xref: /openbmc/linux/drivers/md/dm.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 static const char *_name = DM_NAME;
28 
29 static unsigned int major = 0;
30 static unsigned int _major = 0;
31 
32 static DEFINE_SPINLOCK(_minor_lock);
33 /*
34  * One of these is allocated per bio.
35  */
36 struct dm_io {
37 	struct mapped_device *md;
38 	int error;
39 	atomic_t io_count;
40 	struct bio *bio;
41 	unsigned long start_time;
42 };
43 
44 /*
45  * One of these is allocated per target within a bio.  Hopefully
46  * this will be simplified out one day.
47  */
48 struct dm_target_io {
49 	struct dm_io *io;
50 	struct dm_target *ti;
51 	union map_info info;
52 };
53 
54 union map_info *dm_get_mapinfo(struct bio *bio)
55 {
56 	if (bio && bio->bi_private)
57 		return &((struct dm_target_io *)bio->bi_private)->info;
58 	return NULL;
59 }
60 
61 #define MINOR_ALLOCED ((void *)-1)
62 
63 /*
64  * Bits for the md->flags field.
65  */
66 #define DMF_BLOCK_IO 0
67 #define DMF_SUSPENDED 1
68 #define DMF_FROZEN 2
69 #define DMF_FREEING 3
70 #define DMF_DELETING 4
71 #define DMF_NOFLUSH_SUSPENDING 5
72 
73 /*
74  * Work processed by per-device workqueue.
75  */
76 struct dm_wq_req {
77 	enum {
78 		DM_WQ_FLUSH_DEFERRED,
79 	} type;
80 	struct work_struct work;
81 	struct mapped_device *md;
82 	void *context;
83 };
84 
85 struct mapped_device {
86 	struct rw_semaphore io_lock;
87 	struct mutex suspend_lock;
88 	spinlock_t pushback_lock;
89 	rwlock_t map_lock;
90 	atomic_t holders;
91 	atomic_t open_count;
92 
93 	unsigned long flags;
94 
95 	struct request_queue *queue;
96 	struct gendisk *disk;
97 	char name[16];
98 
99 	void *interface_ptr;
100 
101 	/*
102 	 * A list of ios that arrived while we were suspended.
103 	 */
104 	atomic_t pending;
105 	wait_queue_head_t wait;
106 	struct bio_list deferred;
107 	struct bio_list pushback;
108 
109 	/*
110 	 * Processing queue (flush/barriers)
111 	 */
112 	struct workqueue_struct *wq;
113 
114 	/*
115 	 * The current mapping.
116 	 */
117 	struct dm_table *map;
118 
119 	/*
120 	 * io objects are allocated from here.
121 	 */
122 	mempool_t *io_pool;
123 	mempool_t *tio_pool;
124 
125 	struct bio_set *bs;
126 
127 	/*
128 	 * Event handling.
129 	 */
130 	atomic_t event_nr;
131 	wait_queue_head_t eventq;
132 	atomic_t uevent_seq;
133 	struct list_head uevent_list;
134 	spinlock_t uevent_lock; /* Protect access to uevent_list */
135 
136 	/*
137 	 * freeze/thaw support require holding onto a super block
138 	 */
139 	struct super_block *frozen_sb;
140 	struct block_device *suspended_bdev;
141 
142 	/* forced geometry settings */
143 	struct hd_geometry geometry;
144 };
145 
146 #define MIN_IOS 256
147 static struct kmem_cache *_io_cache;
148 static struct kmem_cache *_tio_cache;
149 
150 static int __init local_init(void)
151 {
152 	int r = -ENOMEM;
153 
154 	/* allocate a slab for the dm_ios */
155 	_io_cache = KMEM_CACHE(dm_io, 0);
156 	if (!_io_cache)
157 		return r;
158 
159 	/* allocate a slab for the target ios */
160 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
161 	if (!_tio_cache)
162 		goto out_free_io_cache;
163 
164 	r = dm_uevent_init();
165 	if (r)
166 		goto out_free_tio_cache;
167 
168 	_major = major;
169 	r = register_blkdev(_major, _name);
170 	if (r < 0)
171 		goto out_uevent_exit;
172 
173 	if (!_major)
174 		_major = r;
175 
176 	return 0;
177 
178 out_uevent_exit:
179 	dm_uevent_exit();
180 out_free_tio_cache:
181 	kmem_cache_destroy(_tio_cache);
182 out_free_io_cache:
183 	kmem_cache_destroy(_io_cache);
184 
185 	return r;
186 }
187 
188 static void local_exit(void)
189 {
190 	kmem_cache_destroy(_tio_cache);
191 	kmem_cache_destroy(_io_cache);
192 	unregister_blkdev(_major, _name);
193 	dm_uevent_exit();
194 
195 	_major = 0;
196 
197 	DMINFO("cleaned up");
198 }
199 
200 static int (*_inits[])(void) __initdata = {
201 	local_init,
202 	dm_target_init,
203 	dm_linear_init,
204 	dm_stripe_init,
205 	dm_kcopyd_init,
206 	dm_interface_init,
207 };
208 
209 static void (*_exits[])(void) = {
210 	local_exit,
211 	dm_target_exit,
212 	dm_linear_exit,
213 	dm_stripe_exit,
214 	dm_kcopyd_exit,
215 	dm_interface_exit,
216 };
217 
218 static int __init dm_init(void)
219 {
220 	const int count = ARRAY_SIZE(_inits);
221 
222 	int r, i;
223 
224 	for (i = 0; i < count; i++) {
225 		r = _inits[i]();
226 		if (r)
227 			goto bad;
228 	}
229 
230 	return 0;
231 
232       bad:
233 	while (i--)
234 		_exits[i]();
235 
236 	return r;
237 }
238 
239 static void __exit dm_exit(void)
240 {
241 	int i = ARRAY_SIZE(_exits);
242 
243 	while (i--)
244 		_exits[i]();
245 }
246 
247 /*
248  * Block device functions
249  */
250 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
251 {
252 	struct mapped_device *md;
253 
254 	spin_lock(&_minor_lock);
255 
256 	md = bdev->bd_disk->private_data;
257 	if (!md)
258 		goto out;
259 
260 	if (test_bit(DMF_FREEING, &md->flags) ||
261 	    test_bit(DMF_DELETING, &md->flags)) {
262 		md = NULL;
263 		goto out;
264 	}
265 
266 	dm_get(md);
267 	atomic_inc(&md->open_count);
268 
269 out:
270 	spin_unlock(&_minor_lock);
271 
272 	return md ? 0 : -ENXIO;
273 }
274 
275 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
276 {
277 	struct mapped_device *md = disk->private_data;
278 	atomic_dec(&md->open_count);
279 	dm_put(md);
280 	return 0;
281 }
282 
283 int dm_open_count(struct mapped_device *md)
284 {
285 	return atomic_read(&md->open_count);
286 }
287 
288 /*
289  * Guarantees nothing is using the device before it's deleted.
290  */
291 int dm_lock_for_deletion(struct mapped_device *md)
292 {
293 	int r = 0;
294 
295 	spin_lock(&_minor_lock);
296 
297 	if (dm_open_count(md))
298 		r = -EBUSY;
299 	else
300 		set_bit(DMF_DELETING, &md->flags);
301 
302 	spin_unlock(&_minor_lock);
303 
304 	return r;
305 }
306 
307 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
308 {
309 	struct mapped_device *md = bdev->bd_disk->private_data;
310 
311 	return dm_get_geometry(md, geo);
312 }
313 
314 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
315 			unsigned int cmd, unsigned long arg)
316 {
317 	struct mapped_device *md = bdev->bd_disk->private_data;
318 	struct dm_table *map = dm_get_table(md);
319 	struct dm_target *tgt;
320 	int r = -ENOTTY;
321 
322 	if (!map || !dm_table_get_size(map))
323 		goto out;
324 
325 	/* We only support devices that have a single target */
326 	if (dm_table_get_num_targets(map) != 1)
327 		goto out;
328 
329 	tgt = dm_table_get_target(map, 0);
330 
331 	if (dm_suspended(md)) {
332 		r = -EAGAIN;
333 		goto out;
334 	}
335 
336 	if (tgt->type->ioctl)
337 		r = tgt->type->ioctl(tgt, cmd, arg);
338 
339 out:
340 	dm_table_put(map);
341 
342 	return r;
343 }
344 
345 static struct dm_io *alloc_io(struct mapped_device *md)
346 {
347 	return mempool_alloc(md->io_pool, GFP_NOIO);
348 }
349 
350 static void free_io(struct mapped_device *md, struct dm_io *io)
351 {
352 	mempool_free(io, md->io_pool);
353 }
354 
355 static struct dm_target_io *alloc_tio(struct mapped_device *md)
356 {
357 	return mempool_alloc(md->tio_pool, GFP_NOIO);
358 }
359 
360 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
361 {
362 	mempool_free(tio, md->tio_pool);
363 }
364 
365 static void start_io_acct(struct dm_io *io)
366 {
367 	struct mapped_device *md = io->md;
368 	int cpu;
369 
370 	io->start_time = jiffies;
371 
372 	cpu = part_stat_lock();
373 	part_round_stats(cpu, &dm_disk(md)->part0);
374 	part_stat_unlock();
375 	dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
376 }
377 
378 static int end_io_acct(struct dm_io *io)
379 {
380 	struct mapped_device *md = io->md;
381 	struct bio *bio = io->bio;
382 	unsigned long duration = jiffies - io->start_time;
383 	int pending, cpu;
384 	int rw = bio_data_dir(bio);
385 
386 	cpu = part_stat_lock();
387 	part_round_stats(cpu, &dm_disk(md)->part0);
388 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
389 	part_stat_unlock();
390 
391 	dm_disk(md)->part0.in_flight = pending =
392 		atomic_dec_return(&md->pending);
393 
394 	return !pending;
395 }
396 
397 /*
398  * Add the bio to the list of deferred io.
399  */
400 static int queue_io(struct mapped_device *md, struct bio *bio)
401 {
402 	down_write(&md->io_lock);
403 
404 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
405 		up_write(&md->io_lock);
406 		return 1;
407 	}
408 
409 	bio_list_add(&md->deferred, bio);
410 
411 	up_write(&md->io_lock);
412 	return 0;		/* deferred successfully */
413 }
414 
415 /*
416  * Everyone (including functions in this file), should use this
417  * function to access the md->map field, and make sure they call
418  * dm_table_put() when finished.
419  */
420 struct dm_table *dm_get_table(struct mapped_device *md)
421 {
422 	struct dm_table *t;
423 
424 	read_lock(&md->map_lock);
425 	t = md->map;
426 	if (t)
427 		dm_table_get(t);
428 	read_unlock(&md->map_lock);
429 
430 	return t;
431 }
432 
433 /*
434  * Get the geometry associated with a dm device
435  */
436 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
437 {
438 	*geo = md->geometry;
439 
440 	return 0;
441 }
442 
443 /*
444  * Set the geometry of a device.
445  */
446 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
447 {
448 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
449 
450 	if (geo->start > sz) {
451 		DMWARN("Start sector is beyond the geometry limits.");
452 		return -EINVAL;
453 	}
454 
455 	md->geometry = *geo;
456 
457 	return 0;
458 }
459 
460 /*-----------------------------------------------------------------
461  * CRUD START:
462  *   A more elegant soln is in the works that uses the queue
463  *   merge fn, unfortunately there are a couple of changes to
464  *   the block layer that I want to make for this.  So in the
465  *   interests of getting something for people to use I give
466  *   you this clearly demarcated crap.
467  *---------------------------------------------------------------*/
468 
469 static int __noflush_suspending(struct mapped_device *md)
470 {
471 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
472 }
473 
474 /*
475  * Decrements the number of outstanding ios that a bio has been
476  * cloned into, completing the original io if necc.
477  */
478 static void dec_pending(struct dm_io *io, int error)
479 {
480 	unsigned long flags;
481 
482 	/* Push-back supersedes any I/O errors */
483 	if (error && !(io->error > 0 && __noflush_suspending(io->md)))
484 		io->error = error;
485 
486 	if (atomic_dec_and_test(&io->io_count)) {
487 		if (io->error == DM_ENDIO_REQUEUE) {
488 			/*
489 			 * Target requested pushing back the I/O.
490 			 * This must be handled before the sleeper on
491 			 * suspend queue merges the pushback list.
492 			 */
493 			spin_lock_irqsave(&io->md->pushback_lock, flags);
494 			if (__noflush_suspending(io->md))
495 				bio_list_add(&io->md->pushback, io->bio);
496 			else
497 				/* noflush suspend was interrupted. */
498 				io->error = -EIO;
499 			spin_unlock_irqrestore(&io->md->pushback_lock, flags);
500 		}
501 
502 		if (end_io_acct(io))
503 			/* nudge anyone waiting on suspend queue */
504 			wake_up(&io->md->wait);
505 
506 		if (io->error != DM_ENDIO_REQUEUE) {
507 			blk_add_trace_bio(io->md->queue, io->bio,
508 					  BLK_TA_COMPLETE);
509 
510 			bio_endio(io->bio, io->error);
511 		}
512 
513 		free_io(io->md, io);
514 	}
515 }
516 
517 static void clone_endio(struct bio *bio, int error)
518 {
519 	int r = 0;
520 	struct dm_target_io *tio = bio->bi_private;
521 	struct mapped_device *md = tio->io->md;
522 	dm_endio_fn endio = tio->ti->type->end_io;
523 
524 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
525 		error = -EIO;
526 
527 	if (endio) {
528 		r = endio(tio->ti, bio, error, &tio->info);
529 		if (r < 0 || r == DM_ENDIO_REQUEUE)
530 			/*
531 			 * error and requeue request are handled
532 			 * in dec_pending().
533 			 */
534 			error = r;
535 		else if (r == DM_ENDIO_INCOMPLETE)
536 			/* The target will handle the io */
537 			return;
538 		else if (r) {
539 			DMWARN("unimplemented target endio return value: %d", r);
540 			BUG();
541 		}
542 	}
543 
544 	dec_pending(tio->io, error);
545 
546 	/*
547 	 * Store md for cleanup instead of tio which is about to get freed.
548 	 */
549 	bio->bi_private = md->bs;
550 
551 	bio_put(bio);
552 	free_tio(md, tio);
553 }
554 
555 static sector_t max_io_len(struct mapped_device *md,
556 			   sector_t sector, struct dm_target *ti)
557 {
558 	sector_t offset = sector - ti->begin;
559 	sector_t len = ti->len - offset;
560 
561 	/*
562 	 * Does the target need to split even further ?
563 	 */
564 	if (ti->split_io) {
565 		sector_t boundary;
566 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
567 			   - offset;
568 		if (len > boundary)
569 			len = boundary;
570 	}
571 
572 	return len;
573 }
574 
575 static void __map_bio(struct dm_target *ti, struct bio *clone,
576 		      struct dm_target_io *tio)
577 {
578 	int r;
579 	sector_t sector;
580 	struct mapped_device *md;
581 
582 	/*
583 	 * Sanity checks.
584 	 */
585 	BUG_ON(!clone->bi_size);
586 
587 	clone->bi_end_io = clone_endio;
588 	clone->bi_private = tio;
589 
590 	/*
591 	 * Map the clone.  If r == 0 we don't need to do
592 	 * anything, the target has assumed ownership of
593 	 * this io.
594 	 */
595 	atomic_inc(&tio->io->io_count);
596 	sector = clone->bi_sector;
597 	r = ti->type->map(ti, clone, &tio->info);
598 	if (r == DM_MAPIO_REMAPPED) {
599 		/* the bio has been remapped so dispatch it */
600 
601 		blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
602 				    tio->io->bio->bi_bdev->bd_dev,
603 				    clone->bi_sector, sector);
604 
605 		generic_make_request(clone);
606 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
607 		/* error the io and bail out, or requeue it if needed */
608 		md = tio->io->md;
609 		dec_pending(tio->io, r);
610 		/*
611 		 * Store bio_set for cleanup.
612 		 */
613 		clone->bi_private = md->bs;
614 		bio_put(clone);
615 		free_tio(md, tio);
616 	} else if (r) {
617 		DMWARN("unimplemented target map return value: %d", r);
618 		BUG();
619 	}
620 }
621 
622 struct clone_info {
623 	struct mapped_device *md;
624 	struct dm_table *map;
625 	struct bio *bio;
626 	struct dm_io *io;
627 	sector_t sector;
628 	sector_t sector_count;
629 	unsigned short idx;
630 };
631 
632 static void dm_bio_destructor(struct bio *bio)
633 {
634 	struct bio_set *bs = bio->bi_private;
635 
636 	bio_free(bio, bs);
637 }
638 
639 /*
640  * Creates a little bio that is just does part of a bvec.
641  */
642 static struct bio *split_bvec(struct bio *bio, sector_t sector,
643 			      unsigned short idx, unsigned int offset,
644 			      unsigned int len, struct bio_set *bs)
645 {
646 	struct bio *clone;
647 	struct bio_vec *bv = bio->bi_io_vec + idx;
648 
649 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
650 	clone->bi_destructor = dm_bio_destructor;
651 	*clone->bi_io_vec = *bv;
652 
653 	clone->bi_sector = sector;
654 	clone->bi_bdev = bio->bi_bdev;
655 	clone->bi_rw = bio->bi_rw;
656 	clone->bi_vcnt = 1;
657 	clone->bi_size = to_bytes(len);
658 	clone->bi_io_vec->bv_offset = offset;
659 	clone->bi_io_vec->bv_len = clone->bi_size;
660 	clone->bi_flags |= 1 << BIO_CLONED;
661 
662 	return clone;
663 }
664 
665 /*
666  * Creates a bio that consists of range of complete bvecs.
667  */
668 static struct bio *clone_bio(struct bio *bio, sector_t sector,
669 			     unsigned short idx, unsigned short bv_count,
670 			     unsigned int len, struct bio_set *bs)
671 {
672 	struct bio *clone;
673 
674 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
675 	__bio_clone(clone, bio);
676 	clone->bi_destructor = dm_bio_destructor;
677 	clone->bi_sector = sector;
678 	clone->bi_idx = idx;
679 	clone->bi_vcnt = idx + bv_count;
680 	clone->bi_size = to_bytes(len);
681 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
682 
683 	return clone;
684 }
685 
686 static int __clone_and_map(struct clone_info *ci)
687 {
688 	struct bio *clone, *bio = ci->bio;
689 	struct dm_target *ti;
690 	sector_t len = 0, max;
691 	struct dm_target_io *tio;
692 
693 	ti = dm_table_find_target(ci->map, ci->sector);
694 	if (!dm_target_is_valid(ti))
695 		return -EIO;
696 
697 	max = max_io_len(ci->md, ci->sector, ti);
698 
699 	/*
700 	 * Allocate a target io object.
701 	 */
702 	tio = alloc_tio(ci->md);
703 	tio->io = ci->io;
704 	tio->ti = ti;
705 	memset(&tio->info, 0, sizeof(tio->info));
706 
707 	if (ci->sector_count <= max) {
708 		/*
709 		 * Optimise for the simple case where we can do all of
710 		 * the remaining io with a single clone.
711 		 */
712 		clone = clone_bio(bio, ci->sector, ci->idx,
713 				  bio->bi_vcnt - ci->idx, ci->sector_count,
714 				  ci->md->bs);
715 		__map_bio(ti, clone, tio);
716 		ci->sector_count = 0;
717 
718 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
719 		/*
720 		 * There are some bvecs that don't span targets.
721 		 * Do as many of these as possible.
722 		 */
723 		int i;
724 		sector_t remaining = max;
725 		sector_t bv_len;
726 
727 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
728 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
729 
730 			if (bv_len > remaining)
731 				break;
732 
733 			remaining -= bv_len;
734 			len += bv_len;
735 		}
736 
737 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
738 				  ci->md->bs);
739 		__map_bio(ti, clone, tio);
740 
741 		ci->sector += len;
742 		ci->sector_count -= len;
743 		ci->idx = i;
744 
745 	} else {
746 		/*
747 		 * Handle a bvec that must be split between two or more targets.
748 		 */
749 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
750 		sector_t remaining = to_sector(bv->bv_len);
751 		unsigned int offset = 0;
752 
753 		do {
754 			if (offset) {
755 				ti = dm_table_find_target(ci->map, ci->sector);
756 				if (!dm_target_is_valid(ti))
757 					return -EIO;
758 
759 				max = max_io_len(ci->md, ci->sector, ti);
760 
761 				tio = alloc_tio(ci->md);
762 				tio->io = ci->io;
763 				tio->ti = ti;
764 				memset(&tio->info, 0, sizeof(tio->info));
765 			}
766 
767 			len = min(remaining, max);
768 
769 			clone = split_bvec(bio, ci->sector, ci->idx,
770 					   bv->bv_offset + offset, len,
771 					   ci->md->bs);
772 
773 			__map_bio(ti, clone, tio);
774 
775 			ci->sector += len;
776 			ci->sector_count -= len;
777 			offset += to_bytes(len);
778 		} while (remaining -= len);
779 
780 		ci->idx++;
781 	}
782 
783 	return 0;
784 }
785 
786 /*
787  * Split the bio into several clones.
788  */
789 static int __split_bio(struct mapped_device *md, struct bio *bio)
790 {
791 	struct clone_info ci;
792 	int error = 0;
793 
794 	ci.map = dm_get_table(md);
795 	if (unlikely(!ci.map))
796 		return -EIO;
797 
798 	ci.md = md;
799 	ci.bio = bio;
800 	ci.io = alloc_io(md);
801 	ci.io->error = 0;
802 	atomic_set(&ci.io->io_count, 1);
803 	ci.io->bio = bio;
804 	ci.io->md = md;
805 	ci.sector = bio->bi_sector;
806 	ci.sector_count = bio_sectors(bio);
807 	ci.idx = bio->bi_idx;
808 
809 	start_io_acct(ci.io);
810 	while (ci.sector_count && !error)
811 		error = __clone_and_map(&ci);
812 
813 	/* drop the extra reference count */
814 	dec_pending(ci.io, error);
815 	dm_table_put(ci.map);
816 
817 	return 0;
818 }
819 /*-----------------------------------------------------------------
820  * CRUD END
821  *---------------------------------------------------------------*/
822 
823 static int dm_merge_bvec(struct request_queue *q,
824 			 struct bvec_merge_data *bvm,
825 			 struct bio_vec *biovec)
826 {
827 	struct mapped_device *md = q->queuedata;
828 	struct dm_table *map = dm_get_table(md);
829 	struct dm_target *ti;
830 	sector_t max_sectors;
831 	int max_size = 0;
832 
833 	if (unlikely(!map))
834 		goto out;
835 
836 	ti = dm_table_find_target(map, bvm->bi_sector);
837 	if (!dm_target_is_valid(ti))
838 		goto out_table;
839 
840 	/*
841 	 * Find maximum amount of I/O that won't need splitting
842 	 */
843 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
844 			  (sector_t) BIO_MAX_SECTORS);
845 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
846 	if (max_size < 0)
847 		max_size = 0;
848 
849 	/*
850 	 * merge_bvec_fn() returns number of bytes
851 	 * it can accept at this offset
852 	 * max is precomputed maximal io size
853 	 */
854 	if (max_size && ti->type->merge)
855 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
856 
857 out_table:
858 	dm_table_put(map);
859 
860 out:
861 	/*
862 	 * Always allow an entire first page
863 	 */
864 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
865 		max_size = biovec->bv_len;
866 
867 	return max_size;
868 }
869 
870 /*
871  * The request function that just remaps the bio built up by
872  * dm_merge_bvec.
873  */
874 static int dm_request(struct request_queue *q, struct bio *bio)
875 {
876 	int r = -EIO;
877 	int rw = bio_data_dir(bio);
878 	struct mapped_device *md = q->queuedata;
879 	int cpu;
880 
881 	/*
882 	 * There is no use in forwarding any barrier request since we can't
883 	 * guarantee it is (or can be) handled by the targets correctly.
884 	 */
885 	if (unlikely(bio_barrier(bio))) {
886 		bio_endio(bio, -EOPNOTSUPP);
887 		return 0;
888 	}
889 
890 	down_read(&md->io_lock);
891 
892 	cpu = part_stat_lock();
893 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
894 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
895 	part_stat_unlock();
896 
897 	/*
898 	 * If we're suspended we have to queue
899 	 * this io for later.
900 	 */
901 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
902 		up_read(&md->io_lock);
903 
904 		if (bio_rw(bio) != READA)
905 			r = queue_io(md, bio);
906 
907 		if (r <= 0)
908 			goto out_req;
909 
910 		/*
911 		 * We're in a while loop, because someone could suspend
912 		 * before we get to the following read lock.
913 		 */
914 		down_read(&md->io_lock);
915 	}
916 
917 	r = __split_bio(md, bio);
918 	up_read(&md->io_lock);
919 
920 out_req:
921 	if (r < 0)
922 		bio_io_error(bio);
923 
924 	return 0;
925 }
926 
927 static void dm_unplug_all(struct request_queue *q)
928 {
929 	struct mapped_device *md = q->queuedata;
930 	struct dm_table *map = dm_get_table(md);
931 
932 	if (map) {
933 		dm_table_unplug_all(map);
934 		dm_table_put(map);
935 	}
936 }
937 
938 static int dm_any_congested(void *congested_data, int bdi_bits)
939 {
940 	int r;
941 	struct mapped_device *md = (struct mapped_device *) congested_data;
942 	struct dm_table *map = dm_get_table(md);
943 
944 	if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
945 		r = bdi_bits;
946 	else
947 		r = dm_table_any_congested(map, bdi_bits);
948 
949 	dm_table_put(map);
950 	return r;
951 }
952 
953 /*-----------------------------------------------------------------
954  * An IDR is used to keep track of allocated minor numbers.
955  *---------------------------------------------------------------*/
956 static DEFINE_IDR(_minor_idr);
957 
958 static void free_minor(int minor)
959 {
960 	spin_lock(&_minor_lock);
961 	idr_remove(&_minor_idr, minor);
962 	spin_unlock(&_minor_lock);
963 }
964 
965 /*
966  * See if the device with a specific minor # is free.
967  */
968 static int specific_minor(int minor)
969 {
970 	int r, m;
971 
972 	if (minor >= (1 << MINORBITS))
973 		return -EINVAL;
974 
975 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
976 	if (!r)
977 		return -ENOMEM;
978 
979 	spin_lock(&_minor_lock);
980 
981 	if (idr_find(&_minor_idr, minor)) {
982 		r = -EBUSY;
983 		goto out;
984 	}
985 
986 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
987 	if (r)
988 		goto out;
989 
990 	if (m != minor) {
991 		idr_remove(&_minor_idr, m);
992 		r = -EBUSY;
993 		goto out;
994 	}
995 
996 out:
997 	spin_unlock(&_minor_lock);
998 	return r;
999 }
1000 
1001 static int next_free_minor(int *minor)
1002 {
1003 	int r, m;
1004 
1005 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1006 	if (!r)
1007 		return -ENOMEM;
1008 
1009 	spin_lock(&_minor_lock);
1010 
1011 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1012 	if (r)
1013 		goto out;
1014 
1015 	if (m >= (1 << MINORBITS)) {
1016 		idr_remove(&_minor_idr, m);
1017 		r = -ENOSPC;
1018 		goto out;
1019 	}
1020 
1021 	*minor = m;
1022 
1023 out:
1024 	spin_unlock(&_minor_lock);
1025 	return r;
1026 }
1027 
1028 static struct block_device_operations dm_blk_dops;
1029 
1030 /*
1031  * Allocate and initialise a blank device with a given minor.
1032  */
1033 static struct mapped_device *alloc_dev(int minor)
1034 {
1035 	int r;
1036 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1037 	void *old_md;
1038 
1039 	if (!md) {
1040 		DMWARN("unable to allocate device, out of memory.");
1041 		return NULL;
1042 	}
1043 
1044 	if (!try_module_get(THIS_MODULE))
1045 		goto bad_module_get;
1046 
1047 	/* get a minor number for the dev */
1048 	if (minor == DM_ANY_MINOR)
1049 		r = next_free_minor(&minor);
1050 	else
1051 		r = specific_minor(minor);
1052 	if (r < 0)
1053 		goto bad_minor;
1054 
1055 	init_rwsem(&md->io_lock);
1056 	mutex_init(&md->suspend_lock);
1057 	spin_lock_init(&md->pushback_lock);
1058 	rwlock_init(&md->map_lock);
1059 	atomic_set(&md->holders, 1);
1060 	atomic_set(&md->open_count, 0);
1061 	atomic_set(&md->event_nr, 0);
1062 	atomic_set(&md->uevent_seq, 0);
1063 	INIT_LIST_HEAD(&md->uevent_list);
1064 	spin_lock_init(&md->uevent_lock);
1065 
1066 	md->queue = blk_alloc_queue(GFP_KERNEL);
1067 	if (!md->queue)
1068 		goto bad_queue;
1069 
1070 	md->queue->queuedata = md;
1071 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1072 	md->queue->backing_dev_info.congested_data = md;
1073 	blk_queue_make_request(md->queue, dm_request);
1074 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1075 	md->queue->unplug_fn = dm_unplug_all;
1076 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1077 
1078 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1079 	if (!md->io_pool)
1080 		goto bad_io_pool;
1081 
1082 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1083 	if (!md->tio_pool)
1084 		goto bad_tio_pool;
1085 
1086 	md->bs = bioset_create(16, 16);
1087 	if (!md->bs)
1088 		goto bad_no_bioset;
1089 
1090 	md->disk = alloc_disk(1);
1091 	if (!md->disk)
1092 		goto bad_disk;
1093 
1094 	atomic_set(&md->pending, 0);
1095 	init_waitqueue_head(&md->wait);
1096 	init_waitqueue_head(&md->eventq);
1097 
1098 	md->disk->major = _major;
1099 	md->disk->first_minor = minor;
1100 	md->disk->fops = &dm_blk_dops;
1101 	md->disk->queue = md->queue;
1102 	md->disk->private_data = md;
1103 	sprintf(md->disk->disk_name, "dm-%d", minor);
1104 	add_disk(md->disk);
1105 	format_dev_t(md->name, MKDEV(_major, minor));
1106 
1107 	md->wq = create_singlethread_workqueue("kdmflush");
1108 	if (!md->wq)
1109 		goto bad_thread;
1110 
1111 	/* Populate the mapping, nobody knows we exist yet */
1112 	spin_lock(&_minor_lock);
1113 	old_md = idr_replace(&_minor_idr, md, minor);
1114 	spin_unlock(&_minor_lock);
1115 
1116 	BUG_ON(old_md != MINOR_ALLOCED);
1117 
1118 	return md;
1119 
1120 bad_thread:
1121 	put_disk(md->disk);
1122 bad_disk:
1123 	bioset_free(md->bs);
1124 bad_no_bioset:
1125 	mempool_destroy(md->tio_pool);
1126 bad_tio_pool:
1127 	mempool_destroy(md->io_pool);
1128 bad_io_pool:
1129 	blk_cleanup_queue(md->queue);
1130 bad_queue:
1131 	free_minor(minor);
1132 bad_minor:
1133 	module_put(THIS_MODULE);
1134 bad_module_get:
1135 	kfree(md);
1136 	return NULL;
1137 }
1138 
1139 static void unlock_fs(struct mapped_device *md);
1140 
1141 static void free_dev(struct mapped_device *md)
1142 {
1143 	int minor = MINOR(disk_devt(md->disk));
1144 
1145 	if (md->suspended_bdev) {
1146 		unlock_fs(md);
1147 		bdput(md->suspended_bdev);
1148 	}
1149 	destroy_workqueue(md->wq);
1150 	mempool_destroy(md->tio_pool);
1151 	mempool_destroy(md->io_pool);
1152 	bioset_free(md->bs);
1153 	del_gendisk(md->disk);
1154 	free_minor(minor);
1155 
1156 	spin_lock(&_minor_lock);
1157 	md->disk->private_data = NULL;
1158 	spin_unlock(&_minor_lock);
1159 
1160 	put_disk(md->disk);
1161 	blk_cleanup_queue(md->queue);
1162 	module_put(THIS_MODULE);
1163 	kfree(md);
1164 }
1165 
1166 /*
1167  * Bind a table to the device.
1168  */
1169 static void event_callback(void *context)
1170 {
1171 	unsigned long flags;
1172 	LIST_HEAD(uevents);
1173 	struct mapped_device *md = (struct mapped_device *) context;
1174 
1175 	spin_lock_irqsave(&md->uevent_lock, flags);
1176 	list_splice_init(&md->uevent_list, &uevents);
1177 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1178 
1179 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1180 
1181 	atomic_inc(&md->event_nr);
1182 	wake_up(&md->eventq);
1183 }
1184 
1185 static void __set_size(struct mapped_device *md, sector_t size)
1186 {
1187 	set_capacity(md->disk, size);
1188 
1189 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1190 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1191 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1192 }
1193 
1194 static int __bind(struct mapped_device *md, struct dm_table *t)
1195 {
1196 	struct request_queue *q = md->queue;
1197 	sector_t size;
1198 
1199 	size = dm_table_get_size(t);
1200 
1201 	/*
1202 	 * Wipe any geometry if the size of the table changed.
1203 	 */
1204 	if (size != get_capacity(md->disk))
1205 		memset(&md->geometry, 0, sizeof(md->geometry));
1206 
1207 	if (md->suspended_bdev)
1208 		__set_size(md, size);
1209 	if (size == 0)
1210 		return 0;
1211 
1212 	dm_table_get(t);
1213 	dm_table_event_callback(t, event_callback, md);
1214 
1215 	write_lock(&md->map_lock);
1216 	md->map = t;
1217 	dm_table_set_restrictions(t, q);
1218 	write_unlock(&md->map_lock);
1219 
1220 	return 0;
1221 }
1222 
1223 static void __unbind(struct mapped_device *md)
1224 {
1225 	struct dm_table *map = md->map;
1226 
1227 	if (!map)
1228 		return;
1229 
1230 	dm_table_event_callback(map, NULL, NULL);
1231 	write_lock(&md->map_lock);
1232 	md->map = NULL;
1233 	write_unlock(&md->map_lock);
1234 	dm_table_put(map);
1235 }
1236 
1237 /*
1238  * Constructor for a new device.
1239  */
1240 int dm_create(int minor, struct mapped_device **result)
1241 {
1242 	struct mapped_device *md;
1243 
1244 	md = alloc_dev(minor);
1245 	if (!md)
1246 		return -ENXIO;
1247 
1248 	*result = md;
1249 	return 0;
1250 }
1251 
1252 static struct mapped_device *dm_find_md(dev_t dev)
1253 {
1254 	struct mapped_device *md;
1255 	unsigned minor = MINOR(dev);
1256 
1257 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1258 		return NULL;
1259 
1260 	spin_lock(&_minor_lock);
1261 
1262 	md = idr_find(&_minor_idr, minor);
1263 	if (md && (md == MINOR_ALLOCED ||
1264 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
1265 		   test_bit(DMF_FREEING, &md->flags))) {
1266 		md = NULL;
1267 		goto out;
1268 	}
1269 
1270 out:
1271 	spin_unlock(&_minor_lock);
1272 
1273 	return md;
1274 }
1275 
1276 struct mapped_device *dm_get_md(dev_t dev)
1277 {
1278 	struct mapped_device *md = dm_find_md(dev);
1279 
1280 	if (md)
1281 		dm_get(md);
1282 
1283 	return md;
1284 }
1285 
1286 void *dm_get_mdptr(struct mapped_device *md)
1287 {
1288 	return md->interface_ptr;
1289 }
1290 
1291 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1292 {
1293 	md->interface_ptr = ptr;
1294 }
1295 
1296 void dm_get(struct mapped_device *md)
1297 {
1298 	atomic_inc(&md->holders);
1299 }
1300 
1301 const char *dm_device_name(struct mapped_device *md)
1302 {
1303 	return md->name;
1304 }
1305 EXPORT_SYMBOL_GPL(dm_device_name);
1306 
1307 void dm_put(struct mapped_device *md)
1308 {
1309 	struct dm_table *map;
1310 
1311 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1312 
1313 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1314 		map = dm_get_table(md);
1315 		idr_replace(&_minor_idr, MINOR_ALLOCED,
1316 			    MINOR(disk_devt(dm_disk(md))));
1317 		set_bit(DMF_FREEING, &md->flags);
1318 		spin_unlock(&_minor_lock);
1319 		if (!dm_suspended(md)) {
1320 			dm_table_presuspend_targets(map);
1321 			dm_table_postsuspend_targets(map);
1322 		}
1323 		__unbind(md);
1324 		dm_table_put(map);
1325 		free_dev(md);
1326 	}
1327 }
1328 EXPORT_SYMBOL_GPL(dm_put);
1329 
1330 static int dm_wait_for_completion(struct mapped_device *md)
1331 {
1332 	int r = 0;
1333 
1334 	while (1) {
1335 		set_current_state(TASK_INTERRUPTIBLE);
1336 
1337 		smp_mb();
1338 		if (!atomic_read(&md->pending))
1339 			break;
1340 
1341 		if (signal_pending(current)) {
1342 			r = -EINTR;
1343 			break;
1344 		}
1345 
1346 		io_schedule();
1347 	}
1348 	set_current_state(TASK_RUNNING);
1349 
1350 	return r;
1351 }
1352 
1353 /*
1354  * Process the deferred bios
1355  */
1356 static void __flush_deferred_io(struct mapped_device *md)
1357 {
1358 	struct bio *c;
1359 
1360 	while ((c = bio_list_pop(&md->deferred))) {
1361 		if (__split_bio(md, c))
1362 			bio_io_error(c);
1363 	}
1364 
1365 	clear_bit(DMF_BLOCK_IO, &md->flags);
1366 }
1367 
1368 static void __merge_pushback_list(struct mapped_device *md)
1369 {
1370 	unsigned long flags;
1371 
1372 	spin_lock_irqsave(&md->pushback_lock, flags);
1373 	clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1374 	bio_list_merge_head(&md->deferred, &md->pushback);
1375 	bio_list_init(&md->pushback);
1376 	spin_unlock_irqrestore(&md->pushback_lock, flags);
1377 }
1378 
1379 static void dm_wq_work(struct work_struct *work)
1380 {
1381 	struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1382 	struct mapped_device *md = req->md;
1383 
1384 	down_write(&md->io_lock);
1385 	switch (req->type) {
1386 	case DM_WQ_FLUSH_DEFERRED:
1387 		__flush_deferred_io(md);
1388 		break;
1389 	default:
1390 		DMERR("dm_wq_work: unrecognised work type %d", req->type);
1391 		BUG();
1392 	}
1393 	up_write(&md->io_lock);
1394 }
1395 
1396 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1397 			struct dm_wq_req *req)
1398 {
1399 	req->type = type;
1400 	req->md = md;
1401 	req->context = context;
1402 	INIT_WORK(&req->work, dm_wq_work);
1403 	queue_work(md->wq, &req->work);
1404 }
1405 
1406 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1407 {
1408 	struct dm_wq_req req;
1409 
1410 	dm_wq_queue(md, type, context, &req);
1411 	flush_workqueue(md->wq);
1412 }
1413 
1414 /*
1415  * Swap in a new table (destroying old one).
1416  */
1417 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1418 {
1419 	int r = -EINVAL;
1420 
1421 	mutex_lock(&md->suspend_lock);
1422 
1423 	/* device must be suspended */
1424 	if (!dm_suspended(md))
1425 		goto out;
1426 
1427 	/* without bdev, the device size cannot be changed */
1428 	if (!md->suspended_bdev)
1429 		if (get_capacity(md->disk) != dm_table_get_size(table))
1430 			goto out;
1431 
1432 	__unbind(md);
1433 	r = __bind(md, table);
1434 
1435 out:
1436 	mutex_unlock(&md->suspend_lock);
1437 	return r;
1438 }
1439 
1440 /*
1441  * Functions to lock and unlock any filesystem running on the
1442  * device.
1443  */
1444 static int lock_fs(struct mapped_device *md)
1445 {
1446 	int r;
1447 
1448 	WARN_ON(md->frozen_sb);
1449 
1450 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1451 	if (IS_ERR(md->frozen_sb)) {
1452 		r = PTR_ERR(md->frozen_sb);
1453 		md->frozen_sb = NULL;
1454 		return r;
1455 	}
1456 
1457 	set_bit(DMF_FROZEN, &md->flags);
1458 
1459 	/* don't bdput right now, we don't want the bdev
1460 	 * to go away while it is locked.
1461 	 */
1462 	return 0;
1463 }
1464 
1465 static void unlock_fs(struct mapped_device *md)
1466 {
1467 	if (!test_bit(DMF_FROZEN, &md->flags))
1468 		return;
1469 
1470 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1471 	md->frozen_sb = NULL;
1472 	clear_bit(DMF_FROZEN, &md->flags);
1473 }
1474 
1475 /*
1476  * We need to be able to change a mapping table under a mounted
1477  * filesystem.  For example we might want to move some data in
1478  * the background.  Before the table can be swapped with
1479  * dm_bind_table, dm_suspend must be called to flush any in
1480  * flight bios and ensure that any further io gets deferred.
1481  */
1482 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1483 {
1484 	struct dm_table *map = NULL;
1485 	DECLARE_WAITQUEUE(wait, current);
1486 	int r = 0;
1487 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1488 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1489 
1490 	mutex_lock(&md->suspend_lock);
1491 
1492 	if (dm_suspended(md)) {
1493 		r = -EINVAL;
1494 		goto out_unlock;
1495 	}
1496 
1497 	map = dm_get_table(md);
1498 
1499 	/*
1500 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1501 	 * This flag is cleared before dm_suspend returns.
1502 	 */
1503 	if (noflush)
1504 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1505 
1506 	/* This does not get reverted if there's an error later. */
1507 	dm_table_presuspend_targets(map);
1508 
1509 	/* bdget() can stall if the pending I/Os are not flushed */
1510 	if (!noflush) {
1511 		md->suspended_bdev = bdget_disk(md->disk, 0);
1512 		if (!md->suspended_bdev) {
1513 			DMWARN("bdget failed in dm_suspend");
1514 			r = -ENOMEM;
1515 			goto out;
1516 		}
1517 
1518 		/*
1519 		 * Flush I/O to the device. noflush supersedes do_lockfs,
1520 		 * because lock_fs() needs to flush I/Os.
1521 		 */
1522 		if (do_lockfs) {
1523 			r = lock_fs(md);
1524 			if (r)
1525 				goto out;
1526 		}
1527 	}
1528 
1529 	/*
1530 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1531 	 */
1532 	down_write(&md->io_lock);
1533 	set_bit(DMF_BLOCK_IO, &md->flags);
1534 
1535 	add_wait_queue(&md->wait, &wait);
1536 	up_write(&md->io_lock);
1537 
1538 	/* unplug */
1539 	if (map)
1540 		dm_table_unplug_all(map);
1541 
1542 	/*
1543 	 * Wait for the already-mapped ios to complete.
1544 	 */
1545 	r = dm_wait_for_completion(md);
1546 
1547 	down_write(&md->io_lock);
1548 	remove_wait_queue(&md->wait, &wait);
1549 
1550 	if (noflush)
1551 		__merge_pushback_list(md);
1552 	up_write(&md->io_lock);
1553 
1554 	/* were we interrupted ? */
1555 	if (r < 0) {
1556 		dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1557 
1558 		unlock_fs(md);
1559 		goto out; /* pushback list is already flushed, so skip flush */
1560 	}
1561 
1562 	dm_table_postsuspend_targets(map);
1563 
1564 	set_bit(DMF_SUSPENDED, &md->flags);
1565 
1566 out:
1567 	if (r && md->suspended_bdev) {
1568 		bdput(md->suspended_bdev);
1569 		md->suspended_bdev = NULL;
1570 	}
1571 
1572 	dm_table_put(map);
1573 
1574 out_unlock:
1575 	mutex_unlock(&md->suspend_lock);
1576 	return r;
1577 }
1578 
1579 int dm_resume(struct mapped_device *md)
1580 {
1581 	int r = -EINVAL;
1582 	struct dm_table *map = NULL;
1583 
1584 	mutex_lock(&md->suspend_lock);
1585 	if (!dm_suspended(md))
1586 		goto out;
1587 
1588 	map = dm_get_table(md);
1589 	if (!map || !dm_table_get_size(map))
1590 		goto out;
1591 
1592 	r = dm_table_resume_targets(map);
1593 	if (r)
1594 		goto out;
1595 
1596 	dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1597 
1598 	unlock_fs(md);
1599 
1600 	if (md->suspended_bdev) {
1601 		bdput(md->suspended_bdev);
1602 		md->suspended_bdev = NULL;
1603 	}
1604 
1605 	clear_bit(DMF_SUSPENDED, &md->flags);
1606 
1607 	dm_table_unplug_all(map);
1608 
1609 	dm_kobject_uevent(md);
1610 
1611 	r = 0;
1612 
1613 out:
1614 	dm_table_put(map);
1615 	mutex_unlock(&md->suspend_lock);
1616 
1617 	return r;
1618 }
1619 
1620 /*-----------------------------------------------------------------
1621  * Event notification.
1622  *---------------------------------------------------------------*/
1623 void dm_kobject_uevent(struct mapped_device *md)
1624 {
1625 	kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1626 }
1627 
1628 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1629 {
1630 	return atomic_add_return(1, &md->uevent_seq);
1631 }
1632 
1633 uint32_t dm_get_event_nr(struct mapped_device *md)
1634 {
1635 	return atomic_read(&md->event_nr);
1636 }
1637 
1638 int dm_wait_event(struct mapped_device *md, int event_nr)
1639 {
1640 	return wait_event_interruptible(md->eventq,
1641 			(event_nr != atomic_read(&md->event_nr)));
1642 }
1643 
1644 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1645 {
1646 	unsigned long flags;
1647 
1648 	spin_lock_irqsave(&md->uevent_lock, flags);
1649 	list_add(elist, &md->uevent_list);
1650 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1651 }
1652 
1653 /*
1654  * The gendisk is only valid as long as you have a reference
1655  * count on 'md'.
1656  */
1657 struct gendisk *dm_disk(struct mapped_device *md)
1658 {
1659 	return md->disk;
1660 }
1661 
1662 int dm_suspended(struct mapped_device *md)
1663 {
1664 	return test_bit(DMF_SUSPENDED, &md->flags);
1665 }
1666 
1667 int dm_noflush_suspending(struct dm_target *ti)
1668 {
1669 	struct mapped_device *md = dm_table_get_md(ti->table);
1670 	int r = __noflush_suspending(md);
1671 
1672 	dm_put(md);
1673 
1674 	return r;
1675 }
1676 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1677 
1678 static struct block_device_operations dm_blk_dops = {
1679 	.open = dm_blk_open,
1680 	.release = dm_blk_close,
1681 	.ioctl = dm_blk_ioctl,
1682 	.getgeo = dm_blk_getgeo,
1683 	.owner = THIS_MODULE
1684 };
1685 
1686 EXPORT_SYMBOL(dm_get_mapinfo);
1687 
1688 /*
1689  * module hooks
1690  */
1691 module_init(dm_init);
1692 module_exit(dm_exit);
1693 
1694 module_param(major, uint, 0);
1695 MODULE_PARM_DESC(major, "The major number of the device mapper");
1696 MODULE_DESCRIPTION(DM_NAME " driver");
1697 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1698 MODULE_LICENSE("GPL");
1699