1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set bs; 152 struct bio_set io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 /* 162 * Bio-based DM's mempools' reserved IOs set by the user. 163 */ 164 #define RESERVED_BIO_BASED_IOS 16 165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 166 167 static int __dm_get_module_param_int(int *module_param, int min, int max) 168 { 169 int param = READ_ONCE(*module_param); 170 int modified_param = 0; 171 bool modified = true; 172 173 if (param < min) 174 modified_param = min; 175 else if (param > max) 176 modified_param = max; 177 else 178 modified = false; 179 180 if (modified) { 181 (void)cmpxchg(module_param, param, modified_param); 182 param = modified_param; 183 } 184 185 return param; 186 } 187 188 unsigned __dm_get_module_param(unsigned *module_param, 189 unsigned def, unsigned max) 190 { 191 unsigned param = READ_ONCE(*module_param); 192 unsigned modified_param = 0; 193 194 if (!param) 195 modified_param = def; 196 else if (param > max) 197 modified_param = max; 198 199 if (modified_param) { 200 (void)cmpxchg(module_param, param, modified_param); 201 param = modified_param; 202 } 203 204 return param; 205 } 206 207 unsigned dm_get_reserved_bio_based_ios(void) 208 { 209 return __dm_get_module_param(&reserved_bio_based_ios, 210 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 211 } 212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 213 214 static unsigned dm_get_numa_node(void) 215 { 216 return __dm_get_module_param_int(&dm_numa_node, 217 DM_NUMA_NODE, num_online_nodes() - 1); 218 } 219 220 static int __init local_init(void) 221 { 222 int r; 223 224 r = dm_uevent_init(); 225 if (r) 226 return r; 227 228 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 229 if (!deferred_remove_workqueue) { 230 r = -ENOMEM; 231 goto out_uevent_exit; 232 } 233 234 _major = major; 235 r = register_blkdev(_major, _name); 236 if (r < 0) 237 goto out_free_workqueue; 238 239 if (!_major) 240 _major = r; 241 242 return 0; 243 244 out_free_workqueue: 245 destroy_workqueue(deferred_remove_workqueue); 246 out_uevent_exit: 247 dm_uevent_exit(); 248 249 return r; 250 } 251 252 static void local_exit(void) 253 { 254 flush_scheduled_work(); 255 destroy_workqueue(deferred_remove_workqueue); 256 257 unregister_blkdev(_major, _name); 258 dm_uevent_exit(); 259 260 _major = 0; 261 262 DMINFO("cleaned up"); 263 } 264 265 static int (*_inits[])(void) __initdata = { 266 local_init, 267 dm_target_init, 268 dm_linear_init, 269 dm_stripe_init, 270 dm_io_init, 271 dm_kcopyd_init, 272 dm_interface_init, 273 dm_statistics_init, 274 }; 275 276 static void (*_exits[])(void) = { 277 local_exit, 278 dm_target_exit, 279 dm_linear_exit, 280 dm_stripe_exit, 281 dm_io_exit, 282 dm_kcopyd_exit, 283 dm_interface_exit, 284 dm_statistics_exit, 285 }; 286 287 static int __init dm_init(void) 288 { 289 const int count = ARRAY_SIZE(_inits); 290 291 int r, i; 292 293 for (i = 0; i < count; i++) { 294 r = _inits[i](); 295 if (r) 296 goto bad; 297 } 298 299 return 0; 300 301 bad: 302 while (i--) 303 _exits[i](); 304 305 return r; 306 } 307 308 static void __exit dm_exit(void) 309 { 310 int i = ARRAY_SIZE(_exits); 311 312 while (i--) 313 _exits[i](); 314 315 /* 316 * Should be empty by this point. 317 */ 318 idr_destroy(&_minor_idr); 319 } 320 321 /* 322 * Block device functions 323 */ 324 int dm_deleting_md(struct mapped_device *md) 325 { 326 return test_bit(DMF_DELETING, &md->flags); 327 } 328 329 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 330 { 331 struct mapped_device *md; 332 333 spin_lock(&_minor_lock); 334 335 md = bdev->bd_disk->private_data; 336 if (!md) 337 goto out; 338 339 if (test_bit(DMF_FREEING, &md->flags) || 340 dm_deleting_md(md)) { 341 md = NULL; 342 goto out; 343 } 344 345 dm_get(md); 346 atomic_inc(&md->open_count); 347 out: 348 spin_unlock(&_minor_lock); 349 350 return md ? 0 : -ENXIO; 351 } 352 353 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 354 { 355 struct mapped_device *md; 356 357 spin_lock(&_minor_lock); 358 359 md = disk->private_data; 360 if (WARN_ON(!md)) 361 goto out; 362 363 if (atomic_dec_and_test(&md->open_count) && 364 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 365 queue_work(deferred_remove_workqueue, &deferred_remove_work); 366 367 dm_put(md); 368 out: 369 spin_unlock(&_minor_lock); 370 } 371 372 int dm_open_count(struct mapped_device *md) 373 { 374 return atomic_read(&md->open_count); 375 } 376 377 /* 378 * Guarantees nothing is using the device before it's deleted. 379 */ 380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 381 { 382 int r = 0; 383 384 spin_lock(&_minor_lock); 385 386 if (dm_open_count(md)) { 387 r = -EBUSY; 388 if (mark_deferred) 389 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 390 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 391 r = -EEXIST; 392 else 393 set_bit(DMF_DELETING, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 int dm_cancel_deferred_remove(struct mapped_device *md) 401 { 402 int r = 0; 403 404 spin_lock(&_minor_lock); 405 406 if (test_bit(DMF_DELETING, &md->flags)) 407 r = -EBUSY; 408 else 409 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 410 411 spin_unlock(&_minor_lock); 412 413 return r; 414 } 415 416 static void do_deferred_remove(struct work_struct *w) 417 { 418 dm_deferred_remove(); 419 } 420 421 sector_t dm_get_size(struct mapped_device *md) 422 { 423 return get_capacity(md->disk); 424 } 425 426 struct request_queue *dm_get_md_queue(struct mapped_device *md) 427 { 428 return md->queue; 429 } 430 431 struct dm_stats *dm_get_stats(struct mapped_device *md) 432 { 433 return &md->stats; 434 } 435 436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 437 { 438 struct mapped_device *md = bdev->bd_disk->private_data; 439 440 return dm_get_geometry(md, geo); 441 } 442 443 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 444 struct blk_zone *zones, unsigned int *nr_zones) 445 { 446 #ifdef CONFIG_BLK_DEV_ZONED 447 struct mapped_device *md = disk->private_data; 448 struct dm_target *tgt; 449 struct dm_table *map; 450 int srcu_idx, ret; 451 452 if (dm_suspended_md(md)) 453 return -EAGAIN; 454 455 map = dm_get_live_table(md, &srcu_idx); 456 if (!map) 457 return -EIO; 458 459 tgt = dm_table_find_target(map, sector); 460 if (!tgt) { 461 ret = -EIO; 462 goto out; 463 } 464 465 /* 466 * If we are executing this, we already know that the block device 467 * is a zoned device and so each target should have support for that 468 * type of drive. A missing report_zones method means that the target 469 * driver has a problem. 470 */ 471 if (WARN_ON(!tgt->type->report_zones)) { 472 ret = -EIO; 473 goto out; 474 } 475 476 /* 477 * blkdev_report_zones() will loop and call this again to cover all the 478 * zones of the target, eventually moving on to the next target. 479 * So there is no need to loop here trying to fill the entire array 480 * of zones. 481 */ 482 ret = tgt->type->report_zones(tgt, sector, zones, nr_zones); 483 484 out: 485 dm_put_live_table(md, srcu_idx); 486 return ret; 487 #else 488 return -ENOTSUPP; 489 #endif 490 } 491 492 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 493 struct block_device **bdev) 494 __acquires(md->io_barrier) 495 { 496 struct dm_target *tgt; 497 struct dm_table *map; 498 int r; 499 500 retry: 501 r = -ENOTTY; 502 map = dm_get_live_table(md, srcu_idx); 503 if (!map || !dm_table_get_size(map)) 504 return r; 505 506 /* We only support devices that have a single target */ 507 if (dm_table_get_num_targets(map) != 1) 508 return r; 509 510 tgt = dm_table_get_target(map, 0); 511 if (!tgt->type->prepare_ioctl) 512 return r; 513 514 if (dm_suspended_md(md)) 515 return -EAGAIN; 516 517 r = tgt->type->prepare_ioctl(tgt, bdev); 518 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 519 dm_put_live_table(md, *srcu_idx); 520 msleep(10); 521 goto retry; 522 } 523 524 return r; 525 } 526 527 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 528 __releases(md->io_barrier) 529 { 530 dm_put_live_table(md, srcu_idx); 531 } 532 533 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 534 unsigned int cmd, unsigned long arg) 535 { 536 struct mapped_device *md = bdev->bd_disk->private_data; 537 int r, srcu_idx; 538 539 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 540 if (r < 0) 541 goto out; 542 543 if (r > 0) { 544 /* 545 * Target determined this ioctl is being issued against a 546 * subset of the parent bdev; require extra privileges. 547 */ 548 if (!capable(CAP_SYS_RAWIO)) { 549 DMWARN_LIMIT( 550 "%s: sending ioctl %x to DM device without required privilege.", 551 current->comm, cmd); 552 r = -ENOIOCTLCMD; 553 goto out; 554 } 555 } 556 557 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 558 out: 559 dm_unprepare_ioctl(md, srcu_idx); 560 return r; 561 } 562 563 static void start_io_acct(struct dm_io *io); 564 565 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 566 { 567 struct dm_io *io; 568 struct dm_target_io *tio; 569 struct bio *clone; 570 571 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 572 if (!clone) 573 return NULL; 574 575 tio = container_of(clone, struct dm_target_io, clone); 576 tio->inside_dm_io = true; 577 tio->io = NULL; 578 579 io = container_of(tio, struct dm_io, tio); 580 io->magic = DM_IO_MAGIC; 581 io->status = 0; 582 atomic_set(&io->io_count, 1); 583 io->orig_bio = bio; 584 io->md = md; 585 spin_lock_init(&io->endio_lock); 586 587 start_io_acct(io); 588 589 return io; 590 } 591 592 static void free_io(struct mapped_device *md, struct dm_io *io) 593 { 594 bio_put(&io->tio.clone); 595 } 596 597 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 598 unsigned target_bio_nr, gfp_t gfp_mask) 599 { 600 struct dm_target_io *tio; 601 602 if (!ci->io->tio.io) { 603 /* the dm_target_io embedded in ci->io is available */ 604 tio = &ci->io->tio; 605 } else { 606 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 607 if (!clone) 608 return NULL; 609 610 tio = container_of(clone, struct dm_target_io, clone); 611 tio->inside_dm_io = false; 612 } 613 614 tio->magic = DM_TIO_MAGIC; 615 tio->io = ci->io; 616 tio->ti = ti; 617 tio->target_bio_nr = target_bio_nr; 618 619 return tio; 620 } 621 622 static void free_tio(struct dm_target_io *tio) 623 { 624 if (tio->inside_dm_io) 625 return; 626 bio_put(&tio->clone); 627 } 628 629 static bool md_in_flight_bios(struct mapped_device *md) 630 { 631 int cpu; 632 struct hd_struct *part = &dm_disk(md)->part0; 633 long sum = 0; 634 635 for_each_possible_cpu(cpu) { 636 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 637 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 638 } 639 640 return sum != 0; 641 } 642 643 static bool md_in_flight(struct mapped_device *md) 644 { 645 if (queue_is_mq(md->queue)) 646 return blk_mq_queue_inflight(md->queue); 647 else 648 return md_in_flight_bios(md); 649 } 650 651 static void start_io_acct(struct dm_io *io) 652 { 653 struct mapped_device *md = io->md; 654 struct bio *bio = io->orig_bio; 655 656 io->start_time = jiffies; 657 658 generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio), 659 &dm_disk(md)->part0); 660 661 if (unlikely(dm_stats_used(&md->stats))) 662 dm_stats_account_io(&md->stats, bio_data_dir(bio), 663 bio->bi_iter.bi_sector, bio_sectors(bio), 664 false, 0, &io->stats_aux); 665 } 666 667 static void end_io_acct(struct dm_io *io) 668 { 669 struct mapped_device *md = io->md; 670 struct bio *bio = io->orig_bio; 671 unsigned long duration = jiffies - io->start_time; 672 673 generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0, 674 io->start_time); 675 676 if (unlikely(dm_stats_used(&md->stats))) 677 dm_stats_account_io(&md->stats, bio_data_dir(bio), 678 bio->bi_iter.bi_sector, bio_sectors(bio), 679 true, duration, &io->stats_aux); 680 681 /* nudge anyone waiting on suspend queue */ 682 if (unlikely(wq_has_sleeper(&md->wait))) 683 wake_up(&md->wait); 684 } 685 686 /* 687 * Add the bio to the list of deferred io. 688 */ 689 static void queue_io(struct mapped_device *md, struct bio *bio) 690 { 691 unsigned long flags; 692 693 spin_lock_irqsave(&md->deferred_lock, flags); 694 bio_list_add(&md->deferred, bio); 695 spin_unlock_irqrestore(&md->deferred_lock, flags); 696 queue_work(md->wq, &md->work); 697 } 698 699 /* 700 * Everyone (including functions in this file), should use this 701 * function to access the md->map field, and make sure they call 702 * dm_put_live_table() when finished. 703 */ 704 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 705 { 706 *srcu_idx = srcu_read_lock(&md->io_barrier); 707 708 return srcu_dereference(md->map, &md->io_barrier); 709 } 710 711 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 712 { 713 srcu_read_unlock(&md->io_barrier, srcu_idx); 714 } 715 716 void dm_sync_table(struct mapped_device *md) 717 { 718 synchronize_srcu(&md->io_barrier); 719 synchronize_rcu_expedited(); 720 } 721 722 /* 723 * A fast alternative to dm_get_live_table/dm_put_live_table. 724 * The caller must not block between these two functions. 725 */ 726 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 727 { 728 rcu_read_lock(); 729 return rcu_dereference(md->map); 730 } 731 732 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 733 { 734 rcu_read_unlock(); 735 } 736 737 static char *_dm_claim_ptr = "I belong to device-mapper"; 738 739 /* 740 * Open a table device so we can use it as a map destination. 741 */ 742 static int open_table_device(struct table_device *td, dev_t dev, 743 struct mapped_device *md) 744 { 745 struct block_device *bdev; 746 747 int r; 748 749 BUG_ON(td->dm_dev.bdev); 750 751 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 752 if (IS_ERR(bdev)) 753 return PTR_ERR(bdev); 754 755 r = bd_link_disk_holder(bdev, dm_disk(md)); 756 if (r) { 757 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 758 return r; 759 } 760 761 td->dm_dev.bdev = bdev; 762 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 763 return 0; 764 } 765 766 /* 767 * Close a table device that we've been using. 768 */ 769 static void close_table_device(struct table_device *td, struct mapped_device *md) 770 { 771 if (!td->dm_dev.bdev) 772 return; 773 774 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 775 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 776 put_dax(td->dm_dev.dax_dev); 777 td->dm_dev.bdev = NULL; 778 td->dm_dev.dax_dev = NULL; 779 } 780 781 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 782 fmode_t mode) 783 { 784 struct table_device *td; 785 786 list_for_each_entry(td, l, list) 787 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 788 return td; 789 790 return NULL; 791 } 792 793 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 794 struct dm_dev **result) 795 { 796 int r; 797 struct table_device *td; 798 799 mutex_lock(&md->table_devices_lock); 800 td = find_table_device(&md->table_devices, dev, mode); 801 if (!td) { 802 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 803 if (!td) { 804 mutex_unlock(&md->table_devices_lock); 805 return -ENOMEM; 806 } 807 808 td->dm_dev.mode = mode; 809 td->dm_dev.bdev = NULL; 810 811 if ((r = open_table_device(td, dev, md))) { 812 mutex_unlock(&md->table_devices_lock); 813 kfree(td); 814 return r; 815 } 816 817 format_dev_t(td->dm_dev.name, dev); 818 819 refcount_set(&td->count, 1); 820 list_add(&td->list, &md->table_devices); 821 } else { 822 refcount_inc(&td->count); 823 } 824 mutex_unlock(&md->table_devices_lock); 825 826 *result = &td->dm_dev; 827 return 0; 828 } 829 EXPORT_SYMBOL_GPL(dm_get_table_device); 830 831 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 832 { 833 struct table_device *td = container_of(d, struct table_device, dm_dev); 834 835 mutex_lock(&md->table_devices_lock); 836 if (refcount_dec_and_test(&td->count)) { 837 close_table_device(td, md); 838 list_del(&td->list); 839 kfree(td); 840 } 841 mutex_unlock(&md->table_devices_lock); 842 } 843 EXPORT_SYMBOL(dm_put_table_device); 844 845 static void free_table_devices(struct list_head *devices) 846 { 847 struct list_head *tmp, *next; 848 849 list_for_each_safe(tmp, next, devices) { 850 struct table_device *td = list_entry(tmp, struct table_device, list); 851 852 DMWARN("dm_destroy: %s still exists with %d references", 853 td->dm_dev.name, refcount_read(&td->count)); 854 kfree(td); 855 } 856 } 857 858 /* 859 * Get the geometry associated with a dm device 860 */ 861 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 862 { 863 *geo = md->geometry; 864 865 return 0; 866 } 867 868 /* 869 * Set the geometry of a device. 870 */ 871 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 872 { 873 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 874 875 if (geo->start > sz) { 876 DMWARN("Start sector is beyond the geometry limits."); 877 return -EINVAL; 878 } 879 880 md->geometry = *geo; 881 882 return 0; 883 } 884 885 static int __noflush_suspending(struct mapped_device *md) 886 { 887 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 888 } 889 890 /* 891 * Decrements the number of outstanding ios that a bio has been 892 * cloned into, completing the original io if necc. 893 */ 894 static void dec_pending(struct dm_io *io, blk_status_t error) 895 { 896 unsigned long flags; 897 blk_status_t io_error; 898 struct bio *bio; 899 struct mapped_device *md = io->md; 900 901 /* Push-back supersedes any I/O errors */ 902 if (unlikely(error)) { 903 spin_lock_irqsave(&io->endio_lock, flags); 904 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 905 io->status = error; 906 spin_unlock_irqrestore(&io->endio_lock, flags); 907 } 908 909 if (atomic_dec_and_test(&io->io_count)) { 910 if (io->status == BLK_STS_DM_REQUEUE) { 911 /* 912 * Target requested pushing back the I/O. 913 */ 914 spin_lock_irqsave(&md->deferred_lock, flags); 915 if (__noflush_suspending(md)) 916 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 917 bio_list_add_head(&md->deferred, io->orig_bio); 918 else 919 /* noflush suspend was interrupted. */ 920 io->status = BLK_STS_IOERR; 921 spin_unlock_irqrestore(&md->deferred_lock, flags); 922 } 923 924 io_error = io->status; 925 bio = io->orig_bio; 926 end_io_acct(io); 927 free_io(md, io); 928 929 if (io_error == BLK_STS_DM_REQUEUE) 930 return; 931 932 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 933 /* 934 * Preflush done for flush with data, reissue 935 * without REQ_PREFLUSH. 936 */ 937 bio->bi_opf &= ~REQ_PREFLUSH; 938 queue_io(md, bio); 939 } else { 940 /* done with normal IO or empty flush */ 941 if (io_error) 942 bio->bi_status = io_error; 943 bio_endio(bio); 944 } 945 } 946 } 947 948 void disable_discard(struct mapped_device *md) 949 { 950 struct queue_limits *limits = dm_get_queue_limits(md); 951 952 /* device doesn't really support DISCARD, disable it */ 953 limits->max_discard_sectors = 0; 954 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 955 } 956 957 void disable_write_same(struct mapped_device *md) 958 { 959 struct queue_limits *limits = dm_get_queue_limits(md); 960 961 /* device doesn't really support WRITE SAME, disable it */ 962 limits->max_write_same_sectors = 0; 963 } 964 965 void disable_write_zeroes(struct mapped_device *md) 966 { 967 struct queue_limits *limits = dm_get_queue_limits(md); 968 969 /* device doesn't really support WRITE ZEROES, disable it */ 970 limits->max_write_zeroes_sectors = 0; 971 } 972 973 static void clone_endio(struct bio *bio) 974 { 975 blk_status_t error = bio->bi_status; 976 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 977 struct dm_io *io = tio->io; 978 struct mapped_device *md = tio->io->md; 979 dm_endio_fn endio = tio->ti->type->end_io; 980 981 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 982 if (bio_op(bio) == REQ_OP_DISCARD && 983 !bio->bi_disk->queue->limits.max_discard_sectors) 984 disable_discard(md); 985 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 986 !bio->bi_disk->queue->limits.max_write_same_sectors) 987 disable_write_same(md); 988 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 989 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 990 disable_write_zeroes(md); 991 } 992 993 if (endio) { 994 int r = endio(tio->ti, bio, &error); 995 switch (r) { 996 case DM_ENDIO_REQUEUE: 997 error = BLK_STS_DM_REQUEUE; 998 /*FALLTHRU*/ 999 case DM_ENDIO_DONE: 1000 break; 1001 case DM_ENDIO_INCOMPLETE: 1002 /* The target will handle the io */ 1003 return; 1004 default: 1005 DMWARN("unimplemented target endio return value: %d", r); 1006 BUG(); 1007 } 1008 } 1009 1010 free_tio(tio); 1011 dec_pending(io, error); 1012 } 1013 1014 /* 1015 * Return maximum size of I/O possible at the supplied sector up to the current 1016 * target boundary. 1017 */ 1018 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1019 { 1020 sector_t target_offset = dm_target_offset(ti, sector); 1021 1022 return ti->len - target_offset; 1023 } 1024 1025 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1026 { 1027 sector_t len = max_io_len_target_boundary(sector, ti); 1028 sector_t offset, max_len; 1029 1030 /* 1031 * Does the target need to split even further? 1032 */ 1033 if (ti->max_io_len) { 1034 offset = dm_target_offset(ti, sector); 1035 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1036 max_len = sector_div(offset, ti->max_io_len); 1037 else 1038 max_len = offset & (ti->max_io_len - 1); 1039 max_len = ti->max_io_len - max_len; 1040 1041 if (len > max_len) 1042 len = max_len; 1043 } 1044 1045 return len; 1046 } 1047 1048 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1049 { 1050 if (len > UINT_MAX) { 1051 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1052 (unsigned long long)len, UINT_MAX); 1053 ti->error = "Maximum size of target IO is too large"; 1054 return -EINVAL; 1055 } 1056 1057 ti->max_io_len = (uint32_t) len; 1058 1059 return 0; 1060 } 1061 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1062 1063 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1064 sector_t sector, int *srcu_idx) 1065 __acquires(md->io_barrier) 1066 { 1067 struct dm_table *map; 1068 struct dm_target *ti; 1069 1070 map = dm_get_live_table(md, srcu_idx); 1071 if (!map) 1072 return NULL; 1073 1074 ti = dm_table_find_target(map, sector); 1075 if (!ti) 1076 return NULL; 1077 1078 return ti; 1079 } 1080 1081 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1082 long nr_pages, void **kaddr, pfn_t *pfn) 1083 { 1084 struct mapped_device *md = dax_get_private(dax_dev); 1085 sector_t sector = pgoff * PAGE_SECTORS; 1086 struct dm_target *ti; 1087 long len, ret = -EIO; 1088 int srcu_idx; 1089 1090 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1091 1092 if (!ti) 1093 goto out; 1094 if (!ti->type->direct_access) 1095 goto out; 1096 len = max_io_len(sector, ti) / PAGE_SECTORS; 1097 if (len < 1) 1098 goto out; 1099 nr_pages = min(len, nr_pages); 1100 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1101 1102 out: 1103 dm_put_live_table(md, srcu_idx); 1104 1105 return ret; 1106 } 1107 1108 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1109 int blocksize, sector_t start, sector_t len) 1110 { 1111 struct mapped_device *md = dax_get_private(dax_dev); 1112 struct dm_table *map; 1113 int srcu_idx; 1114 bool ret; 1115 1116 map = dm_get_live_table(md, &srcu_idx); 1117 if (!map) 1118 return false; 1119 1120 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize); 1121 1122 dm_put_live_table(md, srcu_idx); 1123 1124 return ret; 1125 } 1126 1127 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1128 void *addr, size_t bytes, struct iov_iter *i) 1129 { 1130 struct mapped_device *md = dax_get_private(dax_dev); 1131 sector_t sector = pgoff * PAGE_SECTORS; 1132 struct dm_target *ti; 1133 long ret = 0; 1134 int srcu_idx; 1135 1136 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1137 1138 if (!ti) 1139 goto out; 1140 if (!ti->type->dax_copy_from_iter) { 1141 ret = copy_from_iter(addr, bytes, i); 1142 goto out; 1143 } 1144 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1145 out: 1146 dm_put_live_table(md, srcu_idx); 1147 1148 return ret; 1149 } 1150 1151 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1152 void *addr, size_t bytes, struct iov_iter *i) 1153 { 1154 struct mapped_device *md = dax_get_private(dax_dev); 1155 sector_t sector = pgoff * PAGE_SECTORS; 1156 struct dm_target *ti; 1157 long ret = 0; 1158 int srcu_idx; 1159 1160 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1161 1162 if (!ti) 1163 goto out; 1164 if (!ti->type->dax_copy_to_iter) { 1165 ret = copy_to_iter(addr, bytes, i); 1166 goto out; 1167 } 1168 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1169 out: 1170 dm_put_live_table(md, srcu_idx); 1171 1172 return ret; 1173 } 1174 1175 /* 1176 * A target may call dm_accept_partial_bio only from the map routine. It is 1177 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1178 * 1179 * dm_accept_partial_bio informs the dm that the target only wants to process 1180 * additional n_sectors sectors of the bio and the rest of the data should be 1181 * sent in a next bio. 1182 * 1183 * A diagram that explains the arithmetics: 1184 * +--------------------+---------------+-------+ 1185 * | 1 | 2 | 3 | 1186 * +--------------------+---------------+-------+ 1187 * 1188 * <-------------- *tio->len_ptr ---------------> 1189 * <------- bi_size -------> 1190 * <-- n_sectors --> 1191 * 1192 * Region 1 was already iterated over with bio_advance or similar function. 1193 * (it may be empty if the target doesn't use bio_advance) 1194 * Region 2 is the remaining bio size that the target wants to process. 1195 * (it may be empty if region 1 is non-empty, although there is no reason 1196 * to make it empty) 1197 * The target requires that region 3 is to be sent in the next bio. 1198 * 1199 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1200 * the partially processed part (the sum of regions 1+2) must be the same for all 1201 * copies of the bio. 1202 */ 1203 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1204 { 1205 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1206 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1207 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1208 BUG_ON(bi_size > *tio->len_ptr); 1209 BUG_ON(n_sectors > bi_size); 1210 *tio->len_ptr -= bi_size - n_sectors; 1211 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1212 } 1213 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1214 1215 /* 1216 * The zone descriptors obtained with a zone report indicate 1217 * zone positions within the underlying device of the target. The zone 1218 * descriptors must be remapped to match their position within the dm device. 1219 * The caller target should obtain the zones information using 1220 * blkdev_report_zones() to ensure that remapping for partition offset is 1221 * already handled. 1222 */ 1223 void dm_remap_zone_report(struct dm_target *ti, sector_t start, 1224 struct blk_zone *zones, unsigned int *nr_zones) 1225 { 1226 #ifdef CONFIG_BLK_DEV_ZONED 1227 struct blk_zone *zone; 1228 unsigned int nrz = *nr_zones; 1229 int i; 1230 1231 /* 1232 * Remap the start sector and write pointer position of the zones in 1233 * the array. Since we may have obtained from the target underlying 1234 * device more zones that the target size, also adjust the number 1235 * of zones. 1236 */ 1237 for (i = 0; i < nrz; i++) { 1238 zone = zones + i; 1239 if (zone->start >= start + ti->len) { 1240 memset(zone, 0, sizeof(struct blk_zone) * (nrz - i)); 1241 break; 1242 } 1243 1244 zone->start = zone->start + ti->begin - start; 1245 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 1246 continue; 1247 1248 if (zone->cond == BLK_ZONE_COND_FULL) 1249 zone->wp = zone->start + zone->len; 1250 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1251 zone->wp = zone->start; 1252 else 1253 zone->wp = zone->wp + ti->begin - start; 1254 } 1255 1256 *nr_zones = i; 1257 #else /* !CONFIG_BLK_DEV_ZONED */ 1258 *nr_zones = 0; 1259 #endif 1260 } 1261 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1262 1263 static blk_qc_t __map_bio(struct dm_target_io *tio) 1264 { 1265 int r; 1266 sector_t sector; 1267 struct bio *clone = &tio->clone; 1268 struct dm_io *io = tio->io; 1269 struct mapped_device *md = io->md; 1270 struct dm_target *ti = tio->ti; 1271 blk_qc_t ret = BLK_QC_T_NONE; 1272 1273 clone->bi_end_io = clone_endio; 1274 1275 /* 1276 * Map the clone. If r == 0 we don't need to do 1277 * anything, the target has assumed ownership of 1278 * this io. 1279 */ 1280 atomic_inc(&io->io_count); 1281 sector = clone->bi_iter.bi_sector; 1282 1283 r = ti->type->map(ti, clone); 1284 switch (r) { 1285 case DM_MAPIO_SUBMITTED: 1286 break; 1287 case DM_MAPIO_REMAPPED: 1288 /* the bio has been remapped so dispatch it */ 1289 trace_block_bio_remap(clone->bi_disk->queue, clone, 1290 bio_dev(io->orig_bio), sector); 1291 if (md->type == DM_TYPE_NVME_BIO_BASED) 1292 ret = direct_make_request(clone); 1293 else 1294 ret = generic_make_request(clone); 1295 break; 1296 case DM_MAPIO_KILL: 1297 free_tio(tio); 1298 dec_pending(io, BLK_STS_IOERR); 1299 break; 1300 case DM_MAPIO_REQUEUE: 1301 free_tio(tio); 1302 dec_pending(io, BLK_STS_DM_REQUEUE); 1303 break; 1304 default: 1305 DMWARN("unimplemented target map return value: %d", r); 1306 BUG(); 1307 } 1308 1309 return ret; 1310 } 1311 1312 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1313 { 1314 bio->bi_iter.bi_sector = sector; 1315 bio->bi_iter.bi_size = to_bytes(len); 1316 } 1317 1318 /* 1319 * Creates a bio that consists of range of complete bvecs. 1320 */ 1321 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1322 sector_t sector, unsigned len) 1323 { 1324 struct bio *clone = &tio->clone; 1325 1326 __bio_clone_fast(clone, bio); 1327 1328 if (bio_integrity(bio)) { 1329 int r; 1330 1331 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1332 !dm_target_passes_integrity(tio->ti->type))) { 1333 DMWARN("%s: the target %s doesn't support integrity data.", 1334 dm_device_name(tio->io->md), 1335 tio->ti->type->name); 1336 return -EIO; 1337 } 1338 1339 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1340 if (r < 0) 1341 return r; 1342 } 1343 1344 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1345 clone->bi_iter.bi_size = to_bytes(len); 1346 1347 if (bio_integrity(bio)) 1348 bio_integrity_trim(clone); 1349 1350 return 0; 1351 } 1352 1353 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1354 struct dm_target *ti, unsigned num_bios) 1355 { 1356 struct dm_target_io *tio; 1357 int try; 1358 1359 if (!num_bios) 1360 return; 1361 1362 if (num_bios == 1) { 1363 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1364 bio_list_add(blist, &tio->clone); 1365 return; 1366 } 1367 1368 for (try = 0; try < 2; try++) { 1369 int bio_nr; 1370 struct bio *bio; 1371 1372 if (try) 1373 mutex_lock(&ci->io->md->table_devices_lock); 1374 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1375 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1376 if (!tio) 1377 break; 1378 1379 bio_list_add(blist, &tio->clone); 1380 } 1381 if (try) 1382 mutex_unlock(&ci->io->md->table_devices_lock); 1383 if (bio_nr == num_bios) 1384 return; 1385 1386 while ((bio = bio_list_pop(blist))) { 1387 tio = container_of(bio, struct dm_target_io, clone); 1388 free_tio(tio); 1389 } 1390 } 1391 } 1392 1393 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1394 struct dm_target_io *tio, unsigned *len) 1395 { 1396 struct bio *clone = &tio->clone; 1397 1398 tio->len_ptr = len; 1399 1400 __bio_clone_fast(clone, ci->bio); 1401 if (len) 1402 bio_setup_sector(clone, ci->sector, *len); 1403 1404 return __map_bio(tio); 1405 } 1406 1407 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1408 unsigned num_bios, unsigned *len) 1409 { 1410 struct bio_list blist = BIO_EMPTY_LIST; 1411 struct bio *bio; 1412 struct dm_target_io *tio; 1413 1414 alloc_multiple_bios(&blist, ci, ti, num_bios); 1415 1416 while ((bio = bio_list_pop(&blist))) { 1417 tio = container_of(bio, struct dm_target_io, clone); 1418 (void) __clone_and_map_simple_bio(ci, tio, len); 1419 } 1420 } 1421 1422 static int __send_empty_flush(struct clone_info *ci) 1423 { 1424 unsigned target_nr = 0; 1425 struct dm_target *ti; 1426 1427 /* 1428 * Empty flush uses a statically initialized bio, as the base for 1429 * cloning. However, blkg association requires that a bdev is 1430 * associated with a gendisk, which doesn't happen until the bdev is 1431 * opened. So, blkg association is done at issue time of the flush 1432 * rather than when the device is created in alloc_dev(). 1433 */ 1434 bio_set_dev(ci->bio, ci->io->md->bdev); 1435 1436 BUG_ON(bio_has_data(ci->bio)); 1437 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1438 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1439 1440 bio_disassociate_blkg(ci->bio); 1441 1442 return 0; 1443 } 1444 1445 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1446 sector_t sector, unsigned *len) 1447 { 1448 struct bio *bio = ci->bio; 1449 struct dm_target_io *tio; 1450 int r; 1451 1452 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1453 tio->len_ptr = len; 1454 r = clone_bio(tio, bio, sector, *len); 1455 if (r < 0) { 1456 free_tio(tio); 1457 return r; 1458 } 1459 (void) __map_bio(tio); 1460 1461 return 0; 1462 } 1463 1464 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1465 1466 static unsigned get_num_discard_bios(struct dm_target *ti) 1467 { 1468 return ti->num_discard_bios; 1469 } 1470 1471 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1472 { 1473 return ti->num_secure_erase_bios; 1474 } 1475 1476 static unsigned get_num_write_same_bios(struct dm_target *ti) 1477 { 1478 return ti->num_write_same_bios; 1479 } 1480 1481 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1482 { 1483 return ti->num_write_zeroes_bios; 1484 } 1485 1486 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1487 unsigned num_bios) 1488 { 1489 unsigned len; 1490 1491 /* 1492 * Even though the device advertised support for this type of 1493 * request, that does not mean every target supports it, and 1494 * reconfiguration might also have changed that since the 1495 * check was performed. 1496 */ 1497 if (!num_bios) 1498 return -EOPNOTSUPP; 1499 1500 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1501 1502 __send_duplicate_bios(ci, ti, num_bios, &len); 1503 1504 ci->sector += len; 1505 ci->sector_count -= len; 1506 1507 return 0; 1508 } 1509 1510 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1511 { 1512 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1513 } 1514 1515 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1516 { 1517 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1518 } 1519 1520 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1521 { 1522 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1523 } 1524 1525 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1526 { 1527 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1528 } 1529 1530 static bool is_abnormal_io(struct bio *bio) 1531 { 1532 bool r = false; 1533 1534 switch (bio_op(bio)) { 1535 case REQ_OP_DISCARD: 1536 case REQ_OP_SECURE_ERASE: 1537 case REQ_OP_WRITE_SAME: 1538 case REQ_OP_WRITE_ZEROES: 1539 r = true; 1540 break; 1541 } 1542 1543 return r; 1544 } 1545 1546 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1547 int *result) 1548 { 1549 struct bio *bio = ci->bio; 1550 1551 if (bio_op(bio) == REQ_OP_DISCARD) 1552 *result = __send_discard(ci, ti); 1553 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1554 *result = __send_secure_erase(ci, ti); 1555 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1556 *result = __send_write_same(ci, ti); 1557 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1558 *result = __send_write_zeroes(ci, ti); 1559 else 1560 return false; 1561 1562 return true; 1563 } 1564 1565 /* 1566 * Select the correct strategy for processing a non-flush bio. 1567 */ 1568 static int __split_and_process_non_flush(struct clone_info *ci) 1569 { 1570 struct dm_target *ti; 1571 unsigned len; 1572 int r; 1573 1574 ti = dm_table_find_target(ci->map, ci->sector); 1575 if (!ti) 1576 return -EIO; 1577 1578 if (__process_abnormal_io(ci, ti, &r)) 1579 return r; 1580 1581 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1582 1583 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1584 if (r < 0) 1585 return r; 1586 1587 ci->sector += len; 1588 ci->sector_count -= len; 1589 1590 return 0; 1591 } 1592 1593 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1594 struct dm_table *map, struct bio *bio) 1595 { 1596 ci->map = map; 1597 ci->io = alloc_io(md, bio); 1598 ci->sector = bio->bi_iter.bi_sector; 1599 } 1600 1601 #define __dm_part_stat_sub(part, field, subnd) \ 1602 (part_stat_get(part, field) -= (subnd)) 1603 1604 /* 1605 * Entry point to split a bio into clones and submit them to the targets. 1606 */ 1607 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1608 struct dm_table *map, struct bio *bio) 1609 { 1610 struct clone_info ci; 1611 blk_qc_t ret = BLK_QC_T_NONE; 1612 int error = 0; 1613 1614 init_clone_info(&ci, md, map, bio); 1615 1616 if (bio->bi_opf & REQ_PREFLUSH) { 1617 struct bio flush_bio; 1618 1619 /* 1620 * Use an on-stack bio for this, it's safe since we don't 1621 * need to reference it after submit. It's just used as 1622 * the basis for the clone(s). 1623 */ 1624 bio_init(&flush_bio, NULL, 0); 1625 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1626 ci.bio = &flush_bio; 1627 ci.sector_count = 0; 1628 error = __send_empty_flush(&ci); 1629 /* dec_pending submits any data associated with flush */ 1630 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1631 ci.bio = bio; 1632 ci.sector_count = 0; 1633 error = __split_and_process_non_flush(&ci); 1634 } else { 1635 ci.bio = bio; 1636 ci.sector_count = bio_sectors(bio); 1637 while (ci.sector_count && !error) { 1638 error = __split_and_process_non_flush(&ci); 1639 if (current->bio_list && ci.sector_count && !error) { 1640 /* 1641 * Remainder must be passed to generic_make_request() 1642 * so that it gets handled *after* bios already submitted 1643 * have been completely processed. 1644 * We take a clone of the original to store in 1645 * ci.io->orig_bio to be used by end_io_acct() and 1646 * for dec_pending to use for completion handling. 1647 */ 1648 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1649 GFP_NOIO, &md->queue->bio_split); 1650 ci.io->orig_bio = b; 1651 1652 /* 1653 * Adjust IO stats for each split, otherwise upon queue 1654 * reentry there will be redundant IO accounting. 1655 * NOTE: this is a stop-gap fix, a proper fix involves 1656 * significant refactoring of DM core's bio splitting 1657 * (by eliminating DM's splitting and just using bio_split) 1658 */ 1659 part_stat_lock(); 1660 __dm_part_stat_sub(&dm_disk(md)->part0, 1661 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1662 part_stat_unlock(); 1663 1664 bio_chain(b, bio); 1665 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1666 ret = generic_make_request(bio); 1667 break; 1668 } 1669 } 1670 } 1671 1672 /* drop the extra reference count */ 1673 dec_pending(ci.io, errno_to_blk_status(error)); 1674 return ret; 1675 } 1676 1677 /* 1678 * Optimized variant of __split_and_process_bio that leverages the 1679 * fact that targets that use it do _not_ have a need to split bios. 1680 */ 1681 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1682 struct bio *bio, struct dm_target *ti) 1683 { 1684 struct clone_info ci; 1685 blk_qc_t ret = BLK_QC_T_NONE; 1686 int error = 0; 1687 1688 init_clone_info(&ci, md, map, bio); 1689 1690 if (bio->bi_opf & REQ_PREFLUSH) { 1691 struct bio flush_bio; 1692 1693 /* 1694 * Use an on-stack bio for this, it's safe since we don't 1695 * need to reference it after submit. It's just used as 1696 * the basis for the clone(s). 1697 */ 1698 bio_init(&flush_bio, NULL, 0); 1699 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1700 ci.bio = &flush_bio; 1701 ci.sector_count = 0; 1702 error = __send_empty_flush(&ci); 1703 /* dec_pending submits any data associated with flush */ 1704 } else { 1705 struct dm_target_io *tio; 1706 1707 ci.bio = bio; 1708 ci.sector_count = bio_sectors(bio); 1709 if (__process_abnormal_io(&ci, ti, &error)) 1710 goto out; 1711 1712 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1713 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1714 } 1715 out: 1716 /* drop the extra reference count */ 1717 dec_pending(ci.io, errno_to_blk_status(error)); 1718 return ret; 1719 } 1720 1721 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1722 { 1723 unsigned len, sector_count; 1724 1725 sector_count = bio_sectors(*bio); 1726 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1727 1728 if (sector_count > len) { 1729 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1730 1731 bio_chain(split, *bio); 1732 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1733 generic_make_request(*bio); 1734 *bio = split; 1735 } 1736 } 1737 1738 static blk_qc_t dm_process_bio(struct mapped_device *md, 1739 struct dm_table *map, struct bio *bio) 1740 { 1741 blk_qc_t ret = BLK_QC_T_NONE; 1742 struct dm_target *ti = md->immutable_target; 1743 1744 if (unlikely(!map)) { 1745 bio_io_error(bio); 1746 return ret; 1747 } 1748 1749 if (!ti) { 1750 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1751 if (unlikely(!ti)) { 1752 bio_io_error(bio); 1753 return ret; 1754 } 1755 } 1756 1757 /* 1758 * If in ->make_request_fn we need to use blk_queue_split(), otherwise 1759 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1760 * won't be imposed. 1761 */ 1762 if (current->bio_list) { 1763 blk_queue_split(md->queue, &bio); 1764 if (!is_abnormal_io(bio)) 1765 dm_queue_split(md, ti, &bio); 1766 } 1767 1768 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1769 return __process_bio(md, map, bio, ti); 1770 else 1771 return __split_and_process_bio(md, map, bio); 1772 } 1773 1774 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1775 { 1776 struct mapped_device *md = q->queuedata; 1777 blk_qc_t ret = BLK_QC_T_NONE; 1778 int srcu_idx; 1779 struct dm_table *map; 1780 1781 map = dm_get_live_table(md, &srcu_idx); 1782 1783 /* if we're suspended, we have to queue this io for later */ 1784 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1785 dm_put_live_table(md, srcu_idx); 1786 1787 if (!(bio->bi_opf & REQ_RAHEAD)) 1788 queue_io(md, bio); 1789 else 1790 bio_io_error(bio); 1791 return ret; 1792 } 1793 1794 ret = dm_process_bio(md, map, bio); 1795 1796 dm_put_live_table(md, srcu_idx); 1797 return ret; 1798 } 1799 1800 static int dm_any_congested(void *congested_data, int bdi_bits) 1801 { 1802 int r = bdi_bits; 1803 struct mapped_device *md = congested_data; 1804 struct dm_table *map; 1805 1806 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1807 if (dm_request_based(md)) { 1808 /* 1809 * With request-based DM we only need to check the 1810 * top-level queue for congestion. 1811 */ 1812 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1813 } else { 1814 map = dm_get_live_table_fast(md); 1815 if (map) 1816 r = dm_table_any_congested(map, bdi_bits); 1817 dm_put_live_table_fast(md); 1818 } 1819 } 1820 1821 return r; 1822 } 1823 1824 /*----------------------------------------------------------------- 1825 * An IDR is used to keep track of allocated minor numbers. 1826 *---------------------------------------------------------------*/ 1827 static void free_minor(int minor) 1828 { 1829 spin_lock(&_minor_lock); 1830 idr_remove(&_minor_idr, minor); 1831 spin_unlock(&_minor_lock); 1832 } 1833 1834 /* 1835 * See if the device with a specific minor # is free. 1836 */ 1837 static int specific_minor(int minor) 1838 { 1839 int r; 1840 1841 if (minor >= (1 << MINORBITS)) 1842 return -EINVAL; 1843 1844 idr_preload(GFP_KERNEL); 1845 spin_lock(&_minor_lock); 1846 1847 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1848 1849 spin_unlock(&_minor_lock); 1850 idr_preload_end(); 1851 if (r < 0) 1852 return r == -ENOSPC ? -EBUSY : r; 1853 return 0; 1854 } 1855 1856 static int next_free_minor(int *minor) 1857 { 1858 int r; 1859 1860 idr_preload(GFP_KERNEL); 1861 spin_lock(&_minor_lock); 1862 1863 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1864 1865 spin_unlock(&_minor_lock); 1866 idr_preload_end(); 1867 if (r < 0) 1868 return r; 1869 *minor = r; 1870 return 0; 1871 } 1872 1873 static const struct block_device_operations dm_blk_dops; 1874 static const struct dax_operations dm_dax_ops; 1875 1876 static void dm_wq_work(struct work_struct *work); 1877 1878 static void dm_init_normal_md_queue(struct mapped_device *md) 1879 { 1880 /* 1881 * Initialize aspects of queue that aren't relevant for blk-mq 1882 */ 1883 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1884 } 1885 1886 static void cleanup_mapped_device(struct mapped_device *md) 1887 { 1888 if (md->wq) 1889 destroy_workqueue(md->wq); 1890 bioset_exit(&md->bs); 1891 bioset_exit(&md->io_bs); 1892 1893 if (md->dax_dev) { 1894 kill_dax(md->dax_dev); 1895 put_dax(md->dax_dev); 1896 md->dax_dev = NULL; 1897 } 1898 1899 if (md->disk) { 1900 spin_lock(&_minor_lock); 1901 md->disk->private_data = NULL; 1902 spin_unlock(&_minor_lock); 1903 del_gendisk(md->disk); 1904 put_disk(md->disk); 1905 } 1906 1907 if (md->queue) 1908 blk_cleanup_queue(md->queue); 1909 1910 cleanup_srcu_struct(&md->io_barrier); 1911 1912 if (md->bdev) { 1913 bdput(md->bdev); 1914 md->bdev = NULL; 1915 } 1916 1917 mutex_destroy(&md->suspend_lock); 1918 mutex_destroy(&md->type_lock); 1919 mutex_destroy(&md->table_devices_lock); 1920 1921 dm_mq_cleanup_mapped_device(md); 1922 } 1923 1924 /* 1925 * Allocate and initialise a blank device with a given minor. 1926 */ 1927 static struct mapped_device *alloc_dev(int minor) 1928 { 1929 int r, numa_node_id = dm_get_numa_node(); 1930 struct mapped_device *md; 1931 void *old_md; 1932 1933 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1934 if (!md) { 1935 DMWARN("unable to allocate device, out of memory."); 1936 return NULL; 1937 } 1938 1939 if (!try_module_get(THIS_MODULE)) 1940 goto bad_module_get; 1941 1942 /* get a minor number for the dev */ 1943 if (minor == DM_ANY_MINOR) 1944 r = next_free_minor(&minor); 1945 else 1946 r = specific_minor(minor); 1947 if (r < 0) 1948 goto bad_minor; 1949 1950 r = init_srcu_struct(&md->io_barrier); 1951 if (r < 0) 1952 goto bad_io_barrier; 1953 1954 md->numa_node_id = numa_node_id; 1955 md->init_tio_pdu = false; 1956 md->type = DM_TYPE_NONE; 1957 mutex_init(&md->suspend_lock); 1958 mutex_init(&md->type_lock); 1959 mutex_init(&md->table_devices_lock); 1960 spin_lock_init(&md->deferred_lock); 1961 atomic_set(&md->holders, 1); 1962 atomic_set(&md->open_count, 0); 1963 atomic_set(&md->event_nr, 0); 1964 atomic_set(&md->uevent_seq, 0); 1965 INIT_LIST_HEAD(&md->uevent_list); 1966 INIT_LIST_HEAD(&md->table_devices); 1967 spin_lock_init(&md->uevent_lock); 1968 1969 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1970 if (!md->queue) 1971 goto bad; 1972 md->queue->queuedata = md; 1973 md->queue->backing_dev_info->congested_data = md; 1974 1975 md->disk = alloc_disk_node(1, md->numa_node_id); 1976 if (!md->disk) 1977 goto bad; 1978 1979 init_waitqueue_head(&md->wait); 1980 INIT_WORK(&md->work, dm_wq_work); 1981 init_waitqueue_head(&md->eventq); 1982 init_completion(&md->kobj_holder.completion); 1983 1984 md->disk->major = _major; 1985 md->disk->first_minor = minor; 1986 md->disk->fops = &dm_blk_dops; 1987 md->disk->queue = md->queue; 1988 md->disk->private_data = md; 1989 sprintf(md->disk->disk_name, "dm-%d", minor); 1990 1991 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1992 md->dax_dev = alloc_dax(md, md->disk->disk_name, 1993 &dm_dax_ops, 0); 1994 if (!md->dax_dev) 1995 goto bad; 1996 } 1997 1998 add_disk_no_queue_reg(md->disk); 1999 format_dev_t(md->name, MKDEV(_major, minor)); 2000 2001 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2002 if (!md->wq) 2003 goto bad; 2004 2005 md->bdev = bdget_disk(md->disk, 0); 2006 if (!md->bdev) 2007 goto bad; 2008 2009 dm_stats_init(&md->stats); 2010 2011 /* Populate the mapping, nobody knows we exist yet */ 2012 spin_lock(&_minor_lock); 2013 old_md = idr_replace(&_minor_idr, md, minor); 2014 spin_unlock(&_minor_lock); 2015 2016 BUG_ON(old_md != MINOR_ALLOCED); 2017 2018 return md; 2019 2020 bad: 2021 cleanup_mapped_device(md); 2022 bad_io_barrier: 2023 free_minor(minor); 2024 bad_minor: 2025 module_put(THIS_MODULE); 2026 bad_module_get: 2027 kvfree(md); 2028 return NULL; 2029 } 2030 2031 static void unlock_fs(struct mapped_device *md); 2032 2033 static void free_dev(struct mapped_device *md) 2034 { 2035 int minor = MINOR(disk_devt(md->disk)); 2036 2037 unlock_fs(md); 2038 2039 cleanup_mapped_device(md); 2040 2041 free_table_devices(&md->table_devices); 2042 dm_stats_cleanup(&md->stats); 2043 free_minor(minor); 2044 2045 module_put(THIS_MODULE); 2046 kvfree(md); 2047 } 2048 2049 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2050 { 2051 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2052 int ret = 0; 2053 2054 if (dm_table_bio_based(t)) { 2055 /* 2056 * The md may already have mempools that need changing. 2057 * If so, reload bioset because front_pad may have changed 2058 * because a different table was loaded. 2059 */ 2060 bioset_exit(&md->bs); 2061 bioset_exit(&md->io_bs); 2062 2063 } else if (bioset_initialized(&md->bs)) { 2064 /* 2065 * There's no need to reload with request-based dm 2066 * because the size of front_pad doesn't change. 2067 * Note for future: If you are to reload bioset, 2068 * prep-ed requests in the queue may refer 2069 * to bio from the old bioset, so you must walk 2070 * through the queue to unprep. 2071 */ 2072 goto out; 2073 } 2074 2075 BUG_ON(!p || 2076 bioset_initialized(&md->bs) || 2077 bioset_initialized(&md->io_bs)); 2078 2079 ret = bioset_init_from_src(&md->bs, &p->bs); 2080 if (ret) 2081 goto out; 2082 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2083 if (ret) 2084 bioset_exit(&md->bs); 2085 out: 2086 /* mempool bind completed, no longer need any mempools in the table */ 2087 dm_table_free_md_mempools(t); 2088 return ret; 2089 } 2090 2091 /* 2092 * Bind a table to the device. 2093 */ 2094 static void event_callback(void *context) 2095 { 2096 unsigned long flags; 2097 LIST_HEAD(uevents); 2098 struct mapped_device *md = (struct mapped_device *) context; 2099 2100 spin_lock_irqsave(&md->uevent_lock, flags); 2101 list_splice_init(&md->uevent_list, &uevents); 2102 spin_unlock_irqrestore(&md->uevent_lock, flags); 2103 2104 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2105 2106 atomic_inc(&md->event_nr); 2107 wake_up(&md->eventq); 2108 dm_issue_global_event(); 2109 } 2110 2111 /* 2112 * Protected by md->suspend_lock obtained by dm_swap_table(). 2113 */ 2114 static void __set_size(struct mapped_device *md, sector_t size) 2115 { 2116 lockdep_assert_held(&md->suspend_lock); 2117 2118 set_capacity(md->disk, size); 2119 2120 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2121 } 2122 2123 /* 2124 * Returns old map, which caller must destroy. 2125 */ 2126 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2127 struct queue_limits *limits) 2128 { 2129 struct dm_table *old_map; 2130 struct request_queue *q = md->queue; 2131 bool request_based = dm_table_request_based(t); 2132 sector_t size; 2133 int ret; 2134 2135 lockdep_assert_held(&md->suspend_lock); 2136 2137 size = dm_table_get_size(t); 2138 2139 /* 2140 * Wipe any geometry if the size of the table changed. 2141 */ 2142 if (size != dm_get_size(md)) 2143 memset(&md->geometry, 0, sizeof(md->geometry)); 2144 2145 __set_size(md, size); 2146 2147 dm_table_event_callback(t, event_callback, md); 2148 2149 /* 2150 * The queue hasn't been stopped yet, if the old table type wasn't 2151 * for request-based during suspension. So stop it to prevent 2152 * I/O mapping before resume. 2153 * This must be done before setting the queue restrictions, 2154 * because request-based dm may be run just after the setting. 2155 */ 2156 if (request_based) 2157 dm_stop_queue(q); 2158 2159 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2160 /* 2161 * Leverage the fact that request-based DM targets and 2162 * NVMe bio based targets are immutable singletons 2163 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2164 * and __process_bio. 2165 */ 2166 md->immutable_target = dm_table_get_immutable_target(t); 2167 } 2168 2169 ret = __bind_mempools(md, t); 2170 if (ret) { 2171 old_map = ERR_PTR(ret); 2172 goto out; 2173 } 2174 2175 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2176 rcu_assign_pointer(md->map, (void *)t); 2177 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2178 2179 dm_table_set_restrictions(t, q, limits); 2180 if (old_map) 2181 dm_sync_table(md); 2182 2183 out: 2184 return old_map; 2185 } 2186 2187 /* 2188 * Returns unbound table for the caller to free. 2189 */ 2190 static struct dm_table *__unbind(struct mapped_device *md) 2191 { 2192 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2193 2194 if (!map) 2195 return NULL; 2196 2197 dm_table_event_callback(map, NULL, NULL); 2198 RCU_INIT_POINTER(md->map, NULL); 2199 dm_sync_table(md); 2200 2201 return map; 2202 } 2203 2204 /* 2205 * Constructor for a new device. 2206 */ 2207 int dm_create(int minor, struct mapped_device **result) 2208 { 2209 int r; 2210 struct mapped_device *md; 2211 2212 md = alloc_dev(minor); 2213 if (!md) 2214 return -ENXIO; 2215 2216 r = dm_sysfs_init(md); 2217 if (r) { 2218 free_dev(md); 2219 return r; 2220 } 2221 2222 *result = md; 2223 return 0; 2224 } 2225 2226 /* 2227 * Functions to manage md->type. 2228 * All are required to hold md->type_lock. 2229 */ 2230 void dm_lock_md_type(struct mapped_device *md) 2231 { 2232 mutex_lock(&md->type_lock); 2233 } 2234 2235 void dm_unlock_md_type(struct mapped_device *md) 2236 { 2237 mutex_unlock(&md->type_lock); 2238 } 2239 2240 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2241 { 2242 BUG_ON(!mutex_is_locked(&md->type_lock)); 2243 md->type = type; 2244 } 2245 2246 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2247 { 2248 return md->type; 2249 } 2250 2251 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2252 { 2253 return md->immutable_target_type; 2254 } 2255 2256 /* 2257 * The queue_limits are only valid as long as you have a reference 2258 * count on 'md'. 2259 */ 2260 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2261 { 2262 BUG_ON(!atomic_read(&md->holders)); 2263 return &md->queue->limits; 2264 } 2265 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2266 2267 /* 2268 * Setup the DM device's queue based on md's type 2269 */ 2270 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2271 { 2272 int r; 2273 struct queue_limits limits; 2274 enum dm_queue_mode type = dm_get_md_type(md); 2275 2276 switch (type) { 2277 case DM_TYPE_REQUEST_BASED: 2278 r = dm_mq_init_request_queue(md, t); 2279 if (r) { 2280 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2281 return r; 2282 } 2283 break; 2284 case DM_TYPE_BIO_BASED: 2285 case DM_TYPE_DAX_BIO_BASED: 2286 case DM_TYPE_NVME_BIO_BASED: 2287 dm_init_normal_md_queue(md); 2288 blk_queue_make_request(md->queue, dm_make_request); 2289 break; 2290 case DM_TYPE_NONE: 2291 WARN_ON_ONCE(true); 2292 break; 2293 } 2294 2295 r = dm_calculate_queue_limits(t, &limits); 2296 if (r) { 2297 DMERR("Cannot calculate initial queue limits"); 2298 return r; 2299 } 2300 dm_table_set_restrictions(t, md->queue, &limits); 2301 blk_register_queue(md->disk); 2302 2303 return 0; 2304 } 2305 2306 struct mapped_device *dm_get_md(dev_t dev) 2307 { 2308 struct mapped_device *md; 2309 unsigned minor = MINOR(dev); 2310 2311 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2312 return NULL; 2313 2314 spin_lock(&_minor_lock); 2315 2316 md = idr_find(&_minor_idr, minor); 2317 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2318 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2319 md = NULL; 2320 goto out; 2321 } 2322 dm_get(md); 2323 out: 2324 spin_unlock(&_minor_lock); 2325 2326 return md; 2327 } 2328 EXPORT_SYMBOL_GPL(dm_get_md); 2329 2330 void *dm_get_mdptr(struct mapped_device *md) 2331 { 2332 return md->interface_ptr; 2333 } 2334 2335 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2336 { 2337 md->interface_ptr = ptr; 2338 } 2339 2340 void dm_get(struct mapped_device *md) 2341 { 2342 atomic_inc(&md->holders); 2343 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2344 } 2345 2346 int dm_hold(struct mapped_device *md) 2347 { 2348 spin_lock(&_minor_lock); 2349 if (test_bit(DMF_FREEING, &md->flags)) { 2350 spin_unlock(&_minor_lock); 2351 return -EBUSY; 2352 } 2353 dm_get(md); 2354 spin_unlock(&_minor_lock); 2355 return 0; 2356 } 2357 EXPORT_SYMBOL_GPL(dm_hold); 2358 2359 const char *dm_device_name(struct mapped_device *md) 2360 { 2361 return md->name; 2362 } 2363 EXPORT_SYMBOL_GPL(dm_device_name); 2364 2365 static void __dm_destroy(struct mapped_device *md, bool wait) 2366 { 2367 struct dm_table *map; 2368 int srcu_idx; 2369 2370 might_sleep(); 2371 2372 spin_lock(&_minor_lock); 2373 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2374 set_bit(DMF_FREEING, &md->flags); 2375 spin_unlock(&_minor_lock); 2376 2377 blk_set_queue_dying(md->queue); 2378 2379 /* 2380 * Take suspend_lock so that presuspend and postsuspend methods 2381 * do not race with internal suspend. 2382 */ 2383 mutex_lock(&md->suspend_lock); 2384 map = dm_get_live_table(md, &srcu_idx); 2385 if (!dm_suspended_md(md)) { 2386 dm_table_presuspend_targets(map); 2387 dm_table_postsuspend_targets(map); 2388 } 2389 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2390 dm_put_live_table(md, srcu_idx); 2391 mutex_unlock(&md->suspend_lock); 2392 2393 /* 2394 * Rare, but there may be I/O requests still going to complete, 2395 * for example. Wait for all references to disappear. 2396 * No one should increment the reference count of the mapped_device, 2397 * after the mapped_device state becomes DMF_FREEING. 2398 */ 2399 if (wait) 2400 while (atomic_read(&md->holders)) 2401 msleep(1); 2402 else if (atomic_read(&md->holders)) 2403 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2404 dm_device_name(md), atomic_read(&md->holders)); 2405 2406 dm_sysfs_exit(md); 2407 dm_table_destroy(__unbind(md)); 2408 free_dev(md); 2409 } 2410 2411 void dm_destroy(struct mapped_device *md) 2412 { 2413 __dm_destroy(md, true); 2414 } 2415 2416 void dm_destroy_immediate(struct mapped_device *md) 2417 { 2418 __dm_destroy(md, false); 2419 } 2420 2421 void dm_put(struct mapped_device *md) 2422 { 2423 atomic_dec(&md->holders); 2424 } 2425 EXPORT_SYMBOL_GPL(dm_put); 2426 2427 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2428 { 2429 int r = 0; 2430 DEFINE_WAIT(wait); 2431 2432 while (1) { 2433 prepare_to_wait(&md->wait, &wait, task_state); 2434 2435 if (!md_in_flight(md)) 2436 break; 2437 2438 if (signal_pending_state(task_state, current)) { 2439 r = -EINTR; 2440 break; 2441 } 2442 2443 io_schedule(); 2444 } 2445 finish_wait(&md->wait, &wait); 2446 2447 return r; 2448 } 2449 2450 /* 2451 * Process the deferred bios 2452 */ 2453 static void dm_wq_work(struct work_struct *work) 2454 { 2455 struct mapped_device *md = container_of(work, struct mapped_device, 2456 work); 2457 struct bio *c; 2458 int srcu_idx; 2459 struct dm_table *map; 2460 2461 map = dm_get_live_table(md, &srcu_idx); 2462 2463 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2464 spin_lock_irq(&md->deferred_lock); 2465 c = bio_list_pop(&md->deferred); 2466 spin_unlock_irq(&md->deferred_lock); 2467 2468 if (!c) 2469 break; 2470 2471 if (dm_request_based(md)) 2472 (void) generic_make_request(c); 2473 else 2474 (void) dm_process_bio(md, map, c); 2475 } 2476 2477 dm_put_live_table(md, srcu_idx); 2478 } 2479 2480 static void dm_queue_flush(struct mapped_device *md) 2481 { 2482 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2483 smp_mb__after_atomic(); 2484 queue_work(md->wq, &md->work); 2485 } 2486 2487 /* 2488 * Swap in a new table, returning the old one for the caller to destroy. 2489 */ 2490 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2491 { 2492 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2493 struct queue_limits limits; 2494 int r; 2495 2496 mutex_lock(&md->suspend_lock); 2497 2498 /* device must be suspended */ 2499 if (!dm_suspended_md(md)) 2500 goto out; 2501 2502 /* 2503 * If the new table has no data devices, retain the existing limits. 2504 * This helps multipath with queue_if_no_path if all paths disappear, 2505 * then new I/O is queued based on these limits, and then some paths 2506 * reappear. 2507 */ 2508 if (dm_table_has_no_data_devices(table)) { 2509 live_map = dm_get_live_table_fast(md); 2510 if (live_map) 2511 limits = md->queue->limits; 2512 dm_put_live_table_fast(md); 2513 } 2514 2515 if (!live_map) { 2516 r = dm_calculate_queue_limits(table, &limits); 2517 if (r) { 2518 map = ERR_PTR(r); 2519 goto out; 2520 } 2521 } 2522 2523 map = __bind(md, table, &limits); 2524 dm_issue_global_event(); 2525 2526 out: 2527 mutex_unlock(&md->suspend_lock); 2528 return map; 2529 } 2530 2531 /* 2532 * Functions to lock and unlock any filesystem running on the 2533 * device. 2534 */ 2535 static int lock_fs(struct mapped_device *md) 2536 { 2537 int r; 2538 2539 WARN_ON(md->frozen_sb); 2540 2541 md->frozen_sb = freeze_bdev(md->bdev); 2542 if (IS_ERR(md->frozen_sb)) { 2543 r = PTR_ERR(md->frozen_sb); 2544 md->frozen_sb = NULL; 2545 return r; 2546 } 2547 2548 set_bit(DMF_FROZEN, &md->flags); 2549 2550 return 0; 2551 } 2552 2553 static void unlock_fs(struct mapped_device *md) 2554 { 2555 if (!test_bit(DMF_FROZEN, &md->flags)) 2556 return; 2557 2558 thaw_bdev(md->bdev, md->frozen_sb); 2559 md->frozen_sb = NULL; 2560 clear_bit(DMF_FROZEN, &md->flags); 2561 } 2562 2563 /* 2564 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2565 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2566 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2567 * 2568 * If __dm_suspend returns 0, the device is completely quiescent 2569 * now. There is no request-processing activity. All new requests 2570 * are being added to md->deferred list. 2571 */ 2572 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2573 unsigned suspend_flags, long task_state, 2574 int dmf_suspended_flag) 2575 { 2576 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2577 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2578 int r; 2579 2580 lockdep_assert_held(&md->suspend_lock); 2581 2582 /* 2583 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2584 * This flag is cleared before dm_suspend returns. 2585 */ 2586 if (noflush) 2587 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2588 else 2589 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2590 2591 /* 2592 * This gets reverted if there's an error later and the targets 2593 * provide the .presuspend_undo hook. 2594 */ 2595 dm_table_presuspend_targets(map); 2596 2597 /* 2598 * Flush I/O to the device. 2599 * Any I/O submitted after lock_fs() may not be flushed. 2600 * noflush takes precedence over do_lockfs. 2601 * (lock_fs() flushes I/Os and waits for them to complete.) 2602 */ 2603 if (!noflush && do_lockfs) { 2604 r = lock_fs(md); 2605 if (r) { 2606 dm_table_presuspend_undo_targets(map); 2607 return r; 2608 } 2609 } 2610 2611 /* 2612 * Here we must make sure that no processes are submitting requests 2613 * to target drivers i.e. no one may be executing 2614 * __split_and_process_bio. This is called from dm_request and 2615 * dm_wq_work. 2616 * 2617 * To get all processes out of __split_and_process_bio in dm_request, 2618 * we take the write lock. To prevent any process from reentering 2619 * __split_and_process_bio from dm_request and quiesce the thread 2620 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2621 * flush_workqueue(md->wq). 2622 */ 2623 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2624 if (map) 2625 synchronize_srcu(&md->io_barrier); 2626 2627 /* 2628 * Stop md->queue before flushing md->wq in case request-based 2629 * dm defers requests to md->wq from md->queue. 2630 */ 2631 if (dm_request_based(md)) 2632 dm_stop_queue(md->queue); 2633 2634 flush_workqueue(md->wq); 2635 2636 /* 2637 * At this point no more requests are entering target request routines. 2638 * We call dm_wait_for_completion to wait for all existing requests 2639 * to finish. 2640 */ 2641 r = dm_wait_for_completion(md, task_state); 2642 if (!r) 2643 set_bit(dmf_suspended_flag, &md->flags); 2644 2645 if (noflush) 2646 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2647 if (map) 2648 synchronize_srcu(&md->io_barrier); 2649 2650 /* were we interrupted ? */ 2651 if (r < 0) { 2652 dm_queue_flush(md); 2653 2654 if (dm_request_based(md)) 2655 dm_start_queue(md->queue); 2656 2657 unlock_fs(md); 2658 dm_table_presuspend_undo_targets(map); 2659 /* pushback list is already flushed, so skip flush */ 2660 } 2661 2662 return r; 2663 } 2664 2665 /* 2666 * We need to be able to change a mapping table under a mounted 2667 * filesystem. For example we might want to move some data in 2668 * the background. Before the table can be swapped with 2669 * dm_bind_table, dm_suspend must be called to flush any in 2670 * flight bios and ensure that any further io gets deferred. 2671 */ 2672 /* 2673 * Suspend mechanism in request-based dm. 2674 * 2675 * 1. Flush all I/Os by lock_fs() if needed. 2676 * 2. Stop dispatching any I/O by stopping the request_queue. 2677 * 3. Wait for all in-flight I/Os to be completed or requeued. 2678 * 2679 * To abort suspend, start the request_queue. 2680 */ 2681 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2682 { 2683 struct dm_table *map = NULL; 2684 int r = 0; 2685 2686 retry: 2687 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2688 2689 if (dm_suspended_md(md)) { 2690 r = -EINVAL; 2691 goto out_unlock; 2692 } 2693 2694 if (dm_suspended_internally_md(md)) { 2695 /* already internally suspended, wait for internal resume */ 2696 mutex_unlock(&md->suspend_lock); 2697 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2698 if (r) 2699 return r; 2700 goto retry; 2701 } 2702 2703 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2704 2705 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2706 if (r) 2707 goto out_unlock; 2708 2709 dm_table_postsuspend_targets(map); 2710 2711 out_unlock: 2712 mutex_unlock(&md->suspend_lock); 2713 return r; 2714 } 2715 2716 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2717 { 2718 if (map) { 2719 int r = dm_table_resume_targets(map); 2720 if (r) 2721 return r; 2722 } 2723 2724 dm_queue_flush(md); 2725 2726 /* 2727 * Flushing deferred I/Os must be done after targets are resumed 2728 * so that mapping of targets can work correctly. 2729 * Request-based dm is queueing the deferred I/Os in its request_queue. 2730 */ 2731 if (dm_request_based(md)) 2732 dm_start_queue(md->queue); 2733 2734 unlock_fs(md); 2735 2736 return 0; 2737 } 2738 2739 int dm_resume(struct mapped_device *md) 2740 { 2741 int r; 2742 struct dm_table *map = NULL; 2743 2744 retry: 2745 r = -EINVAL; 2746 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2747 2748 if (!dm_suspended_md(md)) 2749 goto out; 2750 2751 if (dm_suspended_internally_md(md)) { 2752 /* already internally suspended, wait for internal resume */ 2753 mutex_unlock(&md->suspend_lock); 2754 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2755 if (r) 2756 return r; 2757 goto retry; 2758 } 2759 2760 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2761 if (!map || !dm_table_get_size(map)) 2762 goto out; 2763 2764 r = __dm_resume(md, map); 2765 if (r) 2766 goto out; 2767 2768 clear_bit(DMF_SUSPENDED, &md->flags); 2769 out: 2770 mutex_unlock(&md->suspend_lock); 2771 2772 return r; 2773 } 2774 2775 /* 2776 * Internal suspend/resume works like userspace-driven suspend. It waits 2777 * until all bios finish and prevents issuing new bios to the target drivers. 2778 * It may be used only from the kernel. 2779 */ 2780 2781 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2782 { 2783 struct dm_table *map = NULL; 2784 2785 lockdep_assert_held(&md->suspend_lock); 2786 2787 if (md->internal_suspend_count++) 2788 return; /* nested internal suspend */ 2789 2790 if (dm_suspended_md(md)) { 2791 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2792 return; /* nest suspend */ 2793 } 2794 2795 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2796 2797 /* 2798 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2799 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2800 * would require changing .presuspend to return an error -- avoid this 2801 * until there is a need for more elaborate variants of internal suspend. 2802 */ 2803 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2804 DMF_SUSPENDED_INTERNALLY); 2805 2806 dm_table_postsuspend_targets(map); 2807 } 2808 2809 static void __dm_internal_resume(struct mapped_device *md) 2810 { 2811 BUG_ON(!md->internal_suspend_count); 2812 2813 if (--md->internal_suspend_count) 2814 return; /* resume from nested internal suspend */ 2815 2816 if (dm_suspended_md(md)) 2817 goto done; /* resume from nested suspend */ 2818 2819 /* 2820 * NOTE: existing callers don't need to call dm_table_resume_targets 2821 * (which may fail -- so best to avoid it for now by passing NULL map) 2822 */ 2823 (void) __dm_resume(md, NULL); 2824 2825 done: 2826 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2827 smp_mb__after_atomic(); 2828 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2829 } 2830 2831 void dm_internal_suspend_noflush(struct mapped_device *md) 2832 { 2833 mutex_lock(&md->suspend_lock); 2834 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2835 mutex_unlock(&md->suspend_lock); 2836 } 2837 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2838 2839 void dm_internal_resume(struct mapped_device *md) 2840 { 2841 mutex_lock(&md->suspend_lock); 2842 __dm_internal_resume(md); 2843 mutex_unlock(&md->suspend_lock); 2844 } 2845 EXPORT_SYMBOL_GPL(dm_internal_resume); 2846 2847 /* 2848 * Fast variants of internal suspend/resume hold md->suspend_lock, 2849 * which prevents interaction with userspace-driven suspend. 2850 */ 2851 2852 void dm_internal_suspend_fast(struct mapped_device *md) 2853 { 2854 mutex_lock(&md->suspend_lock); 2855 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2856 return; 2857 2858 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2859 synchronize_srcu(&md->io_barrier); 2860 flush_workqueue(md->wq); 2861 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2862 } 2863 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2864 2865 void dm_internal_resume_fast(struct mapped_device *md) 2866 { 2867 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2868 goto done; 2869 2870 dm_queue_flush(md); 2871 2872 done: 2873 mutex_unlock(&md->suspend_lock); 2874 } 2875 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2876 2877 /*----------------------------------------------------------------- 2878 * Event notification. 2879 *---------------------------------------------------------------*/ 2880 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2881 unsigned cookie) 2882 { 2883 char udev_cookie[DM_COOKIE_LENGTH]; 2884 char *envp[] = { udev_cookie, NULL }; 2885 2886 if (!cookie) 2887 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2888 else { 2889 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2890 DM_COOKIE_ENV_VAR_NAME, cookie); 2891 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2892 action, envp); 2893 } 2894 } 2895 2896 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2897 { 2898 return atomic_add_return(1, &md->uevent_seq); 2899 } 2900 2901 uint32_t dm_get_event_nr(struct mapped_device *md) 2902 { 2903 return atomic_read(&md->event_nr); 2904 } 2905 2906 int dm_wait_event(struct mapped_device *md, int event_nr) 2907 { 2908 return wait_event_interruptible(md->eventq, 2909 (event_nr != atomic_read(&md->event_nr))); 2910 } 2911 2912 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2913 { 2914 unsigned long flags; 2915 2916 spin_lock_irqsave(&md->uevent_lock, flags); 2917 list_add(elist, &md->uevent_list); 2918 spin_unlock_irqrestore(&md->uevent_lock, flags); 2919 } 2920 2921 /* 2922 * The gendisk is only valid as long as you have a reference 2923 * count on 'md'. 2924 */ 2925 struct gendisk *dm_disk(struct mapped_device *md) 2926 { 2927 return md->disk; 2928 } 2929 EXPORT_SYMBOL_GPL(dm_disk); 2930 2931 struct kobject *dm_kobject(struct mapped_device *md) 2932 { 2933 return &md->kobj_holder.kobj; 2934 } 2935 2936 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2937 { 2938 struct mapped_device *md; 2939 2940 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2941 2942 spin_lock(&_minor_lock); 2943 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2944 md = NULL; 2945 goto out; 2946 } 2947 dm_get(md); 2948 out: 2949 spin_unlock(&_minor_lock); 2950 2951 return md; 2952 } 2953 2954 int dm_suspended_md(struct mapped_device *md) 2955 { 2956 return test_bit(DMF_SUSPENDED, &md->flags); 2957 } 2958 2959 int dm_suspended_internally_md(struct mapped_device *md) 2960 { 2961 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2962 } 2963 2964 int dm_test_deferred_remove_flag(struct mapped_device *md) 2965 { 2966 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2967 } 2968 2969 int dm_suspended(struct dm_target *ti) 2970 { 2971 return dm_suspended_md(dm_table_get_md(ti->table)); 2972 } 2973 EXPORT_SYMBOL_GPL(dm_suspended); 2974 2975 int dm_noflush_suspending(struct dm_target *ti) 2976 { 2977 return __noflush_suspending(dm_table_get_md(ti->table)); 2978 } 2979 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2980 2981 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2982 unsigned integrity, unsigned per_io_data_size, 2983 unsigned min_pool_size) 2984 { 2985 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2986 unsigned int pool_size = 0; 2987 unsigned int front_pad, io_front_pad; 2988 int ret; 2989 2990 if (!pools) 2991 return NULL; 2992 2993 switch (type) { 2994 case DM_TYPE_BIO_BASED: 2995 case DM_TYPE_DAX_BIO_BASED: 2996 case DM_TYPE_NVME_BIO_BASED: 2997 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2998 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2999 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 3000 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 3001 if (ret) 3002 goto out; 3003 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3004 goto out; 3005 break; 3006 case DM_TYPE_REQUEST_BASED: 3007 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3008 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3009 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3010 break; 3011 default: 3012 BUG(); 3013 } 3014 3015 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3016 if (ret) 3017 goto out; 3018 3019 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3020 goto out; 3021 3022 return pools; 3023 3024 out: 3025 dm_free_md_mempools(pools); 3026 3027 return NULL; 3028 } 3029 3030 void dm_free_md_mempools(struct dm_md_mempools *pools) 3031 { 3032 if (!pools) 3033 return; 3034 3035 bioset_exit(&pools->bs); 3036 bioset_exit(&pools->io_bs); 3037 3038 kfree(pools); 3039 } 3040 3041 struct dm_pr { 3042 u64 old_key; 3043 u64 new_key; 3044 u32 flags; 3045 bool fail_early; 3046 }; 3047 3048 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3049 void *data) 3050 { 3051 struct mapped_device *md = bdev->bd_disk->private_data; 3052 struct dm_table *table; 3053 struct dm_target *ti; 3054 int ret = -ENOTTY, srcu_idx; 3055 3056 table = dm_get_live_table(md, &srcu_idx); 3057 if (!table || !dm_table_get_size(table)) 3058 goto out; 3059 3060 /* We only support devices that have a single target */ 3061 if (dm_table_get_num_targets(table) != 1) 3062 goto out; 3063 ti = dm_table_get_target(table, 0); 3064 3065 ret = -EINVAL; 3066 if (!ti->type->iterate_devices) 3067 goto out; 3068 3069 ret = ti->type->iterate_devices(ti, fn, data); 3070 out: 3071 dm_put_live_table(md, srcu_idx); 3072 return ret; 3073 } 3074 3075 /* 3076 * For register / unregister we need to manually call out to every path. 3077 */ 3078 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3079 sector_t start, sector_t len, void *data) 3080 { 3081 struct dm_pr *pr = data; 3082 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3083 3084 if (!ops || !ops->pr_register) 3085 return -EOPNOTSUPP; 3086 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3087 } 3088 3089 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3090 u32 flags) 3091 { 3092 struct dm_pr pr = { 3093 .old_key = old_key, 3094 .new_key = new_key, 3095 .flags = flags, 3096 .fail_early = true, 3097 }; 3098 int ret; 3099 3100 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3101 if (ret && new_key) { 3102 /* unregister all paths if we failed to register any path */ 3103 pr.old_key = new_key; 3104 pr.new_key = 0; 3105 pr.flags = 0; 3106 pr.fail_early = false; 3107 dm_call_pr(bdev, __dm_pr_register, &pr); 3108 } 3109 3110 return ret; 3111 } 3112 3113 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3114 u32 flags) 3115 { 3116 struct mapped_device *md = bdev->bd_disk->private_data; 3117 const struct pr_ops *ops; 3118 int r, srcu_idx; 3119 3120 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3121 if (r < 0) 3122 goto out; 3123 3124 ops = bdev->bd_disk->fops->pr_ops; 3125 if (ops && ops->pr_reserve) 3126 r = ops->pr_reserve(bdev, key, type, flags); 3127 else 3128 r = -EOPNOTSUPP; 3129 out: 3130 dm_unprepare_ioctl(md, srcu_idx); 3131 return r; 3132 } 3133 3134 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3135 { 3136 struct mapped_device *md = bdev->bd_disk->private_data; 3137 const struct pr_ops *ops; 3138 int r, srcu_idx; 3139 3140 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3141 if (r < 0) 3142 goto out; 3143 3144 ops = bdev->bd_disk->fops->pr_ops; 3145 if (ops && ops->pr_release) 3146 r = ops->pr_release(bdev, key, type); 3147 else 3148 r = -EOPNOTSUPP; 3149 out: 3150 dm_unprepare_ioctl(md, srcu_idx); 3151 return r; 3152 } 3153 3154 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3155 enum pr_type type, bool abort) 3156 { 3157 struct mapped_device *md = bdev->bd_disk->private_data; 3158 const struct pr_ops *ops; 3159 int r, srcu_idx; 3160 3161 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3162 if (r < 0) 3163 goto out; 3164 3165 ops = bdev->bd_disk->fops->pr_ops; 3166 if (ops && ops->pr_preempt) 3167 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3168 else 3169 r = -EOPNOTSUPP; 3170 out: 3171 dm_unprepare_ioctl(md, srcu_idx); 3172 return r; 3173 } 3174 3175 static int dm_pr_clear(struct block_device *bdev, u64 key) 3176 { 3177 struct mapped_device *md = bdev->bd_disk->private_data; 3178 const struct pr_ops *ops; 3179 int r, srcu_idx; 3180 3181 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3182 if (r < 0) 3183 goto out; 3184 3185 ops = bdev->bd_disk->fops->pr_ops; 3186 if (ops && ops->pr_clear) 3187 r = ops->pr_clear(bdev, key); 3188 else 3189 r = -EOPNOTSUPP; 3190 out: 3191 dm_unprepare_ioctl(md, srcu_idx); 3192 return r; 3193 } 3194 3195 static const struct pr_ops dm_pr_ops = { 3196 .pr_register = dm_pr_register, 3197 .pr_reserve = dm_pr_reserve, 3198 .pr_release = dm_pr_release, 3199 .pr_preempt = dm_pr_preempt, 3200 .pr_clear = dm_pr_clear, 3201 }; 3202 3203 static const struct block_device_operations dm_blk_dops = { 3204 .open = dm_blk_open, 3205 .release = dm_blk_close, 3206 .ioctl = dm_blk_ioctl, 3207 .getgeo = dm_blk_getgeo, 3208 .report_zones = dm_blk_report_zones, 3209 .pr_ops = &dm_pr_ops, 3210 .owner = THIS_MODULE 3211 }; 3212 3213 static const struct dax_operations dm_dax_ops = { 3214 .direct_access = dm_dax_direct_access, 3215 .dax_supported = dm_dax_supported, 3216 .copy_from_iter = dm_dax_copy_from_iter, 3217 .copy_to_iter = dm_dax_copy_to_iter, 3218 }; 3219 3220 /* 3221 * module hooks 3222 */ 3223 module_init(dm_init); 3224 module_exit(dm_exit); 3225 3226 module_param(major, uint, 0); 3227 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3228 3229 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3230 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3231 3232 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3233 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3234 3235 MODULE_DESCRIPTION(DM_NAME " driver"); 3236 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3237 MODULE_LICENSE("GPL"); 3238