1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set bs; 152 struct bio_set io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 static struct kmem_cache *_rq_tio_cache; 162 static struct kmem_cache *_rq_cache; 163 164 /* 165 * Bio-based DM's mempools' reserved IOs set by the user. 166 */ 167 #define RESERVED_BIO_BASED_IOS 16 168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 169 170 static int __dm_get_module_param_int(int *module_param, int min, int max) 171 { 172 int param = READ_ONCE(*module_param); 173 int modified_param = 0; 174 bool modified = true; 175 176 if (param < min) 177 modified_param = min; 178 else if (param > max) 179 modified_param = max; 180 else 181 modified = false; 182 183 if (modified) { 184 (void)cmpxchg(module_param, param, modified_param); 185 param = modified_param; 186 } 187 188 return param; 189 } 190 191 unsigned __dm_get_module_param(unsigned *module_param, 192 unsigned def, unsigned max) 193 { 194 unsigned param = READ_ONCE(*module_param); 195 unsigned modified_param = 0; 196 197 if (!param) 198 modified_param = def; 199 else if (param > max) 200 modified_param = max; 201 202 if (modified_param) { 203 (void)cmpxchg(module_param, param, modified_param); 204 param = modified_param; 205 } 206 207 return param; 208 } 209 210 unsigned dm_get_reserved_bio_based_ios(void) 211 { 212 return __dm_get_module_param(&reserved_bio_based_ios, 213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 214 } 215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 216 217 static unsigned dm_get_numa_node(void) 218 { 219 return __dm_get_module_param_int(&dm_numa_node, 220 DM_NUMA_NODE, num_online_nodes() - 1); 221 } 222 223 static int __init local_init(void) 224 { 225 int r = -ENOMEM; 226 227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 228 if (!_rq_tio_cache) 229 return r; 230 231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 232 __alignof__(struct request), 0, NULL); 233 if (!_rq_cache) 234 goto out_free_rq_tio_cache; 235 236 r = dm_uevent_init(); 237 if (r) 238 goto out_free_rq_cache; 239 240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 241 if (!deferred_remove_workqueue) { 242 r = -ENOMEM; 243 goto out_uevent_exit; 244 } 245 246 _major = major; 247 r = register_blkdev(_major, _name); 248 if (r < 0) 249 goto out_free_workqueue; 250 251 if (!_major) 252 _major = r; 253 254 return 0; 255 256 out_free_workqueue: 257 destroy_workqueue(deferred_remove_workqueue); 258 out_uevent_exit: 259 dm_uevent_exit(); 260 out_free_rq_cache: 261 kmem_cache_destroy(_rq_cache); 262 out_free_rq_tio_cache: 263 kmem_cache_destroy(_rq_tio_cache); 264 265 return r; 266 } 267 268 static void local_exit(void) 269 { 270 flush_scheduled_work(); 271 destroy_workqueue(deferred_remove_workqueue); 272 273 kmem_cache_destroy(_rq_cache); 274 kmem_cache_destroy(_rq_tio_cache); 275 unregister_blkdev(_major, _name); 276 dm_uevent_exit(); 277 278 _major = 0; 279 280 DMINFO("cleaned up"); 281 } 282 283 static int (*_inits[])(void) __initdata = { 284 local_init, 285 dm_target_init, 286 dm_linear_init, 287 dm_stripe_init, 288 dm_io_init, 289 dm_kcopyd_init, 290 dm_interface_init, 291 dm_statistics_init, 292 }; 293 294 static void (*_exits[])(void) = { 295 local_exit, 296 dm_target_exit, 297 dm_linear_exit, 298 dm_stripe_exit, 299 dm_io_exit, 300 dm_kcopyd_exit, 301 dm_interface_exit, 302 dm_statistics_exit, 303 }; 304 305 static int __init dm_init(void) 306 { 307 const int count = ARRAY_SIZE(_inits); 308 309 int r, i; 310 311 for (i = 0; i < count; i++) { 312 r = _inits[i](); 313 if (r) 314 goto bad; 315 } 316 317 return 0; 318 319 bad: 320 while (i--) 321 _exits[i](); 322 323 return r; 324 } 325 326 static void __exit dm_exit(void) 327 { 328 int i = ARRAY_SIZE(_exits); 329 330 while (i--) 331 _exits[i](); 332 333 /* 334 * Should be empty by this point. 335 */ 336 idr_destroy(&_minor_idr); 337 } 338 339 /* 340 * Block device functions 341 */ 342 int dm_deleting_md(struct mapped_device *md) 343 { 344 return test_bit(DMF_DELETING, &md->flags); 345 } 346 347 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 348 { 349 struct mapped_device *md; 350 351 spin_lock(&_minor_lock); 352 353 md = bdev->bd_disk->private_data; 354 if (!md) 355 goto out; 356 357 if (test_bit(DMF_FREEING, &md->flags) || 358 dm_deleting_md(md)) { 359 md = NULL; 360 goto out; 361 } 362 363 dm_get(md); 364 atomic_inc(&md->open_count); 365 out: 366 spin_unlock(&_minor_lock); 367 368 return md ? 0 : -ENXIO; 369 } 370 371 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 372 { 373 struct mapped_device *md; 374 375 spin_lock(&_minor_lock); 376 377 md = disk->private_data; 378 if (WARN_ON(!md)) 379 goto out; 380 381 if (atomic_dec_and_test(&md->open_count) && 382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 383 queue_work(deferred_remove_workqueue, &deferred_remove_work); 384 385 dm_put(md); 386 out: 387 spin_unlock(&_minor_lock); 388 } 389 390 int dm_open_count(struct mapped_device *md) 391 { 392 return atomic_read(&md->open_count); 393 } 394 395 /* 396 * Guarantees nothing is using the device before it's deleted. 397 */ 398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 399 { 400 int r = 0; 401 402 spin_lock(&_minor_lock); 403 404 if (dm_open_count(md)) { 405 r = -EBUSY; 406 if (mark_deferred) 407 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 409 r = -EEXIST; 410 else 411 set_bit(DMF_DELETING, &md->flags); 412 413 spin_unlock(&_minor_lock); 414 415 return r; 416 } 417 418 int dm_cancel_deferred_remove(struct mapped_device *md) 419 { 420 int r = 0; 421 422 spin_lock(&_minor_lock); 423 424 if (test_bit(DMF_DELETING, &md->flags)) 425 r = -EBUSY; 426 else 427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 428 429 spin_unlock(&_minor_lock); 430 431 return r; 432 } 433 434 static void do_deferred_remove(struct work_struct *w) 435 { 436 dm_deferred_remove(); 437 } 438 439 sector_t dm_get_size(struct mapped_device *md) 440 { 441 return get_capacity(md->disk); 442 } 443 444 struct request_queue *dm_get_md_queue(struct mapped_device *md) 445 { 446 return md->queue; 447 } 448 449 struct dm_stats *dm_get_stats(struct mapped_device *md) 450 { 451 return &md->stats; 452 } 453 454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 455 { 456 struct mapped_device *md = bdev->bd_disk->private_data; 457 458 return dm_get_geometry(md, geo); 459 } 460 461 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 462 struct blk_zone *zones, unsigned int *nr_zones, 463 gfp_t gfp_mask) 464 { 465 #ifdef CONFIG_BLK_DEV_ZONED 466 struct mapped_device *md = disk->private_data; 467 struct dm_target *tgt; 468 struct dm_table *map; 469 int srcu_idx, ret; 470 471 if (dm_suspended_md(md)) 472 return -EAGAIN; 473 474 map = dm_get_live_table(md, &srcu_idx); 475 if (!map) 476 return -EIO; 477 478 tgt = dm_table_find_target(map, sector); 479 if (!dm_target_is_valid(tgt)) { 480 ret = -EIO; 481 goto out; 482 } 483 484 /* 485 * If we are executing this, we already know that the block device 486 * is a zoned device and so each target should have support for that 487 * type of drive. A missing report_zones method means that the target 488 * driver has a problem. 489 */ 490 if (WARN_ON(!tgt->type->report_zones)) { 491 ret = -EIO; 492 goto out; 493 } 494 495 /* 496 * blkdev_report_zones() will loop and call this again to cover all the 497 * zones of the target, eventually moving on to the next target. 498 * So there is no need to loop here trying to fill the entire array 499 * of zones. 500 */ 501 ret = tgt->type->report_zones(tgt, sector, zones, 502 nr_zones, gfp_mask); 503 504 out: 505 dm_put_live_table(md, srcu_idx); 506 return ret; 507 #else 508 return -ENOTSUPP; 509 #endif 510 } 511 512 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 513 struct block_device **bdev) 514 __acquires(md->io_barrier) 515 { 516 struct dm_target *tgt; 517 struct dm_table *map; 518 int r; 519 520 retry: 521 r = -ENOTTY; 522 map = dm_get_live_table(md, srcu_idx); 523 if (!map || !dm_table_get_size(map)) 524 return r; 525 526 /* We only support devices that have a single target */ 527 if (dm_table_get_num_targets(map) != 1) 528 return r; 529 530 tgt = dm_table_get_target(map, 0); 531 if (!tgt->type->prepare_ioctl) 532 return r; 533 534 if (dm_suspended_md(md)) 535 return -EAGAIN; 536 537 r = tgt->type->prepare_ioctl(tgt, bdev); 538 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 539 dm_put_live_table(md, *srcu_idx); 540 msleep(10); 541 goto retry; 542 } 543 544 return r; 545 } 546 547 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 548 __releases(md->io_barrier) 549 { 550 dm_put_live_table(md, srcu_idx); 551 } 552 553 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 554 unsigned int cmd, unsigned long arg) 555 { 556 struct mapped_device *md = bdev->bd_disk->private_data; 557 int r, srcu_idx; 558 559 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 560 if (r < 0) 561 goto out; 562 563 if (r > 0) { 564 /* 565 * Target determined this ioctl is being issued against a 566 * subset of the parent bdev; require extra privileges. 567 */ 568 if (!capable(CAP_SYS_RAWIO)) { 569 DMWARN_LIMIT( 570 "%s: sending ioctl %x to DM device without required privilege.", 571 current->comm, cmd); 572 r = -ENOIOCTLCMD; 573 goto out; 574 } 575 } 576 577 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 578 out: 579 dm_unprepare_ioctl(md, srcu_idx); 580 return r; 581 } 582 583 static void start_io_acct(struct dm_io *io); 584 585 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 586 { 587 struct dm_io *io; 588 struct dm_target_io *tio; 589 struct bio *clone; 590 591 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 592 if (!clone) 593 return NULL; 594 595 tio = container_of(clone, struct dm_target_io, clone); 596 tio->inside_dm_io = true; 597 tio->io = NULL; 598 599 io = container_of(tio, struct dm_io, tio); 600 io->magic = DM_IO_MAGIC; 601 io->status = 0; 602 atomic_set(&io->io_count, 1); 603 io->orig_bio = bio; 604 io->md = md; 605 spin_lock_init(&io->endio_lock); 606 607 start_io_acct(io); 608 609 return io; 610 } 611 612 static void free_io(struct mapped_device *md, struct dm_io *io) 613 { 614 bio_put(&io->tio.clone); 615 } 616 617 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 618 unsigned target_bio_nr, gfp_t gfp_mask) 619 { 620 struct dm_target_io *tio; 621 622 if (!ci->io->tio.io) { 623 /* the dm_target_io embedded in ci->io is available */ 624 tio = &ci->io->tio; 625 } else { 626 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 627 if (!clone) 628 return NULL; 629 630 tio = container_of(clone, struct dm_target_io, clone); 631 tio->inside_dm_io = false; 632 } 633 634 tio->magic = DM_TIO_MAGIC; 635 tio->io = ci->io; 636 tio->ti = ti; 637 tio->target_bio_nr = target_bio_nr; 638 639 return tio; 640 } 641 642 static void free_tio(struct dm_target_io *tio) 643 { 644 if (tio->inside_dm_io) 645 return; 646 bio_put(&tio->clone); 647 } 648 649 static bool md_in_flight_bios(struct mapped_device *md) 650 { 651 int cpu; 652 struct hd_struct *part = &dm_disk(md)->part0; 653 long sum = 0; 654 655 for_each_possible_cpu(cpu) { 656 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 657 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 658 } 659 660 return sum != 0; 661 } 662 663 static bool md_in_flight(struct mapped_device *md) 664 { 665 if (queue_is_mq(md->queue)) 666 return blk_mq_queue_inflight(md->queue); 667 else 668 return md_in_flight_bios(md); 669 } 670 671 static void start_io_acct(struct dm_io *io) 672 { 673 struct mapped_device *md = io->md; 674 struct bio *bio = io->orig_bio; 675 676 io->start_time = jiffies; 677 678 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio), 679 &dm_disk(md)->part0); 680 681 if (unlikely(dm_stats_used(&md->stats))) 682 dm_stats_account_io(&md->stats, bio_data_dir(bio), 683 bio->bi_iter.bi_sector, bio_sectors(bio), 684 false, 0, &io->stats_aux); 685 } 686 687 static void end_io_acct(struct dm_io *io) 688 { 689 struct mapped_device *md = io->md; 690 struct bio *bio = io->orig_bio; 691 unsigned long duration = jiffies - io->start_time; 692 693 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0, 694 io->start_time); 695 696 if (unlikely(dm_stats_used(&md->stats))) 697 dm_stats_account_io(&md->stats, bio_data_dir(bio), 698 bio->bi_iter.bi_sector, bio_sectors(bio), 699 true, duration, &io->stats_aux); 700 701 /* nudge anyone waiting on suspend queue */ 702 if (unlikely(wq_has_sleeper(&md->wait))) 703 wake_up(&md->wait); 704 } 705 706 /* 707 * Add the bio to the list of deferred io. 708 */ 709 static void queue_io(struct mapped_device *md, struct bio *bio) 710 { 711 unsigned long flags; 712 713 spin_lock_irqsave(&md->deferred_lock, flags); 714 bio_list_add(&md->deferred, bio); 715 spin_unlock_irqrestore(&md->deferred_lock, flags); 716 queue_work(md->wq, &md->work); 717 } 718 719 /* 720 * Everyone (including functions in this file), should use this 721 * function to access the md->map field, and make sure they call 722 * dm_put_live_table() when finished. 723 */ 724 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 725 { 726 *srcu_idx = srcu_read_lock(&md->io_barrier); 727 728 return srcu_dereference(md->map, &md->io_barrier); 729 } 730 731 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 732 { 733 srcu_read_unlock(&md->io_barrier, srcu_idx); 734 } 735 736 void dm_sync_table(struct mapped_device *md) 737 { 738 synchronize_srcu(&md->io_barrier); 739 synchronize_rcu_expedited(); 740 } 741 742 /* 743 * A fast alternative to dm_get_live_table/dm_put_live_table. 744 * The caller must not block between these two functions. 745 */ 746 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 747 { 748 rcu_read_lock(); 749 return rcu_dereference(md->map); 750 } 751 752 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 753 { 754 rcu_read_unlock(); 755 } 756 757 static char *_dm_claim_ptr = "I belong to device-mapper"; 758 759 /* 760 * Open a table device so we can use it as a map destination. 761 */ 762 static int open_table_device(struct table_device *td, dev_t dev, 763 struct mapped_device *md) 764 { 765 struct block_device *bdev; 766 767 int r; 768 769 BUG_ON(td->dm_dev.bdev); 770 771 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 772 if (IS_ERR(bdev)) 773 return PTR_ERR(bdev); 774 775 r = bd_link_disk_holder(bdev, dm_disk(md)); 776 if (r) { 777 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 778 return r; 779 } 780 781 td->dm_dev.bdev = bdev; 782 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 783 return 0; 784 } 785 786 /* 787 * Close a table device that we've been using. 788 */ 789 static void close_table_device(struct table_device *td, struct mapped_device *md) 790 { 791 if (!td->dm_dev.bdev) 792 return; 793 794 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 795 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 796 put_dax(td->dm_dev.dax_dev); 797 td->dm_dev.bdev = NULL; 798 td->dm_dev.dax_dev = NULL; 799 } 800 801 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 802 fmode_t mode) { 803 struct table_device *td; 804 805 list_for_each_entry(td, l, list) 806 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 807 return td; 808 809 return NULL; 810 } 811 812 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 813 struct dm_dev **result) { 814 int r; 815 struct table_device *td; 816 817 mutex_lock(&md->table_devices_lock); 818 td = find_table_device(&md->table_devices, dev, mode); 819 if (!td) { 820 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 821 if (!td) { 822 mutex_unlock(&md->table_devices_lock); 823 return -ENOMEM; 824 } 825 826 td->dm_dev.mode = mode; 827 td->dm_dev.bdev = NULL; 828 829 if ((r = open_table_device(td, dev, md))) { 830 mutex_unlock(&md->table_devices_lock); 831 kfree(td); 832 return r; 833 } 834 835 format_dev_t(td->dm_dev.name, dev); 836 837 refcount_set(&td->count, 1); 838 list_add(&td->list, &md->table_devices); 839 } else { 840 refcount_inc(&td->count); 841 } 842 mutex_unlock(&md->table_devices_lock); 843 844 *result = &td->dm_dev; 845 return 0; 846 } 847 EXPORT_SYMBOL_GPL(dm_get_table_device); 848 849 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 850 { 851 struct table_device *td = container_of(d, struct table_device, dm_dev); 852 853 mutex_lock(&md->table_devices_lock); 854 if (refcount_dec_and_test(&td->count)) { 855 close_table_device(td, md); 856 list_del(&td->list); 857 kfree(td); 858 } 859 mutex_unlock(&md->table_devices_lock); 860 } 861 EXPORT_SYMBOL(dm_put_table_device); 862 863 static void free_table_devices(struct list_head *devices) 864 { 865 struct list_head *tmp, *next; 866 867 list_for_each_safe(tmp, next, devices) { 868 struct table_device *td = list_entry(tmp, struct table_device, list); 869 870 DMWARN("dm_destroy: %s still exists with %d references", 871 td->dm_dev.name, refcount_read(&td->count)); 872 kfree(td); 873 } 874 } 875 876 /* 877 * Get the geometry associated with a dm device 878 */ 879 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 880 { 881 *geo = md->geometry; 882 883 return 0; 884 } 885 886 /* 887 * Set the geometry of a device. 888 */ 889 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 890 { 891 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 892 893 if (geo->start > sz) { 894 DMWARN("Start sector is beyond the geometry limits."); 895 return -EINVAL; 896 } 897 898 md->geometry = *geo; 899 900 return 0; 901 } 902 903 static int __noflush_suspending(struct mapped_device *md) 904 { 905 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 906 } 907 908 /* 909 * Decrements the number of outstanding ios that a bio has been 910 * cloned into, completing the original io if necc. 911 */ 912 static void dec_pending(struct dm_io *io, blk_status_t error) 913 { 914 unsigned long flags; 915 blk_status_t io_error; 916 struct bio *bio; 917 struct mapped_device *md = io->md; 918 919 /* Push-back supersedes any I/O errors */ 920 if (unlikely(error)) { 921 spin_lock_irqsave(&io->endio_lock, flags); 922 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 923 io->status = error; 924 spin_unlock_irqrestore(&io->endio_lock, flags); 925 } 926 927 if (atomic_dec_and_test(&io->io_count)) { 928 if (io->status == BLK_STS_DM_REQUEUE) { 929 /* 930 * Target requested pushing back the I/O. 931 */ 932 spin_lock_irqsave(&md->deferred_lock, flags); 933 if (__noflush_suspending(md)) 934 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 935 bio_list_add_head(&md->deferred, io->orig_bio); 936 else 937 /* noflush suspend was interrupted. */ 938 io->status = BLK_STS_IOERR; 939 spin_unlock_irqrestore(&md->deferred_lock, flags); 940 } 941 942 io_error = io->status; 943 bio = io->orig_bio; 944 end_io_acct(io); 945 free_io(md, io); 946 947 if (io_error == BLK_STS_DM_REQUEUE) 948 return; 949 950 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 951 /* 952 * Preflush done for flush with data, reissue 953 * without REQ_PREFLUSH. 954 */ 955 bio->bi_opf &= ~REQ_PREFLUSH; 956 queue_io(md, bio); 957 } else { 958 /* done with normal IO or empty flush */ 959 if (io_error) 960 bio->bi_status = io_error; 961 bio_endio(bio); 962 } 963 } 964 } 965 966 void disable_write_same(struct mapped_device *md) 967 { 968 struct queue_limits *limits = dm_get_queue_limits(md); 969 970 /* device doesn't really support WRITE SAME, disable it */ 971 limits->max_write_same_sectors = 0; 972 } 973 974 void disable_write_zeroes(struct mapped_device *md) 975 { 976 struct queue_limits *limits = dm_get_queue_limits(md); 977 978 /* device doesn't really support WRITE ZEROES, disable it */ 979 limits->max_write_zeroes_sectors = 0; 980 } 981 982 static void clone_endio(struct bio *bio) 983 { 984 blk_status_t error = bio->bi_status; 985 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 986 struct dm_io *io = tio->io; 987 struct mapped_device *md = tio->io->md; 988 dm_endio_fn endio = tio->ti->type->end_io; 989 990 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 991 if (bio_op(bio) == REQ_OP_WRITE_SAME && 992 !bio->bi_disk->queue->limits.max_write_same_sectors) 993 disable_write_same(md); 994 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 995 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 996 disable_write_zeroes(md); 997 } 998 999 if (endio) { 1000 int r = endio(tio->ti, bio, &error); 1001 switch (r) { 1002 case DM_ENDIO_REQUEUE: 1003 error = BLK_STS_DM_REQUEUE; 1004 /*FALLTHRU*/ 1005 case DM_ENDIO_DONE: 1006 break; 1007 case DM_ENDIO_INCOMPLETE: 1008 /* The target will handle the io */ 1009 return; 1010 default: 1011 DMWARN("unimplemented target endio return value: %d", r); 1012 BUG(); 1013 } 1014 } 1015 1016 free_tio(tio); 1017 dec_pending(io, error); 1018 } 1019 1020 /* 1021 * Return maximum size of I/O possible at the supplied sector up to the current 1022 * target boundary. 1023 */ 1024 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1025 { 1026 sector_t target_offset = dm_target_offset(ti, sector); 1027 1028 return ti->len - target_offset; 1029 } 1030 1031 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1032 { 1033 sector_t len = max_io_len_target_boundary(sector, ti); 1034 sector_t offset, max_len; 1035 1036 /* 1037 * Does the target need to split even further? 1038 */ 1039 if (ti->max_io_len) { 1040 offset = dm_target_offset(ti, sector); 1041 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1042 max_len = sector_div(offset, ti->max_io_len); 1043 else 1044 max_len = offset & (ti->max_io_len - 1); 1045 max_len = ti->max_io_len - max_len; 1046 1047 if (len > max_len) 1048 len = max_len; 1049 } 1050 1051 return len; 1052 } 1053 1054 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1055 { 1056 if (len > UINT_MAX) { 1057 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1058 (unsigned long long)len, UINT_MAX); 1059 ti->error = "Maximum size of target IO is too large"; 1060 return -EINVAL; 1061 } 1062 1063 /* 1064 * BIO based queue uses its own splitting. When multipage bvecs 1065 * is switched on, size of the incoming bio may be too big to 1066 * be handled in some targets, such as crypt. 1067 * 1068 * When these targets are ready for the big bio, we can remove 1069 * the limit. 1070 */ 1071 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE); 1072 1073 return 0; 1074 } 1075 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1076 1077 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1078 sector_t sector, int *srcu_idx) 1079 __acquires(md->io_barrier) 1080 { 1081 struct dm_table *map; 1082 struct dm_target *ti; 1083 1084 map = dm_get_live_table(md, srcu_idx); 1085 if (!map) 1086 return NULL; 1087 1088 ti = dm_table_find_target(map, sector); 1089 if (!dm_target_is_valid(ti)) 1090 return NULL; 1091 1092 return ti; 1093 } 1094 1095 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1096 long nr_pages, void **kaddr, pfn_t *pfn) 1097 { 1098 struct mapped_device *md = dax_get_private(dax_dev); 1099 sector_t sector = pgoff * PAGE_SECTORS; 1100 struct dm_target *ti; 1101 long len, ret = -EIO; 1102 int srcu_idx; 1103 1104 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1105 1106 if (!ti) 1107 goto out; 1108 if (!ti->type->direct_access) 1109 goto out; 1110 len = max_io_len(sector, ti) / PAGE_SECTORS; 1111 if (len < 1) 1112 goto out; 1113 nr_pages = min(len, nr_pages); 1114 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1115 1116 out: 1117 dm_put_live_table(md, srcu_idx); 1118 1119 return ret; 1120 } 1121 1122 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1123 void *addr, size_t bytes, struct iov_iter *i) 1124 { 1125 struct mapped_device *md = dax_get_private(dax_dev); 1126 sector_t sector = pgoff * PAGE_SECTORS; 1127 struct dm_target *ti; 1128 long ret = 0; 1129 int srcu_idx; 1130 1131 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1132 1133 if (!ti) 1134 goto out; 1135 if (!ti->type->dax_copy_from_iter) { 1136 ret = copy_from_iter(addr, bytes, i); 1137 goto out; 1138 } 1139 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1140 out: 1141 dm_put_live_table(md, srcu_idx); 1142 1143 return ret; 1144 } 1145 1146 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1147 void *addr, size_t bytes, struct iov_iter *i) 1148 { 1149 struct mapped_device *md = dax_get_private(dax_dev); 1150 sector_t sector = pgoff * PAGE_SECTORS; 1151 struct dm_target *ti; 1152 long ret = 0; 1153 int srcu_idx; 1154 1155 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1156 1157 if (!ti) 1158 goto out; 1159 if (!ti->type->dax_copy_to_iter) { 1160 ret = copy_to_iter(addr, bytes, i); 1161 goto out; 1162 } 1163 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1164 out: 1165 dm_put_live_table(md, srcu_idx); 1166 1167 return ret; 1168 } 1169 1170 /* 1171 * A target may call dm_accept_partial_bio only from the map routine. It is 1172 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1173 * 1174 * dm_accept_partial_bio informs the dm that the target only wants to process 1175 * additional n_sectors sectors of the bio and the rest of the data should be 1176 * sent in a next bio. 1177 * 1178 * A diagram that explains the arithmetics: 1179 * +--------------------+---------------+-------+ 1180 * | 1 | 2 | 3 | 1181 * +--------------------+---------------+-------+ 1182 * 1183 * <-------------- *tio->len_ptr ---------------> 1184 * <------- bi_size -------> 1185 * <-- n_sectors --> 1186 * 1187 * Region 1 was already iterated over with bio_advance or similar function. 1188 * (it may be empty if the target doesn't use bio_advance) 1189 * Region 2 is the remaining bio size that the target wants to process. 1190 * (it may be empty if region 1 is non-empty, although there is no reason 1191 * to make it empty) 1192 * The target requires that region 3 is to be sent in the next bio. 1193 * 1194 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1195 * the partially processed part (the sum of regions 1+2) must be the same for all 1196 * copies of the bio. 1197 */ 1198 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1199 { 1200 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1201 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1202 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1203 BUG_ON(bi_size > *tio->len_ptr); 1204 BUG_ON(n_sectors > bi_size); 1205 *tio->len_ptr -= bi_size - n_sectors; 1206 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1207 } 1208 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1209 1210 /* 1211 * The zone descriptors obtained with a zone report indicate 1212 * zone positions within the underlying device of the target. The zone 1213 * descriptors must be remapped to match their position within the dm device. 1214 * The caller target should obtain the zones information using 1215 * blkdev_report_zones() to ensure that remapping for partition offset is 1216 * already handled. 1217 */ 1218 void dm_remap_zone_report(struct dm_target *ti, sector_t start, 1219 struct blk_zone *zones, unsigned int *nr_zones) 1220 { 1221 #ifdef CONFIG_BLK_DEV_ZONED 1222 struct blk_zone *zone; 1223 unsigned int nrz = *nr_zones; 1224 int i; 1225 1226 /* 1227 * Remap the start sector and write pointer position of the zones in 1228 * the array. Since we may have obtained from the target underlying 1229 * device more zones that the target size, also adjust the number 1230 * of zones. 1231 */ 1232 for (i = 0; i < nrz; i++) { 1233 zone = zones + i; 1234 if (zone->start >= start + ti->len) { 1235 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i)); 1236 break; 1237 } 1238 1239 zone->start = zone->start + ti->begin - start; 1240 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 1241 continue; 1242 1243 if (zone->cond == BLK_ZONE_COND_FULL) 1244 zone->wp = zone->start + zone->len; 1245 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1246 zone->wp = zone->start; 1247 else 1248 zone->wp = zone->wp + ti->begin - start; 1249 } 1250 1251 *nr_zones = i; 1252 #else /* !CONFIG_BLK_DEV_ZONED */ 1253 *nr_zones = 0; 1254 #endif 1255 } 1256 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1257 1258 static blk_qc_t __map_bio(struct dm_target_io *tio) 1259 { 1260 int r; 1261 sector_t sector; 1262 struct bio *clone = &tio->clone; 1263 struct dm_io *io = tio->io; 1264 struct mapped_device *md = io->md; 1265 struct dm_target *ti = tio->ti; 1266 blk_qc_t ret = BLK_QC_T_NONE; 1267 1268 clone->bi_end_io = clone_endio; 1269 1270 /* 1271 * Map the clone. If r == 0 we don't need to do 1272 * anything, the target has assumed ownership of 1273 * this io. 1274 */ 1275 atomic_inc(&io->io_count); 1276 sector = clone->bi_iter.bi_sector; 1277 1278 r = ti->type->map(ti, clone); 1279 switch (r) { 1280 case DM_MAPIO_SUBMITTED: 1281 break; 1282 case DM_MAPIO_REMAPPED: 1283 /* the bio has been remapped so dispatch it */ 1284 trace_block_bio_remap(clone->bi_disk->queue, clone, 1285 bio_dev(io->orig_bio), sector); 1286 if (md->type == DM_TYPE_NVME_BIO_BASED) 1287 ret = direct_make_request(clone); 1288 else 1289 ret = generic_make_request(clone); 1290 break; 1291 case DM_MAPIO_KILL: 1292 free_tio(tio); 1293 dec_pending(io, BLK_STS_IOERR); 1294 break; 1295 case DM_MAPIO_REQUEUE: 1296 free_tio(tio); 1297 dec_pending(io, BLK_STS_DM_REQUEUE); 1298 break; 1299 default: 1300 DMWARN("unimplemented target map return value: %d", r); 1301 BUG(); 1302 } 1303 1304 return ret; 1305 } 1306 1307 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1308 { 1309 bio->bi_iter.bi_sector = sector; 1310 bio->bi_iter.bi_size = to_bytes(len); 1311 } 1312 1313 /* 1314 * Creates a bio that consists of range of complete bvecs. 1315 */ 1316 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1317 sector_t sector, unsigned len) 1318 { 1319 struct bio *clone = &tio->clone; 1320 1321 __bio_clone_fast(clone, bio); 1322 1323 if (bio_integrity(bio)) { 1324 int r; 1325 1326 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1327 !dm_target_passes_integrity(tio->ti->type))) { 1328 DMWARN("%s: the target %s doesn't support integrity data.", 1329 dm_device_name(tio->io->md), 1330 tio->ti->type->name); 1331 return -EIO; 1332 } 1333 1334 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1335 if (r < 0) 1336 return r; 1337 } 1338 1339 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1340 clone->bi_iter.bi_size = to_bytes(len); 1341 1342 if (bio_integrity(bio)) 1343 bio_integrity_trim(clone); 1344 1345 return 0; 1346 } 1347 1348 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1349 struct dm_target *ti, unsigned num_bios) 1350 { 1351 struct dm_target_io *tio; 1352 int try; 1353 1354 if (!num_bios) 1355 return; 1356 1357 if (num_bios == 1) { 1358 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1359 bio_list_add(blist, &tio->clone); 1360 return; 1361 } 1362 1363 for (try = 0; try < 2; try++) { 1364 int bio_nr; 1365 struct bio *bio; 1366 1367 if (try) 1368 mutex_lock(&ci->io->md->table_devices_lock); 1369 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1370 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1371 if (!tio) 1372 break; 1373 1374 bio_list_add(blist, &tio->clone); 1375 } 1376 if (try) 1377 mutex_unlock(&ci->io->md->table_devices_lock); 1378 if (bio_nr == num_bios) 1379 return; 1380 1381 while ((bio = bio_list_pop(blist))) { 1382 tio = container_of(bio, struct dm_target_io, clone); 1383 free_tio(tio); 1384 } 1385 } 1386 } 1387 1388 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1389 struct dm_target_io *tio, unsigned *len) 1390 { 1391 struct bio *clone = &tio->clone; 1392 1393 tio->len_ptr = len; 1394 1395 __bio_clone_fast(clone, ci->bio); 1396 if (len) 1397 bio_setup_sector(clone, ci->sector, *len); 1398 1399 return __map_bio(tio); 1400 } 1401 1402 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1403 unsigned num_bios, unsigned *len) 1404 { 1405 struct bio_list blist = BIO_EMPTY_LIST; 1406 struct bio *bio; 1407 struct dm_target_io *tio; 1408 1409 alloc_multiple_bios(&blist, ci, ti, num_bios); 1410 1411 while ((bio = bio_list_pop(&blist))) { 1412 tio = container_of(bio, struct dm_target_io, clone); 1413 (void) __clone_and_map_simple_bio(ci, tio, len); 1414 } 1415 } 1416 1417 static int __send_empty_flush(struct clone_info *ci) 1418 { 1419 unsigned target_nr = 0; 1420 struct dm_target *ti; 1421 1422 /* 1423 * Empty flush uses a statically initialized bio, as the base for 1424 * cloning. However, blkg association requires that a bdev is 1425 * associated with a gendisk, which doesn't happen until the bdev is 1426 * opened. So, blkg association is done at issue time of the flush 1427 * rather than when the device is created in alloc_dev(). 1428 */ 1429 bio_set_dev(ci->bio, ci->io->md->bdev); 1430 1431 BUG_ON(bio_has_data(ci->bio)); 1432 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1433 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1434 1435 bio_disassociate_blkg(ci->bio); 1436 1437 return 0; 1438 } 1439 1440 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1441 sector_t sector, unsigned *len) 1442 { 1443 struct bio *bio = ci->bio; 1444 struct dm_target_io *tio; 1445 int r; 1446 1447 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1448 tio->len_ptr = len; 1449 r = clone_bio(tio, bio, sector, *len); 1450 if (r < 0) { 1451 free_tio(tio); 1452 return r; 1453 } 1454 (void) __map_bio(tio); 1455 1456 return 0; 1457 } 1458 1459 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1460 1461 static unsigned get_num_discard_bios(struct dm_target *ti) 1462 { 1463 return ti->num_discard_bios; 1464 } 1465 1466 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1467 { 1468 return ti->num_secure_erase_bios; 1469 } 1470 1471 static unsigned get_num_write_same_bios(struct dm_target *ti) 1472 { 1473 return ti->num_write_same_bios; 1474 } 1475 1476 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1477 { 1478 return ti->num_write_zeroes_bios; 1479 } 1480 1481 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1482 1483 static bool is_split_required_for_discard(struct dm_target *ti) 1484 { 1485 return ti->split_discard_bios; 1486 } 1487 1488 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1489 unsigned num_bios, bool is_split_required) 1490 { 1491 unsigned len; 1492 1493 /* 1494 * Even though the device advertised support for this type of 1495 * request, that does not mean every target supports it, and 1496 * reconfiguration might also have changed that since the 1497 * check was performed. 1498 */ 1499 if (!num_bios) 1500 return -EOPNOTSUPP; 1501 1502 if (!is_split_required) 1503 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1504 else 1505 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1506 1507 __send_duplicate_bios(ci, ti, num_bios, &len); 1508 1509 ci->sector += len; 1510 ci->sector_count -= len; 1511 1512 return 0; 1513 } 1514 1515 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1516 { 1517 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti), 1518 is_split_required_for_discard(ti)); 1519 } 1520 1521 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1522 { 1523 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti), false); 1524 } 1525 1526 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1527 { 1528 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti), false); 1529 } 1530 1531 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1532 { 1533 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti), false); 1534 } 1535 1536 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1537 int *result) 1538 { 1539 struct bio *bio = ci->bio; 1540 1541 if (bio_op(bio) == REQ_OP_DISCARD) 1542 *result = __send_discard(ci, ti); 1543 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1544 *result = __send_secure_erase(ci, ti); 1545 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1546 *result = __send_write_same(ci, ti); 1547 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1548 *result = __send_write_zeroes(ci, ti); 1549 else 1550 return false; 1551 1552 return true; 1553 } 1554 1555 /* 1556 * Select the correct strategy for processing a non-flush bio. 1557 */ 1558 static int __split_and_process_non_flush(struct clone_info *ci) 1559 { 1560 struct dm_target *ti; 1561 unsigned len; 1562 int r; 1563 1564 ti = dm_table_find_target(ci->map, ci->sector); 1565 if (!dm_target_is_valid(ti)) 1566 return -EIO; 1567 1568 if (unlikely(__process_abnormal_io(ci, ti, &r))) 1569 return r; 1570 1571 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1572 1573 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1574 if (r < 0) 1575 return r; 1576 1577 ci->sector += len; 1578 ci->sector_count -= len; 1579 1580 return 0; 1581 } 1582 1583 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1584 struct dm_table *map, struct bio *bio) 1585 { 1586 ci->map = map; 1587 ci->io = alloc_io(md, bio); 1588 ci->sector = bio->bi_iter.bi_sector; 1589 } 1590 1591 #define __dm_part_stat_sub(part, field, subnd) \ 1592 (part_stat_get(part, field) -= (subnd)) 1593 1594 /* 1595 * Entry point to split a bio into clones and submit them to the targets. 1596 */ 1597 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1598 struct dm_table *map, struct bio *bio) 1599 { 1600 struct clone_info ci; 1601 blk_qc_t ret = BLK_QC_T_NONE; 1602 int error = 0; 1603 1604 if (unlikely(!map)) { 1605 bio_io_error(bio); 1606 return ret; 1607 } 1608 1609 blk_queue_split(md->queue, &bio); 1610 1611 init_clone_info(&ci, md, map, bio); 1612 1613 if (bio->bi_opf & REQ_PREFLUSH) { 1614 struct bio flush_bio; 1615 1616 /* 1617 * Use an on-stack bio for this, it's safe since we don't 1618 * need to reference it after submit. It's just used as 1619 * the basis for the clone(s). 1620 */ 1621 bio_init(&flush_bio, NULL, 0); 1622 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1623 ci.bio = &flush_bio; 1624 ci.sector_count = 0; 1625 error = __send_empty_flush(&ci); 1626 /* dec_pending submits any data associated with flush */ 1627 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1628 ci.bio = bio; 1629 ci.sector_count = 0; 1630 error = __split_and_process_non_flush(&ci); 1631 } else { 1632 ci.bio = bio; 1633 ci.sector_count = bio_sectors(bio); 1634 while (ci.sector_count && !error) { 1635 error = __split_and_process_non_flush(&ci); 1636 if (current->bio_list && ci.sector_count && !error) { 1637 /* 1638 * Remainder must be passed to generic_make_request() 1639 * so that it gets handled *after* bios already submitted 1640 * have been completely processed. 1641 * We take a clone of the original to store in 1642 * ci.io->orig_bio to be used by end_io_acct() and 1643 * for dec_pending to use for completion handling. 1644 */ 1645 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1646 GFP_NOIO, &md->queue->bio_split); 1647 ci.io->orig_bio = b; 1648 1649 /* 1650 * Adjust IO stats for each split, otherwise upon queue 1651 * reentry there will be redundant IO accounting. 1652 * NOTE: this is a stop-gap fix, a proper fix involves 1653 * significant refactoring of DM core's bio splitting 1654 * (by eliminating DM's splitting and just using bio_split) 1655 */ 1656 part_stat_lock(); 1657 __dm_part_stat_sub(&dm_disk(md)->part0, 1658 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1659 part_stat_unlock(); 1660 1661 bio_chain(b, bio); 1662 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1663 ret = generic_make_request(bio); 1664 break; 1665 } 1666 } 1667 } 1668 1669 /* drop the extra reference count */ 1670 dec_pending(ci.io, errno_to_blk_status(error)); 1671 return ret; 1672 } 1673 1674 /* 1675 * Optimized variant of __split_and_process_bio that leverages the 1676 * fact that targets that use it do _not_ have a need to split bios. 1677 */ 1678 static blk_qc_t __process_bio(struct mapped_device *md, 1679 struct dm_table *map, struct bio *bio) 1680 { 1681 struct clone_info ci; 1682 blk_qc_t ret = BLK_QC_T_NONE; 1683 int error = 0; 1684 1685 if (unlikely(!map)) { 1686 bio_io_error(bio); 1687 return ret; 1688 } 1689 1690 init_clone_info(&ci, md, map, bio); 1691 1692 if (bio->bi_opf & REQ_PREFLUSH) { 1693 struct bio flush_bio; 1694 1695 /* 1696 * Use an on-stack bio for this, it's safe since we don't 1697 * need to reference it after submit. It's just used as 1698 * the basis for the clone(s). 1699 */ 1700 bio_init(&flush_bio, NULL, 0); 1701 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1702 ci.bio = &flush_bio; 1703 ci.sector_count = 0; 1704 error = __send_empty_flush(&ci); 1705 /* dec_pending submits any data associated with flush */ 1706 } else { 1707 struct dm_target *ti = md->immutable_target; 1708 struct dm_target_io *tio; 1709 1710 /* 1711 * Defend against IO still getting in during teardown 1712 * - as was seen for a time with nvme-fcloop 1713 */ 1714 if (WARN_ON_ONCE(!ti || !dm_target_is_valid(ti))) { 1715 error = -EIO; 1716 goto out; 1717 } 1718 1719 ci.bio = bio; 1720 ci.sector_count = bio_sectors(bio); 1721 if (unlikely(__process_abnormal_io(&ci, ti, &error))) 1722 goto out; 1723 1724 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1725 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1726 } 1727 out: 1728 /* drop the extra reference count */ 1729 dec_pending(ci.io, errno_to_blk_status(error)); 1730 return ret; 1731 } 1732 1733 static blk_qc_t dm_process_bio(struct mapped_device *md, 1734 struct dm_table *map, struct bio *bio) 1735 { 1736 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1737 return __process_bio(md, map, bio); 1738 else 1739 return __split_and_process_bio(md, map, bio); 1740 } 1741 1742 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1743 { 1744 struct mapped_device *md = q->queuedata; 1745 blk_qc_t ret = BLK_QC_T_NONE; 1746 int srcu_idx; 1747 struct dm_table *map; 1748 1749 map = dm_get_live_table(md, &srcu_idx); 1750 1751 /* if we're suspended, we have to queue this io for later */ 1752 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1753 dm_put_live_table(md, srcu_idx); 1754 1755 if (!(bio->bi_opf & REQ_RAHEAD)) 1756 queue_io(md, bio); 1757 else 1758 bio_io_error(bio); 1759 return ret; 1760 } 1761 1762 ret = dm_process_bio(md, map, bio); 1763 1764 dm_put_live_table(md, srcu_idx); 1765 return ret; 1766 } 1767 1768 static int dm_any_congested(void *congested_data, int bdi_bits) 1769 { 1770 int r = bdi_bits; 1771 struct mapped_device *md = congested_data; 1772 struct dm_table *map; 1773 1774 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1775 if (dm_request_based(md)) { 1776 /* 1777 * With request-based DM we only need to check the 1778 * top-level queue for congestion. 1779 */ 1780 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1781 } else { 1782 map = dm_get_live_table_fast(md); 1783 if (map) 1784 r = dm_table_any_congested(map, bdi_bits); 1785 dm_put_live_table_fast(md); 1786 } 1787 } 1788 1789 return r; 1790 } 1791 1792 /*----------------------------------------------------------------- 1793 * An IDR is used to keep track of allocated minor numbers. 1794 *---------------------------------------------------------------*/ 1795 static void free_minor(int minor) 1796 { 1797 spin_lock(&_minor_lock); 1798 idr_remove(&_minor_idr, minor); 1799 spin_unlock(&_minor_lock); 1800 } 1801 1802 /* 1803 * See if the device with a specific minor # is free. 1804 */ 1805 static int specific_minor(int minor) 1806 { 1807 int r; 1808 1809 if (minor >= (1 << MINORBITS)) 1810 return -EINVAL; 1811 1812 idr_preload(GFP_KERNEL); 1813 spin_lock(&_minor_lock); 1814 1815 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1816 1817 spin_unlock(&_minor_lock); 1818 idr_preload_end(); 1819 if (r < 0) 1820 return r == -ENOSPC ? -EBUSY : r; 1821 return 0; 1822 } 1823 1824 static int next_free_minor(int *minor) 1825 { 1826 int r; 1827 1828 idr_preload(GFP_KERNEL); 1829 spin_lock(&_minor_lock); 1830 1831 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1832 1833 spin_unlock(&_minor_lock); 1834 idr_preload_end(); 1835 if (r < 0) 1836 return r; 1837 *minor = r; 1838 return 0; 1839 } 1840 1841 static const struct block_device_operations dm_blk_dops; 1842 static const struct dax_operations dm_dax_ops; 1843 1844 static void dm_wq_work(struct work_struct *work); 1845 1846 static void dm_init_normal_md_queue(struct mapped_device *md) 1847 { 1848 /* 1849 * Initialize aspects of queue that aren't relevant for blk-mq 1850 */ 1851 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1852 } 1853 1854 static void cleanup_mapped_device(struct mapped_device *md) 1855 { 1856 if (md->wq) 1857 destroy_workqueue(md->wq); 1858 bioset_exit(&md->bs); 1859 bioset_exit(&md->io_bs); 1860 1861 if (md->dax_dev) { 1862 kill_dax(md->dax_dev); 1863 put_dax(md->dax_dev); 1864 md->dax_dev = NULL; 1865 } 1866 1867 if (md->disk) { 1868 spin_lock(&_minor_lock); 1869 md->disk->private_data = NULL; 1870 spin_unlock(&_minor_lock); 1871 del_gendisk(md->disk); 1872 put_disk(md->disk); 1873 } 1874 1875 if (md->queue) 1876 blk_cleanup_queue(md->queue); 1877 1878 cleanup_srcu_struct(&md->io_barrier); 1879 1880 if (md->bdev) { 1881 bdput(md->bdev); 1882 md->bdev = NULL; 1883 } 1884 1885 mutex_destroy(&md->suspend_lock); 1886 mutex_destroy(&md->type_lock); 1887 mutex_destroy(&md->table_devices_lock); 1888 1889 dm_mq_cleanup_mapped_device(md); 1890 } 1891 1892 /* 1893 * Allocate and initialise a blank device with a given minor. 1894 */ 1895 static struct mapped_device *alloc_dev(int minor) 1896 { 1897 int r, numa_node_id = dm_get_numa_node(); 1898 struct dax_device *dax_dev = NULL; 1899 struct mapped_device *md; 1900 void *old_md; 1901 1902 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1903 if (!md) { 1904 DMWARN("unable to allocate device, out of memory."); 1905 return NULL; 1906 } 1907 1908 if (!try_module_get(THIS_MODULE)) 1909 goto bad_module_get; 1910 1911 /* get a minor number for the dev */ 1912 if (minor == DM_ANY_MINOR) 1913 r = next_free_minor(&minor); 1914 else 1915 r = specific_minor(minor); 1916 if (r < 0) 1917 goto bad_minor; 1918 1919 r = init_srcu_struct(&md->io_barrier); 1920 if (r < 0) 1921 goto bad_io_barrier; 1922 1923 md->numa_node_id = numa_node_id; 1924 md->init_tio_pdu = false; 1925 md->type = DM_TYPE_NONE; 1926 mutex_init(&md->suspend_lock); 1927 mutex_init(&md->type_lock); 1928 mutex_init(&md->table_devices_lock); 1929 spin_lock_init(&md->deferred_lock); 1930 atomic_set(&md->holders, 1); 1931 atomic_set(&md->open_count, 0); 1932 atomic_set(&md->event_nr, 0); 1933 atomic_set(&md->uevent_seq, 0); 1934 INIT_LIST_HEAD(&md->uevent_list); 1935 INIT_LIST_HEAD(&md->table_devices); 1936 spin_lock_init(&md->uevent_lock); 1937 1938 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1939 if (!md->queue) 1940 goto bad; 1941 md->queue->queuedata = md; 1942 md->queue->backing_dev_info->congested_data = md; 1943 1944 md->disk = alloc_disk_node(1, md->numa_node_id); 1945 if (!md->disk) 1946 goto bad; 1947 1948 init_waitqueue_head(&md->wait); 1949 INIT_WORK(&md->work, dm_wq_work); 1950 init_waitqueue_head(&md->eventq); 1951 init_completion(&md->kobj_holder.completion); 1952 1953 md->disk->major = _major; 1954 md->disk->first_minor = minor; 1955 md->disk->fops = &dm_blk_dops; 1956 md->disk->queue = md->queue; 1957 md->disk->private_data = md; 1958 sprintf(md->disk->disk_name, "dm-%d", minor); 1959 1960 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1961 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1962 if (!dax_dev) 1963 goto bad; 1964 } 1965 md->dax_dev = dax_dev; 1966 1967 add_disk_no_queue_reg(md->disk); 1968 format_dev_t(md->name, MKDEV(_major, minor)); 1969 1970 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1971 if (!md->wq) 1972 goto bad; 1973 1974 md->bdev = bdget_disk(md->disk, 0); 1975 if (!md->bdev) 1976 goto bad; 1977 1978 dm_stats_init(&md->stats); 1979 1980 /* Populate the mapping, nobody knows we exist yet */ 1981 spin_lock(&_minor_lock); 1982 old_md = idr_replace(&_minor_idr, md, minor); 1983 spin_unlock(&_minor_lock); 1984 1985 BUG_ON(old_md != MINOR_ALLOCED); 1986 1987 return md; 1988 1989 bad: 1990 cleanup_mapped_device(md); 1991 bad_io_barrier: 1992 free_minor(minor); 1993 bad_minor: 1994 module_put(THIS_MODULE); 1995 bad_module_get: 1996 kvfree(md); 1997 return NULL; 1998 } 1999 2000 static void unlock_fs(struct mapped_device *md); 2001 2002 static void free_dev(struct mapped_device *md) 2003 { 2004 int minor = MINOR(disk_devt(md->disk)); 2005 2006 unlock_fs(md); 2007 2008 cleanup_mapped_device(md); 2009 2010 free_table_devices(&md->table_devices); 2011 dm_stats_cleanup(&md->stats); 2012 free_minor(minor); 2013 2014 module_put(THIS_MODULE); 2015 kvfree(md); 2016 } 2017 2018 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2019 { 2020 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2021 int ret = 0; 2022 2023 if (dm_table_bio_based(t)) { 2024 /* 2025 * The md may already have mempools that need changing. 2026 * If so, reload bioset because front_pad may have changed 2027 * because a different table was loaded. 2028 */ 2029 bioset_exit(&md->bs); 2030 bioset_exit(&md->io_bs); 2031 2032 } else if (bioset_initialized(&md->bs)) { 2033 /* 2034 * There's no need to reload with request-based dm 2035 * because the size of front_pad doesn't change. 2036 * Note for future: If you are to reload bioset, 2037 * prep-ed requests in the queue may refer 2038 * to bio from the old bioset, so you must walk 2039 * through the queue to unprep. 2040 */ 2041 goto out; 2042 } 2043 2044 BUG_ON(!p || 2045 bioset_initialized(&md->bs) || 2046 bioset_initialized(&md->io_bs)); 2047 2048 ret = bioset_init_from_src(&md->bs, &p->bs); 2049 if (ret) 2050 goto out; 2051 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2052 if (ret) 2053 bioset_exit(&md->bs); 2054 out: 2055 /* mempool bind completed, no longer need any mempools in the table */ 2056 dm_table_free_md_mempools(t); 2057 return ret; 2058 } 2059 2060 /* 2061 * Bind a table to the device. 2062 */ 2063 static void event_callback(void *context) 2064 { 2065 unsigned long flags; 2066 LIST_HEAD(uevents); 2067 struct mapped_device *md = (struct mapped_device *) context; 2068 2069 spin_lock_irqsave(&md->uevent_lock, flags); 2070 list_splice_init(&md->uevent_list, &uevents); 2071 spin_unlock_irqrestore(&md->uevent_lock, flags); 2072 2073 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2074 2075 atomic_inc(&md->event_nr); 2076 wake_up(&md->eventq); 2077 dm_issue_global_event(); 2078 } 2079 2080 /* 2081 * Protected by md->suspend_lock obtained by dm_swap_table(). 2082 */ 2083 static void __set_size(struct mapped_device *md, sector_t size) 2084 { 2085 lockdep_assert_held(&md->suspend_lock); 2086 2087 set_capacity(md->disk, size); 2088 2089 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2090 } 2091 2092 /* 2093 * Returns old map, which caller must destroy. 2094 */ 2095 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2096 struct queue_limits *limits) 2097 { 2098 struct dm_table *old_map; 2099 struct request_queue *q = md->queue; 2100 bool request_based = dm_table_request_based(t); 2101 sector_t size; 2102 int ret; 2103 2104 lockdep_assert_held(&md->suspend_lock); 2105 2106 size = dm_table_get_size(t); 2107 2108 /* 2109 * Wipe any geometry if the size of the table changed. 2110 */ 2111 if (size != dm_get_size(md)) 2112 memset(&md->geometry, 0, sizeof(md->geometry)); 2113 2114 __set_size(md, size); 2115 2116 dm_table_event_callback(t, event_callback, md); 2117 2118 /* 2119 * The queue hasn't been stopped yet, if the old table type wasn't 2120 * for request-based during suspension. So stop it to prevent 2121 * I/O mapping before resume. 2122 * This must be done before setting the queue restrictions, 2123 * because request-based dm may be run just after the setting. 2124 */ 2125 if (request_based) 2126 dm_stop_queue(q); 2127 2128 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2129 /* 2130 * Leverage the fact that request-based DM targets and 2131 * NVMe bio based targets are immutable singletons 2132 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2133 * and __process_bio. 2134 */ 2135 md->immutable_target = dm_table_get_immutable_target(t); 2136 } 2137 2138 ret = __bind_mempools(md, t); 2139 if (ret) { 2140 old_map = ERR_PTR(ret); 2141 goto out; 2142 } 2143 2144 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2145 rcu_assign_pointer(md->map, (void *)t); 2146 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2147 2148 dm_table_set_restrictions(t, q, limits); 2149 if (old_map) 2150 dm_sync_table(md); 2151 2152 out: 2153 return old_map; 2154 } 2155 2156 /* 2157 * Returns unbound table for the caller to free. 2158 */ 2159 static struct dm_table *__unbind(struct mapped_device *md) 2160 { 2161 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2162 2163 if (!map) 2164 return NULL; 2165 2166 dm_table_event_callback(map, NULL, NULL); 2167 RCU_INIT_POINTER(md->map, NULL); 2168 dm_sync_table(md); 2169 2170 return map; 2171 } 2172 2173 /* 2174 * Constructor for a new device. 2175 */ 2176 int dm_create(int minor, struct mapped_device **result) 2177 { 2178 int r; 2179 struct mapped_device *md; 2180 2181 md = alloc_dev(minor); 2182 if (!md) 2183 return -ENXIO; 2184 2185 r = dm_sysfs_init(md); 2186 if (r) { 2187 free_dev(md); 2188 return r; 2189 } 2190 2191 *result = md; 2192 return 0; 2193 } 2194 2195 /* 2196 * Functions to manage md->type. 2197 * All are required to hold md->type_lock. 2198 */ 2199 void dm_lock_md_type(struct mapped_device *md) 2200 { 2201 mutex_lock(&md->type_lock); 2202 } 2203 2204 void dm_unlock_md_type(struct mapped_device *md) 2205 { 2206 mutex_unlock(&md->type_lock); 2207 } 2208 2209 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2210 { 2211 BUG_ON(!mutex_is_locked(&md->type_lock)); 2212 md->type = type; 2213 } 2214 2215 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2216 { 2217 return md->type; 2218 } 2219 2220 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2221 { 2222 return md->immutable_target_type; 2223 } 2224 2225 /* 2226 * The queue_limits are only valid as long as you have a reference 2227 * count on 'md'. 2228 */ 2229 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2230 { 2231 BUG_ON(!atomic_read(&md->holders)); 2232 return &md->queue->limits; 2233 } 2234 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2235 2236 /* 2237 * Setup the DM device's queue based on md's type 2238 */ 2239 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2240 { 2241 int r; 2242 struct queue_limits limits; 2243 enum dm_queue_mode type = dm_get_md_type(md); 2244 2245 switch (type) { 2246 case DM_TYPE_REQUEST_BASED: 2247 r = dm_mq_init_request_queue(md, t); 2248 if (r) { 2249 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2250 return r; 2251 } 2252 break; 2253 case DM_TYPE_BIO_BASED: 2254 case DM_TYPE_DAX_BIO_BASED: 2255 case DM_TYPE_NVME_BIO_BASED: 2256 dm_init_normal_md_queue(md); 2257 blk_queue_make_request(md->queue, dm_make_request); 2258 break; 2259 case DM_TYPE_NONE: 2260 WARN_ON_ONCE(true); 2261 break; 2262 } 2263 2264 r = dm_calculate_queue_limits(t, &limits); 2265 if (r) { 2266 DMERR("Cannot calculate initial queue limits"); 2267 return r; 2268 } 2269 dm_table_set_restrictions(t, md->queue, &limits); 2270 blk_register_queue(md->disk); 2271 2272 return 0; 2273 } 2274 2275 struct mapped_device *dm_get_md(dev_t dev) 2276 { 2277 struct mapped_device *md; 2278 unsigned minor = MINOR(dev); 2279 2280 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2281 return NULL; 2282 2283 spin_lock(&_minor_lock); 2284 2285 md = idr_find(&_minor_idr, minor); 2286 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2287 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2288 md = NULL; 2289 goto out; 2290 } 2291 dm_get(md); 2292 out: 2293 spin_unlock(&_minor_lock); 2294 2295 return md; 2296 } 2297 EXPORT_SYMBOL_GPL(dm_get_md); 2298 2299 void *dm_get_mdptr(struct mapped_device *md) 2300 { 2301 return md->interface_ptr; 2302 } 2303 2304 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2305 { 2306 md->interface_ptr = ptr; 2307 } 2308 2309 void dm_get(struct mapped_device *md) 2310 { 2311 atomic_inc(&md->holders); 2312 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2313 } 2314 2315 int dm_hold(struct mapped_device *md) 2316 { 2317 spin_lock(&_minor_lock); 2318 if (test_bit(DMF_FREEING, &md->flags)) { 2319 spin_unlock(&_minor_lock); 2320 return -EBUSY; 2321 } 2322 dm_get(md); 2323 spin_unlock(&_minor_lock); 2324 return 0; 2325 } 2326 EXPORT_SYMBOL_GPL(dm_hold); 2327 2328 const char *dm_device_name(struct mapped_device *md) 2329 { 2330 return md->name; 2331 } 2332 EXPORT_SYMBOL_GPL(dm_device_name); 2333 2334 static void __dm_destroy(struct mapped_device *md, bool wait) 2335 { 2336 struct dm_table *map; 2337 int srcu_idx; 2338 2339 might_sleep(); 2340 2341 spin_lock(&_minor_lock); 2342 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2343 set_bit(DMF_FREEING, &md->flags); 2344 spin_unlock(&_minor_lock); 2345 2346 blk_set_queue_dying(md->queue); 2347 2348 /* 2349 * Take suspend_lock so that presuspend and postsuspend methods 2350 * do not race with internal suspend. 2351 */ 2352 mutex_lock(&md->suspend_lock); 2353 map = dm_get_live_table(md, &srcu_idx); 2354 if (!dm_suspended_md(md)) { 2355 dm_table_presuspend_targets(map); 2356 dm_table_postsuspend_targets(map); 2357 } 2358 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2359 dm_put_live_table(md, srcu_idx); 2360 mutex_unlock(&md->suspend_lock); 2361 2362 /* 2363 * Rare, but there may be I/O requests still going to complete, 2364 * for example. Wait for all references to disappear. 2365 * No one should increment the reference count of the mapped_device, 2366 * after the mapped_device state becomes DMF_FREEING. 2367 */ 2368 if (wait) 2369 while (atomic_read(&md->holders)) 2370 msleep(1); 2371 else if (atomic_read(&md->holders)) 2372 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2373 dm_device_name(md), atomic_read(&md->holders)); 2374 2375 dm_sysfs_exit(md); 2376 dm_table_destroy(__unbind(md)); 2377 free_dev(md); 2378 } 2379 2380 void dm_destroy(struct mapped_device *md) 2381 { 2382 __dm_destroy(md, true); 2383 } 2384 2385 void dm_destroy_immediate(struct mapped_device *md) 2386 { 2387 __dm_destroy(md, false); 2388 } 2389 2390 void dm_put(struct mapped_device *md) 2391 { 2392 atomic_dec(&md->holders); 2393 } 2394 EXPORT_SYMBOL_GPL(dm_put); 2395 2396 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2397 { 2398 int r = 0; 2399 DEFINE_WAIT(wait); 2400 2401 while (1) { 2402 prepare_to_wait(&md->wait, &wait, task_state); 2403 2404 if (!md_in_flight(md)) 2405 break; 2406 2407 if (signal_pending_state(task_state, current)) { 2408 r = -EINTR; 2409 break; 2410 } 2411 2412 io_schedule(); 2413 } 2414 finish_wait(&md->wait, &wait); 2415 2416 return r; 2417 } 2418 2419 /* 2420 * Process the deferred bios 2421 */ 2422 static void dm_wq_work(struct work_struct *work) 2423 { 2424 struct mapped_device *md = container_of(work, struct mapped_device, 2425 work); 2426 struct bio *c; 2427 int srcu_idx; 2428 struct dm_table *map; 2429 2430 map = dm_get_live_table(md, &srcu_idx); 2431 2432 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2433 spin_lock_irq(&md->deferred_lock); 2434 c = bio_list_pop(&md->deferred); 2435 spin_unlock_irq(&md->deferred_lock); 2436 2437 if (!c) 2438 break; 2439 2440 if (dm_request_based(md)) 2441 (void) generic_make_request(c); 2442 else 2443 (void) dm_process_bio(md, map, c); 2444 } 2445 2446 dm_put_live_table(md, srcu_idx); 2447 } 2448 2449 static void dm_queue_flush(struct mapped_device *md) 2450 { 2451 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2452 smp_mb__after_atomic(); 2453 queue_work(md->wq, &md->work); 2454 } 2455 2456 /* 2457 * Swap in a new table, returning the old one for the caller to destroy. 2458 */ 2459 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2460 { 2461 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2462 struct queue_limits limits; 2463 int r; 2464 2465 mutex_lock(&md->suspend_lock); 2466 2467 /* device must be suspended */ 2468 if (!dm_suspended_md(md)) 2469 goto out; 2470 2471 /* 2472 * If the new table has no data devices, retain the existing limits. 2473 * This helps multipath with queue_if_no_path if all paths disappear, 2474 * then new I/O is queued based on these limits, and then some paths 2475 * reappear. 2476 */ 2477 if (dm_table_has_no_data_devices(table)) { 2478 live_map = dm_get_live_table_fast(md); 2479 if (live_map) 2480 limits = md->queue->limits; 2481 dm_put_live_table_fast(md); 2482 } 2483 2484 if (!live_map) { 2485 r = dm_calculate_queue_limits(table, &limits); 2486 if (r) { 2487 map = ERR_PTR(r); 2488 goto out; 2489 } 2490 } 2491 2492 map = __bind(md, table, &limits); 2493 dm_issue_global_event(); 2494 2495 out: 2496 mutex_unlock(&md->suspend_lock); 2497 return map; 2498 } 2499 2500 /* 2501 * Functions to lock and unlock any filesystem running on the 2502 * device. 2503 */ 2504 static int lock_fs(struct mapped_device *md) 2505 { 2506 int r; 2507 2508 WARN_ON(md->frozen_sb); 2509 2510 md->frozen_sb = freeze_bdev(md->bdev); 2511 if (IS_ERR(md->frozen_sb)) { 2512 r = PTR_ERR(md->frozen_sb); 2513 md->frozen_sb = NULL; 2514 return r; 2515 } 2516 2517 set_bit(DMF_FROZEN, &md->flags); 2518 2519 return 0; 2520 } 2521 2522 static void unlock_fs(struct mapped_device *md) 2523 { 2524 if (!test_bit(DMF_FROZEN, &md->flags)) 2525 return; 2526 2527 thaw_bdev(md->bdev, md->frozen_sb); 2528 md->frozen_sb = NULL; 2529 clear_bit(DMF_FROZEN, &md->flags); 2530 } 2531 2532 /* 2533 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2534 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2535 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2536 * 2537 * If __dm_suspend returns 0, the device is completely quiescent 2538 * now. There is no request-processing activity. All new requests 2539 * are being added to md->deferred list. 2540 */ 2541 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2542 unsigned suspend_flags, long task_state, 2543 int dmf_suspended_flag) 2544 { 2545 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2546 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2547 int r; 2548 2549 lockdep_assert_held(&md->suspend_lock); 2550 2551 /* 2552 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2553 * This flag is cleared before dm_suspend returns. 2554 */ 2555 if (noflush) 2556 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2557 else 2558 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2559 2560 /* 2561 * This gets reverted if there's an error later and the targets 2562 * provide the .presuspend_undo hook. 2563 */ 2564 dm_table_presuspend_targets(map); 2565 2566 /* 2567 * Flush I/O to the device. 2568 * Any I/O submitted after lock_fs() may not be flushed. 2569 * noflush takes precedence over do_lockfs. 2570 * (lock_fs() flushes I/Os and waits for them to complete.) 2571 */ 2572 if (!noflush && do_lockfs) { 2573 r = lock_fs(md); 2574 if (r) { 2575 dm_table_presuspend_undo_targets(map); 2576 return r; 2577 } 2578 } 2579 2580 /* 2581 * Here we must make sure that no processes are submitting requests 2582 * to target drivers i.e. no one may be executing 2583 * __split_and_process_bio. This is called from dm_request and 2584 * dm_wq_work. 2585 * 2586 * To get all processes out of __split_and_process_bio in dm_request, 2587 * we take the write lock. To prevent any process from reentering 2588 * __split_and_process_bio from dm_request and quiesce the thread 2589 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2590 * flush_workqueue(md->wq). 2591 */ 2592 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2593 if (map) 2594 synchronize_srcu(&md->io_barrier); 2595 2596 /* 2597 * Stop md->queue before flushing md->wq in case request-based 2598 * dm defers requests to md->wq from md->queue. 2599 */ 2600 if (dm_request_based(md)) 2601 dm_stop_queue(md->queue); 2602 2603 flush_workqueue(md->wq); 2604 2605 /* 2606 * At this point no more requests are entering target request routines. 2607 * We call dm_wait_for_completion to wait for all existing requests 2608 * to finish. 2609 */ 2610 r = dm_wait_for_completion(md, task_state); 2611 if (!r) 2612 set_bit(dmf_suspended_flag, &md->flags); 2613 2614 if (noflush) 2615 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2616 if (map) 2617 synchronize_srcu(&md->io_barrier); 2618 2619 /* were we interrupted ? */ 2620 if (r < 0) { 2621 dm_queue_flush(md); 2622 2623 if (dm_request_based(md)) 2624 dm_start_queue(md->queue); 2625 2626 unlock_fs(md); 2627 dm_table_presuspend_undo_targets(map); 2628 /* pushback list is already flushed, so skip flush */ 2629 } 2630 2631 return r; 2632 } 2633 2634 /* 2635 * We need to be able to change a mapping table under a mounted 2636 * filesystem. For example we might want to move some data in 2637 * the background. Before the table can be swapped with 2638 * dm_bind_table, dm_suspend must be called to flush any in 2639 * flight bios and ensure that any further io gets deferred. 2640 */ 2641 /* 2642 * Suspend mechanism in request-based dm. 2643 * 2644 * 1. Flush all I/Os by lock_fs() if needed. 2645 * 2. Stop dispatching any I/O by stopping the request_queue. 2646 * 3. Wait for all in-flight I/Os to be completed or requeued. 2647 * 2648 * To abort suspend, start the request_queue. 2649 */ 2650 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2651 { 2652 struct dm_table *map = NULL; 2653 int r = 0; 2654 2655 retry: 2656 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2657 2658 if (dm_suspended_md(md)) { 2659 r = -EINVAL; 2660 goto out_unlock; 2661 } 2662 2663 if (dm_suspended_internally_md(md)) { 2664 /* already internally suspended, wait for internal resume */ 2665 mutex_unlock(&md->suspend_lock); 2666 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2667 if (r) 2668 return r; 2669 goto retry; 2670 } 2671 2672 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2673 2674 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2675 if (r) 2676 goto out_unlock; 2677 2678 dm_table_postsuspend_targets(map); 2679 2680 out_unlock: 2681 mutex_unlock(&md->suspend_lock); 2682 return r; 2683 } 2684 2685 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2686 { 2687 if (map) { 2688 int r = dm_table_resume_targets(map); 2689 if (r) 2690 return r; 2691 } 2692 2693 dm_queue_flush(md); 2694 2695 /* 2696 * Flushing deferred I/Os must be done after targets are resumed 2697 * so that mapping of targets can work correctly. 2698 * Request-based dm is queueing the deferred I/Os in its request_queue. 2699 */ 2700 if (dm_request_based(md)) 2701 dm_start_queue(md->queue); 2702 2703 unlock_fs(md); 2704 2705 return 0; 2706 } 2707 2708 int dm_resume(struct mapped_device *md) 2709 { 2710 int r; 2711 struct dm_table *map = NULL; 2712 2713 retry: 2714 r = -EINVAL; 2715 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2716 2717 if (!dm_suspended_md(md)) 2718 goto out; 2719 2720 if (dm_suspended_internally_md(md)) { 2721 /* already internally suspended, wait for internal resume */ 2722 mutex_unlock(&md->suspend_lock); 2723 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2724 if (r) 2725 return r; 2726 goto retry; 2727 } 2728 2729 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2730 if (!map || !dm_table_get_size(map)) 2731 goto out; 2732 2733 r = __dm_resume(md, map); 2734 if (r) 2735 goto out; 2736 2737 clear_bit(DMF_SUSPENDED, &md->flags); 2738 out: 2739 mutex_unlock(&md->suspend_lock); 2740 2741 return r; 2742 } 2743 2744 /* 2745 * Internal suspend/resume works like userspace-driven suspend. It waits 2746 * until all bios finish and prevents issuing new bios to the target drivers. 2747 * It may be used only from the kernel. 2748 */ 2749 2750 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2751 { 2752 struct dm_table *map = NULL; 2753 2754 lockdep_assert_held(&md->suspend_lock); 2755 2756 if (md->internal_suspend_count++) 2757 return; /* nested internal suspend */ 2758 2759 if (dm_suspended_md(md)) { 2760 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2761 return; /* nest suspend */ 2762 } 2763 2764 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2765 2766 /* 2767 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2768 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2769 * would require changing .presuspend to return an error -- avoid this 2770 * until there is a need for more elaborate variants of internal suspend. 2771 */ 2772 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2773 DMF_SUSPENDED_INTERNALLY); 2774 2775 dm_table_postsuspend_targets(map); 2776 } 2777 2778 static void __dm_internal_resume(struct mapped_device *md) 2779 { 2780 BUG_ON(!md->internal_suspend_count); 2781 2782 if (--md->internal_suspend_count) 2783 return; /* resume from nested internal suspend */ 2784 2785 if (dm_suspended_md(md)) 2786 goto done; /* resume from nested suspend */ 2787 2788 /* 2789 * NOTE: existing callers don't need to call dm_table_resume_targets 2790 * (which may fail -- so best to avoid it for now by passing NULL map) 2791 */ 2792 (void) __dm_resume(md, NULL); 2793 2794 done: 2795 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2796 smp_mb__after_atomic(); 2797 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2798 } 2799 2800 void dm_internal_suspend_noflush(struct mapped_device *md) 2801 { 2802 mutex_lock(&md->suspend_lock); 2803 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2804 mutex_unlock(&md->suspend_lock); 2805 } 2806 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2807 2808 void dm_internal_resume(struct mapped_device *md) 2809 { 2810 mutex_lock(&md->suspend_lock); 2811 __dm_internal_resume(md); 2812 mutex_unlock(&md->suspend_lock); 2813 } 2814 EXPORT_SYMBOL_GPL(dm_internal_resume); 2815 2816 /* 2817 * Fast variants of internal suspend/resume hold md->suspend_lock, 2818 * which prevents interaction with userspace-driven suspend. 2819 */ 2820 2821 void dm_internal_suspend_fast(struct mapped_device *md) 2822 { 2823 mutex_lock(&md->suspend_lock); 2824 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2825 return; 2826 2827 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2828 synchronize_srcu(&md->io_barrier); 2829 flush_workqueue(md->wq); 2830 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2831 } 2832 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2833 2834 void dm_internal_resume_fast(struct mapped_device *md) 2835 { 2836 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2837 goto done; 2838 2839 dm_queue_flush(md); 2840 2841 done: 2842 mutex_unlock(&md->suspend_lock); 2843 } 2844 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2845 2846 /*----------------------------------------------------------------- 2847 * Event notification. 2848 *---------------------------------------------------------------*/ 2849 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2850 unsigned cookie) 2851 { 2852 char udev_cookie[DM_COOKIE_LENGTH]; 2853 char *envp[] = { udev_cookie, NULL }; 2854 2855 if (!cookie) 2856 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2857 else { 2858 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2859 DM_COOKIE_ENV_VAR_NAME, cookie); 2860 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2861 action, envp); 2862 } 2863 } 2864 2865 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2866 { 2867 return atomic_add_return(1, &md->uevent_seq); 2868 } 2869 2870 uint32_t dm_get_event_nr(struct mapped_device *md) 2871 { 2872 return atomic_read(&md->event_nr); 2873 } 2874 2875 int dm_wait_event(struct mapped_device *md, int event_nr) 2876 { 2877 return wait_event_interruptible(md->eventq, 2878 (event_nr != atomic_read(&md->event_nr))); 2879 } 2880 2881 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2882 { 2883 unsigned long flags; 2884 2885 spin_lock_irqsave(&md->uevent_lock, flags); 2886 list_add(elist, &md->uevent_list); 2887 spin_unlock_irqrestore(&md->uevent_lock, flags); 2888 } 2889 2890 /* 2891 * The gendisk is only valid as long as you have a reference 2892 * count on 'md'. 2893 */ 2894 struct gendisk *dm_disk(struct mapped_device *md) 2895 { 2896 return md->disk; 2897 } 2898 EXPORT_SYMBOL_GPL(dm_disk); 2899 2900 struct kobject *dm_kobject(struct mapped_device *md) 2901 { 2902 return &md->kobj_holder.kobj; 2903 } 2904 2905 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2906 { 2907 struct mapped_device *md; 2908 2909 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2910 2911 spin_lock(&_minor_lock); 2912 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2913 md = NULL; 2914 goto out; 2915 } 2916 dm_get(md); 2917 out: 2918 spin_unlock(&_minor_lock); 2919 2920 return md; 2921 } 2922 2923 int dm_suspended_md(struct mapped_device *md) 2924 { 2925 return test_bit(DMF_SUSPENDED, &md->flags); 2926 } 2927 2928 int dm_suspended_internally_md(struct mapped_device *md) 2929 { 2930 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2931 } 2932 2933 int dm_test_deferred_remove_flag(struct mapped_device *md) 2934 { 2935 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2936 } 2937 2938 int dm_suspended(struct dm_target *ti) 2939 { 2940 return dm_suspended_md(dm_table_get_md(ti->table)); 2941 } 2942 EXPORT_SYMBOL_GPL(dm_suspended); 2943 2944 int dm_noflush_suspending(struct dm_target *ti) 2945 { 2946 return __noflush_suspending(dm_table_get_md(ti->table)); 2947 } 2948 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2949 2950 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2951 unsigned integrity, unsigned per_io_data_size, 2952 unsigned min_pool_size) 2953 { 2954 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2955 unsigned int pool_size = 0; 2956 unsigned int front_pad, io_front_pad; 2957 int ret; 2958 2959 if (!pools) 2960 return NULL; 2961 2962 switch (type) { 2963 case DM_TYPE_BIO_BASED: 2964 case DM_TYPE_DAX_BIO_BASED: 2965 case DM_TYPE_NVME_BIO_BASED: 2966 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2967 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2968 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2969 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 2970 if (ret) 2971 goto out; 2972 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 2973 goto out; 2974 break; 2975 case DM_TYPE_REQUEST_BASED: 2976 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2977 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2978 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2979 break; 2980 default: 2981 BUG(); 2982 } 2983 2984 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 2985 if (ret) 2986 goto out; 2987 2988 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 2989 goto out; 2990 2991 return pools; 2992 2993 out: 2994 dm_free_md_mempools(pools); 2995 2996 return NULL; 2997 } 2998 2999 void dm_free_md_mempools(struct dm_md_mempools *pools) 3000 { 3001 if (!pools) 3002 return; 3003 3004 bioset_exit(&pools->bs); 3005 bioset_exit(&pools->io_bs); 3006 3007 kfree(pools); 3008 } 3009 3010 struct dm_pr { 3011 u64 old_key; 3012 u64 new_key; 3013 u32 flags; 3014 bool fail_early; 3015 }; 3016 3017 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3018 void *data) 3019 { 3020 struct mapped_device *md = bdev->bd_disk->private_data; 3021 struct dm_table *table; 3022 struct dm_target *ti; 3023 int ret = -ENOTTY, srcu_idx; 3024 3025 table = dm_get_live_table(md, &srcu_idx); 3026 if (!table || !dm_table_get_size(table)) 3027 goto out; 3028 3029 /* We only support devices that have a single target */ 3030 if (dm_table_get_num_targets(table) != 1) 3031 goto out; 3032 ti = dm_table_get_target(table, 0); 3033 3034 ret = -EINVAL; 3035 if (!ti->type->iterate_devices) 3036 goto out; 3037 3038 ret = ti->type->iterate_devices(ti, fn, data); 3039 out: 3040 dm_put_live_table(md, srcu_idx); 3041 return ret; 3042 } 3043 3044 /* 3045 * For register / unregister we need to manually call out to every path. 3046 */ 3047 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3048 sector_t start, sector_t len, void *data) 3049 { 3050 struct dm_pr *pr = data; 3051 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3052 3053 if (!ops || !ops->pr_register) 3054 return -EOPNOTSUPP; 3055 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3056 } 3057 3058 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3059 u32 flags) 3060 { 3061 struct dm_pr pr = { 3062 .old_key = old_key, 3063 .new_key = new_key, 3064 .flags = flags, 3065 .fail_early = true, 3066 }; 3067 int ret; 3068 3069 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3070 if (ret && new_key) { 3071 /* unregister all paths if we failed to register any path */ 3072 pr.old_key = new_key; 3073 pr.new_key = 0; 3074 pr.flags = 0; 3075 pr.fail_early = false; 3076 dm_call_pr(bdev, __dm_pr_register, &pr); 3077 } 3078 3079 return ret; 3080 } 3081 3082 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3083 u32 flags) 3084 { 3085 struct mapped_device *md = bdev->bd_disk->private_data; 3086 const struct pr_ops *ops; 3087 int r, srcu_idx; 3088 3089 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3090 if (r < 0) 3091 goto out; 3092 3093 ops = bdev->bd_disk->fops->pr_ops; 3094 if (ops && ops->pr_reserve) 3095 r = ops->pr_reserve(bdev, key, type, flags); 3096 else 3097 r = -EOPNOTSUPP; 3098 out: 3099 dm_unprepare_ioctl(md, srcu_idx); 3100 return r; 3101 } 3102 3103 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3104 { 3105 struct mapped_device *md = bdev->bd_disk->private_data; 3106 const struct pr_ops *ops; 3107 int r, srcu_idx; 3108 3109 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3110 if (r < 0) 3111 goto out; 3112 3113 ops = bdev->bd_disk->fops->pr_ops; 3114 if (ops && ops->pr_release) 3115 r = ops->pr_release(bdev, key, type); 3116 else 3117 r = -EOPNOTSUPP; 3118 out: 3119 dm_unprepare_ioctl(md, srcu_idx); 3120 return r; 3121 } 3122 3123 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3124 enum pr_type type, bool abort) 3125 { 3126 struct mapped_device *md = bdev->bd_disk->private_data; 3127 const struct pr_ops *ops; 3128 int r, srcu_idx; 3129 3130 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3131 if (r < 0) 3132 goto out; 3133 3134 ops = bdev->bd_disk->fops->pr_ops; 3135 if (ops && ops->pr_preempt) 3136 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3137 else 3138 r = -EOPNOTSUPP; 3139 out: 3140 dm_unprepare_ioctl(md, srcu_idx); 3141 return r; 3142 } 3143 3144 static int dm_pr_clear(struct block_device *bdev, u64 key) 3145 { 3146 struct mapped_device *md = bdev->bd_disk->private_data; 3147 const struct pr_ops *ops; 3148 int r, srcu_idx; 3149 3150 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3151 if (r < 0) 3152 goto out; 3153 3154 ops = bdev->bd_disk->fops->pr_ops; 3155 if (ops && ops->pr_clear) 3156 r = ops->pr_clear(bdev, key); 3157 else 3158 r = -EOPNOTSUPP; 3159 out: 3160 dm_unprepare_ioctl(md, srcu_idx); 3161 return r; 3162 } 3163 3164 static const struct pr_ops dm_pr_ops = { 3165 .pr_register = dm_pr_register, 3166 .pr_reserve = dm_pr_reserve, 3167 .pr_release = dm_pr_release, 3168 .pr_preempt = dm_pr_preempt, 3169 .pr_clear = dm_pr_clear, 3170 }; 3171 3172 static const struct block_device_operations dm_blk_dops = { 3173 .open = dm_blk_open, 3174 .release = dm_blk_close, 3175 .ioctl = dm_blk_ioctl, 3176 .getgeo = dm_blk_getgeo, 3177 .report_zones = dm_blk_report_zones, 3178 .pr_ops = &dm_pr_ops, 3179 .owner = THIS_MODULE 3180 }; 3181 3182 static const struct dax_operations dm_dax_ops = { 3183 .direct_access = dm_dax_direct_access, 3184 .copy_from_iter = dm_dax_copy_from_iter, 3185 .copy_to_iter = dm_dax_copy_to_iter, 3186 }; 3187 3188 /* 3189 * module hooks 3190 */ 3191 module_init(dm_init); 3192 module_exit(dm_exit); 3193 3194 module_param(major, uint, 0); 3195 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3196 3197 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3198 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3199 3200 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3201 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3202 3203 MODULE_DESCRIPTION(DM_NAME " driver"); 3204 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3205 MODULE_LICENSE("GPL"); 3206