xref: /openbmc/linux/drivers/md/dm.c (revision 95777591)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set bs;
152 	struct bio_set io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
163 
164 /*
165  * Bio-based DM's mempools' reserved IOs set by the user.
166  */
167 #define RESERVED_BIO_BASED_IOS		16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169 
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 {
172 	int param = READ_ONCE(*module_param);
173 	int modified_param = 0;
174 	bool modified = true;
175 
176 	if (param < min)
177 		modified_param = min;
178 	else if (param > max)
179 		modified_param = max;
180 	else
181 		modified = false;
182 
183 	if (modified) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned __dm_get_module_param(unsigned *module_param,
192 			       unsigned def, unsigned max)
193 {
194 	unsigned param = READ_ONCE(*module_param);
195 	unsigned modified_param = 0;
196 
197 	if (!param)
198 		modified_param = def;
199 	else if (param > max)
200 		modified_param = max;
201 
202 	if (modified_param) {
203 		(void)cmpxchg(module_param, param, modified_param);
204 		param = modified_param;
205 	}
206 
207 	return param;
208 }
209 
210 unsigned dm_get_reserved_bio_based_ios(void)
211 {
212 	return __dm_get_module_param(&reserved_bio_based_ios,
213 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 }
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216 
217 static unsigned dm_get_numa_node(void)
218 {
219 	return __dm_get_module_param_int(&dm_numa_node,
220 					 DM_NUMA_NODE, num_online_nodes() - 1);
221 }
222 
223 static int __init local_init(void)
224 {
225 	int r = -ENOMEM;
226 
227 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 	if (!_rq_tio_cache)
229 		return r;
230 
231 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 				      __alignof__(struct request), 0, NULL);
233 	if (!_rq_cache)
234 		goto out_free_rq_tio_cache;
235 
236 	r = dm_uevent_init();
237 	if (r)
238 		goto out_free_rq_cache;
239 
240 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 	if (!deferred_remove_workqueue) {
242 		r = -ENOMEM;
243 		goto out_uevent_exit;
244 	}
245 
246 	_major = major;
247 	r = register_blkdev(_major, _name);
248 	if (r < 0)
249 		goto out_free_workqueue;
250 
251 	if (!_major)
252 		_major = r;
253 
254 	return 0;
255 
256 out_free_workqueue:
257 	destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 	dm_uevent_exit();
260 out_free_rq_cache:
261 	kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 	kmem_cache_destroy(_rq_tio_cache);
264 
265 	return r;
266 }
267 
268 static void local_exit(void)
269 {
270 	flush_scheduled_work();
271 	destroy_workqueue(deferred_remove_workqueue);
272 
273 	kmem_cache_destroy(_rq_cache);
274 	kmem_cache_destroy(_rq_tio_cache);
275 	unregister_blkdev(_major, _name);
276 	dm_uevent_exit();
277 
278 	_major = 0;
279 
280 	DMINFO("cleaned up");
281 }
282 
283 static int (*_inits[])(void) __initdata = {
284 	local_init,
285 	dm_target_init,
286 	dm_linear_init,
287 	dm_stripe_init,
288 	dm_io_init,
289 	dm_kcopyd_init,
290 	dm_interface_init,
291 	dm_statistics_init,
292 };
293 
294 static void (*_exits[])(void) = {
295 	local_exit,
296 	dm_target_exit,
297 	dm_linear_exit,
298 	dm_stripe_exit,
299 	dm_io_exit,
300 	dm_kcopyd_exit,
301 	dm_interface_exit,
302 	dm_statistics_exit,
303 };
304 
305 static int __init dm_init(void)
306 {
307 	const int count = ARRAY_SIZE(_inits);
308 
309 	int r, i;
310 
311 	for (i = 0; i < count; i++) {
312 		r = _inits[i]();
313 		if (r)
314 			goto bad;
315 	}
316 
317 	return 0;
318 
319       bad:
320 	while (i--)
321 		_exits[i]();
322 
323 	return r;
324 }
325 
326 static void __exit dm_exit(void)
327 {
328 	int i = ARRAY_SIZE(_exits);
329 
330 	while (i--)
331 		_exits[i]();
332 
333 	/*
334 	 * Should be empty by this point.
335 	 */
336 	idr_destroy(&_minor_idr);
337 }
338 
339 /*
340  * Block device functions
341  */
342 int dm_deleting_md(struct mapped_device *md)
343 {
344 	return test_bit(DMF_DELETING, &md->flags);
345 }
346 
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348 {
349 	struct mapped_device *md;
350 
351 	spin_lock(&_minor_lock);
352 
353 	md = bdev->bd_disk->private_data;
354 	if (!md)
355 		goto out;
356 
357 	if (test_bit(DMF_FREEING, &md->flags) ||
358 	    dm_deleting_md(md)) {
359 		md = NULL;
360 		goto out;
361 	}
362 
363 	dm_get(md);
364 	atomic_inc(&md->open_count);
365 out:
366 	spin_unlock(&_minor_lock);
367 
368 	return md ? 0 : -ENXIO;
369 }
370 
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372 {
373 	struct mapped_device *md;
374 
375 	spin_lock(&_minor_lock);
376 
377 	md = disk->private_data;
378 	if (WARN_ON(!md))
379 		goto out;
380 
381 	if (atomic_dec_and_test(&md->open_count) &&
382 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
384 
385 	dm_put(md);
386 out:
387 	spin_unlock(&_minor_lock);
388 }
389 
390 int dm_open_count(struct mapped_device *md)
391 {
392 	return atomic_read(&md->open_count);
393 }
394 
395 /*
396  * Guarantees nothing is using the device before it's deleted.
397  */
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399 {
400 	int r = 0;
401 
402 	spin_lock(&_minor_lock);
403 
404 	if (dm_open_count(md)) {
405 		r = -EBUSY;
406 		if (mark_deferred)
407 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 		r = -EEXIST;
410 	else
411 		set_bit(DMF_DELETING, &md->flags);
412 
413 	spin_unlock(&_minor_lock);
414 
415 	return r;
416 }
417 
418 int dm_cancel_deferred_remove(struct mapped_device *md)
419 {
420 	int r = 0;
421 
422 	spin_lock(&_minor_lock);
423 
424 	if (test_bit(DMF_DELETING, &md->flags))
425 		r = -EBUSY;
426 	else
427 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428 
429 	spin_unlock(&_minor_lock);
430 
431 	return r;
432 }
433 
434 static void do_deferred_remove(struct work_struct *w)
435 {
436 	dm_deferred_remove();
437 }
438 
439 sector_t dm_get_size(struct mapped_device *md)
440 {
441 	return get_capacity(md->disk);
442 }
443 
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
445 {
446 	return md->queue;
447 }
448 
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
450 {
451 	return &md->stats;
452 }
453 
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455 {
456 	struct mapped_device *md = bdev->bd_disk->private_data;
457 
458 	return dm_get_geometry(md, geo);
459 }
460 
461 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
462 			       struct blk_zone *zones, unsigned int *nr_zones,
463 			       gfp_t gfp_mask)
464 {
465 #ifdef CONFIG_BLK_DEV_ZONED
466 	struct mapped_device *md = disk->private_data;
467 	struct dm_target *tgt;
468 	struct dm_table *map;
469 	int srcu_idx, ret;
470 
471 	if (dm_suspended_md(md))
472 		return -EAGAIN;
473 
474 	map = dm_get_live_table(md, &srcu_idx);
475 	if (!map)
476 		return -EIO;
477 
478 	tgt = dm_table_find_target(map, sector);
479 	if (!dm_target_is_valid(tgt)) {
480 		ret = -EIO;
481 		goto out;
482 	}
483 
484 	/*
485 	 * If we are executing this, we already know that the block device
486 	 * is a zoned device and so each target should have support for that
487 	 * type of drive. A missing report_zones method means that the target
488 	 * driver has a problem.
489 	 */
490 	if (WARN_ON(!tgt->type->report_zones)) {
491 		ret = -EIO;
492 		goto out;
493 	}
494 
495 	/*
496 	 * blkdev_report_zones() will loop and call this again to cover all the
497 	 * zones of the target, eventually moving on to the next target.
498 	 * So there is no need to loop here trying to fill the entire array
499 	 * of zones.
500 	 */
501 	ret = tgt->type->report_zones(tgt, sector, zones,
502 				      nr_zones, gfp_mask);
503 
504 out:
505 	dm_put_live_table(md, srcu_idx);
506 	return ret;
507 #else
508 	return -ENOTSUPP;
509 #endif
510 }
511 
512 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
513 			    struct block_device **bdev)
514 	__acquires(md->io_barrier)
515 {
516 	struct dm_target *tgt;
517 	struct dm_table *map;
518 	int r;
519 
520 retry:
521 	r = -ENOTTY;
522 	map = dm_get_live_table(md, srcu_idx);
523 	if (!map || !dm_table_get_size(map))
524 		return r;
525 
526 	/* We only support devices that have a single target */
527 	if (dm_table_get_num_targets(map) != 1)
528 		return r;
529 
530 	tgt = dm_table_get_target(map, 0);
531 	if (!tgt->type->prepare_ioctl)
532 		return r;
533 
534 	if (dm_suspended_md(md))
535 		return -EAGAIN;
536 
537 	r = tgt->type->prepare_ioctl(tgt, bdev);
538 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
539 		dm_put_live_table(md, *srcu_idx);
540 		msleep(10);
541 		goto retry;
542 	}
543 
544 	return r;
545 }
546 
547 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
548 	__releases(md->io_barrier)
549 {
550 	dm_put_live_table(md, srcu_idx);
551 }
552 
553 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
554 			unsigned int cmd, unsigned long arg)
555 {
556 	struct mapped_device *md = bdev->bd_disk->private_data;
557 	int r, srcu_idx;
558 
559 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
560 	if (r < 0)
561 		goto out;
562 
563 	if (r > 0) {
564 		/*
565 		 * Target determined this ioctl is being issued against a
566 		 * subset of the parent bdev; require extra privileges.
567 		 */
568 		if (!capable(CAP_SYS_RAWIO)) {
569 			DMWARN_LIMIT(
570 	"%s: sending ioctl %x to DM device without required privilege.",
571 				current->comm, cmd);
572 			r = -ENOIOCTLCMD;
573 			goto out;
574 		}
575 	}
576 
577 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
578 out:
579 	dm_unprepare_ioctl(md, srcu_idx);
580 	return r;
581 }
582 
583 static void start_io_acct(struct dm_io *io);
584 
585 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
586 {
587 	struct dm_io *io;
588 	struct dm_target_io *tio;
589 	struct bio *clone;
590 
591 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
592 	if (!clone)
593 		return NULL;
594 
595 	tio = container_of(clone, struct dm_target_io, clone);
596 	tio->inside_dm_io = true;
597 	tio->io = NULL;
598 
599 	io = container_of(tio, struct dm_io, tio);
600 	io->magic = DM_IO_MAGIC;
601 	io->status = 0;
602 	atomic_set(&io->io_count, 1);
603 	io->orig_bio = bio;
604 	io->md = md;
605 	spin_lock_init(&io->endio_lock);
606 
607 	start_io_acct(io);
608 
609 	return io;
610 }
611 
612 static void free_io(struct mapped_device *md, struct dm_io *io)
613 {
614 	bio_put(&io->tio.clone);
615 }
616 
617 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
618 				      unsigned target_bio_nr, gfp_t gfp_mask)
619 {
620 	struct dm_target_io *tio;
621 
622 	if (!ci->io->tio.io) {
623 		/* the dm_target_io embedded in ci->io is available */
624 		tio = &ci->io->tio;
625 	} else {
626 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
627 		if (!clone)
628 			return NULL;
629 
630 		tio = container_of(clone, struct dm_target_io, clone);
631 		tio->inside_dm_io = false;
632 	}
633 
634 	tio->magic = DM_TIO_MAGIC;
635 	tio->io = ci->io;
636 	tio->ti = ti;
637 	tio->target_bio_nr = target_bio_nr;
638 
639 	return tio;
640 }
641 
642 static void free_tio(struct dm_target_io *tio)
643 {
644 	if (tio->inside_dm_io)
645 		return;
646 	bio_put(&tio->clone);
647 }
648 
649 static bool md_in_flight_bios(struct mapped_device *md)
650 {
651 	int cpu;
652 	struct hd_struct *part = &dm_disk(md)->part0;
653 	long sum = 0;
654 
655 	for_each_possible_cpu(cpu) {
656 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
657 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
658 	}
659 
660 	return sum != 0;
661 }
662 
663 static bool md_in_flight(struct mapped_device *md)
664 {
665 	if (queue_is_mq(md->queue))
666 		return blk_mq_queue_inflight(md->queue);
667 	else
668 		return md_in_flight_bios(md);
669 }
670 
671 static void start_io_acct(struct dm_io *io)
672 {
673 	struct mapped_device *md = io->md;
674 	struct bio *bio = io->orig_bio;
675 
676 	io->start_time = jiffies;
677 
678 	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
679 			      &dm_disk(md)->part0);
680 
681 	if (unlikely(dm_stats_used(&md->stats)))
682 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
683 				    bio->bi_iter.bi_sector, bio_sectors(bio),
684 				    false, 0, &io->stats_aux);
685 }
686 
687 static void end_io_acct(struct dm_io *io)
688 {
689 	struct mapped_device *md = io->md;
690 	struct bio *bio = io->orig_bio;
691 	unsigned long duration = jiffies - io->start_time;
692 
693 	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
694 			    io->start_time);
695 
696 	if (unlikely(dm_stats_used(&md->stats)))
697 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
698 				    bio->bi_iter.bi_sector, bio_sectors(bio),
699 				    true, duration, &io->stats_aux);
700 
701 	/* nudge anyone waiting on suspend queue */
702 	if (unlikely(wq_has_sleeper(&md->wait)))
703 		wake_up(&md->wait);
704 }
705 
706 /*
707  * Add the bio to the list of deferred io.
708  */
709 static void queue_io(struct mapped_device *md, struct bio *bio)
710 {
711 	unsigned long flags;
712 
713 	spin_lock_irqsave(&md->deferred_lock, flags);
714 	bio_list_add(&md->deferred, bio);
715 	spin_unlock_irqrestore(&md->deferred_lock, flags);
716 	queue_work(md->wq, &md->work);
717 }
718 
719 /*
720  * Everyone (including functions in this file), should use this
721  * function to access the md->map field, and make sure they call
722  * dm_put_live_table() when finished.
723  */
724 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
725 {
726 	*srcu_idx = srcu_read_lock(&md->io_barrier);
727 
728 	return srcu_dereference(md->map, &md->io_barrier);
729 }
730 
731 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
732 {
733 	srcu_read_unlock(&md->io_barrier, srcu_idx);
734 }
735 
736 void dm_sync_table(struct mapped_device *md)
737 {
738 	synchronize_srcu(&md->io_barrier);
739 	synchronize_rcu_expedited();
740 }
741 
742 /*
743  * A fast alternative to dm_get_live_table/dm_put_live_table.
744  * The caller must not block between these two functions.
745  */
746 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
747 {
748 	rcu_read_lock();
749 	return rcu_dereference(md->map);
750 }
751 
752 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
753 {
754 	rcu_read_unlock();
755 }
756 
757 static char *_dm_claim_ptr = "I belong to device-mapper";
758 
759 /*
760  * Open a table device so we can use it as a map destination.
761  */
762 static int open_table_device(struct table_device *td, dev_t dev,
763 			     struct mapped_device *md)
764 {
765 	struct block_device *bdev;
766 
767 	int r;
768 
769 	BUG_ON(td->dm_dev.bdev);
770 
771 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
772 	if (IS_ERR(bdev))
773 		return PTR_ERR(bdev);
774 
775 	r = bd_link_disk_holder(bdev, dm_disk(md));
776 	if (r) {
777 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
778 		return r;
779 	}
780 
781 	td->dm_dev.bdev = bdev;
782 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
783 	return 0;
784 }
785 
786 /*
787  * Close a table device that we've been using.
788  */
789 static void close_table_device(struct table_device *td, struct mapped_device *md)
790 {
791 	if (!td->dm_dev.bdev)
792 		return;
793 
794 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
795 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
796 	put_dax(td->dm_dev.dax_dev);
797 	td->dm_dev.bdev = NULL;
798 	td->dm_dev.dax_dev = NULL;
799 }
800 
801 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
802 					      fmode_t mode) {
803 	struct table_device *td;
804 
805 	list_for_each_entry(td, l, list)
806 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
807 			return td;
808 
809 	return NULL;
810 }
811 
812 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
813 			struct dm_dev **result) {
814 	int r;
815 	struct table_device *td;
816 
817 	mutex_lock(&md->table_devices_lock);
818 	td = find_table_device(&md->table_devices, dev, mode);
819 	if (!td) {
820 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
821 		if (!td) {
822 			mutex_unlock(&md->table_devices_lock);
823 			return -ENOMEM;
824 		}
825 
826 		td->dm_dev.mode = mode;
827 		td->dm_dev.bdev = NULL;
828 
829 		if ((r = open_table_device(td, dev, md))) {
830 			mutex_unlock(&md->table_devices_lock);
831 			kfree(td);
832 			return r;
833 		}
834 
835 		format_dev_t(td->dm_dev.name, dev);
836 
837 		refcount_set(&td->count, 1);
838 		list_add(&td->list, &md->table_devices);
839 	} else {
840 		refcount_inc(&td->count);
841 	}
842 	mutex_unlock(&md->table_devices_lock);
843 
844 	*result = &td->dm_dev;
845 	return 0;
846 }
847 EXPORT_SYMBOL_GPL(dm_get_table_device);
848 
849 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
850 {
851 	struct table_device *td = container_of(d, struct table_device, dm_dev);
852 
853 	mutex_lock(&md->table_devices_lock);
854 	if (refcount_dec_and_test(&td->count)) {
855 		close_table_device(td, md);
856 		list_del(&td->list);
857 		kfree(td);
858 	}
859 	mutex_unlock(&md->table_devices_lock);
860 }
861 EXPORT_SYMBOL(dm_put_table_device);
862 
863 static void free_table_devices(struct list_head *devices)
864 {
865 	struct list_head *tmp, *next;
866 
867 	list_for_each_safe(tmp, next, devices) {
868 		struct table_device *td = list_entry(tmp, struct table_device, list);
869 
870 		DMWARN("dm_destroy: %s still exists with %d references",
871 		       td->dm_dev.name, refcount_read(&td->count));
872 		kfree(td);
873 	}
874 }
875 
876 /*
877  * Get the geometry associated with a dm device
878  */
879 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
880 {
881 	*geo = md->geometry;
882 
883 	return 0;
884 }
885 
886 /*
887  * Set the geometry of a device.
888  */
889 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
890 {
891 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
892 
893 	if (geo->start > sz) {
894 		DMWARN("Start sector is beyond the geometry limits.");
895 		return -EINVAL;
896 	}
897 
898 	md->geometry = *geo;
899 
900 	return 0;
901 }
902 
903 static int __noflush_suspending(struct mapped_device *md)
904 {
905 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
906 }
907 
908 /*
909  * Decrements the number of outstanding ios that a bio has been
910  * cloned into, completing the original io if necc.
911  */
912 static void dec_pending(struct dm_io *io, blk_status_t error)
913 {
914 	unsigned long flags;
915 	blk_status_t io_error;
916 	struct bio *bio;
917 	struct mapped_device *md = io->md;
918 
919 	/* Push-back supersedes any I/O errors */
920 	if (unlikely(error)) {
921 		spin_lock_irqsave(&io->endio_lock, flags);
922 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
923 			io->status = error;
924 		spin_unlock_irqrestore(&io->endio_lock, flags);
925 	}
926 
927 	if (atomic_dec_and_test(&io->io_count)) {
928 		if (io->status == BLK_STS_DM_REQUEUE) {
929 			/*
930 			 * Target requested pushing back the I/O.
931 			 */
932 			spin_lock_irqsave(&md->deferred_lock, flags);
933 			if (__noflush_suspending(md))
934 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
935 				bio_list_add_head(&md->deferred, io->orig_bio);
936 			else
937 				/* noflush suspend was interrupted. */
938 				io->status = BLK_STS_IOERR;
939 			spin_unlock_irqrestore(&md->deferred_lock, flags);
940 		}
941 
942 		io_error = io->status;
943 		bio = io->orig_bio;
944 		end_io_acct(io);
945 		free_io(md, io);
946 
947 		if (io_error == BLK_STS_DM_REQUEUE)
948 			return;
949 
950 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
951 			/*
952 			 * Preflush done for flush with data, reissue
953 			 * without REQ_PREFLUSH.
954 			 */
955 			bio->bi_opf &= ~REQ_PREFLUSH;
956 			queue_io(md, bio);
957 		} else {
958 			/* done with normal IO or empty flush */
959 			if (io_error)
960 				bio->bi_status = io_error;
961 			bio_endio(bio);
962 		}
963 	}
964 }
965 
966 void disable_write_same(struct mapped_device *md)
967 {
968 	struct queue_limits *limits = dm_get_queue_limits(md);
969 
970 	/* device doesn't really support WRITE SAME, disable it */
971 	limits->max_write_same_sectors = 0;
972 }
973 
974 void disable_write_zeroes(struct mapped_device *md)
975 {
976 	struct queue_limits *limits = dm_get_queue_limits(md);
977 
978 	/* device doesn't really support WRITE ZEROES, disable it */
979 	limits->max_write_zeroes_sectors = 0;
980 }
981 
982 static void clone_endio(struct bio *bio)
983 {
984 	blk_status_t error = bio->bi_status;
985 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
986 	struct dm_io *io = tio->io;
987 	struct mapped_device *md = tio->io->md;
988 	dm_endio_fn endio = tio->ti->type->end_io;
989 
990 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
991 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
992 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
993 			disable_write_same(md);
994 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
995 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
996 			disable_write_zeroes(md);
997 	}
998 
999 	if (endio) {
1000 		int r = endio(tio->ti, bio, &error);
1001 		switch (r) {
1002 		case DM_ENDIO_REQUEUE:
1003 			error = BLK_STS_DM_REQUEUE;
1004 			/*FALLTHRU*/
1005 		case DM_ENDIO_DONE:
1006 			break;
1007 		case DM_ENDIO_INCOMPLETE:
1008 			/* The target will handle the io */
1009 			return;
1010 		default:
1011 			DMWARN("unimplemented target endio return value: %d", r);
1012 			BUG();
1013 		}
1014 	}
1015 
1016 	free_tio(tio);
1017 	dec_pending(io, error);
1018 }
1019 
1020 /*
1021  * Return maximum size of I/O possible at the supplied sector up to the current
1022  * target boundary.
1023  */
1024 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1025 {
1026 	sector_t target_offset = dm_target_offset(ti, sector);
1027 
1028 	return ti->len - target_offset;
1029 }
1030 
1031 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1032 {
1033 	sector_t len = max_io_len_target_boundary(sector, ti);
1034 	sector_t offset, max_len;
1035 
1036 	/*
1037 	 * Does the target need to split even further?
1038 	 */
1039 	if (ti->max_io_len) {
1040 		offset = dm_target_offset(ti, sector);
1041 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1042 			max_len = sector_div(offset, ti->max_io_len);
1043 		else
1044 			max_len = offset & (ti->max_io_len - 1);
1045 		max_len = ti->max_io_len - max_len;
1046 
1047 		if (len > max_len)
1048 			len = max_len;
1049 	}
1050 
1051 	return len;
1052 }
1053 
1054 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1055 {
1056 	if (len > UINT_MAX) {
1057 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1058 		      (unsigned long long)len, UINT_MAX);
1059 		ti->error = "Maximum size of target IO is too large";
1060 		return -EINVAL;
1061 	}
1062 
1063 	/*
1064 	 * BIO based queue uses its own splitting. When multipage bvecs
1065 	 * is switched on, size of the incoming bio may be too big to
1066 	 * be handled in some targets, such as crypt.
1067 	 *
1068 	 * When these targets are ready for the big bio, we can remove
1069 	 * the limit.
1070 	 */
1071 	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1072 
1073 	return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1076 
1077 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1078 						sector_t sector, int *srcu_idx)
1079 	__acquires(md->io_barrier)
1080 {
1081 	struct dm_table *map;
1082 	struct dm_target *ti;
1083 
1084 	map = dm_get_live_table(md, srcu_idx);
1085 	if (!map)
1086 		return NULL;
1087 
1088 	ti = dm_table_find_target(map, sector);
1089 	if (!dm_target_is_valid(ti))
1090 		return NULL;
1091 
1092 	return ti;
1093 }
1094 
1095 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1096 				 long nr_pages, void **kaddr, pfn_t *pfn)
1097 {
1098 	struct mapped_device *md = dax_get_private(dax_dev);
1099 	sector_t sector = pgoff * PAGE_SECTORS;
1100 	struct dm_target *ti;
1101 	long len, ret = -EIO;
1102 	int srcu_idx;
1103 
1104 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1105 
1106 	if (!ti)
1107 		goto out;
1108 	if (!ti->type->direct_access)
1109 		goto out;
1110 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1111 	if (len < 1)
1112 		goto out;
1113 	nr_pages = min(len, nr_pages);
1114 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1115 
1116  out:
1117 	dm_put_live_table(md, srcu_idx);
1118 
1119 	return ret;
1120 }
1121 
1122 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1123 				    void *addr, size_t bytes, struct iov_iter *i)
1124 {
1125 	struct mapped_device *md = dax_get_private(dax_dev);
1126 	sector_t sector = pgoff * PAGE_SECTORS;
1127 	struct dm_target *ti;
1128 	long ret = 0;
1129 	int srcu_idx;
1130 
1131 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1132 
1133 	if (!ti)
1134 		goto out;
1135 	if (!ti->type->dax_copy_from_iter) {
1136 		ret = copy_from_iter(addr, bytes, i);
1137 		goto out;
1138 	}
1139 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1140  out:
1141 	dm_put_live_table(md, srcu_idx);
1142 
1143 	return ret;
1144 }
1145 
1146 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1147 		void *addr, size_t bytes, struct iov_iter *i)
1148 {
1149 	struct mapped_device *md = dax_get_private(dax_dev);
1150 	sector_t sector = pgoff * PAGE_SECTORS;
1151 	struct dm_target *ti;
1152 	long ret = 0;
1153 	int srcu_idx;
1154 
1155 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1156 
1157 	if (!ti)
1158 		goto out;
1159 	if (!ti->type->dax_copy_to_iter) {
1160 		ret = copy_to_iter(addr, bytes, i);
1161 		goto out;
1162 	}
1163 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1164  out:
1165 	dm_put_live_table(md, srcu_idx);
1166 
1167 	return ret;
1168 }
1169 
1170 /*
1171  * A target may call dm_accept_partial_bio only from the map routine.  It is
1172  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1173  *
1174  * dm_accept_partial_bio informs the dm that the target only wants to process
1175  * additional n_sectors sectors of the bio and the rest of the data should be
1176  * sent in a next bio.
1177  *
1178  * A diagram that explains the arithmetics:
1179  * +--------------------+---------------+-------+
1180  * |         1          |       2       |   3   |
1181  * +--------------------+---------------+-------+
1182  *
1183  * <-------------- *tio->len_ptr --------------->
1184  *                      <------- bi_size ------->
1185  *                      <-- n_sectors -->
1186  *
1187  * Region 1 was already iterated over with bio_advance or similar function.
1188  *	(it may be empty if the target doesn't use bio_advance)
1189  * Region 2 is the remaining bio size that the target wants to process.
1190  *	(it may be empty if region 1 is non-empty, although there is no reason
1191  *	 to make it empty)
1192  * The target requires that region 3 is to be sent in the next bio.
1193  *
1194  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1195  * the partially processed part (the sum of regions 1+2) must be the same for all
1196  * copies of the bio.
1197  */
1198 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1199 {
1200 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1201 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1202 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1203 	BUG_ON(bi_size > *tio->len_ptr);
1204 	BUG_ON(n_sectors > bi_size);
1205 	*tio->len_ptr -= bi_size - n_sectors;
1206 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1207 }
1208 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1209 
1210 /*
1211  * The zone descriptors obtained with a zone report indicate
1212  * zone positions within the underlying device of the target. The zone
1213  * descriptors must be remapped to match their position within the dm device.
1214  * The caller target should obtain the zones information using
1215  * blkdev_report_zones() to ensure that remapping for partition offset is
1216  * already handled.
1217  */
1218 void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1219 			  struct blk_zone *zones, unsigned int *nr_zones)
1220 {
1221 #ifdef CONFIG_BLK_DEV_ZONED
1222 	struct blk_zone *zone;
1223 	unsigned int nrz = *nr_zones;
1224 	int i;
1225 
1226 	/*
1227 	 * Remap the start sector and write pointer position of the zones in
1228 	 * the array. Since we may have obtained from the target underlying
1229 	 * device more zones that the target size, also adjust the number
1230 	 * of zones.
1231 	 */
1232 	for (i = 0; i < nrz; i++) {
1233 		zone = zones + i;
1234 		if (zone->start >= start + ti->len) {
1235 			memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1236 			break;
1237 		}
1238 
1239 		zone->start = zone->start + ti->begin - start;
1240 		if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1241 			continue;
1242 
1243 		if (zone->cond == BLK_ZONE_COND_FULL)
1244 			zone->wp = zone->start + zone->len;
1245 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
1246 			zone->wp = zone->start;
1247 		else
1248 			zone->wp = zone->wp + ti->begin - start;
1249 	}
1250 
1251 	*nr_zones = i;
1252 #else /* !CONFIG_BLK_DEV_ZONED */
1253 	*nr_zones = 0;
1254 #endif
1255 }
1256 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1257 
1258 static blk_qc_t __map_bio(struct dm_target_io *tio)
1259 {
1260 	int r;
1261 	sector_t sector;
1262 	struct bio *clone = &tio->clone;
1263 	struct dm_io *io = tio->io;
1264 	struct mapped_device *md = io->md;
1265 	struct dm_target *ti = tio->ti;
1266 	blk_qc_t ret = BLK_QC_T_NONE;
1267 
1268 	clone->bi_end_io = clone_endio;
1269 
1270 	/*
1271 	 * Map the clone.  If r == 0 we don't need to do
1272 	 * anything, the target has assumed ownership of
1273 	 * this io.
1274 	 */
1275 	atomic_inc(&io->io_count);
1276 	sector = clone->bi_iter.bi_sector;
1277 
1278 	r = ti->type->map(ti, clone);
1279 	switch (r) {
1280 	case DM_MAPIO_SUBMITTED:
1281 		break;
1282 	case DM_MAPIO_REMAPPED:
1283 		/* the bio has been remapped so dispatch it */
1284 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1285 				      bio_dev(io->orig_bio), sector);
1286 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1287 			ret = direct_make_request(clone);
1288 		else
1289 			ret = generic_make_request(clone);
1290 		break;
1291 	case DM_MAPIO_KILL:
1292 		free_tio(tio);
1293 		dec_pending(io, BLK_STS_IOERR);
1294 		break;
1295 	case DM_MAPIO_REQUEUE:
1296 		free_tio(tio);
1297 		dec_pending(io, BLK_STS_DM_REQUEUE);
1298 		break;
1299 	default:
1300 		DMWARN("unimplemented target map return value: %d", r);
1301 		BUG();
1302 	}
1303 
1304 	return ret;
1305 }
1306 
1307 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1308 {
1309 	bio->bi_iter.bi_sector = sector;
1310 	bio->bi_iter.bi_size = to_bytes(len);
1311 }
1312 
1313 /*
1314  * Creates a bio that consists of range of complete bvecs.
1315  */
1316 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1317 		     sector_t sector, unsigned len)
1318 {
1319 	struct bio *clone = &tio->clone;
1320 
1321 	__bio_clone_fast(clone, bio);
1322 
1323 	if (bio_integrity(bio)) {
1324 		int r;
1325 
1326 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1327 			     !dm_target_passes_integrity(tio->ti->type))) {
1328 			DMWARN("%s: the target %s doesn't support integrity data.",
1329 				dm_device_name(tio->io->md),
1330 				tio->ti->type->name);
1331 			return -EIO;
1332 		}
1333 
1334 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1335 		if (r < 0)
1336 			return r;
1337 	}
1338 
1339 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1340 	clone->bi_iter.bi_size = to_bytes(len);
1341 
1342 	if (bio_integrity(bio))
1343 		bio_integrity_trim(clone);
1344 
1345 	return 0;
1346 }
1347 
1348 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1349 				struct dm_target *ti, unsigned num_bios)
1350 {
1351 	struct dm_target_io *tio;
1352 	int try;
1353 
1354 	if (!num_bios)
1355 		return;
1356 
1357 	if (num_bios == 1) {
1358 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1359 		bio_list_add(blist, &tio->clone);
1360 		return;
1361 	}
1362 
1363 	for (try = 0; try < 2; try++) {
1364 		int bio_nr;
1365 		struct bio *bio;
1366 
1367 		if (try)
1368 			mutex_lock(&ci->io->md->table_devices_lock);
1369 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1370 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1371 			if (!tio)
1372 				break;
1373 
1374 			bio_list_add(blist, &tio->clone);
1375 		}
1376 		if (try)
1377 			mutex_unlock(&ci->io->md->table_devices_lock);
1378 		if (bio_nr == num_bios)
1379 			return;
1380 
1381 		while ((bio = bio_list_pop(blist))) {
1382 			tio = container_of(bio, struct dm_target_io, clone);
1383 			free_tio(tio);
1384 		}
1385 	}
1386 }
1387 
1388 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1389 					   struct dm_target_io *tio, unsigned *len)
1390 {
1391 	struct bio *clone = &tio->clone;
1392 
1393 	tio->len_ptr = len;
1394 
1395 	__bio_clone_fast(clone, ci->bio);
1396 	if (len)
1397 		bio_setup_sector(clone, ci->sector, *len);
1398 
1399 	return __map_bio(tio);
1400 }
1401 
1402 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1403 				  unsigned num_bios, unsigned *len)
1404 {
1405 	struct bio_list blist = BIO_EMPTY_LIST;
1406 	struct bio *bio;
1407 	struct dm_target_io *tio;
1408 
1409 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1410 
1411 	while ((bio = bio_list_pop(&blist))) {
1412 		tio = container_of(bio, struct dm_target_io, clone);
1413 		(void) __clone_and_map_simple_bio(ci, tio, len);
1414 	}
1415 }
1416 
1417 static int __send_empty_flush(struct clone_info *ci)
1418 {
1419 	unsigned target_nr = 0;
1420 	struct dm_target *ti;
1421 
1422 	/*
1423 	 * Empty flush uses a statically initialized bio, as the base for
1424 	 * cloning.  However, blkg association requires that a bdev is
1425 	 * associated with a gendisk, which doesn't happen until the bdev is
1426 	 * opened.  So, blkg association is done at issue time of the flush
1427 	 * rather than when the device is created in alloc_dev().
1428 	 */
1429 	bio_set_dev(ci->bio, ci->io->md->bdev);
1430 
1431 	BUG_ON(bio_has_data(ci->bio));
1432 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1433 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1434 
1435 	bio_disassociate_blkg(ci->bio);
1436 
1437 	return 0;
1438 }
1439 
1440 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1441 				    sector_t sector, unsigned *len)
1442 {
1443 	struct bio *bio = ci->bio;
1444 	struct dm_target_io *tio;
1445 	int r;
1446 
1447 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1448 	tio->len_ptr = len;
1449 	r = clone_bio(tio, bio, sector, *len);
1450 	if (r < 0) {
1451 		free_tio(tio);
1452 		return r;
1453 	}
1454 	(void) __map_bio(tio);
1455 
1456 	return 0;
1457 }
1458 
1459 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1460 
1461 static unsigned get_num_discard_bios(struct dm_target *ti)
1462 {
1463 	return ti->num_discard_bios;
1464 }
1465 
1466 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1467 {
1468 	return ti->num_secure_erase_bios;
1469 }
1470 
1471 static unsigned get_num_write_same_bios(struct dm_target *ti)
1472 {
1473 	return ti->num_write_same_bios;
1474 }
1475 
1476 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1477 {
1478 	return ti->num_write_zeroes_bios;
1479 }
1480 
1481 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1482 
1483 static bool is_split_required_for_discard(struct dm_target *ti)
1484 {
1485 	return ti->split_discard_bios;
1486 }
1487 
1488 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1489 				       unsigned num_bios, bool is_split_required)
1490 {
1491 	unsigned len;
1492 
1493 	/*
1494 	 * Even though the device advertised support for this type of
1495 	 * request, that does not mean every target supports it, and
1496 	 * reconfiguration might also have changed that since the
1497 	 * check was performed.
1498 	 */
1499 	if (!num_bios)
1500 		return -EOPNOTSUPP;
1501 
1502 	if (!is_split_required)
1503 		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1504 	else
1505 		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1506 
1507 	__send_duplicate_bios(ci, ti, num_bios, &len);
1508 
1509 	ci->sector += len;
1510 	ci->sector_count -= len;
1511 
1512 	return 0;
1513 }
1514 
1515 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1516 {
1517 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti),
1518 					   is_split_required_for_discard(ti));
1519 }
1520 
1521 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1522 {
1523 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti), false);
1524 }
1525 
1526 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1527 {
1528 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti), false);
1529 }
1530 
1531 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1532 {
1533 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti), false);
1534 }
1535 
1536 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1537 				  int *result)
1538 {
1539 	struct bio *bio = ci->bio;
1540 
1541 	if (bio_op(bio) == REQ_OP_DISCARD)
1542 		*result = __send_discard(ci, ti);
1543 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1544 		*result = __send_secure_erase(ci, ti);
1545 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1546 		*result = __send_write_same(ci, ti);
1547 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1548 		*result = __send_write_zeroes(ci, ti);
1549 	else
1550 		return false;
1551 
1552 	return true;
1553 }
1554 
1555 /*
1556  * Select the correct strategy for processing a non-flush bio.
1557  */
1558 static int __split_and_process_non_flush(struct clone_info *ci)
1559 {
1560 	struct dm_target *ti;
1561 	unsigned len;
1562 	int r;
1563 
1564 	ti = dm_table_find_target(ci->map, ci->sector);
1565 	if (!dm_target_is_valid(ti))
1566 		return -EIO;
1567 
1568 	if (unlikely(__process_abnormal_io(ci, ti, &r)))
1569 		return r;
1570 
1571 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1572 
1573 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1574 	if (r < 0)
1575 		return r;
1576 
1577 	ci->sector += len;
1578 	ci->sector_count -= len;
1579 
1580 	return 0;
1581 }
1582 
1583 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1584 			    struct dm_table *map, struct bio *bio)
1585 {
1586 	ci->map = map;
1587 	ci->io = alloc_io(md, bio);
1588 	ci->sector = bio->bi_iter.bi_sector;
1589 }
1590 
1591 #define __dm_part_stat_sub(part, field, subnd)	\
1592 	(part_stat_get(part, field) -= (subnd))
1593 
1594 /*
1595  * Entry point to split a bio into clones and submit them to the targets.
1596  */
1597 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1598 					struct dm_table *map, struct bio *bio)
1599 {
1600 	struct clone_info ci;
1601 	blk_qc_t ret = BLK_QC_T_NONE;
1602 	int error = 0;
1603 
1604 	if (unlikely(!map)) {
1605 		bio_io_error(bio);
1606 		return ret;
1607 	}
1608 
1609 	blk_queue_split(md->queue, &bio);
1610 
1611 	init_clone_info(&ci, md, map, bio);
1612 
1613 	if (bio->bi_opf & REQ_PREFLUSH) {
1614 		struct bio flush_bio;
1615 
1616 		/*
1617 		 * Use an on-stack bio for this, it's safe since we don't
1618 		 * need to reference it after submit. It's just used as
1619 		 * the basis for the clone(s).
1620 		 */
1621 		bio_init(&flush_bio, NULL, 0);
1622 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1623 		ci.bio = &flush_bio;
1624 		ci.sector_count = 0;
1625 		error = __send_empty_flush(&ci);
1626 		/* dec_pending submits any data associated with flush */
1627 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1628 		ci.bio = bio;
1629 		ci.sector_count = 0;
1630 		error = __split_and_process_non_flush(&ci);
1631 	} else {
1632 		ci.bio = bio;
1633 		ci.sector_count = bio_sectors(bio);
1634 		while (ci.sector_count && !error) {
1635 			error = __split_and_process_non_flush(&ci);
1636 			if (current->bio_list && ci.sector_count && !error) {
1637 				/*
1638 				 * Remainder must be passed to generic_make_request()
1639 				 * so that it gets handled *after* bios already submitted
1640 				 * have been completely processed.
1641 				 * We take a clone of the original to store in
1642 				 * ci.io->orig_bio to be used by end_io_acct() and
1643 				 * for dec_pending to use for completion handling.
1644 				 */
1645 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1646 							  GFP_NOIO, &md->queue->bio_split);
1647 				ci.io->orig_bio = b;
1648 
1649 				/*
1650 				 * Adjust IO stats for each split, otherwise upon queue
1651 				 * reentry there will be redundant IO accounting.
1652 				 * NOTE: this is a stop-gap fix, a proper fix involves
1653 				 * significant refactoring of DM core's bio splitting
1654 				 * (by eliminating DM's splitting and just using bio_split)
1655 				 */
1656 				part_stat_lock();
1657 				__dm_part_stat_sub(&dm_disk(md)->part0,
1658 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1659 				part_stat_unlock();
1660 
1661 				bio_chain(b, bio);
1662 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1663 				ret = generic_make_request(bio);
1664 				break;
1665 			}
1666 		}
1667 	}
1668 
1669 	/* drop the extra reference count */
1670 	dec_pending(ci.io, errno_to_blk_status(error));
1671 	return ret;
1672 }
1673 
1674 /*
1675  * Optimized variant of __split_and_process_bio that leverages the
1676  * fact that targets that use it do _not_ have a need to split bios.
1677  */
1678 static blk_qc_t __process_bio(struct mapped_device *md,
1679 			      struct dm_table *map, struct bio *bio)
1680 {
1681 	struct clone_info ci;
1682 	blk_qc_t ret = BLK_QC_T_NONE;
1683 	int error = 0;
1684 
1685 	if (unlikely(!map)) {
1686 		bio_io_error(bio);
1687 		return ret;
1688 	}
1689 
1690 	init_clone_info(&ci, md, map, bio);
1691 
1692 	if (bio->bi_opf & REQ_PREFLUSH) {
1693 		struct bio flush_bio;
1694 
1695 		/*
1696 		 * Use an on-stack bio for this, it's safe since we don't
1697 		 * need to reference it after submit. It's just used as
1698 		 * the basis for the clone(s).
1699 		 */
1700 		bio_init(&flush_bio, NULL, 0);
1701 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1702 		ci.bio = &flush_bio;
1703 		ci.sector_count = 0;
1704 		error = __send_empty_flush(&ci);
1705 		/* dec_pending submits any data associated with flush */
1706 	} else {
1707 		struct dm_target *ti = md->immutable_target;
1708 		struct dm_target_io *tio;
1709 
1710 		/*
1711 		 * Defend against IO still getting in during teardown
1712 		 * - as was seen for a time with nvme-fcloop
1713 		 */
1714 		if (WARN_ON_ONCE(!ti || !dm_target_is_valid(ti))) {
1715 			error = -EIO;
1716 			goto out;
1717 		}
1718 
1719 		ci.bio = bio;
1720 		ci.sector_count = bio_sectors(bio);
1721 		if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1722 			goto out;
1723 
1724 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1725 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1726 	}
1727 out:
1728 	/* drop the extra reference count */
1729 	dec_pending(ci.io, errno_to_blk_status(error));
1730 	return ret;
1731 }
1732 
1733 static blk_qc_t dm_process_bio(struct mapped_device *md,
1734 			       struct dm_table *map, struct bio *bio)
1735 {
1736 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1737 		return __process_bio(md, map, bio);
1738 	else
1739 		return __split_and_process_bio(md, map, bio);
1740 }
1741 
1742 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1743 {
1744 	struct mapped_device *md = q->queuedata;
1745 	blk_qc_t ret = BLK_QC_T_NONE;
1746 	int srcu_idx;
1747 	struct dm_table *map;
1748 
1749 	map = dm_get_live_table(md, &srcu_idx);
1750 
1751 	/* if we're suspended, we have to queue this io for later */
1752 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1753 		dm_put_live_table(md, srcu_idx);
1754 
1755 		if (!(bio->bi_opf & REQ_RAHEAD))
1756 			queue_io(md, bio);
1757 		else
1758 			bio_io_error(bio);
1759 		return ret;
1760 	}
1761 
1762 	ret = dm_process_bio(md, map, bio);
1763 
1764 	dm_put_live_table(md, srcu_idx);
1765 	return ret;
1766 }
1767 
1768 static int dm_any_congested(void *congested_data, int bdi_bits)
1769 {
1770 	int r = bdi_bits;
1771 	struct mapped_device *md = congested_data;
1772 	struct dm_table *map;
1773 
1774 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1775 		if (dm_request_based(md)) {
1776 			/*
1777 			 * With request-based DM we only need to check the
1778 			 * top-level queue for congestion.
1779 			 */
1780 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1781 		} else {
1782 			map = dm_get_live_table_fast(md);
1783 			if (map)
1784 				r = dm_table_any_congested(map, bdi_bits);
1785 			dm_put_live_table_fast(md);
1786 		}
1787 	}
1788 
1789 	return r;
1790 }
1791 
1792 /*-----------------------------------------------------------------
1793  * An IDR is used to keep track of allocated minor numbers.
1794  *---------------------------------------------------------------*/
1795 static void free_minor(int minor)
1796 {
1797 	spin_lock(&_minor_lock);
1798 	idr_remove(&_minor_idr, minor);
1799 	spin_unlock(&_minor_lock);
1800 }
1801 
1802 /*
1803  * See if the device with a specific minor # is free.
1804  */
1805 static int specific_minor(int minor)
1806 {
1807 	int r;
1808 
1809 	if (minor >= (1 << MINORBITS))
1810 		return -EINVAL;
1811 
1812 	idr_preload(GFP_KERNEL);
1813 	spin_lock(&_minor_lock);
1814 
1815 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1816 
1817 	spin_unlock(&_minor_lock);
1818 	idr_preload_end();
1819 	if (r < 0)
1820 		return r == -ENOSPC ? -EBUSY : r;
1821 	return 0;
1822 }
1823 
1824 static int next_free_minor(int *minor)
1825 {
1826 	int r;
1827 
1828 	idr_preload(GFP_KERNEL);
1829 	spin_lock(&_minor_lock);
1830 
1831 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1832 
1833 	spin_unlock(&_minor_lock);
1834 	idr_preload_end();
1835 	if (r < 0)
1836 		return r;
1837 	*minor = r;
1838 	return 0;
1839 }
1840 
1841 static const struct block_device_operations dm_blk_dops;
1842 static const struct dax_operations dm_dax_ops;
1843 
1844 static void dm_wq_work(struct work_struct *work);
1845 
1846 static void dm_init_normal_md_queue(struct mapped_device *md)
1847 {
1848 	/*
1849 	 * Initialize aspects of queue that aren't relevant for blk-mq
1850 	 */
1851 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1852 }
1853 
1854 static void cleanup_mapped_device(struct mapped_device *md)
1855 {
1856 	if (md->wq)
1857 		destroy_workqueue(md->wq);
1858 	bioset_exit(&md->bs);
1859 	bioset_exit(&md->io_bs);
1860 
1861 	if (md->dax_dev) {
1862 		kill_dax(md->dax_dev);
1863 		put_dax(md->dax_dev);
1864 		md->dax_dev = NULL;
1865 	}
1866 
1867 	if (md->disk) {
1868 		spin_lock(&_minor_lock);
1869 		md->disk->private_data = NULL;
1870 		spin_unlock(&_minor_lock);
1871 		del_gendisk(md->disk);
1872 		put_disk(md->disk);
1873 	}
1874 
1875 	if (md->queue)
1876 		blk_cleanup_queue(md->queue);
1877 
1878 	cleanup_srcu_struct(&md->io_barrier);
1879 
1880 	if (md->bdev) {
1881 		bdput(md->bdev);
1882 		md->bdev = NULL;
1883 	}
1884 
1885 	mutex_destroy(&md->suspend_lock);
1886 	mutex_destroy(&md->type_lock);
1887 	mutex_destroy(&md->table_devices_lock);
1888 
1889 	dm_mq_cleanup_mapped_device(md);
1890 }
1891 
1892 /*
1893  * Allocate and initialise a blank device with a given minor.
1894  */
1895 static struct mapped_device *alloc_dev(int minor)
1896 {
1897 	int r, numa_node_id = dm_get_numa_node();
1898 	struct dax_device *dax_dev = NULL;
1899 	struct mapped_device *md;
1900 	void *old_md;
1901 
1902 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1903 	if (!md) {
1904 		DMWARN("unable to allocate device, out of memory.");
1905 		return NULL;
1906 	}
1907 
1908 	if (!try_module_get(THIS_MODULE))
1909 		goto bad_module_get;
1910 
1911 	/* get a minor number for the dev */
1912 	if (minor == DM_ANY_MINOR)
1913 		r = next_free_minor(&minor);
1914 	else
1915 		r = specific_minor(minor);
1916 	if (r < 0)
1917 		goto bad_minor;
1918 
1919 	r = init_srcu_struct(&md->io_barrier);
1920 	if (r < 0)
1921 		goto bad_io_barrier;
1922 
1923 	md->numa_node_id = numa_node_id;
1924 	md->init_tio_pdu = false;
1925 	md->type = DM_TYPE_NONE;
1926 	mutex_init(&md->suspend_lock);
1927 	mutex_init(&md->type_lock);
1928 	mutex_init(&md->table_devices_lock);
1929 	spin_lock_init(&md->deferred_lock);
1930 	atomic_set(&md->holders, 1);
1931 	atomic_set(&md->open_count, 0);
1932 	atomic_set(&md->event_nr, 0);
1933 	atomic_set(&md->uevent_seq, 0);
1934 	INIT_LIST_HEAD(&md->uevent_list);
1935 	INIT_LIST_HEAD(&md->table_devices);
1936 	spin_lock_init(&md->uevent_lock);
1937 
1938 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1939 	if (!md->queue)
1940 		goto bad;
1941 	md->queue->queuedata = md;
1942 	md->queue->backing_dev_info->congested_data = md;
1943 
1944 	md->disk = alloc_disk_node(1, md->numa_node_id);
1945 	if (!md->disk)
1946 		goto bad;
1947 
1948 	init_waitqueue_head(&md->wait);
1949 	INIT_WORK(&md->work, dm_wq_work);
1950 	init_waitqueue_head(&md->eventq);
1951 	init_completion(&md->kobj_holder.completion);
1952 
1953 	md->disk->major = _major;
1954 	md->disk->first_minor = minor;
1955 	md->disk->fops = &dm_blk_dops;
1956 	md->disk->queue = md->queue;
1957 	md->disk->private_data = md;
1958 	sprintf(md->disk->disk_name, "dm-%d", minor);
1959 
1960 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1961 		dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1962 		if (!dax_dev)
1963 			goto bad;
1964 	}
1965 	md->dax_dev = dax_dev;
1966 
1967 	add_disk_no_queue_reg(md->disk);
1968 	format_dev_t(md->name, MKDEV(_major, minor));
1969 
1970 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1971 	if (!md->wq)
1972 		goto bad;
1973 
1974 	md->bdev = bdget_disk(md->disk, 0);
1975 	if (!md->bdev)
1976 		goto bad;
1977 
1978 	dm_stats_init(&md->stats);
1979 
1980 	/* Populate the mapping, nobody knows we exist yet */
1981 	spin_lock(&_minor_lock);
1982 	old_md = idr_replace(&_minor_idr, md, minor);
1983 	spin_unlock(&_minor_lock);
1984 
1985 	BUG_ON(old_md != MINOR_ALLOCED);
1986 
1987 	return md;
1988 
1989 bad:
1990 	cleanup_mapped_device(md);
1991 bad_io_barrier:
1992 	free_minor(minor);
1993 bad_minor:
1994 	module_put(THIS_MODULE);
1995 bad_module_get:
1996 	kvfree(md);
1997 	return NULL;
1998 }
1999 
2000 static void unlock_fs(struct mapped_device *md);
2001 
2002 static void free_dev(struct mapped_device *md)
2003 {
2004 	int minor = MINOR(disk_devt(md->disk));
2005 
2006 	unlock_fs(md);
2007 
2008 	cleanup_mapped_device(md);
2009 
2010 	free_table_devices(&md->table_devices);
2011 	dm_stats_cleanup(&md->stats);
2012 	free_minor(minor);
2013 
2014 	module_put(THIS_MODULE);
2015 	kvfree(md);
2016 }
2017 
2018 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2019 {
2020 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2021 	int ret = 0;
2022 
2023 	if (dm_table_bio_based(t)) {
2024 		/*
2025 		 * The md may already have mempools that need changing.
2026 		 * If so, reload bioset because front_pad may have changed
2027 		 * because a different table was loaded.
2028 		 */
2029 		bioset_exit(&md->bs);
2030 		bioset_exit(&md->io_bs);
2031 
2032 	} else if (bioset_initialized(&md->bs)) {
2033 		/*
2034 		 * There's no need to reload with request-based dm
2035 		 * because the size of front_pad doesn't change.
2036 		 * Note for future: If you are to reload bioset,
2037 		 * prep-ed requests in the queue may refer
2038 		 * to bio from the old bioset, so you must walk
2039 		 * through the queue to unprep.
2040 		 */
2041 		goto out;
2042 	}
2043 
2044 	BUG_ON(!p ||
2045 	       bioset_initialized(&md->bs) ||
2046 	       bioset_initialized(&md->io_bs));
2047 
2048 	ret = bioset_init_from_src(&md->bs, &p->bs);
2049 	if (ret)
2050 		goto out;
2051 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2052 	if (ret)
2053 		bioset_exit(&md->bs);
2054 out:
2055 	/* mempool bind completed, no longer need any mempools in the table */
2056 	dm_table_free_md_mempools(t);
2057 	return ret;
2058 }
2059 
2060 /*
2061  * Bind a table to the device.
2062  */
2063 static void event_callback(void *context)
2064 {
2065 	unsigned long flags;
2066 	LIST_HEAD(uevents);
2067 	struct mapped_device *md = (struct mapped_device *) context;
2068 
2069 	spin_lock_irqsave(&md->uevent_lock, flags);
2070 	list_splice_init(&md->uevent_list, &uevents);
2071 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2072 
2073 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2074 
2075 	atomic_inc(&md->event_nr);
2076 	wake_up(&md->eventq);
2077 	dm_issue_global_event();
2078 }
2079 
2080 /*
2081  * Protected by md->suspend_lock obtained by dm_swap_table().
2082  */
2083 static void __set_size(struct mapped_device *md, sector_t size)
2084 {
2085 	lockdep_assert_held(&md->suspend_lock);
2086 
2087 	set_capacity(md->disk, size);
2088 
2089 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2090 }
2091 
2092 /*
2093  * Returns old map, which caller must destroy.
2094  */
2095 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2096 			       struct queue_limits *limits)
2097 {
2098 	struct dm_table *old_map;
2099 	struct request_queue *q = md->queue;
2100 	bool request_based = dm_table_request_based(t);
2101 	sector_t size;
2102 	int ret;
2103 
2104 	lockdep_assert_held(&md->suspend_lock);
2105 
2106 	size = dm_table_get_size(t);
2107 
2108 	/*
2109 	 * Wipe any geometry if the size of the table changed.
2110 	 */
2111 	if (size != dm_get_size(md))
2112 		memset(&md->geometry, 0, sizeof(md->geometry));
2113 
2114 	__set_size(md, size);
2115 
2116 	dm_table_event_callback(t, event_callback, md);
2117 
2118 	/*
2119 	 * The queue hasn't been stopped yet, if the old table type wasn't
2120 	 * for request-based during suspension.  So stop it to prevent
2121 	 * I/O mapping before resume.
2122 	 * This must be done before setting the queue restrictions,
2123 	 * because request-based dm may be run just after the setting.
2124 	 */
2125 	if (request_based)
2126 		dm_stop_queue(q);
2127 
2128 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2129 		/*
2130 		 * Leverage the fact that request-based DM targets and
2131 		 * NVMe bio based targets are immutable singletons
2132 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2133 		 *   and __process_bio.
2134 		 */
2135 		md->immutable_target = dm_table_get_immutable_target(t);
2136 	}
2137 
2138 	ret = __bind_mempools(md, t);
2139 	if (ret) {
2140 		old_map = ERR_PTR(ret);
2141 		goto out;
2142 	}
2143 
2144 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2145 	rcu_assign_pointer(md->map, (void *)t);
2146 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2147 
2148 	dm_table_set_restrictions(t, q, limits);
2149 	if (old_map)
2150 		dm_sync_table(md);
2151 
2152 out:
2153 	return old_map;
2154 }
2155 
2156 /*
2157  * Returns unbound table for the caller to free.
2158  */
2159 static struct dm_table *__unbind(struct mapped_device *md)
2160 {
2161 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2162 
2163 	if (!map)
2164 		return NULL;
2165 
2166 	dm_table_event_callback(map, NULL, NULL);
2167 	RCU_INIT_POINTER(md->map, NULL);
2168 	dm_sync_table(md);
2169 
2170 	return map;
2171 }
2172 
2173 /*
2174  * Constructor for a new device.
2175  */
2176 int dm_create(int minor, struct mapped_device **result)
2177 {
2178 	int r;
2179 	struct mapped_device *md;
2180 
2181 	md = alloc_dev(minor);
2182 	if (!md)
2183 		return -ENXIO;
2184 
2185 	r = dm_sysfs_init(md);
2186 	if (r) {
2187 		free_dev(md);
2188 		return r;
2189 	}
2190 
2191 	*result = md;
2192 	return 0;
2193 }
2194 
2195 /*
2196  * Functions to manage md->type.
2197  * All are required to hold md->type_lock.
2198  */
2199 void dm_lock_md_type(struct mapped_device *md)
2200 {
2201 	mutex_lock(&md->type_lock);
2202 }
2203 
2204 void dm_unlock_md_type(struct mapped_device *md)
2205 {
2206 	mutex_unlock(&md->type_lock);
2207 }
2208 
2209 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2210 {
2211 	BUG_ON(!mutex_is_locked(&md->type_lock));
2212 	md->type = type;
2213 }
2214 
2215 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2216 {
2217 	return md->type;
2218 }
2219 
2220 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2221 {
2222 	return md->immutable_target_type;
2223 }
2224 
2225 /*
2226  * The queue_limits are only valid as long as you have a reference
2227  * count on 'md'.
2228  */
2229 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2230 {
2231 	BUG_ON(!atomic_read(&md->holders));
2232 	return &md->queue->limits;
2233 }
2234 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2235 
2236 /*
2237  * Setup the DM device's queue based on md's type
2238  */
2239 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2240 {
2241 	int r;
2242 	struct queue_limits limits;
2243 	enum dm_queue_mode type = dm_get_md_type(md);
2244 
2245 	switch (type) {
2246 	case DM_TYPE_REQUEST_BASED:
2247 		r = dm_mq_init_request_queue(md, t);
2248 		if (r) {
2249 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2250 			return r;
2251 		}
2252 		break;
2253 	case DM_TYPE_BIO_BASED:
2254 	case DM_TYPE_DAX_BIO_BASED:
2255 	case DM_TYPE_NVME_BIO_BASED:
2256 		dm_init_normal_md_queue(md);
2257 		blk_queue_make_request(md->queue, dm_make_request);
2258 		break;
2259 	case DM_TYPE_NONE:
2260 		WARN_ON_ONCE(true);
2261 		break;
2262 	}
2263 
2264 	r = dm_calculate_queue_limits(t, &limits);
2265 	if (r) {
2266 		DMERR("Cannot calculate initial queue limits");
2267 		return r;
2268 	}
2269 	dm_table_set_restrictions(t, md->queue, &limits);
2270 	blk_register_queue(md->disk);
2271 
2272 	return 0;
2273 }
2274 
2275 struct mapped_device *dm_get_md(dev_t dev)
2276 {
2277 	struct mapped_device *md;
2278 	unsigned minor = MINOR(dev);
2279 
2280 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2281 		return NULL;
2282 
2283 	spin_lock(&_minor_lock);
2284 
2285 	md = idr_find(&_minor_idr, minor);
2286 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2287 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2288 		md = NULL;
2289 		goto out;
2290 	}
2291 	dm_get(md);
2292 out:
2293 	spin_unlock(&_minor_lock);
2294 
2295 	return md;
2296 }
2297 EXPORT_SYMBOL_GPL(dm_get_md);
2298 
2299 void *dm_get_mdptr(struct mapped_device *md)
2300 {
2301 	return md->interface_ptr;
2302 }
2303 
2304 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2305 {
2306 	md->interface_ptr = ptr;
2307 }
2308 
2309 void dm_get(struct mapped_device *md)
2310 {
2311 	atomic_inc(&md->holders);
2312 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2313 }
2314 
2315 int dm_hold(struct mapped_device *md)
2316 {
2317 	spin_lock(&_minor_lock);
2318 	if (test_bit(DMF_FREEING, &md->flags)) {
2319 		spin_unlock(&_minor_lock);
2320 		return -EBUSY;
2321 	}
2322 	dm_get(md);
2323 	spin_unlock(&_minor_lock);
2324 	return 0;
2325 }
2326 EXPORT_SYMBOL_GPL(dm_hold);
2327 
2328 const char *dm_device_name(struct mapped_device *md)
2329 {
2330 	return md->name;
2331 }
2332 EXPORT_SYMBOL_GPL(dm_device_name);
2333 
2334 static void __dm_destroy(struct mapped_device *md, bool wait)
2335 {
2336 	struct dm_table *map;
2337 	int srcu_idx;
2338 
2339 	might_sleep();
2340 
2341 	spin_lock(&_minor_lock);
2342 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2343 	set_bit(DMF_FREEING, &md->flags);
2344 	spin_unlock(&_minor_lock);
2345 
2346 	blk_set_queue_dying(md->queue);
2347 
2348 	/*
2349 	 * Take suspend_lock so that presuspend and postsuspend methods
2350 	 * do not race with internal suspend.
2351 	 */
2352 	mutex_lock(&md->suspend_lock);
2353 	map = dm_get_live_table(md, &srcu_idx);
2354 	if (!dm_suspended_md(md)) {
2355 		dm_table_presuspend_targets(map);
2356 		dm_table_postsuspend_targets(map);
2357 	}
2358 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2359 	dm_put_live_table(md, srcu_idx);
2360 	mutex_unlock(&md->suspend_lock);
2361 
2362 	/*
2363 	 * Rare, but there may be I/O requests still going to complete,
2364 	 * for example.  Wait for all references to disappear.
2365 	 * No one should increment the reference count of the mapped_device,
2366 	 * after the mapped_device state becomes DMF_FREEING.
2367 	 */
2368 	if (wait)
2369 		while (atomic_read(&md->holders))
2370 			msleep(1);
2371 	else if (atomic_read(&md->holders))
2372 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2373 		       dm_device_name(md), atomic_read(&md->holders));
2374 
2375 	dm_sysfs_exit(md);
2376 	dm_table_destroy(__unbind(md));
2377 	free_dev(md);
2378 }
2379 
2380 void dm_destroy(struct mapped_device *md)
2381 {
2382 	__dm_destroy(md, true);
2383 }
2384 
2385 void dm_destroy_immediate(struct mapped_device *md)
2386 {
2387 	__dm_destroy(md, false);
2388 }
2389 
2390 void dm_put(struct mapped_device *md)
2391 {
2392 	atomic_dec(&md->holders);
2393 }
2394 EXPORT_SYMBOL_GPL(dm_put);
2395 
2396 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2397 {
2398 	int r = 0;
2399 	DEFINE_WAIT(wait);
2400 
2401 	while (1) {
2402 		prepare_to_wait(&md->wait, &wait, task_state);
2403 
2404 		if (!md_in_flight(md))
2405 			break;
2406 
2407 		if (signal_pending_state(task_state, current)) {
2408 			r = -EINTR;
2409 			break;
2410 		}
2411 
2412 		io_schedule();
2413 	}
2414 	finish_wait(&md->wait, &wait);
2415 
2416 	return r;
2417 }
2418 
2419 /*
2420  * Process the deferred bios
2421  */
2422 static void dm_wq_work(struct work_struct *work)
2423 {
2424 	struct mapped_device *md = container_of(work, struct mapped_device,
2425 						work);
2426 	struct bio *c;
2427 	int srcu_idx;
2428 	struct dm_table *map;
2429 
2430 	map = dm_get_live_table(md, &srcu_idx);
2431 
2432 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2433 		spin_lock_irq(&md->deferred_lock);
2434 		c = bio_list_pop(&md->deferred);
2435 		spin_unlock_irq(&md->deferred_lock);
2436 
2437 		if (!c)
2438 			break;
2439 
2440 		if (dm_request_based(md))
2441 			(void) generic_make_request(c);
2442 		else
2443 			(void) dm_process_bio(md, map, c);
2444 	}
2445 
2446 	dm_put_live_table(md, srcu_idx);
2447 }
2448 
2449 static void dm_queue_flush(struct mapped_device *md)
2450 {
2451 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2452 	smp_mb__after_atomic();
2453 	queue_work(md->wq, &md->work);
2454 }
2455 
2456 /*
2457  * Swap in a new table, returning the old one for the caller to destroy.
2458  */
2459 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2460 {
2461 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2462 	struct queue_limits limits;
2463 	int r;
2464 
2465 	mutex_lock(&md->suspend_lock);
2466 
2467 	/* device must be suspended */
2468 	if (!dm_suspended_md(md))
2469 		goto out;
2470 
2471 	/*
2472 	 * If the new table has no data devices, retain the existing limits.
2473 	 * This helps multipath with queue_if_no_path if all paths disappear,
2474 	 * then new I/O is queued based on these limits, and then some paths
2475 	 * reappear.
2476 	 */
2477 	if (dm_table_has_no_data_devices(table)) {
2478 		live_map = dm_get_live_table_fast(md);
2479 		if (live_map)
2480 			limits = md->queue->limits;
2481 		dm_put_live_table_fast(md);
2482 	}
2483 
2484 	if (!live_map) {
2485 		r = dm_calculate_queue_limits(table, &limits);
2486 		if (r) {
2487 			map = ERR_PTR(r);
2488 			goto out;
2489 		}
2490 	}
2491 
2492 	map = __bind(md, table, &limits);
2493 	dm_issue_global_event();
2494 
2495 out:
2496 	mutex_unlock(&md->suspend_lock);
2497 	return map;
2498 }
2499 
2500 /*
2501  * Functions to lock and unlock any filesystem running on the
2502  * device.
2503  */
2504 static int lock_fs(struct mapped_device *md)
2505 {
2506 	int r;
2507 
2508 	WARN_ON(md->frozen_sb);
2509 
2510 	md->frozen_sb = freeze_bdev(md->bdev);
2511 	if (IS_ERR(md->frozen_sb)) {
2512 		r = PTR_ERR(md->frozen_sb);
2513 		md->frozen_sb = NULL;
2514 		return r;
2515 	}
2516 
2517 	set_bit(DMF_FROZEN, &md->flags);
2518 
2519 	return 0;
2520 }
2521 
2522 static void unlock_fs(struct mapped_device *md)
2523 {
2524 	if (!test_bit(DMF_FROZEN, &md->flags))
2525 		return;
2526 
2527 	thaw_bdev(md->bdev, md->frozen_sb);
2528 	md->frozen_sb = NULL;
2529 	clear_bit(DMF_FROZEN, &md->flags);
2530 }
2531 
2532 /*
2533  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2534  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2535  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2536  *
2537  * If __dm_suspend returns 0, the device is completely quiescent
2538  * now. There is no request-processing activity. All new requests
2539  * are being added to md->deferred list.
2540  */
2541 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2542 			unsigned suspend_flags, long task_state,
2543 			int dmf_suspended_flag)
2544 {
2545 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2546 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2547 	int r;
2548 
2549 	lockdep_assert_held(&md->suspend_lock);
2550 
2551 	/*
2552 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2553 	 * This flag is cleared before dm_suspend returns.
2554 	 */
2555 	if (noflush)
2556 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2557 	else
2558 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2559 
2560 	/*
2561 	 * This gets reverted if there's an error later and the targets
2562 	 * provide the .presuspend_undo hook.
2563 	 */
2564 	dm_table_presuspend_targets(map);
2565 
2566 	/*
2567 	 * Flush I/O to the device.
2568 	 * Any I/O submitted after lock_fs() may not be flushed.
2569 	 * noflush takes precedence over do_lockfs.
2570 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2571 	 */
2572 	if (!noflush && do_lockfs) {
2573 		r = lock_fs(md);
2574 		if (r) {
2575 			dm_table_presuspend_undo_targets(map);
2576 			return r;
2577 		}
2578 	}
2579 
2580 	/*
2581 	 * Here we must make sure that no processes are submitting requests
2582 	 * to target drivers i.e. no one may be executing
2583 	 * __split_and_process_bio. This is called from dm_request and
2584 	 * dm_wq_work.
2585 	 *
2586 	 * To get all processes out of __split_and_process_bio in dm_request,
2587 	 * we take the write lock. To prevent any process from reentering
2588 	 * __split_and_process_bio from dm_request and quiesce the thread
2589 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2590 	 * flush_workqueue(md->wq).
2591 	 */
2592 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2593 	if (map)
2594 		synchronize_srcu(&md->io_barrier);
2595 
2596 	/*
2597 	 * Stop md->queue before flushing md->wq in case request-based
2598 	 * dm defers requests to md->wq from md->queue.
2599 	 */
2600 	if (dm_request_based(md))
2601 		dm_stop_queue(md->queue);
2602 
2603 	flush_workqueue(md->wq);
2604 
2605 	/*
2606 	 * At this point no more requests are entering target request routines.
2607 	 * We call dm_wait_for_completion to wait for all existing requests
2608 	 * to finish.
2609 	 */
2610 	r = dm_wait_for_completion(md, task_state);
2611 	if (!r)
2612 		set_bit(dmf_suspended_flag, &md->flags);
2613 
2614 	if (noflush)
2615 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2616 	if (map)
2617 		synchronize_srcu(&md->io_barrier);
2618 
2619 	/* were we interrupted ? */
2620 	if (r < 0) {
2621 		dm_queue_flush(md);
2622 
2623 		if (dm_request_based(md))
2624 			dm_start_queue(md->queue);
2625 
2626 		unlock_fs(md);
2627 		dm_table_presuspend_undo_targets(map);
2628 		/* pushback list is already flushed, so skip flush */
2629 	}
2630 
2631 	return r;
2632 }
2633 
2634 /*
2635  * We need to be able to change a mapping table under a mounted
2636  * filesystem.  For example we might want to move some data in
2637  * the background.  Before the table can be swapped with
2638  * dm_bind_table, dm_suspend must be called to flush any in
2639  * flight bios and ensure that any further io gets deferred.
2640  */
2641 /*
2642  * Suspend mechanism in request-based dm.
2643  *
2644  * 1. Flush all I/Os by lock_fs() if needed.
2645  * 2. Stop dispatching any I/O by stopping the request_queue.
2646  * 3. Wait for all in-flight I/Os to be completed or requeued.
2647  *
2648  * To abort suspend, start the request_queue.
2649  */
2650 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2651 {
2652 	struct dm_table *map = NULL;
2653 	int r = 0;
2654 
2655 retry:
2656 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2657 
2658 	if (dm_suspended_md(md)) {
2659 		r = -EINVAL;
2660 		goto out_unlock;
2661 	}
2662 
2663 	if (dm_suspended_internally_md(md)) {
2664 		/* already internally suspended, wait for internal resume */
2665 		mutex_unlock(&md->suspend_lock);
2666 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2667 		if (r)
2668 			return r;
2669 		goto retry;
2670 	}
2671 
2672 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2673 
2674 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2675 	if (r)
2676 		goto out_unlock;
2677 
2678 	dm_table_postsuspend_targets(map);
2679 
2680 out_unlock:
2681 	mutex_unlock(&md->suspend_lock);
2682 	return r;
2683 }
2684 
2685 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2686 {
2687 	if (map) {
2688 		int r = dm_table_resume_targets(map);
2689 		if (r)
2690 			return r;
2691 	}
2692 
2693 	dm_queue_flush(md);
2694 
2695 	/*
2696 	 * Flushing deferred I/Os must be done after targets are resumed
2697 	 * so that mapping of targets can work correctly.
2698 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2699 	 */
2700 	if (dm_request_based(md))
2701 		dm_start_queue(md->queue);
2702 
2703 	unlock_fs(md);
2704 
2705 	return 0;
2706 }
2707 
2708 int dm_resume(struct mapped_device *md)
2709 {
2710 	int r;
2711 	struct dm_table *map = NULL;
2712 
2713 retry:
2714 	r = -EINVAL;
2715 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2716 
2717 	if (!dm_suspended_md(md))
2718 		goto out;
2719 
2720 	if (dm_suspended_internally_md(md)) {
2721 		/* already internally suspended, wait for internal resume */
2722 		mutex_unlock(&md->suspend_lock);
2723 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2724 		if (r)
2725 			return r;
2726 		goto retry;
2727 	}
2728 
2729 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2730 	if (!map || !dm_table_get_size(map))
2731 		goto out;
2732 
2733 	r = __dm_resume(md, map);
2734 	if (r)
2735 		goto out;
2736 
2737 	clear_bit(DMF_SUSPENDED, &md->flags);
2738 out:
2739 	mutex_unlock(&md->suspend_lock);
2740 
2741 	return r;
2742 }
2743 
2744 /*
2745  * Internal suspend/resume works like userspace-driven suspend. It waits
2746  * until all bios finish and prevents issuing new bios to the target drivers.
2747  * It may be used only from the kernel.
2748  */
2749 
2750 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2751 {
2752 	struct dm_table *map = NULL;
2753 
2754 	lockdep_assert_held(&md->suspend_lock);
2755 
2756 	if (md->internal_suspend_count++)
2757 		return; /* nested internal suspend */
2758 
2759 	if (dm_suspended_md(md)) {
2760 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2761 		return; /* nest suspend */
2762 	}
2763 
2764 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2765 
2766 	/*
2767 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2768 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2769 	 * would require changing .presuspend to return an error -- avoid this
2770 	 * until there is a need for more elaborate variants of internal suspend.
2771 	 */
2772 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2773 			    DMF_SUSPENDED_INTERNALLY);
2774 
2775 	dm_table_postsuspend_targets(map);
2776 }
2777 
2778 static void __dm_internal_resume(struct mapped_device *md)
2779 {
2780 	BUG_ON(!md->internal_suspend_count);
2781 
2782 	if (--md->internal_suspend_count)
2783 		return; /* resume from nested internal suspend */
2784 
2785 	if (dm_suspended_md(md))
2786 		goto done; /* resume from nested suspend */
2787 
2788 	/*
2789 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2790 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2791 	 */
2792 	(void) __dm_resume(md, NULL);
2793 
2794 done:
2795 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2796 	smp_mb__after_atomic();
2797 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2798 }
2799 
2800 void dm_internal_suspend_noflush(struct mapped_device *md)
2801 {
2802 	mutex_lock(&md->suspend_lock);
2803 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2804 	mutex_unlock(&md->suspend_lock);
2805 }
2806 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2807 
2808 void dm_internal_resume(struct mapped_device *md)
2809 {
2810 	mutex_lock(&md->suspend_lock);
2811 	__dm_internal_resume(md);
2812 	mutex_unlock(&md->suspend_lock);
2813 }
2814 EXPORT_SYMBOL_GPL(dm_internal_resume);
2815 
2816 /*
2817  * Fast variants of internal suspend/resume hold md->suspend_lock,
2818  * which prevents interaction with userspace-driven suspend.
2819  */
2820 
2821 void dm_internal_suspend_fast(struct mapped_device *md)
2822 {
2823 	mutex_lock(&md->suspend_lock);
2824 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2825 		return;
2826 
2827 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2828 	synchronize_srcu(&md->io_barrier);
2829 	flush_workqueue(md->wq);
2830 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2831 }
2832 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2833 
2834 void dm_internal_resume_fast(struct mapped_device *md)
2835 {
2836 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2837 		goto done;
2838 
2839 	dm_queue_flush(md);
2840 
2841 done:
2842 	mutex_unlock(&md->suspend_lock);
2843 }
2844 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2845 
2846 /*-----------------------------------------------------------------
2847  * Event notification.
2848  *---------------------------------------------------------------*/
2849 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2850 		       unsigned cookie)
2851 {
2852 	char udev_cookie[DM_COOKIE_LENGTH];
2853 	char *envp[] = { udev_cookie, NULL };
2854 
2855 	if (!cookie)
2856 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2857 	else {
2858 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2859 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2860 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2861 					  action, envp);
2862 	}
2863 }
2864 
2865 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2866 {
2867 	return atomic_add_return(1, &md->uevent_seq);
2868 }
2869 
2870 uint32_t dm_get_event_nr(struct mapped_device *md)
2871 {
2872 	return atomic_read(&md->event_nr);
2873 }
2874 
2875 int dm_wait_event(struct mapped_device *md, int event_nr)
2876 {
2877 	return wait_event_interruptible(md->eventq,
2878 			(event_nr != atomic_read(&md->event_nr)));
2879 }
2880 
2881 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2882 {
2883 	unsigned long flags;
2884 
2885 	spin_lock_irqsave(&md->uevent_lock, flags);
2886 	list_add(elist, &md->uevent_list);
2887 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2888 }
2889 
2890 /*
2891  * The gendisk is only valid as long as you have a reference
2892  * count on 'md'.
2893  */
2894 struct gendisk *dm_disk(struct mapped_device *md)
2895 {
2896 	return md->disk;
2897 }
2898 EXPORT_SYMBOL_GPL(dm_disk);
2899 
2900 struct kobject *dm_kobject(struct mapped_device *md)
2901 {
2902 	return &md->kobj_holder.kobj;
2903 }
2904 
2905 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2906 {
2907 	struct mapped_device *md;
2908 
2909 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2910 
2911 	spin_lock(&_minor_lock);
2912 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2913 		md = NULL;
2914 		goto out;
2915 	}
2916 	dm_get(md);
2917 out:
2918 	spin_unlock(&_minor_lock);
2919 
2920 	return md;
2921 }
2922 
2923 int dm_suspended_md(struct mapped_device *md)
2924 {
2925 	return test_bit(DMF_SUSPENDED, &md->flags);
2926 }
2927 
2928 int dm_suspended_internally_md(struct mapped_device *md)
2929 {
2930 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2931 }
2932 
2933 int dm_test_deferred_remove_flag(struct mapped_device *md)
2934 {
2935 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2936 }
2937 
2938 int dm_suspended(struct dm_target *ti)
2939 {
2940 	return dm_suspended_md(dm_table_get_md(ti->table));
2941 }
2942 EXPORT_SYMBOL_GPL(dm_suspended);
2943 
2944 int dm_noflush_suspending(struct dm_target *ti)
2945 {
2946 	return __noflush_suspending(dm_table_get_md(ti->table));
2947 }
2948 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2949 
2950 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2951 					    unsigned integrity, unsigned per_io_data_size,
2952 					    unsigned min_pool_size)
2953 {
2954 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2955 	unsigned int pool_size = 0;
2956 	unsigned int front_pad, io_front_pad;
2957 	int ret;
2958 
2959 	if (!pools)
2960 		return NULL;
2961 
2962 	switch (type) {
2963 	case DM_TYPE_BIO_BASED:
2964 	case DM_TYPE_DAX_BIO_BASED:
2965 	case DM_TYPE_NVME_BIO_BASED:
2966 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2967 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2968 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2969 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2970 		if (ret)
2971 			goto out;
2972 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2973 			goto out;
2974 		break;
2975 	case DM_TYPE_REQUEST_BASED:
2976 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2977 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2978 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2979 		break;
2980 	default:
2981 		BUG();
2982 	}
2983 
2984 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2985 	if (ret)
2986 		goto out;
2987 
2988 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2989 		goto out;
2990 
2991 	return pools;
2992 
2993 out:
2994 	dm_free_md_mempools(pools);
2995 
2996 	return NULL;
2997 }
2998 
2999 void dm_free_md_mempools(struct dm_md_mempools *pools)
3000 {
3001 	if (!pools)
3002 		return;
3003 
3004 	bioset_exit(&pools->bs);
3005 	bioset_exit(&pools->io_bs);
3006 
3007 	kfree(pools);
3008 }
3009 
3010 struct dm_pr {
3011 	u64	old_key;
3012 	u64	new_key;
3013 	u32	flags;
3014 	bool	fail_early;
3015 };
3016 
3017 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3018 		      void *data)
3019 {
3020 	struct mapped_device *md = bdev->bd_disk->private_data;
3021 	struct dm_table *table;
3022 	struct dm_target *ti;
3023 	int ret = -ENOTTY, srcu_idx;
3024 
3025 	table = dm_get_live_table(md, &srcu_idx);
3026 	if (!table || !dm_table_get_size(table))
3027 		goto out;
3028 
3029 	/* We only support devices that have a single target */
3030 	if (dm_table_get_num_targets(table) != 1)
3031 		goto out;
3032 	ti = dm_table_get_target(table, 0);
3033 
3034 	ret = -EINVAL;
3035 	if (!ti->type->iterate_devices)
3036 		goto out;
3037 
3038 	ret = ti->type->iterate_devices(ti, fn, data);
3039 out:
3040 	dm_put_live_table(md, srcu_idx);
3041 	return ret;
3042 }
3043 
3044 /*
3045  * For register / unregister we need to manually call out to every path.
3046  */
3047 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3048 			    sector_t start, sector_t len, void *data)
3049 {
3050 	struct dm_pr *pr = data;
3051 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3052 
3053 	if (!ops || !ops->pr_register)
3054 		return -EOPNOTSUPP;
3055 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3056 }
3057 
3058 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3059 			  u32 flags)
3060 {
3061 	struct dm_pr pr = {
3062 		.old_key	= old_key,
3063 		.new_key	= new_key,
3064 		.flags		= flags,
3065 		.fail_early	= true,
3066 	};
3067 	int ret;
3068 
3069 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3070 	if (ret && new_key) {
3071 		/* unregister all paths if we failed to register any path */
3072 		pr.old_key = new_key;
3073 		pr.new_key = 0;
3074 		pr.flags = 0;
3075 		pr.fail_early = false;
3076 		dm_call_pr(bdev, __dm_pr_register, &pr);
3077 	}
3078 
3079 	return ret;
3080 }
3081 
3082 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3083 			 u32 flags)
3084 {
3085 	struct mapped_device *md = bdev->bd_disk->private_data;
3086 	const struct pr_ops *ops;
3087 	int r, srcu_idx;
3088 
3089 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3090 	if (r < 0)
3091 		goto out;
3092 
3093 	ops = bdev->bd_disk->fops->pr_ops;
3094 	if (ops && ops->pr_reserve)
3095 		r = ops->pr_reserve(bdev, key, type, flags);
3096 	else
3097 		r = -EOPNOTSUPP;
3098 out:
3099 	dm_unprepare_ioctl(md, srcu_idx);
3100 	return r;
3101 }
3102 
3103 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3104 {
3105 	struct mapped_device *md = bdev->bd_disk->private_data;
3106 	const struct pr_ops *ops;
3107 	int r, srcu_idx;
3108 
3109 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3110 	if (r < 0)
3111 		goto out;
3112 
3113 	ops = bdev->bd_disk->fops->pr_ops;
3114 	if (ops && ops->pr_release)
3115 		r = ops->pr_release(bdev, key, type);
3116 	else
3117 		r = -EOPNOTSUPP;
3118 out:
3119 	dm_unprepare_ioctl(md, srcu_idx);
3120 	return r;
3121 }
3122 
3123 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3124 			 enum pr_type type, bool abort)
3125 {
3126 	struct mapped_device *md = bdev->bd_disk->private_data;
3127 	const struct pr_ops *ops;
3128 	int r, srcu_idx;
3129 
3130 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3131 	if (r < 0)
3132 		goto out;
3133 
3134 	ops = bdev->bd_disk->fops->pr_ops;
3135 	if (ops && ops->pr_preempt)
3136 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3137 	else
3138 		r = -EOPNOTSUPP;
3139 out:
3140 	dm_unprepare_ioctl(md, srcu_idx);
3141 	return r;
3142 }
3143 
3144 static int dm_pr_clear(struct block_device *bdev, u64 key)
3145 {
3146 	struct mapped_device *md = bdev->bd_disk->private_data;
3147 	const struct pr_ops *ops;
3148 	int r, srcu_idx;
3149 
3150 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3151 	if (r < 0)
3152 		goto out;
3153 
3154 	ops = bdev->bd_disk->fops->pr_ops;
3155 	if (ops && ops->pr_clear)
3156 		r = ops->pr_clear(bdev, key);
3157 	else
3158 		r = -EOPNOTSUPP;
3159 out:
3160 	dm_unprepare_ioctl(md, srcu_idx);
3161 	return r;
3162 }
3163 
3164 static const struct pr_ops dm_pr_ops = {
3165 	.pr_register	= dm_pr_register,
3166 	.pr_reserve	= dm_pr_reserve,
3167 	.pr_release	= dm_pr_release,
3168 	.pr_preempt	= dm_pr_preempt,
3169 	.pr_clear	= dm_pr_clear,
3170 };
3171 
3172 static const struct block_device_operations dm_blk_dops = {
3173 	.open = dm_blk_open,
3174 	.release = dm_blk_close,
3175 	.ioctl = dm_blk_ioctl,
3176 	.getgeo = dm_blk_getgeo,
3177 	.report_zones = dm_blk_report_zones,
3178 	.pr_ops = &dm_pr_ops,
3179 	.owner = THIS_MODULE
3180 };
3181 
3182 static const struct dax_operations dm_dax_ops = {
3183 	.direct_access = dm_dax_direct_access,
3184 	.copy_from_iter = dm_dax_copy_from_iter,
3185 	.copy_to_iter = dm_dax_copy_to_iter,
3186 };
3187 
3188 /*
3189  * module hooks
3190  */
3191 module_init(dm_init);
3192 module_exit(dm_exit);
3193 
3194 module_param(major, uint, 0);
3195 MODULE_PARM_DESC(major, "The major number of the device mapper");
3196 
3197 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3198 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3199 
3200 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3201 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3202 
3203 MODULE_DESCRIPTION(DM_NAME " driver");
3204 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3205 MODULE_LICENSE("GPL");
3206