xref: /openbmc/linux/drivers/md/dm.c (revision 93d90ad7)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 
24 #include <trace/events/block.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 #ifdef CONFIG_PRINTK
29 /*
30  * ratelimit state to be used in DMXXX_LIMIT().
31  */
32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
33 		       DEFAULT_RATELIMIT_INTERVAL,
34 		       DEFAULT_RATELIMIT_BURST);
35 EXPORT_SYMBOL(dm_ratelimit_state);
36 #endif
37 
38 /*
39  * Cookies are numeric values sent with CHANGE and REMOVE
40  * uevents while resuming, removing or renaming the device.
41  */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44 
45 static const char *_name = DM_NAME;
46 
47 static unsigned int major = 0;
48 static unsigned int _major = 0;
49 
50 static DEFINE_IDR(_minor_idr);
51 
52 static DEFINE_SPINLOCK(_minor_lock);
53 
54 static void do_deferred_remove(struct work_struct *w);
55 
56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
57 
58 static struct workqueue_struct *deferred_remove_workqueue;
59 
60 /*
61  * For bio-based dm.
62  * One of these is allocated per bio.
63  */
64 struct dm_io {
65 	struct mapped_device *md;
66 	int error;
67 	atomic_t io_count;
68 	struct bio *bio;
69 	unsigned long start_time;
70 	spinlock_t endio_lock;
71 	struct dm_stats_aux stats_aux;
72 };
73 
74 /*
75  * For request-based dm.
76  * One of these is allocated per request.
77  */
78 struct dm_rq_target_io {
79 	struct mapped_device *md;
80 	struct dm_target *ti;
81 	struct request *orig, clone;
82 	int error;
83 	union map_info info;
84 };
85 
86 /*
87  * For request-based dm - the bio clones we allocate are embedded in these
88  * structs.
89  *
90  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
91  * the bioset is created - this means the bio has to come at the end of the
92  * struct.
93  */
94 struct dm_rq_clone_bio_info {
95 	struct bio *orig;
96 	struct dm_rq_target_io *tio;
97 	struct bio clone;
98 };
99 
100 union map_info *dm_get_rq_mapinfo(struct request *rq)
101 {
102 	if (rq && rq->end_io_data)
103 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
104 	return NULL;
105 }
106 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
107 
108 #define MINOR_ALLOCED ((void *)-1)
109 
110 /*
111  * Bits for the md->flags field.
112  */
113 #define DMF_BLOCK_IO_FOR_SUSPEND 0
114 #define DMF_SUSPENDED 1
115 #define DMF_FROZEN 2
116 #define DMF_FREEING 3
117 #define DMF_DELETING 4
118 #define DMF_NOFLUSH_SUSPENDING 5
119 #define DMF_MERGE_IS_OPTIONAL 6
120 #define DMF_DEFERRED_REMOVE 7
121 #define DMF_SUSPENDED_INTERNALLY 8
122 
123 /*
124  * A dummy definition to make RCU happy.
125  * struct dm_table should never be dereferenced in this file.
126  */
127 struct dm_table {
128 	int undefined__;
129 };
130 
131 /*
132  * Work processed by per-device workqueue.
133  */
134 struct mapped_device {
135 	struct srcu_struct io_barrier;
136 	struct mutex suspend_lock;
137 	atomic_t holders;
138 	atomic_t open_count;
139 
140 	/*
141 	 * The current mapping.
142 	 * Use dm_get_live_table{_fast} or take suspend_lock for
143 	 * dereference.
144 	 */
145 	struct dm_table __rcu *map;
146 
147 	struct list_head table_devices;
148 	struct mutex table_devices_lock;
149 
150 	unsigned long flags;
151 
152 	struct request_queue *queue;
153 	unsigned type;
154 	/* Protect queue and type against concurrent access. */
155 	struct mutex type_lock;
156 
157 	struct target_type *immutable_target_type;
158 
159 	struct gendisk *disk;
160 	char name[16];
161 
162 	void *interface_ptr;
163 
164 	/*
165 	 * A list of ios that arrived while we were suspended.
166 	 */
167 	atomic_t pending[2];
168 	wait_queue_head_t wait;
169 	struct work_struct work;
170 	struct bio_list deferred;
171 	spinlock_t deferred_lock;
172 
173 	/*
174 	 * Processing queue (flush)
175 	 */
176 	struct workqueue_struct *wq;
177 
178 	/*
179 	 * io objects are allocated from here.
180 	 */
181 	mempool_t *io_pool;
182 
183 	struct bio_set *bs;
184 
185 	/*
186 	 * Event handling.
187 	 */
188 	atomic_t event_nr;
189 	wait_queue_head_t eventq;
190 	atomic_t uevent_seq;
191 	struct list_head uevent_list;
192 	spinlock_t uevent_lock; /* Protect access to uevent_list */
193 
194 	/*
195 	 * freeze/thaw support require holding onto a super block
196 	 */
197 	struct super_block *frozen_sb;
198 	struct block_device *bdev;
199 
200 	/* forced geometry settings */
201 	struct hd_geometry geometry;
202 
203 	/* kobject and completion */
204 	struct dm_kobject_holder kobj_holder;
205 
206 	/* zero-length flush that will be cloned and submitted to targets */
207 	struct bio flush_bio;
208 
209 	struct dm_stats stats;
210 };
211 
212 /*
213  * For mempools pre-allocation at the table loading time.
214  */
215 struct dm_md_mempools {
216 	mempool_t *io_pool;
217 	struct bio_set *bs;
218 };
219 
220 struct table_device {
221 	struct list_head list;
222 	atomic_t count;
223 	struct dm_dev dm_dev;
224 };
225 
226 #define RESERVED_BIO_BASED_IOS		16
227 #define RESERVED_REQUEST_BASED_IOS	256
228 #define RESERVED_MAX_IOS		1024
229 static struct kmem_cache *_io_cache;
230 static struct kmem_cache *_rq_tio_cache;
231 
232 /*
233  * Bio-based DM's mempools' reserved IOs set by the user.
234  */
235 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
236 
237 /*
238  * Request-based DM's mempools' reserved IOs set by the user.
239  */
240 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
241 
242 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
243 				      unsigned def, unsigned max)
244 {
245 	unsigned ios = ACCESS_ONCE(*reserved_ios);
246 	unsigned modified_ios = 0;
247 
248 	if (!ios)
249 		modified_ios = def;
250 	else if (ios > max)
251 		modified_ios = max;
252 
253 	if (modified_ios) {
254 		(void)cmpxchg(reserved_ios, ios, modified_ios);
255 		ios = modified_ios;
256 	}
257 
258 	return ios;
259 }
260 
261 unsigned dm_get_reserved_bio_based_ios(void)
262 {
263 	return __dm_get_reserved_ios(&reserved_bio_based_ios,
264 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
265 }
266 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
267 
268 unsigned dm_get_reserved_rq_based_ios(void)
269 {
270 	return __dm_get_reserved_ios(&reserved_rq_based_ios,
271 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
272 }
273 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
274 
275 static int __init local_init(void)
276 {
277 	int r = -ENOMEM;
278 
279 	/* allocate a slab for the dm_ios */
280 	_io_cache = KMEM_CACHE(dm_io, 0);
281 	if (!_io_cache)
282 		return r;
283 
284 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
285 	if (!_rq_tio_cache)
286 		goto out_free_io_cache;
287 
288 	r = dm_uevent_init();
289 	if (r)
290 		goto out_free_rq_tio_cache;
291 
292 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
293 	if (!deferred_remove_workqueue) {
294 		r = -ENOMEM;
295 		goto out_uevent_exit;
296 	}
297 
298 	_major = major;
299 	r = register_blkdev(_major, _name);
300 	if (r < 0)
301 		goto out_free_workqueue;
302 
303 	if (!_major)
304 		_major = r;
305 
306 	return 0;
307 
308 out_free_workqueue:
309 	destroy_workqueue(deferred_remove_workqueue);
310 out_uevent_exit:
311 	dm_uevent_exit();
312 out_free_rq_tio_cache:
313 	kmem_cache_destroy(_rq_tio_cache);
314 out_free_io_cache:
315 	kmem_cache_destroy(_io_cache);
316 
317 	return r;
318 }
319 
320 static void local_exit(void)
321 {
322 	flush_scheduled_work();
323 	destroy_workqueue(deferred_remove_workqueue);
324 
325 	kmem_cache_destroy(_rq_tio_cache);
326 	kmem_cache_destroy(_io_cache);
327 	unregister_blkdev(_major, _name);
328 	dm_uevent_exit();
329 
330 	_major = 0;
331 
332 	DMINFO("cleaned up");
333 }
334 
335 static int (*_inits[])(void) __initdata = {
336 	local_init,
337 	dm_target_init,
338 	dm_linear_init,
339 	dm_stripe_init,
340 	dm_io_init,
341 	dm_kcopyd_init,
342 	dm_interface_init,
343 	dm_statistics_init,
344 };
345 
346 static void (*_exits[])(void) = {
347 	local_exit,
348 	dm_target_exit,
349 	dm_linear_exit,
350 	dm_stripe_exit,
351 	dm_io_exit,
352 	dm_kcopyd_exit,
353 	dm_interface_exit,
354 	dm_statistics_exit,
355 };
356 
357 static int __init dm_init(void)
358 {
359 	const int count = ARRAY_SIZE(_inits);
360 
361 	int r, i;
362 
363 	for (i = 0; i < count; i++) {
364 		r = _inits[i]();
365 		if (r)
366 			goto bad;
367 	}
368 
369 	return 0;
370 
371       bad:
372 	while (i--)
373 		_exits[i]();
374 
375 	return r;
376 }
377 
378 static void __exit dm_exit(void)
379 {
380 	int i = ARRAY_SIZE(_exits);
381 
382 	while (i--)
383 		_exits[i]();
384 
385 	/*
386 	 * Should be empty by this point.
387 	 */
388 	idr_destroy(&_minor_idr);
389 }
390 
391 /*
392  * Block device functions
393  */
394 int dm_deleting_md(struct mapped_device *md)
395 {
396 	return test_bit(DMF_DELETING, &md->flags);
397 }
398 
399 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
400 {
401 	struct mapped_device *md;
402 
403 	spin_lock(&_minor_lock);
404 
405 	md = bdev->bd_disk->private_data;
406 	if (!md)
407 		goto out;
408 
409 	if (test_bit(DMF_FREEING, &md->flags) ||
410 	    dm_deleting_md(md)) {
411 		md = NULL;
412 		goto out;
413 	}
414 
415 	dm_get(md);
416 	atomic_inc(&md->open_count);
417 
418 out:
419 	spin_unlock(&_minor_lock);
420 
421 	return md ? 0 : -ENXIO;
422 }
423 
424 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
425 {
426 	struct mapped_device *md = disk->private_data;
427 
428 	spin_lock(&_minor_lock);
429 
430 	if (atomic_dec_and_test(&md->open_count) &&
431 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
432 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
433 
434 	dm_put(md);
435 
436 	spin_unlock(&_minor_lock);
437 }
438 
439 int dm_open_count(struct mapped_device *md)
440 {
441 	return atomic_read(&md->open_count);
442 }
443 
444 /*
445  * Guarantees nothing is using the device before it's deleted.
446  */
447 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
448 {
449 	int r = 0;
450 
451 	spin_lock(&_minor_lock);
452 
453 	if (dm_open_count(md)) {
454 		r = -EBUSY;
455 		if (mark_deferred)
456 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
457 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
458 		r = -EEXIST;
459 	else
460 		set_bit(DMF_DELETING, &md->flags);
461 
462 	spin_unlock(&_minor_lock);
463 
464 	return r;
465 }
466 
467 int dm_cancel_deferred_remove(struct mapped_device *md)
468 {
469 	int r = 0;
470 
471 	spin_lock(&_minor_lock);
472 
473 	if (test_bit(DMF_DELETING, &md->flags))
474 		r = -EBUSY;
475 	else
476 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
477 
478 	spin_unlock(&_minor_lock);
479 
480 	return r;
481 }
482 
483 static void do_deferred_remove(struct work_struct *w)
484 {
485 	dm_deferred_remove();
486 }
487 
488 sector_t dm_get_size(struct mapped_device *md)
489 {
490 	return get_capacity(md->disk);
491 }
492 
493 struct request_queue *dm_get_md_queue(struct mapped_device *md)
494 {
495 	return md->queue;
496 }
497 
498 struct dm_stats *dm_get_stats(struct mapped_device *md)
499 {
500 	return &md->stats;
501 }
502 
503 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
504 {
505 	struct mapped_device *md = bdev->bd_disk->private_data;
506 
507 	return dm_get_geometry(md, geo);
508 }
509 
510 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
511 			unsigned int cmd, unsigned long arg)
512 {
513 	struct mapped_device *md = bdev->bd_disk->private_data;
514 	int srcu_idx;
515 	struct dm_table *map;
516 	struct dm_target *tgt;
517 	int r = -ENOTTY;
518 
519 retry:
520 	map = dm_get_live_table(md, &srcu_idx);
521 
522 	if (!map || !dm_table_get_size(map))
523 		goto out;
524 
525 	/* We only support devices that have a single target */
526 	if (dm_table_get_num_targets(map) != 1)
527 		goto out;
528 
529 	tgt = dm_table_get_target(map, 0);
530 	if (!tgt->type->ioctl)
531 		goto out;
532 
533 	if (dm_suspended_md(md)) {
534 		r = -EAGAIN;
535 		goto out;
536 	}
537 
538 	r = tgt->type->ioctl(tgt, cmd, arg);
539 
540 out:
541 	dm_put_live_table(md, srcu_idx);
542 
543 	if (r == -ENOTCONN) {
544 		msleep(10);
545 		goto retry;
546 	}
547 
548 	return r;
549 }
550 
551 static struct dm_io *alloc_io(struct mapped_device *md)
552 {
553 	return mempool_alloc(md->io_pool, GFP_NOIO);
554 }
555 
556 static void free_io(struct mapped_device *md, struct dm_io *io)
557 {
558 	mempool_free(io, md->io_pool);
559 }
560 
561 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
562 {
563 	bio_put(&tio->clone);
564 }
565 
566 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
567 					    gfp_t gfp_mask)
568 {
569 	return mempool_alloc(md->io_pool, gfp_mask);
570 }
571 
572 static void free_rq_tio(struct dm_rq_target_io *tio)
573 {
574 	mempool_free(tio, tio->md->io_pool);
575 }
576 
577 static int md_in_flight(struct mapped_device *md)
578 {
579 	return atomic_read(&md->pending[READ]) +
580 	       atomic_read(&md->pending[WRITE]);
581 }
582 
583 static void start_io_acct(struct dm_io *io)
584 {
585 	struct mapped_device *md = io->md;
586 	struct bio *bio = io->bio;
587 	int cpu;
588 	int rw = bio_data_dir(bio);
589 
590 	io->start_time = jiffies;
591 
592 	cpu = part_stat_lock();
593 	part_round_stats(cpu, &dm_disk(md)->part0);
594 	part_stat_unlock();
595 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
596 		atomic_inc_return(&md->pending[rw]));
597 
598 	if (unlikely(dm_stats_used(&md->stats)))
599 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
600 				    bio_sectors(bio), false, 0, &io->stats_aux);
601 }
602 
603 static void end_io_acct(struct dm_io *io)
604 {
605 	struct mapped_device *md = io->md;
606 	struct bio *bio = io->bio;
607 	unsigned long duration = jiffies - io->start_time;
608 	int pending;
609 	int rw = bio_data_dir(bio);
610 
611 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
612 
613 	if (unlikely(dm_stats_used(&md->stats)))
614 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
615 				    bio_sectors(bio), true, duration, &io->stats_aux);
616 
617 	/*
618 	 * After this is decremented the bio must not be touched if it is
619 	 * a flush.
620 	 */
621 	pending = atomic_dec_return(&md->pending[rw]);
622 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
623 	pending += atomic_read(&md->pending[rw^0x1]);
624 
625 	/* nudge anyone waiting on suspend queue */
626 	if (!pending)
627 		wake_up(&md->wait);
628 }
629 
630 /*
631  * Add the bio to the list of deferred io.
632  */
633 static void queue_io(struct mapped_device *md, struct bio *bio)
634 {
635 	unsigned long flags;
636 
637 	spin_lock_irqsave(&md->deferred_lock, flags);
638 	bio_list_add(&md->deferred, bio);
639 	spin_unlock_irqrestore(&md->deferred_lock, flags);
640 	queue_work(md->wq, &md->work);
641 }
642 
643 /*
644  * Everyone (including functions in this file), should use this
645  * function to access the md->map field, and make sure they call
646  * dm_put_live_table() when finished.
647  */
648 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
649 {
650 	*srcu_idx = srcu_read_lock(&md->io_barrier);
651 
652 	return srcu_dereference(md->map, &md->io_barrier);
653 }
654 
655 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
656 {
657 	srcu_read_unlock(&md->io_barrier, srcu_idx);
658 }
659 
660 void dm_sync_table(struct mapped_device *md)
661 {
662 	synchronize_srcu(&md->io_barrier);
663 	synchronize_rcu_expedited();
664 }
665 
666 /*
667  * A fast alternative to dm_get_live_table/dm_put_live_table.
668  * The caller must not block between these two functions.
669  */
670 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
671 {
672 	rcu_read_lock();
673 	return rcu_dereference(md->map);
674 }
675 
676 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
677 {
678 	rcu_read_unlock();
679 }
680 
681 /*
682  * Open a table device so we can use it as a map destination.
683  */
684 static int open_table_device(struct table_device *td, dev_t dev,
685 			     struct mapped_device *md)
686 {
687 	static char *_claim_ptr = "I belong to device-mapper";
688 	struct block_device *bdev;
689 
690 	int r;
691 
692 	BUG_ON(td->dm_dev.bdev);
693 
694 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
695 	if (IS_ERR(bdev))
696 		return PTR_ERR(bdev);
697 
698 	r = bd_link_disk_holder(bdev, dm_disk(md));
699 	if (r) {
700 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
701 		return r;
702 	}
703 
704 	td->dm_dev.bdev = bdev;
705 	return 0;
706 }
707 
708 /*
709  * Close a table device that we've been using.
710  */
711 static void close_table_device(struct table_device *td, struct mapped_device *md)
712 {
713 	if (!td->dm_dev.bdev)
714 		return;
715 
716 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
717 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
718 	td->dm_dev.bdev = NULL;
719 }
720 
721 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
722 					      fmode_t mode) {
723 	struct table_device *td;
724 
725 	list_for_each_entry(td, l, list)
726 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
727 			return td;
728 
729 	return NULL;
730 }
731 
732 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
733 			struct dm_dev **result) {
734 	int r;
735 	struct table_device *td;
736 
737 	mutex_lock(&md->table_devices_lock);
738 	td = find_table_device(&md->table_devices, dev, mode);
739 	if (!td) {
740 		td = kmalloc(sizeof(*td), GFP_KERNEL);
741 		if (!td) {
742 			mutex_unlock(&md->table_devices_lock);
743 			return -ENOMEM;
744 		}
745 
746 		td->dm_dev.mode = mode;
747 		td->dm_dev.bdev = NULL;
748 
749 		if ((r = open_table_device(td, dev, md))) {
750 			mutex_unlock(&md->table_devices_lock);
751 			kfree(td);
752 			return r;
753 		}
754 
755 		format_dev_t(td->dm_dev.name, dev);
756 
757 		atomic_set(&td->count, 0);
758 		list_add(&td->list, &md->table_devices);
759 	}
760 	atomic_inc(&td->count);
761 	mutex_unlock(&md->table_devices_lock);
762 
763 	*result = &td->dm_dev;
764 	return 0;
765 }
766 EXPORT_SYMBOL_GPL(dm_get_table_device);
767 
768 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
769 {
770 	struct table_device *td = container_of(d, struct table_device, dm_dev);
771 
772 	mutex_lock(&md->table_devices_lock);
773 	if (atomic_dec_and_test(&td->count)) {
774 		close_table_device(td, md);
775 		list_del(&td->list);
776 		kfree(td);
777 	}
778 	mutex_unlock(&md->table_devices_lock);
779 }
780 EXPORT_SYMBOL(dm_put_table_device);
781 
782 static void free_table_devices(struct list_head *devices)
783 {
784 	struct list_head *tmp, *next;
785 
786 	list_for_each_safe(tmp, next, devices) {
787 		struct table_device *td = list_entry(tmp, struct table_device, list);
788 
789 		DMWARN("dm_destroy: %s still exists with %d references",
790 		       td->dm_dev.name, atomic_read(&td->count));
791 		kfree(td);
792 	}
793 }
794 
795 /*
796  * Get the geometry associated with a dm device
797  */
798 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
799 {
800 	*geo = md->geometry;
801 
802 	return 0;
803 }
804 
805 /*
806  * Set the geometry of a device.
807  */
808 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
809 {
810 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
811 
812 	if (geo->start > sz) {
813 		DMWARN("Start sector is beyond the geometry limits.");
814 		return -EINVAL;
815 	}
816 
817 	md->geometry = *geo;
818 
819 	return 0;
820 }
821 
822 /*-----------------------------------------------------------------
823  * CRUD START:
824  *   A more elegant soln is in the works that uses the queue
825  *   merge fn, unfortunately there are a couple of changes to
826  *   the block layer that I want to make for this.  So in the
827  *   interests of getting something for people to use I give
828  *   you this clearly demarcated crap.
829  *---------------------------------------------------------------*/
830 
831 static int __noflush_suspending(struct mapped_device *md)
832 {
833 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
834 }
835 
836 /*
837  * Decrements the number of outstanding ios that a bio has been
838  * cloned into, completing the original io if necc.
839  */
840 static void dec_pending(struct dm_io *io, int error)
841 {
842 	unsigned long flags;
843 	int io_error;
844 	struct bio *bio;
845 	struct mapped_device *md = io->md;
846 
847 	/* Push-back supersedes any I/O errors */
848 	if (unlikely(error)) {
849 		spin_lock_irqsave(&io->endio_lock, flags);
850 		if (!(io->error > 0 && __noflush_suspending(md)))
851 			io->error = error;
852 		spin_unlock_irqrestore(&io->endio_lock, flags);
853 	}
854 
855 	if (atomic_dec_and_test(&io->io_count)) {
856 		if (io->error == DM_ENDIO_REQUEUE) {
857 			/*
858 			 * Target requested pushing back the I/O.
859 			 */
860 			spin_lock_irqsave(&md->deferred_lock, flags);
861 			if (__noflush_suspending(md))
862 				bio_list_add_head(&md->deferred, io->bio);
863 			else
864 				/* noflush suspend was interrupted. */
865 				io->error = -EIO;
866 			spin_unlock_irqrestore(&md->deferred_lock, flags);
867 		}
868 
869 		io_error = io->error;
870 		bio = io->bio;
871 		end_io_acct(io);
872 		free_io(md, io);
873 
874 		if (io_error == DM_ENDIO_REQUEUE)
875 			return;
876 
877 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
878 			/*
879 			 * Preflush done for flush with data, reissue
880 			 * without REQ_FLUSH.
881 			 */
882 			bio->bi_rw &= ~REQ_FLUSH;
883 			queue_io(md, bio);
884 		} else {
885 			/* done with normal IO or empty flush */
886 			trace_block_bio_complete(md->queue, bio, io_error);
887 			bio_endio(bio, io_error);
888 		}
889 	}
890 }
891 
892 static void disable_write_same(struct mapped_device *md)
893 {
894 	struct queue_limits *limits = dm_get_queue_limits(md);
895 
896 	/* device doesn't really support WRITE SAME, disable it */
897 	limits->max_write_same_sectors = 0;
898 }
899 
900 static void clone_endio(struct bio *bio, int error)
901 {
902 	int r = error;
903 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
904 	struct dm_io *io = tio->io;
905 	struct mapped_device *md = tio->io->md;
906 	dm_endio_fn endio = tio->ti->type->end_io;
907 
908 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
909 		error = -EIO;
910 
911 	if (endio) {
912 		r = endio(tio->ti, bio, error);
913 		if (r < 0 || r == DM_ENDIO_REQUEUE)
914 			/*
915 			 * error and requeue request are handled
916 			 * in dec_pending().
917 			 */
918 			error = r;
919 		else if (r == DM_ENDIO_INCOMPLETE)
920 			/* The target will handle the io */
921 			return;
922 		else if (r) {
923 			DMWARN("unimplemented target endio return value: %d", r);
924 			BUG();
925 		}
926 	}
927 
928 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
929 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
930 		disable_write_same(md);
931 
932 	free_tio(md, tio);
933 	dec_pending(io, error);
934 }
935 
936 /*
937  * Partial completion handling for request-based dm
938  */
939 static void end_clone_bio(struct bio *clone, int error)
940 {
941 	struct dm_rq_clone_bio_info *info =
942 		container_of(clone, struct dm_rq_clone_bio_info, clone);
943 	struct dm_rq_target_io *tio = info->tio;
944 	struct bio *bio = info->orig;
945 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
946 
947 	bio_put(clone);
948 
949 	if (tio->error)
950 		/*
951 		 * An error has already been detected on the request.
952 		 * Once error occurred, just let clone->end_io() handle
953 		 * the remainder.
954 		 */
955 		return;
956 	else if (error) {
957 		/*
958 		 * Don't notice the error to the upper layer yet.
959 		 * The error handling decision is made by the target driver,
960 		 * when the request is completed.
961 		 */
962 		tio->error = error;
963 		return;
964 	}
965 
966 	/*
967 	 * I/O for the bio successfully completed.
968 	 * Notice the data completion to the upper layer.
969 	 */
970 
971 	/*
972 	 * bios are processed from the head of the list.
973 	 * So the completing bio should always be rq->bio.
974 	 * If it's not, something wrong is happening.
975 	 */
976 	if (tio->orig->bio != bio)
977 		DMERR("bio completion is going in the middle of the request");
978 
979 	/*
980 	 * Update the original request.
981 	 * Do not use blk_end_request() here, because it may complete
982 	 * the original request before the clone, and break the ordering.
983 	 */
984 	blk_update_request(tio->orig, 0, nr_bytes);
985 }
986 
987 /*
988  * Don't touch any member of the md after calling this function because
989  * the md may be freed in dm_put() at the end of this function.
990  * Or do dm_get() before calling this function and dm_put() later.
991  */
992 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
993 {
994 	atomic_dec(&md->pending[rw]);
995 
996 	/* nudge anyone waiting on suspend queue */
997 	if (!md_in_flight(md))
998 		wake_up(&md->wait);
999 
1000 	/*
1001 	 * Run this off this callpath, as drivers could invoke end_io while
1002 	 * inside their request_fn (and holding the queue lock). Calling
1003 	 * back into ->request_fn() could deadlock attempting to grab the
1004 	 * queue lock again.
1005 	 */
1006 	if (run_queue)
1007 		blk_run_queue_async(md->queue);
1008 
1009 	/*
1010 	 * dm_put() must be at the end of this function. See the comment above
1011 	 */
1012 	dm_put(md);
1013 }
1014 
1015 static void free_rq_clone(struct request *clone)
1016 {
1017 	struct dm_rq_target_io *tio = clone->end_io_data;
1018 
1019 	blk_rq_unprep_clone(clone);
1020 	free_rq_tio(tio);
1021 }
1022 
1023 /*
1024  * Complete the clone and the original request.
1025  * Must be called without queue lock.
1026  */
1027 static void dm_end_request(struct request *clone, int error)
1028 {
1029 	int rw = rq_data_dir(clone);
1030 	struct dm_rq_target_io *tio = clone->end_io_data;
1031 	struct mapped_device *md = tio->md;
1032 	struct request *rq = tio->orig;
1033 
1034 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1035 		rq->errors = clone->errors;
1036 		rq->resid_len = clone->resid_len;
1037 
1038 		if (rq->sense)
1039 			/*
1040 			 * We are using the sense buffer of the original
1041 			 * request.
1042 			 * So setting the length of the sense data is enough.
1043 			 */
1044 			rq->sense_len = clone->sense_len;
1045 	}
1046 
1047 	free_rq_clone(clone);
1048 	blk_end_request_all(rq, error);
1049 	rq_completed(md, rw, true);
1050 }
1051 
1052 static void dm_unprep_request(struct request *rq)
1053 {
1054 	struct request *clone = rq->special;
1055 
1056 	rq->special = NULL;
1057 	rq->cmd_flags &= ~REQ_DONTPREP;
1058 
1059 	free_rq_clone(clone);
1060 }
1061 
1062 /*
1063  * Requeue the original request of a clone.
1064  */
1065 void dm_requeue_unmapped_request(struct request *clone)
1066 {
1067 	int rw = rq_data_dir(clone);
1068 	struct dm_rq_target_io *tio = clone->end_io_data;
1069 	struct mapped_device *md = tio->md;
1070 	struct request *rq = tio->orig;
1071 	struct request_queue *q = rq->q;
1072 	unsigned long flags;
1073 
1074 	dm_unprep_request(rq);
1075 
1076 	spin_lock_irqsave(q->queue_lock, flags);
1077 	blk_requeue_request(q, rq);
1078 	spin_unlock_irqrestore(q->queue_lock, flags);
1079 
1080 	rq_completed(md, rw, 0);
1081 }
1082 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
1083 
1084 static void __stop_queue(struct request_queue *q)
1085 {
1086 	blk_stop_queue(q);
1087 }
1088 
1089 static void stop_queue(struct request_queue *q)
1090 {
1091 	unsigned long flags;
1092 
1093 	spin_lock_irqsave(q->queue_lock, flags);
1094 	__stop_queue(q);
1095 	spin_unlock_irqrestore(q->queue_lock, flags);
1096 }
1097 
1098 static void __start_queue(struct request_queue *q)
1099 {
1100 	if (blk_queue_stopped(q))
1101 		blk_start_queue(q);
1102 }
1103 
1104 static void start_queue(struct request_queue *q)
1105 {
1106 	unsigned long flags;
1107 
1108 	spin_lock_irqsave(q->queue_lock, flags);
1109 	__start_queue(q);
1110 	spin_unlock_irqrestore(q->queue_lock, flags);
1111 }
1112 
1113 static void dm_done(struct request *clone, int error, bool mapped)
1114 {
1115 	int r = error;
1116 	struct dm_rq_target_io *tio = clone->end_io_data;
1117 	dm_request_endio_fn rq_end_io = NULL;
1118 
1119 	if (tio->ti) {
1120 		rq_end_io = tio->ti->type->rq_end_io;
1121 
1122 		if (mapped && rq_end_io)
1123 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1124 	}
1125 
1126 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1127 		     !clone->q->limits.max_write_same_sectors))
1128 		disable_write_same(tio->md);
1129 
1130 	if (r <= 0)
1131 		/* The target wants to complete the I/O */
1132 		dm_end_request(clone, r);
1133 	else if (r == DM_ENDIO_INCOMPLETE)
1134 		/* The target will handle the I/O */
1135 		return;
1136 	else if (r == DM_ENDIO_REQUEUE)
1137 		/* The target wants to requeue the I/O */
1138 		dm_requeue_unmapped_request(clone);
1139 	else {
1140 		DMWARN("unimplemented target endio return value: %d", r);
1141 		BUG();
1142 	}
1143 }
1144 
1145 /*
1146  * Request completion handler for request-based dm
1147  */
1148 static void dm_softirq_done(struct request *rq)
1149 {
1150 	bool mapped = true;
1151 	struct request *clone = rq->completion_data;
1152 	struct dm_rq_target_io *tio = clone->end_io_data;
1153 
1154 	if (rq->cmd_flags & REQ_FAILED)
1155 		mapped = false;
1156 
1157 	dm_done(clone, tio->error, mapped);
1158 }
1159 
1160 /*
1161  * Complete the clone and the original request with the error status
1162  * through softirq context.
1163  */
1164 static void dm_complete_request(struct request *clone, int error)
1165 {
1166 	struct dm_rq_target_io *tio = clone->end_io_data;
1167 	struct request *rq = tio->orig;
1168 
1169 	tio->error = error;
1170 	rq->completion_data = clone;
1171 	blk_complete_request(rq);
1172 }
1173 
1174 /*
1175  * Complete the not-mapped clone and the original request with the error status
1176  * through softirq context.
1177  * Target's rq_end_io() function isn't called.
1178  * This may be used when the target's map_rq() function fails.
1179  */
1180 void dm_kill_unmapped_request(struct request *clone, int error)
1181 {
1182 	struct dm_rq_target_io *tio = clone->end_io_data;
1183 	struct request *rq = tio->orig;
1184 
1185 	rq->cmd_flags |= REQ_FAILED;
1186 	dm_complete_request(clone, error);
1187 }
1188 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1189 
1190 /*
1191  * Called with the queue lock held
1192  */
1193 static void end_clone_request(struct request *clone, int error)
1194 {
1195 	/*
1196 	 * For just cleaning up the information of the queue in which
1197 	 * the clone was dispatched.
1198 	 * The clone is *NOT* freed actually here because it is alloced from
1199 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1200 	 */
1201 	__blk_put_request(clone->q, clone);
1202 
1203 	/*
1204 	 * Actual request completion is done in a softirq context which doesn't
1205 	 * hold the queue lock.  Otherwise, deadlock could occur because:
1206 	 *     - another request may be submitted by the upper level driver
1207 	 *       of the stacking during the completion
1208 	 *     - the submission which requires queue lock may be done
1209 	 *       against this queue
1210 	 */
1211 	dm_complete_request(clone, error);
1212 }
1213 
1214 /*
1215  * Return maximum size of I/O possible at the supplied sector up to the current
1216  * target boundary.
1217  */
1218 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1219 {
1220 	sector_t target_offset = dm_target_offset(ti, sector);
1221 
1222 	return ti->len - target_offset;
1223 }
1224 
1225 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1226 {
1227 	sector_t len = max_io_len_target_boundary(sector, ti);
1228 	sector_t offset, max_len;
1229 
1230 	/*
1231 	 * Does the target need to split even further?
1232 	 */
1233 	if (ti->max_io_len) {
1234 		offset = dm_target_offset(ti, sector);
1235 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1236 			max_len = sector_div(offset, ti->max_io_len);
1237 		else
1238 			max_len = offset & (ti->max_io_len - 1);
1239 		max_len = ti->max_io_len - max_len;
1240 
1241 		if (len > max_len)
1242 			len = max_len;
1243 	}
1244 
1245 	return len;
1246 }
1247 
1248 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1249 {
1250 	if (len > UINT_MAX) {
1251 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1252 		      (unsigned long long)len, UINT_MAX);
1253 		ti->error = "Maximum size of target IO is too large";
1254 		return -EINVAL;
1255 	}
1256 
1257 	ti->max_io_len = (uint32_t) len;
1258 
1259 	return 0;
1260 }
1261 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1262 
1263 /*
1264  * A target may call dm_accept_partial_bio only from the map routine.  It is
1265  * allowed for all bio types except REQ_FLUSH.
1266  *
1267  * dm_accept_partial_bio informs the dm that the target only wants to process
1268  * additional n_sectors sectors of the bio and the rest of the data should be
1269  * sent in a next bio.
1270  *
1271  * A diagram that explains the arithmetics:
1272  * +--------------------+---------------+-------+
1273  * |         1          |       2       |   3   |
1274  * +--------------------+---------------+-------+
1275  *
1276  * <-------------- *tio->len_ptr --------------->
1277  *                      <------- bi_size ------->
1278  *                      <-- n_sectors -->
1279  *
1280  * Region 1 was already iterated over with bio_advance or similar function.
1281  *	(it may be empty if the target doesn't use bio_advance)
1282  * Region 2 is the remaining bio size that the target wants to process.
1283  *	(it may be empty if region 1 is non-empty, although there is no reason
1284  *	 to make it empty)
1285  * The target requires that region 3 is to be sent in the next bio.
1286  *
1287  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1288  * the partially processed part (the sum of regions 1+2) must be the same for all
1289  * copies of the bio.
1290  */
1291 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1292 {
1293 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1294 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1295 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1296 	BUG_ON(bi_size > *tio->len_ptr);
1297 	BUG_ON(n_sectors > bi_size);
1298 	*tio->len_ptr -= bi_size - n_sectors;
1299 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1300 }
1301 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1302 
1303 static void __map_bio(struct dm_target_io *tio)
1304 {
1305 	int r;
1306 	sector_t sector;
1307 	struct mapped_device *md;
1308 	struct bio *clone = &tio->clone;
1309 	struct dm_target *ti = tio->ti;
1310 
1311 	clone->bi_end_io = clone_endio;
1312 
1313 	/*
1314 	 * Map the clone.  If r == 0 we don't need to do
1315 	 * anything, the target has assumed ownership of
1316 	 * this io.
1317 	 */
1318 	atomic_inc(&tio->io->io_count);
1319 	sector = clone->bi_iter.bi_sector;
1320 	r = ti->type->map(ti, clone);
1321 	if (r == DM_MAPIO_REMAPPED) {
1322 		/* the bio has been remapped so dispatch it */
1323 
1324 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1325 				      tio->io->bio->bi_bdev->bd_dev, sector);
1326 
1327 		generic_make_request(clone);
1328 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1329 		/* error the io and bail out, or requeue it if needed */
1330 		md = tio->io->md;
1331 		dec_pending(tio->io, r);
1332 		free_tio(md, tio);
1333 	} else if (r) {
1334 		DMWARN("unimplemented target map return value: %d", r);
1335 		BUG();
1336 	}
1337 }
1338 
1339 struct clone_info {
1340 	struct mapped_device *md;
1341 	struct dm_table *map;
1342 	struct bio *bio;
1343 	struct dm_io *io;
1344 	sector_t sector;
1345 	unsigned sector_count;
1346 };
1347 
1348 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1349 {
1350 	bio->bi_iter.bi_sector = sector;
1351 	bio->bi_iter.bi_size = to_bytes(len);
1352 }
1353 
1354 /*
1355  * Creates a bio that consists of range of complete bvecs.
1356  */
1357 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1358 		      sector_t sector, unsigned len)
1359 {
1360 	struct bio *clone = &tio->clone;
1361 
1362 	__bio_clone_fast(clone, bio);
1363 
1364 	if (bio_integrity(bio))
1365 		bio_integrity_clone(clone, bio, GFP_NOIO);
1366 
1367 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1368 	clone->bi_iter.bi_size = to_bytes(len);
1369 
1370 	if (bio_integrity(bio))
1371 		bio_integrity_trim(clone, 0, len);
1372 }
1373 
1374 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1375 				      struct dm_target *ti,
1376 				      unsigned target_bio_nr)
1377 {
1378 	struct dm_target_io *tio;
1379 	struct bio *clone;
1380 
1381 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1382 	tio = container_of(clone, struct dm_target_io, clone);
1383 
1384 	tio->io = ci->io;
1385 	tio->ti = ti;
1386 	tio->target_bio_nr = target_bio_nr;
1387 
1388 	return tio;
1389 }
1390 
1391 static void __clone_and_map_simple_bio(struct clone_info *ci,
1392 				       struct dm_target *ti,
1393 				       unsigned target_bio_nr, unsigned *len)
1394 {
1395 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1396 	struct bio *clone = &tio->clone;
1397 
1398 	tio->len_ptr = len;
1399 
1400 	__bio_clone_fast(clone, ci->bio);
1401 	if (len)
1402 		bio_setup_sector(clone, ci->sector, *len);
1403 
1404 	__map_bio(tio);
1405 }
1406 
1407 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1408 				  unsigned num_bios, unsigned *len)
1409 {
1410 	unsigned target_bio_nr;
1411 
1412 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1413 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1414 }
1415 
1416 static int __send_empty_flush(struct clone_info *ci)
1417 {
1418 	unsigned target_nr = 0;
1419 	struct dm_target *ti;
1420 
1421 	BUG_ON(bio_has_data(ci->bio));
1422 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1423 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1424 
1425 	return 0;
1426 }
1427 
1428 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1429 				     sector_t sector, unsigned *len)
1430 {
1431 	struct bio *bio = ci->bio;
1432 	struct dm_target_io *tio;
1433 	unsigned target_bio_nr;
1434 	unsigned num_target_bios = 1;
1435 
1436 	/*
1437 	 * Does the target want to receive duplicate copies of the bio?
1438 	 */
1439 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1440 		num_target_bios = ti->num_write_bios(ti, bio);
1441 
1442 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1443 		tio = alloc_tio(ci, ti, target_bio_nr);
1444 		tio->len_ptr = len;
1445 		clone_bio(tio, bio, sector, *len);
1446 		__map_bio(tio);
1447 	}
1448 }
1449 
1450 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1451 
1452 static unsigned get_num_discard_bios(struct dm_target *ti)
1453 {
1454 	return ti->num_discard_bios;
1455 }
1456 
1457 static unsigned get_num_write_same_bios(struct dm_target *ti)
1458 {
1459 	return ti->num_write_same_bios;
1460 }
1461 
1462 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1463 
1464 static bool is_split_required_for_discard(struct dm_target *ti)
1465 {
1466 	return ti->split_discard_bios;
1467 }
1468 
1469 static int __send_changing_extent_only(struct clone_info *ci,
1470 				       get_num_bios_fn get_num_bios,
1471 				       is_split_required_fn is_split_required)
1472 {
1473 	struct dm_target *ti;
1474 	unsigned len;
1475 	unsigned num_bios;
1476 
1477 	do {
1478 		ti = dm_table_find_target(ci->map, ci->sector);
1479 		if (!dm_target_is_valid(ti))
1480 			return -EIO;
1481 
1482 		/*
1483 		 * Even though the device advertised support for this type of
1484 		 * request, that does not mean every target supports it, and
1485 		 * reconfiguration might also have changed that since the
1486 		 * check was performed.
1487 		 */
1488 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1489 		if (!num_bios)
1490 			return -EOPNOTSUPP;
1491 
1492 		if (is_split_required && !is_split_required(ti))
1493 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1494 		else
1495 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1496 
1497 		__send_duplicate_bios(ci, ti, num_bios, &len);
1498 
1499 		ci->sector += len;
1500 	} while (ci->sector_count -= len);
1501 
1502 	return 0;
1503 }
1504 
1505 static int __send_discard(struct clone_info *ci)
1506 {
1507 	return __send_changing_extent_only(ci, get_num_discard_bios,
1508 					   is_split_required_for_discard);
1509 }
1510 
1511 static int __send_write_same(struct clone_info *ci)
1512 {
1513 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1514 }
1515 
1516 /*
1517  * Select the correct strategy for processing a non-flush bio.
1518  */
1519 static int __split_and_process_non_flush(struct clone_info *ci)
1520 {
1521 	struct bio *bio = ci->bio;
1522 	struct dm_target *ti;
1523 	unsigned len;
1524 
1525 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1526 		return __send_discard(ci);
1527 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1528 		return __send_write_same(ci);
1529 
1530 	ti = dm_table_find_target(ci->map, ci->sector);
1531 	if (!dm_target_is_valid(ti))
1532 		return -EIO;
1533 
1534 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1535 
1536 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1537 
1538 	ci->sector += len;
1539 	ci->sector_count -= len;
1540 
1541 	return 0;
1542 }
1543 
1544 /*
1545  * Entry point to split a bio into clones and submit them to the targets.
1546  */
1547 static void __split_and_process_bio(struct mapped_device *md,
1548 				    struct dm_table *map, struct bio *bio)
1549 {
1550 	struct clone_info ci;
1551 	int error = 0;
1552 
1553 	if (unlikely(!map)) {
1554 		bio_io_error(bio);
1555 		return;
1556 	}
1557 
1558 	ci.map = map;
1559 	ci.md = md;
1560 	ci.io = alloc_io(md);
1561 	ci.io->error = 0;
1562 	atomic_set(&ci.io->io_count, 1);
1563 	ci.io->bio = bio;
1564 	ci.io->md = md;
1565 	spin_lock_init(&ci.io->endio_lock);
1566 	ci.sector = bio->bi_iter.bi_sector;
1567 
1568 	start_io_acct(ci.io);
1569 
1570 	if (bio->bi_rw & REQ_FLUSH) {
1571 		ci.bio = &ci.md->flush_bio;
1572 		ci.sector_count = 0;
1573 		error = __send_empty_flush(&ci);
1574 		/* dec_pending submits any data associated with flush */
1575 	} else {
1576 		ci.bio = bio;
1577 		ci.sector_count = bio_sectors(bio);
1578 		while (ci.sector_count && !error)
1579 			error = __split_and_process_non_flush(&ci);
1580 	}
1581 
1582 	/* drop the extra reference count */
1583 	dec_pending(ci.io, error);
1584 }
1585 /*-----------------------------------------------------------------
1586  * CRUD END
1587  *---------------------------------------------------------------*/
1588 
1589 static int dm_merge_bvec(struct request_queue *q,
1590 			 struct bvec_merge_data *bvm,
1591 			 struct bio_vec *biovec)
1592 {
1593 	struct mapped_device *md = q->queuedata;
1594 	struct dm_table *map = dm_get_live_table_fast(md);
1595 	struct dm_target *ti;
1596 	sector_t max_sectors;
1597 	int max_size = 0;
1598 
1599 	if (unlikely(!map))
1600 		goto out;
1601 
1602 	ti = dm_table_find_target(map, bvm->bi_sector);
1603 	if (!dm_target_is_valid(ti))
1604 		goto out;
1605 
1606 	/*
1607 	 * Find maximum amount of I/O that won't need splitting
1608 	 */
1609 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1610 			  (sector_t) queue_max_sectors(q));
1611 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1612 	if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1613 		max_size = 0;
1614 
1615 	/*
1616 	 * merge_bvec_fn() returns number of bytes
1617 	 * it can accept at this offset
1618 	 * max is precomputed maximal io size
1619 	 */
1620 	if (max_size && ti->type->merge)
1621 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1622 	/*
1623 	 * If the target doesn't support merge method and some of the devices
1624 	 * provided their merge_bvec method (we know this by looking for the
1625 	 * max_hw_sectors that dm_set_device_limits may set), then we can't
1626 	 * allow bios with multiple vector entries.  So always set max_size
1627 	 * to 0, and the code below allows just one page.
1628 	 */
1629 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1630 		max_size = 0;
1631 
1632 out:
1633 	dm_put_live_table_fast(md);
1634 	/*
1635 	 * Always allow an entire first page
1636 	 */
1637 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1638 		max_size = biovec->bv_len;
1639 
1640 	return max_size;
1641 }
1642 
1643 /*
1644  * The request function that just remaps the bio built up by
1645  * dm_merge_bvec.
1646  */
1647 static void _dm_request(struct request_queue *q, struct bio *bio)
1648 {
1649 	int rw = bio_data_dir(bio);
1650 	struct mapped_device *md = q->queuedata;
1651 	int srcu_idx;
1652 	struct dm_table *map;
1653 
1654 	map = dm_get_live_table(md, &srcu_idx);
1655 
1656 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1657 
1658 	/* if we're suspended, we have to queue this io for later */
1659 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1660 		dm_put_live_table(md, srcu_idx);
1661 
1662 		if (bio_rw(bio) != READA)
1663 			queue_io(md, bio);
1664 		else
1665 			bio_io_error(bio);
1666 		return;
1667 	}
1668 
1669 	__split_and_process_bio(md, map, bio);
1670 	dm_put_live_table(md, srcu_idx);
1671 	return;
1672 }
1673 
1674 int dm_request_based(struct mapped_device *md)
1675 {
1676 	return blk_queue_stackable(md->queue);
1677 }
1678 
1679 static void dm_request(struct request_queue *q, struct bio *bio)
1680 {
1681 	struct mapped_device *md = q->queuedata;
1682 
1683 	if (dm_request_based(md))
1684 		blk_queue_bio(q, bio);
1685 	else
1686 		_dm_request(q, bio);
1687 }
1688 
1689 void dm_dispatch_request(struct request *rq)
1690 {
1691 	int r;
1692 
1693 	if (blk_queue_io_stat(rq->q))
1694 		rq->cmd_flags |= REQ_IO_STAT;
1695 
1696 	rq->start_time = jiffies;
1697 	r = blk_insert_cloned_request(rq->q, rq);
1698 	if (r)
1699 		dm_complete_request(rq, r);
1700 }
1701 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1702 
1703 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1704 				 void *data)
1705 {
1706 	struct dm_rq_target_io *tio = data;
1707 	struct dm_rq_clone_bio_info *info =
1708 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1709 
1710 	info->orig = bio_orig;
1711 	info->tio = tio;
1712 	bio->bi_end_io = end_clone_bio;
1713 
1714 	return 0;
1715 }
1716 
1717 static int setup_clone(struct request *clone, struct request *rq,
1718 		       struct dm_rq_target_io *tio)
1719 {
1720 	int r;
1721 
1722 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1723 			      dm_rq_bio_constructor, tio);
1724 	if (r)
1725 		return r;
1726 
1727 	clone->cmd = rq->cmd;
1728 	clone->cmd_len = rq->cmd_len;
1729 	clone->sense = rq->sense;
1730 	clone->end_io = end_clone_request;
1731 	clone->end_io_data = tio;
1732 
1733 	return 0;
1734 }
1735 
1736 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1737 				gfp_t gfp_mask)
1738 {
1739 	struct request *clone;
1740 	struct dm_rq_target_io *tio;
1741 
1742 	tio = alloc_rq_tio(md, gfp_mask);
1743 	if (!tio)
1744 		return NULL;
1745 
1746 	tio->md = md;
1747 	tio->ti = NULL;
1748 	tio->orig = rq;
1749 	tio->error = 0;
1750 	memset(&tio->info, 0, sizeof(tio->info));
1751 
1752 	clone = &tio->clone;
1753 	if (setup_clone(clone, rq, tio)) {
1754 		/* -ENOMEM */
1755 		free_rq_tio(tio);
1756 		return NULL;
1757 	}
1758 
1759 	return clone;
1760 }
1761 
1762 /*
1763  * Called with the queue lock held.
1764  */
1765 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1766 {
1767 	struct mapped_device *md = q->queuedata;
1768 	struct request *clone;
1769 
1770 	if (unlikely(rq->special)) {
1771 		DMWARN("Already has something in rq->special.");
1772 		return BLKPREP_KILL;
1773 	}
1774 
1775 	clone = clone_rq(rq, md, GFP_ATOMIC);
1776 	if (!clone)
1777 		return BLKPREP_DEFER;
1778 
1779 	rq->special = clone;
1780 	rq->cmd_flags |= REQ_DONTPREP;
1781 
1782 	return BLKPREP_OK;
1783 }
1784 
1785 /*
1786  * Returns:
1787  * 0  : the request has been processed (not requeued)
1788  * !0 : the request has been requeued
1789  */
1790 static int map_request(struct dm_target *ti, struct request *clone,
1791 		       struct mapped_device *md)
1792 {
1793 	int r, requeued = 0;
1794 	struct dm_rq_target_io *tio = clone->end_io_data;
1795 
1796 	tio->ti = ti;
1797 	r = ti->type->map_rq(ti, clone, &tio->info);
1798 	switch (r) {
1799 	case DM_MAPIO_SUBMITTED:
1800 		/* The target has taken the I/O to submit by itself later */
1801 		break;
1802 	case DM_MAPIO_REMAPPED:
1803 		/* The target has remapped the I/O so dispatch it */
1804 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1805 				     blk_rq_pos(tio->orig));
1806 		dm_dispatch_request(clone);
1807 		break;
1808 	case DM_MAPIO_REQUEUE:
1809 		/* The target wants to requeue the I/O */
1810 		dm_requeue_unmapped_request(clone);
1811 		requeued = 1;
1812 		break;
1813 	default:
1814 		if (r > 0) {
1815 			DMWARN("unimplemented target map return value: %d", r);
1816 			BUG();
1817 		}
1818 
1819 		/* The target wants to complete the I/O */
1820 		dm_kill_unmapped_request(clone, r);
1821 		break;
1822 	}
1823 
1824 	return requeued;
1825 }
1826 
1827 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1828 {
1829 	struct request *clone;
1830 
1831 	blk_start_request(orig);
1832 	clone = orig->special;
1833 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1834 
1835 	/*
1836 	 * Hold the md reference here for the in-flight I/O.
1837 	 * We can't rely on the reference count by device opener,
1838 	 * because the device may be closed during the request completion
1839 	 * when all bios are completed.
1840 	 * See the comment in rq_completed() too.
1841 	 */
1842 	dm_get(md);
1843 
1844 	return clone;
1845 }
1846 
1847 /*
1848  * q->request_fn for request-based dm.
1849  * Called with the queue lock held.
1850  */
1851 static void dm_request_fn(struct request_queue *q)
1852 {
1853 	struct mapped_device *md = q->queuedata;
1854 	int srcu_idx;
1855 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1856 	struct dm_target *ti;
1857 	struct request *rq, *clone;
1858 	sector_t pos;
1859 
1860 	/*
1861 	 * For suspend, check blk_queue_stopped() and increment
1862 	 * ->pending within a single queue_lock not to increment the
1863 	 * number of in-flight I/Os after the queue is stopped in
1864 	 * dm_suspend().
1865 	 */
1866 	while (!blk_queue_stopped(q)) {
1867 		rq = blk_peek_request(q);
1868 		if (!rq)
1869 			goto delay_and_out;
1870 
1871 		/* always use block 0 to find the target for flushes for now */
1872 		pos = 0;
1873 		if (!(rq->cmd_flags & REQ_FLUSH))
1874 			pos = blk_rq_pos(rq);
1875 
1876 		ti = dm_table_find_target(map, pos);
1877 		if (!dm_target_is_valid(ti)) {
1878 			/*
1879 			 * Must perform setup, that dm_done() requires,
1880 			 * before calling dm_kill_unmapped_request
1881 			 */
1882 			DMERR_LIMIT("request attempted access beyond the end of device");
1883 			clone = dm_start_request(md, rq);
1884 			dm_kill_unmapped_request(clone, -EIO);
1885 			continue;
1886 		}
1887 
1888 		if (ti->type->busy && ti->type->busy(ti))
1889 			goto delay_and_out;
1890 
1891 		clone = dm_start_request(md, rq);
1892 
1893 		spin_unlock(q->queue_lock);
1894 		if (map_request(ti, clone, md))
1895 			goto requeued;
1896 
1897 		BUG_ON(!irqs_disabled());
1898 		spin_lock(q->queue_lock);
1899 	}
1900 
1901 	goto out;
1902 
1903 requeued:
1904 	BUG_ON(!irqs_disabled());
1905 	spin_lock(q->queue_lock);
1906 
1907 delay_and_out:
1908 	blk_delay_queue(q, HZ / 10);
1909 out:
1910 	dm_put_live_table(md, srcu_idx);
1911 }
1912 
1913 int dm_underlying_device_busy(struct request_queue *q)
1914 {
1915 	return blk_lld_busy(q);
1916 }
1917 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1918 
1919 static int dm_lld_busy(struct request_queue *q)
1920 {
1921 	int r;
1922 	struct mapped_device *md = q->queuedata;
1923 	struct dm_table *map = dm_get_live_table_fast(md);
1924 
1925 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1926 		r = 1;
1927 	else
1928 		r = dm_table_any_busy_target(map);
1929 
1930 	dm_put_live_table_fast(md);
1931 
1932 	return r;
1933 }
1934 
1935 static int dm_any_congested(void *congested_data, int bdi_bits)
1936 {
1937 	int r = bdi_bits;
1938 	struct mapped_device *md = congested_data;
1939 	struct dm_table *map;
1940 
1941 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1942 		map = dm_get_live_table_fast(md);
1943 		if (map) {
1944 			/*
1945 			 * Request-based dm cares about only own queue for
1946 			 * the query about congestion status of request_queue
1947 			 */
1948 			if (dm_request_based(md))
1949 				r = md->queue->backing_dev_info.state &
1950 				    bdi_bits;
1951 			else
1952 				r = dm_table_any_congested(map, bdi_bits);
1953 		}
1954 		dm_put_live_table_fast(md);
1955 	}
1956 
1957 	return r;
1958 }
1959 
1960 /*-----------------------------------------------------------------
1961  * An IDR is used to keep track of allocated minor numbers.
1962  *---------------------------------------------------------------*/
1963 static void free_minor(int minor)
1964 {
1965 	spin_lock(&_minor_lock);
1966 	idr_remove(&_minor_idr, minor);
1967 	spin_unlock(&_minor_lock);
1968 }
1969 
1970 /*
1971  * See if the device with a specific minor # is free.
1972  */
1973 static int specific_minor(int minor)
1974 {
1975 	int r;
1976 
1977 	if (minor >= (1 << MINORBITS))
1978 		return -EINVAL;
1979 
1980 	idr_preload(GFP_KERNEL);
1981 	spin_lock(&_minor_lock);
1982 
1983 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1984 
1985 	spin_unlock(&_minor_lock);
1986 	idr_preload_end();
1987 	if (r < 0)
1988 		return r == -ENOSPC ? -EBUSY : r;
1989 	return 0;
1990 }
1991 
1992 static int next_free_minor(int *minor)
1993 {
1994 	int r;
1995 
1996 	idr_preload(GFP_KERNEL);
1997 	spin_lock(&_minor_lock);
1998 
1999 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2000 
2001 	spin_unlock(&_minor_lock);
2002 	idr_preload_end();
2003 	if (r < 0)
2004 		return r;
2005 	*minor = r;
2006 	return 0;
2007 }
2008 
2009 static const struct block_device_operations dm_blk_dops;
2010 
2011 static void dm_wq_work(struct work_struct *work);
2012 
2013 static void dm_init_md_queue(struct mapped_device *md)
2014 {
2015 	/*
2016 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2017 	 * devices.  The type of this dm device has not been decided yet.
2018 	 * The type is decided at the first table loading time.
2019 	 * To prevent problematic device stacking, clear the queue flag
2020 	 * for request stacking support until then.
2021 	 *
2022 	 * This queue is new, so no concurrency on the queue_flags.
2023 	 */
2024 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2025 
2026 	md->queue->queuedata = md;
2027 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2028 	md->queue->backing_dev_info.congested_data = md;
2029 	blk_queue_make_request(md->queue, dm_request);
2030 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2031 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2032 }
2033 
2034 /*
2035  * Allocate and initialise a blank device with a given minor.
2036  */
2037 static struct mapped_device *alloc_dev(int minor)
2038 {
2039 	int r;
2040 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2041 	void *old_md;
2042 
2043 	if (!md) {
2044 		DMWARN("unable to allocate device, out of memory.");
2045 		return NULL;
2046 	}
2047 
2048 	if (!try_module_get(THIS_MODULE))
2049 		goto bad_module_get;
2050 
2051 	/* get a minor number for the dev */
2052 	if (minor == DM_ANY_MINOR)
2053 		r = next_free_minor(&minor);
2054 	else
2055 		r = specific_minor(minor);
2056 	if (r < 0)
2057 		goto bad_minor;
2058 
2059 	r = init_srcu_struct(&md->io_barrier);
2060 	if (r < 0)
2061 		goto bad_io_barrier;
2062 
2063 	md->type = DM_TYPE_NONE;
2064 	mutex_init(&md->suspend_lock);
2065 	mutex_init(&md->type_lock);
2066 	mutex_init(&md->table_devices_lock);
2067 	spin_lock_init(&md->deferred_lock);
2068 	atomic_set(&md->holders, 1);
2069 	atomic_set(&md->open_count, 0);
2070 	atomic_set(&md->event_nr, 0);
2071 	atomic_set(&md->uevent_seq, 0);
2072 	INIT_LIST_HEAD(&md->uevent_list);
2073 	INIT_LIST_HEAD(&md->table_devices);
2074 	spin_lock_init(&md->uevent_lock);
2075 
2076 	md->queue = blk_alloc_queue(GFP_KERNEL);
2077 	if (!md->queue)
2078 		goto bad_queue;
2079 
2080 	dm_init_md_queue(md);
2081 
2082 	md->disk = alloc_disk(1);
2083 	if (!md->disk)
2084 		goto bad_disk;
2085 
2086 	atomic_set(&md->pending[0], 0);
2087 	atomic_set(&md->pending[1], 0);
2088 	init_waitqueue_head(&md->wait);
2089 	INIT_WORK(&md->work, dm_wq_work);
2090 	init_waitqueue_head(&md->eventq);
2091 	init_completion(&md->kobj_holder.completion);
2092 
2093 	md->disk->major = _major;
2094 	md->disk->first_minor = minor;
2095 	md->disk->fops = &dm_blk_dops;
2096 	md->disk->queue = md->queue;
2097 	md->disk->private_data = md;
2098 	sprintf(md->disk->disk_name, "dm-%d", minor);
2099 	add_disk(md->disk);
2100 	format_dev_t(md->name, MKDEV(_major, minor));
2101 
2102 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2103 	if (!md->wq)
2104 		goto bad_thread;
2105 
2106 	md->bdev = bdget_disk(md->disk, 0);
2107 	if (!md->bdev)
2108 		goto bad_bdev;
2109 
2110 	bio_init(&md->flush_bio);
2111 	md->flush_bio.bi_bdev = md->bdev;
2112 	md->flush_bio.bi_rw = WRITE_FLUSH;
2113 
2114 	dm_stats_init(&md->stats);
2115 
2116 	/* Populate the mapping, nobody knows we exist yet */
2117 	spin_lock(&_minor_lock);
2118 	old_md = idr_replace(&_minor_idr, md, minor);
2119 	spin_unlock(&_minor_lock);
2120 
2121 	BUG_ON(old_md != MINOR_ALLOCED);
2122 
2123 	return md;
2124 
2125 bad_bdev:
2126 	destroy_workqueue(md->wq);
2127 bad_thread:
2128 	del_gendisk(md->disk);
2129 	put_disk(md->disk);
2130 bad_disk:
2131 	blk_cleanup_queue(md->queue);
2132 bad_queue:
2133 	cleanup_srcu_struct(&md->io_barrier);
2134 bad_io_barrier:
2135 	free_minor(minor);
2136 bad_minor:
2137 	module_put(THIS_MODULE);
2138 bad_module_get:
2139 	kfree(md);
2140 	return NULL;
2141 }
2142 
2143 static void unlock_fs(struct mapped_device *md);
2144 
2145 static void free_dev(struct mapped_device *md)
2146 {
2147 	int minor = MINOR(disk_devt(md->disk));
2148 
2149 	unlock_fs(md);
2150 	bdput(md->bdev);
2151 	destroy_workqueue(md->wq);
2152 	if (md->io_pool)
2153 		mempool_destroy(md->io_pool);
2154 	if (md->bs)
2155 		bioset_free(md->bs);
2156 	blk_integrity_unregister(md->disk);
2157 	del_gendisk(md->disk);
2158 	cleanup_srcu_struct(&md->io_barrier);
2159 	free_table_devices(&md->table_devices);
2160 	free_minor(minor);
2161 
2162 	spin_lock(&_minor_lock);
2163 	md->disk->private_data = NULL;
2164 	spin_unlock(&_minor_lock);
2165 
2166 	put_disk(md->disk);
2167 	blk_cleanup_queue(md->queue);
2168 	dm_stats_cleanup(&md->stats);
2169 	module_put(THIS_MODULE);
2170 	kfree(md);
2171 }
2172 
2173 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2174 {
2175 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2176 
2177 	if (md->io_pool && md->bs) {
2178 		/* The md already has necessary mempools. */
2179 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2180 			/*
2181 			 * Reload bioset because front_pad may have changed
2182 			 * because a different table was loaded.
2183 			 */
2184 			bioset_free(md->bs);
2185 			md->bs = p->bs;
2186 			p->bs = NULL;
2187 		} else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2188 			/*
2189 			 * There's no need to reload with request-based dm
2190 			 * because the size of front_pad doesn't change.
2191 			 * Note for future: If you are to reload bioset,
2192 			 * prep-ed requests in the queue may refer
2193 			 * to bio from the old bioset, so you must walk
2194 			 * through the queue to unprep.
2195 			 */
2196 		}
2197 		goto out;
2198 	}
2199 
2200 	BUG_ON(!p || md->io_pool || md->bs);
2201 
2202 	md->io_pool = p->io_pool;
2203 	p->io_pool = NULL;
2204 	md->bs = p->bs;
2205 	p->bs = NULL;
2206 
2207 out:
2208 	/* mempool bind completed, now no need any mempools in the table */
2209 	dm_table_free_md_mempools(t);
2210 }
2211 
2212 /*
2213  * Bind a table to the device.
2214  */
2215 static void event_callback(void *context)
2216 {
2217 	unsigned long flags;
2218 	LIST_HEAD(uevents);
2219 	struct mapped_device *md = (struct mapped_device *) context;
2220 
2221 	spin_lock_irqsave(&md->uevent_lock, flags);
2222 	list_splice_init(&md->uevent_list, &uevents);
2223 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2224 
2225 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2226 
2227 	atomic_inc(&md->event_nr);
2228 	wake_up(&md->eventq);
2229 }
2230 
2231 /*
2232  * Protected by md->suspend_lock obtained by dm_swap_table().
2233  */
2234 static void __set_size(struct mapped_device *md, sector_t size)
2235 {
2236 	set_capacity(md->disk, size);
2237 
2238 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2239 }
2240 
2241 /*
2242  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2243  *
2244  * If this function returns 0, then the device is either a non-dm
2245  * device without a merge_bvec_fn, or it is a dm device that is
2246  * able to split any bios it receives that are too big.
2247  */
2248 int dm_queue_merge_is_compulsory(struct request_queue *q)
2249 {
2250 	struct mapped_device *dev_md;
2251 
2252 	if (!q->merge_bvec_fn)
2253 		return 0;
2254 
2255 	if (q->make_request_fn == dm_request) {
2256 		dev_md = q->queuedata;
2257 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2258 			return 0;
2259 	}
2260 
2261 	return 1;
2262 }
2263 
2264 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2265 					 struct dm_dev *dev, sector_t start,
2266 					 sector_t len, void *data)
2267 {
2268 	struct block_device *bdev = dev->bdev;
2269 	struct request_queue *q = bdev_get_queue(bdev);
2270 
2271 	return dm_queue_merge_is_compulsory(q);
2272 }
2273 
2274 /*
2275  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2276  * on the properties of the underlying devices.
2277  */
2278 static int dm_table_merge_is_optional(struct dm_table *table)
2279 {
2280 	unsigned i = 0;
2281 	struct dm_target *ti;
2282 
2283 	while (i < dm_table_get_num_targets(table)) {
2284 		ti = dm_table_get_target(table, i++);
2285 
2286 		if (ti->type->iterate_devices &&
2287 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2288 			return 0;
2289 	}
2290 
2291 	return 1;
2292 }
2293 
2294 /*
2295  * Returns old map, which caller must destroy.
2296  */
2297 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2298 			       struct queue_limits *limits)
2299 {
2300 	struct dm_table *old_map;
2301 	struct request_queue *q = md->queue;
2302 	sector_t size;
2303 	int merge_is_optional;
2304 
2305 	size = dm_table_get_size(t);
2306 
2307 	/*
2308 	 * Wipe any geometry if the size of the table changed.
2309 	 */
2310 	if (size != dm_get_size(md))
2311 		memset(&md->geometry, 0, sizeof(md->geometry));
2312 
2313 	__set_size(md, size);
2314 
2315 	dm_table_event_callback(t, event_callback, md);
2316 
2317 	/*
2318 	 * The queue hasn't been stopped yet, if the old table type wasn't
2319 	 * for request-based during suspension.  So stop it to prevent
2320 	 * I/O mapping before resume.
2321 	 * This must be done before setting the queue restrictions,
2322 	 * because request-based dm may be run just after the setting.
2323 	 */
2324 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2325 		stop_queue(q);
2326 
2327 	__bind_mempools(md, t);
2328 
2329 	merge_is_optional = dm_table_merge_is_optional(t);
2330 
2331 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2332 	rcu_assign_pointer(md->map, t);
2333 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2334 
2335 	dm_table_set_restrictions(t, q, limits);
2336 	if (merge_is_optional)
2337 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2338 	else
2339 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2340 	if (old_map)
2341 		dm_sync_table(md);
2342 
2343 	return old_map;
2344 }
2345 
2346 /*
2347  * Returns unbound table for the caller to free.
2348  */
2349 static struct dm_table *__unbind(struct mapped_device *md)
2350 {
2351 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2352 
2353 	if (!map)
2354 		return NULL;
2355 
2356 	dm_table_event_callback(map, NULL, NULL);
2357 	RCU_INIT_POINTER(md->map, NULL);
2358 	dm_sync_table(md);
2359 
2360 	return map;
2361 }
2362 
2363 /*
2364  * Constructor for a new device.
2365  */
2366 int dm_create(int minor, struct mapped_device **result)
2367 {
2368 	struct mapped_device *md;
2369 
2370 	md = alloc_dev(minor);
2371 	if (!md)
2372 		return -ENXIO;
2373 
2374 	dm_sysfs_init(md);
2375 
2376 	*result = md;
2377 	return 0;
2378 }
2379 
2380 /*
2381  * Functions to manage md->type.
2382  * All are required to hold md->type_lock.
2383  */
2384 void dm_lock_md_type(struct mapped_device *md)
2385 {
2386 	mutex_lock(&md->type_lock);
2387 }
2388 
2389 void dm_unlock_md_type(struct mapped_device *md)
2390 {
2391 	mutex_unlock(&md->type_lock);
2392 }
2393 
2394 void dm_set_md_type(struct mapped_device *md, unsigned type)
2395 {
2396 	BUG_ON(!mutex_is_locked(&md->type_lock));
2397 	md->type = type;
2398 }
2399 
2400 unsigned dm_get_md_type(struct mapped_device *md)
2401 {
2402 	BUG_ON(!mutex_is_locked(&md->type_lock));
2403 	return md->type;
2404 }
2405 
2406 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2407 {
2408 	return md->immutable_target_type;
2409 }
2410 
2411 /*
2412  * The queue_limits are only valid as long as you have a reference
2413  * count on 'md'.
2414  */
2415 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2416 {
2417 	BUG_ON(!atomic_read(&md->holders));
2418 	return &md->queue->limits;
2419 }
2420 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2421 
2422 /*
2423  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2424  */
2425 static int dm_init_request_based_queue(struct mapped_device *md)
2426 {
2427 	struct request_queue *q = NULL;
2428 
2429 	if (md->queue->elevator)
2430 		return 1;
2431 
2432 	/* Fully initialize the queue */
2433 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2434 	if (!q)
2435 		return 0;
2436 
2437 	md->queue = q;
2438 	dm_init_md_queue(md);
2439 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2440 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2441 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2442 
2443 	elv_register_queue(md->queue);
2444 
2445 	return 1;
2446 }
2447 
2448 /*
2449  * Setup the DM device's queue based on md's type
2450  */
2451 int dm_setup_md_queue(struct mapped_device *md)
2452 {
2453 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2454 	    !dm_init_request_based_queue(md)) {
2455 		DMWARN("Cannot initialize queue for request-based mapped device");
2456 		return -EINVAL;
2457 	}
2458 
2459 	return 0;
2460 }
2461 
2462 static struct mapped_device *dm_find_md(dev_t dev)
2463 {
2464 	struct mapped_device *md;
2465 	unsigned minor = MINOR(dev);
2466 
2467 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2468 		return NULL;
2469 
2470 	spin_lock(&_minor_lock);
2471 
2472 	md = idr_find(&_minor_idr, minor);
2473 	if (md && (md == MINOR_ALLOCED ||
2474 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2475 		   dm_deleting_md(md) ||
2476 		   test_bit(DMF_FREEING, &md->flags))) {
2477 		md = NULL;
2478 		goto out;
2479 	}
2480 
2481 out:
2482 	spin_unlock(&_minor_lock);
2483 
2484 	return md;
2485 }
2486 
2487 struct mapped_device *dm_get_md(dev_t dev)
2488 {
2489 	struct mapped_device *md = dm_find_md(dev);
2490 
2491 	if (md)
2492 		dm_get(md);
2493 
2494 	return md;
2495 }
2496 EXPORT_SYMBOL_GPL(dm_get_md);
2497 
2498 void *dm_get_mdptr(struct mapped_device *md)
2499 {
2500 	return md->interface_ptr;
2501 }
2502 
2503 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2504 {
2505 	md->interface_ptr = ptr;
2506 }
2507 
2508 void dm_get(struct mapped_device *md)
2509 {
2510 	atomic_inc(&md->holders);
2511 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2512 }
2513 
2514 const char *dm_device_name(struct mapped_device *md)
2515 {
2516 	return md->name;
2517 }
2518 EXPORT_SYMBOL_GPL(dm_device_name);
2519 
2520 static void __dm_destroy(struct mapped_device *md, bool wait)
2521 {
2522 	struct dm_table *map;
2523 	int srcu_idx;
2524 
2525 	might_sleep();
2526 
2527 	spin_lock(&_minor_lock);
2528 	map = dm_get_live_table(md, &srcu_idx);
2529 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2530 	set_bit(DMF_FREEING, &md->flags);
2531 	spin_unlock(&_minor_lock);
2532 
2533 	if (!dm_suspended_md(md)) {
2534 		dm_table_presuspend_targets(map);
2535 		dm_table_postsuspend_targets(map);
2536 	}
2537 
2538 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2539 	dm_put_live_table(md, srcu_idx);
2540 
2541 	/*
2542 	 * Rare, but there may be I/O requests still going to complete,
2543 	 * for example.  Wait for all references to disappear.
2544 	 * No one should increment the reference count of the mapped_device,
2545 	 * after the mapped_device state becomes DMF_FREEING.
2546 	 */
2547 	if (wait)
2548 		while (atomic_read(&md->holders))
2549 			msleep(1);
2550 	else if (atomic_read(&md->holders))
2551 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2552 		       dm_device_name(md), atomic_read(&md->holders));
2553 
2554 	dm_sysfs_exit(md);
2555 	dm_table_destroy(__unbind(md));
2556 	free_dev(md);
2557 }
2558 
2559 void dm_destroy(struct mapped_device *md)
2560 {
2561 	__dm_destroy(md, true);
2562 }
2563 
2564 void dm_destroy_immediate(struct mapped_device *md)
2565 {
2566 	__dm_destroy(md, false);
2567 }
2568 
2569 void dm_put(struct mapped_device *md)
2570 {
2571 	atomic_dec(&md->holders);
2572 }
2573 EXPORT_SYMBOL_GPL(dm_put);
2574 
2575 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2576 {
2577 	int r = 0;
2578 	DECLARE_WAITQUEUE(wait, current);
2579 
2580 	add_wait_queue(&md->wait, &wait);
2581 
2582 	while (1) {
2583 		set_current_state(interruptible);
2584 
2585 		if (!md_in_flight(md))
2586 			break;
2587 
2588 		if (interruptible == TASK_INTERRUPTIBLE &&
2589 		    signal_pending(current)) {
2590 			r = -EINTR;
2591 			break;
2592 		}
2593 
2594 		io_schedule();
2595 	}
2596 	set_current_state(TASK_RUNNING);
2597 
2598 	remove_wait_queue(&md->wait, &wait);
2599 
2600 	return r;
2601 }
2602 
2603 /*
2604  * Process the deferred bios
2605  */
2606 static void dm_wq_work(struct work_struct *work)
2607 {
2608 	struct mapped_device *md = container_of(work, struct mapped_device,
2609 						work);
2610 	struct bio *c;
2611 	int srcu_idx;
2612 	struct dm_table *map;
2613 
2614 	map = dm_get_live_table(md, &srcu_idx);
2615 
2616 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2617 		spin_lock_irq(&md->deferred_lock);
2618 		c = bio_list_pop(&md->deferred);
2619 		spin_unlock_irq(&md->deferred_lock);
2620 
2621 		if (!c)
2622 			break;
2623 
2624 		if (dm_request_based(md))
2625 			generic_make_request(c);
2626 		else
2627 			__split_and_process_bio(md, map, c);
2628 	}
2629 
2630 	dm_put_live_table(md, srcu_idx);
2631 }
2632 
2633 static void dm_queue_flush(struct mapped_device *md)
2634 {
2635 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2636 	smp_mb__after_atomic();
2637 	queue_work(md->wq, &md->work);
2638 }
2639 
2640 /*
2641  * Swap in a new table, returning the old one for the caller to destroy.
2642  */
2643 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2644 {
2645 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2646 	struct queue_limits limits;
2647 	int r;
2648 
2649 	mutex_lock(&md->suspend_lock);
2650 
2651 	/* device must be suspended */
2652 	if (!dm_suspended_md(md))
2653 		goto out;
2654 
2655 	/*
2656 	 * If the new table has no data devices, retain the existing limits.
2657 	 * This helps multipath with queue_if_no_path if all paths disappear,
2658 	 * then new I/O is queued based on these limits, and then some paths
2659 	 * reappear.
2660 	 */
2661 	if (dm_table_has_no_data_devices(table)) {
2662 		live_map = dm_get_live_table_fast(md);
2663 		if (live_map)
2664 			limits = md->queue->limits;
2665 		dm_put_live_table_fast(md);
2666 	}
2667 
2668 	if (!live_map) {
2669 		r = dm_calculate_queue_limits(table, &limits);
2670 		if (r) {
2671 			map = ERR_PTR(r);
2672 			goto out;
2673 		}
2674 	}
2675 
2676 	map = __bind(md, table, &limits);
2677 
2678 out:
2679 	mutex_unlock(&md->suspend_lock);
2680 	return map;
2681 }
2682 
2683 /*
2684  * Functions to lock and unlock any filesystem running on the
2685  * device.
2686  */
2687 static int lock_fs(struct mapped_device *md)
2688 {
2689 	int r;
2690 
2691 	WARN_ON(md->frozen_sb);
2692 
2693 	md->frozen_sb = freeze_bdev(md->bdev);
2694 	if (IS_ERR(md->frozen_sb)) {
2695 		r = PTR_ERR(md->frozen_sb);
2696 		md->frozen_sb = NULL;
2697 		return r;
2698 	}
2699 
2700 	set_bit(DMF_FROZEN, &md->flags);
2701 
2702 	return 0;
2703 }
2704 
2705 static void unlock_fs(struct mapped_device *md)
2706 {
2707 	if (!test_bit(DMF_FROZEN, &md->flags))
2708 		return;
2709 
2710 	thaw_bdev(md->bdev, md->frozen_sb);
2711 	md->frozen_sb = NULL;
2712 	clear_bit(DMF_FROZEN, &md->flags);
2713 }
2714 
2715 /*
2716  * If __dm_suspend returns 0, the device is completely quiescent
2717  * now. There is no request-processing activity. All new requests
2718  * are being added to md->deferred list.
2719  *
2720  * Caller must hold md->suspend_lock
2721  */
2722 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2723 			unsigned suspend_flags, int interruptible)
2724 {
2725 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2726 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2727 	int r;
2728 
2729 	/*
2730 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2731 	 * This flag is cleared before dm_suspend returns.
2732 	 */
2733 	if (noflush)
2734 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2735 
2736 	/*
2737 	 * This gets reverted if there's an error later and the targets
2738 	 * provide the .presuspend_undo hook.
2739 	 */
2740 	dm_table_presuspend_targets(map);
2741 
2742 	/*
2743 	 * Flush I/O to the device.
2744 	 * Any I/O submitted after lock_fs() may not be flushed.
2745 	 * noflush takes precedence over do_lockfs.
2746 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2747 	 */
2748 	if (!noflush && do_lockfs) {
2749 		r = lock_fs(md);
2750 		if (r) {
2751 			dm_table_presuspend_undo_targets(map);
2752 			return r;
2753 		}
2754 	}
2755 
2756 	/*
2757 	 * Here we must make sure that no processes are submitting requests
2758 	 * to target drivers i.e. no one may be executing
2759 	 * __split_and_process_bio. This is called from dm_request and
2760 	 * dm_wq_work.
2761 	 *
2762 	 * To get all processes out of __split_and_process_bio in dm_request,
2763 	 * we take the write lock. To prevent any process from reentering
2764 	 * __split_and_process_bio from dm_request and quiesce the thread
2765 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2766 	 * flush_workqueue(md->wq).
2767 	 */
2768 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2769 	if (map)
2770 		synchronize_srcu(&md->io_barrier);
2771 
2772 	/*
2773 	 * Stop md->queue before flushing md->wq in case request-based
2774 	 * dm defers requests to md->wq from md->queue.
2775 	 */
2776 	if (dm_request_based(md))
2777 		stop_queue(md->queue);
2778 
2779 	flush_workqueue(md->wq);
2780 
2781 	/*
2782 	 * At this point no more requests are entering target request routines.
2783 	 * We call dm_wait_for_completion to wait for all existing requests
2784 	 * to finish.
2785 	 */
2786 	r = dm_wait_for_completion(md, interruptible);
2787 
2788 	if (noflush)
2789 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2790 	if (map)
2791 		synchronize_srcu(&md->io_barrier);
2792 
2793 	/* were we interrupted ? */
2794 	if (r < 0) {
2795 		dm_queue_flush(md);
2796 
2797 		if (dm_request_based(md))
2798 			start_queue(md->queue);
2799 
2800 		unlock_fs(md);
2801 		dm_table_presuspend_undo_targets(map);
2802 		/* pushback list is already flushed, so skip flush */
2803 	}
2804 
2805 	return r;
2806 }
2807 
2808 /*
2809  * We need to be able to change a mapping table under a mounted
2810  * filesystem.  For example we might want to move some data in
2811  * the background.  Before the table can be swapped with
2812  * dm_bind_table, dm_suspend must be called to flush any in
2813  * flight bios and ensure that any further io gets deferred.
2814  */
2815 /*
2816  * Suspend mechanism in request-based dm.
2817  *
2818  * 1. Flush all I/Os by lock_fs() if needed.
2819  * 2. Stop dispatching any I/O by stopping the request_queue.
2820  * 3. Wait for all in-flight I/Os to be completed or requeued.
2821  *
2822  * To abort suspend, start the request_queue.
2823  */
2824 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2825 {
2826 	struct dm_table *map = NULL;
2827 	int r = 0;
2828 
2829 retry:
2830 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2831 
2832 	if (dm_suspended_md(md)) {
2833 		r = -EINVAL;
2834 		goto out_unlock;
2835 	}
2836 
2837 	if (dm_suspended_internally_md(md)) {
2838 		/* already internally suspended, wait for internal resume */
2839 		mutex_unlock(&md->suspend_lock);
2840 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2841 		if (r)
2842 			return r;
2843 		goto retry;
2844 	}
2845 
2846 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2847 
2848 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
2849 	if (r)
2850 		goto out_unlock;
2851 
2852 	set_bit(DMF_SUSPENDED, &md->flags);
2853 
2854 	dm_table_postsuspend_targets(map);
2855 
2856 out_unlock:
2857 	mutex_unlock(&md->suspend_lock);
2858 	return r;
2859 }
2860 
2861 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2862 {
2863 	if (map) {
2864 		int r = dm_table_resume_targets(map);
2865 		if (r)
2866 			return r;
2867 	}
2868 
2869 	dm_queue_flush(md);
2870 
2871 	/*
2872 	 * Flushing deferred I/Os must be done after targets are resumed
2873 	 * so that mapping of targets can work correctly.
2874 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2875 	 */
2876 	if (dm_request_based(md))
2877 		start_queue(md->queue);
2878 
2879 	unlock_fs(md);
2880 
2881 	return 0;
2882 }
2883 
2884 int dm_resume(struct mapped_device *md)
2885 {
2886 	int r = -EINVAL;
2887 	struct dm_table *map = NULL;
2888 
2889 retry:
2890 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2891 
2892 	if (!dm_suspended_md(md))
2893 		goto out;
2894 
2895 	if (dm_suspended_internally_md(md)) {
2896 		/* already internally suspended, wait for internal resume */
2897 		mutex_unlock(&md->suspend_lock);
2898 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2899 		if (r)
2900 			return r;
2901 		goto retry;
2902 	}
2903 
2904 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2905 	if (!map || !dm_table_get_size(map))
2906 		goto out;
2907 
2908 	r = __dm_resume(md, map);
2909 	if (r)
2910 		goto out;
2911 
2912 	clear_bit(DMF_SUSPENDED, &md->flags);
2913 
2914 	r = 0;
2915 out:
2916 	mutex_unlock(&md->suspend_lock);
2917 
2918 	return r;
2919 }
2920 
2921 /*
2922  * Internal suspend/resume works like userspace-driven suspend. It waits
2923  * until all bios finish and prevents issuing new bios to the target drivers.
2924  * It may be used only from the kernel.
2925  */
2926 
2927 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2928 {
2929 	struct dm_table *map = NULL;
2930 
2931 	if (dm_suspended_internally_md(md))
2932 		return; /* nested internal suspend */
2933 
2934 	if (dm_suspended_md(md)) {
2935 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2936 		return; /* nest suspend */
2937 	}
2938 
2939 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2940 
2941 	/*
2942 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2943 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2944 	 * would require changing .presuspend to return an error -- avoid this
2945 	 * until there is a need for more elaborate variants of internal suspend.
2946 	 */
2947 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
2948 
2949 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2950 
2951 	dm_table_postsuspend_targets(map);
2952 }
2953 
2954 static void __dm_internal_resume(struct mapped_device *md)
2955 {
2956 	if (!dm_suspended_internally_md(md))
2957 		return; /* resume from nested internal suspend */
2958 
2959 	if (dm_suspended_md(md))
2960 		goto done; /* resume from nested suspend */
2961 
2962 	/*
2963 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2964 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2965 	 */
2966 	(void) __dm_resume(md, NULL);
2967 
2968 done:
2969 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2970 	smp_mb__after_atomic();
2971 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2972 }
2973 
2974 void dm_internal_suspend_noflush(struct mapped_device *md)
2975 {
2976 	mutex_lock(&md->suspend_lock);
2977 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2978 	mutex_unlock(&md->suspend_lock);
2979 }
2980 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2981 
2982 void dm_internal_resume(struct mapped_device *md)
2983 {
2984 	mutex_lock(&md->suspend_lock);
2985 	__dm_internal_resume(md);
2986 	mutex_unlock(&md->suspend_lock);
2987 }
2988 EXPORT_SYMBOL_GPL(dm_internal_resume);
2989 
2990 /*
2991  * Fast variants of internal suspend/resume hold md->suspend_lock,
2992  * which prevents interaction with userspace-driven suspend.
2993  */
2994 
2995 void dm_internal_suspend_fast(struct mapped_device *md)
2996 {
2997 	mutex_lock(&md->suspend_lock);
2998 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2999 		return;
3000 
3001 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3002 	synchronize_srcu(&md->io_barrier);
3003 	flush_workqueue(md->wq);
3004 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3005 }
3006 
3007 void dm_internal_resume_fast(struct mapped_device *md)
3008 {
3009 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3010 		goto done;
3011 
3012 	dm_queue_flush(md);
3013 
3014 done:
3015 	mutex_unlock(&md->suspend_lock);
3016 }
3017 
3018 /*-----------------------------------------------------------------
3019  * Event notification.
3020  *---------------------------------------------------------------*/
3021 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3022 		       unsigned cookie)
3023 {
3024 	char udev_cookie[DM_COOKIE_LENGTH];
3025 	char *envp[] = { udev_cookie, NULL };
3026 
3027 	if (!cookie)
3028 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3029 	else {
3030 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3031 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3032 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3033 					  action, envp);
3034 	}
3035 }
3036 
3037 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3038 {
3039 	return atomic_add_return(1, &md->uevent_seq);
3040 }
3041 
3042 uint32_t dm_get_event_nr(struct mapped_device *md)
3043 {
3044 	return atomic_read(&md->event_nr);
3045 }
3046 
3047 int dm_wait_event(struct mapped_device *md, int event_nr)
3048 {
3049 	return wait_event_interruptible(md->eventq,
3050 			(event_nr != atomic_read(&md->event_nr)));
3051 }
3052 
3053 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3054 {
3055 	unsigned long flags;
3056 
3057 	spin_lock_irqsave(&md->uevent_lock, flags);
3058 	list_add(elist, &md->uevent_list);
3059 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3060 }
3061 
3062 /*
3063  * The gendisk is only valid as long as you have a reference
3064  * count on 'md'.
3065  */
3066 struct gendisk *dm_disk(struct mapped_device *md)
3067 {
3068 	return md->disk;
3069 }
3070 
3071 struct kobject *dm_kobject(struct mapped_device *md)
3072 {
3073 	return &md->kobj_holder.kobj;
3074 }
3075 
3076 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3077 {
3078 	struct mapped_device *md;
3079 
3080 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3081 
3082 	if (test_bit(DMF_FREEING, &md->flags) ||
3083 	    dm_deleting_md(md))
3084 		return NULL;
3085 
3086 	dm_get(md);
3087 	return md;
3088 }
3089 
3090 int dm_suspended_md(struct mapped_device *md)
3091 {
3092 	return test_bit(DMF_SUSPENDED, &md->flags);
3093 }
3094 
3095 int dm_suspended_internally_md(struct mapped_device *md)
3096 {
3097 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3098 }
3099 
3100 int dm_test_deferred_remove_flag(struct mapped_device *md)
3101 {
3102 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3103 }
3104 
3105 int dm_suspended(struct dm_target *ti)
3106 {
3107 	return dm_suspended_md(dm_table_get_md(ti->table));
3108 }
3109 EXPORT_SYMBOL_GPL(dm_suspended);
3110 
3111 int dm_noflush_suspending(struct dm_target *ti)
3112 {
3113 	return __noflush_suspending(dm_table_get_md(ti->table));
3114 }
3115 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3116 
3117 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
3118 {
3119 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3120 	struct kmem_cache *cachep;
3121 	unsigned int pool_size;
3122 	unsigned int front_pad;
3123 
3124 	if (!pools)
3125 		return NULL;
3126 
3127 	if (type == DM_TYPE_BIO_BASED) {
3128 		cachep = _io_cache;
3129 		pool_size = dm_get_reserved_bio_based_ios();
3130 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3131 	} else if (type == DM_TYPE_REQUEST_BASED) {
3132 		cachep = _rq_tio_cache;
3133 		pool_size = dm_get_reserved_rq_based_ios();
3134 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3135 		/* per_bio_data_size is not used. See __bind_mempools(). */
3136 		WARN_ON(per_bio_data_size != 0);
3137 	} else
3138 		goto out;
3139 
3140 	pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3141 	if (!pools->io_pool)
3142 		goto out;
3143 
3144 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3145 	if (!pools->bs)
3146 		goto out;
3147 
3148 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3149 		goto out;
3150 
3151 	return pools;
3152 
3153 out:
3154 	dm_free_md_mempools(pools);
3155 
3156 	return NULL;
3157 }
3158 
3159 void dm_free_md_mempools(struct dm_md_mempools *pools)
3160 {
3161 	if (!pools)
3162 		return;
3163 
3164 	if (pools->io_pool)
3165 		mempool_destroy(pools->io_pool);
3166 
3167 	if (pools->bs)
3168 		bioset_free(pools->bs);
3169 
3170 	kfree(pools);
3171 }
3172 
3173 static const struct block_device_operations dm_blk_dops = {
3174 	.open = dm_blk_open,
3175 	.release = dm_blk_close,
3176 	.ioctl = dm_blk_ioctl,
3177 	.getgeo = dm_blk_getgeo,
3178 	.owner = THIS_MODULE
3179 };
3180 
3181 /*
3182  * module hooks
3183  */
3184 module_init(dm_init);
3185 module_exit(dm_exit);
3186 
3187 module_param(major, uint, 0);
3188 MODULE_PARM_DESC(major, "The major number of the device mapper");
3189 
3190 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3191 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3192 
3193 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3194 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3195 
3196 MODULE_DESCRIPTION(DM_NAME " driver");
3197 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3198 MODULE_LICENSE("GPL");
3199