		return 1;
2224 
2225 	/* Fully initialize the queue */
2226 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2227 	if (!q)
2228 		return 0;
2229 
2230 	md->queue = q;
2231 	dm_init_md_queue(md);
2232 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2233 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2234 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2235 
2236 	elv_register_queue(md->queue);
2237 
2238 	return 1;
2239 }
2240 
2241 /*
2242  * Setup the DM device's queue based on md's type
2243  */
2244 int dm_setup_md_queue(struct mapped_device *md)
2245 {
2246 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2247 	    !dm_init_request_based_queue(md)) {
2248 		DMWARN("Cannot initialize queue for request-based mapped device");
2249 		return -EINVAL;
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static struct mapped_device *dm_find_md(dev_t dev)
2256 {
2257 	struct mapped_device *md;
2258 	unsigned minor = MINOR(dev);
2259 
2260 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2261 		return NULL;
2262 
2263 	spin_lock(&_minor_lock);
2264 
2265 	md = idr_find(&_minor_idr, minor);
2266 	if (md && (md == MINOR_ALLOCED ||
2267 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2268 		   dm_deleting_md(md) ||
2269 		   test_bit(DMF_FREEING, &md->flags))) {
2270 		md = NULL;
2271 		goto out;
2272 	}
2273 
2274 out:
2275 	spin_unlock(&_minor_lock);
2276 
2277 	return md;
2278 }
2279 
2280 struct mapped_device *dm_get_md(dev_t dev)
2281 {
2282 	struct mapped_device *md = dm_find_md(dev);
2283 
2284 	if (md)
2285 		dm_get(md);
2286 
2287 	return md;
2288 }
2289 EXPORT_SYMBOL_GPL(dm_get_md);
2290 
2291 void *dm_get_mdptr(struct mapped_device *md)
2292 {
2293 	return md->interface_ptr;
2294 }
2295 
2296 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2297 {
2298 	md->interface_ptr = ptr;
2299 }
2300 
2301 void dm_get(struct mapped_device *md)
2302 {
2303 	atomic_inc(&md->holders);
2304 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2305 }
2306 
2307 const char *dm_device_name(struct mapped_device *md)
2308 {
2309 	return md->name;
2310 }
2311 EXPORT_SYMBOL_GPL(dm_device_name);
2312 
2313 static void __dm_destroy(struct mapped_device *md, bool wait)
2314 {
2315 	struct dm_table *map;
2316 
2317 	might_sleep();
2318 
2319 	spin_lock(&_minor_lock);
2320 	map = dm_get_live_table(md);
2321 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2322 	set_bit(DMF_FREEING, &md->flags);
2323 	spin_unlock(&_minor_lock);
2324 
2325 	if (!dm_suspended_md(md)) {
2326 		dm_table_presuspend_targets(map);
2327 		dm_table_postsuspend_targets(map);
2328 	}
2329 
2330 	/*
2331 	 * Rare, but there may be I/O requests still going to complete,
2332 	 * for example.  Wait for all references to disappear.
2333 	 * No one should increment the reference count of the mapped_device,
2334 	 * after the mapped_device state becomes DMF_FREEING.
2335 	 */
2336 	if (wait)
2337 		while (atomic_read(&md->holders))
2338 			msleep(1);
2339 	else if (atomic_read(&md->holders))
2340 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2341 		       dm_device_name(md), atomic_read(&md->holders));
2342 
2343 	dm_sysfs_exit(md);
2344 	dm_table_put(map);
2345 	dm_table_destroy(__unbind(md));
2346 	free_dev(md);
2347 }
2348 
2349 void dm_destroy(struct mapped_device *md)
2350 {
2351 	__dm_destroy(md, true);
2352 }
2353 
2354 void dm_destroy_immediate(struct mapped_device *md)
2355 {
2356 	__dm_destroy(md, false);
2357 }
2358 
2359 void dm_put(struct mapped_device *md)
2360 {
2361 	atomic_dec(&md->holders);
2362 }
2363 EXPORT_SYMBOL_GPL(dm_put);
2364 
2365 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2366 {
2367 	int r = 0;
2368 	DECLARE_WAITQUEUE(wait, current);
2369 
2370 	add_wait_queue(&md->wait, &wait);
2371 
2372 	while (1) {
2373 		set_current_state(interruptible);
2374 
2375 		if (!md_in_flight(md))
2376 			break;
2377 
2378 		if (interruptible == TASK_INTERRUPTIBLE &&
2379 		    signal_pending(current)) {
2380 			r = -EINTR;
2381 			break;
2382 		}
2383 
2384 		io_schedule();
2385 	}
2386 	set_current_state(TASK_RUNNING);
2387 
2388 	remove_wait_queue(&md->wait, &wait);
2389 
2390 	return r;
2391 }
2392 
2393 /*
2394  * Process the deferred bios
2395  */
2396 static void dm_wq_work(struct work_struct *work)
2397 {
2398 	struct mapped_device *md = container_of(work, struct mapped_device,
2399 						work);
2400 	struct bio *c;
2401 
2402 	down_read(&md->io_lock);
2403 
2404 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2405 		spin_lock_irq(&md->deferred_lock);
2406 		c = bio_list_pop(&md->deferred);
2407 		spin_unlock_irq(&md->deferred_lock);
2408 
2409 		if (!c)
2410 			break;
2411 
2412 		up_read(&md->io_lock);
2413 
2414 		if (dm_request_based(md))
2415 			generic_make_request(c);
2416 		else
2417 			__split_and_process_bio(md, c);
2418 
2419 		down_read(&md->io_lock);
2420 	}
2421 
2422 	up_read(&md->io_lock);
2423 }
2424 
2425 static void dm_queue_flush(struct mapped_device *md)
2426 {
2427 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2428 	smp_mb__after_clear_bit();
2429 	queue_work(md->wq, &md->work);
2430 }
2431 
2432 /*
2433  * Swap in a new table, returning the old one for the caller to destroy.
2434  */
2435 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2436 {
2437 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2438 	struct queue_limits limits;
2439 	int r;
2440 
2441 	mutex_lock(&md->suspend_lock);
2442 
2443 	/* device must be suspended */
2444 	if (!dm_suspended_md(md))
2445 		goto out;
2446 
2447 	/*
2448 	 * If the new table has no data devices, retain the existing limits.
2449 	 * This helps multipath with queue_if_no_path if all paths disappear,
2450 	 * then new I/O is queued based on these limits, and then some paths
2451 	 * reappear.
2452 	 */
2453 	if (dm_table_has_no_data_devices(table)) {
2454 		live_map = dm_get_live_table(md);
2455 		if (live_map)
2456 			limits = md->queue->limits;
2457 		dm_table_put(live_map);
2458 	}
2459 
2460 	if (!live_map) {
2461 		r = dm_calculate_queue_limits(table, &limits);
2462 		if (r) {
2463 			map = ERR_PTR(r);
2464 			goto out;
2465 		}
2466 	}
2467 
2468 	map = __bind(md, table, &limits);
2469 
2470 out:
2471 	mutex_unlock(&md->suspend_lock);
2472 	return map;
2473 }
2474 
2475 /*
2476  * Functions to lock and unlock any filesystem running on the
2477  * device.
2478  */
2479 static int lock_fs(struct mapped_device *md)
2480 {
2481 	int r;
2482 
2483 	WARN_ON(md->frozen_sb);
2484 
2485 	md->frozen_sb = freeze_bdev(md->bdev);
2486 	if (IS_ERR(md->frozen_sb)) {
2487 		r = PTR_ERR(md->frozen_sb);
2488 		md->frozen_sb = NULL;
2489 		return r;
2490 	}
2491 
2492 	set_bit(DMF_FROZEN, &md->flags);
2493 
2494 	return 0;
2495 }
2496 
2497 static void unlock_fs(struct mapped_device *md)
2498 {
2499 	if (!test_bit(DMF_FROZEN, &md->flags))
2500 		return;
2501 
2502 	thaw_bdev(md->bdev, md->frozen_sb);
2503 	md->frozen_sb = NULL;
2504 	clear_bit(DMF_FROZEN, &md->flags);
2505 }
2506 
2507 /*
2508  * We need to be able to change a mapping table under a mounted
2509  * filesystem.  For example we might want to move some data in
2510  * the background.  Before the table can be swapped with
2511  * dm_bind_table, dm_suspend must be called to flush any in
2512  * flight bios and ensure that any further io gets deferred.
2513  */
2514 /*
2515  * Suspend mechanism in request-based dm.
2516  *
2517  * 1. Flush all I/Os by lock_fs() if needed.
2518  * 2. Stop dispatching any I/O by stopping the request_queue.
2519  * 3. Wait for all in-flight I/Os to be completed or requeued.
2520  *
2521  * To abort suspend, start the request_queue.
2522  */
2523 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2524 {
2525 	struct dm_table *map = NULL;
2526 	int r = 0;
2527 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2528 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2529 
2530 	mutex_lock(&md->suspend_lock);
2531 
2532 	if (dm_suspended_md(md)) {
2533 		r = -EINVAL;
2534 		goto out_unlock;
2535 	}
2536 
2537 	map = dm_get_live_table(md);
2538 
2539 	/*
2540 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2541 	 * This flag is cleared before dm_suspend returns.
2542 	 */
2543 	if (noflush)
2544 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2545 
2546 	/* This does not get reverted if there's an error later. */
2547 	dm_table_presuspend_targets(map);
2548 
2549 	/*
2550 	 * Flush I/O to the device.
2551 	 * Any I/O submitted after lock_fs() may not be flushed.
2552 	 * noflush takes precedence over do_lockfs.
2553 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2554 	 */
2555 	if (!noflush && do_lockfs) {
2556 		r = lock_fs(md);
2557 		if (r)
2558 			goto out;
2559 	}
2560 
2561 	/*
2562 	 * Here we must make sure that no processes are submitting requests
2563 	 * to target drivers i.e. no one may be executing
2564 	 * __split_and_process_bio. This is called from dm_request and
2565 	 * dm_wq_work.
2566 	 *
2567 	 * To get all processes out of __split_and_process_bio in dm_request,
2568 	 * we take the write lock. To prevent any process from reentering
2569 	 * __split_and_process_bio from dm_request and quiesce the thread
2570 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2571 	 * flush_workqueue(md->wq).
2572 	 */
2573 	down_write(&md->io_lock);
2574 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2575 	up_write(&md->io_lock);
2576 
2577 	/*
2578 	 * Stop md->queue before flushing md->wq in case request-based
2579 	 * dm defers requests to md->wq from md->queue.
2580 	 */
2581 	if (dm_request_based(md))
2582 		stop_queue(md->queue);
2583 
2584 	flush_workqueue(md->wq);
2585 
2586 	/*
2587 	 * At this point no more requests are entering target request routines.
2588 	 * We call dm_wait_for_completion to wait for all existing requests
2589 	 * to finish.
2590 	 */
2591 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2592 
2593 	down_write(&md->io_lock);
2594 	if (noflush)
2595 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2596 	up_write(&md->io_lock);
2597 
2598 	/* were we interrupted ? */
2599 	if (r < 0) {
2600 		dm_queue_flush(md);
2601 
2602 		if (dm_request_based(md))
2603 			start_queue(md->queue);
2604 
2605 		unlock_fs(md);
2606 		goto out; /* pushback list is already flushed, so skip flush */
2607 	}
2608 
2609 	/*
2610 	 * If dm_wait_for_completion returned 0, the device is completely
2611 	 * quiescent now. There is no request-processing activity. All new
2612 	 * requests are being added to md->deferred list.
2613 	 */
2614 
2615 	set_bit(DMF_SUSPENDED, &md->flags);
2616 
2617 	dm_table_postsuspend_targets(map);
2618 
2619 out:
2620 	dm_table_put(map);
2621 
2622 out_unlock:
2623 	mutex_unlock(&md->suspend_lock);
2624 	return r;
2625 }
2626 
2627 int dm_resume(struct mapped_device *md)
2628 {
2629 	int r = -EINVAL;
2630 	struct dm_table *map = NULL;
2631 
2632 	mutex_lock(&md->suspend_lock);
2633 	if (!dm_suspended_md(md))
2634 		goto out;
2635 
2636 	map = dm_get_live_table(md);
2637 	if (!map || !dm_table_get_size(map))
2638 		goto out;
2639 
2640 	r = dm_table_resume_targets(map);
2641 	if (r)
2642 		goto out;
2643 
2644 	dm_queue_flush(md);
2645 
2646 	/*
2647 	 * Flushing deferred I/Os must be done after targets are resumed
2648 	 * so that mapping of targets can work correctly.
2649 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2650 	 */
2651 	if (dm_request_based(md))
2652 		start_queue(md->queue);
2653 
2654 	unlock_fs(md);
2655 
2656 	clear_bit(DMF_SUSPENDED, &md->flags);
2657 
2658 	r = 0;
2659 out:
2660 	dm_table_put(map);
2661 	mutex_unlock(&md->suspend_lock);
2662 
2663 	return r;
2664 }
2665 
2666 /*-----------------------------------------------------------------
2667  * Event notification.
2668  *---------------------------------------------------------------*/
2669 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2670 		       unsigned cookie)
2671 {
2672 	char udev_cookie[DM_COOKIE_LENGTH];
2673 	char *envp[] = { udev_cookie, NULL };
2674 
2675 	if (!cookie)
2676 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2677 	else {
2678 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2679 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2680 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2681 					  action, envp);
2682 	}
2683 }
2684 
2685 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2686 {
2687 	return atomic_add_return(1, &md->uevent_seq);
2688 }
2689 
2690 uint32_t dm_get_event_nr(struct mapped_device *md)
2691 {
2692 	return atomic_read(&md->event_nr);
2693 }
2694 
2695 int dm_wait_event(struct mapped_device *md, int event_nr)
2696 {
2697 	return wait_event_interruptible(md->eventq,
2698 			(event_nr != atomic_read(&md->event_nr)));
2699 }
2700 
2701 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2702 {
2703 	unsigned long flags;
2704 
2705 	spin_lock_irqsave(&md->uevent_lock, flags);
2706 	list_add(elist, &md->uevent_list);
2707 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2708 }
2709 
2710 /*
2711  * The gendisk is only valid as long as you have a reference
2712  * count on 'md'.
2713  */
2714 struct gendisk *dm_disk(struct mapped_device *md)
2715 {
2716 	return md->disk;
2717 }
2718 
2719 struct kobject *dm_kobject(struct mapped_device *md)
2720 {
2721 	return &md->kobj;
2722 }
2723 
2724 /*
2725  * struct mapped_device should not be exported outside of dm.c
2726  * so use this check to verify that kobj is part of md structure
2727  */
2728 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2729 {
2730 	struct mapped_device *md;
2731 
2732 	md = container_of(kobj, struct mapped_device, kobj);
2733 	if (&md->kobj != kobj)
2734 		return NULL;
2735 
2736 	if (test_bit(DMF_FREEING, &md->flags) ||
2737 	    dm_deleting_md(md))
2738 		return NULL;
2739 
2740 	dm_get(md);
2741 	return md;
2742 }
2743 
2744 int dm_suspended_md(struct mapped_device *md)
2745 {
2746 	return test_bit(DMF_SUSPENDED, &md->flags);
2747 }
2748 
2749 int dm_suspended(struct dm_target *ti)
2750 {
2751 	return dm_suspended_md(dm_table_get_md(ti->table));
2752 }
2753 EXPORT_SYMBOL_GPL(dm_suspended);
2754 
2755 int dm_noflush_suspending(struct dm_target *ti)
2756 {
2757 	return __noflush_suspending(dm_table_get_md(ti->table));
2758 }
2759 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2760 
2761 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2762 {
2763 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2764 	struct kmem_cache *cachep;
2765 	unsigned int pool_size;
2766 	unsigned int front_pad;
2767 
2768 	if (!pools)
2769 		return NULL;
2770 
2771 	if (type == DM_TYPE_BIO_BASED) {
2772 		cachep = _io_cache;
2773 		pool_size = 16;
2774 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2775 	} else if (type == DM_TYPE_REQUEST_BASED) {
2776 		cachep = _rq_tio_cache;
2777 		pool_size = MIN_IOS;
2778 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2779 		/* per_bio_data_size is not used. See __bind_mempools(). */
2780 		WARN_ON(per_bio_data_size != 0);
2781 	} else
2782 		goto out;
2783 
2784 	pools->io_pool = mempool_create_slab_pool(MIN_IOS, cachep);
2785 	if (!pools->io_pool)
2786 		goto out;
2787 
2788 	pools->bs = bioset_create(pool_size, front_pad);
2789 	if (!pools->bs)
2790 		goto out;
2791 
2792 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2793 		goto out;
2794 
2795 	return pools;
2796 
2797 out:
2798 	dm_free_md_mempools(pools);
2799 
2800 	return NULL;
2801 }
2802 
2803 void dm_free_md_mempools(struct dm_md_mempools *pools)
2804 {
2805 	if (!pools)
2806 		return;
2807 
2808 	if (pools->io_pool)
2809 		mempool_destroy(pools->io_pool);
2810 
2811 	if (pools->bs)
2812 		bioset_free(pools->bs);
2813 
2814 	kfree(pools);
2815 }
2816 
2817 static const struct block_device_operations dm_blk_dops = {
2818 	.open = dm_blk_open,
2819 	.release = dm_blk_close,
2820 	.ioctl = dm_blk_ioctl,
2821 	.getgeo = dm_blk_getgeo,
2822 	.owner = THIS_MODULE
2823 };
2824 
2825 EXPORT_SYMBOL(dm_get_mapinfo);
2826 
2827 /*
2828  * module hooks
2829  */
2830 module_init(dm_init);
2831 module_exit(dm_exit);
2832 
2833 module_param(major, uint, 0);
2834 MODULE_PARM_DESC(major, "The major number of the device mapper");
2835 MODULE_DESCRIPTION(DM_NAME " driver");
2836 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2837 MODULE_LICENSE("GPL");
2838