xref: /openbmc/linux/drivers/md/dm.c (revision 8b036556)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 
25 #include <trace/events/block.h>
26 
27 #define DM_MSG_PREFIX "core"
28 
29 #ifdef CONFIG_PRINTK
30 /*
31  * ratelimit state to be used in DMXXX_LIMIT().
32  */
33 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
34 		       DEFAULT_RATELIMIT_INTERVAL,
35 		       DEFAULT_RATELIMIT_BURST);
36 EXPORT_SYMBOL(dm_ratelimit_state);
37 #endif
38 
39 /*
40  * Cookies are numeric values sent with CHANGE and REMOVE
41  * uevents while resuming, removing or renaming the device.
42  */
43 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
44 #define DM_COOKIE_LENGTH 24
45 
46 static const char *_name = DM_NAME;
47 
48 static unsigned int major = 0;
49 static unsigned int _major = 0;
50 
51 static DEFINE_IDR(_minor_idr);
52 
53 static DEFINE_SPINLOCK(_minor_lock);
54 
55 static void do_deferred_remove(struct work_struct *w);
56 
57 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
58 
59 static struct workqueue_struct *deferred_remove_workqueue;
60 
61 /*
62  * For bio-based dm.
63  * One of these is allocated per bio.
64  */
65 struct dm_io {
66 	struct mapped_device *md;
67 	int error;
68 	atomic_t io_count;
69 	struct bio *bio;
70 	unsigned long start_time;
71 	spinlock_t endio_lock;
72 	struct dm_stats_aux stats_aux;
73 };
74 
75 /*
76  * For request-based dm.
77  * One of these is allocated per request.
78  */
79 struct dm_rq_target_io {
80 	struct mapped_device *md;
81 	struct dm_target *ti;
82 	struct request *orig, *clone;
83 	struct kthread_work work;
84 	int error;
85 	union map_info info;
86 };
87 
88 /*
89  * For request-based dm - the bio clones we allocate are embedded in these
90  * structs.
91  *
92  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
93  * the bioset is created - this means the bio has to come at the end of the
94  * struct.
95  */
96 struct dm_rq_clone_bio_info {
97 	struct bio *orig;
98 	struct dm_rq_target_io *tio;
99 	struct bio clone;
100 };
101 
102 union map_info *dm_get_rq_mapinfo(struct request *rq)
103 {
104 	if (rq && rq->end_io_data)
105 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
106 	return NULL;
107 }
108 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
109 
110 #define MINOR_ALLOCED ((void *)-1)
111 
112 /*
113  * Bits for the md->flags field.
114  */
115 #define DMF_BLOCK_IO_FOR_SUSPEND 0
116 #define DMF_SUSPENDED 1
117 #define DMF_FROZEN 2
118 #define DMF_FREEING 3
119 #define DMF_DELETING 4
120 #define DMF_NOFLUSH_SUSPENDING 5
121 #define DMF_MERGE_IS_OPTIONAL 6
122 #define DMF_DEFERRED_REMOVE 7
123 #define DMF_SUSPENDED_INTERNALLY 8
124 
125 /*
126  * A dummy definition to make RCU happy.
127  * struct dm_table should never be dereferenced in this file.
128  */
129 struct dm_table {
130 	int undefined__;
131 };
132 
133 /*
134  * Work processed by per-device workqueue.
135  */
136 struct mapped_device {
137 	struct srcu_struct io_barrier;
138 	struct mutex suspend_lock;
139 	atomic_t holders;
140 	atomic_t open_count;
141 
142 	/*
143 	 * The current mapping.
144 	 * Use dm_get_live_table{_fast} or take suspend_lock for
145 	 * dereference.
146 	 */
147 	struct dm_table __rcu *map;
148 
149 	struct list_head table_devices;
150 	struct mutex table_devices_lock;
151 
152 	unsigned long flags;
153 
154 	struct request_queue *queue;
155 	unsigned type;
156 	/* Protect queue and type against concurrent access. */
157 	struct mutex type_lock;
158 
159 	struct target_type *immutable_target_type;
160 
161 	struct gendisk *disk;
162 	char name[16];
163 
164 	void *interface_ptr;
165 
166 	/*
167 	 * A list of ios that arrived while we were suspended.
168 	 */
169 	atomic_t pending[2];
170 	wait_queue_head_t wait;
171 	struct work_struct work;
172 	struct bio_list deferred;
173 	spinlock_t deferred_lock;
174 
175 	/*
176 	 * Processing queue (flush)
177 	 */
178 	struct workqueue_struct *wq;
179 
180 	/*
181 	 * io objects are allocated from here.
182 	 */
183 	mempool_t *io_pool;
184 	mempool_t *rq_pool;
185 
186 	struct bio_set *bs;
187 
188 	/*
189 	 * Event handling.
190 	 */
191 	atomic_t event_nr;
192 	wait_queue_head_t eventq;
193 	atomic_t uevent_seq;
194 	struct list_head uevent_list;
195 	spinlock_t uevent_lock; /* Protect access to uevent_list */
196 
197 	/*
198 	 * freeze/thaw support require holding onto a super block
199 	 */
200 	struct super_block *frozen_sb;
201 	struct block_device *bdev;
202 
203 	/* forced geometry settings */
204 	struct hd_geometry geometry;
205 
206 	/* kobject and completion */
207 	struct dm_kobject_holder kobj_holder;
208 
209 	/* zero-length flush that will be cloned and submitted to targets */
210 	struct bio flush_bio;
211 
212 	/* the number of internal suspends */
213 	unsigned internal_suspend_count;
214 
215 	struct dm_stats stats;
216 
217 	struct kthread_worker kworker;
218 	struct task_struct *kworker_task;
219 };
220 
221 /*
222  * For mempools pre-allocation at the table loading time.
223  */
224 struct dm_md_mempools {
225 	mempool_t *io_pool;
226 	mempool_t *rq_pool;
227 	struct bio_set *bs;
228 };
229 
230 struct table_device {
231 	struct list_head list;
232 	atomic_t count;
233 	struct dm_dev dm_dev;
234 };
235 
236 #define RESERVED_BIO_BASED_IOS		16
237 #define RESERVED_REQUEST_BASED_IOS	256
238 #define RESERVED_MAX_IOS		1024
239 static struct kmem_cache *_io_cache;
240 static struct kmem_cache *_rq_tio_cache;
241 static struct kmem_cache *_rq_cache;
242 
243 /*
244  * Bio-based DM's mempools' reserved IOs set by the user.
245  */
246 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
247 
248 /*
249  * Request-based DM's mempools' reserved IOs set by the user.
250  */
251 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
252 
253 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
254 				      unsigned def, unsigned max)
255 {
256 	unsigned ios = ACCESS_ONCE(*reserved_ios);
257 	unsigned modified_ios = 0;
258 
259 	if (!ios)
260 		modified_ios = def;
261 	else if (ios > max)
262 		modified_ios = max;
263 
264 	if (modified_ios) {
265 		(void)cmpxchg(reserved_ios, ios, modified_ios);
266 		ios = modified_ios;
267 	}
268 
269 	return ios;
270 }
271 
272 unsigned dm_get_reserved_bio_based_ios(void)
273 {
274 	return __dm_get_reserved_ios(&reserved_bio_based_ios,
275 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
276 }
277 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
278 
279 unsigned dm_get_reserved_rq_based_ios(void)
280 {
281 	return __dm_get_reserved_ios(&reserved_rq_based_ios,
282 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
283 }
284 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
285 
286 static int __init local_init(void)
287 {
288 	int r = -ENOMEM;
289 
290 	/* allocate a slab for the dm_ios */
291 	_io_cache = KMEM_CACHE(dm_io, 0);
292 	if (!_io_cache)
293 		return r;
294 
295 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
296 	if (!_rq_tio_cache)
297 		goto out_free_io_cache;
298 
299 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
300 				      __alignof__(struct request), 0, NULL);
301 	if (!_rq_cache)
302 		goto out_free_rq_tio_cache;
303 
304 	r = dm_uevent_init();
305 	if (r)
306 		goto out_free_rq_cache;
307 
308 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
309 	if (!deferred_remove_workqueue) {
310 		r = -ENOMEM;
311 		goto out_uevent_exit;
312 	}
313 
314 	_major = major;
315 	r = register_blkdev(_major, _name);
316 	if (r < 0)
317 		goto out_free_workqueue;
318 
319 	if (!_major)
320 		_major = r;
321 
322 	return 0;
323 
324 out_free_workqueue:
325 	destroy_workqueue(deferred_remove_workqueue);
326 out_uevent_exit:
327 	dm_uevent_exit();
328 out_free_rq_cache:
329 	kmem_cache_destroy(_rq_cache);
330 out_free_rq_tio_cache:
331 	kmem_cache_destroy(_rq_tio_cache);
332 out_free_io_cache:
333 	kmem_cache_destroy(_io_cache);
334 
335 	return r;
336 }
337 
338 static void local_exit(void)
339 {
340 	flush_scheduled_work();
341 	destroy_workqueue(deferred_remove_workqueue);
342 
343 	kmem_cache_destroy(_rq_cache);
344 	kmem_cache_destroy(_rq_tio_cache);
345 	kmem_cache_destroy(_io_cache);
346 	unregister_blkdev(_major, _name);
347 	dm_uevent_exit();
348 
349 	_major = 0;
350 
351 	DMINFO("cleaned up");
352 }
353 
354 static int (*_inits[])(void) __initdata = {
355 	local_init,
356 	dm_target_init,
357 	dm_linear_init,
358 	dm_stripe_init,
359 	dm_io_init,
360 	dm_kcopyd_init,
361 	dm_interface_init,
362 	dm_statistics_init,
363 };
364 
365 static void (*_exits[])(void) = {
366 	local_exit,
367 	dm_target_exit,
368 	dm_linear_exit,
369 	dm_stripe_exit,
370 	dm_io_exit,
371 	dm_kcopyd_exit,
372 	dm_interface_exit,
373 	dm_statistics_exit,
374 };
375 
376 static int __init dm_init(void)
377 {
378 	const int count = ARRAY_SIZE(_inits);
379 
380 	int r, i;
381 
382 	for (i = 0; i < count; i++) {
383 		r = _inits[i]();
384 		if (r)
385 			goto bad;
386 	}
387 
388 	return 0;
389 
390       bad:
391 	while (i--)
392 		_exits[i]();
393 
394 	return r;
395 }
396 
397 static void __exit dm_exit(void)
398 {
399 	int i = ARRAY_SIZE(_exits);
400 
401 	while (i--)
402 		_exits[i]();
403 
404 	/*
405 	 * Should be empty by this point.
406 	 */
407 	idr_destroy(&_minor_idr);
408 }
409 
410 /*
411  * Block device functions
412  */
413 int dm_deleting_md(struct mapped_device *md)
414 {
415 	return test_bit(DMF_DELETING, &md->flags);
416 }
417 
418 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
419 {
420 	struct mapped_device *md;
421 
422 	spin_lock(&_minor_lock);
423 
424 	md = bdev->bd_disk->private_data;
425 	if (!md)
426 		goto out;
427 
428 	if (test_bit(DMF_FREEING, &md->flags) ||
429 	    dm_deleting_md(md)) {
430 		md = NULL;
431 		goto out;
432 	}
433 
434 	dm_get(md);
435 	atomic_inc(&md->open_count);
436 
437 out:
438 	spin_unlock(&_minor_lock);
439 
440 	return md ? 0 : -ENXIO;
441 }
442 
443 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
444 {
445 	struct mapped_device *md = disk->private_data;
446 
447 	spin_lock(&_minor_lock);
448 
449 	if (atomic_dec_and_test(&md->open_count) &&
450 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
451 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
452 
453 	dm_put(md);
454 
455 	spin_unlock(&_minor_lock);
456 }
457 
458 int dm_open_count(struct mapped_device *md)
459 {
460 	return atomic_read(&md->open_count);
461 }
462 
463 /*
464  * Guarantees nothing is using the device before it's deleted.
465  */
466 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
467 {
468 	int r = 0;
469 
470 	spin_lock(&_minor_lock);
471 
472 	if (dm_open_count(md)) {
473 		r = -EBUSY;
474 		if (mark_deferred)
475 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
476 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
477 		r = -EEXIST;
478 	else
479 		set_bit(DMF_DELETING, &md->flags);
480 
481 	spin_unlock(&_minor_lock);
482 
483 	return r;
484 }
485 
486 int dm_cancel_deferred_remove(struct mapped_device *md)
487 {
488 	int r = 0;
489 
490 	spin_lock(&_minor_lock);
491 
492 	if (test_bit(DMF_DELETING, &md->flags))
493 		r = -EBUSY;
494 	else
495 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
496 
497 	spin_unlock(&_minor_lock);
498 
499 	return r;
500 }
501 
502 static void do_deferred_remove(struct work_struct *w)
503 {
504 	dm_deferred_remove();
505 }
506 
507 sector_t dm_get_size(struct mapped_device *md)
508 {
509 	return get_capacity(md->disk);
510 }
511 
512 struct request_queue *dm_get_md_queue(struct mapped_device *md)
513 {
514 	return md->queue;
515 }
516 
517 struct dm_stats *dm_get_stats(struct mapped_device *md)
518 {
519 	return &md->stats;
520 }
521 
522 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
523 {
524 	struct mapped_device *md = bdev->bd_disk->private_data;
525 
526 	return dm_get_geometry(md, geo);
527 }
528 
529 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
530 			unsigned int cmd, unsigned long arg)
531 {
532 	struct mapped_device *md = bdev->bd_disk->private_data;
533 	int srcu_idx;
534 	struct dm_table *map;
535 	struct dm_target *tgt;
536 	int r = -ENOTTY;
537 
538 retry:
539 	map = dm_get_live_table(md, &srcu_idx);
540 
541 	if (!map || !dm_table_get_size(map))
542 		goto out;
543 
544 	/* We only support devices that have a single target */
545 	if (dm_table_get_num_targets(map) != 1)
546 		goto out;
547 
548 	tgt = dm_table_get_target(map, 0);
549 	if (!tgt->type->ioctl)
550 		goto out;
551 
552 	if (dm_suspended_md(md)) {
553 		r = -EAGAIN;
554 		goto out;
555 	}
556 
557 	r = tgt->type->ioctl(tgt, cmd, arg);
558 
559 out:
560 	dm_put_live_table(md, srcu_idx);
561 
562 	if (r == -ENOTCONN) {
563 		msleep(10);
564 		goto retry;
565 	}
566 
567 	return r;
568 }
569 
570 static struct dm_io *alloc_io(struct mapped_device *md)
571 {
572 	return mempool_alloc(md->io_pool, GFP_NOIO);
573 }
574 
575 static void free_io(struct mapped_device *md, struct dm_io *io)
576 {
577 	mempool_free(io, md->io_pool);
578 }
579 
580 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
581 {
582 	bio_put(&tio->clone);
583 }
584 
585 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
586 					    gfp_t gfp_mask)
587 {
588 	return mempool_alloc(md->io_pool, gfp_mask);
589 }
590 
591 static void free_rq_tio(struct dm_rq_target_io *tio)
592 {
593 	mempool_free(tio, tio->md->io_pool);
594 }
595 
596 static struct request *alloc_clone_request(struct mapped_device *md,
597 					   gfp_t gfp_mask)
598 {
599 	return mempool_alloc(md->rq_pool, gfp_mask);
600 }
601 
602 static void free_clone_request(struct mapped_device *md, struct request *rq)
603 {
604 	mempool_free(rq, md->rq_pool);
605 }
606 
607 static int md_in_flight(struct mapped_device *md)
608 {
609 	return atomic_read(&md->pending[READ]) +
610 	       atomic_read(&md->pending[WRITE]);
611 }
612 
613 static void start_io_acct(struct dm_io *io)
614 {
615 	struct mapped_device *md = io->md;
616 	struct bio *bio = io->bio;
617 	int cpu;
618 	int rw = bio_data_dir(bio);
619 
620 	io->start_time = jiffies;
621 
622 	cpu = part_stat_lock();
623 	part_round_stats(cpu, &dm_disk(md)->part0);
624 	part_stat_unlock();
625 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
626 		atomic_inc_return(&md->pending[rw]));
627 
628 	if (unlikely(dm_stats_used(&md->stats)))
629 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
630 				    bio_sectors(bio), false, 0, &io->stats_aux);
631 }
632 
633 static void end_io_acct(struct dm_io *io)
634 {
635 	struct mapped_device *md = io->md;
636 	struct bio *bio = io->bio;
637 	unsigned long duration = jiffies - io->start_time;
638 	int pending;
639 	int rw = bio_data_dir(bio);
640 
641 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
642 
643 	if (unlikely(dm_stats_used(&md->stats)))
644 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
645 				    bio_sectors(bio), true, duration, &io->stats_aux);
646 
647 	/*
648 	 * After this is decremented the bio must not be touched if it is
649 	 * a flush.
650 	 */
651 	pending = atomic_dec_return(&md->pending[rw]);
652 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
653 	pending += atomic_read(&md->pending[rw^0x1]);
654 
655 	/* nudge anyone waiting on suspend queue */
656 	if (!pending)
657 		wake_up(&md->wait);
658 }
659 
660 /*
661  * Add the bio to the list of deferred io.
662  */
663 static void queue_io(struct mapped_device *md, struct bio *bio)
664 {
665 	unsigned long flags;
666 
667 	spin_lock_irqsave(&md->deferred_lock, flags);
668 	bio_list_add(&md->deferred, bio);
669 	spin_unlock_irqrestore(&md->deferred_lock, flags);
670 	queue_work(md->wq, &md->work);
671 }
672 
673 /*
674  * Everyone (including functions in this file), should use this
675  * function to access the md->map field, and make sure they call
676  * dm_put_live_table() when finished.
677  */
678 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
679 {
680 	*srcu_idx = srcu_read_lock(&md->io_barrier);
681 
682 	return srcu_dereference(md->map, &md->io_barrier);
683 }
684 
685 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
686 {
687 	srcu_read_unlock(&md->io_barrier, srcu_idx);
688 }
689 
690 void dm_sync_table(struct mapped_device *md)
691 {
692 	synchronize_srcu(&md->io_barrier);
693 	synchronize_rcu_expedited();
694 }
695 
696 /*
697  * A fast alternative to dm_get_live_table/dm_put_live_table.
698  * The caller must not block between these two functions.
699  */
700 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
701 {
702 	rcu_read_lock();
703 	return rcu_dereference(md->map);
704 }
705 
706 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
707 {
708 	rcu_read_unlock();
709 }
710 
711 /*
712  * Open a table device so we can use it as a map destination.
713  */
714 static int open_table_device(struct table_device *td, dev_t dev,
715 			     struct mapped_device *md)
716 {
717 	static char *_claim_ptr = "I belong to device-mapper";
718 	struct block_device *bdev;
719 
720 	int r;
721 
722 	BUG_ON(td->dm_dev.bdev);
723 
724 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
725 	if (IS_ERR(bdev))
726 		return PTR_ERR(bdev);
727 
728 	r = bd_link_disk_holder(bdev, dm_disk(md));
729 	if (r) {
730 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
731 		return r;
732 	}
733 
734 	td->dm_dev.bdev = bdev;
735 	return 0;
736 }
737 
738 /*
739  * Close a table device that we've been using.
740  */
741 static void close_table_device(struct table_device *td, struct mapped_device *md)
742 {
743 	if (!td->dm_dev.bdev)
744 		return;
745 
746 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
747 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
748 	td->dm_dev.bdev = NULL;
749 }
750 
751 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
752 					      fmode_t mode) {
753 	struct table_device *td;
754 
755 	list_for_each_entry(td, l, list)
756 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
757 			return td;
758 
759 	return NULL;
760 }
761 
762 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
763 			struct dm_dev **result) {
764 	int r;
765 	struct table_device *td;
766 
767 	mutex_lock(&md->table_devices_lock);
768 	td = find_table_device(&md->table_devices, dev, mode);
769 	if (!td) {
770 		td = kmalloc(sizeof(*td), GFP_KERNEL);
771 		if (!td) {
772 			mutex_unlock(&md->table_devices_lock);
773 			return -ENOMEM;
774 		}
775 
776 		td->dm_dev.mode = mode;
777 		td->dm_dev.bdev = NULL;
778 
779 		if ((r = open_table_device(td, dev, md))) {
780 			mutex_unlock(&md->table_devices_lock);
781 			kfree(td);
782 			return r;
783 		}
784 
785 		format_dev_t(td->dm_dev.name, dev);
786 
787 		atomic_set(&td->count, 0);
788 		list_add(&td->list, &md->table_devices);
789 	}
790 	atomic_inc(&td->count);
791 	mutex_unlock(&md->table_devices_lock);
792 
793 	*result = &td->dm_dev;
794 	return 0;
795 }
796 EXPORT_SYMBOL_GPL(dm_get_table_device);
797 
798 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
799 {
800 	struct table_device *td = container_of(d, struct table_device, dm_dev);
801 
802 	mutex_lock(&md->table_devices_lock);
803 	if (atomic_dec_and_test(&td->count)) {
804 		close_table_device(td, md);
805 		list_del(&td->list);
806 		kfree(td);
807 	}
808 	mutex_unlock(&md->table_devices_lock);
809 }
810 EXPORT_SYMBOL(dm_put_table_device);
811 
812 static void free_table_devices(struct list_head *devices)
813 {
814 	struct list_head *tmp, *next;
815 
816 	list_for_each_safe(tmp, next, devices) {
817 		struct table_device *td = list_entry(tmp, struct table_device, list);
818 
819 		DMWARN("dm_destroy: %s still exists with %d references",
820 		       td->dm_dev.name, atomic_read(&td->count));
821 		kfree(td);
822 	}
823 }
824 
825 /*
826  * Get the geometry associated with a dm device
827  */
828 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
829 {
830 	*geo = md->geometry;
831 
832 	return 0;
833 }
834 
835 /*
836  * Set the geometry of a device.
837  */
838 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
839 {
840 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
841 
842 	if (geo->start > sz) {
843 		DMWARN("Start sector is beyond the geometry limits.");
844 		return -EINVAL;
845 	}
846 
847 	md->geometry = *geo;
848 
849 	return 0;
850 }
851 
852 /*-----------------------------------------------------------------
853  * CRUD START:
854  *   A more elegant soln is in the works that uses the queue
855  *   merge fn, unfortunately there are a couple of changes to
856  *   the block layer that I want to make for this.  So in the
857  *   interests of getting something for people to use I give
858  *   you this clearly demarcated crap.
859  *---------------------------------------------------------------*/
860 
861 static int __noflush_suspending(struct mapped_device *md)
862 {
863 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
864 }
865 
866 /*
867  * Decrements the number of outstanding ios that a bio has been
868  * cloned into, completing the original io if necc.
869  */
870 static void dec_pending(struct dm_io *io, int error)
871 {
872 	unsigned long flags;
873 	int io_error;
874 	struct bio *bio;
875 	struct mapped_device *md = io->md;
876 
877 	/* Push-back supersedes any I/O errors */
878 	if (unlikely(error)) {
879 		spin_lock_irqsave(&io->endio_lock, flags);
880 		if (!(io->error > 0 && __noflush_suspending(md)))
881 			io->error = error;
882 		spin_unlock_irqrestore(&io->endio_lock, flags);
883 	}
884 
885 	if (atomic_dec_and_test(&io->io_count)) {
886 		if (io->error == DM_ENDIO_REQUEUE) {
887 			/*
888 			 * Target requested pushing back the I/O.
889 			 */
890 			spin_lock_irqsave(&md->deferred_lock, flags);
891 			if (__noflush_suspending(md))
892 				bio_list_add_head(&md->deferred, io->bio);
893 			else
894 				/* noflush suspend was interrupted. */
895 				io->error = -EIO;
896 			spin_unlock_irqrestore(&md->deferred_lock, flags);
897 		}
898 
899 		io_error = io->error;
900 		bio = io->bio;
901 		end_io_acct(io);
902 		free_io(md, io);
903 
904 		if (io_error == DM_ENDIO_REQUEUE)
905 			return;
906 
907 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
908 			/*
909 			 * Preflush done for flush with data, reissue
910 			 * without REQ_FLUSH.
911 			 */
912 			bio->bi_rw &= ~REQ_FLUSH;
913 			queue_io(md, bio);
914 		} else {
915 			/* done with normal IO or empty flush */
916 			trace_block_bio_complete(md->queue, bio, io_error);
917 			bio_endio(bio, io_error);
918 		}
919 	}
920 }
921 
922 static void disable_write_same(struct mapped_device *md)
923 {
924 	struct queue_limits *limits = dm_get_queue_limits(md);
925 
926 	/* device doesn't really support WRITE SAME, disable it */
927 	limits->max_write_same_sectors = 0;
928 }
929 
930 static void clone_endio(struct bio *bio, int error)
931 {
932 	int r = error;
933 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
934 	struct dm_io *io = tio->io;
935 	struct mapped_device *md = tio->io->md;
936 	dm_endio_fn endio = tio->ti->type->end_io;
937 
938 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
939 		error = -EIO;
940 
941 	if (endio) {
942 		r = endio(tio->ti, bio, error);
943 		if (r < 0 || r == DM_ENDIO_REQUEUE)
944 			/*
945 			 * error and requeue request are handled
946 			 * in dec_pending().
947 			 */
948 			error = r;
949 		else if (r == DM_ENDIO_INCOMPLETE)
950 			/* The target will handle the io */
951 			return;
952 		else if (r) {
953 			DMWARN("unimplemented target endio return value: %d", r);
954 			BUG();
955 		}
956 	}
957 
958 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
959 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
960 		disable_write_same(md);
961 
962 	free_tio(md, tio);
963 	dec_pending(io, error);
964 }
965 
966 /*
967  * Partial completion handling for request-based dm
968  */
969 static void end_clone_bio(struct bio *clone, int error)
970 {
971 	struct dm_rq_clone_bio_info *info =
972 		container_of(clone, struct dm_rq_clone_bio_info, clone);
973 	struct dm_rq_target_io *tio = info->tio;
974 	struct bio *bio = info->orig;
975 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
976 
977 	bio_put(clone);
978 
979 	if (tio->error)
980 		/*
981 		 * An error has already been detected on the request.
982 		 * Once error occurred, just let clone->end_io() handle
983 		 * the remainder.
984 		 */
985 		return;
986 	else if (error) {
987 		/*
988 		 * Don't notice the error to the upper layer yet.
989 		 * The error handling decision is made by the target driver,
990 		 * when the request is completed.
991 		 */
992 		tio->error = error;
993 		return;
994 	}
995 
996 	/*
997 	 * I/O for the bio successfully completed.
998 	 * Notice the data completion to the upper layer.
999 	 */
1000 
1001 	/*
1002 	 * bios are processed from the head of the list.
1003 	 * So the completing bio should always be rq->bio.
1004 	 * If it's not, something wrong is happening.
1005 	 */
1006 	if (tio->orig->bio != bio)
1007 		DMERR("bio completion is going in the middle of the request");
1008 
1009 	/*
1010 	 * Update the original request.
1011 	 * Do not use blk_end_request() here, because it may complete
1012 	 * the original request before the clone, and break the ordering.
1013 	 */
1014 	blk_update_request(tio->orig, 0, nr_bytes);
1015 }
1016 
1017 /*
1018  * Don't touch any member of the md after calling this function because
1019  * the md may be freed in dm_put() at the end of this function.
1020  * Or do dm_get() before calling this function and dm_put() later.
1021  */
1022 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1023 {
1024 	atomic_dec(&md->pending[rw]);
1025 
1026 	/* nudge anyone waiting on suspend queue */
1027 	if (!md_in_flight(md))
1028 		wake_up(&md->wait);
1029 
1030 	/*
1031 	 * Run this off this callpath, as drivers could invoke end_io while
1032 	 * inside their request_fn (and holding the queue lock). Calling
1033 	 * back into ->request_fn() could deadlock attempting to grab the
1034 	 * queue lock again.
1035 	 */
1036 	if (run_queue)
1037 		blk_run_queue_async(md->queue);
1038 
1039 	/*
1040 	 * dm_put() must be at the end of this function. See the comment above
1041 	 */
1042 	dm_put(md);
1043 }
1044 
1045 static void free_rq_clone(struct request *clone)
1046 {
1047 	struct dm_rq_target_io *tio = clone->end_io_data;
1048 
1049 	blk_rq_unprep_clone(clone);
1050 	if (clone->q && clone->q->mq_ops)
1051 		tio->ti->type->release_clone_rq(clone);
1052 	else
1053 		free_clone_request(tio->md, clone);
1054 	free_rq_tio(tio);
1055 }
1056 
1057 /*
1058  * Complete the clone and the original request.
1059  * Must be called without clone's queue lock held,
1060  * see end_clone_request() for more details.
1061  */
1062 static void dm_end_request(struct request *clone, int error)
1063 {
1064 	int rw = rq_data_dir(clone);
1065 	struct dm_rq_target_io *tio = clone->end_io_data;
1066 	struct mapped_device *md = tio->md;
1067 	struct request *rq = tio->orig;
1068 
1069 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1070 		rq->errors = clone->errors;
1071 		rq->resid_len = clone->resid_len;
1072 
1073 		if (rq->sense)
1074 			/*
1075 			 * We are using the sense buffer of the original
1076 			 * request.
1077 			 * So setting the length of the sense data is enough.
1078 			 */
1079 			rq->sense_len = clone->sense_len;
1080 	}
1081 
1082 	free_rq_clone(clone);
1083 	blk_end_request_all(rq, error);
1084 	rq_completed(md, rw, true);
1085 }
1086 
1087 static void dm_unprep_request(struct request *rq)
1088 {
1089 	struct dm_rq_target_io *tio = rq->special;
1090 	struct request *clone = tio->clone;
1091 
1092 	rq->special = NULL;
1093 	rq->cmd_flags &= ~REQ_DONTPREP;
1094 
1095 	if (clone)
1096 		free_rq_clone(clone);
1097 }
1098 
1099 /*
1100  * Requeue the original request of a clone.
1101  */
1102 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1103 						 struct request *rq)
1104 {
1105 	int rw = rq_data_dir(rq);
1106 	struct request_queue *q = rq->q;
1107 	unsigned long flags;
1108 
1109 	dm_unprep_request(rq);
1110 
1111 	spin_lock_irqsave(q->queue_lock, flags);
1112 	blk_requeue_request(q, rq);
1113 	spin_unlock_irqrestore(q->queue_lock, flags);
1114 
1115 	rq_completed(md, rw, false);
1116 }
1117 
1118 static void dm_requeue_unmapped_request(struct request *clone)
1119 {
1120 	struct dm_rq_target_io *tio = clone->end_io_data;
1121 
1122 	dm_requeue_unmapped_original_request(tio->md, tio->orig);
1123 }
1124 
1125 static void __stop_queue(struct request_queue *q)
1126 {
1127 	blk_stop_queue(q);
1128 }
1129 
1130 static void stop_queue(struct request_queue *q)
1131 {
1132 	unsigned long flags;
1133 
1134 	spin_lock_irqsave(q->queue_lock, flags);
1135 	__stop_queue(q);
1136 	spin_unlock_irqrestore(q->queue_lock, flags);
1137 }
1138 
1139 static void __start_queue(struct request_queue *q)
1140 {
1141 	if (blk_queue_stopped(q))
1142 		blk_start_queue(q);
1143 }
1144 
1145 static void start_queue(struct request_queue *q)
1146 {
1147 	unsigned long flags;
1148 
1149 	spin_lock_irqsave(q->queue_lock, flags);
1150 	__start_queue(q);
1151 	spin_unlock_irqrestore(q->queue_lock, flags);
1152 }
1153 
1154 static void dm_done(struct request *clone, int error, bool mapped)
1155 {
1156 	int r = error;
1157 	struct dm_rq_target_io *tio = clone->end_io_data;
1158 	dm_request_endio_fn rq_end_io = NULL;
1159 
1160 	if (tio->ti) {
1161 		rq_end_io = tio->ti->type->rq_end_io;
1162 
1163 		if (mapped && rq_end_io)
1164 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1165 	}
1166 
1167 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1168 		     !clone->q->limits.max_write_same_sectors))
1169 		disable_write_same(tio->md);
1170 
1171 	if (r <= 0)
1172 		/* The target wants to complete the I/O */
1173 		dm_end_request(clone, r);
1174 	else if (r == DM_ENDIO_INCOMPLETE)
1175 		/* The target will handle the I/O */
1176 		return;
1177 	else if (r == DM_ENDIO_REQUEUE)
1178 		/* The target wants to requeue the I/O */
1179 		dm_requeue_unmapped_request(clone);
1180 	else {
1181 		DMWARN("unimplemented target endio return value: %d", r);
1182 		BUG();
1183 	}
1184 }
1185 
1186 /*
1187  * Request completion handler for request-based dm
1188  */
1189 static void dm_softirq_done(struct request *rq)
1190 {
1191 	bool mapped = true;
1192 	struct dm_rq_target_io *tio = rq->special;
1193 	struct request *clone = tio->clone;
1194 
1195 	if (!clone) {
1196 		blk_end_request_all(rq, tio->error);
1197 		rq_completed(tio->md, rq_data_dir(rq), false);
1198 		free_rq_tio(tio);
1199 		return;
1200 	}
1201 
1202 	if (rq->cmd_flags & REQ_FAILED)
1203 		mapped = false;
1204 
1205 	dm_done(clone, tio->error, mapped);
1206 }
1207 
1208 /*
1209  * Complete the clone and the original request with the error status
1210  * through softirq context.
1211  */
1212 static void dm_complete_request(struct request *rq, int error)
1213 {
1214 	struct dm_rq_target_io *tio = rq->special;
1215 
1216 	tio->error = error;
1217 	blk_complete_request(rq);
1218 }
1219 
1220 /*
1221  * Complete the not-mapped clone and the original request with the error status
1222  * through softirq context.
1223  * Target's rq_end_io() function isn't called.
1224  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1225  */
1226 static void dm_kill_unmapped_request(struct request *rq, int error)
1227 {
1228 	rq->cmd_flags |= REQ_FAILED;
1229 	dm_complete_request(rq, error);
1230 }
1231 
1232 /*
1233  * Called with the clone's queue lock held
1234  */
1235 static void end_clone_request(struct request *clone, int error)
1236 {
1237 	struct dm_rq_target_io *tio = clone->end_io_data;
1238 
1239 	if (!clone->q->mq_ops) {
1240 		/*
1241 		 * For just cleaning up the information of the queue in which
1242 		 * the clone was dispatched.
1243 		 * The clone is *NOT* freed actually here because it is alloced
1244 		 * from dm own mempool (REQ_ALLOCED isn't set).
1245 		 */
1246 		__blk_put_request(clone->q, clone);
1247 	}
1248 
1249 	/*
1250 	 * Actual request completion is done in a softirq context which doesn't
1251 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1252 	 *     - another request may be submitted by the upper level driver
1253 	 *       of the stacking during the completion
1254 	 *     - the submission which requires queue lock may be done
1255 	 *       against this clone's queue
1256 	 */
1257 	dm_complete_request(tio->orig, error);
1258 }
1259 
1260 /*
1261  * Return maximum size of I/O possible at the supplied sector up to the current
1262  * target boundary.
1263  */
1264 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1265 {
1266 	sector_t target_offset = dm_target_offset(ti, sector);
1267 
1268 	return ti->len - target_offset;
1269 }
1270 
1271 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1272 {
1273 	sector_t len = max_io_len_target_boundary(sector, ti);
1274 	sector_t offset, max_len;
1275 
1276 	/*
1277 	 * Does the target need to split even further?
1278 	 */
1279 	if (ti->max_io_len) {
1280 		offset = dm_target_offset(ti, sector);
1281 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1282 			max_len = sector_div(offset, ti->max_io_len);
1283 		else
1284 			max_len = offset & (ti->max_io_len - 1);
1285 		max_len = ti->max_io_len - max_len;
1286 
1287 		if (len > max_len)
1288 			len = max_len;
1289 	}
1290 
1291 	return len;
1292 }
1293 
1294 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1295 {
1296 	if (len > UINT_MAX) {
1297 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1298 		      (unsigned long long)len, UINT_MAX);
1299 		ti->error = "Maximum size of target IO is too large";
1300 		return -EINVAL;
1301 	}
1302 
1303 	ti->max_io_len = (uint32_t) len;
1304 
1305 	return 0;
1306 }
1307 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1308 
1309 /*
1310  * A target may call dm_accept_partial_bio only from the map routine.  It is
1311  * allowed for all bio types except REQ_FLUSH.
1312  *
1313  * dm_accept_partial_bio informs the dm that the target only wants to process
1314  * additional n_sectors sectors of the bio and the rest of the data should be
1315  * sent in a next bio.
1316  *
1317  * A diagram that explains the arithmetics:
1318  * +--------------------+---------------+-------+
1319  * |         1          |       2       |   3   |
1320  * +--------------------+---------------+-------+
1321  *
1322  * <-------------- *tio->len_ptr --------------->
1323  *                      <------- bi_size ------->
1324  *                      <-- n_sectors -->
1325  *
1326  * Region 1 was already iterated over with bio_advance or similar function.
1327  *	(it may be empty if the target doesn't use bio_advance)
1328  * Region 2 is the remaining bio size that the target wants to process.
1329  *	(it may be empty if region 1 is non-empty, although there is no reason
1330  *	 to make it empty)
1331  * The target requires that region 3 is to be sent in the next bio.
1332  *
1333  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1334  * the partially processed part (the sum of regions 1+2) must be the same for all
1335  * copies of the bio.
1336  */
1337 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1338 {
1339 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1340 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1341 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1342 	BUG_ON(bi_size > *tio->len_ptr);
1343 	BUG_ON(n_sectors > bi_size);
1344 	*tio->len_ptr -= bi_size - n_sectors;
1345 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1346 }
1347 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1348 
1349 static void __map_bio(struct dm_target_io *tio)
1350 {
1351 	int r;
1352 	sector_t sector;
1353 	struct mapped_device *md;
1354 	struct bio *clone = &tio->clone;
1355 	struct dm_target *ti = tio->ti;
1356 
1357 	clone->bi_end_io = clone_endio;
1358 
1359 	/*
1360 	 * Map the clone.  If r == 0 we don't need to do
1361 	 * anything, the target has assumed ownership of
1362 	 * this io.
1363 	 */
1364 	atomic_inc(&tio->io->io_count);
1365 	sector = clone->bi_iter.bi_sector;
1366 	r = ti->type->map(ti, clone);
1367 	if (r == DM_MAPIO_REMAPPED) {
1368 		/* the bio has been remapped so dispatch it */
1369 
1370 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1371 				      tio->io->bio->bi_bdev->bd_dev, sector);
1372 
1373 		generic_make_request(clone);
1374 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1375 		/* error the io and bail out, or requeue it if needed */
1376 		md = tio->io->md;
1377 		dec_pending(tio->io, r);
1378 		free_tio(md, tio);
1379 	} else if (r) {
1380 		DMWARN("unimplemented target map return value: %d", r);
1381 		BUG();
1382 	}
1383 }
1384 
1385 struct clone_info {
1386 	struct mapped_device *md;
1387 	struct dm_table *map;
1388 	struct bio *bio;
1389 	struct dm_io *io;
1390 	sector_t sector;
1391 	unsigned sector_count;
1392 };
1393 
1394 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1395 {
1396 	bio->bi_iter.bi_sector = sector;
1397 	bio->bi_iter.bi_size = to_bytes(len);
1398 }
1399 
1400 /*
1401  * Creates a bio that consists of range of complete bvecs.
1402  */
1403 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1404 		      sector_t sector, unsigned len)
1405 {
1406 	struct bio *clone = &tio->clone;
1407 
1408 	__bio_clone_fast(clone, bio);
1409 
1410 	if (bio_integrity(bio))
1411 		bio_integrity_clone(clone, bio, GFP_NOIO);
1412 
1413 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1414 	clone->bi_iter.bi_size = to_bytes(len);
1415 
1416 	if (bio_integrity(bio))
1417 		bio_integrity_trim(clone, 0, len);
1418 }
1419 
1420 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1421 				      struct dm_target *ti,
1422 				      unsigned target_bio_nr)
1423 {
1424 	struct dm_target_io *tio;
1425 	struct bio *clone;
1426 
1427 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1428 	tio = container_of(clone, struct dm_target_io, clone);
1429 
1430 	tio->io = ci->io;
1431 	tio->ti = ti;
1432 	tio->target_bio_nr = target_bio_nr;
1433 
1434 	return tio;
1435 }
1436 
1437 static void __clone_and_map_simple_bio(struct clone_info *ci,
1438 				       struct dm_target *ti,
1439 				       unsigned target_bio_nr, unsigned *len)
1440 {
1441 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1442 	struct bio *clone = &tio->clone;
1443 
1444 	tio->len_ptr = len;
1445 
1446 	__bio_clone_fast(clone, ci->bio);
1447 	if (len)
1448 		bio_setup_sector(clone, ci->sector, *len);
1449 
1450 	__map_bio(tio);
1451 }
1452 
1453 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1454 				  unsigned num_bios, unsigned *len)
1455 {
1456 	unsigned target_bio_nr;
1457 
1458 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1459 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1460 }
1461 
1462 static int __send_empty_flush(struct clone_info *ci)
1463 {
1464 	unsigned target_nr = 0;
1465 	struct dm_target *ti;
1466 
1467 	BUG_ON(bio_has_data(ci->bio));
1468 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1469 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1470 
1471 	return 0;
1472 }
1473 
1474 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1475 				     sector_t sector, unsigned *len)
1476 {
1477 	struct bio *bio = ci->bio;
1478 	struct dm_target_io *tio;
1479 	unsigned target_bio_nr;
1480 	unsigned num_target_bios = 1;
1481 
1482 	/*
1483 	 * Does the target want to receive duplicate copies of the bio?
1484 	 */
1485 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1486 		num_target_bios = ti->num_write_bios(ti, bio);
1487 
1488 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1489 		tio = alloc_tio(ci, ti, target_bio_nr);
1490 		tio->len_ptr = len;
1491 		clone_bio(tio, bio, sector, *len);
1492 		__map_bio(tio);
1493 	}
1494 }
1495 
1496 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1497 
1498 static unsigned get_num_discard_bios(struct dm_target *ti)
1499 {
1500 	return ti->num_discard_bios;
1501 }
1502 
1503 static unsigned get_num_write_same_bios(struct dm_target *ti)
1504 {
1505 	return ti->num_write_same_bios;
1506 }
1507 
1508 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1509 
1510 static bool is_split_required_for_discard(struct dm_target *ti)
1511 {
1512 	return ti->split_discard_bios;
1513 }
1514 
1515 static int __send_changing_extent_only(struct clone_info *ci,
1516 				       get_num_bios_fn get_num_bios,
1517 				       is_split_required_fn is_split_required)
1518 {
1519 	struct dm_target *ti;
1520 	unsigned len;
1521 	unsigned num_bios;
1522 
1523 	do {
1524 		ti = dm_table_find_target(ci->map, ci->sector);
1525 		if (!dm_target_is_valid(ti))
1526 			return -EIO;
1527 
1528 		/*
1529 		 * Even though the device advertised support for this type of
1530 		 * request, that does not mean every target supports it, and
1531 		 * reconfiguration might also have changed that since the
1532 		 * check was performed.
1533 		 */
1534 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1535 		if (!num_bios)
1536 			return -EOPNOTSUPP;
1537 
1538 		if (is_split_required && !is_split_required(ti))
1539 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1540 		else
1541 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1542 
1543 		__send_duplicate_bios(ci, ti, num_bios, &len);
1544 
1545 		ci->sector += len;
1546 	} while (ci->sector_count -= len);
1547 
1548 	return 0;
1549 }
1550 
1551 static int __send_discard(struct clone_info *ci)
1552 {
1553 	return __send_changing_extent_only(ci, get_num_discard_bios,
1554 					   is_split_required_for_discard);
1555 }
1556 
1557 static int __send_write_same(struct clone_info *ci)
1558 {
1559 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1560 }
1561 
1562 /*
1563  * Select the correct strategy for processing a non-flush bio.
1564  */
1565 static int __split_and_process_non_flush(struct clone_info *ci)
1566 {
1567 	struct bio *bio = ci->bio;
1568 	struct dm_target *ti;
1569 	unsigned len;
1570 
1571 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1572 		return __send_discard(ci);
1573 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1574 		return __send_write_same(ci);
1575 
1576 	ti = dm_table_find_target(ci->map, ci->sector);
1577 	if (!dm_target_is_valid(ti))
1578 		return -EIO;
1579 
1580 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1581 
1582 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1583 
1584 	ci->sector += len;
1585 	ci->sector_count -= len;
1586 
1587 	return 0;
1588 }
1589 
1590 /*
1591  * Entry point to split a bio into clones and submit them to the targets.
1592  */
1593 static void __split_and_process_bio(struct mapped_device *md,
1594 				    struct dm_table *map, struct bio *bio)
1595 {
1596 	struct clone_info ci;
1597 	int error = 0;
1598 
1599 	if (unlikely(!map)) {
1600 		bio_io_error(bio);
1601 		return;
1602 	}
1603 
1604 	ci.map = map;
1605 	ci.md = md;
1606 	ci.io = alloc_io(md);
1607 	ci.io->error = 0;
1608 	atomic_set(&ci.io->io_count, 1);
1609 	ci.io->bio = bio;
1610 	ci.io->md = md;
1611 	spin_lock_init(&ci.io->endio_lock);
1612 	ci.sector = bio->bi_iter.bi_sector;
1613 
1614 	start_io_acct(ci.io);
1615 
1616 	if (bio->bi_rw & REQ_FLUSH) {
1617 		ci.bio = &ci.md->flush_bio;
1618 		ci.sector_count = 0;
1619 		error = __send_empty_flush(&ci);
1620 		/* dec_pending submits any data associated with flush */
1621 	} else {
1622 		ci.bio = bio;
1623 		ci.sector_count = bio_sectors(bio);
1624 		while (ci.sector_count && !error)
1625 			error = __split_and_process_non_flush(&ci);
1626 	}
1627 
1628 	/* drop the extra reference count */
1629 	dec_pending(ci.io, error);
1630 }
1631 /*-----------------------------------------------------------------
1632  * CRUD END
1633  *---------------------------------------------------------------*/
1634 
1635 static int dm_merge_bvec(struct request_queue *q,
1636 			 struct bvec_merge_data *bvm,
1637 			 struct bio_vec *biovec)
1638 {
1639 	struct mapped_device *md = q->queuedata;
1640 	struct dm_table *map = dm_get_live_table_fast(md);
1641 	struct dm_target *ti;
1642 	sector_t max_sectors;
1643 	int max_size = 0;
1644 
1645 	if (unlikely(!map))
1646 		goto out;
1647 
1648 	ti = dm_table_find_target(map, bvm->bi_sector);
1649 	if (!dm_target_is_valid(ti))
1650 		goto out;
1651 
1652 	/*
1653 	 * Find maximum amount of I/O that won't need splitting
1654 	 */
1655 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1656 			  (sector_t) queue_max_sectors(q));
1657 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1658 	if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1659 		max_size = 0;
1660 
1661 	/*
1662 	 * merge_bvec_fn() returns number of bytes
1663 	 * it can accept at this offset
1664 	 * max is precomputed maximal io size
1665 	 */
1666 	if (max_size && ti->type->merge)
1667 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1668 	/*
1669 	 * If the target doesn't support merge method and some of the devices
1670 	 * provided their merge_bvec method (we know this by looking for the
1671 	 * max_hw_sectors that dm_set_device_limits may set), then we can't
1672 	 * allow bios with multiple vector entries.  So always set max_size
1673 	 * to 0, and the code below allows just one page.
1674 	 */
1675 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1676 		max_size = 0;
1677 
1678 out:
1679 	dm_put_live_table_fast(md);
1680 	/*
1681 	 * Always allow an entire first page
1682 	 */
1683 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1684 		max_size = biovec->bv_len;
1685 
1686 	return max_size;
1687 }
1688 
1689 /*
1690  * The request function that just remaps the bio built up by
1691  * dm_merge_bvec.
1692  */
1693 static void _dm_request(struct request_queue *q, struct bio *bio)
1694 {
1695 	int rw = bio_data_dir(bio);
1696 	struct mapped_device *md = q->queuedata;
1697 	int srcu_idx;
1698 	struct dm_table *map;
1699 
1700 	map = dm_get_live_table(md, &srcu_idx);
1701 
1702 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1703 
1704 	/* if we're suspended, we have to queue this io for later */
1705 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1706 		dm_put_live_table(md, srcu_idx);
1707 
1708 		if (bio_rw(bio) != READA)
1709 			queue_io(md, bio);
1710 		else
1711 			bio_io_error(bio);
1712 		return;
1713 	}
1714 
1715 	__split_and_process_bio(md, map, bio);
1716 	dm_put_live_table(md, srcu_idx);
1717 	return;
1718 }
1719 
1720 int dm_request_based(struct mapped_device *md)
1721 {
1722 	return blk_queue_stackable(md->queue);
1723 }
1724 
1725 static void dm_request(struct request_queue *q, struct bio *bio)
1726 {
1727 	struct mapped_device *md = q->queuedata;
1728 
1729 	if (dm_request_based(md))
1730 		blk_queue_bio(q, bio);
1731 	else
1732 		_dm_request(q, bio);
1733 }
1734 
1735 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1736 {
1737 	int r;
1738 
1739 	if (blk_queue_io_stat(clone->q))
1740 		clone->cmd_flags |= REQ_IO_STAT;
1741 
1742 	clone->start_time = jiffies;
1743 	r = blk_insert_cloned_request(clone->q, clone);
1744 	if (r)
1745 		/* must complete clone in terms of original request */
1746 		dm_complete_request(rq, r);
1747 }
1748 
1749 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1750 				 void *data)
1751 {
1752 	struct dm_rq_target_io *tio = data;
1753 	struct dm_rq_clone_bio_info *info =
1754 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1755 
1756 	info->orig = bio_orig;
1757 	info->tio = tio;
1758 	bio->bi_end_io = end_clone_bio;
1759 
1760 	return 0;
1761 }
1762 
1763 static int setup_clone(struct request *clone, struct request *rq,
1764 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1765 {
1766 	int r;
1767 
1768 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1769 			      dm_rq_bio_constructor, tio);
1770 	if (r)
1771 		return r;
1772 
1773 	clone->cmd = rq->cmd;
1774 	clone->cmd_len = rq->cmd_len;
1775 	clone->sense = rq->sense;
1776 	clone->end_io = end_clone_request;
1777 	clone->end_io_data = tio;
1778 
1779 	tio->clone = clone;
1780 
1781 	return 0;
1782 }
1783 
1784 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1785 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1786 {
1787 	struct request *clone = alloc_clone_request(md, gfp_mask);
1788 
1789 	if (!clone)
1790 		return NULL;
1791 
1792 	blk_rq_init(NULL, clone);
1793 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1794 		/* -ENOMEM */
1795 		free_clone_request(md, clone);
1796 		return NULL;
1797 	}
1798 
1799 	return clone;
1800 }
1801 
1802 static void map_tio_request(struct kthread_work *work);
1803 
1804 static struct dm_rq_target_io *prep_tio(struct request *rq,
1805 					struct mapped_device *md, gfp_t gfp_mask)
1806 {
1807 	struct dm_rq_target_io *tio;
1808 	int srcu_idx;
1809 	struct dm_table *table;
1810 
1811 	tio = alloc_rq_tio(md, gfp_mask);
1812 	if (!tio)
1813 		return NULL;
1814 
1815 	tio->md = md;
1816 	tio->ti = NULL;
1817 	tio->clone = NULL;
1818 	tio->orig = rq;
1819 	tio->error = 0;
1820 	memset(&tio->info, 0, sizeof(tio->info));
1821 	init_kthread_work(&tio->work, map_tio_request);
1822 
1823 	table = dm_get_live_table(md, &srcu_idx);
1824 	if (!dm_table_mq_request_based(table)) {
1825 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1826 			dm_put_live_table(md, srcu_idx);
1827 			free_rq_tio(tio);
1828 			return NULL;
1829 		}
1830 	}
1831 	dm_put_live_table(md, srcu_idx);
1832 
1833 	return tio;
1834 }
1835 
1836 /*
1837  * Called with the queue lock held.
1838  */
1839 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1840 {
1841 	struct mapped_device *md = q->queuedata;
1842 	struct dm_rq_target_io *tio;
1843 
1844 	if (unlikely(rq->special)) {
1845 		DMWARN("Already has something in rq->special.");
1846 		return BLKPREP_KILL;
1847 	}
1848 
1849 	tio = prep_tio(rq, md, GFP_ATOMIC);
1850 	if (!tio)
1851 		return BLKPREP_DEFER;
1852 
1853 	rq->special = tio;
1854 	rq->cmd_flags |= REQ_DONTPREP;
1855 
1856 	return BLKPREP_OK;
1857 }
1858 
1859 /*
1860  * Returns:
1861  * 0                : the request has been processed
1862  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1863  * < 0              : the request was completed due to failure
1864  */
1865 static int map_request(struct dm_target *ti, struct request *rq,
1866 		       struct mapped_device *md)
1867 {
1868 	int r;
1869 	struct dm_rq_target_io *tio = rq->special;
1870 	struct request *clone = NULL;
1871 
1872 	if (tio->clone) {
1873 		clone = tio->clone;
1874 		r = ti->type->map_rq(ti, clone, &tio->info);
1875 	} else {
1876 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1877 		if (r < 0) {
1878 			/* The target wants to complete the I/O */
1879 			dm_kill_unmapped_request(rq, r);
1880 			return r;
1881 		}
1882 		if (IS_ERR(clone))
1883 			return DM_MAPIO_REQUEUE;
1884 		if (setup_clone(clone, rq, tio, GFP_KERNEL)) {
1885 			/* -ENOMEM */
1886 			ti->type->release_clone_rq(clone);
1887 			return DM_MAPIO_REQUEUE;
1888 		}
1889 	}
1890 
1891 	switch (r) {
1892 	case DM_MAPIO_SUBMITTED:
1893 		/* The target has taken the I/O to submit by itself later */
1894 		break;
1895 	case DM_MAPIO_REMAPPED:
1896 		/* The target has remapped the I/O so dispatch it */
1897 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1898 				     blk_rq_pos(rq));
1899 		dm_dispatch_clone_request(clone, rq);
1900 		break;
1901 	case DM_MAPIO_REQUEUE:
1902 		/* The target wants to requeue the I/O */
1903 		dm_requeue_unmapped_request(clone);
1904 		break;
1905 	default:
1906 		if (r > 0) {
1907 			DMWARN("unimplemented target map return value: %d", r);
1908 			BUG();
1909 		}
1910 
1911 		/* The target wants to complete the I/O */
1912 		dm_kill_unmapped_request(rq, r);
1913 		return r;
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 static void map_tio_request(struct kthread_work *work)
1920 {
1921 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1922 	struct request *rq = tio->orig;
1923 	struct mapped_device *md = tio->md;
1924 
1925 	if (map_request(tio->ti, rq, md) == DM_MAPIO_REQUEUE)
1926 		dm_requeue_unmapped_original_request(md, rq);
1927 }
1928 
1929 static void dm_start_request(struct mapped_device *md, struct request *orig)
1930 {
1931 	blk_start_request(orig);
1932 	atomic_inc(&md->pending[rq_data_dir(orig)]);
1933 
1934 	/*
1935 	 * Hold the md reference here for the in-flight I/O.
1936 	 * We can't rely on the reference count by device opener,
1937 	 * because the device may be closed during the request completion
1938 	 * when all bios are completed.
1939 	 * See the comment in rq_completed() too.
1940 	 */
1941 	dm_get(md);
1942 }
1943 
1944 /*
1945  * q->request_fn for request-based dm.
1946  * Called with the queue lock held.
1947  */
1948 static void dm_request_fn(struct request_queue *q)
1949 {
1950 	struct mapped_device *md = q->queuedata;
1951 	int srcu_idx;
1952 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1953 	struct dm_target *ti;
1954 	struct request *rq;
1955 	struct dm_rq_target_io *tio;
1956 	sector_t pos;
1957 
1958 	/*
1959 	 * For suspend, check blk_queue_stopped() and increment
1960 	 * ->pending within a single queue_lock not to increment the
1961 	 * number of in-flight I/Os after the queue is stopped in
1962 	 * dm_suspend().
1963 	 */
1964 	while (!blk_queue_stopped(q)) {
1965 		rq = blk_peek_request(q);
1966 		if (!rq)
1967 			goto delay_and_out;
1968 
1969 		/* always use block 0 to find the target for flushes for now */
1970 		pos = 0;
1971 		if (!(rq->cmd_flags & REQ_FLUSH))
1972 			pos = blk_rq_pos(rq);
1973 
1974 		ti = dm_table_find_target(map, pos);
1975 		if (!dm_target_is_valid(ti)) {
1976 			/*
1977 			 * Must perform setup, that rq_completed() requires,
1978 			 * before calling dm_kill_unmapped_request
1979 			 */
1980 			DMERR_LIMIT("request attempted access beyond the end of device");
1981 			dm_start_request(md, rq);
1982 			dm_kill_unmapped_request(rq, -EIO);
1983 			continue;
1984 		}
1985 
1986 		if (ti->type->busy && ti->type->busy(ti))
1987 			goto delay_and_out;
1988 
1989 		dm_start_request(md, rq);
1990 
1991 		tio = rq->special;
1992 		/* Establish tio->ti before queuing work (map_tio_request) */
1993 		tio->ti = ti;
1994 		queue_kthread_work(&md->kworker, &tio->work);
1995 		BUG_ON(!irqs_disabled());
1996 	}
1997 
1998 	goto out;
1999 
2000 delay_and_out:
2001 	blk_delay_queue(q, HZ / 10);
2002 out:
2003 	dm_put_live_table(md, srcu_idx);
2004 }
2005 
2006 int dm_underlying_device_busy(struct request_queue *q)
2007 {
2008 	return blk_lld_busy(q);
2009 }
2010 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
2011 
2012 static int dm_lld_busy(struct request_queue *q)
2013 {
2014 	int r;
2015 	struct mapped_device *md = q->queuedata;
2016 	struct dm_table *map = dm_get_live_table_fast(md);
2017 
2018 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
2019 		r = 1;
2020 	else
2021 		r = dm_table_any_busy_target(map);
2022 
2023 	dm_put_live_table_fast(md);
2024 
2025 	return r;
2026 }
2027 
2028 static int dm_any_congested(void *congested_data, int bdi_bits)
2029 {
2030 	int r = bdi_bits;
2031 	struct mapped_device *md = congested_data;
2032 	struct dm_table *map;
2033 
2034 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2035 		map = dm_get_live_table_fast(md);
2036 		if (map) {
2037 			/*
2038 			 * Request-based dm cares about only own queue for
2039 			 * the query about congestion status of request_queue
2040 			 */
2041 			if (dm_request_based(md))
2042 				r = md->queue->backing_dev_info.state &
2043 				    bdi_bits;
2044 			else
2045 				r = dm_table_any_congested(map, bdi_bits);
2046 		}
2047 		dm_put_live_table_fast(md);
2048 	}
2049 
2050 	return r;
2051 }
2052 
2053 /*-----------------------------------------------------------------
2054  * An IDR is used to keep track of allocated minor numbers.
2055  *---------------------------------------------------------------*/
2056 static void free_minor(int minor)
2057 {
2058 	spin_lock(&_minor_lock);
2059 	idr_remove(&_minor_idr, minor);
2060 	spin_unlock(&_minor_lock);
2061 }
2062 
2063 /*
2064  * See if the device with a specific minor # is free.
2065  */
2066 static int specific_minor(int minor)
2067 {
2068 	int r;
2069 
2070 	if (minor >= (1 << MINORBITS))
2071 		return -EINVAL;
2072 
2073 	idr_preload(GFP_KERNEL);
2074 	spin_lock(&_minor_lock);
2075 
2076 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2077 
2078 	spin_unlock(&_minor_lock);
2079 	idr_preload_end();
2080 	if (r < 0)
2081 		return r == -ENOSPC ? -EBUSY : r;
2082 	return 0;
2083 }
2084 
2085 static int next_free_minor(int *minor)
2086 {
2087 	int r;
2088 
2089 	idr_preload(GFP_KERNEL);
2090 	spin_lock(&_minor_lock);
2091 
2092 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2093 
2094 	spin_unlock(&_minor_lock);
2095 	idr_preload_end();
2096 	if (r < 0)
2097 		return r;
2098 	*minor = r;
2099 	return 0;
2100 }
2101 
2102 static const struct block_device_operations dm_blk_dops;
2103 
2104 static void dm_wq_work(struct work_struct *work);
2105 
2106 static void dm_init_md_queue(struct mapped_device *md)
2107 {
2108 	/*
2109 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2110 	 * devices.  The type of this dm device has not been decided yet.
2111 	 * The type is decided at the first table loading time.
2112 	 * To prevent problematic device stacking, clear the queue flag
2113 	 * for request stacking support until then.
2114 	 *
2115 	 * This queue is new, so no concurrency on the queue_flags.
2116 	 */
2117 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2118 
2119 	md->queue->queuedata = md;
2120 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2121 	md->queue->backing_dev_info.congested_data = md;
2122 	blk_queue_make_request(md->queue, dm_request);
2123 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2124 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2125 }
2126 
2127 /*
2128  * Allocate and initialise a blank device with a given minor.
2129  */
2130 static struct mapped_device *alloc_dev(int minor)
2131 {
2132 	int r;
2133 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2134 	void *old_md;
2135 
2136 	if (!md) {
2137 		DMWARN("unable to allocate device, out of memory.");
2138 		return NULL;
2139 	}
2140 
2141 	if (!try_module_get(THIS_MODULE))
2142 		goto bad_module_get;
2143 
2144 	/* get a minor number for the dev */
2145 	if (minor == DM_ANY_MINOR)
2146 		r = next_free_minor(&minor);
2147 	else
2148 		r = specific_minor(minor);
2149 	if (r < 0)
2150 		goto bad_minor;
2151 
2152 	r = init_srcu_struct(&md->io_barrier);
2153 	if (r < 0)
2154 		goto bad_io_barrier;
2155 
2156 	md->type = DM_TYPE_NONE;
2157 	mutex_init(&md->suspend_lock);
2158 	mutex_init(&md->type_lock);
2159 	mutex_init(&md->table_devices_lock);
2160 	spin_lock_init(&md->deferred_lock);
2161 	atomic_set(&md->holders, 1);
2162 	atomic_set(&md->open_count, 0);
2163 	atomic_set(&md->event_nr, 0);
2164 	atomic_set(&md->uevent_seq, 0);
2165 	INIT_LIST_HEAD(&md->uevent_list);
2166 	INIT_LIST_HEAD(&md->table_devices);
2167 	spin_lock_init(&md->uevent_lock);
2168 
2169 	md->queue = blk_alloc_queue(GFP_KERNEL);
2170 	if (!md->queue)
2171 		goto bad_queue;
2172 
2173 	dm_init_md_queue(md);
2174 
2175 	md->disk = alloc_disk(1);
2176 	if (!md->disk)
2177 		goto bad_disk;
2178 
2179 	atomic_set(&md->pending[0], 0);
2180 	atomic_set(&md->pending[1], 0);
2181 	init_waitqueue_head(&md->wait);
2182 	INIT_WORK(&md->work, dm_wq_work);
2183 	init_waitqueue_head(&md->eventq);
2184 	init_completion(&md->kobj_holder.completion);
2185 	md->kworker_task = NULL;
2186 
2187 	md->disk->major = _major;
2188 	md->disk->first_minor = minor;
2189 	md->disk->fops = &dm_blk_dops;
2190 	md->disk->queue = md->queue;
2191 	md->disk->private_data = md;
2192 	sprintf(md->disk->disk_name, "dm-%d", minor);
2193 	add_disk(md->disk);
2194 	format_dev_t(md->name, MKDEV(_major, minor));
2195 
2196 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2197 	if (!md->wq)
2198 		goto bad_thread;
2199 
2200 	md->bdev = bdget_disk(md->disk, 0);
2201 	if (!md->bdev)
2202 		goto bad_bdev;
2203 
2204 	bio_init(&md->flush_bio);
2205 	md->flush_bio.bi_bdev = md->bdev;
2206 	md->flush_bio.bi_rw = WRITE_FLUSH;
2207 
2208 	dm_stats_init(&md->stats);
2209 
2210 	/* Populate the mapping, nobody knows we exist yet */
2211 	spin_lock(&_minor_lock);
2212 	old_md = idr_replace(&_minor_idr, md, minor);
2213 	spin_unlock(&_minor_lock);
2214 
2215 	BUG_ON(old_md != MINOR_ALLOCED);
2216 
2217 	return md;
2218 
2219 bad_bdev:
2220 	destroy_workqueue(md->wq);
2221 bad_thread:
2222 	del_gendisk(md->disk);
2223 	put_disk(md->disk);
2224 bad_disk:
2225 	blk_cleanup_queue(md->queue);
2226 bad_queue:
2227 	cleanup_srcu_struct(&md->io_barrier);
2228 bad_io_barrier:
2229 	free_minor(minor);
2230 bad_minor:
2231 	module_put(THIS_MODULE);
2232 bad_module_get:
2233 	kfree(md);
2234 	return NULL;
2235 }
2236 
2237 static void unlock_fs(struct mapped_device *md);
2238 
2239 static void free_dev(struct mapped_device *md)
2240 {
2241 	int minor = MINOR(disk_devt(md->disk));
2242 
2243 	unlock_fs(md);
2244 	bdput(md->bdev);
2245 	destroy_workqueue(md->wq);
2246 
2247 	if (md->kworker_task)
2248 		kthread_stop(md->kworker_task);
2249 	if (md->io_pool)
2250 		mempool_destroy(md->io_pool);
2251 	if (md->rq_pool)
2252 		mempool_destroy(md->rq_pool);
2253 	if (md->bs)
2254 		bioset_free(md->bs);
2255 	blk_integrity_unregister(md->disk);
2256 	del_gendisk(md->disk);
2257 	cleanup_srcu_struct(&md->io_barrier);
2258 	free_table_devices(&md->table_devices);
2259 	free_minor(minor);
2260 
2261 	spin_lock(&_minor_lock);
2262 	md->disk->private_data = NULL;
2263 	spin_unlock(&_minor_lock);
2264 
2265 	put_disk(md->disk);
2266 	blk_cleanup_queue(md->queue);
2267 	dm_stats_cleanup(&md->stats);
2268 	module_put(THIS_MODULE);
2269 	kfree(md);
2270 }
2271 
2272 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2273 {
2274 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2275 
2276 	if (md->io_pool && md->bs) {
2277 		/* The md already has necessary mempools. */
2278 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2279 			/*
2280 			 * Reload bioset because front_pad may have changed
2281 			 * because a different table was loaded.
2282 			 */
2283 			bioset_free(md->bs);
2284 			md->bs = p->bs;
2285 			p->bs = NULL;
2286 		}
2287 		/*
2288 		 * There's no need to reload with request-based dm
2289 		 * because the size of front_pad doesn't change.
2290 		 * Note for future: If you are to reload bioset,
2291 		 * prep-ed requests in the queue may refer
2292 		 * to bio from the old bioset, so you must walk
2293 		 * through the queue to unprep.
2294 		 */
2295 		goto out;
2296 	}
2297 
2298 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2299 
2300 	md->io_pool = p->io_pool;
2301 	p->io_pool = NULL;
2302 	md->rq_pool = p->rq_pool;
2303 	p->rq_pool = NULL;
2304 	md->bs = p->bs;
2305 	p->bs = NULL;
2306 
2307 out:
2308 	/* mempool bind completed, now no need any mempools in the table */
2309 	dm_table_free_md_mempools(t);
2310 }
2311 
2312 /*
2313  * Bind a table to the device.
2314  */
2315 static void event_callback(void *context)
2316 {
2317 	unsigned long flags;
2318 	LIST_HEAD(uevents);
2319 	struct mapped_device *md = (struct mapped_device *) context;
2320 
2321 	spin_lock_irqsave(&md->uevent_lock, flags);
2322 	list_splice_init(&md->uevent_list, &uevents);
2323 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2324 
2325 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2326 
2327 	atomic_inc(&md->event_nr);
2328 	wake_up(&md->eventq);
2329 }
2330 
2331 /*
2332  * Protected by md->suspend_lock obtained by dm_swap_table().
2333  */
2334 static void __set_size(struct mapped_device *md, sector_t size)
2335 {
2336 	set_capacity(md->disk, size);
2337 
2338 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2339 }
2340 
2341 /*
2342  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2343  *
2344  * If this function returns 0, then the device is either a non-dm
2345  * device without a merge_bvec_fn, or it is a dm device that is
2346  * able to split any bios it receives that are too big.
2347  */
2348 int dm_queue_merge_is_compulsory(struct request_queue *q)
2349 {
2350 	struct mapped_device *dev_md;
2351 
2352 	if (!q->merge_bvec_fn)
2353 		return 0;
2354 
2355 	if (q->make_request_fn == dm_request) {
2356 		dev_md = q->queuedata;
2357 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2358 			return 0;
2359 	}
2360 
2361 	return 1;
2362 }
2363 
2364 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2365 					 struct dm_dev *dev, sector_t start,
2366 					 sector_t len, void *data)
2367 {
2368 	struct block_device *bdev = dev->bdev;
2369 	struct request_queue *q = bdev_get_queue(bdev);
2370 
2371 	return dm_queue_merge_is_compulsory(q);
2372 }
2373 
2374 /*
2375  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2376  * on the properties of the underlying devices.
2377  */
2378 static int dm_table_merge_is_optional(struct dm_table *table)
2379 {
2380 	unsigned i = 0;
2381 	struct dm_target *ti;
2382 
2383 	while (i < dm_table_get_num_targets(table)) {
2384 		ti = dm_table_get_target(table, i++);
2385 
2386 		if (ti->type->iterate_devices &&
2387 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2388 			return 0;
2389 	}
2390 
2391 	return 1;
2392 }
2393 
2394 /*
2395  * Returns old map, which caller must destroy.
2396  */
2397 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2398 			       struct queue_limits *limits)
2399 {
2400 	struct dm_table *old_map;
2401 	struct request_queue *q = md->queue;
2402 	sector_t size;
2403 	int merge_is_optional;
2404 
2405 	size = dm_table_get_size(t);
2406 
2407 	/*
2408 	 * Wipe any geometry if the size of the table changed.
2409 	 */
2410 	if (size != dm_get_size(md))
2411 		memset(&md->geometry, 0, sizeof(md->geometry));
2412 
2413 	__set_size(md, size);
2414 
2415 	dm_table_event_callback(t, event_callback, md);
2416 
2417 	/*
2418 	 * The queue hasn't been stopped yet, if the old table type wasn't
2419 	 * for request-based during suspension.  So stop it to prevent
2420 	 * I/O mapping before resume.
2421 	 * This must be done before setting the queue restrictions,
2422 	 * because request-based dm may be run just after the setting.
2423 	 */
2424 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2425 		stop_queue(q);
2426 
2427 	__bind_mempools(md, t);
2428 
2429 	merge_is_optional = dm_table_merge_is_optional(t);
2430 
2431 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2432 	rcu_assign_pointer(md->map, t);
2433 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2434 
2435 	dm_table_set_restrictions(t, q, limits);
2436 	if (merge_is_optional)
2437 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2438 	else
2439 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2440 	if (old_map)
2441 		dm_sync_table(md);
2442 
2443 	return old_map;
2444 }
2445 
2446 /*
2447  * Returns unbound table for the caller to free.
2448  */
2449 static struct dm_table *__unbind(struct mapped_device *md)
2450 {
2451 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2452 
2453 	if (!map)
2454 		return NULL;
2455 
2456 	dm_table_event_callback(map, NULL, NULL);
2457 	RCU_INIT_POINTER(md->map, NULL);
2458 	dm_sync_table(md);
2459 
2460 	return map;
2461 }
2462 
2463 /*
2464  * Constructor for a new device.
2465  */
2466 int dm_create(int minor, struct mapped_device **result)
2467 {
2468 	struct mapped_device *md;
2469 
2470 	md = alloc_dev(minor);
2471 	if (!md)
2472 		return -ENXIO;
2473 
2474 	dm_sysfs_init(md);
2475 
2476 	*result = md;
2477 	return 0;
2478 }
2479 
2480 /*
2481  * Functions to manage md->type.
2482  * All are required to hold md->type_lock.
2483  */
2484 void dm_lock_md_type(struct mapped_device *md)
2485 {
2486 	mutex_lock(&md->type_lock);
2487 }
2488 
2489 void dm_unlock_md_type(struct mapped_device *md)
2490 {
2491 	mutex_unlock(&md->type_lock);
2492 }
2493 
2494 void dm_set_md_type(struct mapped_device *md, unsigned type)
2495 {
2496 	BUG_ON(!mutex_is_locked(&md->type_lock));
2497 	md->type = type;
2498 }
2499 
2500 unsigned dm_get_md_type(struct mapped_device *md)
2501 {
2502 	BUG_ON(!mutex_is_locked(&md->type_lock));
2503 	return md->type;
2504 }
2505 
2506 static bool dm_md_type_request_based(struct mapped_device *md)
2507 {
2508 	unsigned table_type = dm_get_md_type(md);
2509 
2510 	return (table_type == DM_TYPE_REQUEST_BASED ||
2511 		table_type == DM_TYPE_MQ_REQUEST_BASED);
2512 }
2513 
2514 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2515 {
2516 	return md->immutable_target_type;
2517 }
2518 
2519 /*
2520  * The queue_limits are only valid as long as you have a reference
2521  * count on 'md'.
2522  */
2523 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2524 {
2525 	BUG_ON(!atomic_read(&md->holders));
2526 	return &md->queue->limits;
2527 }
2528 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2529 
2530 /*
2531  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2532  */
2533 static int dm_init_request_based_queue(struct mapped_device *md)
2534 {
2535 	struct request_queue *q = NULL;
2536 
2537 	if (md->queue->elevator)
2538 		return 1;
2539 
2540 	/* Fully initialize the queue */
2541 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2542 	if (!q)
2543 		return 0;
2544 
2545 	md->queue = q;
2546 	dm_init_md_queue(md);
2547 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2548 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2549 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2550 
2551 	/* Also initialize the request-based DM worker thread */
2552 	init_kthread_worker(&md->kworker);
2553 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2554 				       "kdmwork-%s", dm_device_name(md));
2555 
2556 	elv_register_queue(md->queue);
2557 
2558 	return 1;
2559 }
2560 
2561 /*
2562  * Setup the DM device's queue based on md's type
2563  */
2564 int dm_setup_md_queue(struct mapped_device *md)
2565 {
2566 	if (dm_md_type_request_based(md) && !dm_init_request_based_queue(md)) {
2567 		DMWARN("Cannot initialize queue for request-based mapped device");
2568 		return -EINVAL;
2569 	}
2570 
2571 	return 0;
2572 }
2573 
2574 struct mapped_device *dm_get_md(dev_t dev)
2575 {
2576 	struct mapped_device *md;
2577 	unsigned minor = MINOR(dev);
2578 
2579 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2580 		return NULL;
2581 
2582 	spin_lock(&_minor_lock);
2583 
2584 	md = idr_find(&_minor_idr, minor);
2585 	if (md) {
2586 		if ((md == MINOR_ALLOCED ||
2587 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2588 		     dm_deleting_md(md) ||
2589 		     test_bit(DMF_FREEING, &md->flags))) {
2590 			md = NULL;
2591 			goto out;
2592 		}
2593 		dm_get(md);
2594 	}
2595 
2596 out:
2597 	spin_unlock(&_minor_lock);
2598 
2599 	return md;
2600 }
2601 EXPORT_SYMBOL_GPL(dm_get_md);
2602 
2603 void *dm_get_mdptr(struct mapped_device *md)
2604 {
2605 	return md->interface_ptr;
2606 }
2607 
2608 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2609 {
2610 	md->interface_ptr = ptr;
2611 }
2612 
2613 void dm_get(struct mapped_device *md)
2614 {
2615 	atomic_inc(&md->holders);
2616 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2617 }
2618 
2619 const char *dm_device_name(struct mapped_device *md)
2620 {
2621 	return md->name;
2622 }
2623 EXPORT_SYMBOL_GPL(dm_device_name);
2624 
2625 static void __dm_destroy(struct mapped_device *md, bool wait)
2626 {
2627 	struct dm_table *map;
2628 	int srcu_idx;
2629 
2630 	might_sleep();
2631 
2632 	spin_lock(&_minor_lock);
2633 	map = dm_get_live_table(md, &srcu_idx);
2634 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2635 	set_bit(DMF_FREEING, &md->flags);
2636 	spin_unlock(&_minor_lock);
2637 
2638 	if (dm_request_based(md))
2639 		flush_kthread_worker(&md->kworker);
2640 
2641 	if (!dm_suspended_md(md)) {
2642 		dm_table_presuspend_targets(map);
2643 		dm_table_postsuspend_targets(map);
2644 	}
2645 
2646 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2647 	dm_put_live_table(md, srcu_idx);
2648 
2649 	/*
2650 	 * Rare, but there may be I/O requests still going to complete,
2651 	 * for example.  Wait for all references to disappear.
2652 	 * No one should increment the reference count of the mapped_device,
2653 	 * after the mapped_device state becomes DMF_FREEING.
2654 	 */
2655 	if (wait)
2656 		while (atomic_read(&md->holders))
2657 			msleep(1);
2658 	else if (atomic_read(&md->holders))
2659 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2660 		       dm_device_name(md), atomic_read(&md->holders));
2661 
2662 	dm_sysfs_exit(md);
2663 	dm_table_destroy(__unbind(md));
2664 	free_dev(md);
2665 }
2666 
2667 void dm_destroy(struct mapped_device *md)
2668 {
2669 	__dm_destroy(md, true);
2670 }
2671 
2672 void dm_destroy_immediate(struct mapped_device *md)
2673 {
2674 	__dm_destroy(md, false);
2675 }
2676 
2677 void dm_put(struct mapped_device *md)
2678 {
2679 	atomic_dec(&md->holders);
2680 }
2681 EXPORT_SYMBOL_GPL(dm_put);
2682 
2683 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2684 {
2685 	int r = 0;
2686 	DECLARE_WAITQUEUE(wait, current);
2687 
2688 	add_wait_queue(&md->wait, &wait);
2689 
2690 	while (1) {
2691 		set_current_state(interruptible);
2692 
2693 		if (!md_in_flight(md))
2694 			break;
2695 
2696 		if (interruptible == TASK_INTERRUPTIBLE &&
2697 		    signal_pending(current)) {
2698 			r = -EINTR;
2699 			break;
2700 		}
2701 
2702 		io_schedule();
2703 	}
2704 	set_current_state(TASK_RUNNING);
2705 
2706 	remove_wait_queue(&md->wait, &wait);
2707 
2708 	return r;
2709 }
2710 
2711 /*
2712  * Process the deferred bios
2713  */
2714 static void dm_wq_work(struct work_struct *work)
2715 {
2716 	struct mapped_device *md = container_of(work, struct mapped_device,
2717 						work);
2718 	struct bio *c;
2719 	int srcu_idx;
2720 	struct dm_table *map;
2721 
2722 	map = dm_get_live_table(md, &srcu_idx);
2723 
2724 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2725 		spin_lock_irq(&md->deferred_lock);
2726 		c = bio_list_pop(&md->deferred);
2727 		spin_unlock_irq(&md->deferred_lock);
2728 
2729 		if (!c)
2730 			break;
2731 
2732 		if (dm_request_based(md))
2733 			generic_make_request(c);
2734 		else
2735 			__split_and_process_bio(md, map, c);
2736 	}
2737 
2738 	dm_put_live_table(md, srcu_idx);
2739 }
2740 
2741 static void dm_queue_flush(struct mapped_device *md)
2742 {
2743 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2744 	smp_mb__after_atomic();
2745 	queue_work(md->wq, &md->work);
2746 }
2747 
2748 /*
2749  * Swap in a new table, returning the old one for the caller to destroy.
2750  */
2751 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2752 {
2753 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2754 	struct queue_limits limits;
2755 	int r;
2756 
2757 	mutex_lock(&md->suspend_lock);
2758 
2759 	/* device must be suspended */
2760 	if (!dm_suspended_md(md))
2761 		goto out;
2762 
2763 	/*
2764 	 * If the new table has no data devices, retain the existing limits.
2765 	 * This helps multipath with queue_if_no_path if all paths disappear,
2766 	 * then new I/O is queued based on these limits, and then some paths
2767 	 * reappear.
2768 	 */
2769 	if (dm_table_has_no_data_devices(table)) {
2770 		live_map = dm_get_live_table_fast(md);
2771 		if (live_map)
2772 			limits = md->queue->limits;
2773 		dm_put_live_table_fast(md);
2774 	}
2775 
2776 	if (!live_map) {
2777 		r = dm_calculate_queue_limits(table, &limits);
2778 		if (r) {
2779 			map = ERR_PTR(r);
2780 			goto out;
2781 		}
2782 	}
2783 
2784 	map = __bind(md, table, &limits);
2785 
2786 out:
2787 	mutex_unlock(&md->suspend_lock);
2788 	return map;
2789 }
2790 
2791 /*
2792  * Functions to lock and unlock any filesystem running on the
2793  * device.
2794  */
2795 static int lock_fs(struct mapped_device *md)
2796 {
2797 	int r;
2798 
2799 	WARN_ON(md->frozen_sb);
2800 
2801 	md->frozen_sb = freeze_bdev(md->bdev);
2802 	if (IS_ERR(md->frozen_sb)) {
2803 		r = PTR_ERR(md->frozen_sb);
2804 		md->frozen_sb = NULL;
2805 		return r;
2806 	}
2807 
2808 	set_bit(DMF_FROZEN, &md->flags);
2809 
2810 	return 0;
2811 }
2812 
2813 static void unlock_fs(struct mapped_device *md)
2814 {
2815 	if (!test_bit(DMF_FROZEN, &md->flags))
2816 		return;
2817 
2818 	thaw_bdev(md->bdev, md->frozen_sb);
2819 	md->frozen_sb = NULL;
2820 	clear_bit(DMF_FROZEN, &md->flags);
2821 }
2822 
2823 /*
2824  * If __dm_suspend returns 0, the device is completely quiescent
2825  * now. There is no request-processing activity. All new requests
2826  * are being added to md->deferred list.
2827  *
2828  * Caller must hold md->suspend_lock
2829  */
2830 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2831 			unsigned suspend_flags, int interruptible)
2832 {
2833 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2834 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2835 	int r;
2836 
2837 	/*
2838 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2839 	 * This flag is cleared before dm_suspend returns.
2840 	 */
2841 	if (noflush)
2842 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2843 
2844 	/*
2845 	 * This gets reverted if there's an error later and the targets
2846 	 * provide the .presuspend_undo hook.
2847 	 */
2848 	dm_table_presuspend_targets(map);
2849 
2850 	/*
2851 	 * Flush I/O to the device.
2852 	 * Any I/O submitted after lock_fs() may not be flushed.
2853 	 * noflush takes precedence over do_lockfs.
2854 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2855 	 */
2856 	if (!noflush && do_lockfs) {
2857 		r = lock_fs(md);
2858 		if (r) {
2859 			dm_table_presuspend_undo_targets(map);
2860 			return r;
2861 		}
2862 	}
2863 
2864 	/*
2865 	 * Here we must make sure that no processes are submitting requests
2866 	 * to target drivers i.e. no one may be executing
2867 	 * __split_and_process_bio. This is called from dm_request and
2868 	 * dm_wq_work.
2869 	 *
2870 	 * To get all processes out of __split_and_process_bio in dm_request,
2871 	 * we take the write lock. To prevent any process from reentering
2872 	 * __split_and_process_bio from dm_request and quiesce the thread
2873 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2874 	 * flush_workqueue(md->wq).
2875 	 */
2876 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2877 	if (map)
2878 		synchronize_srcu(&md->io_barrier);
2879 
2880 	/*
2881 	 * Stop md->queue before flushing md->wq in case request-based
2882 	 * dm defers requests to md->wq from md->queue.
2883 	 */
2884 	if (dm_request_based(md)) {
2885 		stop_queue(md->queue);
2886 		flush_kthread_worker(&md->kworker);
2887 	}
2888 
2889 	flush_workqueue(md->wq);
2890 
2891 	/*
2892 	 * At this point no more requests are entering target request routines.
2893 	 * We call dm_wait_for_completion to wait for all existing requests
2894 	 * to finish.
2895 	 */
2896 	r = dm_wait_for_completion(md, interruptible);
2897 
2898 	if (noflush)
2899 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2900 	if (map)
2901 		synchronize_srcu(&md->io_barrier);
2902 
2903 	/* were we interrupted ? */
2904 	if (r < 0) {
2905 		dm_queue_flush(md);
2906 
2907 		if (dm_request_based(md))
2908 			start_queue(md->queue);
2909 
2910 		unlock_fs(md);
2911 		dm_table_presuspend_undo_targets(map);
2912 		/* pushback list is already flushed, so skip flush */
2913 	}
2914 
2915 	return r;
2916 }
2917 
2918 /*
2919  * We need to be able to change a mapping table under a mounted
2920  * filesystem.  For example we might want to move some data in
2921  * the background.  Before the table can be swapped with
2922  * dm_bind_table, dm_suspend must be called to flush any in
2923  * flight bios and ensure that any further io gets deferred.
2924  */
2925 /*
2926  * Suspend mechanism in request-based dm.
2927  *
2928  * 1. Flush all I/Os by lock_fs() if needed.
2929  * 2. Stop dispatching any I/O by stopping the request_queue.
2930  * 3. Wait for all in-flight I/Os to be completed or requeued.
2931  *
2932  * To abort suspend, start the request_queue.
2933  */
2934 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2935 {
2936 	struct dm_table *map = NULL;
2937 	int r = 0;
2938 
2939 retry:
2940 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2941 
2942 	if (dm_suspended_md(md)) {
2943 		r = -EINVAL;
2944 		goto out_unlock;
2945 	}
2946 
2947 	if (dm_suspended_internally_md(md)) {
2948 		/* already internally suspended, wait for internal resume */
2949 		mutex_unlock(&md->suspend_lock);
2950 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2951 		if (r)
2952 			return r;
2953 		goto retry;
2954 	}
2955 
2956 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2957 
2958 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
2959 	if (r)
2960 		goto out_unlock;
2961 
2962 	set_bit(DMF_SUSPENDED, &md->flags);
2963 
2964 	dm_table_postsuspend_targets(map);
2965 
2966 out_unlock:
2967 	mutex_unlock(&md->suspend_lock);
2968 	return r;
2969 }
2970 
2971 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2972 {
2973 	if (map) {
2974 		int r = dm_table_resume_targets(map);
2975 		if (r)
2976 			return r;
2977 	}
2978 
2979 	dm_queue_flush(md);
2980 
2981 	/*
2982 	 * Flushing deferred I/Os must be done after targets are resumed
2983 	 * so that mapping of targets can work correctly.
2984 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2985 	 */
2986 	if (dm_request_based(md))
2987 		start_queue(md->queue);
2988 
2989 	unlock_fs(md);
2990 
2991 	return 0;
2992 }
2993 
2994 int dm_resume(struct mapped_device *md)
2995 {
2996 	int r = -EINVAL;
2997 	struct dm_table *map = NULL;
2998 
2999 retry:
3000 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3001 
3002 	if (!dm_suspended_md(md))
3003 		goto out;
3004 
3005 	if (dm_suspended_internally_md(md)) {
3006 		/* already internally suspended, wait for internal resume */
3007 		mutex_unlock(&md->suspend_lock);
3008 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3009 		if (r)
3010 			return r;
3011 		goto retry;
3012 	}
3013 
3014 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3015 	if (!map || !dm_table_get_size(map))
3016 		goto out;
3017 
3018 	r = __dm_resume(md, map);
3019 	if (r)
3020 		goto out;
3021 
3022 	clear_bit(DMF_SUSPENDED, &md->flags);
3023 
3024 	r = 0;
3025 out:
3026 	mutex_unlock(&md->suspend_lock);
3027 
3028 	return r;
3029 }
3030 
3031 /*
3032  * Internal suspend/resume works like userspace-driven suspend. It waits
3033  * until all bios finish and prevents issuing new bios to the target drivers.
3034  * It may be used only from the kernel.
3035  */
3036 
3037 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3038 {
3039 	struct dm_table *map = NULL;
3040 
3041 	if (md->internal_suspend_count++)
3042 		return; /* nested internal suspend */
3043 
3044 	if (dm_suspended_md(md)) {
3045 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3046 		return; /* nest suspend */
3047 	}
3048 
3049 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3050 
3051 	/*
3052 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3053 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3054 	 * would require changing .presuspend to return an error -- avoid this
3055 	 * until there is a need for more elaborate variants of internal suspend.
3056 	 */
3057 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3058 
3059 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3060 
3061 	dm_table_postsuspend_targets(map);
3062 }
3063 
3064 static void __dm_internal_resume(struct mapped_device *md)
3065 {
3066 	BUG_ON(!md->internal_suspend_count);
3067 
3068 	if (--md->internal_suspend_count)
3069 		return; /* resume from nested internal suspend */
3070 
3071 	if (dm_suspended_md(md))
3072 		goto done; /* resume from nested suspend */
3073 
3074 	/*
3075 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3076 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3077 	 */
3078 	(void) __dm_resume(md, NULL);
3079 
3080 done:
3081 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3082 	smp_mb__after_atomic();
3083 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3084 }
3085 
3086 void dm_internal_suspend_noflush(struct mapped_device *md)
3087 {
3088 	mutex_lock(&md->suspend_lock);
3089 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3090 	mutex_unlock(&md->suspend_lock);
3091 }
3092 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3093 
3094 void dm_internal_resume(struct mapped_device *md)
3095 {
3096 	mutex_lock(&md->suspend_lock);
3097 	__dm_internal_resume(md);
3098 	mutex_unlock(&md->suspend_lock);
3099 }
3100 EXPORT_SYMBOL_GPL(dm_internal_resume);
3101 
3102 /*
3103  * Fast variants of internal suspend/resume hold md->suspend_lock,
3104  * which prevents interaction with userspace-driven suspend.
3105  */
3106 
3107 void dm_internal_suspend_fast(struct mapped_device *md)
3108 {
3109 	mutex_lock(&md->suspend_lock);
3110 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3111 		return;
3112 
3113 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3114 	synchronize_srcu(&md->io_barrier);
3115 	flush_workqueue(md->wq);
3116 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3117 }
3118 
3119 void dm_internal_resume_fast(struct mapped_device *md)
3120 {
3121 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3122 		goto done;
3123 
3124 	dm_queue_flush(md);
3125 
3126 done:
3127 	mutex_unlock(&md->suspend_lock);
3128 }
3129 
3130 /*-----------------------------------------------------------------
3131  * Event notification.
3132  *---------------------------------------------------------------*/
3133 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3134 		       unsigned cookie)
3135 {
3136 	char udev_cookie[DM_COOKIE_LENGTH];
3137 	char *envp[] = { udev_cookie, NULL };
3138 
3139 	if (!cookie)
3140 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3141 	else {
3142 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3143 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3144 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3145 					  action, envp);
3146 	}
3147 }
3148 
3149 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3150 {
3151 	return atomic_add_return(1, &md->uevent_seq);
3152 }
3153 
3154 uint32_t dm_get_event_nr(struct mapped_device *md)
3155 {
3156 	return atomic_read(&md->event_nr);
3157 }
3158 
3159 int dm_wait_event(struct mapped_device *md, int event_nr)
3160 {
3161 	return wait_event_interruptible(md->eventq,
3162 			(event_nr != atomic_read(&md->event_nr)));
3163 }
3164 
3165 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3166 {
3167 	unsigned long flags;
3168 
3169 	spin_lock_irqsave(&md->uevent_lock, flags);
3170 	list_add(elist, &md->uevent_list);
3171 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3172 }
3173 
3174 /*
3175  * The gendisk is only valid as long as you have a reference
3176  * count on 'md'.
3177  */
3178 struct gendisk *dm_disk(struct mapped_device *md)
3179 {
3180 	return md->disk;
3181 }
3182 
3183 struct kobject *dm_kobject(struct mapped_device *md)
3184 {
3185 	return &md->kobj_holder.kobj;
3186 }
3187 
3188 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3189 {
3190 	struct mapped_device *md;
3191 
3192 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3193 
3194 	if (test_bit(DMF_FREEING, &md->flags) ||
3195 	    dm_deleting_md(md))
3196 		return NULL;
3197 
3198 	dm_get(md);
3199 	return md;
3200 }
3201 
3202 int dm_suspended_md(struct mapped_device *md)
3203 {
3204 	return test_bit(DMF_SUSPENDED, &md->flags);
3205 }
3206 
3207 int dm_suspended_internally_md(struct mapped_device *md)
3208 {
3209 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3210 }
3211 
3212 int dm_test_deferred_remove_flag(struct mapped_device *md)
3213 {
3214 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3215 }
3216 
3217 int dm_suspended(struct dm_target *ti)
3218 {
3219 	return dm_suspended_md(dm_table_get_md(ti->table));
3220 }
3221 EXPORT_SYMBOL_GPL(dm_suspended);
3222 
3223 int dm_noflush_suspending(struct dm_target *ti)
3224 {
3225 	return __noflush_suspending(dm_table_get_md(ti->table));
3226 }
3227 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3228 
3229 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
3230 {
3231 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3232 	struct kmem_cache *cachep;
3233 	unsigned int pool_size = 0;
3234 	unsigned int front_pad;
3235 
3236 	if (!pools)
3237 		return NULL;
3238 
3239 	switch (type) {
3240 	case DM_TYPE_BIO_BASED:
3241 		cachep = _io_cache;
3242 		pool_size = dm_get_reserved_bio_based_ios();
3243 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3244 		break;
3245 	case DM_TYPE_REQUEST_BASED:
3246 		pool_size = dm_get_reserved_rq_based_ios();
3247 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3248 		if (!pools->rq_pool)
3249 			goto out;
3250 		/* fall through to setup remaining rq-based pools */
3251 	case DM_TYPE_MQ_REQUEST_BASED:
3252 		cachep = _rq_tio_cache;
3253 		if (!pool_size)
3254 			pool_size = dm_get_reserved_rq_based_ios();
3255 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3256 		/* per_bio_data_size is not used. See __bind_mempools(). */
3257 		WARN_ON(per_bio_data_size != 0);
3258 		break;
3259 	default:
3260 		goto out;
3261 	}
3262 
3263 	pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3264 	if (!pools->io_pool)
3265 		goto out;
3266 
3267 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3268 	if (!pools->bs)
3269 		goto out;
3270 
3271 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3272 		goto out;
3273 
3274 	return pools;
3275 
3276 out:
3277 	dm_free_md_mempools(pools);
3278 
3279 	return NULL;
3280 }
3281 
3282 void dm_free_md_mempools(struct dm_md_mempools *pools)
3283 {
3284 	if (!pools)
3285 		return;
3286 
3287 	if (pools->io_pool)
3288 		mempool_destroy(pools->io_pool);
3289 
3290 	if (pools->rq_pool)
3291 		mempool_destroy(pools->rq_pool);
3292 
3293 	if (pools->bs)
3294 		bioset_free(pools->bs);
3295 
3296 	kfree(pools);
3297 }
3298 
3299 static const struct block_device_operations dm_blk_dops = {
3300 	.open = dm_blk_open,
3301 	.release = dm_blk_close,
3302 	.ioctl = dm_blk_ioctl,
3303 	.getgeo = dm_blk_getgeo,
3304 	.owner = THIS_MODULE
3305 };
3306 
3307 /*
3308  * module hooks
3309  */
3310 module_init(dm_init);
3311 module_exit(dm_exit);
3312 
3313 module_param(major, uint, 0);
3314 MODULE_PARM_DESC(major, "The major number of the device mapper");
3315 
3316 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3317 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3318 
3319 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3320 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3321 
3322 MODULE_DESCRIPTION(DM_NAME " driver");
3323 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3324 MODULE_LICENSE("GPL");
3325