1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 /* 53 * For bio-based dm. 54 * One of these is allocated per bio. 55 */ 56 struct dm_io { 57 struct mapped_device *md; 58 int error; 59 atomic_t io_count; 60 struct bio *bio; 61 unsigned long start_time; 62 spinlock_t endio_lock; 63 }; 64 65 /* 66 * For request-based dm. 67 * One of these is allocated per request. 68 */ 69 struct dm_rq_target_io { 70 struct mapped_device *md; 71 struct dm_target *ti; 72 struct request *orig, clone; 73 int error; 74 union map_info info; 75 }; 76 77 /* 78 * For request-based dm - the bio clones we allocate are embedded in these 79 * structs. 80 * 81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 82 * the bioset is created - this means the bio has to come at the end of the 83 * struct. 84 */ 85 struct dm_rq_clone_bio_info { 86 struct bio *orig; 87 struct dm_rq_target_io *tio; 88 struct bio clone; 89 }; 90 91 union map_info *dm_get_mapinfo(struct bio *bio) 92 { 93 if (bio && bio->bi_private) 94 return &((struct dm_target_io *)bio->bi_private)->info; 95 return NULL; 96 } 97 98 union map_info *dm_get_rq_mapinfo(struct request *rq) 99 { 100 if (rq && rq->end_io_data) 101 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 102 return NULL; 103 } 104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 105 106 #define MINOR_ALLOCED ((void *)-1) 107 108 /* 109 * Bits for the md->flags field. 110 */ 111 #define DMF_BLOCK_IO_FOR_SUSPEND 0 112 #define DMF_SUSPENDED 1 113 #define DMF_FROZEN 2 114 #define DMF_FREEING 3 115 #define DMF_DELETING 4 116 #define DMF_NOFLUSH_SUSPENDING 5 117 #define DMF_MERGE_IS_OPTIONAL 6 118 119 /* 120 * Work processed by per-device workqueue. 121 */ 122 struct mapped_device { 123 struct rw_semaphore io_lock; 124 struct mutex suspend_lock; 125 rwlock_t map_lock; 126 atomic_t holders; 127 atomic_t open_count; 128 129 unsigned long flags; 130 131 struct request_queue *queue; 132 unsigned type; 133 /* Protect queue and type against concurrent access. */ 134 struct mutex type_lock; 135 136 struct target_type *immutable_target_type; 137 138 struct gendisk *disk; 139 char name[16]; 140 141 void *interface_ptr; 142 143 /* 144 * A list of ios that arrived while we were suspended. 145 */ 146 atomic_t pending[2]; 147 wait_queue_head_t wait; 148 struct work_struct work; 149 struct bio_list deferred; 150 spinlock_t deferred_lock; 151 152 /* 153 * Processing queue (flush) 154 */ 155 struct workqueue_struct *wq; 156 157 /* 158 * The current mapping. 159 */ 160 struct dm_table *map; 161 162 /* 163 * io objects are allocated from here. 164 */ 165 mempool_t *io_pool; 166 167 struct bio_set *bs; 168 169 /* 170 * Event handling. 171 */ 172 atomic_t event_nr; 173 wait_queue_head_t eventq; 174 atomic_t uevent_seq; 175 struct list_head uevent_list; 176 spinlock_t uevent_lock; /* Protect access to uevent_list */ 177 178 /* 179 * freeze/thaw support require holding onto a super block 180 */ 181 struct super_block *frozen_sb; 182 struct block_device *bdev; 183 184 /* forced geometry settings */ 185 struct hd_geometry geometry; 186 187 /* sysfs handle */ 188 struct kobject kobj; 189 190 /* zero-length flush that will be cloned and submitted to targets */ 191 struct bio flush_bio; 192 }; 193 194 /* 195 * For mempools pre-allocation at the table loading time. 196 */ 197 struct dm_md_mempools { 198 mempool_t *io_pool; 199 struct bio_set *bs; 200 }; 201 202 #define MIN_IOS 256 203 static struct kmem_cache *_io_cache; 204 static struct kmem_cache *_rq_tio_cache; 205 206 static int __init local_init(void) 207 { 208 int r = -ENOMEM; 209 210 /* allocate a slab for the dm_ios */ 211 _io_cache = KMEM_CACHE(dm_io, 0); 212 if (!_io_cache) 213 return r; 214 215 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 216 if (!_rq_tio_cache) 217 goto out_free_io_cache; 218 219 r = dm_uevent_init(); 220 if (r) 221 goto out_free_rq_tio_cache; 222 223 _major = major; 224 r = register_blkdev(_major, _name); 225 if (r < 0) 226 goto out_uevent_exit; 227 228 if (!_major) 229 _major = r; 230 231 return 0; 232 233 out_uevent_exit: 234 dm_uevent_exit(); 235 out_free_rq_tio_cache: 236 kmem_cache_destroy(_rq_tio_cache); 237 out_free_io_cache: 238 kmem_cache_destroy(_io_cache); 239 240 return r; 241 } 242 243 static void local_exit(void) 244 { 245 kmem_cache_destroy(_rq_tio_cache); 246 kmem_cache_destroy(_io_cache); 247 unregister_blkdev(_major, _name); 248 dm_uevent_exit(); 249 250 _major = 0; 251 252 DMINFO("cleaned up"); 253 } 254 255 static int (*_inits[])(void) __initdata = { 256 local_init, 257 dm_target_init, 258 dm_linear_init, 259 dm_stripe_init, 260 dm_io_init, 261 dm_kcopyd_init, 262 dm_interface_init, 263 }; 264 265 static void (*_exits[])(void) = { 266 local_exit, 267 dm_target_exit, 268 dm_linear_exit, 269 dm_stripe_exit, 270 dm_io_exit, 271 dm_kcopyd_exit, 272 dm_interface_exit, 273 }; 274 275 static int __init dm_init(void) 276 { 277 const int count = ARRAY_SIZE(_inits); 278 279 int r, i; 280 281 for (i = 0; i < count; i++) { 282 r = _inits[i](); 283 if (r) 284 goto bad; 285 } 286 287 return 0; 288 289 bad: 290 while (i--) 291 _exits[i](); 292 293 return r; 294 } 295 296 static void __exit dm_exit(void) 297 { 298 int i = ARRAY_SIZE(_exits); 299 300 while (i--) 301 _exits[i](); 302 303 /* 304 * Should be empty by this point. 305 */ 306 idr_destroy(&_minor_idr); 307 } 308 309 /* 310 * Block device functions 311 */ 312 int dm_deleting_md(struct mapped_device *md) 313 { 314 return test_bit(DMF_DELETING, &md->flags); 315 } 316 317 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 318 { 319 struct mapped_device *md; 320 321 spin_lock(&_minor_lock); 322 323 md = bdev->bd_disk->private_data; 324 if (!md) 325 goto out; 326 327 if (test_bit(DMF_FREEING, &md->flags) || 328 dm_deleting_md(md)) { 329 md = NULL; 330 goto out; 331 } 332 333 dm_get(md); 334 atomic_inc(&md->open_count); 335 336 out: 337 spin_unlock(&_minor_lock); 338 339 return md ? 0 : -ENXIO; 340 } 341 342 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 343 { 344 struct mapped_device *md = disk->private_data; 345 346 spin_lock(&_minor_lock); 347 348 atomic_dec(&md->open_count); 349 dm_put(md); 350 351 spin_unlock(&_minor_lock); 352 353 return 0; 354 } 355 356 int dm_open_count(struct mapped_device *md) 357 { 358 return atomic_read(&md->open_count); 359 } 360 361 /* 362 * Guarantees nothing is using the device before it's deleted. 363 */ 364 int dm_lock_for_deletion(struct mapped_device *md) 365 { 366 int r = 0; 367 368 spin_lock(&_minor_lock); 369 370 if (dm_open_count(md)) 371 r = -EBUSY; 372 else 373 set_bit(DMF_DELETING, &md->flags); 374 375 spin_unlock(&_minor_lock); 376 377 return r; 378 } 379 380 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 381 { 382 struct mapped_device *md = bdev->bd_disk->private_data; 383 384 return dm_get_geometry(md, geo); 385 } 386 387 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 388 unsigned int cmd, unsigned long arg) 389 { 390 struct mapped_device *md = bdev->bd_disk->private_data; 391 struct dm_table *map = dm_get_live_table(md); 392 struct dm_target *tgt; 393 int r = -ENOTTY; 394 395 if (!map || !dm_table_get_size(map)) 396 goto out; 397 398 /* We only support devices that have a single target */ 399 if (dm_table_get_num_targets(map) != 1) 400 goto out; 401 402 tgt = dm_table_get_target(map, 0); 403 404 if (dm_suspended_md(md)) { 405 r = -EAGAIN; 406 goto out; 407 } 408 409 if (tgt->type->ioctl) 410 r = tgt->type->ioctl(tgt, cmd, arg); 411 412 out: 413 dm_table_put(map); 414 415 return r; 416 } 417 418 static struct dm_io *alloc_io(struct mapped_device *md) 419 { 420 return mempool_alloc(md->io_pool, GFP_NOIO); 421 } 422 423 static void free_io(struct mapped_device *md, struct dm_io *io) 424 { 425 mempool_free(io, md->io_pool); 426 } 427 428 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 429 { 430 bio_put(&tio->clone); 431 } 432 433 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 434 gfp_t gfp_mask) 435 { 436 return mempool_alloc(md->io_pool, gfp_mask); 437 } 438 439 static void free_rq_tio(struct dm_rq_target_io *tio) 440 { 441 mempool_free(tio, tio->md->io_pool); 442 } 443 444 static int md_in_flight(struct mapped_device *md) 445 { 446 return atomic_read(&md->pending[READ]) + 447 atomic_read(&md->pending[WRITE]); 448 } 449 450 static void start_io_acct(struct dm_io *io) 451 { 452 struct mapped_device *md = io->md; 453 int cpu; 454 int rw = bio_data_dir(io->bio); 455 456 io->start_time = jiffies; 457 458 cpu = part_stat_lock(); 459 part_round_stats(cpu, &dm_disk(md)->part0); 460 part_stat_unlock(); 461 atomic_set(&dm_disk(md)->part0.in_flight[rw], 462 atomic_inc_return(&md->pending[rw])); 463 } 464 465 static void end_io_acct(struct dm_io *io) 466 { 467 struct mapped_device *md = io->md; 468 struct bio *bio = io->bio; 469 unsigned long duration = jiffies - io->start_time; 470 int pending, cpu; 471 int rw = bio_data_dir(bio); 472 473 cpu = part_stat_lock(); 474 part_round_stats(cpu, &dm_disk(md)->part0); 475 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 476 part_stat_unlock(); 477 478 /* 479 * After this is decremented the bio must not be touched if it is 480 * a flush. 481 */ 482 pending = atomic_dec_return(&md->pending[rw]); 483 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 484 pending += atomic_read(&md->pending[rw^0x1]); 485 486 /* nudge anyone waiting on suspend queue */ 487 if (!pending) 488 wake_up(&md->wait); 489 } 490 491 /* 492 * Add the bio to the list of deferred io. 493 */ 494 static void queue_io(struct mapped_device *md, struct bio *bio) 495 { 496 unsigned long flags; 497 498 spin_lock_irqsave(&md->deferred_lock, flags); 499 bio_list_add(&md->deferred, bio); 500 spin_unlock_irqrestore(&md->deferred_lock, flags); 501 queue_work(md->wq, &md->work); 502 } 503 504 /* 505 * Everyone (including functions in this file), should use this 506 * function to access the md->map field, and make sure they call 507 * dm_table_put() when finished. 508 */ 509 struct dm_table *dm_get_live_table(struct mapped_device *md) 510 { 511 struct dm_table *t; 512 unsigned long flags; 513 514 read_lock_irqsave(&md->map_lock, flags); 515 t = md->map; 516 if (t) 517 dm_table_get(t); 518 read_unlock_irqrestore(&md->map_lock, flags); 519 520 return t; 521 } 522 523 /* 524 * Get the geometry associated with a dm device 525 */ 526 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 527 { 528 *geo = md->geometry; 529 530 return 0; 531 } 532 533 /* 534 * Set the geometry of a device. 535 */ 536 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 537 { 538 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 539 540 if (geo->start > sz) { 541 DMWARN("Start sector is beyond the geometry limits."); 542 return -EINVAL; 543 } 544 545 md->geometry = *geo; 546 547 return 0; 548 } 549 550 /*----------------------------------------------------------------- 551 * CRUD START: 552 * A more elegant soln is in the works that uses the queue 553 * merge fn, unfortunately there are a couple of changes to 554 * the block layer that I want to make for this. So in the 555 * interests of getting something for people to use I give 556 * you this clearly demarcated crap. 557 *---------------------------------------------------------------*/ 558 559 static int __noflush_suspending(struct mapped_device *md) 560 { 561 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 562 } 563 564 /* 565 * Decrements the number of outstanding ios that a bio has been 566 * cloned into, completing the original io if necc. 567 */ 568 static void dec_pending(struct dm_io *io, int error) 569 { 570 unsigned long flags; 571 int io_error; 572 struct bio *bio; 573 struct mapped_device *md = io->md; 574 575 /* Push-back supersedes any I/O errors */ 576 if (unlikely(error)) { 577 spin_lock_irqsave(&io->endio_lock, flags); 578 if (!(io->error > 0 && __noflush_suspending(md))) 579 io->error = error; 580 spin_unlock_irqrestore(&io->endio_lock, flags); 581 } 582 583 if (atomic_dec_and_test(&io->io_count)) { 584 if (io->error == DM_ENDIO_REQUEUE) { 585 /* 586 * Target requested pushing back the I/O. 587 */ 588 spin_lock_irqsave(&md->deferred_lock, flags); 589 if (__noflush_suspending(md)) 590 bio_list_add_head(&md->deferred, io->bio); 591 else 592 /* noflush suspend was interrupted. */ 593 io->error = -EIO; 594 spin_unlock_irqrestore(&md->deferred_lock, flags); 595 } 596 597 io_error = io->error; 598 bio = io->bio; 599 end_io_acct(io); 600 free_io(md, io); 601 602 if (io_error == DM_ENDIO_REQUEUE) 603 return; 604 605 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { 606 /* 607 * Preflush done for flush with data, reissue 608 * without REQ_FLUSH. 609 */ 610 bio->bi_rw &= ~REQ_FLUSH; 611 queue_io(md, bio); 612 } else { 613 /* done with normal IO or empty flush */ 614 bio_endio(bio, io_error); 615 } 616 } 617 } 618 619 static void clone_endio(struct bio *bio, int error) 620 { 621 int r = 0; 622 struct dm_target_io *tio = bio->bi_private; 623 struct dm_io *io = tio->io; 624 struct mapped_device *md = tio->io->md; 625 dm_endio_fn endio = tio->ti->type->end_io; 626 627 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 628 error = -EIO; 629 630 if (endio) { 631 r = endio(tio->ti, bio, error); 632 if (r < 0 || r == DM_ENDIO_REQUEUE) 633 /* 634 * error and requeue request are handled 635 * in dec_pending(). 636 */ 637 error = r; 638 else if (r == DM_ENDIO_INCOMPLETE) 639 /* The target will handle the io */ 640 return; 641 else if (r) { 642 DMWARN("unimplemented target endio return value: %d", r); 643 BUG(); 644 } 645 } 646 647 free_tio(md, tio); 648 dec_pending(io, error); 649 } 650 651 /* 652 * Partial completion handling for request-based dm 653 */ 654 static void end_clone_bio(struct bio *clone, int error) 655 { 656 struct dm_rq_clone_bio_info *info = clone->bi_private; 657 struct dm_rq_target_io *tio = info->tio; 658 struct bio *bio = info->orig; 659 unsigned int nr_bytes = info->orig->bi_size; 660 661 bio_put(clone); 662 663 if (tio->error) 664 /* 665 * An error has already been detected on the request. 666 * Once error occurred, just let clone->end_io() handle 667 * the remainder. 668 */ 669 return; 670 else if (error) { 671 /* 672 * Don't notice the error to the upper layer yet. 673 * The error handling decision is made by the target driver, 674 * when the request is completed. 675 */ 676 tio->error = error; 677 return; 678 } 679 680 /* 681 * I/O for the bio successfully completed. 682 * Notice the data completion to the upper layer. 683 */ 684 685 /* 686 * bios are processed from the head of the list. 687 * So the completing bio should always be rq->bio. 688 * If it's not, something wrong is happening. 689 */ 690 if (tio->orig->bio != bio) 691 DMERR("bio completion is going in the middle of the request"); 692 693 /* 694 * Update the original request. 695 * Do not use blk_end_request() here, because it may complete 696 * the original request before the clone, and break the ordering. 697 */ 698 blk_update_request(tio->orig, 0, nr_bytes); 699 } 700 701 /* 702 * Don't touch any member of the md after calling this function because 703 * the md may be freed in dm_put() at the end of this function. 704 * Or do dm_get() before calling this function and dm_put() later. 705 */ 706 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 707 { 708 atomic_dec(&md->pending[rw]); 709 710 /* nudge anyone waiting on suspend queue */ 711 if (!md_in_flight(md)) 712 wake_up(&md->wait); 713 714 /* 715 * Run this off this callpath, as drivers could invoke end_io while 716 * inside their request_fn (and holding the queue lock). Calling 717 * back into ->request_fn() could deadlock attempting to grab the 718 * queue lock again. 719 */ 720 if (run_queue) 721 blk_run_queue_async(md->queue); 722 723 /* 724 * dm_put() must be at the end of this function. See the comment above 725 */ 726 dm_put(md); 727 } 728 729 static void free_rq_clone(struct request *clone) 730 { 731 struct dm_rq_target_io *tio = clone->end_io_data; 732 733 blk_rq_unprep_clone(clone); 734 free_rq_tio(tio); 735 } 736 737 /* 738 * Complete the clone and the original request. 739 * Must be called without queue lock. 740 */ 741 static void dm_end_request(struct request *clone, int error) 742 { 743 int rw = rq_data_dir(clone); 744 struct dm_rq_target_io *tio = clone->end_io_data; 745 struct mapped_device *md = tio->md; 746 struct request *rq = tio->orig; 747 748 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 749 rq->errors = clone->errors; 750 rq->resid_len = clone->resid_len; 751 752 if (rq->sense) 753 /* 754 * We are using the sense buffer of the original 755 * request. 756 * So setting the length of the sense data is enough. 757 */ 758 rq->sense_len = clone->sense_len; 759 } 760 761 free_rq_clone(clone); 762 blk_end_request_all(rq, error); 763 rq_completed(md, rw, true); 764 } 765 766 static void dm_unprep_request(struct request *rq) 767 { 768 struct request *clone = rq->special; 769 770 rq->special = NULL; 771 rq->cmd_flags &= ~REQ_DONTPREP; 772 773 free_rq_clone(clone); 774 } 775 776 /* 777 * Requeue the original request of a clone. 778 */ 779 void dm_requeue_unmapped_request(struct request *clone) 780 { 781 int rw = rq_data_dir(clone); 782 struct dm_rq_target_io *tio = clone->end_io_data; 783 struct mapped_device *md = tio->md; 784 struct request *rq = tio->orig; 785 struct request_queue *q = rq->q; 786 unsigned long flags; 787 788 dm_unprep_request(rq); 789 790 spin_lock_irqsave(q->queue_lock, flags); 791 blk_requeue_request(q, rq); 792 spin_unlock_irqrestore(q->queue_lock, flags); 793 794 rq_completed(md, rw, 0); 795 } 796 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 797 798 static void __stop_queue(struct request_queue *q) 799 { 800 blk_stop_queue(q); 801 } 802 803 static void stop_queue(struct request_queue *q) 804 { 805 unsigned long flags; 806 807 spin_lock_irqsave(q->queue_lock, flags); 808 __stop_queue(q); 809 spin_unlock_irqrestore(q->queue_lock, flags); 810 } 811 812 static void __start_queue(struct request_queue *q) 813 { 814 if (blk_queue_stopped(q)) 815 blk_start_queue(q); 816 } 817 818 static void start_queue(struct request_queue *q) 819 { 820 unsigned long flags; 821 822 spin_lock_irqsave(q->queue_lock, flags); 823 __start_queue(q); 824 spin_unlock_irqrestore(q->queue_lock, flags); 825 } 826 827 static void dm_done(struct request *clone, int error, bool mapped) 828 { 829 int r = error; 830 struct dm_rq_target_io *tio = clone->end_io_data; 831 dm_request_endio_fn rq_end_io = NULL; 832 833 if (tio->ti) { 834 rq_end_io = tio->ti->type->rq_end_io; 835 836 if (mapped && rq_end_io) 837 r = rq_end_io(tio->ti, clone, error, &tio->info); 838 } 839 840 if (r <= 0) 841 /* The target wants to complete the I/O */ 842 dm_end_request(clone, r); 843 else if (r == DM_ENDIO_INCOMPLETE) 844 /* The target will handle the I/O */ 845 return; 846 else if (r == DM_ENDIO_REQUEUE) 847 /* The target wants to requeue the I/O */ 848 dm_requeue_unmapped_request(clone); 849 else { 850 DMWARN("unimplemented target endio return value: %d", r); 851 BUG(); 852 } 853 } 854 855 /* 856 * Request completion handler for request-based dm 857 */ 858 static void dm_softirq_done(struct request *rq) 859 { 860 bool mapped = true; 861 struct request *clone = rq->completion_data; 862 struct dm_rq_target_io *tio = clone->end_io_data; 863 864 if (rq->cmd_flags & REQ_FAILED) 865 mapped = false; 866 867 dm_done(clone, tio->error, mapped); 868 } 869 870 /* 871 * Complete the clone and the original request with the error status 872 * through softirq context. 873 */ 874 static void dm_complete_request(struct request *clone, int error) 875 { 876 struct dm_rq_target_io *tio = clone->end_io_data; 877 struct request *rq = tio->orig; 878 879 tio->error = error; 880 rq->completion_data = clone; 881 blk_complete_request(rq); 882 } 883 884 /* 885 * Complete the not-mapped clone and the original request with the error status 886 * through softirq context. 887 * Target's rq_end_io() function isn't called. 888 * This may be used when the target's map_rq() function fails. 889 */ 890 void dm_kill_unmapped_request(struct request *clone, int error) 891 { 892 struct dm_rq_target_io *tio = clone->end_io_data; 893 struct request *rq = tio->orig; 894 895 rq->cmd_flags |= REQ_FAILED; 896 dm_complete_request(clone, error); 897 } 898 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 899 900 /* 901 * Called with the queue lock held 902 */ 903 static void end_clone_request(struct request *clone, int error) 904 { 905 /* 906 * For just cleaning up the information of the queue in which 907 * the clone was dispatched. 908 * The clone is *NOT* freed actually here because it is alloced from 909 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 910 */ 911 __blk_put_request(clone->q, clone); 912 913 /* 914 * Actual request completion is done in a softirq context which doesn't 915 * hold the queue lock. Otherwise, deadlock could occur because: 916 * - another request may be submitted by the upper level driver 917 * of the stacking during the completion 918 * - the submission which requires queue lock may be done 919 * against this queue 920 */ 921 dm_complete_request(clone, error); 922 } 923 924 /* 925 * Return maximum size of I/O possible at the supplied sector up to the current 926 * target boundary. 927 */ 928 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 929 { 930 sector_t target_offset = dm_target_offset(ti, sector); 931 932 return ti->len - target_offset; 933 } 934 935 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 936 { 937 sector_t len = max_io_len_target_boundary(sector, ti); 938 sector_t offset, max_len; 939 940 /* 941 * Does the target need to split even further? 942 */ 943 if (ti->max_io_len) { 944 offset = dm_target_offset(ti, sector); 945 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 946 max_len = sector_div(offset, ti->max_io_len); 947 else 948 max_len = offset & (ti->max_io_len - 1); 949 max_len = ti->max_io_len - max_len; 950 951 if (len > max_len) 952 len = max_len; 953 } 954 955 return len; 956 } 957 958 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 959 { 960 if (len > UINT_MAX) { 961 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 962 (unsigned long long)len, UINT_MAX); 963 ti->error = "Maximum size of target IO is too large"; 964 return -EINVAL; 965 } 966 967 ti->max_io_len = (uint32_t) len; 968 969 return 0; 970 } 971 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 972 973 static void __map_bio(struct dm_target_io *tio) 974 { 975 int r; 976 sector_t sector; 977 struct mapped_device *md; 978 struct bio *clone = &tio->clone; 979 struct dm_target *ti = tio->ti; 980 981 clone->bi_end_io = clone_endio; 982 clone->bi_private = tio; 983 984 /* 985 * Map the clone. If r == 0 we don't need to do 986 * anything, the target has assumed ownership of 987 * this io. 988 */ 989 atomic_inc(&tio->io->io_count); 990 sector = clone->bi_sector; 991 r = ti->type->map(ti, clone); 992 if (r == DM_MAPIO_REMAPPED) { 993 /* the bio has been remapped so dispatch it */ 994 995 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 996 tio->io->bio->bi_bdev->bd_dev, sector); 997 998 generic_make_request(clone); 999 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1000 /* error the io and bail out, or requeue it if needed */ 1001 md = tio->io->md; 1002 dec_pending(tio->io, r); 1003 free_tio(md, tio); 1004 } else if (r) { 1005 DMWARN("unimplemented target map return value: %d", r); 1006 BUG(); 1007 } 1008 } 1009 1010 struct clone_info { 1011 struct mapped_device *md; 1012 struct dm_table *map; 1013 struct bio *bio; 1014 struct dm_io *io; 1015 sector_t sector; 1016 sector_t sector_count; 1017 unsigned short idx; 1018 }; 1019 1020 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len) 1021 { 1022 bio->bi_sector = sector; 1023 bio->bi_size = to_bytes(len); 1024 } 1025 1026 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count) 1027 { 1028 bio->bi_idx = idx; 1029 bio->bi_vcnt = idx + bv_count; 1030 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 1031 } 1032 1033 static void clone_bio_integrity(struct bio *bio, struct bio *clone, 1034 unsigned short idx, unsigned len, unsigned offset, 1035 unsigned trim) 1036 { 1037 if (!bio_integrity(bio)) 1038 return; 1039 1040 bio_integrity_clone(clone, bio, GFP_NOIO); 1041 1042 if (trim) 1043 bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len); 1044 } 1045 1046 /* 1047 * Creates a little bio that just does part of a bvec. 1048 */ 1049 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio, 1050 sector_t sector, unsigned short idx, 1051 unsigned offset, unsigned len) 1052 { 1053 struct bio *clone = &tio->clone; 1054 struct bio_vec *bv = bio->bi_io_vec + idx; 1055 1056 *clone->bi_io_vec = *bv; 1057 1058 bio_setup_sector(clone, sector, len); 1059 1060 clone->bi_bdev = bio->bi_bdev; 1061 clone->bi_rw = bio->bi_rw; 1062 clone->bi_vcnt = 1; 1063 clone->bi_io_vec->bv_offset = offset; 1064 clone->bi_io_vec->bv_len = clone->bi_size; 1065 clone->bi_flags |= 1 << BIO_CLONED; 1066 1067 clone_bio_integrity(bio, clone, idx, len, offset, 1); 1068 } 1069 1070 /* 1071 * Creates a bio that consists of range of complete bvecs. 1072 */ 1073 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1074 sector_t sector, unsigned short idx, 1075 unsigned short bv_count, unsigned len) 1076 { 1077 struct bio *clone = &tio->clone; 1078 unsigned trim = 0; 1079 1080 __bio_clone(clone, bio); 1081 bio_setup_sector(clone, sector, len); 1082 bio_setup_bv(clone, idx, bv_count); 1083 1084 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1085 trim = 1; 1086 clone_bio_integrity(bio, clone, idx, len, 0, trim); 1087 } 1088 1089 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1090 struct dm_target *ti, int nr_iovecs, 1091 unsigned target_bio_nr) 1092 { 1093 struct dm_target_io *tio; 1094 struct bio *clone; 1095 1096 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs); 1097 tio = container_of(clone, struct dm_target_io, clone); 1098 1099 tio->io = ci->io; 1100 tio->ti = ti; 1101 memset(&tio->info, 0, sizeof(tio->info)); 1102 tio->target_bio_nr = target_bio_nr; 1103 1104 return tio; 1105 } 1106 1107 static void __clone_and_map_simple_bio(struct clone_info *ci, 1108 struct dm_target *ti, 1109 unsigned target_bio_nr, sector_t len) 1110 { 1111 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr); 1112 struct bio *clone = &tio->clone; 1113 1114 /* 1115 * Discard requests require the bio's inline iovecs be initialized. 1116 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1117 * and discard, so no need for concern about wasted bvec allocations. 1118 */ 1119 __bio_clone(clone, ci->bio); 1120 if (len) 1121 bio_setup_sector(clone, ci->sector, len); 1122 1123 __map_bio(tio); 1124 } 1125 1126 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1127 unsigned num_bios, sector_t len) 1128 { 1129 unsigned target_bio_nr; 1130 1131 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1132 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1133 } 1134 1135 static int __send_empty_flush(struct clone_info *ci) 1136 { 1137 unsigned target_nr = 0; 1138 struct dm_target *ti; 1139 1140 BUG_ON(bio_has_data(ci->bio)); 1141 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1142 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0); 1143 1144 return 0; 1145 } 1146 1147 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1148 sector_t sector, int nr_iovecs, 1149 unsigned short idx, unsigned short bv_count, 1150 unsigned offset, unsigned len, 1151 unsigned split_bvec) 1152 { 1153 struct bio *bio = ci->bio; 1154 struct dm_target_io *tio; 1155 unsigned target_bio_nr; 1156 unsigned num_target_bios = 1; 1157 1158 /* 1159 * Does the target want to receive duplicate copies of the bio? 1160 */ 1161 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1162 num_target_bios = ti->num_write_bios(ti, bio); 1163 1164 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1165 tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr); 1166 if (split_bvec) 1167 clone_split_bio(tio, bio, sector, idx, offset, len); 1168 else 1169 clone_bio(tio, bio, sector, idx, bv_count, len); 1170 __map_bio(tio); 1171 } 1172 } 1173 1174 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1175 1176 static unsigned get_num_discard_bios(struct dm_target *ti) 1177 { 1178 return ti->num_discard_bios; 1179 } 1180 1181 static unsigned get_num_write_same_bios(struct dm_target *ti) 1182 { 1183 return ti->num_write_same_bios; 1184 } 1185 1186 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1187 1188 static bool is_split_required_for_discard(struct dm_target *ti) 1189 { 1190 return ti->split_discard_bios; 1191 } 1192 1193 static int __send_changing_extent_only(struct clone_info *ci, 1194 get_num_bios_fn get_num_bios, 1195 is_split_required_fn is_split_required) 1196 { 1197 struct dm_target *ti; 1198 sector_t len; 1199 unsigned num_bios; 1200 1201 do { 1202 ti = dm_table_find_target(ci->map, ci->sector); 1203 if (!dm_target_is_valid(ti)) 1204 return -EIO; 1205 1206 /* 1207 * Even though the device advertised support for this type of 1208 * request, that does not mean every target supports it, and 1209 * reconfiguration might also have changed that since the 1210 * check was performed. 1211 */ 1212 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1213 if (!num_bios) 1214 return -EOPNOTSUPP; 1215 1216 if (is_split_required && !is_split_required(ti)) 1217 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1218 else 1219 len = min(ci->sector_count, max_io_len(ci->sector, ti)); 1220 1221 __send_duplicate_bios(ci, ti, num_bios, len); 1222 1223 ci->sector += len; 1224 } while (ci->sector_count -= len); 1225 1226 return 0; 1227 } 1228 1229 static int __send_discard(struct clone_info *ci) 1230 { 1231 return __send_changing_extent_only(ci, get_num_discard_bios, 1232 is_split_required_for_discard); 1233 } 1234 1235 static int __send_write_same(struct clone_info *ci) 1236 { 1237 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1238 } 1239 1240 /* 1241 * Find maximum number of sectors / bvecs we can process with a single bio. 1242 */ 1243 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx) 1244 { 1245 struct bio *bio = ci->bio; 1246 sector_t bv_len, total_len = 0; 1247 1248 for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) { 1249 bv_len = to_sector(bio->bi_io_vec[*idx].bv_len); 1250 1251 if (bv_len > max) 1252 break; 1253 1254 max -= bv_len; 1255 total_len += bv_len; 1256 } 1257 1258 return total_len; 1259 } 1260 1261 static int __split_bvec_across_targets(struct clone_info *ci, 1262 struct dm_target *ti, sector_t max) 1263 { 1264 struct bio *bio = ci->bio; 1265 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1266 sector_t remaining = to_sector(bv->bv_len); 1267 unsigned offset = 0; 1268 sector_t len; 1269 1270 do { 1271 if (offset) { 1272 ti = dm_table_find_target(ci->map, ci->sector); 1273 if (!dm_target_is_valid(ti)) 1274 return -EIO; 1275 1276 max = max_io_len(ci->sector, ti); 1277 } 1278 1279 len = min(remaining, max); 1280 1281 __clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0, 1282 bv->bv_offset + offset, len, 1); 1283 1284 ci->sector += len; 1285 ci->sector_count -= len; 1286 offset += to_bytes(len); 1287 } while (remaining -= len); 1288 1289 ci->idx++; 1290 1291 return 0; 1292 } 1293 1294 /* 1295 * Select the correct strategy for processing a non-flush bio. 1296 */ 1297 static int __split_and_process_non_flush(struct clone_info *ci) 1298 { 1299 struct bio *bio = ci->bio; 1300 struct dm_target *ti; 1301 sector_t len, max; 1302 int idx; 1303 1304 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1305 return __send_discard(ci); 1306 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1307 return __send_write_same(ci); 1308 1309 ti = dm_table_find_target(ci->map, ci->sector); 1310 if (!dm_target_is_valid(ti)) 1311 return -EIO; 1312 1313 max = max_io_len(ci->sector, ti); 1314 1315 /* 1316 * Optimise for the simple case where we can do all of 1317 * the remaining io with a single clone. 1318 */ 1319 if (ci->sector_count <= max) { 1320 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs, 1321 ci->idx, bio->bi_vcnt - ci->idx, 0, 1322 ci->sector_count, 0); 1323 ci->sector_count = 0; 1324 return 0; 1325 } 1326 1327 /* 1328 * There are some bvecs that don't span targets. 1329 * Do as many of these as possible. 1330 */ 1331 if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1332 len = __len_within_target(ci, max, &idx); 1333 1334 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs, 1335 ci->idx, idx - ci->idx, 0, len, 0); 1336 1337 ci->sector += len; 1338 ci->sector_count -= len; 1339 ci->idx = idx; 1340 1341 return 0; 1342 } 1343 1344 /* 1345 * Handle a bvec that must be split between two or more targets. 1346 */ 1347 return __split_bvec_across_targets(ci, ti, max); 1348 } 1349 1350 /* 1351 * Entry point to split a bio into clones and submit them to the targets. 1352 */ 1353 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1354 { 1355 struct clone_info ci; 1356 int error = 0; 1357 1358 ci.map = dm_get_live_table(md); 1359 if (unlikely(!ci.map)) { 1360 bio_io_error(bio); 1361 return; 1362 } 1363 1364 ci.md = md; 1365 ci.io = alloc_io(md); 1366 ci.io->error = 0; 1367 atomic_set(&ci.io->io_count, 1); 1368 ci.io->bio = bio; 1369 ci.io->md = md; 1370 spin_lock_init(&ci.io->endio_lock); 1371 ci.sector = bio->bi_sector; 1372 ci.idx = bio->bi_idx; 1373 1374 start_io_acct(ci.io); 1375 1376 if (bio->bi_rw & REQ_FLUSH) { 1377 ci.bio = &ci.md->flush_bio; 1378 ci.sector_count = 0; 1379 error = __send_empty_flush(&ci); 1380 /* dec_pending submits any data associated with flush */ 1381 } else { 1382 ci.bio = bio; 1383 ci.sector_count = bio_sectors(bio); 1384 while (ci.sector_count && !error) 1385 error = __split_and_process_non_flush(&ci); 1386 } 1387 1388 /* drop the extra reference count */ 1389 dec_pending(ci.io, error); 1390 dm_table_put(ci.map); 1391 } 1392 /*----------------------------------------------------------------- 1393 * CRUD END 1394 *---------------------------------------------------------------*/ 1395 1396 static int dm_merge_bvec(struct request_queue *q, 1397 struct bvec_merge_data *bvm, 1398 struct bio_vec *biovec) 1399 { 1400 struct mapped_device *md = q->queuedata; 1401 struct dm_table *map = dm_get_live_table(md); 1402 struct dm_target *ti; 1403 sector_t max_sectors; 1404 int max_size = 0; 1405 1406 if (unlikely(!map)) 1407 goto out; 1408 1409 ti = dm_table_find_target(map, bvm->bi_sector); 1410 if (!dm_target_is_valid(ti)) 1411 goto out_table; 1412 1413 /* 1414 * Find maximum amount of I/O that won't need splitting 1415 */ 1416 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1417 (sector_t) BIO_MAX_SECTORS); 1418 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1419 if (max_size < 0) 1420 max_size = 0; 1421 1422 /* 1423 * merge_bvec_fn() returns number of bytes 1424 * it can accept at this offset 1425 * max is precomputed maximal io size 1426 */ 1427 if (max_size && ti->type->merge) 1428 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1429 /* 1430 * If the target doesn't support merge method and some of the devices 1431 * provided their merge_bvec method (we know this by looking at 1432 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1433 * entries. So always set max_size to 0, and the code below allows 1434 * just one page. 1435 */ 1436 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1437 1438 max_size = 0; 1439 1440 out_table: 1441 dm_table_put(map); 1442 1443 out: 1444 /* 1445 * Always allow an entire first page 1446 */ 1447 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1448 max_size = biovec->bv_len; 1449 1450 return max_size; 1451 } 1452 1453 /* 1454 * The request function that just remaps the bio built up by 1455 * dm_merge_bvec. 1456 */ 1457 static void _dm_request(struct request_queue *q, struct bio *bio) 1458 { 1459 int rw = bio_data_dir(bio); 1460 struct mapped_device *md = q->queuedata; 1461 int cpu; 1462 1463 down_read(&md->io_lock); 1464 1465 cpu = part_stat_lock(); 1466 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1467 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1468 part_stat_unlock(); 1469 1470 /* if we're suspended, we have to queue this io for later */ 1471 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1472 up_read(&md->io_lock); 1473 1474 if (bio_rw(bio) != READA) 1475 queue_io(md, bio); 1476 else 1477 bio_io_error(bio); 1478 return; 1479 } 1480 1481 __split_and_process_bio(md, bio); 1482 up_read(&md->io_lock); 1483 return; 1484 } 1485 1486 static int dm_request_based(struct mapped_device *md) 1487 { 1488 return blk_queue_stackable(md->queue); 1489 } 1490 1491 static void dm_request(struct request_queue *q, struct bio *bio) 1492 { 1493 struct mapped_device *md = q->queuedata; 1494 1495 if (dm_request_based(md)) 1496 blk_queue_bio(q, bio); 1497 else 1498 _dm_request(q, bio); 1499 } 1500 1501 void dm_dispatch_request(struct request *rq) 1502 { 1503 int r; 1504 1505 if (blk_queue_io_stat(rq->q)) 1506 rq->cmd_flags |= REQ_IO_STAT; 1507 1508 rq->start_time = jiffies; 1509 r = blk_insert_cloned_request(rq->q, rq); 1510 if (r) 1511 dm_complete_request(rq, r); 1512 } 1513 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1514 1515 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1516 void *data) 1517 { 1518 struct dm_rq_target_io *tio = data; 1519 struct dm_rq_clone_bio_info *info = 1520 container_of(bio, struct dm_rq_clone_bio_info, clone); 1521 1522 info->orig = bio_orig; 1523 info->tio = tio; 1524 bio->bi_end_io = end_clone_bio; 1525 bio->bi_private = info; 1526 1527 return 0; 1528 } 1529 1530 static int setup_clone(struct request *clone, struct request *rq, 1531 struct dm_rq_target_io *tio) 1532 { 1533 int r; 1534 1535 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1536 dm_rq_bio_constructor, tio); 1537 if (r) 1538 return r; 1539 1540 clone->cmd = rq->cmd; 1541 clone->cmd_len = rq->cmd_len; 1542 clone->sense = rq->sense; 1543 clone->buffer = rq->buffer; 1544 clone->end_io = end_clone_request; 1545 clone->end_io_data = tio; 1546 1547 return 0; 1548 } 1549 1550 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1551 gfp_t gfp_mask) 1552 { 1553 struct request *clone; 1554 struct dm_rq_target_io *tio; 1555 1556 tio = alloc_rq_tio(md, gfp_mask); 1557 if (!tio) 1558 return NULL; 1559 1560 tio->md = md; 1561 tio->ti = NULL; 1562 tio->orig = rq; 1563 tio->error = 0; 1564 memset(&tio->info, 0, sizeof(tio->info)); 1565 1566 clone = &tio->clone; 1567 if (setup_clone(clone, rq, tio)) { 1568 /* -ENOMEM */ 1569 free_rq_tio(tio); 1570 return NULL; 1571 } 1572 1573 return clone; 1574 } 1575 1576 /* 1577 * Called with the queue lock held. 1578 */ 1579 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1580 { 1581 struct mapped_device *md = q->queuedata; 1582 struct request *clone; 1583 1584 if (unlikely(rq->special)) { 1585 DMWARN("Already has something in rq->special."); 1586 return BLKPREP_KILL; 1587 } 1588 1589 clone = clone_rq(rq, md, GFP_ATOMIC); 1590 if (!clone) 1591 return BLKPREP_DEFER; 1592 1593 rq->special = clone; 1594 rq->cmd_flags |= REQ_DONTPREP; 1595 1596 return BLKPREP_OK; 1597 } 1598 1599 /* 1600 * Returns: 1601 * 0 : the request has been processed (not requeued) 1602 * !0 : the request has been requeued 1603 */ 1604 static int map_request(struct dm_target *ti, struct request *clone, 1605 struct mapped_device *md) 1606 { 1607 int r, requeued = 0; 1608 struct dm_rq_target_io *tio = clone->end_io_data; 1609 1610 tio->ti = ti; 1611 r = ti->type->map_rq(ti, clone, &tio->info); 1612 switch (r) { 1613 case DM_MAPIO_SUBMITTED: 1614 /* The target has taken the I/O to submit by itself later */ 1615 break; 1616 case DM_MAPIO_REMAPPED: 1617 /* The target has remapped the I/O so dispatch it */ 1618 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1619 blk_rq_pos(tio->orig)); 1620 dm_dispatch_request(clone); 1621 break; 1622 case DM_MAPIO_REQUEUE: 1623 /* The target wants to requeue the I/O */ 1624 dm_requeue_unmapped_request(clone); 1625 requeued = 1; 1626 break; 1627 default: 1628 if (r > 0) { 1629 DMWARN("unimplemented target map return value: %d", r); 1630 BUG(); 1631 } 1632 1633 /* The target wants to complete the I/O */ 1634 dm_kill_unmapped_request(clone, r); 1635 break; 1636 } 1637 1638 return requeued; 1639 } 1640 1641 static struct request *dm_start_request(struct mapped_device *md, struct request *orig) 1642 { 1643 struct request *clone; 1644 1645 blk_start_request(orig); 1646 clone = orig->special; 1647 atomic_inc(&md->pending[rq_data_dir(clone)]); 1648 1649 /* 1650 * Hold the md reference here for the in-flight I/O. 1651 * We can't rely on the reference count by device opener, 1652 * because the device may be closed during the request completion 1653 * when all bios are completed. 1654 * See the comment in rq_completed() too. 1655 */ 1656 dm_get(md); 1657 1658 return clone; 1659 } 1660 1661 /* 1662 * q->request_fn for request-based dm. 1663 * Called with the queue lock held. 1664 */ 1665 static void dm_request_fn(struct request_queue *q) 1666 { 1667 struct mapped_device *md = q->queuedata; 1668 struct dm_table *map = dm_get_live_table(md); 1669 struct dm_target *ti; 1670 struct request *rq, *clone; 1671 sector_t pos; 1672 1673 /* 1674 * For suspend, check blk_queue_stopped() and increment 1675 * ->pending within a single queue_lock not to increment the 1676 * number of in-flight I/Os after the queue is stopped in 1677 * dm_suspend(). 1678 */ 1679 while (!blk_queue_stopped(q)) { 1680 rq = blk_peek_request(q); 1681 if (!rq) 1682 goto delay_and_out; 1683 1684 /* always use block 0 to find the target for flushes for now */ 1685 pos = 0; 1686 if (!(rq->cmd_flags & REQ_FLUSH)) 1687 pos = blk_rq_pos(rq); 1688 1689 ti = dm_table_find_target(map, pos); 1690 if (!dm_target_is_valid(ti)) { 1691 /* 1692 * Must perform setup, that dm_done() requires, 1693 * before calling dm_kill_unmapped_request 1694 */ 1695 DMERR_LIMIT("request attempted access beyond the end of device"); 1696 clone = dm_start_request(md, rq); 1697 dm_kill_unmapped_request(clone, -EIO); 1698 continue; 1699 } 1700 1701 if (ti->type->busy && ti->type->busy(ti)) 1702 goto delay_and_out; 1703 1704 clone = dm_start_request(md, rq); 1705 1706 spin_unlock(q->queue_lock); 1707 if (map_request(ti, clone, md)) 1708 goto requeued; 1709 1710 BUG_ON(!irqs_disabled()); 1711 spin_lock(q->queue_lock); 1712 } 1713 1714 goto out; 1715 1716 requeued: 1717 BUG_ON(!irqs_disabled()); 1718 spin_lock(q->queue_lock); 1719 1720 delay_and_out: 1721 blk_delay_queue(q, HZ / 10); 1722 out: 1723 dm_table_put(map); 1724 } 1725 1726 int dm_underlying_device_busy(struct request_queue *q) 1727 { 1728 return blk_lld_busy(q); 1729 } 1730 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1731 1732 static int dm_lld_busy(struct request_queue *q) 1733 { 1734 int r; 1735 struct mapped_device *md = q->queuedata; 1736 struct dm_table *map = dm_get_live_table(md); 1737 1738 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1739 r = 1; 1740 else 1741 r = dm_table_any_busy_target(map); 1742 1743 dm_table_put(map); 1744 1745 return r; 1746 } 1747 1748 static int dm_any_congested(void *congested_data, int bdi_bits) 1749 { 1750 int r = bdi_bits; 1751 struct mapped_device *md = congested_data; 1752 struct dm_table *map; 1753 1754 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1755 map = dm_get_live_table(md); 1756 if (map) { 1757 /* 1758 * Request-based dm cares about only own queue for 1759 * the query about congestion status of request_queue 1760 */ 1761 if (dm_request_based(md)) 1762 r = md->queue->backing_dev_info.state & 1763 bdi_bits; 1764 else 1765 r = dm_table_any_congested(map, bdi_bits); 1766 1767 dm_table_put(map); 1768 } 1769 } 1770 1771 return r; 1772 } 1773 1774 /*----------------------------------------------------------------- 1775 * An IDR is used to keep track of allocated minor numbers. 1776 *---------------------------------------------------------------*/ 1777 static void free_minor(int minor) 1778 { 1779 spin_lock(&_minor_lock); 1780 idr_remove(&_minor_idr, minor); 1781 spin_unlock(&_minor_lock); 1782 } 1783 1784 /* 1785 * See if the device with a specific minor # is free. 1786 */ 1787 static int specific_minor(int minor) 1788 { 1789 int r; 1790 1791 if (minor >= (1 << MINORBITS)) 1792 return -EINVAL; 1793 1794 idr_preload(GFP_KERNEL); 1795 spin_lock(&_minor_lock); 1796 1797 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1798 1799 spin_unlock(&_minor_lock); 1800 idr_preload_end(); 1801 if (r < 0) 1802 return r == -ENOSPC ? -EBUSY : r; 1803 return 0; 1804 } 1805 1806 static int next_free_minor(int *minor) 1807 { 1808 int r; 1809 1810 idr_preload(GFP_KERNEL); 1811 spin_lock(&_minor_lock); 1812 1813 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1814 1815 spin_unlock(&_minor_lock); 1816 idr_preload_end(); 1817 if (r < 0) 1818 return r; 1819 *minor = r; 1820 return 0; 1821 } 1822 1823 static const struct block_device_operations dm_blk_dops; 1824 1825 static void dm_wq_work(struct work_struct *work); 1826 1827 static void dm_init_md_queue(struct mapped_device *md) 1828 { 1829 /* 1830 * Request-based dm devices cannot be stacked on top of bio-based dm 1831 * devices. The type of this dm device has not been decided yet. 1832 * The type is decided at the first table loading time. 1833 * To prevent problematic device stacking, clear the queue flag 1834 * for request stacking support until then. 1835 * 1836 * This queue is new, so no concurrency on the queue_flags. 1837 */ 1838 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1839 1840 md->queue->queuedata = md; 1841 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1842 md->queue->backing_dev_info.congested_data = md; 1843 blk_queue_make_request(md->queue, dm_request); 1844 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1845 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1846 } 1847 1848 /* 1849 * Allocate and initialise a blank device with a given minor. 1850 */ 1851 static struct mapped_device *alloc_dev(int minor) 1852 { 1853 int r; 1854 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1855 void *old_md; 1856 1857 if (!md) { 1858 DMWARN("unable to allocate device, out of memory."); 1859 return NULL; 1860 } 1861 1862 if (!try_module_get(THIS_MODULE)) 1863 goto bad_module_get; 1864 1865 /* get a minor number for the dev */ 1866 if (minor == DM_ANY_MINOR) 1867 r = next_free_minor(&minor); 1868 else 1869 r = specific_minor(minor); 1870 if (r < 0) 1871 goto bad_minor; 1872 1873 md->type = DM_TYPE_NONE; 1874 init_rwsem(&md->io_lock); 1875 mutex_init(&md->suspend_lock); 1876 mutex_init(&md->type_lock); 1877 spin_lock_init(&md->deferred_lock); 1878 rwlock_init(&md->map_lock); 1879 atomic_set(&md->holders, 1); 1880 atomic_set(&md->open_count, 0); 1881 atomic_set(&md->event_nr, 0); 1882 atomic_set(&md->uevent_seq, 0); 1883 INIT_LIST_HEAD(&md->uevent_list); 1884 spin_lock_init(&md->uevent_lock); 1885 1886 md->queue = blk_alloc_queue(GFP_KERNEL); 1887 if (!md->queue) 1888 goto bad_queue; 1889 1890 dm_init_md_queue(md); 1891 1892 md->disk = alloc_disk(1); 1893 if (!md->disk) 1894 goto bad_disk; 1895 1896 atomic_set(&md->pending[0], 0); 1897 atomic_set(&md->pending[1], 0); 1898 init_waitqueue_head(&md->wait); 1899 INIT_WORK(&md->work, dm_wq_work); 1900 init_waitqueue_head(&md->eventq); 1901 1902 md->disk->major = _major; 1903 md->disk->first_minor = minor; 1904 md->disk->fops = &dm_blk_dops; 1905 md->disk->queue = md->queue; 1906 md->disk->private_data = md; 1907 sprintf(md->disk->disk_name, "dm-%d", minor); 1908 add_disk(md->disk); 1909 format_dev_t(md->name, MKDEV(_major, minor)); 1910 1911 md->wq = alloc_workqueue("kdmflush", 1912 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1913 if (!md->wq) 1914 goto bad_thread; 1915 1916 md->bdev = bdget_disk(md->disk, 0); 1917 if (!md->bdev) 1918 goto bad_bdev; 1919 1920 bio_init(&md->flush_bio); 1921 md->flush_bio.bi_bdev = md->bdev; 1922 md->flush_bio.bi_rw = WRITE_FLUSH; 1923 1924 /* Populate the mapping, nobody knows we exist yet */ 1925 spin_lock(&_minor_lock); 1926 old_md = idr_replace(&_minor_idr, md, minor); 1927 spin_unlock(&_minor_lock); 1928 1929 BUG_ON(old_md != MINOR_ALLOCED); 1930 1931 return md; 1932 1933 bad_bdev: 1934 destroy_workqueue(md->wq); 1935 bad_thread: 1936 del_gendisk(md->disk); 1937 put_disk(md->disk); 1938 bad_disk: 1939 blk_cleanup_queue(md->queue); 1940 bad_queue: 1941 free_minor(minor); 1942 bad_minor: 1943 module_put(THIS_MODULE); 1944 bad_module_get: 1945 kfree(md); 1946 return NULL; 1947 } 1948 1949 static void unlock_fs(struct mapped_device *md); 1950 1951 static void free_dev(struct mapped_device *md) 1952 { 1953 int minor = MINOR(disk_devt(md->disk)); 1954 1955 unlock_fs(md); 1956 bdput(md->bdev); 1957 destroy_workqueue(md->wq); 1958 if (md->io_pool) 1959 mempool_destroy(md->io_pool); 1960 if (md->bs) 1961 bioset_free(md->bs); 1962 blk_integrity_unregister(md->disk); 1963 del_gendisk(md->disk); 1964 free_minor(minor); 1965 1966 spin_lock(&_minor_lock); 1967 md->disk->private_data = NULL; 1968 spin_unlock(&_minor_lock); 1969 1970 put_disk(md->disk); 1971 blk_cleanup_queue(md->queue); 1972 module_put(THIS_MODULE); 1973 kfree(md); 1974 } 1975 1976 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1977 { 1978 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1979 1980 if (md->io_pool && md->bs) { 1981 /* The md already has necessary mempools. */ 1982 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 1983 /* 1984 * Reload bioset because front_pad may have changed 1985 * because a different table was loaded. 1986 */ 1987 bioset_free(md->bs); 1988 md->bs = p->bs; 1989 p->bs = NULL; 1990 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) { 1991 /* 1992 * There's no need to reload with request-based dm 1993 * because the size of front_pad doesn't change. 1994 * Note for future: If you are to reload bioset, 1995 * prep-ed requests in the queue may refer 1996 * to bio from the old bioset, so you must walk 1997 * through the queue to unprep. 1998 */ 1999 } 2000 goto out; 2001 } 2002 2003 BUG_ON(!p || md->io_pool || md->bs); 2004 2005 md->io_pool = p->io_pool; 2006 p->io_pool = NULL; 2007 md->bs = p->bs; 2008 p->bs = NULL; 2009 2010 out: 2011 /* mempool bind completed, now no need any mempools in the table */ 2012 dm_table_free_md_mempools(t); 2013 } 2014 2015 /* 2016 * Bind a table to the device. 2017 */ 2018 static void event_callback(void *context) 2019 { 2020 unsigned long flags; 2021 LIST_HEAD(uevents); 2022 struct mapped_device *md = (struct mapped_device *) context; 2023 2024 spin_lock_irqsave(&md->uevent_lock, flags); 2025 list_splice_init(&md->uevent_list, &uevents); 2026 spin_unlock_irqrestore(&md->uevent_lock, flags); 2027 2028 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2029 2030 atomic_inc(&md->event_nr); 2031 wake_up(&md->eventq); 2032 } 2033 2034 /* 2035 * Protected by md->suspend_lock obtained by dm_swap_table(). 2036 */ 2037 static void __set_size(struct mapped_device *md, sector_t size) 2038 { 2039 set_capacity(md->disk, size); 2040 2041 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2042 } 2043 2044 /* 2045 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2046 * 2047 * If this function returns 0, then the device is either a non-dm 2048 * device without a merge_bvec_fn, or it is a dm device that is 2049 * able to split any bios it receives that are too big. 2050 */ 2051 int dm_queue_merge_is_compulsory(struct request_queue *q) 2052 { 2053 struct mapped_device *dev_md; 2054 2055 if (!q->merge_bvec_fn) 2056 return 0; 2057 2058 if (q->make_request_fn == dm_request) { 2059 dev_md = q->queuedata; 2060 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2061 return 0; 2062 } 2063 2064 return 1; 2065 } 2066 2067 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2068 struct dm_dev *dev, sector_t start, 2069 sector_t len, void *data) 2070 { 2071 struct block_device *bdev = dev->bdev; 2072 struct request_queue *q = bdev_get_queue(bdev); 2073 2074 return dm_queue_merge_is_compulsory(q); 2075 } 2076 2077 /* 2078 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2079 * on the properties of the underlying devices. 2080 */ 2081 static int dm_table_merge_is_optional(struct dm_table *table) 2082 { 2083 unsigned i = 0; 2084 struct dm_target *ti; 2085 2086 while (i < dm_table_get_num_targets(table)) { 2087 ti = dm_table_get_target(table, i++); 2088 2089 if (ti->type->iterate_devices && 2090 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2091 return 0; 2092 } 2093 2094 return 1; 2095 } 2096 2097 /* 2098 * Returns old map, which caller must destroy. 2099 */ 2100 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2101 struct queue_limits *limits) 2102 { 2103 struct dm_table *old_map; 2104 struct request_queue *q = md->queue; 2105 sector_t size; 2106 unsigned long flags; 2107 int merge_is_optional; 2108 2109 size = dm_table_get_size(t); 2110 2111 /* 2112 * Wipe any geometry if the size of the table changed. 2113 */ 2114 if (size != get_capacity(md->disk)) 2115 memset(&md->geometry, 0, sizeof(md->geometry)); 2116 2117 __set_size(md, size); 2118 2119 dm_table_event_callback(t, event_callback, md); 2120 2121 /* 2122 * The queue hasn't been stopped yet, if the old table type wasn't 2123 * for request-based during suspension. So stop it to prevent 2124 * I/O mapping before resume. 2125 * This must be done before setting the queue restrictions, 2126 * because request-based dm may be run just after the setting. 2127 */ 2128 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2129 stop_queue(q); 2130 2131 __bind_mempools(md, t); 2132 2133 merge_is_optional = dm_table_merge_is_optional(t); 2134 2135 write_lock_irqsave(&md->map_lock, flags); 2136 old_map = md->map; 2137 md->map = t; 2138 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2139 2140 dm_table_set_restrictions(t, q, limits); 2141 if (merge_is_optional) 2142 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2143 else 2144 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2145 write_unlock_irqrestore(&md->map_lock, flags); 2146 2147 return old_map; 2148 } 2149 2150 /* 2151 * Returns unbound table for the caller to free. 2152 */ 2153 static struct dm_table *__unbind(struct mapped_device *md) 2154 { 2155 struct dm_table *map = md->map; 2156 unsigned long flags; 2157 2158 if (!map) 2159 return NULL; 2160 2161 dm_table_event_callback(map, NULL, NULL); 2162 write_lock_irqsave(&md->map_lock, flags); 2163 md->map = NULL; 2164 write_unlock_irqrestore(&md->map_lock, flags); 2165 2166 return map; 2167 } 2168 2169 /* 2170 * Constructor for a new device. 2171 */ 2172 int dm_create(int minor, struct mapped_device **result) 2173 { 2174 struct mapped_device *md; 2175 2176 md = alloc_dev(minor); 2177 if (!md) 2178 return -ENXIO; 2179 2180 dm_sysfs_init(md); 2181 2182 *result = md; 2183 return 0; 2184 } 2185 2186 /* 2187 * Functions to manage md->type. 2188 * All are required to hold md->type_lock. 2189 */ 2190 void dm_lock_md_type(struct mapped_device *md) 2191 { 2192 mutex_lock(&md->type_lock); 2193 } 2194 2195 void dm_unlock_md_type(struct mapped_device *md) 2196 { 2197 mutex_unlock(&md->type_lock); 2198 } 2199 2200 void dm_set_md_type(struct mapped_device *md, unsigned type) 2201 { 2202 md->type = type; 2203 } 2204 2205 unsigned dm_get_md_type(struct mapped_device *md) 2206 { 2207 return md->type; 2208 } 2209 2210 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2211 { 2212 return md->immutable_target_type; 2213 } 2214 2215 /* 2216 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2217 */ 2218 static int dm_init_request_based_queue(struct mapped_device *md) 2219 { 2220 struct request_queue *q = NULL; 2221 2222 if (md->queue->elevator) 2223 return 1; 2224 2225 /* Fully initialize the queue */ 2226 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2227 if (!q) 2228 return 0; 2229 2230 md->queue = q; 2231 dm_init_md_queue(md); 2232 blk_queue_softirq_done(md->queue, dm_softirq_done); 2233 blk_queue_prep_rq(md->queue, dm_prep_fn); 2234 blk_queue_lld_busy(md->queue, dm_lld_busy); 2235 2236 elv_register_queue(md->queue); 2237 2238 return 1; 2239 } 2240 2241 /* 2242 * Setup the DM device's queue based on md's type 2243 */ 2244 int dm_setup_md_queue(struct mapped_device *md) 2245 { 2246 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2247 !dm_init_request_based_queue(md)) { 2248 DMWARN("Cannot initialize queue for request-based mapped device"); 2249 return -EINVAL; 2250 } 2251 2252 return 0; 2253 } 2254 2255 static struct mapped_device *dm_find_md(dev_t dev) 2256 { 2257 struct mapped_device *md; 2258 unsigned minor = MINOR(dev); 2259 2260 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2261 return NULL; 2262 2263 spin_lock(&_minor_lock); 2264 2265 md = idr_find(&_minor_idr, minor); 2266 if (md && (md == MINOR_ALLOCED || 2267 (MINOR(disk_devt(dm_disk(md))) != minor) || 2268 dm_deleting_md(md) || 2269 test_bit(DMF_FREEING, &md->flags))) { 2270 md = NULL; 2271 goto out; 2272 } 2273 2274 out: 2275 spin_unlock(&_minor_lock); 2276 2277 return md; 2278 } 2279 2280 struct mapped_device *dm_get_md(dev_t dev) 2281 { 2282 struct mapped_device *md = dm_find_md(dev); 2283 2284 if (md) 2285 dm_get(md); 2286 2287 return md; 2288 } 2289 EXPORT_SYMBOL_GPL(dm_get_md); 2290 2291 void *dm_get_mdptr(struct mapped_device *md) 2292 { 2293 return md->interface_ptr; 2294 } 2295 2296 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2297 { 2298 md->interface_ptr = ptr; 2299 } 2300 2301 void dm_get(struct mapped_device *md) 2302 { 2303 atomic_inc(&md->holders); 2304 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2305 } 2306 2307 const char *dm_device_name(struct mapped_device *md) 2308 { 2309 return md->name; 2310 } 2311 EXPORT_SYMBOL_GPL(dm_device_name); 2312 2313 static void __dm_destroy(struct mapped_device *md, bool wait) 2314 { 2315 struct dm_table *map; 2316 2317 might_sleep(); 2318 2319 spin_lock(&_minor_lock); 2320 map = dm_get_live_table(md); 2321 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2322 set_bit(DMF_FREEING, &md->flags); 2323 spin_unlock(&_minor_lock); 2324 2325 if (!dm_suspended_md(md)) { 2326 dm_table_presuspend_targets(map); 2327 dm_table_postsuspend_targets(map); 2328 } 2329 2330 /* 2331 * Rare, but there may be I/O requests still going to complete, 2332 * for example. Wait for all references to disappear. 2333 * No one should increment the reference count of the mapped_device, 2334 * after the mapped_device state becomes DMF_FREEING. 2335 */ 2336 if (wait) 2337 while (atomic_read(&md->holders)) 2338 msleep(1); 2339 else if (atomic_read(&md->holders)) 2340 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2341 dm_device_name(md), atomic_read(&md->holders)); 2342 2343 dm_sysfs_exit(md); 2344 dm_table_put(map); 2345 dm_table_destroy(__unbind(md)); 2346 free_dev(md); 2347 } 2348 2349 void dm_destroy(struct mapped_device *md) 2350 { 2351 __dm_destroy(md, true); 2352 } 2353 2354 void dm_destroy_immediate(struct mapped_device *md) 2355 { 2356 __dm_destroy(md, false); 2357 } 2358 2359 void dm_put(struct mapped_device *md) 2360 { 2361 atomic_dec(&md->holders); 2362 } 2363 EXPORT_SYMBOL_GPL(dm_put); 2364 2365 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2366 { 2367 int r = 0; 2368 DECLARE_WAITQUEUE(wait, current); 2369 2370 add_wait_queue(&md->wait, &wait); 2371 2372 while (1) { 2373 set_current_state(interruptible); 2374 2375 if (!md_in_flight(md)) 2376 break; 2377 2378 if (interruptible == TASK_INTERRUPTIBLE && 2379 signal_pending(current)) { 2380 r = -EINTR; 2381 break; 2382 } 2383 2384 io_schedule(); 2385 } 2386 set_current_state(TASK_RUNNING); 2387 2388 remove_wait_queue(&md->wait, &wait); 2389 2390 return r; 2391 } 2392 2393 /* 2394 * Process the deferred bios 2395 */ 2396 static void dm_wq_work(struct work_struct *work) 2397 { 2398 struct mapped_device *md = container_of(work, struct mapped_device, 2399 work); 2400 struct bio *c; 2401 2402 down_read(&md->io_lock); 2403 2404 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2405 spin_lock_irq(&md->deferred_lock); 2406 c = bio_list_pop(&md->deferred); 2407 spin_unlock_irq(&md->deferred_lock); 2408 2409 if (!c) 2410 break; 2411 2412 up_read(&md->io_lock); 2413 2414 if (dm_request_based(md)) 2415 generic_make_request(c); 2416 else 2417 __split_and_process_bio(md, c); 2418 2419 down_read(&md->io_lock); 2420 } 2421 2422 up_read(&md->io_lock); 2423 } 2424 2425 static void dm_queue_flush(struct mapped_device *md) 2426 { 2427 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2428 smp_mb__after_clear_bit(); 2429 queue_work(md->wq, &md->work); 2430 } 2431 2432 /* 2433 * Swap in a new table, returning the old one for the caller to destroy. 2434 */ 2435 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2436 { 2437 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2438 struct queue_limits limits; 2439 int r; 2440 2441 mutex_lock(&md->suspend_lock); 2442 2443 /* device must be suspended */ 2444 if (!dm_suspended_md(md)) 2445 goto out; 2446 2447 /* 2448 * If the new table has no data devices, retain the existing limits. 2449 * This helps multipath with queue_if_no_path if all paths disappear, 2450 * then new I/O is queued based on these limits, and then some paths 2451 * reappear. 2452 */ 2453 if (dm_table_has_no_data_devices(table)) { 2454 live_map = dm_get_live_table(md); 2455 if (live_map) 2456 limits = md->queue->limits; 2457 dm_table_put(live_map); 2458 } 2459 2460 if (!live_map) { 2461 r = dm_calculate_queue_limits(table, &limits); 2462 if (r) { 2463 map = ERR_PTR(r); 2464 goto out; 2465 } 2466 } 2467 2468 map = __bind(md, table, &limits); 2469 2470 out: 2471 mutex_unlock(&md->suspend_lock); 2472 return map; 2473 } 2474 2475 /* 2476 * Functions to lock and unlock any filesystem running on the 2477 * device. 2478 */ 2479 static int lock_fs(struct mapped_device *md) 2480 { 2481 int r; 2482 2483 WARN_ON(md->frozen_sb); 2484 2485 md->frozen_sb = freeze_bdev(md->bdev); 2486 if (IS_ERR(md->frozen_sb)) { 2487 r = PTR_ERR(md->frozen_sb); 2488 md->frozen_sb = NULL; 2489 return r; 2490 } 2491 2492 set_bit(DMF_FROZEN, &md->flags); 2493 2494 return 0; 2495 } 2496 2497 static void unlock_fs(struct mapped_device *md) 2498 { 2499 if (!test_bit(DMF_FROZEN, &md->flags)) 2500 return; 2501 2502 thaw_bdev(md->bdev, md->frozen_sb); 2503 md->frozen_sb = NULL; 2504 clear_bit(DMF_FROZEN, &md->flags); 2505 } 2506 2507 /* 2508 * We need to be able to change a mapping table under a mounted 2509 * filesystem. For example we might want to move some data in 2510 * the background. Before the table can be swapped with 2511 * dm_bind_table, dm_suspend must be called to flush any in 2512 * flight bios and ensure that any further io gets deferred. 2513 */ 2514 /* 2515 * Suspend mechanism in request-based dm. 2516 * 2517 * 1. Flush all I/Os by lock_fs() if needed. 2518 * 2. Stop dispatching any I/O by stopping the request_queue. 2519 * 3. Wait for all in-flight I/Os to be completed or requeued. 2520 * 2521 * To abort suspend, start the request_queue. 2522 */ 2523 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2524 { 2525 struct dm_table *map = NULL; 2526 int r = 0; 2527 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2528 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2529 2530 mutex_lock(&md->suspend_lock); 2531 2532 if (dm_suspended_md(md)) { 2533 r = -EINVAL; 2534 goto out_unlock; 2535 } 2536 2537 map = dm_get_live_table(md); 2538 2539 /* 2540 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2541 * This flag is cleared before dm_suspend returns. 2542 */ 2543 if (noflush) 2544 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2545 2546 /* This does not get reverted if there's an error later. */ 2547 dm_table_presuspend_targets(map); 2548 2549 /* 2550 * Flush I/O to the device. 2551 * Any I/O submitted after lock_fs() may not be flushed. 2552 * noflush takes precedence over do_lockfs. 2553 * (lock_fs() flushes I/Os and waits for them to complete.) 2554 */ 2555 if (!noflush && do_lockfs) { 2556 r = lock_fs(md); 2557 if (r) 2558 goto out; 2559 } 2560 2561 /* 2562 * Here we must make sure that no processes are submitting requests 2563 * to target drivers i.e. no one may be executing 2564 * __split_and_process_bio. This is called from dm_request and 2565 * dm_wq_work. 2566 * 2567 * To get all processes out of __split_and_process_bio in dm_request, 2568 * we take the write lock. To prevent any process from reentering 2569 * __split_and_process_bio from dm_request and quiesce the thread 2570 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2571 * flush_workqueue(md->wq). 2572 */ 2573 down_write(&md->io_lock); 2574 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2575 up_write(&md->io_lock); 2576 2577 /* 2578 * Stop md->queue before flushing md->wq in case request-based 2579 * dm defers requests to md->wq from md->queue. 2580 */ 2581 if (dm_request_based(md)) 2582 stop_queue(md->queue); 2583 2584 flush_workqueue(md->wq); 2585 2586 /* 2587 * At this point no more requests are entering target request routines. 2588 * We call dm_wait_for_completion to wait for all existing requests 2589 * to finish. 2590 */ 2591 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2592 2593 down_write(&md->io_lock); 2594 if (noflush) 2595 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2596 up_write(&md->io_lock); 2597 2598 /* were we interrupted ? */ 2599 if (r < 0) { 2600 dm_queue_flush(md); 2601 2602 if (dm_request_based(md)) 2603 start_queue(md->queue); 2604 2605 unlock_fs(md); 2606 goto out; /* pushback list is already flushed, so skip flush */ 2607 } 2608 2609 /* 2610 * If dm_wait_for_completion returned 0, the device is completely 2611 * quiescent now. There is no request-processing activity. All new 2612 * requests are being added to md->deferred list. 2613 */ 2614 2615 set_bit(DMF_SUSPENDED, &md->flags); 2616 2617 dm_table_postsuspend_targets(map); 2618 2619 out: 2620 dm_table_put(map); 2621 2622 out_unlock: 2623 mutex_unlock(&md->suspend_lock); 2624 return r; 2625 } 2626 2627 int dm_resume(struct mapped_device *md) 2628 { 2629 int r = -EINVAL; 2630 struct dm_table *map = NULL; 2631 2632 mutex_lock(&md->suspend_lock); 2633 if (!dm_suspended_md(md)) 2634 goto out; 2635 2636 map = dm_get_live_table(md); 2637 if (!map || !dm_table_get_size(map)) 2638 goto out; 2639 2640 r = dm_table_resume_targets(map); 2641 if (r) 2642 goto out; 2643 2644 dm_queue_flush(md); 2645 2646 /* 2647 * Flushing deferred I/Os must be done after targets are resumed 2648 * so that mapping of targets can work correctly. 2649 * Request-based dm is queueing the deferred I/Os in its request_queue. 2650 */ 2651 if (dm_request_based(md)) 2652 start_queue(md->queue); 2653 2654 unlock_fs(md); 2655 2656 clear_bit(DMF_SUSPENDED, &md->flags); 2657 2658 r = 0; 2659 out: 2660 dm_table_put(map); 2661 mutex_unlock(&md->suspend_lock); 2662 2663 return r; 2664 } 2665 2666 /*----------------------------------------------------------------- 2667 * Event notification. 2668 *---------------------------------------------------------------*/ 2669 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2670 unsigned cookie) 2671 { 2672 char udev_cookie[DM_COOKIE_LENGTH]; 2673 char *envp[] = { udev_cookie, NULL }; 2674 2675 if (!cookie) 2676 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2677 else { 2678 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2679 DM_COOKIE_ENV_VAR_NAME, cookie); 2680 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2681 action, envp); 2682 } 2683 } 2684 2685 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2686 { 2687 return atomic_add_return(1, &md->uevent_seq); 2688 } 2689 2690 uint32_t dm_get_event_nr(struct mapped_device *md) 2691 { 2692 return atomic_read(&md->event_nr); 2693 } 2694 2695 int dm_wait_event(struct mapped_device *md, int event_nr) 2696 { 2697 return wait_event_interruptible(md->eventq, 2698 (event_nr != atomic_read(&md->event_nr))); 2699 } 2700 2701 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2702 { 2703 unsigned long flags; 2704 2705 spin_lock_irqsave(&md->uevent_lock, flags); 2706 list_add(elist, &md->uevent_list); 2707 spin_unlock_irqrestore(&md->uevent_lock, flags); 2708 } 2709 2710 /* 2711 * The gendisk is only valid as long as you have a reference 2712 * count on 'md'. 2713 */ 2714 struct gendisk *dm_disk(struct mapped_device *md) 2715 { 2716 return md->disk; 2717 } 2718 2719 struct kobject *dm_kobject(struct mapped_device *md) 2720 { 2721 return &md->kobj; 2722 } 2723 2724 /* 2725 * struct mapped_device should not be exported outside of dm.c 2726 * so use this check to verify that kobj is part of md structure 2727 */ 2728 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2729 { 2730 struct mapped_device *md; 2731 2732 md = container_of(kobj, struct mapped_device, kobj); 2733 if (&md->kobj != kobj) 2734 return NULL; 2735 2736 if (test_bit(DMF_FREEING, &md->flags) || 2737 dm_deleting_md(md)) 2738 return NULL; 2739 2740 dm_get(md); 2741 return md; 2742 } 2743 2744 int dm_suspended_md(struct mapped_device *md) 2745 { 2746 return test_bit(DMF_SUSPENDED, &md->flags); 2747 } 2748 2749 int dm_suspended(struct dm_target *ti) 2750 { 2751 return dm_suspended_md(dm_table_get_md(ti->table)); 2752 } 2753 EXPORT_SYMBOL_GPL(dm_suspended); 2754 2755 int dm_noflush_suspending(struct dm_target *ti) 2756 { 2757 return __noflush_suspending(dm_table_get_md(ti->table)); 2758 } 2759 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2760 2761 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) 2762 { 2763 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 2764 struct kmem_cache *cachep; 2765 unsigned int pool_size; 2766 unsigned int front_pad; 2767 2768 if (!pools) 2769 return NULL; 2770 2771 if (type == DM_TYPE_BIO_BASED) { 2772 cachep = _io_cache; 2773 pool_size = 16; 2774 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2775 } else if (type == DM_TYPE_REQUEST_BASED) { 2776 cachep = _rq_tio_cache; 2777 pool_size = MIN_IOS; 2778 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2779 /* per_bio_data_size is not used. See __bind_mempools(). */ 2780 WARN_ON(per_bio_data_size != 0); 2781 } else 2782 goto out; 2783 2784 pools->io_pool = mempool_create_slab_pool(MIN_IOS, cachep); 2785 if (!pools->io_pool) 2786 goto out; 2787 2788 pools->bs = bioset_create(pool_size, front_pad); 2789 if (!pools->bs) 2790 goto out; 2791 2792 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2793 goto out; 2794 2795 return pools; 2796 2797 out: 2798 dm_free_md_mempools(pools); 2799 2800 return NULL; 2801 } 2802 2803 void dm_free_md_mempools(struct dm_md_mempools *pools) 2804 { 2805 if (!pools) 2806 return; 2807 2808 if (pools->io_pool) 2809 mempool_destroy(pools->io_pool); 2810 2811 if (pools->bs) 2812 bioset_free(pools->bs); 2813 2814 kfree(pools); 2815 } 2816 2817 static const struct block_device_operations dm_blk_dops = { 2818 .open = dm_blk_open, 2819 .release = dm_blk_close, 2820 .ioctl = dm_blk_ioctl, 2821 .getgeo = dm_blk_getgeo, 2822 .owner = THIS_MODULE 2823 }; 2824 2825 EXPORT_SYMBOL(dm_get_mapinfo); 2826 2827 /* 2828 * module hooks 2829 */ 2830 module_init(dm_init); 2831 module_exit(dm_exit); 2832 2833 module_param(major, uint, 0); 2834 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2835 MODULE_DESCRIPTION(DM_NAME " driver"); 2836 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2837 MODULE_LICENSE("GPL"); 2838