1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/kthread.h> 24 #include <linux/ktime.h> 25 #include <linux/elevator.h> /* for rq_end_sector() */ 26 #include <linux/blk-mq.h> 27 28 #include <trace/events/block.h> 29 30 #define DM_MSG_PREFIX "core" 31 32 #ifdef CONFIG_PRINTK 33 /* 34 * ratelimit state to be used in DMXXX_LIMIT(). 35 */ 36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 37 DEFAULT_RATELIMIT_INTERVAL, 38 DEFAULT_RATELIMIT_BURST); 39 EXPORT_SYMBOL(dm_ratelimit_state); 40 #endif 41 42 /* 43 * Cookies are numeric values sent with CHANGE and REMOVE 44 * uevents while resuming, removing or renaming the device. 45 */ 46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 47 #define DM_COOKIE_LENGTH 24 48 49 static const char *_name = DM_NAME; 50 51 static unsigned int major = 0; 52 static unsigned int _major = 0; 53 54 static DEFINE_IDR(_minor_idr); 55 56 static DEFINE_SPINLOCK(_minor_lock); 57 58 static void do_deferred_remove(struct work_struct *w); 59 60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 61 62 static struct workqueue_struct *deferred_remove_workqueue; 63 64 /* 65 * For bio-based dm. 66 * One of these is allocated per bio. 67 */ 68 struct dm_io { 69 struct mapped_device *md; 70 int error; 71 atomic_t io_count; 72 struct bio *bio; 73 unsigned long start_time; 74 spinlock_t endio_lock; 75 struct dm_stats_aux stats_aux; 76 }; 77 78 /* 79 * For request-based dm. 80 * One of these is allocated per request. 81 */ 82 struct dm_rq_target_io { 83 struct mapped_device *md; 84 struct dm_target *ti; 85 struct request *orig, *clone; 86 struct kthread_work work; 87 int error; 88 union map_info info; 89 struct dm_stats_aux stats_aux; 90 unsigned long duration_jiffies; 91 unsigned n_sectors; 92 }; 93 94 /* 95 * For request-based dm - the bio clones we allocate are embedded in these 96 * structs. 97 * 98 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 99 * the bioset is created - this means the bio has to come at the end of the 100 * struct. 101 */ 102 struct dm_rq_clone_bio_info { 103 struct bio *orig; 104 struct dm_rq_target_io *tio; 105 struct bio clone; 106 }; 107 108 union map_info *dm_get_rq_mapinfo(struct request *rq) 109 { 110 if (rq && rq->end_io_data) 111 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 112 return NULL; 113 } 114 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 115 116 #define MINOR_ALLOCED ((void *)-1) 117 118 /* 119 * Bits for the md->flags field. 120 */ 121 #define DMF_BLOCK_IO_FOR_SUSPEND 0 122 #define DMF_SUSPENDED 1 123 #define DMF_FROZEN 2 124 #define DMF_FREEING 3 125 #define DMF_DELETING 4 126 #define DMF_NOFLUSH_SUSPENDING 5 127 #define DMF_MERGE_IS_OPTIONAL 6 128 #define DMF_DEFERRED_REMOVE 7 129 #define DMF_SUSPENDED_INTERNALLY 8 130 131 /* 132 * A dummy definition to make RCU happy. 133 * struct dm_table should never be dereferenced in this file. 134 */ 135 struct dm_table { 136 int undefined__; 137 }; 138 139 /* 140 * Work processed by per-device workqueue. 141 */ 142 struct mapped_device { 143 struct srcu_struct io_barrier; 144 struct mutex suspend_lock; 145 atomic_t holders; 146 atomic_t open_count; 147 148 /* 149 * The current mapping. 150 * Use dm_get_live_table{_fast} or take suspend_lock for 151 * dereference. 152 */ 153 struct dm_table __rcu *map; 154 155 struct list_head table_devices; 156 struct mutex table_devices_lock; 157 158 unsigned long flags; 159 160 struct request_queue *queue; 161 unsigned type; 162 /* Protect queue and type against concurrent access. */ 163 struct mutex type_lock; 164 165 struct target_type *immutable_target_type; 166 167 struct gendisk *disk; 168 char name[16]; 169 170 void *interface_ptr; 171 172 /* 173 * A list of ios that arrived while we were suspended. 174 */ 175 atomic_t pending[2]; 176 wait_queue_head_t wait; 177 struct work_struct work; 178 struct bio_list deferred; 179 spinlock_t deferred_lock; 180 181 /* 182 * Processing queue (flush) 183 */ 184 struct workqueue_struct *wq; 185 186 /* 187 * io objects are allocated from here. 188 */ 189 mempool_t *io_pool; 190 mempool_t *rq_pool; 191 192 struct bio_set *bs; 193 194 /* 195 * Event handling. 196 */ 197 atomic_t event_nr; 198 wait_queue_head_t eventq; 199 atomic_t uevent_seq; 200 struct list_head uevent_list; 201 spinlock_t uevent_lock; /* Protect access to uevent_list */ 202 203 /* 204 * freeze/thaw support require holding onto a super block 205 */ 206 struct super_block *frozen_sb; 207 struct block_device *bdev; 208 209 /* forced geometry settings */ 210 struct hd_geometry geometry; 211 212 /* kobject and completion */ 213 struct dm_kobject_holder kobj_holder; 214 215 /* zero-length flush that will be cloned and submitted to targets */ 216 struct bio flush_bio; 217 218 /* the number of internal suspends */ 219 unsigned internal_suspend_count; 220 221 struct dm_stats stats; 222 223 struct kthread_worker kworker; 224 struct task_struct *kworker_task; 225 226 /* for request-based merge heuristic in dm_request_fn() */ 227 unsigned seq_rq_merge_deadline_usecs; 228 int last_rq_rw; 229 sector_t last_rq_pos; 230 ktime_t last_rq_start_time; 231 232 /* for blk-mq request-based DM support */ 233 struct blk_mq_tag_set tag_set; 234 bool use_blk_mq; 235 }; 236 237 #ifdef CONFIG_DM_MQ_DEFAULT 238 static bool use_blk_mq = true; 239 #else 240 static bool use_blk_mq = false; 241 #endif 242 243 bool dm_use_blk_mq(struct mapped_device *md) 244 { 245 return md->use_blk_mq; 246 } 247 248 /* 249 * For mempools pre-allocation at the table loading time. 250 */ 251 struct dm_md_mempools { 252 mempool_t *io_pool; 253 mempool_t *rq_pool; 254 struct bio_set *bs; 255 }; 256 257 struct table_device { 258 struct list_head list; 259 atomic_t count; 260 struct dm_dev dm_dev; 261 }; 262 263 #define RESERVED_BIO_BASED_IOS 16 264 #define RESERVED_REQUEST_BASED_IOS 256 265 #define RESERVED_MAX_IOS 1024 266 static struct kmem_cache *_io_cache; 267 static struct kmem_cache *_rq_tio_cache; 268 static struct kmem_cache *_rq_cache; 269 270 /* 271 * Bio-based DM's mempools' reserved IOs set by the user. 272 */ 273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 274 275 /* 276 * Request-based DM's mempools' reserved IOs set by the user. 277 */ 278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 279 280 static unsigned __dm_get_module_param(unsigned *module_param, 281 unsigned def, unsigned max) 282 { 283 unsigned param = ACCESS_ONCE(*module_param); 284 unsigned modified_param = 0; 285 286 if (!param) 287 modified_param = def; 288 else if (param > max) 289 modified_param = max; 290 291 if (modified_param) { 292 (void)cmpxchg(module_param, param, modified_param); 293 param = modified_param; 294 } 295 296 return param; 297 } 298 299 unsigned dm_get_reserved_bio_based_ios(void) 300 { 301 return __dm_get_module_param(&reserved_bio_based_ios, 302 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 303 } 304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 305 306 unsigned dm_get_reserved_rq_based_ios(void) 307 { 308 return __dm_get_module_param(&reserved_rq_based_ios, 309 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 310 } 311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 312 313 static int __init local_init(void) 314 { 315 int r = -ENOMEM; 316 317 /* allocate a slab for the dm_ios */ 318 _io_cache = KMEM_CACHE(dm_io, 0); 319 if (!_io_cache) 320 return r; 321 322 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 323 if (!_rq_tio_cache) 324 goto out_free_io_cache; 325 326 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request), 327 __alignof__(struct request), 0, NULL); 328 if (!_rq_cache) 329 goto out_free_rq_tio_cache; 330 331 r = dm_uevent_init(); 332 if (r) 333 goto out_free_rq_cache; 334 335 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 336 if (!deferred_remove_workqueue) { 337 r = -ENOMEM; 338 goto out_uevent_exit; 339 } 340 341 _major = major; 342 r = register_blkdev(_major, _name); 343 if (r < 0) 344 goto out_free_workqueue; 345 346 if (!_major) 347 _major = r; 348 349 return 0; 350 351 out_free_workqueue: 352 destroy_workqueue(deferred_remove_workqueue); 353 out_uevent_exit: 354 dm_uevent_exit(); 355 out_free_rq_cache: 356 kmem_cache_destroy(_rq_cache); 357 out_free_rq_tio_cache: 358 kmem_cache_destroy(_rq_tio_cache); 359 out_free_io_cache: 360 kmem_cache_destroy(_io_cache); 361 362 return r; 363 } 364 365 static void local_exit(void) 366 { 367 flush_scheduled_work(); 368 destroy_workqueue(deferred_remove_workqueue); 369 370 kmem_cache_destroy(_rq_cache); 371 kmem_cache_destroy(_rq_tio_cache); 372 kmem_cache_destroy(_io_cache); 373 unregister_blkdev(_major, _name); 374 dm_uevent_exit(); 375 376 _major = 0; 377 378 DMINFO("cleaned up"); 379 } 380 381 static int (*_inits[])(void) __initdata = { 382 local_init, 383 dm_target_init, 384 dm_linear_init, 385 dm_stripe_init, 386 dm_io_init, 387 dm_kcopyd_init, 388 dm_interface_init, 389 dm_statistics_init, 390 }; 391 392 static void (*_exits[])(void) = { 393 local_exit, 394 dm_target_exit, 395 dm_linear_exit, 396 dm_stripe_exit, 397 dm_io_exit, 398 dm_kcopyd_exit, 399 dm_interface_exit, 400 dm_statistics_exit, 401 }; 402 403 static int __init dm_init(void) 404 { 405 const int count = ARRAY_SIZE(_inits); 406 407 int r, i; 408 409 for (i = 0; i < count; i++) { 410 r = _inits[i](); 411 if (r) 412 goto bad; 413 } 414 415 return 0; 416 417 bad: 418 while (i--) 419 _exits[i](); 420 421 return r; 422 } 423 424 static void __exit dm_exit(void) 425 { 426 int i = ARRAY_SIZE(_exits); 427 428 while (i--) 429 _exits[i](); 430 431 /* 432 * Should be empty by this point. 433 */ 434 idr_destroy(&_minor_idr); 435 } 436 437 /* 438 * Block device functions 439 */ 440 int dm_deleting_md(struct mapped_device *md) 441 { 442 return test_bit(DMF_DELETING, &md->flags); 443 } 444 445 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 446 { 447 struct mapped_device *md; 448 449 spin_lock(&_minor_lock); 450 451 md = bdev->bd_disk->private_data; 452 if (!md) 453 goto out; 454 455 if (test_bit(DMF_FREEING, &md->flags) || 456 dm_deleting_md(md)) { 457 md = NULL; 458 goto out; 459 } 460 461 dm_get(md); 462 atomic_inc(&md->open_count); 463 out: 464 spin_unlock(&_minor_lock); 465 466 return md ? 0 : -ENXIO; 467 } 468 469 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 470 { 471 struct mapped_device *md; 472 473 spin_lock(&_minor_lock); 474 475 md = disk->private_data; 476 if (WARN_ON(!md)) 477 goto out; 478 479 if (atomic_dec_and_test(&md->open_count) && 480 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 481 queue_work(deferred_remove_workqueue, &deferred_remove_work); 482 483 dm_put(md); 484 out: 485 spin_unlock(&_minor_lock); 486 } 487 488 int dm_open_count(struct mapped_device *md) 489 { 490 return atomic_read(&md->open_count); 491 } 492 493 /* 494 * Guarantees nothing is using the device before it's deleted. 495 */ 496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 497 { 498 int r = 0; 499 500 spin_lock(&_minor_lock); 501 502 if (dm_open_count(md)) { 503 r = -EBUSY; 504 if (mark_deferred) 505 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 506 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 507 r = -EEXIST; 508 else 509 set_bit(DMF_DELETING, &md->flags); 510 511 spin_unlock(&_minor_lock); 512 513 return r; 514 } 515 516 int dm_cancel_deferred_remove(struct mapped_device *md) 517 { 518 int r = 0; 519 520 spin_lock(&_minor_lock); 521 522 if (test_bit(DMF_DELETING, &md->flags)) 523 r = -EBUSY; 524 else 525 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 526 527 spin_unlock(&_minor_lock); 528 529 return r; 530 } 531 532 static void do_deferred_remove(struct work_struct *w) 533 { 534 dm_deferred_remove(); 535 } 536 537 sector_t dm_get_size(struct mapped_device *md) 538 { 539 return get_capacity(md->disk); 540 } 541 542 struct request_queue *dm_get_md_queue(struct mapped_device *md) 543 { 544 return md->queue; 545 } 546 547 struct dm_stats *dm_get_stats(struct mapped_device *md) 548 { 549 return &md->stats; 550 } 551 552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 553 { 554 struct mapped_device *md = bdev->bd_disk->private_data; 555 556 return dm_get_geometry(md, geo); 557 } 558 559 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 560 unsigned int cmd, unsigned long arg) 561 { 562 struct mapped_device *md = bdev->bd_disk->private_data; 563 int srcu_idx; 564 struct dm_table *map; 565 struct dm_target *tgt; 566 int r = -ENOTTY; 567 568 retry: 569 map = dm_get_live_table(md, &srcu_idx); 570 571 if (!map || !dm_table_get_size(map)) 572 goto out; 573 574 /* We only support devices that have a single target */ 575 if (dm_table_get_num_targets(map) != 1) 576 goto out; 577 578 tgt = dm_table_get_target(map, 0); 579 if (!tgt->type->ioctl) 580 goto out; 581 582 if (dm_suspended_md(md)) { 583 r = -EAGAIN; 584 goto out; 585 } 586 587 r = tgt->type->ioctl(tgt, cmd, arg); 588 589 out: 590 dm_put_live_table(md, srcu_idx); 591 592 if (r == -ENOTCONN) { 593 msleep(10); 594 goto retry; 595 } 596 597 return r; 598 } 599 600 static struct dm_io *alloc_io(struct mapped_device *md) 601 { 602 return mempool_alloc(md->io_pool, GFP_NOIO); 603 } 604 605 static void free_io(struct mapped_device *md, struct dm_io *io) 606 { 607 mempool_free(io, md->io_pool); 608 } 609 610 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 611 { 612 bio_put(&tio->clone); 613 } 614 615 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 616 gfp_t gfp_mask) 617 { 618 return mempool_alloc(md->io_pool, gfp_mask); 619 } 620 621 static void free_rq_tio(struct dm_rq_target_io *tio) 622 { 623 mempool_free(tio, tio->md->io_pool); 624 } 625 626 static struct request *alloc_clone_request(struct mapped_device *md, 627 gfp_t gfp_mask) 628 { 629 return mempool_alloc(md->rq_pool, gfp_mask); 630 } 631 632 static void free_clone_request(struct mapped_device *md, struct request *rq) 633 { 634 mempool_free(rq, md->rq_pool); 635 } 636 637 static int md_in_flight(struct mapped_device *md) 638 { 639 return atomic_read(&md->pending[READ]) + 640 atomic_read(&md->pending[WRITE]); 641 } 642 643 static void start_io_acct(struct dm_io *io) 644 { 645 struct mapped_device *md = io->md; 646 struct bio *bio = io->bio; 647 int cpu; 648 int rw = bio_data_dir(bio); 649 650 io->start_time = jiffies; 651 652 cpu = part_stat_lock(); 653 part_round_stats(cpu, &dm_disk(md)->part0); 654 part_stat_unlock(); 655 atomic_set(&dm_disk(md)->part0.in_flight[rw], 656 atomic_inc_return(&md->pending[rw])); 657 658 if (unlikely(dm_stats_used(&md->stats))) 659 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 660 bio_sectors(bio), false, 0, &io->stats_aux); 661 } 662 663 static void end_io_acct(struct dm_io *io) 664 { 665 struct mapped_device *md = io->md; 666 struct bio *bio = io->bio; 667 unsigned long duration = jiffies - io->start_time; 668 int pending; 669 int rw = bio_data_dir(bio); 670 671 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 672 673 if (unlikely(dm_stats_used(&md->stats))) 674 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 675 bio_sectors(bio), true, duration, &io->stats_aux); 676 677 /* 678 * After this is decremented the bio must not be touched if it is 679 * a flush. 680 */ 681 pending = atomic_dec_return(&md->pending[rw]); 682 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 683 pending += atomic_read(&md->pending[rw^0x1]); 684 685 /* nudge anyone waiting on suspend queue */ 686 if (!pending) 687 wake_up(&md->wait); 688 } 689 690 /* 691 * Add the bio to the list of deferred io. 692 */ 693 static void queue_io(struct mapped_device *md, struct bio *bio) 694 { 695 unsigned long flags; 696 697 spin_lock_irqsave(&md->deferred_lock, flags); 698 bio_list_add(&md->deferred, bio); 699 spin_unlock_irqrestore(&md->deferred_lock, flags); 700 queue_work(md->wq, &md->work); 701 } 702 703 /* 704 * Everyone (including functions in this file), should use this 705 * function to access the md->map field, and make sure they call 706 * dm_put_live_table() when finished. 707 */ 708 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 709 { 710 *srcu_idx = srcu_read_lock(&md->io_barrier); 711 712 return srcu_dereference(md->map, &md->io_barrier); 713 } 714 715 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 716 { 717 srcu_read_unlock(&md->io_barrier, srcu_idx); 718 } 719 720 void dm_sync_table(struct mapped_device *md) 721 { 722 synchronize_srcu(&md->io_barrier); 723 synchronize_rcu_expedited(); 724 } 725 726 /* 727 * A fast alternative to dm_get_live_table/dm_put_live_table. 728 * The caller must not block between these two functions. 729 */ 730 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 731 { 732 rcu_read_lock(); 733 return rcu_dereference(md->map); 734 } 735 736 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 737 { 738 rcu_read_unlock(); 739 } 740 741 /* 742 * Open a table device so we can use it as a map destination. 743 */ 744 static int open_table_device(struct table_device *td, dev_t dev, 745 struct mapped_device *md) 746 { 747 static char *_claim_ptr = "I belong to device-mapper"; 748 struct block_device *bdev; 749 750 int r; 751 752 BUG_ON(td->dm_dev.bdev); 753 754 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 755 if (IS_ERR(bdev)) 756 return PTR_ERR(bdev); 757 758 r = bd_link_disk_holder(bdev, dm_disk(md)); 759 if (r) { 760 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 761 return r; 762 } 763 764 td->dm_dev.bdev = bdev; 765 return 0; 766 } 767 768 /* 769 * Close a table device that we've been using. 770 */ 771 static void close_table_device(struct table_device *td, struct mapped_device *md) 772 { 773 if (!td->dm_dev.bdev) 774 return; 775 776 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 777 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 778 td->dm_dev.bdev = NULL; 779 } 780 781 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 782 fmode_t mode) { 783 struct table_device *td; 784 785 list_for_each_entry(td, l, list) 786 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 787 return td; 788 789 return NULL; 790 } 791 792 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 793 struct dm_dev **result) { 794 int r; 795 struct table_device *td; 796 797 mutex_lock(&md->table_devices_lock); 798 td = find_table_device(&md->table_devices, dev, mode); 799 if (!td) { 800 td = kmalloc(sizeof(*td), GFP_KERNEL); 801 if (!td) { 802 mutex_unlock(&md->table_devices_lock); 803 return -ENOMEM; 804 } 805 806 td->dm_dev.mode = mode; 807 td->dm_dev.bdev = NULL; 808 809 if ((r = open_table_device(td, dev, md))) { 810 mutex_unlock(&md->table_devices_lock); 811 kfree(td); 812 return r; 813 } 814 815 format_dev_t(td->dm_dev.name, dev); 816 817 atomic_set(&td->count, 0); 818 list_add(&td->list, &md->table_devices); 819 } 820 atomic_inc(&td->count); 821 mutex_unlock(&md->table_devices_lock); 822 823 *result = &td->dm_dev; 824 return 0; 825 } 826 EXPORT_SYMBOL_GPL(dm_get_table_device); 827 828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 829 { 830 struct table_device *td = container_of(d, struct table_device, dm_dev); 831 832 mutex_lock(&md->table_devices_lock); 833 if (atomic_dec_and_test(&td->count)) { 834 close_table_device(td, md); 835 list_del(&td->list); 836 kfree(td); 837 } 838 mutex_unlock(&md->table_devices_lock); 839 } 840 EXPORT_SYMBOL(dm_put_table_device); 841 842 static void free_table_devices(struct list_head *devices) 843 { 844 struct list_head *tmp, *next; 845 846 list_for_each_safe(tmp, next, devices) { 847 struct table_device *td = list_entry(tmp, struct table_device, list); 848 849 DMWARN("dm_destroy: %s still exists with %d references", 850 td->dm_dev.name, atomic_read(&td->count)); 851 kfree(td); 852 } 853 } 854 855 /* 856 * Get the geometry associated with a dm device 857 */ 858 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 859 { 860 *geo = md->geometry; 861 862 return 0; 863 } 864 865 /* 866 * Set the geometry of a device. 867 */ 868 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 869 { 870 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 871 872 if (geo->start > sz) { 873 DMWARN("Start sector is beyond the geometry limits."); 874 return -EINVAL; 875 } 876 877 md->geometry = *geo; 878 879 return 0; 880 } 881 882 /*----------------------------------------------------------------- 883 * CRUD START: 884 * A more elegant soln is in the works that uses the queue 885 * merge fn, unfortunately there are a couple of changes to 886 * the block layer that I want to make for this. So in the 887 * interests of getting something for people to use I give 888 * you this clearly demarcated crap. 889 *---------------------------------------------------------------*/ 890 891 static int __noflush_suspending(struct mapped_device *md) 892 { 893 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 894 } 895 896 /* 897 * Decrements the number of outstanding ios that a bio has been 898 * cloned into, completing the original io if necc. 899 */ 900 static void dec_pending(struct dm_io *io, int error) 901 { 902 unsigned long flags; 903 int io_error; 904 struct bio *bio; 905 struct mapped_device *md = io->md; 906 907 /* Push-back supersedes any I/O errors */ 908 if (unlikely(error)) { 909 spin_lock_irqsave(&io->endio_lock, flags); 910 if (!(io->error > 0 && __noflush_suspending(md))) 911 io->error = error; 912 spin_unlock_irqrestore(&io->endio_lock, flags); 913 } 914 915 if (atomic_dec_and_test(&io->io_count)) { 916 if (io->error == DM_ENDIO_REQUEUE) { 917 /* 918 * Target requested pushing back the I/O. 919 */ 920 spin_lock_irqsave(&md->deferred_lock, flags); 921 if (__noflush_suspending(md)) 922 bio_list_add_head(&md->deferred, io->bio); 923 else 924 /* noflush suspend was interrupted. */ 925 io->error = -EIO; 926 spin_unlock_irqrestore(&md->deferred_lock, flags); 927 } 928 929 io_error = io->error; 930 bio = io->bio; 931 end_io_acct(io); 932 free_io(md, io); 933 934 if (io_error == DM_ENDIO_REQUEUE) 935 return; 936 937 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 938 /* 939 * Preflush done for flush with data, reissue 940 * without REQ_FLUSH. 941 */ 942 bio->bi_rw &= ~REQ_FLUSH; 943 queue_io(md, bio); 944 } else { 945 /* done with normal IO or empty flush */ 946 trace_block_bio_complete(md->queue, bio, io_error); 947 bio_endio(bio, io_error); 948 } 949 } 950 } 951 952 static void disable_write_same(struct mapped_device *md) 953 { 954 struct queue_limits *limits = dm_get_queue_limits(md); 955 956 /* device doesn't really support WRITE SAME, disable it */ 957 limits->max_write_same_sectors = 0; 958 } 959 960 static void clone_endio(struct bio *bio, int error) 961 { 962 int r = error; 963 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 964 struct dm_io *io = tio->io; 965 struct mapped_device *md = tio->io->md; 966 dm_endio_fn endio = tio->ti->type->end_io; 967 968 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 969 error = -EIO; 970 971 if (endio) { 972 r = endio(tio->ti, bio, error); 973 if (r < 0 || r == DM_ENDIO_REQUEUE) 974 /* 975 * error and requeue request are handled 976 * in dec_pending(). 977 */ 978 error = r; 979 else if (r == DM_ENDIO_INCOMPLETE) 980 /* The target will handle the io */ 981 return; 982 else if (r) { 983 DMWARN("unimplemented target endio return value: %d", r); 984 BUG(); 985 } 986 } 987 988 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && 989 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 990 disable_write_same(md); 991 992 free_tio(md, tio); 993 dec_pending(io, error); 994 } 995 996 /* 997 * Partial completion handling for request-based dm 998 */ 999 static void end_clone_bio(struct bio *clone, int error) 1000 { 1001 struct dm_rq_clone_bio_info *info = 1002 container_of(clone, struct dm_rq_clone_bio_info, clone); 1003 struct dm_rq_target_io *tio = info->tio; 1004 struct bio *bio = info->orig; 1005 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 1006 1007 bio_put(clone); 1008 1009 if (tio->error) 1010 /* 1011 * An error has already been detected on the request. 1012 * Once error occurred, just let clone->end_io() handle 1013 * the remainder. 1014 */ 1015 return; 1016 else if (error) { 1017 /* 1018 * Don't notice the error to the upper layer yet. 1019 * The error handling decision is made by the target driver, 1020 * when the request is completed. 1021 */ 1022 tio->error = error; 1023 return; 1024 } 1025 1026 /* 1027 * I/O for the bio successfully completed. 1028 * Notice the data completion to the upper layer. 1029 */ 1030 1031 /* 1032 * bios are processed from the head of the list. 1033 * So the completing bio should always be rq->bio. 1034 * If it's not, something wrong is happening. 1035 */ 1036 if (tio->orig->bio != bio) 1037 DMERR("bio completion is going in the middle of the request"); 1038 1039 /* 1040 * Update the original request. 1041 * Do not use blk_end_request() here, because it may complete 1042 * the original request before the clone, and break the ordering. 1043 */ 1044 blk_update_request(tio->orig, 0, nr_bytes); 1045 } 1046 1047 static struct dm_rq_target_io *tio_from_request(struct request *rq) 1048 { 1049 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special); 1050 } 1051 1052 static void rq_end_stats(struct mapped_device *md, struct request *orig) 1053 { 1054 if (unlikely(dm_stats_used(&md->stats))) { 1055 struct dm_rq_target_io *tio = tio_from_request(orig); 1056 tio->duration_jiffies = jiffies - tio->duration_jiffies; 1057 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig), 1058 tio->n_sectors, true, tio->duration_jiffies, 1059 &tio->stats_aux); 1060 } 1061 } 1062 1063 /* 1064 * Don't touch any member of the md after calling this function because 1065 * the md may be freed in dm_put() at the end of this function. 1066 * Or do dm_get() before calling this function and dm_put() later. 1067 */ 1068 static void rq_completed(struct mapped_device *md, int rw, bool run_queue) 1069 { 1070 atomic_dec(&md->pending[rw]); 1071 1072 /* nudge anyone waiting on suspend queue */ 1073 if (!md_in_flight(md)) 1074 wake_up(&md->wait); 1075 1076 /* 1077 * Run this off this callpath, as drivers could invoke end_io while 1078 * inside their request_fn (and holding the queue lock). Calling 1079 * back into ->request_fn() could deadlock attempting to grab the 1080 * queue lock again. 1081 */ 1082 if (run_queue) { 1083 if (md->queue->mq_ops) 1084 blk_mq_run_hw_queues(md->queue, true); 1085 else 1086 blk_run_queue_async(md->queue); 1087 } 1088 1089 /* 1090 * dm_put() must be at the end of this function. See the comment above 1091 */ 1092 dm_put(md); 1093 } 1094 1095 static void free_rq_clone(struct request *clone) 1096 { 1097 struct dm_rq_target_io *tio = clone->end_io_data; 1098 struct mapped_device *md = tio->md; 1099 1100 blk_rq_unprep_clone(clone); 1101 1102 if (md->type == DM_TYPE_MQ_REQUEST_BASED) 1103 /* stacked on blk-mq queue(s) */ 1104 tio->ti->type->release_clone_rq(clone); 1105 else if (!md->queue->mq_ops) 1106 /* request_fn queue stacked on request_fn queue(s) */ 1107 free_clone_request(md, clone); 1108 /* 1109 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case: 1110 * no need to call free_clone_request() because we leverage blk-mq by 1111 * allocating the clone at the end of the blk-mq pdu (see: clone_rq) 1112 */ 1113 1114 if (!md->queue->mq_ops) 1115 free_rq_tio(tio); 1116 } 1117 1118 /* 1119 * Complete the clone and the original request. 1120 * Must be called without clone's queue lock held, 1121 * see end_clone_request() for more details. 1122 */ 1123 static void dm_end_request(struct request *clone, int error) 1124 { 1125 int rw = rq_data_dir(clone); 1126 struct dm_rq_target_io *tio = clone->end_io_data; 1127 struct mapped_device *md = tio->md; 1128 struct request *rq = tio->orig; 1129 1130 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 1131 rq->errors = clone->errors; 1132 rq->resid_len = clone->resid_len; 1133 1134 if (rq->sense) 1135 /* 1136 * We are using the sense buffer of the original 1137 * request. 1138 * So setting the length of the sense data is enough. 1139 */ 1140 rq->sense_len = clone->sense_len; 1141 } 1142 1143 free_rq_clone(clone); 1144 rq_end_stats(md, rq); 1145 if (!rq->q->mq_ops) 1146 blk_end_request_all(rq, error); 1147 else 1148 blk_mq_end_request(rq, error); 1149 rq_completed(md, rw, true); 1150 } 1151 1152 static void dm_unprep_request(struct request *rq) 1153 { 1154 struct dm_rq_target_io *tio = tio_from_request(rq); 1155 struct request *clone = tio->clone; 1156 1157 if (!rq->q->mq_ops) { 1158 rq->special = NULL; 1159 rq->cmd_flags &= ~REQ_DONTPREP; 1160 } 1161 1162 if (clone) 1163 free_rq_clone(clone); 1164 } 1165 1166 /* 1167 * Requeue the original request of a clone. 1168 */ 1169 static void old_requeue_request(struct request *rq) 1170 { 1171 struct request_queue *q = rq->q; 1172 unsigned long flags; 1173 1174 spin_lock_irqsave(q->queue_lock, flags); 1175 blk_requeue_request(q, rq); 1176 blk_run_queue_async(q); 1177 spin_unlock_irqrestore(q->queue_lock, flags); 1178 } 1179 1180 static void dm_requeue_original_request(struct mapped_device *md, 1181 struct request *rq) 1182 { 1183 int rw = rq_data_dir(rq); 1184 1185 dm_unprep_request(rq); 1186 1187 rq_end_stats(md, rq); 1188 if (!rq->q->mq_ops) 1189 old_requeue_request(rq); 1190 else { 1191 blk_mq_requeue_request(rq); 1192 blk_mq_kick_requeue_list(rq->q); 1193 } 1194 1195 rq_completed(md, rw, false); 1196 } 1197 1198 static void old_stop_queue(struct request_queue *q) 1199 { 1200 unsigned long flags; 1201 1202 if (blk_queue_stopped(q)) 1203 return; 1204 1205 spin_lock_irqsave(q->queue_lock, flags); 1206 blk_stop_queue(q); 1207 spin_unlock_irqrestore(q->queue_lock, flags); 1208 } 1209 1210 static void stop_queue(struct request_queue *q) 1211 { 1212 if (!q->mq_ops) 1213 old_stop_queue(q); 1214 else 1215 blk_mq_stop_hw_queues(q); 1216 } 1217 1218 static void old_start_queue(struct request_queue *q) 1219 { 1220 unsigned long flags; 1221 1222 spin_lock_irqsave(q->queue_lock, flags); 1223 if (blk_queue_stopped(q)) 1224 blk_start_queue(q); 1225 spin_unlock_irqrestore(q->queue_lock, flags); 1226 } 1227 1228 static void start_queue(struct request_queue *q) 1229 { 1230 if (!q->mq_ops) 1231 old_start_queue(q); 1232 else 1233 blk_mq_start_stopped_hw_queues(q, true); 1234 } 1235 1236 static void dm_done(struct request *clone, int error, bool mapped) 1237 { 1238 int r = error; 1239 struct dm_rq_target_io *tio = clone->end_io_data; 1240 dm_request_endio_fn rq_end_io = NULL; 1241 1242 if (tio->ti) { 1243 rq_end_io = tio->ti->type->rq_end_io; 1244 1245 if (mapped && rq_end_io) 1246 r = rq_end_io(tio->ti, clone, error, &tio->info); 1247 } 1248 1249 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && 1250 !clone->q->limits.max_write_same_sectors)) 1251 disable_write_same(tio->md); 1252 1253 if (r <= 0) 1254 /* The target wants to complete the I/O */ 1255 dm_end_request(clone, r); 1256 else if (r == DM_ENDIO_INCOMPLETE) 1257 /* The target will handle the I/O */ 1258 return; 1259 else if (r == DM_ENDIO_REQUEUE) 1260 /* The target wants to requeue the I/O */ 1261 dm_requeue_original_request(tio->md, tio->orig); 1262 else { 1263 DMWARN("unimplemented target endio return value: %d", r); 1264 BUG(); 1265 } 1266 } 1267 1268 /* 1269 * Request completion handler for request-based dm 1270 */ 1271 static void dm_softirq_done(struct request *rq) 1272 { 1273 bool mapped = true; 1274 struct dm_rq_target_io *tio = tio_from_request(rq); 1275 struct request *clone = tio->clone; 1276 int rw; 1277 1278 if (!clone) { 1279 rq_end_stats(tio->md, rq); 1280 rw = rq_data_dir(rq); 1281 if (!rq->q->mq_ops) { 1282 blk_end_request_all(rq, tio->error); 1283 rq_completed(tio->md, rw, false); 1284 free_rq_tio(tio); 1285 } else { 1286 blk_mq_end_request(rq, tio->error); 1287 rq_completed(tio->md, rw, false); 1288 } 1289 return; 1290 } 1291 1292 if (rq->cmd_flags & REQ_FAILED) 1293 mapped = false; 1294 1295 dm_done(clone, tio->error, mapped); 1296 } 1297 1298 /* 1299 * Complete the clone and the original request with the error status 1300 * through softirq context. 1301 */ 1302 static void dm_complete_request(struct request *rq, int error) 1303 { 1304 struct dm_rq_target_io *tio = tio_from_request(rq); 1305 1306 tio->error = error; 1307 blk_complete_request(rq); 1308 } 1309 1310 /* 1311 * Complete the not-mapped clone and the original request with the error status 1312 * through softirq context. 1313 * Target's rq_end_io() function isn't called. 1314 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail. 1315 */ 1316 static void dm_kill_unmapped_request(struct request *rq, int error) 1317 { 1318 rq->cmd_flags |= REQ_FAILED; 1319 dm_complete_request(rq, error); 1320 } 1321 1322 /* 1323 * Called with the clone's queue lock held (for non-blk-mq) 1324 */ 1325 static void end_clone_request(struct request *clone, int error) 1326 { 1327 struct dm_rq_target_io *tio = clone->end_io_data; 1328 1329 if (!clone->q->mq_ops) { 1330 /* 1331 * For just cleaning up the information of the queue in which 1332 * the clone was dispatched. 1333 * The clone is *NOT* freed actually here because it is alloced 1334 * from dm own mempool (REQ_ALLOCED isn't set). 1335 */ 1336 __blk_put_request(clone->q, clone); 1337 } 1338 1339 /* 1340 * Actual request completion is done in a softirq context which doesn't 1341 * hold the clone's queue lock. Otherwise, deadlock could occur because: 1342 * - another request may be submitted by the upper level driver 1343 * of the stacking during the completion 1344 * - the submission which requires queue lock may be done 1345 * against this clone's queue 1346 */ 1347 dm_complete_request(tio->orig, error); 1348 } 1349 1350 /* 1351 * Return maximum size of I/O possible at the supplied sector up to the current 1352 * target boundary. 1353 */ 1354 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1355 { 1356 sector_t target_offset = dm_target_offset(ti, sector); 1357 1358 return ti->len - target_offset; 1359 } 1360 1361 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1362 { 1363 sector_t len = max_io_len_target_boundary(sector, ti); 1364 sector_t offset, max_len; 1365 1366 /* 1367 * Does the target need to split even further? 1368 */ 1369 if (ti->max_io_len) { 1370 offset = dm_target_offset(ti, sector); 1371 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1372 max_len = sector_div(offset, ti->max_io_len); 1373 else 1374 max_len = offset & (ti->max_io_len - 1); 1375 max_len = ti->max_io_len - max_len; 1376 1377 if (len > max_len) 1378 len = max_len; 1379 } 1380 1381 return len; 1382 } 1383 1384 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1385 { 1386 if (len > UINT_MAX) { 1387 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1388 (unsigned long long)len, UINT_MAX); 1389 ti->error = "Maximum size of target IO is too large"; 1390 return -EINVAL; 1391 } 1392 1393 ti->max_io_len = (uint32_t) len; 1394 1395 return 0; 1396 } 1397 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1398 1399 /* 1400 * A target may call dm_accept_partial_bio only from the map routine. It is 1401 * allowed for all bio types except REQ_FLUSH. 1402 * 1403 * dm_accept_partial_bio informs the dm that the target only wants to process 1404 * additional n_sectors sectors of the bio and the rest of the data should be 1405 * sent in a next bio. 1406 * 1407 * A diagram that explains the arithmetics: 1408 * +--------------------+---------------+-------+ 1409 * | 1 | 2 | 3 | 1410 * +--------------------+---------------+-------+ 1411 * 1412 * <-------------- *tio->len_ptr ---------------> 1413 * <------- bi_size -------> 1414 * <-- n_sectors --> 1415 * 1416 * Region 1 was already iterated over with bio_advance or similar function. 1417 * (it may be empty if the target doesn't use bio_advance) 1418 * Region 2 is the remaining bio size that the target wants to process. 1419 * (it may be empty if region 1 is non-empty, although there is no reason 1420 * to make it empty) 1421 * The target requires that region 3 is to be sent in the next bio. 1422 * 1423 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1424 * the partially processed part (the sum of regions 1+2) must be the same for all 1425 * copies of the bio. 1426 */ 1427 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1428 { 1429 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1430 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1431 BUG_ON(bio->bi_rw & REQ_FLUSH); 1432 BUG_ON(bi_size > *tio->len_ptr); 1433 BUG_ON(n_sectors > bi_size); 1434 *tio->len_ptr -= bi_size - n_sectors; 1435 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1436 } 1437 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1438 1439 static void __map_bio(struct dm_target_io *tio) 1440 { 1441 int r; 1442 sector_t sector; 1443 struct mapped_device *md; 1444 struct bio *clone = &tio->clone; 1445 struct dm_target *ti = tio->ti; 1446 1447 clone->bi_end_io = clone_endio; 1448 1449 /* 1450 * Map the clone. If r == 0 we don't need to do 1451 * anything, the target has assumed ownership of 1452 * this io. 1453 */ 1454 atomic_inc(&tio->io->io_count); 1455 sector = clone->bi_iter.bi_sector; 1456 r = ti->type->map(ti, clone); 1457 if (r == DM_MAPIO_REMAPPED) { 1458 /* the bio has been remapped so dispatch it */ 1459 1460 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1461 tio->io->bio->bi_bdev->bd_dev, sector); 1462 1463 generic_make_request(clone); 1464 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1465 /* error the io and bail out, or requeue it if needed */ 1466 md = tio->io->md; 1467 dec_pending(tio->io, r); 1468 free_tio(md, tio); 1469 } else if (r) { 1470 DMWARN("unimplemented target map return value: %d", r); 1471 BUG(); 1472 } 1473 } 1474 1475 struct clone_info { 1476 struct mapped_device *md; 1477 struct dm_table *map; 1478 struct bio *bio; 1479 struct dm_io *io; 1480 sector_t sector; 1481 unsigned sector_count; 1482 }; 1483 1484 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1485 { 1486 bio->bi_iter.bi_sector = sector; 1487 bio->bi_iter.bi_size = to_bytes(len); 1488 } 1489 1490 /* 1491 * Creates a bio that consists of range of complete bvecs. 1492 */ 1493 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1494 sector_t sector, unsigned len) 1495 { 1496 struct bio *clone = &tio->clone; 1497 1498 __bio_clone_fast(clone, bio); 1499 1500 if (bio_integrity(bio)) 1501 bio_integrity_clone(clone, bio, GFP_NOIO); 1502 1503 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1504 clone->bi_iter.bi_size = to_bytes(len); 1505 1506 if (bio_integrity(bio)) 1507 bio_integrity_trim(clone, 0, len); 1508 } 1509 1510 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1511 struct dm_target *ti, 1512 unsigned target_bio_nr) 1513 { 1514 struct dm_target_io *tio; 1515 struct bio *clone; 1516 1517 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1518 tio = container_of(clone, struct dm_target_io, clone); 1519 1520 tio->io = ci->io; 1521 tio->ti = ti; 1522 tio->target_bio_nr = target_bio_nr; 1523 1524 return tio; 1525 } 1526 1527 static void __clone_and_map_simple_bio(struct clone_info *ci, 1528 struct dm_target *ti, 1529 unsigned target_bio_nr, unsigned *len) 1530 { 1531 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1532 struct bio *clone = &tio->clone; 1533 1534 tio->len_ptr = len; 1535 1536 __bio_clone_fast(clone, ci->bio); 1537 if (len) 1538 bio_setup_sector(clone, ci->sector, *len); 1539 1540 __map_bio(tio); 1541 } 1542 1543 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1544 unsigned num_bios, unsigned *len) 1545 { 1546 unsigned target_bio_nr; 1547 1548 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1549 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1550 } 1551 1552 static int __send_empty_flush(struct clone_info *ci) 1553 { 1554 unsigned target_nr = 0; 1555 struct dm_target *ti; 1556 1557 BUG_ON(bio_has_data(ci->bio)); 1558 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1559 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1560 1561 return 0; 1562 } 1563 1564 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1565 sector_t sector, unsigned *len) 1566 { 1567 struct bio *bio = ci->bio; 1568 struct dm_target_io *tio; 1569 unsigned target_bio_nr; 1570 unsigned num_target_bios = 1; 1571 1572 /* 1573 * Does the target want to receive duplicate copies of the bio? 1574 */ 1575 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1576 num_target_bios = ti->num_write_bios(ti, bio); 1577 1578 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1579 tio = alloc_tio(ci, ti, target_bio_nr); 1580 tio->len_ptr = len; 1581 clone_bio(tio, bio, sector, *len); 1582 __map_bio(tio); 1583 } 1584 } 1585 1586 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1587 1588 static unsigned get_num_discard_bios(struct dm_target *ti) 1589 { 1590 return ti->num_discard_bios; 1591 } 1592 1593 static unsigned get_num_write_same_bios(struct dm_target *ti) 1594 { 1595 return ti->num_write_same_bios; 1596 } 1597 1598 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1599 1600 static bool is_split_required_for_discard(struct dm_target *ti) 1601 { 1602 return ti->split_discard_bios; 1603 } 1604 1605 static int __send_changing_extent_only(struct clone_info *ci, 1606 get_num_bios_fn get_num_bios, 1607 is_split_required_fn is_split_required) 1608 { 1609 struct dm_target *ti; 1610 unsigned len; 1611 unsigned num_bios; 1612 1613 do { 1614 ti = dm_table_find_target(ci->map, ci->sector); 1615 if (!dm_target_is_valid(ti)) 1616 return -EIO; 1617 1618 /* 1619 * Even though the device advertised support for this type of 1620 * request, that does not mean every target supports it, and 1621 * reconfiguration might also have changed that since the 1622 * check was performed. 1623 */ 1624 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1625 if (!num_bios) 1626 return -EOPNOTSUPP; 1627 1628 if (is_split_required && !is_split_required(ti)) 1629 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1630 else 1631 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1632 1633 __send_duplicate_bios(ci, ti, num_bios, &len); 1634 1635 ci->sector += len; 1636 } while (ci->sector_count -= len); 1637 1638 return 0; 1639 } 1640 1641 static int __send_discard(struct clone_info *ci) 1642 { 1643 return __send_changing_extent_only(ci, get_num_discard_bios, 1644 is_split_required_for_discard); 1645 } 1646 1647 static int __send_write_same(struct clone_info *ci) 1648 { 1649 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1650 } 1651 1652 /* 1653 * Select the correct strategy for processing a non-flush bio. 1654 */ 1655 static int __split_and_process_non_flush(struct clone_info *ci) 1656 { 1657 struct bio *bio = ci->bio; 1658 struct dm_target *ti; 1659 unsigned len; 1660 1661 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1662 return __send_discard(ci); 1663 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1664 return __send_write_same(ci); 1665 1666 ti = dm_table_find_target(ci->map, ci->sector); 1667 if (!dm_target_is_valid(ti)) 1668 return -EIO; 1669 1670 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1671 1672 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1673 1674 ci->sector += len; 1675 ci->sector_count -= len; 1676 1677 return 0; 1678 } 1679 1680 /* 1681 * Entry point to split a bio into clones and submit them to the targets. 1682 */ 1683 static void __split_and_process_bio(struct mapped_device *md, 1684 struct dm_table *map, struct bio *bio) 1685 { 1686 struct clone_info ci; 1687 int error = 0; 1688 1689 if (unlikely(!map)) { 1690 bio_io_error(bio); 1691 return; 1692 } 1693 1694 ci.map = map; 1695 ci.md = md; 1696 ci.io = alloc_io(md); 1697 ci.io->error = 0; 1698 atomic_set(&ci.io->io_count, 1); 1699 ci.io->bio = bio; 1700 ci.io->md = md; 1701 spin_lock_init(&ci.io->endio_lock); 1702 ci.sector = bio->bi_iter.bi_sector; 1703 1704 start_io_acct(ci.io); 1705 1706 if (bio->bi_rw & REQ_FLUSH) { 1707 ci.bio = &ci.md->flush_bio; 1708 ci.sector_count = 0; 1709 error = __send_empty_flush(&ci); 1710 /* dec_pending submits any data associated with flush */ 1711 } else { 1712 ci.bio = bio; 1713 ci.sector_count = bio_sectors(bio); 1714 while (ci.sector_count && !error) 1715 error = __split_and_process_non_flush(&ci); 1716 } 1717 1718 /* drop the extra reference count */ 1719 dec_pending(ci.io, error); 1720 } 1721 /*----------------------------------------------------------------- 1722 * CRUD END 1723 *---------------------------------------------------------------*/ 1724 1725 static int dm_merge_bvec(struct request_queue *q, 1726 struct bvec_merge_data *bvm, 1727 struct bio_vec *biovec) 1728 { 1729 struct mapped_device *md = q->queuedata; 1730 struct dm_table *map = dm_get_live_table_fast(md); 1731 struct dm_target *ti; 1732 sector_t max_sectors, max_size = 0; 1733 1734 if (unlikely(!map)) 1735 goto out; 1736 1737 ti = dm_table_find_target(map, bvm->bi_sector); 1738 if (!dm_target_is_valid(ti)) 1739 goto out; 1740 1741 /* 1742 * Find maximum amount of I/O that won't need splitting 1743 */ 1744 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1745 (sector_t) queue_max_sectors(q)); 1746 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1747 1748 /* 1749 * FIXME: this stop-gap fix _must_ be cleaned up (by passing a sector_t 1750 * to the targets' merge function since it holds sectors not bytes). 1751 * Just doing this as an interim fix for stable@ because the more 1752 * comprehensive cleanup of switching to sector_t will impact every 1753 * DM target that implements a ->merge hook. 1754 */ 1755 if (max_size > INT_MAX) 1756 max_size = INT_MAX; 1757 1758 /* 1759 * merge_bvec_fn() returns number of bytes 1760 * it can accept at this offset 1761 * max is precomputed maximal io size 1762 */ 1763 if (max_size && ti->type->merge) 1764 max_size = ti->type->merge(ti, bvm, biovec, (int) max_size); 1765 /* 1766 * If the target doesn't support merge method and some of the devices 1767 * provided their merge_bvec method (we know this by looking for the 1768 * max_hw_sectors that dm_set_device_limits may set), then we can't 1769 * allow bios with multiple vector entries. So always set max_size 1770 * to 0, and the code below allows just one page. 1771 */ 1772 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1773 max_size = 0; 1774 1775 out: 1776 dm_put_live_table_fast(md); 1777 /* 1778 * Always allow an entire first page 1779 */ 1780 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1781 max_size = biovec->bv_len; 1782 1783 return max_size; 1784 } 1785 1786 /* 1787 * The request function that just remaps the bio built up by 1788 * dm_merge_bvec. 1789 */ 1790 static void dm_make_request(struct request_queue *q, struct bio *bio) 1791 { 1792 int rw = bio_data_dir(bio); 1793 struct mapped_device *md = q->queuedata; 1794 int srcu_idx; 1795 struct dm_table *map; 1796 1797 map = dm_get_live_table(md, &srcu_idx); 1798 1799 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1800 1801 /* if we're suspended, we have to queue this io for later */ 1802 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1803 dm_put_live_table(md, srcu_idx); 1804 1805 if (bio_rw(bio) != READA) 1806 queue_io(md, bio); 1807 else 1808 bio_io_error(bio); 1809 return; 1810 } 1811 1812 __split_and_process_bio(md, map, bio); 1813 dm_put_live_table(md, srcu_idx); 1814 return; 1815 } 1816 1817 int dm_request_based(struct mapped_device *md) 1818 { 1819 return blk_queue_stackable(md->queue); 1820 } 1821 1822 static void dm_dispatch_clone_request(struct request *clone, struct request *rq) 1823 { 1824 int r; 1825 1826 if (blk_queue_io_stat(clone->q)) 1827 clone->cmd_flags |= REQ_IO_STAT; 1828 1829 clone->start_time = jiffies; 1830 r = blk_insert_cloned_request(clone->q, clone); 1831 if (r) 1832 /* must complete clone in terms of original request */ 1833 dm_complete_request(rq, r); 1834 } 1835 1836 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1837 void *data) 1838 { 1839 struct dm_rq_target_io *tio = data; 1840 struct dm_rq_clone_bio_info *info = 1841 container_of(bio, struct dm_rq_clone_bio_info, clone); 1842 1843 info->orig = bio_orig; 1844 info->tio = tio; 1845 bio->bi_end_io = end_clone_bio; 1846 1847 return 0; 1848 } 1849 1850 static int setup_clone(struct request *clone, struct request *rq, 1851 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1852 { 1853 int r; 1854 1855 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask, 1856 dm_rq_bio_constructor, tio); 1857 if (r) 1858 return r; 1859 1860 clone->cmd = rq->cmd; 1861 clone->cmd_len = rq->cmd_len; 1862 clone->sense = rq->sense; 1863 clone->end_io = end_clone_request; 1864 clone->end_io_data = tio; 1865 1866 tio->clone = clone; 1867 1868 return 0; 1869 } 1870 1871 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1872 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1873 { 1874 /* 1875 * Do not allocate a clone if tio->clone was already set 1876 * (see: dm_mq_queue_rq). 1877 */ 1878 bool alloc_clone = !tio->clone; 1879 struct request *clone; 1880 1881 if (alloc_clone) { 1882 clone = alloc_clone_request(md, gfp_mask); 1883 if (!clone) 1884 return NULL; 1885 } else 1886 clone = tio->clone; 1887 1888 blk_rq_init(NULL, clone); 1889 if (setup_clone(clone, rq, tio, gfp_mask)) { 1890 /* -ENOMEM */ 1891 if (alloc_clone) 1892 free_clone_request(md, clone); 1893 return NULL; 1894 } 1895 1896 return clone; 1897 } 1898 1899 static void map_tio_request(struct kthread_work *work); 1900 1901 static void init_tio(struct dm_rq_target_io *tio, struct request *rq, 1902 struct mapped_device *md) 1903 { 1904 tio->md = md; 1905 tio->ti = NULL; 1906 tio->clone = NULL; 1907 tio->orig = rq; 1908 tio->error = 0; 1909 memset(&tio->info, 0, sizeof(tio->info)); 1910 if (md->kworker_task) 1911 init_kthread_work(&tio->work, map_tio_request); 1912 } 1913 1914 static struct dm_rq_target_io *prep_tio(struct request *rq, 1915 struct mapped_device *md, gfp_t gfp_mask) 1916 { 1917 struct dm_rq_target_io *tio; 1918 int srcu_idx; 1919 struct dm_table *table; 1920 1921 tio = alloc_rq_tio(md, gfp_mask); 1922 if (!tio) 1923 return NULL; 1924 1925 init_tio(tio, rq, md); 1926 1927 table = dm_get_live_table(md, &srcu_idx); 1928 if (!dm_table_mq_request_based(table)) { 1929 if (!clone_rq(rq, md, tio, gfp_mask)) { 1930 dm_put_live_table(md, srcu_idx); 1931 free_rq_tio(tio); 1932 return NULL; 1933 } 1934 } 1935 dm_put_live_table(md, srcu_idx); 1936 1937 return tio; 1938 } 1939 1940 /* 1941 * Called with the queue lock held. 1942 */ 1943 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1944 { 1945 struct mapped_device *md = q->queuedata; 1946 struct dm_rq_target_io *tio; 1947 1948 if (unlikely(rq->special)) { 1949 DMWARN("Already has something in rq->special."); 1950 return BLKPREP_KILL; 1951 } 1952 1953 tio = prep_tio(rq, md, GFP_ATOMIC); 1954 if (!tio) 1955 return BLKPREP_DEFER; 1956 1957 rq->special = tio; 1958 rq->cmd_flags |= REQ_DONTPREP; 1959 1960 return BLKPREP_OK; 1961 } 1962 1963 /* 1964 * Returns: 1965 * 0 : the request has been processed 1966 * DM_MAPIO_REQUEUE : the original request needs to be requeued 1967 * < 0 : the request was completed due to failure 1968 */ 1969 static int map_request(struct dm_rq_target_io *tio, struct request *rq, 1970 struct mapped_device *md) 1971 { 1972 int r; 1973 struct dm_target *ti = tio->ti; 1974 struct request *clone = NULL; 1975 1976 if (tio->clone) { 1977 clone = tio->clone; 1978 r = ti->type->map_rq(ti, clone, &tio->info); 1979 } else { 1980 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone); 1981 if (r < 0) { 1982 /* The target wants to complete the I/O */ 1983 dm_kill_unmapped_request(rq, r); 1984 return r; 1985 } 1986 if (r != DM_MAPIO_REMAPPED) 1987 return r; 1988 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) { 1989 /* -ENOMEM */ 1990 ti->type->release_clone_rq(clone); 1991 return DM_MAPIO_REQUEUE; 1992 } 1993 } 1994 1995 switch (r) { 1996 case DM_MAPIO_SUBMITTED: 1997 /* The target has taken the I/O to submit by itself later */ 1998 break; 1999 case DM_MAPIO_REMAPPED: 2000 /* The target has remapped the I/O so dispatch it */ 2001 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 2002 blk_rq_pos(rq)); 2003 dm_dispatch_clone_request(clone, rq); 2004 break; 2005 case DM_MAPIO_REQUEUE: 2006 /* The target wants to requeue the I/O */ 2007 dm_requeue_original_request(md, tio->orig); 2008 break; 2009 default: 2010 if (r > 0) { 2011 DMWARN("unimplemented target map return value: %d", r); 2012 BUG(); 2013 } 2014 2015 /* The target wants to complete the I/O */ 2016 dm_kill_unmapped_request(rq, r); 2017 return r; 2018 } 2019 2020 return 0; 2021 } 2022 2023 static void map_tio_request(struct kthread_work *work) 2024 { 2025 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work); 2026 struct request *rq = tio->orig; 2027 struct mapped_device *md = tio->md; 2028 2029 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) 2030 dm_requeue_original_request(md, rq); 2031 } 2032 2033 static void dm_start_request(struct mapped_device *md, struct request *orig) 2034 { 2035 if (!orig->q->mq_ops) 2036 blk_start_request(orig); 2037 else 2038 blk_mq_start_request(orig); 2039 atomic_inc(&md->pending[rq_data_dir(orig)]); 2040 2041 if (md->seq_rq_merge_deadline_usecs) { 2042 md->last_rq_pos = rq_end_sector(orig); 2043 md->last_rq_rw = rq_data_dir(orig); 2044 md->last_rq_start_time = ktime_get(); 2045 } 2046 2047 if (unlikely(dm_stats_used(&md->stats))) { 2048 struct dm_rq_target_io *tio = tio_from_request(orig); 2049 tio->duration_jiffies = jiffies; 2050 tio->n_sectors = blk_rq_sectors(orig); 2051 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig), 2052 tio->n_sectors, false, 0, &tio->stats_aux); 2053 } 2054 2055 /* 2056 * Hold the md reference here for the in-flight I/O. 2057 * We can't rely on the reference count by device opener, 2058 * because the device may be closed during the request completion 2059 * when all bios are completed. 2060 * See the comment in rq_completed() too. 2061 */ 2062 dm_get(md); 2063 } 2064 2065 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000 2066 2067 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf) 2068 { 2069 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs); 2070 } 2071 2072 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md, 2073 const char *buf, size_t count) 2074 { 2075 unsigned deadline; 2076 2077 if (!dm_request_based(md) || md->use_blk_mq) 2078 return count; 2079 2080 if (kstrtouint(buf, 10, &deadline)) 2081 return -EINVAL; 2082 2083 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS) 2084 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS; 2085 2086 md->seq_rq_merge_deadline_usecs = deadline; 2087 2088 return count; 2089 } 2090 2091 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md) 2092 { 2093 ktime_t kt_deadline; 2094 2095 if (!md->seq_rq_merge_deadline_usecs) 2096 return false; 2097 2098 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC); 2099 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline); 2100 2101 return !ktime_after(ktime_get(), kt_deadline); 2102 } 2103 2104 /* 2105 * q->request_fn for request-based dm. 2106 * Called with the queue lock held. 2107 */ 2108 static void dm_request_fn(struct request_queue *q) 2109 { 2110 struct mapped_device *md = q->queuedata; 2111 int srcu_idx; 2112 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2113 struct dm_target *ti; 2114 struct request *rq; 2115 struct dm_rq_target_io *tio; 2116 sector_t pos; 2117 2118 /* 2119 * For suspend, check blk_queue_stopped() and increment 2120 * ->pending within a single queue_lock not to increment the 2121 * number of in-flight I/Os after the queue is stopped in 2122 * dm_suspend(). 2123 */ 2124 while (!blk_queue_stopped(q)) { 2125 rq = blk_peek_request(q); 2126 if (!rq) 2127 goto out; 2128 2129 /* always use block 0 to find the target for flushes for now */ 2130 pos = 0; 2131 if (!(rq->cmd_flags & REQ_FLUSH)) 2132 pos = blk_rq_pos(rq); 2133 2134 ti = dm_table_find_target(map, pos); 2135 if (!dm_target_is_valid(ti)) { 2136 /* 2137 * Must perform setup, that rq_completed() requires, 2138 * before calling dm_kill_unmapped_request 2139 */ 2140 DMERR_LIMIT("request attempted access beyond the end of device"); 2141 dm_start_request(md, rq); 2142 dm_kill_unmapped_request(rq, -EIO); 2143 continue; 2144 } 2145 2146 if (dm_request_peeked_before_merge_deadline(md) && 2147 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 && 2148 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) 2149 goto delay_and_out; 2150 2151 if (ti->type->busy && ti->type->busy(ti)) 2152 goto delay_and_out; 2153 2154 dm_start_request(md, rq); 2155 2156 tio = tio_from_request(rq); 2157 /* Establish tio->ti before queuing work (map_tio_request) */ 2158 tio->ti = ti; 2159 queue_kthread_work(&md->kworker, &tio->work); 2160 BUG_ON(!irqs_disabled()); 2161 } 2162 2163 goto out; 2164 2165 delay_and_out: 2166 blk_delay_queue(q, HZ / 100); 2167 out: 2168 dm_put_live_table(md, srcu_idx); 2169 } 2170 2171 static int dm_any_congested(void *congested_data, int bdi_bits) 2172 { 2173 int r = bdi_bits; 2174 struct mapped_device *md = congested_data; 2175 struct dm_table *map; 2176 2177 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2178 map = dm_get_live_table_fast(md); 2179 if (map) { 2180 /* 2181 * Request-based dm cares about only own queue for 2182 * the query about congestion status of request_queue 2183 */ 2184 if (dm_request_based(md)) 2185 r = md->queue->backing_dev_info.wb.state & 2186 bdi_bits; 2187 else 2188 r = dm_table_any_congested(map, bdi_bits); 2189 } 2190 dm_put_live_table_fast(md); 2191 } 2192 2193 return r; 2194 } 2195 2196 /*----------------------------------------------------------------- 2197 * An IDR is used to keep track of allocated minor numbers. 2198 *---------------------------------------------------------------*/ 2199 static void free_minor(int minor) 2200 { 2201 spin_lock(&_minor_lock); 2202 idr_remove(&_minor_idr, minor); 2203 spin_unlock(&_minor_lock); 2204 } 2205 2206 /* 2207 * See if the device with a specific minor # is free. 2208 */ 2209 static int specific_minor(int minor) 2210 { 2211 int r; 2212 2213 if (minor >= (1 << MINORBITS)) 2214 return -EINVAL; 2215 2216 idr_preload(GFP_KERNEL); 2217 spin_lock(&_minor_lock); 2218 2219 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2220 2221 spin_unlock(&_minor_lock); 2222 idr_preload_end(); 2223 if (r < 0) 2224 return r == -ENOSPC ? -EBUSY : r; 2225 return 0; 2226 } 2227 2228 static int next_free_minor(int *minor) 2229 { 2230 int r; 2231 2232 idr_preload(GFP_KERNEL); 2233 spin_lock(&_minor_lock); 2234 2235 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2236 2237 spin_unlock(&_minor_lock); 2238 idr_preload_end(); 2239 if (r < 0) 2240 return r; 2241 *minor = r; 2242 return 0; 2243 } 2244 2245 static const struct block_device_operations dm_blk_dops; 2246 2247 static void dm_wq_work(struct work_struct *work); 2248 2249 static void dm_init_md_queue(struct mapped_device *md) 2250 { 2251 /* 2252 * Request-based dm devices cannot be stacked on top of bio-based dm 2253 * devices. The type of this dm device may not have been decided yet. 2254 * The type is decided at the first table loading time. 2255 * To prevent problematic device stacking, clear the queue flag 2256 * for request stacking support until then. 2257 * 2258 * This queue is new, so no concurrency on the queue_flags. 2259 */ 2260 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 2261 } 2262 2263 static void dm_init_old_md_queue(struct mapped_device *md) 2264 { 2265 md->use_blk_mq = false; 2266 dm_init_md_queue(md); 2267 2268 /* 2269 * Initialize aspects of queue that aren't relevant for blk-mq 2270 */ 2271 md->queue->queuedata = md; 2272 md->queue->backing_dev_info.congested_fn = dm_any_congested; 2273 md->queue->backing_dev_info.congested_data = md; 2274 2275 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 2276 } 2277 2278 static void cleanup_mapped_device(struct mapped_device *md) 2279 { 2280 if (md->wq) 2281 destroy_workqueue(md->wq); 2282 if (md->kworker_task) 2283 kthread_stop(md->kworker_task); 2284 if (md->io_pool) 2285 mempool_destroy(md->io_pool); 2286 if (md->rq_pool) 2287 mempool_destroy(md->rq_pool); 2288 if (md->bs) 2289 bioset_free(md->bs); 2290 2291 cleanup_srcu_struct(&md->io_barrier); 2292 2293 if (md->disk) { 2294 spin_lock(&_minor_lock); 2295 md->disk->private_data = NULL; 2296 spin_unlock(&_minor_lock); 2297 if (blk_get_integrity(md->disk)) 2298 blk_integrity_unregister(md->disk); 2299 del_gendisk(md->disk); 2300 put_disk(md->disk); 2301 } 2302 2303 if (md->queue) 2304 blk_cleanup_queue(md->queue); 2305 2306 if (md->bdev) { 2307 bdput(md->bdev); 2308 md->bdev = NULL; 2309 } 2310 } 2311 2312 /* 2313 * Allocate and initialise a blank device with a given minor. 2314 */ 2315 static struct mapped_device *alloc_dev(int minor) 2316 { 2317 int r; 2318 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 2319 void *old_md; 2320 2321 if (!md) { 2322 DMWARN("unable to allocate device, out of memory."); 2323 return NULL; 2324 } 2325 2326 if (!try_module_get(THIS_MODULE)) 2327 goto bad_module_get; 2328 2329 /* get a minor number for the dev */ 2330 if (minor == DM_ANY_MINOR) 2331 r = next_free_minor(&minor); 2332 else 2333 r = specific_minor(minor); 2334 if (r < 0) 2335 goto bad_minor; 2336 2337 r = init_srcu_struct(&md->io_barrier); 2338 if (r < 0) 2339 goto bad_io_barrier; 2340 2341 md->use_blk_mq = use_blk_mq; 2342 md->type = DM_TYPE_NONE; 2343 mutex_init(&md->suspend_lock); 2344 mutex_init(&md->type_lock); 2345 mutex_init(&md->table_devices_lock); 2346 spin_lock_init(&md->deferred_lock); 2347 atomic_set(&md->holders, 1); 2348 atomic_set(&md->open_count, 0); 2349 atomic_set(&md->event_nr, 0); 2350 atomic_set(&md->uevent_seq, 0); 2351 INIT_LIST_HEAD(&md->uevent_list); 2352 INIT_LIST_HEAD(&md->table_devices); 2353 spin_lock_init(&md->uevent_lock); 2354 2355 md->queue = blk_alloc_queue(GFP_KERNEL); 2356 if (!md->queue) 2357 goto bad; 2358 2359 dm_init_md_queue(md); 2360 2361 md->disk = alloc_disk(1); 2362 if (!md->disk) 2363 goto bad; 2364 2365 atomic_set(&md->pending[0], 0); 2366 atomic_set(&md->pending[1], 0); 2367 init_waitqueue_head(&md->wait); 2368 INIT_WORK(&md->work, dm_wq_work); 2369 init_waitqueue_head(&md->eventq); 2370 init_completion(&md->kobj_holder.completion); 2371 md->kworker_task = NULL; 2372 2373 md->disk->major = _major; 2374 md->disk->first_minor = minor; 2375 md->disk->fops = &dm_blk_dops; 2376 md->disk->queue = md->queue; 2377 md->disk->private_data = md; 2378 sprintf(md->disk->disk_name, "dm-%d", minor); 2379 add_disk(md->disk); 2380 format_dev_t(md->name, MKDEV(_major, minor)); 2381 2382 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2383 if (!md->wq) 2384 goto bad; 2385 2386 md->bdev = bdget_disk(md->disk, 0); 2387 if (!md->bdev) 2388 goto bad; 2389 2390 bio_init(&md->flush_bio); 2391 md->flush_bio.bi_bdev = md->bdev; 2392 md->flush_bio.bi_rw = WRITE_FLUSH; 2393 2394 dm_stats_init(&md->stats); 2395 2396 /* Populate the mapping, nobody knows we exist yet */ 2397 spin_lock(&_minor_lock); 2398 old_md = idr_replace(&_minor_idr, md, minor); 2399 spin_unlock(&_minor_lock); 2400 2401 BUG_ON(old_md != MINOR_ALLOCED); 2402 2403 return md; 2404 2405 bad: 2406 cleanup_mapped_device(md); 2407 bad_io_barrier: 2408 free_minor(minor); 2409 bad_minor: 2410 module_put(THIS_MODULE); 2411 bad_module_get: 2412 kfree(md); 2413 return NULL; 2414 } 2415 2416 static void unlock_fs(struct mapped_device *md); 2417 2418 static void free_dev(struct mapped_device *md) 2419 { 2420 int minor = MINOR(disk_devt(md->disk)); 2421 2422 unlock_fs(md); 2423 2424 cleanup_mapped_device(md); 2425 if (md->use_blk_mq) 2426 blk_mq_free_tag_set(&md->tag_set); 2427 2428 free_table_devices(&md->table_devices); 2429 dm_stats_cleanup(&md->stats); 2430 free_minor(minor); 2431 2432 module_put(THIS_MODULE); 2433 kfree(md); 2434 } 2435 2436 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2437 { 2438 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2439 2440 if (md->bs) { 2441 /* The md already has necessary mempools. */ 2442 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2443 /* 2444 * Reload bioset because front_pad may have changed 2445 * because a different table was loaded. 2446 */ 2447 bioset_free(md->bs); 2448 md->bs = p->bs; 2449 p->bs = NULL; 2450 } 2451 /* 2452 * There's no need to reload with request-based dm 2453 * because the size of front_pad doesn't change. 2454 * Note for future: If you are to reload bioset, 2455 * prep-ed requests in the queue may refer 2456 * to bio from the old bioset, so you must walk 2457 * through the queue to unprep. 2458 */ 2459 goto out; 2460 } 2461 2462 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs); 2463 2464 md->io_pool = p->io_pool; 2465 p->io_pool = NULL; 2466 md->rq_pool = p->rq_pool; 2467 p->rq_pool = NULL; 2468 md->bs = p->bs; 2469 p->bs = NULL; 2470 2471 out: 2472 /* mempool bind completed, no longer need any mempools in the table */ 2473 dm_table_free_md_mempools(t); 2474 } 2475 2476 /* 2477 * Bind a table to the device. 2478 */ 2479 static void event_callback(void *context) 2480 { 2481 unsigned long flags; 2482 LIST_HEAD(uevents); 2483 struct mapped_device *md = (struct mapped_device *) context; 2484 2485 spin_lock_irqsave(&md->uevent_lock, flags); 2486 list_splice_init(&md->uevent_list, &uevents); 2487 spin_unlock_irqrestore(&md->uevent_lock, flags); 2488 2489 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2490 2491 atomic_inc(&md->event_nr); 2492 wake_up(&md->eventq); 2493 } 2494 2495 /* 2496 * Protected by md->suspend_lock obtained by dm_swap_table(). 2497 */ 2498 static void __set_size(struct mapped_device *md, sector_t size) 2499 { 2500 set_capacity(md->disk, size); 2501 2502 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2503 } 2504 2505 /* 2506 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2507 * 2508 * If this function returns 0, then the device is either a non-dm 2509 * device without a merge_bvec_fn, or it is a dm device that is 2510 * able to split any bios it receives that are too big. 2511 */ 2512 int dm_queue_merge_is_compulsory(struct request_queue *q) 2513 { 2514 struct mapped_device *dev_md; 2515 2516 if (!q->merge_bvec_fn) 2517 return 0; 2518 2519 if (q->make_request_fn == dm_make_request) { 2520 dev_md = q->queuedata; 2521 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2522 return 0; 2523 } 2524 2525 return 1; 2526 } 2527 2528 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2529 struct dm_dev *dev, sector_t start, 2530 sector_t len, void *data) 2531 { 2532 struct block_device *bdev = dev->bdev; 2533 struct request_queue *q = bdev_get_queue(bdev); 2534 2535 return dm_queue_merge_is_compulsory(q); 2536 } 2537 2538 /* 2539 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2540 * on the properties of the underlying devices. 2541 */ 2542 static int dm_table_merge_is_optional(struct dm_table *table) 2543 { 2544 unsigned i = 0; 2545 struct dm_target *ti; 2546 2547 while (i < dm_table_get_num_targets(table)) { 2548 ti = dm_table_get_target(table, i++); 2549 2550 if (ti->type->iterate_devices && 2551 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2552 return 0; 2553 } 2554 2555 return 1; 2556 } 2557 2558 /* 2559 * Returns old map, which caller must destroy. 2560 */ 2561 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2562 struct queue_limits *limits) 2563 { 2564 struct dm_table *old_map; 2565 struct request_queue *q = md->queue; 2566 sector_t size; 2567 int merge_is_optional; 2568 2569 size = dm_table_get_size(t); 2570 2571 /* 2572 * Wipe any geometry if the size of the table changed. 2573 */ 2574 if (size != dm_get_size(md)) 2575 memset(&md->geometry, 0, sizeof(md->geometry)); 2576 2577 __set_size(md, size); 2578 2579 dm_table_event_callback(t, event_callback, md); 2580 2581 /* 2582 * The queue hasn't been stopped yet, if the old table type wasn't 2583 * for request-based during suspension. So stop it to prevent 2584 * I/O mapping before resume. 2585 * This must be done before setting the queue restrictions, 2586 * because request-based dm may be run just after the setting. 2587 */ 2588 if (dm_table_request_based(t)) 2589 stop_queue(q); 2590 2591 __bind_mempools(md, t); 2592 2593 merge_is_optional = dm_table_merge_is_optional(t); 2594 2595 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2596 rcu_assign_pointer(md->map, t); 2597 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2598 2599 dm_table_set_restrictions(t, q, limits); 2600 if (merge_is_optional) 2601 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2602 else 2603 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2604 if (old_map) 2605 dm_sync_table(md); 2606 2607 return old_map; 2608 } 2609 2610 /* 2611 * Returns unbound table for the caller to free. 2612 */ 2613 static struct dm_table *__unbind(struct mapped_device *md) 2614 { 2615 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2616 2617 if (!map) 2618 return NULL; 2619 2620 dm_table_event_callback(map, NULL, NULL); 2621 RCU_INIT_POINTER(md->map, NULL); 2622 dm_sync_table(md); 2623 2624 return map; 2625 } 2626 2627 /* 2628 * Constructor for a new device. 2629 */ 2630 int dm_create(int minor, struct mapped_device **result) 2631 { 2632 struct mapped_device *md; 2633 2634 md = alloc_dev(minor); 2635 if (!md) 2636 return -ENXIO; 2637 2638 dm_sysfs_init(md); 2639 2640 *result = md; 2641 return 0; 2642 } 2643 2644 /* 2645 * Functions to manage md->type. 2646 * All are required to hold md->type_lock. 2647 */ 2648 void dm_lock_md_type(struct mapped_device *md) 2649 { 2650 mutex_lock(&md->type_lock); 2651 } 2652 2653 void dm_unlock_md_type(struct mapped_device *md) 2654 { 2655 mutex_unlock(&md->type_lock); 2656 } 2657 2658 void dm_set_md_type(struct mapped_device *md, unsigned type) 2659 { 2660 BUG_ON(!mutex_is_locked(&md->type_lock)); 2661 md->type = type; 2662 } 2663 2664 unsigned dm_get_md_type(struct mapped_device *md) 2665 { 2666 BUG_ON(!mutex_is_locked(&md->type_lock)); 2667 return md->type; 2668 } 2669 2670 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2671 { 2672 return md->immutable_target_type; 2673 } 2674 2675 /* 2676 * The queue_limits are only valid as long as you have a reference 2677 * count on 'md'. 2678 */ 2679 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2680 { 2681 BUG_ON(!atomic_read(&md->holders)); 2682 return &md->queue->limits; 2683 } 2684 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2685 2686 static void init_rq_based_worker_thread(struct mapped_device *md) 2687 { 2688 /* Initialize the request-based DM worker thread */ 2689 init_kthread_worker(&md->kworker); 2690 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker, 2691 "kdmwork-%s", dm_device_name(md)); 2692 } 2693 2694 /* 2695 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2696 */ 2697 static int dm_init_request_based_queue(struct mapped_device *md) 2698 { 2699 struct request_queue *q = NULL; 2700 2701 /* Fully initialize the queue */ 2702 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2703 if (!q) 2704 return -EINVAL; 2705 2706 /* disable dm_request_fn's merge heuristic by default */ 2707 md->seq_rq_merge_deadline_usecs = 0; 2708 2709 md->queue = q; 2710 dm_init_old_md_queue(md); 2711 blk_queue_softirq_done(md->queue, dm_softirq_done); 2712 blk_queue_prep_rq(md->queue, dm_prep_fn); 2713 2714 init_rq_based_worker_thread(md); 2715 2716 elv_register_queue(md->queue); 2717 2718 return 0; 2719 } 2720 2721 static int dm_mq_init_request(void *data, struct request *rq, 2722 unsigned int hctx_idx, unsigned int request_idx, 2723 unsigned int numa_node) 2724 { 2725 struct mapped_device *md = data; 2726 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2727 2728 /* 2729 * Must initialize md member of tio, otherwise it won't 2730 * be available in dm_mq_queue_rq. 2731 */ 2732 tio->md = md; 2733 2734 return 0; 2735 } 2736 2737 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 2738 const struct blk_mq_queue_data *bd) 2739 { 2740 struct request *rq = bd->rq; 2741 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2742 struct mapped_device *md = tio->md; 2743 int srcu_idx; 2744 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2745 struct dm_target *ti; 2746 sector_t pos; 2747 2748 /* always use block 0 to find the target for flushes for now */ 2749 pos = 0; 2750 if (!(rq->cmd_flags & REQ_FLUSH)) 2751 pos = blk_rq_pos(rq); 2752 2753 ti = dm_table_find_target(map, pos); 2754 if (!dm_target_is_valid(ti)) { 2755 dm_put_live_table(md, srcu_idx); 2756 DMERR_LIMIT("request attempted access beyond the end of device"); 2757 /* 2758 * Must perform setup, that rq_completed() requires, 2759 * before returning BLK_MQ_RQ_QUEUE_ERROR 2760 */ 2761 dm_start_request(md, rq); 2762 return BLK_MQ_RQ_QUEUE_ERROR; 2763 } 2764 dm_put_live_table(md, srcu_idx); 2765 2766 if (ti->type->busy && ti->type->busy(ti)) 2767 return BLK_MQ_RQ_QUEUE_BUSY; 2768 2769 dm_start_request(md, rq); 2770 2771 /* Init tio using md established in .init_request */ 2772 init_tio(tio, rq, md); 2773 2774 /* 2775 * Establish tio->ti before queuing work (map_tio_request) 2776 * or making direct call to map_request(). 2777 */ 2778 tio->ti = ti; 2779 2780 /* Clone the request if underlying devices aren't blk-mq */ 2781 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) { 2782 /* clone request is allocated at the end of the pdu */ 2783 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io); 2784 (void) clone_rq(rq, md, tio, GFP_ATOMIC); 2785 queue_kthread_work(&md->kworker, &tio->work); 2786 } else { 2787 /* Direct call is fine since .queue_rq allows allocations */ 2788 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) { 2789 /* Undo dm_start_request() before requeuing */ 2790 rq_end_stats(md, rq); 2791 rq_completed(md, rq_data_dir(rq), false); 2792 return BLK_MQ_RQ_QUEUE_BUSY; 2793 } 2794 } 2795 2796 return BLK_MQ_RQ_QUEUE_OK; 2797 } 2798 2799 static struct blk_mq_ops dm_mq_ops = { 2800 .queue_rq = dm_mq_queue_rq, 2801 .map_queue = blk_mq_map_queue, 2802 .complete = dm_softirq_done, 2803 .init_request = dm_mq_init_request, 2804 }; 2805 2806 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md) 2807 { 2808 unsigned md_type = dm_get_md_type(md); 2809 struct request_queue *q; 2810 int err; 2811 2812 memset(&md->tag_set, 0, sizeof(md->tag_set)); 2813 md->tag_set.ops = &dm_mq_ops; 2814 md->tag_set.queue_depth = BLKDEV_MAX_RQ; 2815 md->tag_set.numa_node = NUMA_NO_NODE; 2816 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2817 md->tag_set.nr_hw_queues = 1; 2818 if (md_type == DM_TYPE_REQUEST_BASED) { 2819 /* make the memory for non-blk-mq clone part of the pdu */ 2820 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request); 2821 } else 2822 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io); 2823 md->tag_set.driver_data = md; 2824 2825 err = blk_mq_alloc_tag_set(&md->tag_set); 2826 if (err) 2827 return err; 2828 2829 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue); 2830 if (IS_ERR(q)) { 2831 err = PTR_ERR(q); 2832 goto out_tag_set; 2833 } 2834 md->queue = q; 2835 dm_init_md_queue(md); 2836 2837 /* backfill 'mq' sysfs registration normally done in blk_register_queue */ 2838 blk_mq_register_disk(md->disk); 2839 2840 if (md_type == DM_TYPE_REQUEST_BASED) 2841 init_rq_based_worker_thread(md); 2842 2843 return 0; 2844 2845 out_tag_set: 2846 blk_mq_free_tag_set(&md->tag_set); 2847 return err; 2848 } 2849 2850 static unsigned filter_md_type(unsigned type, struct mapped_device *md) 2851 { 2852 if (type == DM_TYPE_BIO_BASED) 2853 return type; 2854 2855 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED; 2856 } 2857 2858 /* 2859 * Setup the DM device's queue based on md's type 2860 */ 2861 int dm_setup_md_queue(struct mapped_device *md) 2862 { 2863 int r; 2864 unsigned md_type = filter_md_type(dm_get_md_type(md), md); 2865 2866 switch (md_type) { 2867 case DM_TYPE_REQUEST_BASED: 2868 r = dm_init_request_based_queue(md); 2869 if (r) { 2870 DMWARN("Cannot initialize queue for request-based mapped device"); 2871 return r; 2872 } 2873 break; 2874 case DM_TYPE_MQ_REQUEST_BASED: 2875 r = dm_init_request_based_blk_mq_queue(md); 2876 if (r) { 2877 DMWARN("Cannot initialize queue for request-based blk-mq mapped device"); 2878 return r; 2879 } 2880 break; 2881 case DM_TYPE_BIO_BASED: 2882 dm_init_old_md_queue(md); 2883 blk_queue_make_request(md->queue, dm_make_request); 2884 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 2885 break; 2886 } 2887 2888 return 0; 2889 } 2890 2891 struct mapped_device *dm_get_md(dev_t dev) 2892 { 2893 struct mapped_device *md; 2894 unsigned minor = MINOR(dev); 2895 2896 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2897 return NULL; 2898 2899 spin_lock(&_minor_lock); 2900 2901 md = idr_find(&_minor_idr, minor); 2902 if (md) { 2903 if ((md == MINOR_ALLOCED || 2904 (MINOR(disk_devt(dm_disk(md))) != minor) || 2905 dm_deleting_md(md) || 2906 test_bit(DMF_FREEING, &md->flags))) { 2907 md = NULL; 2908 goto out; 2909 } 2910 dm_get(md); 2911 } 2912 2913 out: 2914 spin_unlock(&_minor_lock); 2915 2916 return md; 2917 } 2918 EXPORT_SYMBOL_GPL(dm_get_md); 2919 2920 void *dm_get_mdptr(struct mapped_device *md) 2921 { 2922 return md->interface_ptr; 2923 } 2924 2925 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2926 { 2927 md->interface_ptr = ptr; 2928 } 2929 2930 void dm_get(struct mapped_device *md) 2931 { 2932 atomic_inc(&md->holders); 2933 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2934 } 2935 2936 int dm_hold(struct mapped_device *md) 2937 { 2938 spin_lock(&_minor_lock); 2939 if (test_bit(DMF_FREEING, &md->flags)) { 2940 spin_unlock(&_minor_lock); 2941 return -EBUSY; 2942 } 2943 dm_get(md); 2944 spin_unlock(&_minor_lock); 2945 return 0; 2946 } 2947 EXPORT_SYMBOL_GPL(dm_hold); 2948 2949 const char *dm_device_name(struct mapped_device *md) 2950 { 2951 return md->name; 2952 } 2953 EXPORT_SYMBOL_GPL(dm_device_name); 2954 2955 static void __dm_destroy(struct mapped_device *md, bool wait) 2956 { 2957 struct dm_table *map; 2958 int srcu_idx; 2959 2960 might_sleep(); 2961 2962 map = dm_get_live_table(md, &srcu_idx); 2963 2964 spin_lock(&_minor_lock); 2965 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2966 set_bit(DMF_FREEING, &md->flags); 2967 spin_unlock(&_minor_lock); 2968 2969 if (dm_request_based(md) && md->kworker_task) 2970 flush_kthread_worker(&md->kworker); 2971 2972 /* 2973 * Take suspend_lock so that presuspend and postsuspend methods 2974 * do not race with internal suspend. 2975 */ 2976 mutex_lock(&md->suspend_lock); 2977 if (!dm_suspended_md(md)) { 2978 dm_table_presuspend_targets(map); 2979 dm_table_postsuspend_targets(map); 2980 } 2981 mutex_unlock(&md->suspend_lock); 2982 2983 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2984 dm_put_live_table(md, srcu_idx); 2985 2986 /* 2987 * Rare, but there may be I/O requests still going to complete, 2988 * for example. Wait for all references to disappear. 2989 * No one should increment the reference count of the mapped_device, 2990 * after the mapped_device state becomes DMF_FREEING. 2991 */ 2992 if (wait) 2993 while (atomic_read(&md->holders)) 2994 msleep(1); 2995 else if (atomic_read(&md->holders)) 2996 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2997 dm_device_name(md), atomic_read(&md->holders)); 2998 2999 dm_sysfs_exit(md); 3000 dm_table_destroy(__unbind(md)); 3001 free_dev(md); 3002 } 3003 3004 void dm_destroy(struct mapped_device *md) 3005 { 3006 __dm_destroy(md, true); 3007 } 3008 3009 void dm_destroy_immediate(struct mapped_device *md) 3010 { 3011 __dm_destroy(md, false); 3012 } 3013 3014 void dm_put(struct mapped_device *md) 3015 { 3016 atomic_dec(&md->holders); 3017 } 3018 EXPORT_SYMBOL_GPL(dm_put); 3019 3020 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 3021 { 3022 int r = 0; 3023 DECLARE_WAITQUEUE(wait, current); 3024 3025 add_wait_queue(&md->wait, &wait); 3026 3027 while (1) { 3028 set_current_state(interruptible); 3029 3030 if (!md_in_flight(md)) 3031 break; 3032 3033 if (interruptible == TASK_INTERRUPTIBLE && 3034 signal_pending(current)) { 3035 r = -EINTR; 3036 break; 3037 } 3038 3039 io_schedule(); 3040 } 3041 set_current_state(TASK_RUNNING); 3042 3043 remove_wait_queue(&md->wait, &wait); 3044 3045 return r; 3046 } 3047 3048 /* 3049 * Process the deferred bios 3050 */ 3051 static void dm_wq_work(struct work_struct *work) 3052 { 3053 struct mapped_device *md = container_of(work, struct mapped_device, 3054 work); 3055 struct bio *c; 3056 int srcu_idx; 3057 struct dm_table *map; 3058 3059 map = dm_get_live_table(md, &srcu_idx); 3060 3061 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 3062 spin_lock_irq(&md->deferred_lock); 3063 c = bio_list_pop(&md->deferred); 3064 spin_unlock_irq(&md->deferred_lock); 3065 3066 if (!c) 3067 break; 3068 3069 if (dm_request_based(md)) 3070 generic_make_request(c); 3071 else 3072 __split_and_process_bio(md, map, c); 3073 } 3074 3075 dm_put_live_table(md, srcu_idx); 3076 } 3077 3078 static void dm_queue_flush(struct mapped_device *md) 3079 { 3080 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3081 smp_mb__after_atomic(); 3082 queue_work(md->wq, &md->work); 3083 } 3084 3085 /* 3086 * Swap in a new table, returning the old one for the caller to destroy. 3087 */ 3088 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 3089 { 3090 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 3091 struct queue_limits limits; 3092 int r; 3093 3094 mutex_lock(&md->suspend_lock); 3095 3096 /* device must be suspended */ 3097 if (!dm_suspended_md(md)) 3098 goto out; 3099 3100 /* 3101 * If the new table has no data devices, retain the existing limits. 3102 * This helps multipath with queue_if_no_path if all paths disappear, 3103 * then new I/O is queued based on these limits, and then some paths 3104 * reappear. 3105 */ 3106 if (dm_table_has_no_data_devices(table)) { 3107 live_map = dm_get_live_table_fast(md); 3108 if (live_map) 3109 limits = md->queue->limits; 3110 dm_put_live_table_fast(md); 3111 } 3112 3113 if (!live_map) { 3114 r = dm_calculate_queue_limits(table, &limits); 3115 if (r) { 3116 map = ERR_PTR(r); 3117 goto out; 3118 } 3119 } 3120 3121 map = __bind(md, table, &limits); 3122 3123 out: 3124 mutex_unlock(&md->suspend_lock); 3125 return map; 3126 } 3127 3128 /* 3129 * Functions to lock and unlock any filesystem running on the 3130 * device. 3131 */ 3132 static int lock_fs(struct mapped_device *md) 3133 { 3134 int r; 3135 3136 WARN_ON(md->frozen_sb); 3137 3138 md->frozen_sb = freeze_bdev(md->bdev); 3139 if (IS_ERR(md->frozen_sb)) { 3140 r = PTR_ERR(md->frozen_sb); 3141 md->frozen_sb = NULL; 3142 return r; 3143 } 3144 3145 set_bit(DMF_FROZEN, &md->flags); 3146 3147 return 0; 3148 } 3149 3150 static void unlock_fs(struct mapped_device *md) 3151 { 3152 if (!test_bit(DMF_FROZEN, &md->flags)) 3153 return; 3154 3155 thaw_bdev(md->bdev, md->frozen_sb); 3156 md->frozen_sb = NULL; 3157 clear_bit(DMF_FROZEN, &md->flags); 3158 } 3159 3160 /* 3161 * If __dm_suspend returns 0, the device is completely quiescent 3162 * now. There is no request-processing activity. All new requests 3163 * are being added to md->deferred list. 3164 * 3165 * Caller must hold md->suspend_lock 3166 */ 3167 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 3168 unsigned suspend_flags, int interruptible) 3169 { 3170 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 3171 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 3172 int r; 3173 3174 /* 3175 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 3176 * This flag is cleared before dm_suspend returns. 3177 */ 3178 if (noflush) 3179 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3180 3181 /* 3182 * This gets reverted if there's an error later and the targets 3183 * provide the .presuspend_undo hook. 3184 */ 3185 dm_table_presuspend_targets(map); 3186 3187 /* 3188 * Flush I/O to the device. 3189 * Any I/O submitted after lock_fs() may not be flushed. 3190 * noflush takes precedence over do_lockfs. 3191 * (lock_fs() flushes I/Os and waits for them to complete.) 3192 */ 3193 if (!noflush && do_lockfs) { 3194 r = lock_fs(md); 3195 if (r) { 3196 dm_table_presuspend_undo_targets(map); 3197 return r; 3198 } 3199 } 3200 3201 /* 3202 * Here we must make sure that no processes are submitting requests 3203 * to target drivers i.e. no one may be executing 3204 * __split_and_process_bio. This is called from dm_request and 3205 * dm_wq_work. 3206 * 3207 * To get all processes out of __split_and_process_bio in dm_request, 3208 * we take the write lock. To prevent any process from reentering 3209 * __split_and_process_bio from dm_request and quiesce the thread 3210 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 3211 * flush_workqueue(md->wq). 3212 */ 3213 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3214 if (map) 3215 synchronize_srcu(&md->io_barrier); 3216 3217 /* 3218 * Stop md->queue before flushing md->wq in case request-based 3219 * dm defers requests to md->wq from md->queue. 3220 */ 3221 if (dm_request_based(md)) { 3222 stop_queue(md->queue); 3223 if (md->kworker_task) 3224 flush_kthread_worker(&md->kworker); 3225 } 3226 3227 flush_workqueue(md->wq); 3228 3229 /* 3230 * At this point no more requests are entering target request routines. 3231 * We call dm_wait_for_completion to wait for all existing requests 3232 * to finish. 3233 */ 3234 r = dm_wait_for_completion(md, interruptible); 3235 3236 if (noflush) 3237 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3238 if (map) 3239 synchronize_srcu(&md->io_barrier); 3240 3241 /* were we interrupted ? */ 3242 if (r < 0) { 3243 dm_queue_flush(md); 3244 3245 if (dm_request_based(md)) 3246 start_queue(md->queue); 3247 3248 unlock_fs(md); 3249 dm_table_presuspend_undo_targets(map); 3250 /* pushback list is already flushed, so skip flush */ 3251 } 3252 3253 return r; 3254 } 3255 3256 /* 3257 * We need to be able to change a mapping table under a mounted 3258 * filesystem. For example we might want to move some data in 3259 * the background. Before the table can be swapped with 3260 * dm_bind_table, dm_suspend must be called to flush any in 3261 * flight bios and ensure that any further io gets deferred. 3262 */ 3263 /* 3264 * Suspend mechanism in request-based dm. 3265 * 3266 * 1. Flush all I/Os by lock_fs() if needed. 3267 * 2. Stop dispatching any I/O by stopping the request_queue. 3268 * 3. Wait for all in-flight I/Os to be completed or requeued. 3269 * 3270 * To abort suspend, start the request_queue. 3271 */ 3272 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 3273 { 3274 struct dm_table *map = NULL; 3275 int r = 0; 3276 3277 retry: 3278 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3279 3280 if (dm_suspended_md(md)) { 3281 r = -EINVAL; 3282 goto out_unlock; 3283 } 3284 3285 if (dm_suspended_internally_md(md)) { 3286 /* already internally suspended, wait for internal resume */ 3287 mutex_unlock(&md->suspend_lock); 3288 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3289 if (r) 3290 return r; 3291 goto retry; 3292 } 3293 3294 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3295 3296 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE); 3297 if (r) 3298 goto out_unlock; 3299 3300 set_bit(DMF_SUSPENDED, &md->flags); 3301 3302 dm_table_postsuspend_targets(map); 3303 3304 out_unlock: 3305 mutex_unlock(&md->suspend_lock); 3306 return r; 3307 } 3308 3309 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3310 { 3311 if (map) { 3312 int r = dm_table_resume_targets(map); 3313 if (r) 3314 return r; 3315 } 3316 3317 dm_queue_flush(md); 3318 3319 /* 3320 * Flushing deferred I/Os must be done after targets are resumed 3321 * so that mapping of targets can work correctly. 3322 * Request-based dm is queueing the deferred I/Os in its request_queue. 3323 */ 3324 if (dm_request_based(md)) 3325 start_queue(md->queue); 3326 3327 unlock_fs(md); 3328 3329 return 0; 3330 } 3331 3332 int dm_resume(struct mapped_device *md) 3333 { 3334 int r = -EINVAL; 3335 struct dm_table *map = NULL; 3336 3337 retry: 3338 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3339 3340 if (!dm_suspended_md(md)) 3341 goto out; 3342 3343 if (dm_suspended_internally_md(md)) { 3344 /* already internally suspended, wait for internal resume */ 3345 mutex_unlock(&md->suspend_lock); 3346 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3347 if (r) 3348 return r; 3349 goto retry; 3350 } 3351 3352 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3353 if (!map || !dm_table_get_size(map)) 3354 goto out; 3355 3356 r = __dm_resume(md, map); 3357 if (r) 3358 goto out; 3359 3360 clear_bit(DMF_SUSPENDED, &md->flags); 3361 3362 r = 0; 3363 out: 3364 mutex_unlock(&md->suspend_lock); 3365 3366 return r; 3367 } 3368 3369 /* 3370 * Internal suspend/resume works like userspace-driven suspend. It waits 3371 * until all bios finish and prevents issuing new bios to the target drivers. 3372 * It may be used only from the kernel. 3373 */ 3374 3375 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 3376 { 3377 struct dm_table *map = NULL; 3378 3379 if (md->internal_suspend_count++) 3380 return; /* nested internal suspend */ 3381 3382 if (dm_suspended_md(md)) { 3383 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3384 return; /* nest suspend */ 3385 } 3386 3387 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3388 3389 /* 3390 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3391 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3392 * would require changing .presuspend to return an error -- avoid this 3393 * until there is a need for more elaborate variants of internal suspend. 3394 */ 3395 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE); 3396 3397 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3398 3399 dm_table_postsuspend_targets(map); 3400 } 3401 3402 static void __dm_internal_resume(struct mapped_device *md) 3403 { 3404 BUG_ON(!md->internal_suspend_count); 3405 3406 if (--md->internal_suspend_count) 3407 return; /* resume from nested internal suspend */ 3408 3409 if (dm_suspended_md(md)) 3410 goto done; /* resume from nested suspend */ 3411 3412 /* 3413 * NOTE: existing callers don't need to call dm_table_resume_targets 3414 * (which may fail -- so best to avoid it for now by passing NULL map) 3415 */ 3416 (void) __dm_resume(md, NULL); 3417 3418 done: 3419 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3420 smp_mb__after_atomic(); 3421 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3422 } 3423 3424 void dm_internal_suspend_noflush(struct mapped_device *md) 3425 { 3426 mutex_lock(&md->suspend_lock); 3427 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3428 mutex_unlock(&md->suspend_lock); 3429 } 3430 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3431 3432 void dm_internal_resume(struct mapped_device *md) 3433 { 3434 mutex_lock(&md->suspend_lock); 3435 __dm_internal_resume(md); 3436 mutex_unlock(&md->suspend_lock); 3437 } 3438 EXPORT_SYMBOL_GPL(dm_internal_resume); 3439 3440 /* 3441 * Fast variants of internal suspend/resume hold md->suspend_lock, 3442 * which prevents interaction with userspace-driven suspend. 3443 */ 3444 3445 void dm_internal_suspend_fast(struct mapped_device *md) 3446 { 3447 mutex_lock(&md->suspend_lock); 3448 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3449 return; 3450 3451 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3452 synchronize_srcu(&md->io_barrier); 3453 flush_workqueue(md->wq); 3454 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3455 } 3456 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3457 3458 void dm_internal_resume_fast(struct mapped_device *md) 3459 { 3460 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3461 goto done; 3462 3463 dm_queue_flush(md); 3464 3465 done: 3466 mutex_unlock(&md->suspend_lock); 3467 } 3468 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3469 3470 /*----------------------------------------------------------------- 3471 * Event notification. 3472 *---------------------------------------------------------------*/ 3473 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3474 unsigned cookie) 3475 { 3476 char udev_cookie[DM_COOKIE_LENGTH]; 3477 char *envp[] = { udev_cookie, NULL }; 3478 3479 if (!cookie) 3480 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 3481 else { 3482 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3483 DM_COOKIE_ENV_VAR_NAME, cookie); 3484 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 3485 action, envp); 3486 } 3487 } 3488 3489 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3490 { 3491 return atomic_add_return(1, &md->uevent_seq); 3492 } 3493 3494 uint32_t dm_get_event_nr(struct mapped_device *md) 3495 { 3496 return atomic_read(&md->event_nr); 3497 } 3498 3499 int dm_wait_event(struct mapped_device *md, int event_nr) 3500 { 3501 return wait_event_interruptible(md->eventq, 3502 (event_nr != atomic_read(&md->event_nr))); 3503 } 3504 3505 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3506 { 3507 unsigned long flags; 3508 3509 spin_lock_irqsave(&md->uevent_lock, flags); 3510 list_add(elist, &md->uevent_list); 3511 spin_unlock_irqrestore(&md->uevent_lock, flags); 3512 } 3513 3514 /* 3515 * The gendisk is only valid as long as you have a reference 3516 * count on 'md'. 3517 */ 3518 struct gendisk *dm_disk(struct mapped_device *md) 3519 { 3520 return md->disk; 3521 } 3522 EXPORT_SYMBOL_GPL(dm_disk); 3523 3524 struct kobject *dm_kobject(struct mapped_device *md) 3525 { 3526 return &md->kobj_holder.kobj; 3527 } 3528 3529 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3530 { 3531 struct mapped_device *md; 3532 3533 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3534 3535 if (test_bit(DMF_FREEING, &md->flags) || 3536 dm_deleting_md(md)) 3537 return NULL; 3538 3539 dm_get(md); 3540 return md; 3541 } 3542 3543 int dm_suspended_md(struct mapped_device *md) 3544 { 3545 return test_bit(DMF_SUSPENDED, &md->flags); 3546 } 3547 3548 int dm_suspended_internally_md(struct mapped_device *md) 3549 { 3550 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3551 } 3552 3553 int dm_test_deferred_remove_flag(struct mapped_device *md) 3554 { 3555 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3556 } 3557 3558 int dm_suspended(struct dm_target *ti) 3559 { 3560 return dm_suspended_md(dm_table_get_md(ti->table)); 3561 } 3562 EXPORT_SYMBOL_GPL(dm_suspended); 3563 3564 int dm_noflush_suspending(struct dm_target *ti) 3565 { 3566 return __noflush_suspending(dm_table_get_md(ti->table)); 3567 } 3568 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3569 3570 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 3571 unsigned integrity, unsigned per_bio_data_size) 3572 { 3573 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 3574 struct kmem_cache *cachep = NULL; 3575 unsigned int pool_size = 0; 3576 unsigned int front_pad; 3577 3578 if (!pools) 3579 return NULL; 3580 3581 type = filter_md_type(type, md); 3582 3583 switch (type) { 3584 case DM_TYPE_BIO_BASED: 3585 cachep = _io_cache; 3586 pool_size = dm_get_reserved_bio_based_ios(); 3587 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3588 break; 3589 case DM_TYPE_REQUEST_BASED: 3590 cachep = _rq_tio_cache; 3591 pool_size = dm_get_reserved_rq_based_ios(); 3592 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache); 3593 if (!pools->rq_pool) 3594 goto out; 3595 /* fall through to setup remaining rq-based pools */ 3596 case DM_TYPE_MQ_REQUEST_BASED: 3597 if (!pool_size) 3598 pool_size = dm_get_reserved_rq_based_ios(); 3599 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3600 /* per_bio_data_size is not used. See __bind_mempools(). */ 3601 WARN_ON(per_bio_data_size != 0); 3602 break; 3603 default: 3604 BUG(); 3605 } 3606 3607 if (cachep) { 3608 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 3609 if (!pools->io_pool) 3610 goto out; 3611 } 3612 3613 pools->bs = bioset_create_nobvec(pool_size, front_pad); 3614 if (!pools->bs) 3615 goto out; 3616 3617 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 3618 goto out; 3619 3620 return pools; 3621 3622 out: 3623 dm_free_md_mempools(pools); 3624 3625 return NULL; 3626 } 3627 3628 void dm_free_md_mempools(struct dm_md_mempools *pools) 3629 { 3630 if (!pools) 3631 return; 3632 3633 if (pools->io_pool) 3634 mempool_destroy(pools->io_pool); 3635 3636 if (pools->rq_pool) 3637 mempool_destroy(pools->rq_pool); 3638 3639 if (pools->bs) 3640 bioset_free(pools->bs); 3641 3642 kfree(pools); 3643 } 3644 3645 static const struct block_device_operations dm_blk_dops = { 3646 .open = dm_blk_open, 3647 .release = dm_blk_close, 3648 .ioctl = dm_blk_ioctl, 3649 .getgeo = dm_blk_getgeo, 3650 .owner = THIS_MODULE 3651 }; 3652 3653 /* 3654 * module hooks 3655 */ 3656 module_init(dm_init); 3657 module_exit(dm_exit); 3658 3659 module_param(major, uint, 0); 3660 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3661 3662 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3663 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3664 3665 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 3666 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 3667 3668 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR); 3669 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices"); 3670 3671 MODULE_DESCRIPTION(DM_NAME " driver"); 3672 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3673 MODULE_LICENSE("GPL"); 3674