xref: /openbmc/linux/drivers/md/dm.c (revision 92ed1a76)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
23 
24 #include <trace/events/block.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 /*
29  * Cookies are numeric values sent with CHANGE and REMOVE
30  * uevents while resuming, removing or renaming the device.
31  */
32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33 #define DM_COOKIE_LENGTH 24
34 
35 static DEFINE_MUTEX(dm_mutex);
36 static const char *_name = DM_NAME;
37 
38 static unsigned int major = 0;
39 static unsigned int _major = 0;
40 
41 static DEFINE_SPINLOCK(_minor_lock);
42 /*
43  * For bio-based dm.
44  * One of these is allocated per bio.
45  */
46 struct dm_io {
47 	struct mapped_device *md;
48 	int error;
49 	atomic_t io_count;
50 	struct bio *bio;
51 	unsigned long start_time;
52 	spinlock_t endio_lock;
53 };
54 
55 /*
56  * For bio-based dm.
57  * One of these is allocated per target within a bio.  Hopefully
58  * this will be simplified out one day.
59  */
60 struct dm_target_io {
61 	struct dm_io *io;
62 	struct dm_target *ti;
63 	union map_info info;
64 };
65 
66 /*
67  * For request-based dm.
68  * One of these is allocated per request.
69  */
70 struct dm_rq_target_io {
71 	struct mapped_device *md;
72 	struct dm_target *ti;
73 	struct request *orig, clone;
74 	int error;
75 	union map_info info;
76 };
77 
78 /*
79  * For request-based dm.
80  * One of these is allocated per bio.
81  */
82 struct dm_rq_clone_bio_info {
83 	struct bio *orig;
84 	struct dm_rq_target_io *tio;
85 };
86 
87 union map_info *dm_get_mapinfo(struct bio *bio)
88 {
89 	if (bio && bio->bi_private)
90 		return &((struct dm_target_io *)bio->bi_private)->info;
91 	return NULL;
92 }
93 
94 union map_info *dm_get_rq_mapinfo(struct request *rq)
95 {
96 	if (rq && rq->end_io_data)
97 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
98 	return NULL;
99 }
100 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
101 
102 #define MINOR_ALLOCED ((void *)-1)
103 
104 /*
105  * Bits for the md->flags field.
106  */
107 #define DMF_BLOCK_IO_FOR_SUSPEND 0
108 #define DMF_SUSPENDED 1
109 #define DMF_FROZEN 2
110 #define DMF_FREEING 3
111 #define DMF_DELETING 4
112 #define DMF_NOFLUSH_SUSPENDING 5
113 
114 /*
115  * Work processed by per-device workqueue.
116  */
117 struct mapped_device {
118 	struct rw_semaphore io_lock;
119 	struct mutex suspend_lock;
120 	rwlock_t map_lock;
121 	atomic_t holders;
122 	atomic_t open_count;
123 
124 	unsigned long flags;
125 
126 	struct request_queue *queue;
127 	unsigned type;
128 	/* Protect queue and type against concurrent access. */
129 	struct mutex type_lock;
130 
131 	struct gendisk *disk;
132 	char name[16];
133 
134 	void *interface_ptr;
135 
136 	/*
137 	 * A list of ios that arrived while we were suspended.
138 	 */
139 	atomic_t pending[2];
140 	wait_queue_head_t wait;
141 	struct work_struct work;
142 	struct bio_list deferred;
143 	spinlock_t deferred_lock;
144 
145 	/*
146 	 * Processing queue (flush)
147 	 */
148 	struct workqueue_struct *wq;
149 
150 	/*
151 	 * The current mapping.
152 	 */
153 	struct dm_table *map;
154 
155 	/*
156 	 * io objects are allocated from here.
157 	 */
158 	mempool_t *io_pool;
159 	mempool_t *tio_pool;
160 
161 	struct bio_set *bs;
162 
163 	/*
164 	 * Event handling.
165 	 */
166 	atomic_t event_nr;
167 	wait_queue_head_t eventq;
168 	atomic_t uevent_seq;
169 	struct list_head uevent_list;
170 	spinlock_t uevent_lock; /* Protect access to uevent_list */
171 
172 	/*
173 	 * freeze/thaw support require holding onto a super block
174 	 */
175 	struct super_block *frozen_sb;
176 	struct block_device *bdev;
177 
178 	/* forced geometry settings */
179 	struct hd_geometry geometry;
180 
181 	/* For saving the address of __make_request for request based dm */
182 	make_request_fn *saved_make_request_fn;
183 
184 	/* sysfs handle */
185 	struct kobject kobj;
186 
187 	/* zero-length flush that will be cloned and submitted to targets */
188 	struct bio flush_bio;
189 };
190 
191 /*
192  * For mempools pre-allocation at the table loading time.
193  */
194 struct dm_md_mempools {
195 	mempool_t *io_pool;
196 	mempool_t *tio_pool;
197 	struct bio_set *bs;
198 };
199 
200 #define MIN_IOS 256
201 static struct kmem_cache *_io_cache;
202 static struct kmem_cache *_tio_cache;
203 static struct kmem_cache *_rq_tio_cache;
204 static struct kmem_cache *_rq_bio_info_cache;
205 
206 static int __init local_init(void)
207 {
208 	int r = -ENOMEM;
209 
210 	/* allocate a slab for the dm_ios */
211 	_io_cache = KMEM_CACHE(dm_io, 0);
212 	if (!_io_cache)
213 		return r;
214 
215 	/* allocate a slab for the target ios */
216 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
217 	if (!_tio_cache)
218 		goto out_free_io_cache;
219 
220 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
221 	if (!_rq_tio_cache)
222 		goto out_free_tio_cache;
223 
224 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
225 	if (!_rq_bio_info_cache)
226 		goto out_free_rq_tio_cache;
227 
228 	r = dm_uevent_init();
229 	if (r)
230 		goto out_free_rq_bio_info_cache;
231 
232 	_major = major;
233 	r = register_blkdev(_major, _name);
234 	if (r < 0)
235 		goto out_uevent_exit;
236 
237 	if (!_major)
238 		_major = r;
239 
240 	return 0;
241 
242 out_uevent_exit:
243 	dm_uevent_exit();
244 out_free_rq_bio_info_cache:
245 	kmem_cache_destroy(_rq_bio_info_cache);
246 out_free_rq_tio_cache:
247 	kmem_cache_destroy(_rq_tio_cache);
248 out_free_tio_cache:
249 	kmem_cache_destroy(_tio_cache);
250 out_free_io_cache:
251 	kmem_cache_destroy(_io_cache);
252 
253 	return r;
254 }
255 
256 static void local_exit(void)
257 {
258 	kmem_cache_destroy(_rq_bio_info_cache);
259 	kmem_cache_destroy(_rq_tio_cache);
260 	kmem_cache_destroy(_tio_cache);
261 	kmem_cache_destroy(_io_cache);
262 	unregister_blkdev(_major, _name);
263 	dm_uevent_exit();
264 
265 	_major = 0;
266 
267 	DMINFO("cleaned up");
268 }
269 
270 static int (*_inits[])(void) __initdata = {
271 	local_init,
272 	dm_target_init,
273 	dm_linear_init,
274 	dm_stripe_init,
275 	dm_io_init,
276 	dm_kcopyd_init,
277 	dm_interface_init,
278 };
279 
280 static void (*_exits[])(void) = {
281 	local_exit,
282 	dm_target_exit,
283 	dm_linear_exit,
284 	dm_stripe_exit,
285 	dm_io_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 };
289 
290 static int __init dm_init(void)
291 {
292 	const int count = ARRAY_SIZE(_inits);
293 
294 	int r, i;
295 
296 	for (i = 0; i < count; i++) {
297 		r = _inits[i]();
298 		if (r)
299 			goto bad;
300 	}
301 
302 	return 0;
303 
304       bad:
305 	while (i--)
306 		_exits[i]();
307 
308 	return r;
309 }
310 
311 static void __exit dm_exit(void)
312 {
313 	int i = ARRAY_SIZE(_exits);
314 
315 	while (i--)
316 		_exits[i]();
317 }
318 
319 /*
320  * Block device functions
321  */
322 int dm_deleting_md(struct mapped_device *md)
323 {
324 	return test_bit(DMF_DELETING, &md->flags);
325 }
326 
327 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
328 {
329 	struct mapped_device *md;
330 
331 	mutex_lock(&dm_mutex);
332 	spin_lock(&_minor_lock);
333 
334 	md = bdev->bd_disk->private_data;
335 	if (!md)
336 		goto out;
337 
338 	if (test_bit(DMF_FREEING, &md->flags) ||
339 	    dm_deleting_md(md)) {
340 		md = NULL;
341 		goto out;
342 	}
343 
344 	dm_get(md);
345 	atomic_inc(&md->open_count);
346 
347 out:
348 	spin_unlock(&_minor_lock);
349 	mutex_unlock(&dm_mutex);
350 
351 	return md ? 0 : -ENXIO;
352 }
353 
354 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
355 {
356 	struct mapped_device *md = disk->private_data;
357 
358 	mutex_lock(&dm_mutex);
359 	atomic_dec(&md->open_count);
360 	dm_put(md);
361 	mutex_unlock(&dm_mutex);
362 
363 	return 0;
364 }
365 
366 int dm_open_count(struct mapped_device *md)
367 {
368 	return atomic_read(&md->open_count);
369 }
370 
371 /*
372  * Guarantees nothing is using the device before it's deleted.
373  */
374 int dm_lock_for_deletion(struct mapped_device *md)
375 {
376 	int r = 0;
377 
378 	spin_lock(&_minor_lock);
379 
380 	if (dm_open_count(md))
381 		r = -EBUSY;
382 	else
383 		set_bit(DMF_DELETING, &md->flags);
384 
385 	spin_unlock(&_minor_lock);
386 
387 	return r;
388 }
389 
390 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
391 {
392 	struct mapped_device *md = bdev->bd_disk->private_data;
393 
394 	return dm_get_geometry(md, geo);
395 }
396 
397 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
398 			unsigned int cmd, unsigned long arg)
399 {
400 	struct mapped_device *md = bdev->bd_disk->private_data;
401 	struct dm_table *map = dm_get_live_table(md);
402 	struct dm_target *tgt;
403 	int r = -ENOTTY;
404 
405 	if (!map || !dm_table_get_size(map))
406 		goto out;
407 
408 	/* We only support devices that have a single target */
409 	if (dm_table_get_num_targets(map) != 1)
410 		goto out;
411 
412 	tgt = dm_table_get_target(map, 0);
413 
414 	if (dm_suspended_md(md)) {
415 		r = -EAGAIN;
416 		goto out;
417 	}
418 
419 	if (tgt->type->ioctl)
420 		r = tgt->type->ioctl(tgt, cmd, arg);
421 
422 out:
423 	dm_table_put(map);
424 
425 	return r;
426 }
427 
428 static struct dm_io *alloc_io(struct mapped_device *md)
429 {
430 	return mempool_alloc(md->io_pool, GFP_NOIO);
431 }
432 
433 static void free_io(struct mapped_device *md, struct dm_io *io)
434 {
435 	mempool_free(io, md->io_pool);
436 }
437 
438 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
439 {
440 	mempool_free(tio, md->tio_pool);
441 }
442 
443 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
444 					    gfp_t gfp_mask)
445 {
446 	return mempool_alloc(md->tio_pool, gfp_mask);
447 }
448 
449 static void free_rq_tio(struct dm_rq_target_io *tio)
450 {
451 	mempool_free(tio, tio->md->tio_pool);
452 }
453 
454 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
455 {
456 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
457 }
458 
459 static void free_bio_info(struct dm_rq_clone_bio_info *info)
460 {
461 	mempool_free(info, info->tio->md->io_pool);
462 }
463 
464 static int md_in_flight(struct mapped_device *md)
465 {
466 	return atomic_read(&md->pending[READ]) +
467 	       atomic_read(&md->pending[WRITE]);
468 }
469 
470 static void start_io_acct(struct dm_io *io)
471 {
472 	struct mapped_device *md = io->md;
473 	int cpu;
474 	int rw = bio_data_dir(io->bio);
475 
476 	io->start_time = jiffies;
477 
478 	cpu = part_stat_lock();
479 	part_round_stats(cpu, &dm_disk(md)->part0);
480 	part_stat_unlock();
481 	dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
482 }
483 
484 static void end_io_acct(struct dm_io *io)
485 {
486 	struct mapped_device *md = io->md;
487 	struct bio *bio = io->bio;
488 	unsigned long duration = jiffies - io->start_time;
489 	int pending, cpu;
490 	int rw = bio_data_dir(bio);
491 
492 	cpu = part_stat_lock();
493 	part_round_stats(cpu, &dm_disk(md)->part0);
494 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
495 	part_stat_unlock();
496 
497 	/*
498 	 * After this is decremented the bio must not be touched if it is
499 	 * a flush.
500 	 */
501 	dm_disk(md)->part0.in_flight[rw] = pending =
502 		atomic_dec_return(&md->pending[rw]);
503 	pending += atomic_read(&md->pending[rw^0x1]);
504 
505 	/* nudge anyone waiting on suspend queue */
506 	if (!pending)
507 		wake_up(&md->wait);
508 }
509 
510 /*
511  * Add the bio to the list of deferred io.
512  */
513 static void queue_io(struct mapped_device *md, struct bio *bio)
514 {
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&md->deferred_lock, flags);
518 	bio_list_add(&md->deferred, bio);
519 	spin_unlock_irqrestore(&md->deferred_lock, flags);
520 	queue_work(md->wq, &md->work);
521 }
522 
523 /*
524  * Everyone (including functions in this file), should use this
525  * function to access the md->map field, and make sure they call
526  * dm_table_put() when finished.
527  */
528 struct dm_table *dm_get_live_table(struct mapped_device *md)
529 {
530 	struct dm_table *t;
531 	unsigned long flags;
532 
533 	read_lock_irqsave(&md->map_lock, flags);
534 	t = md->map;
535 	if (t)
536 		dm_table_get(t);
537 	read_unlock_irqrestore(&md->map_lock, flags);
538 
539 	return t;
540 }
541 
542 /*
543  * Get the geometry associated with a dm device
544  */
545 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
546 {
547 	*geo = md->geometry;
548 
549 	return 0;
550 }
551 
552 /*
553  * Set the geometry of a device.
554  */
555 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
556 {
557 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
558 
559 	if (geo->start > sz) {
560 		DMWARN("Start sector is beyond the geometry limits.");
561 		return -EINVAL;
562 	}
563 
564 	md->geometry = *geo;
565 
566 	return 0;
567 }
568 
569 /*-----------------------------------------------------------------
570  * CRUD START:
571  *   A more elegant soln is in the works that uses the queue
572  *   merge fn, unfortunately there are a couple of changes to
573  *   the block layer that I want to make for this.  So in the
574  *   interests of getting something for people to use I give
575  *   you this clearly demarcated crap.
576  *---------------------------------------------------------------*/
577 
578 static int __noflush_suspending(struct mapped_device *md)
579 {
580 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
581 }
582 
583 /*
584  * Decrements the number of outstanding ios that a bio has been
585  * cloned into, completing the original io if necc.
586  */
587 static void dec_pending(struct dm_io *io, int error)
588 {
589 	unsigned long flags;
590 	int io_error;
591 	struct bio *bio;
592 	struct mapped_device *md = io->md;
593 
594 	/* Push-back supersedes any I/O errors */
595 	if (unlikely(error)) {
596 		spin_lock_irqsave(&io->endio_lock, flags);
597 		if (!(io->error > 0 && __noflush_suspending(md)))
598 			io->error = error;
599 		spin_unlock_irqrestore(&io->endio_lock, flags);
600 	}
601 
602 	if (atomic_dec_and_test(&io->io_count)) {
603 		if (io->error == DM_ENDIO_REQUEUE) {
604 			/*
605 			 * Target requested pushing back the I/O.
606 			 */
607 			spin_lock_irqsave(&md->deferred_lock, flags);
608 			if (__noflush_suspending(md))
609 				bio_list_add_head(&md->deferred, io->bio);
610 			else
611 				/* noflush suspend was interrupted. */
612 				io->error = -EIO;
613 			spin_unlock_irqrestore(&md->deferred_lock, flags);
614 		}
615 
616 		io_error = io->error;
617 		bio = io->bio;
618 		end_io_acct(io);
619 		free_io(md, io);
620 
621 		if (io_error == DM_ENDIO_REQUEUE)
622 			return;
623 
624 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
625 			/*
626 			 * Preflush done for flush with data, reissue
627 			 * without REQ_FLUSH.
628 			 */
629 			bio->bi_rw &= ~REQ_FLUSH;
630 			queue_io(md, bio);
631 		} else {
632 			/* done with normal IO or empty flush */
633 			trace_block_bio_complete(md->queue, bio);
634 			bio_endio(bio, io_error);
635 		}
636 	}
637 }
638 
639 static void clone_endio(struct bio *bio, int error)
640 {
641 	int r = 0;
642 	struct dm_target_io *tio = bio->bi_private;
643 	struct dm_io *io = tio->io;
644 	struct mapped_device *md = tio->io->md;
645 	dm_endio_fn endio = tio->ti->type->end_io;
646 
647 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
648 		error = -EIO;
649 
650 	if (endio) {
651 		r = endio(tio->ti, bio, error, &tio->info);
652 		if (r < 0 || r == DM_ENDIO_REQUEUE)
653 			/*
654 			 * error and requeue request are handled
655 			 * in dec_pending().
656 			 */
657 			error = r;
658 		else if (r == DM_ENDIO_INCOMPLETE)
659 			/* The target will handle the io */
660 			return;
661 		else if (r) {
662 			DMWARN("unimplemented target endio return value: %d", r);
663 			BUG();
664 		}
665 	}
666 
667 	/*
668 	 * Store md for cleanup instead of tio which is about to get freed.
669 	 */
670 	bio->bi_private = md->bs;
671 
672 	free_tio(md, tio);
673 	bio_put(bio);
674 	dec_pending(io, error);
675 }
676 
677 /*
678  * Partial completion handling for request-based dm
679  */
680 static void end_clone_bio(struct bio *clone, int error)
681 {
682 	struct dm_rq_clone_bio_info *info = clone->bi_private;
683 	struct dm_rq_target_io *tio = info->tio;
684 	struct bio *bio = info->orig;
685 	unsigned int nr_bytes = info->orig->bi_size;
686 
687 	bio_put(clone);
688 
689 	if (tio->error)
690 		/*
691 		 * An error has already been detected on the request.
692 		 * Once error occurred, just let clone->end_io() handle
693 		 * the remainder.
694 		 */
695 		return;
696 	else if (error) {
697 		/*
698 		 * Don't notice the error to the upper layer yet.
699 		 * The error handling decision is made by the target driver,
700 		 * when the request is completed.
701 		 */
702 		tio->error = error;
703 		return;
704 	}
705 
706 	/*
707 	 * I/O for the bio successfully completed.
708 	 * Notice the data completion to the upper layer.
709 	 */
710 
711 	/*
712 	 * bios are processed from the head of the list.
713 	 * So the completing bio should always be rq->bio.
714 	 * If it's not, something wrong is happening.
715 	 */
716 	if (tio->orig->bio != bio)
717 		DMERR("bio completion is going in the middle of the request");
718 
719 	/*
720 	 * Update the original request.
721 	 * Do not use blk_end_request() here, because it may complete
722 	 * the original request before the clone, and break the ordering.
723 	 */
724 	blk_update_request(tio->orig, 0, nr_bytes);
725 }
726 
727 /*
728  * Don't touch any member of the md after calling this function because
729  * the md may be freed in dm_put() at the end of this function.
730  * Or do dm_get() before calling this function and dm_put() later.
731  */
732 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
733 {
734 	atomic_dec(&md->pending[rw]);
735 
736 	/* nudge anyone waiting on suspend queue */
737 	if (!md_in_flight(md))
738 		wake_up(&md->wait);
739 
740 	if (run_queue)
741 		blk_run_queue(md->queue);
742 
743 	/*
744 	 * dm_put() must be at the end of this function. See the comment above
745 	 */
746 	dm_put(md);
747 }
748 
749 static void free_rq_clone(struct request *clone)
750 {
751 	struct dm_rq_target_io *tio = clone->end_io_data;
752 
753 	blk_rq_unprep_clone(clone);
754 	free_rq_tio(tio);
755 }
756 
757 /*
758  * Complete the clone and the original request.
759  * Must be called without queue lock.
760  */
761 static void dm_end_request(struct request *clone, int error)
762 {
763 	int rw = rq_data_dir(clone);
764 	struct dm_rq_target_io *tio = clone->end_io_data;
765 	struct mapped_device *md = tio->md;
766 	struct request *rq = tio->orig;
767 
768 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
769 		rq->errors = clone->errors;
770 		rq->resid_len = clone->resid_len;
771 
772 		if (rq->sense)
773 			/*
774 			 * We are using the sense buffer of the original
775 			 * request.
776 			 * So setting the length of the sense data is enough.
777 			 */
778 			rq->sense_len = clone->sense_len;
779 	}
780 
781 	free_rq_clone(clone);
782 	blk_end_request_all(rq, error);
783 	rq_completed(md, rw, true);
784 }
785 
786 static void dm_unprep_request(struct request *rq)
787 {
788 	struct request *clone = rq->special;
789 
790 	rq->special = NULL;
791 	rq->cmd_flags &= ~REQ_DONTPREP;
792 
793 	free_rq_clone(clone);
794 }
795 
796 /*
797  * Requeue the original request of a clone.
798  */
799 void dm_requeue_unmapped_request(struct request *clone)
800 {
801 	int rw = rq_data_dir(clone);
802 	struct dm_rq_target_io *tio = clone->end_io_data;
803 	struct mapped_device *md = tio->md;
804 	struct request *rq = tio->orig;
805 	struct request_queue *q = rq->q;
806 	unsigned long flags;
807 
808 	dm_unprep_request(rq);
809 
810 	spin_lock_irqsave(q->queue_lock, flags);
811 	if (elv_queue_empty(q))
812 		blk_plug_device(q);
813 	blk_requeue_request(q, rq);
814 	spin_unlock_irqrestore(q->queue_lock, flags);
815 
816 	rq_completed(md, rw, 0);
817 }
818 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
819 
820 static void __stop_queue(struct request_queue *q)
821 {
822 	blk_stop_queue(q);
823 }
824 
825 static void stop_queue(struct request_queue *q)
826 {
827 	unsigned long flags;
828 
829 	spin_lock_irqsave(q->queue_lock, flags);
830 	__stop_queue(q);
831 	spin_unlock_irqrestore(q->queue_lock, flags);
832 }
833 
834 static void __start_queue(struct request_queue *q)
835 {
836 	if (blk_queue_stopped(q))
837 		blk_start_queue(q);
838 }
839 
840 static void start_queue(struct request_queue *q)
841 {
842 	unsigned long flags;
843 
844 	spin_lock_irqsave(q->queue_lock, flags);
845 	__start_queue(q);
846 	spin_unlock_irqrestore(q->queue_lock, flags);
847 }
848 
849 static void dm_done(struct request *clone, int error, bool mapped)
850 {
851 	int r = error;
852 	struct dm_rq_target_io *tio = clone->end_io_data;
853 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
854 
855 	if (mapped && rq_end_io)
856 		r = rq_end_io(tio->ti, clone, error, &tio->info);
857 
858 	if (r <= 0)
859 		/* The target wants to complete the I/O */
860 		dm_end_request(clone, r);
861 	else if (r == DM_ENDIO_INCOMPLETE)
862 		/* The target will handle the I/O */
863 		return;
864 	else if (r == DM_ENDIO_REQUEUE)
865 		/* The target wants to requeue the I/O */
866 		dm_requeue_unmapped_request(clone);
867 	else {
868 		DMWARN("unimplemented target endio return value: %d", r);
869 		BUG();
870 	}
871 }
872 
873 /*
874  * Request completion handler for request-based dm
875  */
876 static void dm_softirq_done(struct request *rq)
877 {
878 	bool mapped = true;
879 	struct request *clone = rq->completion_data;
880 	struct dm_rq_target_io *tio = clone->end_io_data;
881 
882 	if (rq->cmd_flags & REQ_FAILED)
883 		mapped = false;
884 
885 	dm_done(clone, tio->error, mapped);
886 }
887 
888 /*
889  * Complete the clone and the original request with the error status
890  * through softirq context.
891  */
892 static void dm_complete_request(struct request *clone, int error)
893 {
894 	struct dm_rq_target_io *tio = clone->end_io_data;
895 	struct request *rq = tio->orig;
896 
897 	tio->error = error;
898 	rq->completion_data = clone;
899 	blk_complete_request(rq);
900 }
901 
902 /*
903  * Complete the not-mapped clone and the original request with the error status
904  * through softirq context.
905  * Target's rq_end_io() function isn't called.
906  * This may be used when the target's map_rq() function fails.
907  */
908 void dm_kill_unmapped_request(struct request *clone, int error)
909 {
910 	struct dm_rq_target_io *tio = clone->end_io_data;
911 	struct request *rq = tio->orig;
912 
913 	rq->cmd_flags |= REQ_FAILED;
914 	dm_complete_request(clone, error);
915 }
916 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
917 
918 /*
919  * Called with the queue lock held
920  */
921 static void end_clone_request(struct request *clone, int error)
922 {
923 	/*
924 	 * For just cleaning up the information of the queue in which
925 	 * the clone was dispatched.
926 	 * The clone is *NOT* freed actually here because it is alloced from
927 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
928 	 */
929 	__blk_put_request(clone->q, clone);
930 
931 	/*
932 	 * Actual request completion is done in a softirq context which doesn't
933 	 * hold the queue lock.  Otherwise, deadlock could occur because:
934 	 *     - another request may be submitted by the upper level driver
935 	 *       of the stacking during the completion
936 	 *     - the submission which requires queue lock may be done
937 	 *       against this queue
938 	 */
939 	dm_complete_request(clone, error);
940 }
941 
942 /*
943  * Return maximum size of I/O possible at the supplied sector up to the current
944  * target boundary.
945  */
946 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
947 {
948 	sector_t target_offset = dm_target_offset(ti, sector);
949 
950 	return ti->len - target_offset;
951 }
952 
953 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
954 {
955 	sector_t len = max_io_len_target_boundary(sector, ti);
956 
957 	/*
958 	 * Does the target need to split even further ?
959 	 */
960 	if (ti->split_io) {
961 		sector_t boundary;
962 		sector_t offset = dm_target_offset(ti, sector);
963 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
964 			   - offset;
965 		if (len > boundary)
966 			len = boundary;
967 	}
968 
969 	return len;
970 }
971 
972 static void __map_bio(struct dm_target *ti, struct bio *clone,
973 		      struct dm_target_io *tio)
974 {
975 	int r;
976 	sector_t sector;
977 	struct mapped_device *md;
978 
979 	clone->bi_end_io = clone_endio;
980 	clone->bi_private = tio;
981 
982 	/*
983 	 * Map the clone.  If r == 0 we don't need to do
984 	 * anything, the target has assumed ownership of
985 	 * this io.
986 	 */
987 	atomic_inc(&tio->io->io_count);
988 	sector = clone->bi_sector;
989 	r = ti->type->map(ti, clone, &tio->info);
990 	if (r == DM_MAPIO_REMAPPED) {
991 		/* the bio has been remapped so dispatch it */
992 
993 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
994 				    tio->io->bio->bi_bdev->bd_dev, sector);
995 
996 		generic_make_request(clone);
997 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
998 		/* error the io and bail out, or requeue it if needed */
999 		md = tio->io->md;
1000 		dec_pending(tio->io, r);
1001 		/*
1002 		 * Store bio_set for cleanup.
1003 		 */
1004 		clone->bi_private = md->bs;
1005 		bio_put(clone);
1006 		free_tio(md, tio);
1007 	} else if (r) {
1008 		DMWARN("unimplemented target map return value: %d", r);
1009 		BUG();
1010 	}
1011 }
1012 
1013 struct clone_info {
1014 	struct mapped_device *md;
1015 	struct dm_table *map;
1016 	struct bio *bio;
1017 	struct dm_io *io;
1018 	sector_t sector;
1019 	sector_t sector_count;
1020 	unsigned short idx;
1021 };
1022 
1023 static void dm_bio_destructor(struct bio *bio)
1024 {
1025 	struct bio_set *bs = bio->bi_private;
1026 
1027 	bio_free(bio, bs);
1028 }
1029 
1030 /*
1031  * Creates a little bio that just does part of a bvec.
1032  */
1033 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1034 			      unsigned short idx, unsigned int offset,
1035 			      unsigned int len, struct bio_set *bs)
1036 {
1037 	struct bio *clone;
1038 	struct bio_vec *bv = bio->bi_io_vec + idx;
1039 
1040 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1041 	clone->bi_destructor = dm_bio_destructor;
1042 	*clone->bi_io_vec = *bv;
1043 
1044 	clone->bi_sector = sector;
1045 	clone->bi_bdev = bio->bi_bdev;
1046 	clone->bi_rw = bio->bi_rw;
1047 	clone->bi_vcnt = 1;
1048 	clone->bi_size = to_bytes(len);
1049 	clone->bi_io_vec->bv_offset = offset;
1050 	clone->bi_io_vec->bv_len = clone->bi_size;
1051 	clone->bi_flags |= 1 << BIO_CLONED;
1052 
1053 	if (bio_integrity(bio)) {
1054 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1055 		bio_integrity_trim(clone,
1056 				   bio_sector_offset(bio, idx, offset), len);
1057 	}
1058 
1059 	return clone;
1060 }
1061 
1062 /*
1063  * Creates a bio that consists of range of complete bvecs.
1064  */
1065 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1066 			     unsigned short idx, unsigned short bv_count,
1067 			     unsigned int len, struct bio_set *bs)
1068 {
1069 	struct bio *clone;
1070 
1071 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1072 	__bio_clone(clone, bio);
1073 	clone->bi_destructor = dm_bio_destructor;
1074 	clone->bi_sector = sector;
1075 	clone->bi_idx = idx;
1076 	clone->bi_vcnt = idx + bv_count;
1077 	clone->bi_size = to_bytes(len);
1078 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1079 
1080 	if (bio_integrity(bio)) {
1081 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1082 
1083 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1084 			bio_integrity_trim(clone,
1085 					   bio_sector_offset(bio, idx, 0), len);
1086 	}
1087 
1088 	return clone;
1089 }
1090 
1091 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1092 				      struct dm_target *ti)
1093 {
1094 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1095 
1096 	tio->io = ci->io;
1097 	tio->ti = ti;
1098 	memset(&tio->info, 0, sizeof(tio->info));
1099 
1100 	return tio;
1101 }
1102 
1103 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1104 				   unsigned request_nr, sector_t len)
1105 {
1106 	struct dm_target_io *tio = alloc_tio(ci, ti);
1107 	struct bio *clone;
1108 
1109 	tio->info.target_request_nr = request_nr;
1110 
1111 	/*
1112 	 * Discard requests require the bio's inline iovecs be initialized.
1113 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1114 	 * and discard, so no need for concern about wasted bvec allocations.
1115 	 */
1116 	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1117 	__bio_clone(clone, ci->bio);
1118 	clone->bi_destructor = dm_bio_destructor;
1119 	if (len) {
1120 		clone->bi_sector = ci->sector;
1121 		clone->bi_size = to_bytes(len);
1122 	}
1123 
1124 	__map_bio(ti, clone, tio);
1125 }
1126 
1127 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1128 				    unsigned num_requests, sector_t len)
1129 {
1130 	unsigned request_nr;
1131 
1132 	for (request_nr = 0; request_nr < num_requests; request_nr++)
1133 		__issue_target_request(ci, ti, request_nr, len);
1134 }
1135 
1136 static int __clone_and_map_empty_flush(struct clone_info *ci)
1137 {
1138 	unsigned target_nr = 0;
1139 	struct dm_target *ti;
1140 
1141 	BUG_ON(bio_has_data(ci->bio));
1142 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1143 		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1144 
1145 	return 0;
1146 }
1147 
1148 /*
1149  * Perform all io with a single clone.
1150  */
1151 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1152 {
1153 	struct bio *clone, *bio = ci->bio;
1154 	struct dm_target_io *tio;
1155 
1156 	tio = alloc_tio(ci, ti);
1157 	clone = clone_bio(bio, ci->sector, ci->idx,
1158 			  bio->bi_vcnt - ci->idx, ci->sector_count,
1159 			  ci->md->bs);
1160 	__map_bio(ti, clone, tio);
1161 	ci->sector_count = 0;
1162 }
1163 
1164 static int __clone_and_map_discard(struct clone_info *ci)
1165 {
1166 	struct dm_target *ti;
1167 	sector_t len;
1168 
1169 	do {
1170 		ti = dm_table_find_target(ci->map, ci->sector);
1171 		if (!dm_target_is_valid(ti))
1172 			return -EIO;
1173 
1174 		/*
1175 		 * Even though the device advertised discard support,
1176 		 * reconfiguration might have changed that since the
1177 		 * check was performed.
1178 		 */
1179 		if (!ti->num_discard_requests)
1180 			return -EOPNOTSUPP;
1181 
1182 		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1183 
1184 		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1185 
1186 		ci->sector += len;
1187 	} while (ci->sector_count -= len);
1188 
1189 	return 0;
1190 }
1191 
1192 static int __clone_and_map(struct clone_info *ci)
1193 {
1194 	struct bio *clone, *bio = ci->bio;
1195 	struct dm_target *ti;
1196 	sector_t len = 0, max;
1197 	struct dm_target_io *tio;
1198 
1199 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1200 		return __clone_and_map_discard(ci);
1201 
1202 	ti = dm_table_find_target(ci->map, ci->sector);
1203 	if (!dm_target_is_valid(ti))
1204 		return -EIO;
1205 
1206 	max = max_io_len(ci->sector, ti);
1207 
1208 	if (ci->sector_count <= max) {
1209 		/*
1210 		 * Optimise for the simple case where we can do all of
1211 		 * the remaining io with a single clone.
1212 		 */
1213 		__clone_and_map_simple(ci, ti);
1214 
1215 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1216 		/*
1217 		 * There are some bvecs that don't span targets.
1218 		 * Do as many of these as possible.
1219 		 */
1220 		int i;
1221 		sector_t remaining = max;
1222 		sector_t bv_len;
1223 
1224 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1225 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1226 
1227 			if (bv_len > remaining)
1228 				break;
1229 
1230 			remaining -= bv_len;
1231 			len += bv_len;
1232 		}
1233 
1234 		tio = alloc_tio(ci, ti);
1235 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1236 				  ci->md->bs);
1237 		__map_bio(ti, clone, tio);
1238 
1239 		ci->sector += len;
1240 		ci->sector_count -= len;
1241 		ci->idx = i;
1242 
1243 	} else {
1244 		/*
1245 		 * Handle a bvec that must be split between two or more targets.
1246 		 */
1247 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1248 		sector_t remaining = to_sector(bv->bv_len);
1249 		unsigned int offset = 0;
1250 
1251 		do {
1252 			if (offset) {
1253 				ti = dm_table_find_target(ci->map, ci->sector);
1254 				if (!dm_target_is_valid(ti))
1255 					return -EIO;
1256 
1257 				max = max_io_len(ci->sector, ti);
1258 			}
1259 
1260 			len = min(remaining, max);
1261 
1262 			tio = alloc_tio(ci, ti);
1263 			clone = split_bvec(bio, ci->sector, ci->idx,
1264 					   bv->bv_offset + offset, len,
1265 					   ci->md->bs);
1266 
1267 			__map_bio(ti, clone, tio);
1268 
1269 			ci->sector += len;
1270 			ci->sector_count -= len;
1271 			offset += to_bytes(len);
1272 		} while (remaining -= len);
1273 
1274 		ci->idx++;
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 /*
1281  * Split the bio into several clones and submit it to targets.
1282  */
1283 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1284 {
1285 	struct clone_info ci;
1286 	int error = 0;
1287 
1288 	ci.map = dm_get_live_table(md);
1289 	if (unlikely(!ci.map)) {
1290 		bio_io_error(bio);
1291 		return;
1292 	}
1293 
1294 	ci.md = md;
1295 	ci.io = alloc_io(md);
1296 	ci.io->error = 0;
1297 	atomic_set(&ci.io->io_count, 1);
1298 	ci.io->bio = bio;
1299 	ci.io->md = md;
1300 	spin_lock_init(&ci.io->endio_lock);
1301 	ci.sector = bio->bi_sector;
1302 	ci.idx = bio->bi_idx;
1303 
1304 	start_io_acct(ci.io);
1305 	if (bio->bi_rw & REQ_FLUSH) {
1306 		ci.bio = &ci.md->flush_bio;
1307 		ci.sector_count = 0;
1308 		error = __clone_and_map_empty_flush(&ci);
1309 		/* dec_pending submits any data associated with flush */
1310 	} else {
1311 		ci.bio = bio;
1312 		ci.sector_count = bio_sectors(bio);
1313 		while (ci.sector_count && !error)
1314 			error = __clone_and_map(&ci);
1315 	}
1316 
1317 	/* drop the extra reference count */
1318 	dec_pending(ci.io, error);
1319 	dm_table_put(ci.map);
1320 }
1321 /*-----------------------------------------------------------------
1322  * CRUD END
1323  *---------------------------------------------------------------*/
1324 
1325 static int dm_merge_bvec(struct request_queue *q,
1326 			 struct bvec_merge_data *bvm,
1327 			 struct bio_vec *biovec)
1328 {
1329 	struct mapped_device *md = q->queuedata;
1330 	struct dm_table *map = dm_get_live_table(md);
1331 	struct dm_target *ti;
1332 	sector_t max_sectors;
1333 	int max_size = 0;
1334 
1335 	if (unlikely(!map))
1336 		goto out;
1337 
1338 	ti = dm_table_find_target(map, bvm->bi_sector);
1339 	if (!dm_target_is_valid(ti))
1340 		goto out_table;
1341 
1342 	/*
1343 	 * Find maximum amount of I/O that won't need splitting
1344 	 */
1345 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1346 			  (sector_t) BIO_MAX_SECTORS);
1347 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1348 	if (max_size < 0)
1349 		max_size = 0;
1350 
1351 	/*
1352 	 * merge_bvec_fn() returns number of bytes
1353 	 * it can accept at this offset
1354 	 * max is precomputed maximal io size
1355 	 */
1356 	if (max_size && ti->type->merge)
1357 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1358 	/*
1359 	 * If the target doesn't support merge method and some of the devices
1360 	 * provided their merge_bvec method (we know this by looking at
1361 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1362 	 * entries.  So always set max_size to 0, and the code below allows
1363 	 * just one page.
1364 	 */
1365 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1366 
1367 		max_size = 0;
1368 
1369 out_table:
1370 	dm_table_put(map);
1371 
1372 out:
1373 	/*
1374 	 * Always allow an entire first page
1375 	 */
1376 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1377 		max_size = biovec->bv_len;
1378 
1379 	return max_size;
1380 }
1381 
1382 /*
1383  * The request function that just remaps the bio built up by
1384  * dm_merge_bvec.
1385  */
1386 static int _dm_request(struct request_queue *q, struct bio *bio)
1387 {
1388 	int rw = bio_data_dir(bio);
1389 	struct mapped_device *md = q->queuedata;
1390 	int cpu;
1391 
1392 	down_read(&md->io_lock);
1393 
1394 	cpu = part_stat_lock();
1395 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1396 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1397 	part_stat_unlock();
1398 
1399 	/* if we're suspended, we have to queue this io for later */
1400 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1401 		up_read(&md->io_lock);
1402 
1403 		if (bio_rw(bio) != READA)
1404 			queue_io(md, bio);
1405 		else
1406 			bio_io_error(bio);
1407 		return 0;
1408 	}
1409 
1410 	__split_and_process_bio(md, bio);
1411 	up_read(&md->io_lock);
1412 	return 0;
1413 }
1414 
1415 static int dm_make_request(struct request_queue *q, struct bio *bio)
1416 {
1417 	struct mapped_device *md = q->queuedata;
1418 
1419 	return md->saved_make_request_fn(q, bio); /* call __make_request() */
1420 }
1421 
1422 static int dm_request_based(struct mapped_device *md)
1423 {
1424 	return blk_queue_stackable(md->queue);
1425 }
1426 
1427 static int dm_request(struct request_queue *q, struct bio *bio)
1428 {
1429 	struct mapped_device *md = q->queuedata;
1430 
1431 	if (dm_request_based(md))
1432 		return dm_make_request(q, bio);
1433 
1434 	return _dm_request(q, bio);
1435 }
1436 
1437 void dm_dispatch_request(struct request *rq)
1438 {
1439 	int r;
1440 
1441 	if (blk_queue_io_stat(rq->q))
1442 		rq->cmd_flags |= REQ_IO_STAT;
1443 
1444 	rq->start_time = jiffies;
1445 	r = blk_insert_cloned_request(rq->q, rq);
1446 	if (r)
1447 		dm_complete_request(rq, r);
1448 }
1449 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1450 
1451 static void dm_rq_bio_destructor(struct bio *bio)
1452 {
1453 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1454 	struct mapped_device *md = info->tio->md;
1455 
1456 	free_bio_info(info);
1457 	bio_free(bio, md->bs);
1458 }
1459 
1460 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1461 				 void *data)
1462 {
1463 	struct dm_rq_target_io *tio = data;
1464 	struct mapped_device *md = tio->md;
1465 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1466 
1467 	if (!info)
1468 		return -ENOMEM;
1469 
1470 	info->orig = bio_orig;
1471 	info->tio = tio;
1472 	bio->bi_end_io = end_clone_bio;
1473 	bio->bi_private = info;
1474 	bio->bi_destructor = dm_rq_bio_destructor;
1475 
1476 	return 0;
1477 }
1478 
1479 static int setup_clone(struct request *clone, struct request *rq,
1480 		       struct dm_rq_target_io *tio)
1481 {
1482 	int r;
1483 
1484 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1485 			      dm_rq_bio_constructor, tio);
1486 	if (r)
1487 		return r;
1488 
1489 	clone->cmd = rq->cmd;
1490 	clone->cmd_len = rq->cmd_len;
1491 	clone->sense = rq->sense;
1492 	clone->buffer = rq->buffer;
1493 	clone->end_io = end_clone_request;
1494 	clone->end_io_data = tio;
1495 
1496 	return 0;
1497 }
1498 
1499 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1500 				gfp_t gfp_mask)
1501 {
1502 	struct request *clone;
1503 	struct dm_rq_target_io *tio;
1504 
1505 	tio = alloc_rq_tio(md, gfp_mask);
1506 	if (!tio)
1507 		return NULL;
1508 
1509 	tio->md = md;
1510 	tio->ti = NULL;
1511 	tio->orig = rq;
1512 	tio->error = 0;
1513 	memset(&tio->info, 0, sizeof(tio->info));
1514 
1515 	clone = &tio->clone;
1516 	if (setup_clone(clone, rq, tio)) {
1517 		/* -ENOMEM */
1518 		free_rq_tio(tio);
1519 		return NULL;
1520 	}
1521 
1522 	return clone;
1523 }
1524 
1525 /*
1526  * Called with the queue lock held.
1527  */
1528 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1529 {
1530 	struct mapped_device *md = q->queuedata;
1531 	struct request *clone;
1532 
1533 	if (unlikely(rq->special)) {
1534 		DMWARN("Already has something in rq->special.");
1535 		return BLKPREP_KILL;
1536 	}
1537 
1538 	clone = clone_rq(rq, md, GFP_ATOMIC);
1539 	if (!clone)
1540 		return BLKPREP_DEFER;
1541 
1542 	rq->special = clone;
1543 	rq->cmd_flags |= REQ_DONTPREP;
1544 
1545 	return BLKPREP_OK;
1546 }
1547 
1548 /*
1549  * Returns:
1550  * 0  : the request has been processed (not requeued)
1551  * !0 : the request has been requeued
1552  */
1553 static int map_request(struct dm_target *ti, struct request *clone,
1554 		       struct mapped_device *md)
1555 {
1556 	int r, requeued = 0;
1557 	struct dm_rq_target_io *tio = clone->end_io_data;
1558 
1559 	/*
1560 	 * Hold the md reference here for the in-flight I/O.
1561 	 * We can't rely on the reference count by device opener,
1562 	 * because the device may be closed during the request completion
1563 	 * when all bios are completed.
1564 	 * See the comment in rq_completed() too.
1565 	 */
1566 	dm_get(md);
1567 
1568 	tio->ti = ti;
1569 	r = ti->type->map_rq(ti, clone, &tio->info);
1570 	switch (r) {
1571 	case DM_MAPIO_SUBMITTED:
1572 		/* The target has taken the I/O to submit by itself later */
1573 		break;
1574 	case DM_MAPIO_REMAPPED:
1575 		/* The target has remapped the I/O so dispatch it */
1576 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1577 				     blk_rq_pos(tio->orig));
1578 		dm_dispatch_request(clone);
1579 		break;
1580 	case DM_MAPIO_REQUEUE:
1581 		/* The target wants to requeue the I/O */
1582 		dm_requeue_unmapped_request(clone);
1583 		requeued = 1;
1584 		break;
1585 	default:
1586 		if (r > 0) {
1587 			DMWARN("unimplemented target map return value: %d", r);
1588 			BUG();
1589 		}
1590 
1591 		/* The target wants to complete the I/O */
1592 		dm_kill_unmapped_request(clone, r);
1593 		break;
1594 	}
1595 
1596 	return requeued;
1597 }
1598 
1599 /*
1600  * q->request_fn for request-based dm.
1601  * Called with the queue lock held.
1602  */
1603 static void dm_request_fn(struct request_queue *q)
1604 {
1605 	struct mapped_device *md = q->queuedata;
1606 	struct dm_table *map = dm_get_live_table(md);
1607 	struct dm_target *ti;
1608 	struct request *rq, *clone;
1609 	sector_t pos;
1610 
1611 	/*
1612 	 * For suspend, check blk_queue_stopped() and increment
1613 	 * ->pending within a single queue_lock not to increment the
1614 	 * number of in-flight I/Os after the queue is stopped in
1615 	 * dm_suspend().
1616 	 */
1617 	while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1618 		rq = blk_peek_request(q);
1619 		if (!rq)
1620 			goto plug_and_out;
1621 
1622 		/* always use block 0 to find the target for flushes for now */
1623 		pos = 0;
1624 		if (!(rq->cmd_flags & REQ_FLUSH))
1625 			pos = blk_rq_pos(rq);
1626 
1627 		ti = dm_table_find_target(map, pos);
1628 		BUG_ON(!dm_target_is_valid(ti));
1629 
1630 		if (ti->type->busy && ti->type->busy(ti))
1631 			goto plug_and_out;
1632 
1633 		blk_start_request(rq);
1634 		clone = rq->special;
1635 		atomic_inc(&md->pending[rq_data_dir(clone)]);
1636 
1637 		spin_unlock(q->queue_lock);
1638 		if (map_request(ti, clone, md))
1639 			goto requeued;
1640 
1641 		spin_lock_irq(q->queue_lock);
1642 	}
1643 
1644 	goto out;
1645 
1646 requeued:
1647 	spin_lock_irq(q->queue_lock);
1648 
1649 plug_and_out:
1650 	if (!elv_queue_empty(q))
1651 		/* Some requests still remain, retry later */
1652 		blk_plug_device(q);
1653 
1654 out:
1655 	dm_table_put(map);
1656 
1657 	return;
1658 }
1659 
1660 int dm_underlying_device_busy(struct request_queue *q)
1661 {
1662 	return blk_lld_busy(q);
1663 }
1664 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1665 
1666 static int dm_lld_busy(struct request_queue *q)
1667 {
1668 	int r;
1669 	struct mapped_device *md = q->queuedata;
1670 	struct dm_table *map = dm_get_live_table(md);
1671 
1672 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1673 		r = 1;
1674 	else
1675 		r = dm_table_any_busy_target(map);
1676 
1677 	dm_table_put(map);
1678 
1679 	return r;
1680 }
1681 
1682 static void dm_unplug_all(struct request_queue *q)
1683 {
1684 	struct mapped_device *md = q->queuedata;
1685 	struct dm_table *map = dm_get_live_table(md);
1686 
1687 	if (map) {
1688 		if (dm_request_based(md))
1689 			generic_unplug_device(q);
1690 
1691 		dm_table_unplug_all(map);
1692 		dm_table_put(map);
1693 	}
1694 }
1695 
1696 static int dm_any_congested(void *congested_data, int bdi_bits)
1697 {
1698 	int r = bdi_bits;
1699 	struct mapped_device *md = congested_data;
1700 	struct dm_table *map;
1701 
1702 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1703 		map = dm_get_live_table(md);
1704 		if (map) {
1705 			/*
1706 			 * Request-based dm cares about only own queue for
1707 			 * the query about congestion status of request_queue
1708 			 */
1709 			if (dm_request_based(md))
1710 				r = md->queue->backing_dev_info.state &
1711 				    bdi_bits;
1712 			else
1713 				r = dm_table_any_congested(map, bdi_bits);
1714 
1715 			dm_table_put(map);
1716 		}
1717 	}
1718 
1719 	return r;
1720 }
1721 
1722 /*-----------------------------------------------------------------
1723  * An IDR is used to keep track of allocated minor numbers.
1724  *---------------------------------------------------------------*/
1725 static DEFINE_IDR(_minor_idr);
1726 
1727 static void free_minor(int minor)
1728 {
1729 	spin_lock(&_minor_lock);
1730 	idr_remove(&_minor_idr, minor);
1731 	spin_unlock(&_minor_lock);
1732 }
1733 
1734 /*
1735  * See if the device with a specific minor # is free.
1736  */
1737 static int specific_minor(int minor)
1738 {
1739 	int r, m;
1740 
1741 	if (minor >= (1 << MINORBITS))
1742 		return -EINVAL;
1743 
1744 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1745 	if (!r)
1746 		return -ENOMEM;
1747 
1748 	spin_lock(&_minor_lock);
1749 
1750 	if (idr_find(&_minor_idr, minor)) {
1751 		r = -EBUSY;
1752 		goto out;
1753 	}
1754 
1755 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1756 	if (r)
1757 		goto out;
1758 
1759 	if (m != minor) {
1760 		idr_remove(&_minor_idr, m);
1761 		r = -EBUSY;
1762 		goto out;
1763 	}
1764 
1765 out:
1766 	spin_unlock(&_minor_lock);
1767 	return r;
1768 }
1769 
1770 static int next_free_minor(int *minor)
1771 {
1772 	int r, m;
1773 
1774 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1775 	if (!r)
1776 		return -ENOMEM;
1777 
1778 	spin_lock(&_minor_lock);
1779 
1780 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1781 	if (r)
1782 		goto out;
1783 
1784 	if (m >= (1 << MINORBITS)) {
1785 		idr_remove(&_minor_idr, m);
1786 		r = -ENOSPC;
1787 		goto out;
1788 	}
1789 
1790 	*minor = m;
1791 
1792 out:
1793 	spin_unlock(&_minor_lock);
1794 	return r;
1795 }
1796 
1797 static const struct block_device_operations dm_blk_dops;
1798 
1799 static void dm_wq_work(struct work_struct *work);
1800 
1801 static void dm_init_md_queue(struct mapped_device *md)
1802 {
1803 	/*
1804 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1805 	 * devices.  The type of this dm device has not been decided yet.
1806 	 * The type is decided at the first table loading time.
1807 	 * To prevent problematic device stacking, clear the queue flag
1808 	 * for request stacking support until then.
1809 	 *
1810 	 * This queue is new, so no concurrency on the queue_flags.
1811 	 */
1812 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1813 
1814 	md->queue->queuedata = md;
1815 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1816 	md->queue->backing_dev_info.congested_data = md;
1817 	blk_queue_make_request(md->queue, dm_request);
1818 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1819 	md->queue->unplug_fn = dm_unplug_all;
1820 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1821 	blk_queue_flush(md->queue, REQ_FLUSH | REQ_FUA);
1822 }
1823 
1824 /*
1825  * Allocate and initialise a blank device with a given minor.
1826  */
1827 static struct mapped_device *alloc_dev(int minor)
1828 {
1829 	int r;
1830 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1831 	void *old_md;
1832 
1833 	if (!md) {
1834 		DMWARN("unable to allocate device, out of memory.");
1835 		return NULL;
1836 	}
1837 
1838 	if (!try_module_get(THIS_MODULE))
1839 		goto bad_module_get;
1840 
1841 	/* get a minor number for the dev */
1842 	if (minor == DM_ANY_MINOR)
1843 		r = next_free_minor(&minor);
1844 	else
1845 		r = specific_minor(minor);
1846 	if (r < 0)
1847 		goto bad_minor;
1848 
1849 	md->type = DM_TYPE_NONE;
1850 	init_rwsem(&md->io_lock);
1851 	mutex_init(&md->suspend_lock);
1852 	mutex_init(&md->type_lock);
1853 	spin_lock_init(&md->deferred_lock);
1854 	rwlock_init(&md->map_lock);
1855 	atomic_set(&md->holders, 1);
1856 	atomic_set(&md->open_count, 0);
1857 	atomic_set(&md->event_nr, 0);
1858 	atomic_set(&md->uevent_seq, 0);
1859 	INIT_LIST_HEAD(&md->uevent_list);
1860 	spin_lock_init(&md->uevent_lock);
1861 
1862 	md->queue = blk_alloc_queue(GFP_KERNEL);
1863 	if (!md->queue)
1864 		goto bad_queue;
1865 
1866 	dm_init_md_queue(md);
1867 
1868 	md->disk = alloc_disk(1);
1869 	if (!md->disk)
1870 		goto bad_disk;
1871 
1872 	atomic_set(&md->pending[0], 0);
1873 	atomic_set(&md->pending[1], 0);
1874 	init_waitqueue_head(&md->wait);
1875 	INIT_WORK(&md->work, dm_wq_work);
1876 	init_waitqueue_head(&md->eventq);
1877 
1878 	md->disk->major = _major;
1879 	md->disk->first_minor = minor;
1880 	md->disk->fops = &dm_blk_dops;
1881 	md->disk->queue = md->queue;
1882 	md->disk->private_data = md;
1883 	sprintf(md->disk->disk_name, "dm-%d", minor);
1884 	add_disk(md->disk);
1885 	format_dev_t(md->name, MKDEV(_major, minor));
1886 
1887 	md->wq = create_singlethread_workqueue("kdmflush");
1888 	if (!md->wq)
1889 		goto bad_thread;
1890 
1891 	md->bdev = bdget_disk(md->disk, 0);
1892 	if (!md->bdev)
1893 		goto bad_bdev;
1894 
1895 	bio_init(&md->flush_bio);
1896 	md->flush_bio.bi_bdev = md->bdev;
1897 	md->flush_bio.bi_rw = WRITE_FLUSH;
1898 
1899 	/* Populate the mapping, nobody knows we exist yet */
1900 	spin_lock(&_minor_lock);
1901 	old_md = idr_replace(&_minor_idr, md, minor);
1902 	spin_unlock(&_minor_lock);
1903 
1904 	BUG_ON(old_md != MINOR_ALLOCED);
1905 
1906 	return md;
1907 
1908 bad_bdev:
1909 	destroy_workqueue(md->wq);
1910 bad_thread:
1911 	del_gendisk(md->disk);
1912 	put_disk(md->disk);
1913 bad_disk:
1914 	blk_cleanup_queue(md->queue);
1915 bad_queue:
1916 	free_minor(minor);
1917 bad_minor:
1918 	module_put(THIS_MODULE);
1919 bad_module_get:
1920 	kfree(md);
1921 	return NULL;
1922 }
1923 
1924 static void unlock_fs(struct mapped_device *md);
1925 
1926 static void free_dev(struct mapped_device *md)
1927 {
1928 	int minor = MINOR(disk_devt(md->disk));
1929 
1930 	unlock_fs(md);
1931 	bdput(md->bdev);
1932 	destroy_workqueue(md->wq);
1933 	if (md->tio_pool)
1934 		mempool_destroy(md->tio_pool);
1935 	if (md->io_pool)
1936 		mempool_destroy(md->io_pool);
1937 	if (md->bs)
1938 		bioset_free(md->bs);
1939 	blk_integrity_unregister(md->disk);
1940 	del_gendisk(md->disk);
1941 	free_minor(minor);
1942 
1943 	spin_lock(&_minor_lock);
1944 	md->disk->private_data = NULL;
1945 	spin_unlock(&_minor_lock);
1946 
1947 	put_disk(md->disk);
1948 	blk_cleanup_queue(md->queue);
1949 	module_put(THIS_MODULE);
1950 	kfree(md);
1951 }
1952 
1953 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1954 {
1955 	struct dm_md_mempools *p;
1956 
1957 	if (md->io_pool && md->tio_pool && md->bs)
1958 		/* the md already has necessary mempools */
1959 		goto out;
1960 
1961 	p = dm_table_get_md_mempools(t);
1962 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1963 
1964 	md->io_pool = p->io_pool;
1965 	p->io_pool = NULL;
1966 	md->tio_pool = p->tio_pool;
1967 	p->tio_pool = NULL;
1968 	md->bs = p->bs;
1969 	p->bs = NULL;
1970 
1971 out:
1972 	/* mempool bind completed, now no need any mempools in the table */
1973 	dm_table_free_md_mempools(t);
1974 }
1975 
1976 /*
1977  * Bind a table to the device.
1978  */
1979 static void event_callback(void *context)
1980 {
1981 	unsigned long flags;
1982 	LIST_HEAD(uevents);
1983 	struct mapped_device *md = (struct mapped_device *) context;
1984 
1985 	spin_lock_irqsave(&md->uevent_lock, flags);
1986 	list_splice_init(&md->uevent_list, &uevents);
1987 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1988 
1989 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1990 
1991 	atomic_inc(&md->event_nr);
1992 	wake_up(&md->eventq);
1993 }
1994 
1995 static void __set_size(struct mapped_device *md, sector_t size)
1996 {
1997 	set_capacity(md->disk, size);
1998 
1999 	mutex_lock(&md->bdev->bd_inode->i_mutex);
2000 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2001 	mutex_unlock(&md->bdev->bd_inode->i_mutex);
2002 }
2003 
2004 /*
2005  * Returns old map, which caller must destroy.
2006  */
2007 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2008 			       struct queue_limits *limits)
2009 {
2010 	struct dm_table *old_map;
2011 	struct request_queue *q = md->queue;
2012 	sector_t size;
2013 	unsigned long flags;
2014 
2015 	size = dm_table_get_size(t);
2016 
2017 	/*
2018 	 * Wipe any geometry if the size of the table changed.
2019 	 */
2020 	if (size != get_capacity(md->disk))
2021 		memset(&md->geometry, 0, sizeof(md->geometry));
2022 
2023 	__set_size(md, size);
2024 
2025 	dm_table_event_callback(t, event_callback, md);
2026 
2027 	/*
2028 	 * The queue hasn't been stopped yet, if the old table type wasn't
2029 	 * for request-based during suspension.  So stop it to prevent
2030 	 * I/O mapping before resume.
2031 	 * This must be done before setting the queue restrictions,
2032 	 * because request-based dm may be run just after the setting.
2033 	 */
2034 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2035 		stop_queue(q);
2036 
2037 	__bind_mempools(md, t);
2038 
2039 	write_lock_irqsave(&md->map_lock, flags);
2040 	old_map = md->map;
2041 	md->map = t;
2042 	dm_table_set_restrictions(t, q, limits);
2043 	write_unlock_irqrestore(&md->map_lock, flags);
2044 
2045 	return old_map;
2046 }
2047 
2048 /*
2049  * Returns unbound table for the caller to free.
2050  */
2051 static struct dm_table *__unbind(struct mapped_device *md)
2052 {
2053 	struct dm_table *map = md->map;
2054 	unsigned long flags;
2055 
2056 	if (!map)
2057 		return NULL;
2058 
2059 	dm_table_event_callback(map, NULL, NULL);
2060 	write_lock_irqsave(&md->map_lock, flags);
2061 	md->map = NULL;
2062 	write_unlock_irqrestore(&md->map_lock, flags);
2063 
2064 	return map;
2065 }
2066 
2067 /*
2068  * Constructor for a new device.
2069  */
2070 int dm_create(int minor, struct mapped_device **result)
2071 {
2072 	struct mapped_device *md;
2073 
2074 	md = alloc_dev(minor);
2075 	if (!md)
2076 		return -ENXIO;
2077 
2078 	dm_sysfs_init(md);
2079 
2080 	*result = md;
2081 	return 0;
2082 }
2083 
2084 /*
2085  * Functions to manage md->type.
2086  * All are required to hold md->type_lock.
2087  */
2088 void dm_lock_md_type(struct mapped_device *md)
2089 {
2090 	mutex_lock(&md->type_lock);
2091 }
2092 
2093 void dm_unlock_md_type(struct mapped_device *md)
2094 {
2095 	mutex_unlock(&md->type_lock);
2096 }
2097 
2098 void dm_set_md_type(struct mapped_device *md, unsigned type)
2099 {
2100 	md->type = type;
2101 }
2102 
2103 unsigned dm_get_md_type(struct mapped_device *md)
2104 {
2105 	return md->type;
2106 }
2107 
2108 /*
2109  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2110  */
2111 static int dm_init_request_based_queue(struct mapped_device *md)
2112 {
2113 	struct request_queue *q = NULL;
2114 
2115 	if (md->queue->elevator)
2116 		return 1;
2117 
2118 	/* Fully initialize the queue */
2119 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2120 	if (!q)
2121 		return 0;
2122 
2123 	md->queue = q;
2124 	md->saved_make_request_fn = md->queue->make_request_fn;
2125 	dm_init_md_queue(md);
2126 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2127 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2128 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2129 
2130 	elv_register_queue(md->queue);
2131 
2132 	return 1;
2133 }
2134 
2135 /*
2136  * Setup the DM device's queue based on md's type
2137  */
2138 int dm_setup_md_queue(struct mapped_device *md)
2139 {
2140 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2141 	    !dm_init_request_based_queue(md)) {
2142 		DMWARN("Cannot initialize queue for request-based mapped device");
2143 		return -EINVAL;
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 static struct mapped_device *dm_find_md(dev_t dev)
2150 {
2151 	struct mapped_device *md;
2152 	unsigned minor = MINOR(dev);
2153 
2154 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2155 		return NULL;
2156 
2157 	spin_lock(&_minor_lock);
2158 
2159 	md = idr_find(&_minor_idr, minor);
2160 	if (md && (md == MINOR_ALLOCED ||
2161 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2162 		   dm_deleting_md(md) ||
2163 		   test_bit(DMF_FREEING, &md->flags))) {
2164 		md = NULL;
2165 		goto out;
2166 	}
2167 
2168 out:
2169 	spin_unlock(&_minor_lock);
2170 
2171 	return md;
2172 }
2173 
2174 struct mapped_device *dm_get_md(dev_t dev)
2175 {
2176 	struct mapped_device *md = dm_find_md(dev);
2177 
2178 	if (md)
2179 		dm_get(md);
2180 
2181 	return md;
2182 }
2183 
2184 void *dm_get_mdptr(struct mapped_device *md)
2185 {
2186 	return md->interface_ptr;
2187 }
2188 
2189 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2190 {
2191 	md->interface_ptr = ptr;
2192 }
2193 
2194 void dm_get(struct mapped_device *md)
2195 {
2196 	atomic_inc(&md->holders);
2197 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2198 }
2199 
2200 const char *dm_device_name(struct mapped_device *md)
2201 {
2202 	return md->name;
2203 }
2204 EXPORT_SYMBOL_GPL(dm_device_name);
2205 
2206 static void __dm_destroy(struct mapped_device *md, bool wait)
2207 {
2208 	struct dm_table *map;
2209 
2210 	might_sleep();
2211 
2212 	spin_lock(&_minor_lock);
2213 	map = dm_get_live_table(md);
2214 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2215 	set_bit(DMF_FREEING, &md->flags);
2216 	spin_unlock(&_minor_lock);
2217 
2218 	if (!dm_suspended_md(md)) {
2219 		dm_table_presuspend_targets(map);
2220 		dm_table_postsuspend_targets(map);
2221 	}
2222 
2223 	/*
2224 	 * Rare, but there may be I/O requests still going to complete,
2225 	 * for example.  Wait for all references to disappear.
2226 	 * No one should increment the reference count of the mapped_device,
2227 	 * after the mapped_device state becomes DMF_FREEING.
2228 	 */
2229 	if (wait)
2230 		while (atomic_read(&md->holders))
2231 			msleep(1);
2232 	else if (atomic_read(&md->holders))
2233 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2234 		       dm_device_name(md), atomic_read(&md->holders));
2235 
2236 	dm_sysfs_exit(md);
2237 	dm_table_put(map);
2238 	dm_table_destroy(__unbind(md));
2239 	free_dev(md);
2240 }
2241 
2242 void dm_destroy(struct mapped_device *md)
2243 {
2244 	__dm_destroy(md, true);
2245 }
2246 
2247 void dm_destroy_immediate(struct mapped_device *md)
2248 {
2249 	__dm_destroy(md, false);
2250 }
2251 
2252 void dm_put(struct mapped_device *md)
2253 {
2254 	atomic_dec(&md->holders);
2255 }
2256 EXPORT_SYMBOL_GPL(dm_put);
2257 
2258 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2259 {
2260 	int r = 0;
2261 	DECLARE_WAITQUEUE(wait, current);
2262 
2263 	dm_unplug_all(md->queue);
2264 
2265 	add_wait_queue(&md->wait, &wait);
2266 
2267 	while (1) {
2268 		set_current_state(interruptible);
2269 
2270 		smp_mb();
2271 		if (!md_in_flight(md))
2272 			break;
2273 
2274 		if (interruptible == TASK_INTERRUPTIBLE &&
2275 		    signal_pending(current)) {
2276 			r = -EINTR;
2277 			break;
2278 		}
2279 
2280 		io_schedule();
2281 	}
2282 	set_current_state(TASK_RUNNING);
2283 
2284 	remove_wait_queue(&md->wait, &wait);
2285 
2286 	return r;
2287 }
2288 
2289 /*
2290  * Process the deferred bios
2291  */
2292 static void dm_wq_work(struct work_struct *work)
2293 {
2294 	struct mapped_device *md = container_of(work, struct mapped_device,
2295 						work);
2296 	struct bio *c;
2297 
2298 	down_read(&md->io_lock);
2299 
2300 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2301 		spin_lock_irq(&md->deferred_lock);
2302 		c = bio_list_pop(&md->deferred);
2303 		spin_unlock_irq(&md->deferred_lock);
2304 
2305 		if (!c)
2306 			break;
2307 
2308 		up_read(&md->io_lock);
2309 
2310 		if (dm_request_based(md))
2311 			generic_make_request(c);
2312 		else
2313 			__split_and_process_bio(md, c);
2314 
2315 		down_read(&md->io_lock);
2316 	}
2317 
2318 	up_read(&md->io_lock);
2319 }
2320 
2321 static void dm_queue_flush(struct mapped_device *md)
2322 {
2323 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2324 	smp_mb__after_clear_bit();
2325 	queue_work(md->wq, &md->work);
2326 }
2327 
2328 /*
2329  * Swap in a new table, returning the old one for the caller to destroy.
2330  */
2331 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2332 {
2333 	struct dm_table *map = ERR_PTR(-EINVAL);
2334 	struct queue_limits limits;
2335 	int r;
2336 
2337 	mutex_lock(&md->suspend_lock);
2338 
2339 	/* device must be suspended */
2340 	if (!dm_suspended_md(md))
2341 		goto out;
2342 
2343 	r = dm_calculate_queue_limits(table, &limits);
2344 	if (r) {
2345 		map = ERR_PTR(r);
2346 		goto out;
2347 	}
2348 
2349 	map = __bind(md, table, &limits);
2350 
2351 out:
2352 	mutex_unlock(&md->suspend_lock);
2353 	return map;
2354 }
2355 
2356 /*
2357  * Functions to lock and unlock any filesystem running on the
2358  * device.
2359  */
2360 static int lock_fs(struct mapped_device *md)
2361 {
2362 	int r;
2363 
2364 	WARN_ON(md->frozen_sb);
2365 
2366 	md->frozen_sb = freeze_bdev(md->bdev);
2367 	if (IS_ERR(md->frozen_sb)) {
2368 		r = PTR_ERR(md->frozen_sb);
2369 		md->frozen_sb = NULL;
2370 		return r;
2371 	}
2372 
2373 	set_bit(DMF_FROZEN, &md->flags);
2374 
2375 	return 0;
2376 }
2377 
2378 static void unlock_fs(struct mapped_device *md)
2379 {
2380 	if (!test_bit(DMF_FROZEN, &md->flags))
2381 		return;
2382 
2383 	thaw_bdev(md->bdev, md->frozen_sb);
2384 	md->frozen_sb = NULL;
2385 	clear_bit(DMF_FROZEN, &md->flags);
2386 }
2387 
2388 /*
2389  * We need to be able to change a mapping table under a mounted
2390  * filesystem.  For example we might want to move some data in
2391  * the background.  Before the table can be swapped with
2392  * dm_bind_table, dm_suspend must be called to flush any in
2393  * flight bios and ensure that any further io gets deferred.
2394  */
2395 /*
2396  * Suspend mechanism in request-based dm.
2397  *
2398  * 1. Flush all I/Os by lock_fs() if needed.
2399  * 2. Stop dispatching any I/O by stopping the request_queue.
2400  * 3. Wait for all in-flight I/Os to be completed or requeued.
2401  *
2402  * To abort suspend, start the request_queue.
2403  */
2404 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2405 {
2406 	struct dm_table *map = NULL;
2407 	int r = 0;
2408 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2409 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2410 
2411 	mutex_lock(&md->suspend_lock);
2412 
2413 	if (dm_suspended_md(md)) {
2414 		r = -EINVAL;
2415 		goto out_unlock;
2416 	}
2417 
2418 	map = dm_get_live_table(md);
2419 
2420 	/*
2421 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2422 	 * This flag is cleared before dm_suspend returns.
2423 	 */
2424 	if (noflush)
2425 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2426 
2427 	/* This does not get reverted if there's an error later. */
2428 	dm_table_presuspend_targets(map);
2429 
2430 	/*
2431 	 * Flush I/O to the device.
2432 	 * Any I/O submitted after lock_fs() may not be flushed.
2433 	 * noflush takes precedence over do_lockfs.
2434 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2435 	 */
2436 	if (!noflush && do_lockfs) {
2437 		r = lock_fs(md);
2438 		if (r)
2439 			goto out;
2440 	}
2441 
2442 	/*
2443 	 * Here we must make sure that no processes are submitting requests
2444 	 * to target drivers i.e. no one may be executing
2445 	 * __split_and_process_bio. This is called from dm_request and
2446 	 * dm_wq_work.
2447 	 *
2448 	 * To get all processes out of __split_and_process_bio in dm_request,
2449 	 * we take the write lock. To prevent any process from reentering
2450 	 * __split_and_process_bio from dm_request and quiesce the thread
2451 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2452 	 * flush_workqueue(md->wq).
2453 	 */
2454 	down_write(&md->io_lock);
2455 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2456 	up_write(&md->io_lock);
2457 
2458 	/*
2459 	 * Stop md->queue before flushing md->wq in case request-based
2460 	 * dm defers requests to md->wq from md->queue.
2461 	 */
2462 	if (dm_request_based(md))
2463 		stop_queue(md->queue);
2464 
2465 	flush_workqueue(md->wq);
2466 
2467 	/*
2468 	 * At this point no more requests are entering target request routines.
2469 	 * We call dm_wait_for_completion to wait for all existing requests
2470 	 * to finish.
2471 	 */
2472 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2473 
2474 	down_write(&md->io_lock);
2475 	if (noflush)
2476 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2477 	up_write(&md->io_lock);
2478 
2479 	/* were we interrupted ? */
2480 	if (r < 0) {
2481 		dm_queue_flush(md);
2482 
2483 		if (dm_request_based(md))
2484 			start_queue(md->queue);
2485 
2486 		unlock_fs(md);
2487 		goto out; /* pushback list is already flushed, so skip flush */
2488 	}
2489 
2490 	/*
2491 	 * If dm_wait_for_completion returned 0, the device is completely
2492 	 * quiescent now. There is no request-processing activity. All new
2493 	 * requests are being added to md->deferred list.
2494 	 */
2495 
2496 	set_bit(DMF_SUSPENDED, &md->flags);
2497 
2498 	dm_table_postsuspend_targets(map);
2499 
2500 out:
2501 	dm_table_put(map);
2502 
2503 out_unlock:
2504 	mutex_unlock(&md->suspend_lock);
2505 	return r;
2506 }
2507 
2508 int dm_resume(struct mapped_device *md)
2509 {
2510 	int r = -EINVAL;
2511 	struct dm_table *map = NULL;
2512 
2513 	mutex_lock(&md->suspend_lock);
2514 	if (!dm_suspended_md(md))
2515 		goto out;
2516 
2517 	map = dm_get_live_table(md);
2518 	if (!map || !dm_table_get_size(map))
2519 		goto out;
2520 
2521 	r = dm_table_resume_targets(map);
2522 	if (r)
2523 		goto out;
2524 
2525 	dm_queue_flush(md);
2526 
2527 	/*
2528 	 * Flushing deferred I/Os must be done after targets are resumed
2529 	 * so that mapping of targets can work correctly.
2530 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2531 	 */
2532 	if (dm_request_based(md))
2533 		start_queue(md->queue);
2534 
2535 	unlock_fs(md);
2536 
2537 	clear_bit(DMF_SUSPENDED, &md->flags);
2538 
2539 	dm_table_unplug_all(map);
2540 	r = 0;
2541 out:
2542 	dm_table_put(map);
2543 	mutex_unlock(&md->suspend_lock);
2544 
2545 	return r;
2546 }
2547 
2548 /*-----------------------------------------------------------------
2549  * Event notification.
2550  *---------------------------------------------------------------*/
2551 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2552 		       unsigned cookie)
2553 {
2554 	char udev_cookie[DM_COOKIE_LENGTH];
2555 	char *envp[] = { udev_cookie, NULL };
2556 
2557 	if (!cookie)
2558 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2559 	else {
2560 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2561 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2562 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2563 					  action, envp);
2564 	}
2565 }
2566 
2567 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2568 {
2569 	return atomic_add_return(1, &md->uevent_seq);
2570 }
2571 
2572 uint32_t dm_get_event_nr(struct mapped_device *md)
2573 {
2574 	return atomic_read(&md->event_nr);
2575 }
2576 
2577 int dm_wait_event(struct mapped_device *md, int event_nr)
2578 {
2579 	return wait_event_interruptible(md->eventq,
2580 			(event_nr != atomic_read(&md->event_nr)));
2581 }
2582 
2583 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2584 {
2585 	unsigned long flags;
2586 
2587 	spin_lock_irqsave(&md->uevent_lock, flags);
2588 	list_add(elist, &md->uevent_list);
2589 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2590 }
2591 
2592 /*
2593  * The gendisk is only valid as long as you have a reference
2594  * count on 'md'.
2595  */
2596 struct gendisk *dm_disk(struct mapped_device *md)
2597 {
2598 	return md->disk;
2599 }
2600 
2601 struct kobject *dm_kobject(struct mapped_device *md)
2602 {
2603 	return &md->kobj;
2604 }
2605 
2606 /*
2607  * struct mapped_device should not be exported outside of dm.c
2608  * so use this check to verify that kobj is part of md structure
2609  */
2610 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2611 {
2612 	struct mapped_device *md;
2613 
2614 	md = container_of(kobj, struct mapped_device, kobj);
2615 	if (&md->kobj != kobj)
2616 		return NULL;
2617 
2618 	if (test_bit(DMF_FREEING, &md->flags) ||
2619 	    dm_deleting_md(md))
2620 		return NULL;
2621 
2622 	dm_get(md);
2623 	return md;
2624 }
2625 
2626 int dm_suspended_md(struct mapped_device *md)
2627 {
2628 	return test_bit(DMF_SUSPENDED, &md->flags);
2629 }
2630 
2631 int dm_suspended(struct dm_target *ti)
2632 {
2633 	return dm_suspended_md(dm_table_get_md(ti->table));
2634 }
2635 EXPORT_SYMBOL_GPL(dm_suspended);
2636 
2637 int dm_noflush_suspending(struct dm_target *ti)
2638 {
2639 	return __noflush_suspending(dm_table_get_md(ti->table));
2640 }
2641 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2642 
2643 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2644 {
2645 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2646 
2647 	if (!pools)
2648 		return NULL;
2649 
2650 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2651 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2652 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2653 	if (!pools->io_pool)
2654 		goto free_pools_and_out;
2655 
2656 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2657 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2658 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2659 	if (!pools->tio_pool)
2660 		goto free_io_pool_and_out;
2661 
2662 	pools->bs = (type == DM_TYPE_BIO_BASED) ?
2663 		    bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2664 	if (!pools->bs)
2665 		goto free_tio_pool_and_out;
2666 
2667 	return pools;
2668 
2669 free_tio_pool_and_out:
2670 	mempool_destroy(pools->tio_pool);
2671 
2672 free_io_pool_and_out:
2673 	mempool_destroy(pools->io_pool);
2674 
2675 free_pools_and_out:
2676 	kfree(pools);
2677 
2678 	return NULL;
2679 }
2680 
2681 void dm_free_md_mempools(struct dm_md_mempools *pools)
2682 {
2683 	if (!pools)
2684 		return;
2685 
2686 	if (pools->io_pool)
2687 		mempool_destroy(pools->io_pool);
2688 
2689 	if (pools->tio_pool)
2690 		mempool_destroy(pools->tio_pool);
2691 
2692 	if (pools->bs)
2693 		bioset_free(pools->bs);
2694 
2695 	kfree(pools);
2696 }
2697 
2698 static const struct block_device_operations dm_blk_dops = {
2699 	.open = dm_blk_open,
2700 	.release = dm_blk_close,
2701 	.ioctl = dm_blk_ioctl,
2702 	.getgeo = dm_blk_getgeo,
2703 	.owner = THIS_MODULE
2704 };
2705 
2706 EXPORT_SYMBOL(dm_get_mapinfo);
2707 
2708 /*
2709  * module hooks
2710  */
2711 module_init(dm_init);
2712 module_exit(dm_exit);
2713 
2714 module_param(major, uint, 0);
2715 MODULE_PARM_DESC(major, "The major number of the device mapper");
2716 MODULE_DESCRIPTION(DM_NAME " driver");
2717 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2718 MODULE_LICENSE("GPL");
2719