1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 24 #include <trace/events/block.h> 25 26 #define DM_MSG_PREFIX "core" 27 28 #ifdef CONFIG_PRINTK 29 /* 30 * ratelimit state to be used in DMXXX_LIMIT(). 31 */ 32 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 33 DEFAULT_RATELIMIT_INTERVAL, 34 DEFAULT_RATELIMIT_BURST); 35 EXPORT_SYMBOL(dm_ratelimit_state); 36 #endif 37 38 /* 39 * Cookies are numeric values sent with CHANGE and REMOVE 40 * uevents while resuming, removing or renaming the device. 41 */ 42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 43 #define DM_COOKIE_LENGTH 24 44 45 static const char *_name = DM_NAME; 46 47 static unsigned int major = 0; 48 static unsigned int _major = 0; 49 50 static DEFINE_IDR(_minor_idr); 51 52 static DEFINE_SPINLOCK(_minor_lock); 53 54 static void do_deferred_remove(struct work_struct *w); 55 56 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 57 58 static struct workqueue_struct *deferred_remove_workqueue; 59 60 /* 61 * For bio-based dm. 62 * One of these is allocated per bio. 63 */ 64 struct dm_io { 65 struct mapped_device *md; 66 int error; 67 atomic_t io_count; 68 struct bio *bio; 69 unsigned long start_time; 70 spinlock_t endio_lock; 71 struct dm_stats_aux stats_aux; 72 }; 73 74 /* 75 * For request-based dm. 76 * One of these is allocated per request. 77 */ 78 struct dm_rq_target_io { 79 struct mapped_device *md; 80 struct dm_target *ti; 81 struct request *orig, clone; 82 int error; 83 union map_info info; 84 }; 85 86 /* 87 * For request-based dm - the bio clones we allocate are embedded in these 88 * structs. 89 * 90 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 91 * the bioset is created - this means the bio has to come at the end of the 92 * struct. 93 */ 94 struct dm_rq_clone_bio_info { 95 struct bio *orig; 96 struct dm_rq_target_io *tio; 97 struct bio clone; 98 }; 99 100 union map_info *dm_get_rq_mapinfo(struct request *rq) 101 { 102 if (rq && rq->end_io_data) 103 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 104 return NULL; 105 } 106 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 107 108 #define MINOR_ALLOCED ((void *)-1) 109 110 /* 111 * Bits for the md->flags field. 112 */ 113 #define DMF_BLOCK_IO_FOR_SUSPEND 0 114 #define DMF_SUSPENDED 1 115 #define DMF_FROZEN 2 116 #define DMF_FREEING 3 117 #define DMF_DELETING 4 118 #define DMF_NOFLUSH_SUSPENDING 5 119 #define DMF_MERGE_IS_OPTIONAL 6 120 #define DMF_DEFERRED_REMOVE 7 121 #define DMF_SUSPENDED_INTERNALLY 8 122 123 /* 124 * A dummy definition to make RCU happy. 125 * struct dm_table should never be dereferenced in this file. 126 */ 127 struct dm_table { 128 int undefined__; 129 }; 130 131 /* 132 * Work processed by per-device workqueue. 133 */ 134 struct mapped_device { 135 struct srcu_struct io_barrier; 136 struct mutex suspend_lock; 137 atomic_t holders; 138 atomic_t open_count; 139 140 /* 141 * The current mapping. 142 * Use dm_get_live_table{_fast} or take suspend_lock for 143 * dereference. 144 */ 145 struct dm_table __rcu *map; 146 147 struct list_head table_devices; 148 struct mutex table_devices_lock; 149 150 unsigned long flags; 151 152 struct request_queue *queue; 153 unsigned type; 154 /* Protect queue and type against concurrent access. */ 155 struct mutex type_lock; 156 157 struct target_type *immutable_target_type; 158 159 struct gendisk *disk; 160 char name[16]; 161 162 void *interface_ptr; 163 164 /* 165 * A list of ios that arrived while we were suspended. 166 */ 167 atomic_t pending[2]; 168 wait_queue_head_t wait; 169 struct work_struct work; 170 struct bio_list deferred; 171 spinlock_t deferred_lock; 172 173 /* 174 * Processing queue (flush) 175 */ 176 struct workqueue_struct *wq; 177 178 /* 179 * io objects are allocated from here. 180 */ 181 mempool_t *io_pool; 182 183 struct bio_set *bs; 184 185 /* 186 * Event handling. 187 */ 188 atomic_t event_nr; 189 wait_queue_head_t eventq; 190 atomic_t uevent_seq; 191 struct list_head uevent_list; 192 spinlock_t uevent_lock; /* Protect access to uevent_list */ 193 194 /* 195 * freeze/thaw support require holding onto a super block 196 */ 197 struct super_block *frozen_sb; 198 struct block_device *bdev; 199 200 /* forced geometry settings */ 201 struct hd_geometry geometry; 202 203 /* kobject and completion */ 204 struct dm_kobject_holder kobj_holder; 205 206 /* zero-length flush that will be cloned and submitted to targets */ 207 struct bio flush_bio; 208 209 struct dm_stats stats; 210 }; 211 212 /* 213 * For mempools pre-allocation at the table loading time. 214 */ 215 struct dm_md_mempools { 216 mempool_t *io_pool; 217 struct bio_set *bs; 218 }; 219 220 struct table_device { 221 struct list_head list; 222 atomic_t count; 223 struct dm_dev dm_dev; 224 }; 225 226 #define RESERVED_BIO_BASED_IOS 16 227 #define RESERVED_REQUEST_BASED_IOS 256 228 #define RESERVED_MAX_IOS 1024 229 static struct kmem_cache *_io_cache; 230 static struct kmem_cache *_rq_tio_cache; 231 232 /* 233 * Bio-based DM's mempools' reserved IOs set by the user. 234 */ 235 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 236 237 /* 238 * Request-based DM's mempools' reserved IOs set by the user. 239 */ 240 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 241 242 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios, 243 unsigned def, unsigned max) 244 { 245 unsigned ios = ACCESS_ONCE(*reserved_ios); 246 unsigned modified_ios = 0; 247 248 if (!ios) 249 modified_ios = def; 250 else if (ios > max) 251 modified_ios = max; 252 253 if (modified_ios) { 254 (void)cmpxchg(reserved_ios, ios, modified_ios); 255 ios = modified_ios; 256 } 257 258 return ios; 259 } 260 261 unsigned dm_get_reserved_bio_based_ios(void) 262 { 263 return __dm_get_reserved_ios(&reserved_bio_based_ios, 264 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 265 } 266 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 267 268 unsigned dm_get_reserved_rq_based_ios(void) 269 { 270 return __dm_get_reserved_ios(&reserved_rq_based_ios, 271 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 272 } 273 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 274 275 static int __init local_init(void) 276 { 277 int r = -ENOMEM; 278 279 /* allocate a slab for the dm_ios */ 280 _io_cache = KMEM_CACHE(dm_io, 0); 281 if (!_io_cache) 282 return r; 283 284 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 285 if (!_rq_tio_cache) 286 goto out_free_io_cache; 287 288 r = dm_uevent_init(); 289 if (r) 290 goto out_free_rq_tio_cache; 291 292 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 293 if (!deferred_remove_workqueue) { 294 r = -ENOMEM; 295 goto out_uevent_exit; 296 } 297 298 _major = major; 299 r = register_blkdev(_major, _name); 300 if (r < 0) 301 goto out_free_workqueue; 302 303 if (!_major) 304 _major = r; 305 306 return 0; 307 308 out_free_workqueue: 309 destroy_workqueue(deferred_remove_workqueue); 310 out_uevent_exit: 311 dm_uevent_exit(); 312 out_free_rq_tio_cache: 313 kmem_cache_destroy(_rq_tio_cache); 314 out_free_io_cache: 315 kmem_cache_destroy(_io_cache); 316 317 return r; 318 } 319 320 static void local_exit(void) 321 { 322 flush_scheduled_work(); 323 destroy_workqueue(deferred_remove_workqueue); 324 325 kmem_cache_destroy(_rq_tio_cache); 326 kmem_cache_destroy(_io_cache); 327 unregister_blkdev(_major, _name); 328 dm_uevent_exit(); 329 330 _major = 0; 331 332 DMINFO("cleaned up"); 333 } 334 335 static int (*_inits[])(void) __initdata = { 336 local_init, 337 dm_target_init, 338 dm_linear_init, 339 dm_stripe_init, 340 dm_io_init, 341 dm_kcopyd_init, 342 dm_interface_init, 343 dm_statistics_init, 344 }; 345 346 static void (*_exits[])(void) = { 347 local_exit, 348 dm_target_exit, 349 dm_linear_exit, 350 dm_stripe_exit, 351 dm_io_exit, 352 dm_kcopyd_exit, 353 dm_interface_exit, 354 dm_statistics_exit, 355 }; 356 357 static int __init dm_init(void) 358 { 359 const int count = ARRAY_SIZE(_inits); 360 361 int r, i; 362 363 for (i = 0; i < count; i++) { 364 r = _inits[i](); 365 if (r) 366 goto bad; 367 } 368 369 return 0; 370 371 bad: 372 while (i--) 373 _exits[i](); 374 375 return r; 376 } 377 378 static void __exit dm_exit(void) 379 { 380 int i = ARRAY_SIZE(_exits); 381 382 while (i--) 383 _exits[i](); 384 385 /* 386 * Should be empty by this point. 387 */ 388 idr_destroy(&_minor_idr); 389 } 390 391 /* 392 * Block device functions 393 */ 394 int dm_deleting_md(struct mapped_device *md) 395 { 396 return test_bit(DMF_DELETING, &md->flags); 397 } 398 399 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 400 { 401 struct mapped_device *md; 402 403 spin_lock(&_minor_lock); 404 405 md = bdev->bd_disk->private_data; 406 if (!md) 407 goto out; 408 409 if (test_bit(DMF_FREEING, &md->flags) || 410 dm_deleting_md(md)) { 411 md = NULL; 412 goto out; 413 } 414 415 dm_get(md); 416 atomic_inc(&md->open_count); 417 418 out: 419 spin_unlock(&_minor_lock); 420 421 return md ? 0 : -ENXIO; 422 } 423 424 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 425 { 426 struct mapped_device *md = disk->private_data; 427 428 spin_lock(&_minor_lock); 429 430 if (atomic_dec_and_test(&md->open_count) && 431 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 432 queue_work(deferred_remove_workqueue, &deferred_remove_work); 433 434 dm_put(md); 435 436 spin_unlock(&_minor_lock); 437 } 438 439 int dm_open_count(struct mapped_device *md) 440 { 441 return atomic_read(&md->open_count); 442 } 443 444 /* 445 * Guarantees nothing is using the device before it's deleted. 446 */ 447 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 448 { 449 int r = 0; 450 451 spin_lock(&_minor_lock); 452 453 if (dm_open_count(md)) { 454 r = -EBUSY; 455 if (mark_deferred) 456 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 457 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 458 r = -EEXIST; 459 else 460 set_bit(DMF_DELETING, &md->flags); 461 462 spin_unlock(&_minor_lock); 463 464 return r; 465 } 466 467 int dm_cancel_deferred_remove(struct mapped_device *md) 468 { 469 int r = 0; 470 471 spin_lock(&_minor_lock); 472 473 if (test_bit(DMF_DELETING, &md->flags)) 474 r = -EBUSY; 475 else 476 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 477 478 spin_unlock(&_minor_lock); 479 480 return r; 481 } 482 483 static void do_deferred_remove(struct work_struct *w) 484 { 485 dm_deferred_remove(); 486 } 487 488 sector_t dm_get_size(struct mapped_device *md) 489 { 490 return get_capacity(md->disk); 491 } 492 493 struct request_queue *dm_get_md_queue(struct mapped_device *md) 494 { 495 return md->queue; 496 } 497 498 struct dm_stats *dm_get_stats(struct mapped_device *md) 499 { 500 return &md->stats; 501 } 502 503 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 504 { 505 struct mapped_device *md = bdev->bd_disk->private_data; 506 507 return dm_get_geometry(md, geo); 508 } 509 510 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 511 unsigned int cmd, unsigned long arg) 512 { 513 struct mapped_device *md = bdev->bd_disk->private_data; 514 int srcu_idx; 515 struct dm_table *map; 516 struct dm_target *tgt; 517 int r = -ENOTTY; 518 519 retry: 520 map = dm_get_live_table(md, &srcu_idx); 521 522 if (!map || !dm_table_get_size(map)) 523 goto out; 524 525 /* We only support devices that have a single target */ 526 if (dm_table_get_num_targets(map) != 1) 527 goto out; 528 529 tgt = dm_table_get_target(map, 0); 530 if (!tgt->type->ioctl) 531 goto out; 532 533 if (dm_suspended_md(md)) { 534 r = -EAGAIN; 535 goto out; 536 } 537 538 r = tgt->type->ioctl(tgt, cmd, arg); 539 540 out: 541 dm_put_live_table(md, srcu_idx); 542 543 if (r == -ENOTCONN) { 544 msleep(10); 545 goto retry; 546 } 547 548 return r; 549 } 550 551 static struct dm_io *alloc_io(struct mapped_device *md) 552 { 553 return mempool_alloc(md->io_pool, GFP_NOIO); 554 } 555 556 static void free_io(struct mapped_device *md, struct dm_io *io) 557 { 558 mempool_free(io, md->io_pool); 559 } 560 561 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 562 { 563 bio_put(&tio->clone); 564 } 565 566 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 567 gfp_t gfp_mask) 568 { 569 return mempool_alloc(md->io_pool, gfp_mask); 570 } 571 572 static void free_rq_tio(struct dm_rq_target_io *tio) 573 { 574 mempool_free(tio, tio->md->io_pool); 575 } 576 577 static int md_in_flight(struct mapped_device *md) 578 { 579 return atomic_read(&md->pending[READ]) + 580 atomic_read(&md->pending[WRITE]); 581 } 582 583 static void start_io_acct(struct dm_io *io) 584 { 585 struct mapped_device *md = io->md; 586 struct bio *bio = io->bio; 587 int cpu; 588 int rw = bio_data_dir(bio); 589 590 io->start_time = jiffies; 591 592 cpu = part_stat_lock(); 593 part_round_stats(cpu, &dm_disk(md)->part0); 594 part_stat_unlock(); 595 atomic_set(&dm_disk(md)->part0.in_flight[rw], 596 atomic_inc_return(&md->pending[rw])); 597 598 if (unlikely(dm_stats_used(&md->stats))) 599 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 600 bio_sectors(bio), false, 0, &io->stats_aux); 601 } 602 603 static void end_io_acct(struct dm_io *io) 604 { 605 struct mapped_device *md = io->md; 606 struct bio *bio = io->bio; 607 unsigned long duration = jiffies - io->start_time; 608 int pending; 609 int rw = bio_data_dir(bio); 610 611 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 612 613 if (unlikely(dm_stats_used(&md->stats))) 614 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 615 bio_sectors(bio), true, duration, &io->stats_aux); 616 617 /* 618 * After this is decremented the bio must not be touched if it is 619 * a flush. 620 */ 621 pending = atomic_dec_return(&md->pending[rw]); 622 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 623 pending += atomic_read(&md->pending[rw^0x1]); 624 625 /* nudge anyone waiting on suspend queue */ 626 if (!pending) 627 wake_up(&md->wait); 628 } 629 630 /* 631 * Add the bio to the list of deferred io. 632 */ 633 static void queue_io(struct mapped_device *md, struct bio *bio) 634 { 635 unsigned long flags; 636 637 spin_lock_irqsave(&md->deferred_lock, flags); 638 bio_list_add(&md->deferred, bio); 639 spin_unlock_irqrestore(&md->deferred_lock, flags); 640 queue_work(md->wq, &md->work); 641 } 642 643 /* 644 * Everyone (including functions in this file), should use this 645 * function to access the md->map field, and make sure they call 646 * dm_put_live_table() when finished. 647 */ 648 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 649 { 650 *srcu_idx = srcu_read_lock(&md->io_barrier); 651 652 return srcu_dereference(md->map, &md->io_barrier); 653 } 654 655 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 656 { 657 srcu_read_unlock(&md->io_barrier, srcu_idx); 658 } 659 660 void dm_sync_table(struct mapped_device *md) 661 { 662 synchronize_srcu(&md->io_barrier); 663 synchronize_rcu_expedited(); 664 } 665 666 /* 667 * A fast alternative to dm_get_live_table/dm_put_live_table. 668 * The caller must not block between these two functions. 669 */ 670 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 671 { 672 rcu_read_lock(); 673 return rcu_dereference(md->map); 674 } 675 676 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 677 { 678 rcu_read_unlock(); 679 } 680 681 /* 682 * Open a table device so we can use it as a map destination. 683 */ 684 static int open_table_device(struct table_device *td, dev_t dev, 685 struct mapped_device *md) 686 { 687 static char *_claim_ptr = "I belong to device-mapper"; 688 struct block_device *bdev; 689 690 int r; 691 692 BUG_ON(td->dm_dev.bdev); 693 694 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 695 if (IS_ERR(bdev)) 696 return PTR_ERR(bdev); 697 698 r = bd_link_disk_holder(bdev, dm_disk(md)); 699 if (r) { 700 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 701 return r; 702 } 703 704 td->dm_dev.bdev = bdev; 705 return 0; 706 } 707 708 /* 709 * Close a table device that we've been using. 710 */ 711 static void close_table_device(struct table_device *td, struct mapped_device *md) 712 { 713 if (!td->dm_dev.bdev) 714 return; 715 716 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 717 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 718 td->dm_dev.bdev = NULL; 719 } 720 721 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 722 fmode_t mode) { 723 struct table_device *td; 724 725 list_for_each_entry(td, l, list) 726 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 727 return td; 728 729 return NULL; 730 } 731 732 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 733 struct dm_dev **result) { 734 int r; 735 struct table_device *td; 736 737 mutex_lock(&md->table_devices_lock); 738 td = find_table_device(&md->table_devices, dev, mode); 739 if (!td) { 740 td = kmalloc(sizeof(*td), GFP_KERNEL); 741 if (!td) { 742 mutex_unlock(&md->table_devices_lock); 743 return -ENOMEM; 744 } 745 746 td->dm_dev.mode = mode; 747 td->dm_dev.bdev = NULL; 748 749 if ((r = open_table_device(td, dev, md))) { 750 mutex_unlock(&md->table_devices_lock); 751 kfree(td); 752 return r; 753 } 754 755 format_dev_t(td->dm_dev.name, dev); 756 757 atomic_set(&td->count, 0); 758 list_add(&td->list, &md->table_devices); 759 } 760 atomic_inc(&td->count); 761 mutex_unlock(&md->table_devices_lock); 762 763 *result = &td->dm_dev; 764 return 0; 765 } 766 EXPORT_SYMBOL_GPL(dm_get_table_device); 767 768 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 769 { 770 struct table_device *td = container_of(d, struct table_device, dm_dev); 771 772 mutex_lock(&md->table_devices_lock); 773 if (atomic_dec_and_test(&td->count)) { 774 close_table_device(td, md); 775 list_del(&td->list); 776 kfree(td); 777 } 778 mutex_unlock(&md->table_devices_lock); 779 } 780 EXPORT_SYMBOL(dm_put_table_device); 781 782 static void free_table_devices(struct list_head *devices) 783 { 784 struct list_head *tmp, *next; 785 786 list_for_each_safe(tmp, next, devices) { 787 struct table_device *td = list_entry(tmp, struct table_device, list); 788 789 DMWARN("dm_destroy: %s still exists with %d references", 790 td->dm_dev.name, atomic_read(&td->count)); 791 kfree(td); 792 } 793 } 794 795 /* 796 * Get the geometry associated with a dm device 797 */ 798 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 799 { 800 *geo = md->geometry; 801 802 return 0; 803 } 804 805 /* 806 * Set the geometry of a device. 807 */ 808 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 809 { 810 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 811 812 if (geo->start > sz) { 813 DMWARN("Start sector is beyond the geometry limits."); 814 return -EINVAL; 815 } 816 817 md->geometry = *geo; 818 819 return 0; 820 } 821 822 /*----------------------------------------------------------------- 823 * CRUD START: 824 * A more elegant soln is in the works that uses the queue 825 * merge fn, unfortunately there are a couple of changes to 826 * the block layer that I want to make for this. So in the 827 * interests of getting something for people to use I give 828 * you this clearly demarcated crap. 829 *---------------------------------------------------------------*/ 830 831 static int __noflush_suspending(struct mapped_device *md) 832 { 833 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 834 } 835 836 /* 837 * Decrements the number of outstanding ios that a bio has been 838 * cloned into, completing the original io if necc. 839 */ 840 static void dec_pending(struct dm_io *io, int error) 841 { 842 unsigned long flags; 843 int io_error; 844 struct bio *bio; 845 struct mapped_device *md = io->md; 846 847 /* Push-back supersedes any I/O errors */ 848 if (unlikely(error)) { 849 spin_lock_irqsave(&io->endio_lock, flags); 850 if (!(io->error > 0 && __noflush_suspending(md))) 851 io->error = error; 852 spin_unlock_irqrestore(&io->endio_lock, flags); 853 } 854 855 if (atomic_dec_and_test(&io->io_count)) { 856 if (io->error == DM_ENDIO_REQUEUE) { 857 /* 858 * Target requested pushing back the I/O. 859 */ 860 spin_lock_irqsave(&md->deferred_lock, flags); 861 if (__noflush_suspending(md)) 862 bio_list_add_head(&md->deferred, io->bio); 863 else 864 /* noflush suspend was interrupted. */ 865 io->error = -EIO; 866 spin_unlock_irqrestore(&md->deferred_lock, flags); 867 } 868 869 io_error = io->error; 870 bio = io->bio; 871 end_io_acct(io); 872 free_io(md, io); 873 874 if (io_error == DM_ENDIO_REQUEUE) 875 return; 876 877 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 878 /* 879 * Preflush done for flush with data, reissue 880 * without REQ_FLUSH. 881 */ 882 bio->bi_rw &= ~REQ_FLUSH; 883 queue_io(md, bio); 884 } else { 885 /* done with normal IO or empty flush */ 886 trace_block_bio_complete(md->queue, bio, io_error); 887 bio_endio(bio, io_error); 888 } 889 } 890 } 891 892 static void disable_write_same(struct mapped_device *md) 893 { 894 struct queue_limits *limits = dm_get_queue_limits(md); 895 896 /* device doesn't really support WRITE SAME, disable it */ 897 limits->max_write_same_sectors = 0; 898 } 899 900 static void clone_endio(struct bio *bio, int error) 901 { 902 int r = error; 903 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 904 struct dm_io *io = tio->io; 905 struct mapped_device *md = tio->io->md; 906 dm_endio_fn endio = tio->ti->type->end_io; 907 908 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 909 error = -EIO; 910 911 if (endio) { 912 r = endio(tio->ti, bio, error); 913 if (r < 0 || r == DM_ENDIO_REQUEUE) 914 /* 915 * error and requeue request are handled 916 * in dec_pending(). 917 */ 918 error = r; 919 else if (r == DM_ENDIO_INCOMPLETE) 920 /* The target will handle the io */ 921 return; 922 else if (r) { 923 DMWARN("unimplemented target endio return value: %d", r); 924 BUG(); 925 } 926 } 927 928 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && 929 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 930 disable_write_same(md); 931 932 free_tio(md, tio); 933 dec_pending(io, error); 934 } 935 936 /* 937 * Partial completion handling for request-based dm 938 */ 939 static void end_clone_bio(struct bio *clone, int error) 940 { 941 struct dm_rq_clone_bio_info *info = 942 container_of(clone, struct dm_rq_clone_bio_info, clone); 943 struct dm_rq_target_io *tio = info->tio; 944 struct bio *bio = info->orig; 945 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 946 947 bio_put(clone); 948 949 if (tio->error) 950 /* 951 * An error has already been detected on the request. 952 * Once error occurred, just let clone->end_io() handle 953 * the remainder. 954 */ 955 return; 956 else if (error) { 957 /* 958 * Don't notice the error to the upper layer yet. 959 * The error handling decision is made by the target driver, 960 * when the request is completed. 961 */ 962 tio->error = error; 963 return; 964 } 965 966 /* 967 * I/O for the bio successfully completed. 968 * Notice the data completion to the upper layer. 969 */ 970 971 /* 972 * bios are processed from the head of the list. 973 * So the completing bio should always be rq->bio. 974 * If it's not, something wrong is happening. 975 */ 976 if (tio->orig->bio != bio) 977 DMERR("bio completion is going in the middle of the request"); 978 979 /* 980 * Update the original request. 981 * Do not use blk_end_request() here, because it may complete 982 * the original request before the clone, and break the ordering. 983 */ 984 blk_update_request(tio->orig, 0, nr_bytes); 985 } 986 987 /* 988 * Don't touch any member of the md after calling this function because 989 * the md may be freed in dm_put() at the end of this function. 990 * Or do dm_get() before calling this function and dm_put() later. 991 */ 992 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 993 { 994 atomic_dec(&md->pending[rw]); 995 996 /* nudge anyone waiting on suspend queue */ 997 if (!md_in_flight(md)) 998 wake_up(&md->wait); 999 1000 /* 1001 * Run this off this callpath, as drivers could invoke end_io while 1002 * inside their request_fn (and holding the queue lock). Calling 1003 * back into ->request_fn() could deadlock attempting to grab the 1004 * queue lock again. 1005 */ 1006 if (run_queue) 1007 blk_run_queue_async(md->queue); 1008 1009 /* 1010 * dm_put() must be at the end of this function. See the comment above 1011 */ 1012 dm_put(md); 1013 } 1014 1015 static void free_rq_clone(struct request *clone) 1016 { 1017 struct dm_rq_target_io *tio = clone->end_io_data; 1018 1019 blk_rq_unprep_clone(clone); 1020 free_rq_tio(tio); 1021 } 1022 1023 /* 1024 * Complete the clone and the original request. 1025 * Must be called without queue lock. 1026 */ 1027 static void dm_end_request(struct request *clone, int error) 1028 { 1029 int rw = rq_data_dir(clone); 1030 struct dm_rq_target_io *tio = clone->end_io_data; 1031 struct mapped_device *md = tio->md; 1032 struct request *rq = tio->orig; 1033 1034 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 1035 rq->errors = clone->errors; 1036 rq->resid_len = clone->resid_len; 1037 1038 if (rq->sense) 1039 /* 1040 * We are using the sense buffer of the original 1041 * request. 1042 * So setting the length of the sense data is enough. 1043 */ 1044 rq->sense_len = clone->sense_len; 1045 } 1046 1047 free_rq_clone(clone); 1048 blk_end_request_all(rq, error); 1049 rq_completed(md, rw, true); 1050 } 1051 1052 static void dm_unprep_request(struct request *rq) 1053 { 1054 struct request *clone = rq->special; 1055 1056 rq->special = NULL; 1057 rq->cmd_flags &= ~REQ_DONTPREP; 1058 1059 free_rq_clone(clone); 1060 } 1061 1062 /* 1063 * Requeue the original request of a clone. 1064 */ 1065 void dm_requeue_unmapped_request(struct request *clone) 1066 { 1067 int rw = rq_data_dir(clone); 1068 struct dm_rq_target_io *tio = clone->end_io_data; 1069 struct mapped_device *md = tio->md; 1070 struct request *rq = tio->orig; 1071 struct request_queue *q = rq->q; 1072 unsigned long flags; 1073 1074 dm_unprep_request(rq); 1075 1076 spin_lock_irqsave(q->queue_lock, flags); 1077 blk_requeue_request(q, rq); 1078 spin_unlock_irqrestore(q->queue_lock, flags); 1079 1080 rq_completed(md, rw, 0); 1081 } 1082 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 1083 1084 static void __stop_queue(struct request_queue *q) 1085 { 1086 blk_stop_queue(q); 1087 } 1088 1089 static void stop_queue(struct request_queue *q) 1090 { 1091 unsigned long flags; 1092 1093 spin_lock_irqsave(q->queue_lock, flags); 1094 __stop_queue(q); 1095 spin_unlock_irqrestore(q->queue_lock, flags); 1096 } 1097 1098 static void __start_queue(struct request_queue *q) 1099 { 1100 if (blk_queue_stopped(q)) 1101 blk_start_queue(q); 1102 } 1103 1104 static void start_queue(struct request_queue *q) 1105 { 1106 unsigned long flags; 1107 1108 spin_lock_irqsave(q->queue_lock, flags); 1109 __start_queue(q); 1110 spin_unlock_irqrestore(q->queue_lock, flags); 1111 } 1112 1113 static void dm_done(struct request *clone, int error, bool mapped) 1114 { 1115 int r = error; 1116 struct dm_rq_target_io *tio = clone->end_io_data; 1117 dm_request_endio_fn rq_end_io = NULL; 1118 1119 if (tio->ti) { 1120 rq_end_io = tio->ti->type->rq_end_io; 1121 1122 if (mapped && rq_end_io) 1123 r = rq_end_io(tio->ti, clone, error, &tio->info); 1124 } 1125 1126 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && 1127 !clone->q->limits.max_write_same_sectors)) 1128 disable_write_same(tio->md); 1129 1130 if (r <= 0) 1131 /* The target wants to complete the I/O */ 1132 dm_end_request(clone, r); 1133 else if (r == DM_ENDIO_INCOMPLETE) 1134 /* The target will handle the I/O */ 1135 return; 1136 else if (r == DM_ENDIO_REQUEUE) 1137 /* The target wants to requeue the I/O */ 1138 dm_requeue_unmapped_request(clone); 1139 else { 1140 DMWARN("unimplemented target endio return value: %d", r); 1141 BUG(); 1142 } 1143 } 1144 1145 /* 1146 * Request completion handler for request-based dm 1147 */ 1148 static void dm_softirq_done(struct request *rq) 1149 { 1150 bool mapped = true; 1151 struct request *clone = rq->completion_data; 1152 struct dm_rq_target_io *tio = clone->end_io_data; 1153 1154 if (rq->cmd_flags & REQ_FAILED) 1155 mapped = false; 1156 1157 dm_done(clone, tio->error, mapped); 1158 } 1159 1160 /* 1161 * Complete the clone and the original request with the error status 1162 * through softirq context. 1163 */ 1164 static void dm_complete_request(struct request *clone, int error) 1165 { 1166 struct dm_rq_target_io *tio = clone->end_io_data; 1167 struct request *rq = tio->orig; 1168 1169 tio->error = error; 1170 rq->completion_data = clone; 1171 blk_complete_request(rq); 1172 } 1173 1174 /* 1175 * Complete the not-mapped clone and the original request with the error status 1176 * through softirq context. 1177 * Target's rq_end_io() function isn't called. 1178 * This may be used when the target's map_rq() function fails. 1179 */ 1180 void dm_kill_unmapped_request(struct request *clone, int error) 1181 { 1182 struct dm_rq_target_io *tio = clone->end_io_data; 1183 struct request *rq = tio->orig; 1184 1185 rq->cmd_flags |= REQ_FAILED; 1186 dm_complete_request(clone, error); 1187 } 1188 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 1189 1190 /* 1191 * Called with the queue lock held 1192 */ 1193 static void end_clone_request(struct request *clone, int error) 1194 { 1195 /* 1196 * For just cleaning up the information of the queue in which 1197 * the clone was dispatched. 1198 * The clone is *NOT* freed actually here because it is alloced from 1199 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 1200 */ 1201 __blk_put_request(clone->q, clone); 1202 1203 /* 1204 * Actual request completion is done in a softirq context which doesn't 1205 * hold the queue lock. Otherwise, deadlock could occur because: 1206 * - another request may be submitted by the upper level driver 1207 * of the stacking during the completion 1208 * - the submission which requires queue lock may be done 1209 * against this queue 1210 */ 1211 dm_complete_request(clone, error); 1212 } 1213 1214 /* 1215 * Return maximum size of I/O possible at the supplied sector up to the current 1216 * target boundary. 1217 */ 1218 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1219 { 1220 sector_t target_offset = dm_target_offset(ti, sector); 1221 1222 return ti->len - target_offset; 1223 } 1224 1225 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1226 { 1227 sector_t len = max_io_len_target_boundary(sector, ti); 1228 sector_t offset, max_len; 1229 1230 /* 1231 * Does the target need to split even further? 1232 */ 1233 if (ti->max_io_len) { 1234 offset = dm_target_offset(ti, sector); 1235 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1236 max_len = sector_div(offset, ti->max_io_len); 1237 else 1238 max_len = offset & (ti->max_io_len - 1); 1239 max_len = ti->max_io_len - max_len; 1240 1241 if (len > max_len) 1242 len = max_len; 1243 } 1244 1245 return len; 1246 } 1247 1248 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1249 { 1250 if (len > UINT_MAX) { 1251 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1252 (unsigned long long)len, UINT_MAX); 1253 ti->error = "Maximum size of target IO is too large"; 1254 return -EINVAL; 1255 } 1256 1257 ti->max_io_len = (uint32_t) len; 1258 1259 return 0; 1260 } 1261 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1262 1263 /* 1264 * A target may call dm_accept_partial_bio only from the map routine. It is 1265 * allowed for all bio types except REQ_FLUSH. 1266 * 1267 * dm_accept_partial_bio informs the dm that the target only wants to process 1268 * additional n_sectors sectors of the bio and the rest of the data should be 1269 * sent in a next bio. 1270 * 1271 * A diagram that explains the arithmetics: 1272 * +--------------------+---------------+-------+ 1273 * | 1 | 2 | 3 | 1274 * +--------------------+---------------+-------+ 1275 * 1276 * <-------------- *tio->len_ptr ---------------> 1277 * <------- bi_size -------> 1278 * <-- n_sectors --> 1279 * 1280 * Region 1 was already iterated over with bio_advance or similar function. 1281 * (it may be empty if the target doesn't use bio_advance) 1282 * Region 2 is the remaining bio size that the target wants to process. 1283 * (it may be empty if region 1 is non-empty, although there is no reason 1284 * to make it empty) 1285 * The target requires that region 3 is to be sent in the next bio. 1286 * 1287 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1288 * the partially processed part (the sum of regions 1+2) must be the same for all 1289 * copies of the bio. 1290 */ 1291 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1292 { 1293 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1294 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1295 BUG_ON(bio->bi_rw & REQ_FLUSH); 1296 BUG_ON(bi_size > *tio->len_ptr); 1297 BUG_ON(n_sectors > bi_size); 1298 *tio->len_ptr -= bi_size - n_sectors; 1299 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1300 } 1301 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1302 1303 static void __map_bio(struct dm_target_io *tio) 1304 { 1305 int r; 1306 sector_t sector; 1307 struct mapped_device *md; 1308 struct bio *clone = &tio->clone; 1309 struct dm_target *ti = tio->ti; 1310 1311 clone->bi_end_io = clone_endio; 1312 1313 /* 1314 * Map the clone. If r == 0 we don't need to do 1315 * anything, the target has assumed ownership of 1316 * this io. 1317 */ 1318 atomic_inc(&tio->io->io_count); 1319 sector = clone->bi_iter.bi_sector; 1320 r = ti->type->map(ti, clone); 1321 if (r == DM_MAPIO_REMAPPED) { 1322 /* the bio has been remapped so dispatch it */ 1323 1324 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1325 tio->io->bio->bi_bdev->bd_dev, sector); 1326 1327 generic_make_request(clone); 1328 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1329 /* error the io and bail out, or requeue it if needed */ 1330 md = tio->io->md; 1331 dec_pending(tio->io, r); 1332 free_tio(md, tio); 1333 } else if (r) { 1334 DMWARN("unimplemented target map return value: %d", r); 1335 BUG(); 1336 } 1337 } 1338 1339 struct clone_info { 1340 struct mapped_device *md; 1341 struct dm_table *map; 1342 struct bio *bio; 1343 struct dm_io *io; 1344 sector_t sector; 1345 unsigned sector_count; 1346 }; 1347 1348 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1349 { 1350 bio->bi_iter.bi_sector = sector; 1351 bio->bi_iter.bi_size = to_bytes(len); 1352 } 1353 1354 /* 1355 * Creates a bio that consists of range of complete bvecs. 1356 */ 1357 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1358 sector_t sector, unsigned len) 1359 { 1360 struct bio *clone = &tio->clone; 1361 1362 __bio_clone_fast(clone, bio); 1363 1364 if (bio_integrity(bio)) 1365 bio_integrity_clone(clone, bio, GFP_NOIO); 1366 1367 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1368 clone->bi_iter.bi_size = to_bytes(len); 1369 1370 if (bio_integrity(bio)) 1371 bio_integrity_trim(clone, 0, len); 1372 } 1373 1374 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1375 struct dm_target *ti, 1376 unsigned target_bio_nr) 1377 { 1378 struct dm_target_io *tio; 1379 struct bio *clone; 1380 1381 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1382 tio = container_of(clone, struct dm_target_io, clone); 1383 1384 tio->io = ci->io; 1385 tio->ti = ti; 1386 tio->target_bio_nr = target_bio_nr; 1387 1388 return tio; 1389 } 1390 1391 static void __clone_and_map_simple_bio(struct clone_info *ci, 1392 struct dm_target *ti, 1393 unsigned target_bio_nr, unsigned *len) 1394 { 1395 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1396 struct bio *clone = &tio->clone; 1397 1398 tio->len_ptr = len; 1399 1400 __bio_clone_fast(clone, ci->bio); 1401 if (len) 1402 bio_setup_sector(clone, ci->sector, *len); 1403 1404 __map_bio(tio); 1405 } 1406 1407 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1408 unsigned num_bios, unsigned *len) 1409 { 1410 unsigned target_bio_nr; 1411 1412 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1413 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1414 } 1415 1416 static int __send_empty_flush(struct clone_info *ci) 1417 { 1418 unsigned target_nr = 0; 1419 struct dm_target *ti; 1420 1421 BUG_ON(bio_has_data(ci->bio)); 1422 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1423 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1424 1425 return 0; 1426 } 1427 1428 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1429 sector_t sector, unsigned *len) 1430 { 1431 struct bio *bio = ci->bio; 1432 struct dm_target_io *tio; 1433 unsigned target_bio_nr; 1434 unsigned num_target_bios = 1; 1435 1436 /* 1437 * Does the target want to receive duplicate copies of the bio? 1438 */ 1439 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1440 num_target_bios = ti->num_write_bios(ti, bio); 1441 1442 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1443 tio = alloc_tio(ci, ti, target_bio_nr); 1444 tio->len_ptr = len; 1445 clone_bio(tio, bio, sector, *len); 1446 __map_bio(tio); 1447 } 1448 } 1449 1450 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1451 1452 static unsigned get_num_discard_bios(struct dm_target *ti) 1453 { 1454 return ti->num_discard_bios; 1455 } 1456 1457 static unsigned get_num_write_same_bios(struct dm_target *ti) 1458 { 1459 return ti->num_write_same_bios; 1460 } 1461 1462 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1463 1464 static bool is_split_required_for_discard(struct dm_target *ti) 1465 { 1466 return ti->split_discard_bios; 1467 } 1468 1469 static int __send_changing_extent_only(struct clone_info *ci, 1470 get_num_bios_fn get_num_bios, 1471 is_split_required_fn is_split_required) 1472 { 1473 struct dm_target *ti; 1474 unsigned len; 1475 unsigned num_bios; 1476 1477 do { 1478 ti = dm_table_find_target(ci->map, ci->sector); 1479 if (!dm_target_is_valid(ti)) 1480 return -EIO; 1481 1482 /* 1483 * Even though the device advertised support for this type of 1484 * request, that does not mean every target supports it, and 1485 * reconfiguration might also have changed that since the 1486 * check was performed. 1487 */ 1488 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1489 if (!num_bios) 1490 return -EOPNOTSUPP; 1491 1492 if (is_split_required && !is_split_required(ti)) 1493 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1494 else 1495 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1496 1497 __send_duplicate_bios(ci, ti, num_bios, &len); 1498 1499 ci->sector += len; 1500 } while (ci->sector_count -= len); 1501 1502 return 0; 1503 } 1504 1505 static int __send_discard(struct clone_info *ci) 1506 { 1507 return __send_changing_extent_only(ci, get_num_discard_bios, 1508 is_split_required_for_discard); 1509 } 1510 1511 static int __send_write_same(struct clone_info *ci) 1512 { 1513 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1514 } 1515 1516 /* 1517 * Select the correct strategy for processing a non-flush bio. 1518 */ 1519 static int __split_and_process_non_flush(struct clone_info *ci) 1520 { 1521 struct bio *bio = ci->bio; 1522 struct dm_target *ti; 1523 unsigned len; 1524 1525 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1526 return __send_discard(ci); 1527 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1528 return __send_write_same(ci); 1529 1530 ti = dm_table_find_target(ci->map, ci->sector); 1531 if (!dm_target_is_valid(ti)) 1532 return -EIO; 1533 1534 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1535 1536 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1537 1538 ci->sector += len; 1539 ci->sector_count -= len; 1540 1541 return 0; 1542 } 1543 1544 /* 1545 * Entry point to split a bio into clones and submit them to the targets. 1546 */ 1547 static void __split_and_process_bio(struct mapped_device *md, 1548 struct dm_table *map, struct bio *bio) 1549 { 1550 struct clone_info ci; 1551 int error = 0; 1552 1553 if (unlikely(!map)) { 1554 bio_io_error(bio); 1555 return; 1556 } 1557 1558 ci.map = map; 1559 ci.md = md; 1560 ci.io = alloc_io(md); 1561 ci.io->error = 0; 1562 atomic_set(&ci.io->io_count, 1); 1563 ci.io->bio = bio; 1564 ci.io->md = md; 1565 spin_lock_init(&ci.io->endio_lock); 1566 ci.sector = bio->bi_iter.bi_sector; 1567 1568 start_io_acct(ci.io); 1569 1570 if (bio->bi_rw & REQ_FLUSH) { 1571 ci.bio = &ci.md->flush_bio; 1572 ci.sector_count = 0; 1573 error = __send_empty_flush(&ci); 1574 /* dec_pending submits any data associated with flush */ 1575 } else { 1576 ci.bio = bio; 1577 ci.sector_count = bio_sectors(bio); 1578 while (ci.sector_count && !error) 1579 error = __split_and_process_non_flush(&ci); 1580 } 1581 1582 /* drop the extra reference count */ 1583 dec_pending(ci.io, error); 1584 } 1585 /*----------------------------------------------------------------- 1586 * CRUD END 1587 *---------------------------------------------------------------*/ 1588 1589 static int dm_merge_bvec(struct request_queue *q, 1590 struct bvec_merge_data *bvm, 1591 struct bio_vec *biovec) 1592 { 1593 struct mapped_device *md = q->queuedata; 1594 struct dm_table *map = dm_get_live_table_fast(md); 1595 struct dm_target *ti; 1596 sector_t max_sectors; 1597 int max_size = 0; 1598 1599 if (unlikely(!map)) 1600 goto out; 1601 1602 ti = dm_table_find_target(map, bvm->bi_sector); 1603 if (!dm_target_is_valid(ti)) 1604 goto out; 1605 1606 /* 1607 * Find maximum amount of I/O that won't need splitting 1608 */ 1609 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1610 (sector_t) queue_max_sectors(q)); 1611 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1612 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */ 1613 max_size = 0; 1614 1615 /* 1616 * merge_bvec_fn() returns number of bytes 1617 * it can accept at this offset 1618 * max is precomputed maximal io size 1619 */ 1620 if (max_size && ti->type->merge) 1621 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1622 /* 1623 * If the target doesn't support merge method and some of the devices 1624 * provided their merge_bvec method (we know this by looking for the 1625 * max_hw_sectors that dm_set_device_limits may set), then we can't 1626 * allow bios with multiple vector entries. So always set max_size 1627 * to 0, and the code below allows just one page. 1628 */ 1629 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1630 max_size = 0; 1631 1632 out: 1633 dm_put_live_table_fast(md); 1634 /* 1635 * Always allow an entire first page 1636 */ 1637 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1638 max_size = biovec->bv_len; 1639 1640 return max_size; 1641 } 1642 1643 /* 1644 * The request function that just remaps the bio built up by 1645 * dm_merge_bvec. 1646 */ 1647 static void _dm_request(struct request_queue *q, struct bio *bio) 1648 { 1649 int rw = bio_data_dir(bio); 1650 struct mapped_device *md = q->queuedata; 1651 int srcu_idx; 1652 struct dm_table *map; 1653 1654 map = dm_get_live_table(md, &srcu_idx); 1655 1656 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1657 1658 /* if we're suspended, we have to queue this io for later */ 1659 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1660 dm_put_live_table(md, srcu_idx); 1661 1662 if (bio_rw(bio) != READA) 1663 queue_io(md, bio); 1664 else 1665 bio_io_error(bio); 1666 return; 1667 } 1668 1669 __split_and_process_bio(md, map, bio); 1670 dm_put_live_table(md, srcu_idx); 1671 return; 1672 } 1673 1674 int dm_request_based(struct mapped_device *md) 1675 { 1676 return blk_queue_stackable(md->queue); 1677 } 1678 1679 static void dm_request(struct request_queue *q, struct bio *bio) 1680 { 1681 struct mapped_device *md = q->queuedata; 1682 1683 if (dm_request_based(md)) 1684 blk_queue_bio(q, bio); 1685 else 1686 _dm_request(q, bio); 1687 } 1688 1689 void dm_dispatch_request(struct request *rq) 1690 { 1691 int r; 1692 1693 if (blk_queue_io_stat(rq->q)) 1694 rq->cmd_flags |= REQ_IO_STAT; 1695 1696 rq->start_time = jiffies; 1697 r = blk_insert_cloned_request(rq->q, rq); 1698 if (r) 1699 dm_complete_request(rq, r); 1700 } 1701 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1702 1703 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1704 void *data) 1705 { 1706 struct dm_rq_target_io *tio = data; 1707 struct dm_rq_clone_bio_info *info = 1708 container_of(bio, struct dm_rq_clone_bio_info, clone); 1709 1710 info->orig = bio_orig; 1711 info->tio = tio; 1712 bio->bi_end_io = end_clone_bio; 1713 1714 return 0; 1715 } 1716 1717 static int setup_clone(struct request *clone, struct request *rq, 1718 struct dm_rq_target_io *tio) 1719 { 1720 int r; 1721 1722 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1723 dm_rq_bio_constructor, tio); 1724 if (r) 1725 return r; 1726 1727 clone->cmd = rq->cmd; 1728 clone->cmd_len = rq->cmd_len; 1729 clone->sense = rq->sense; 1730 clone->end_io = end_clone_request; 1731 clone->end_io_data = tio; 1732 1733 return 0; 1734 } 1735 1736 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1737 gfp_t gfp_mask) 1738 { 1739 struct request *clone; 1740 struct dm_rq_target_io *tio; 1741 1742 tio = alloc_rq_tio(md, gfp_mask); 1743 if (!tio) 1744 return NULL; 1745 1746 tio->md = md; 1747 tio->ti = NULL; 1748 tio->orig = rq; 1749 tio->error = 0; 1750 memset(&tio->info, 0, sizeof(tio->info)); 1751 1752 clone = &tio->clone; 1753 if (setup_clone(clone, rq, tio)) { 1754 /* -ENOMEM */ 1755 free_rq_tio(tio); 1756 return NULL; 1757 } 1758 1759 return clone; 1760 } 1761 1762 /* 1763 * Called with the queue lock held. 1764 */ 1765 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1766 { 1767 struct mapped_device *md = q->queuedata; 1768 struct request *clone; 1769 1770 if (unlikely(rq->special)) { 1771 DMWARN("Already has something in rq->special."); 1772 return BLKPREP_KILL; 1773 } 1774 1775 clone = clone_rq(rq, md, GFP_ATOMIC); 1776 if (!clone) 1777 return BLKPREP_DEFER; 1778 1779 rq->special = clone; 1780 rq->cmd_flags |= REQ_DONTPREP; 1781 1782 return BLKPREP_OK; 1783 } 1784 1785 /* 1786 * Returns: 1787 * 0 : the request has been processed (not requeued) 1788 * !0 : the request has been requeued 1789 */ 1790 static int map_request(struct dm_target *ti, struct request *clone, 1791 struct mapped_device *md) 1792 { 1793 int r, requeued = 0; 1794 struct dm_rq_target_io *tio = clone->end_io_data; 1795 1796 tio->ti = ti; 1797 r = ti->type->map_rq(ti, clone, &tio->info); 1798 switch (r) { 1799 case DM_MAPIO_SUBMITTED: 1800 /* The target has taken the I/O to submit by itself later */ 1801 break; 1802 case DM_MAPIO_REMAPPED: 1803 /* The target has remapped the I/O so dispatch it */ 1804 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1805 blk_rq_pos(tio->orig)); 1806 dm_dispatch_request(clone); 1807 break; 1808 case DM_MAPIO_REQUEUE: 1809 /* The target wants to requeue the I/O */ 1810 dm_requeue_unmapped_request(clone); 1811 requeued = 1; 1812 break; 1813 default: 1814 if (r > 0) { 1815 DMWARN("unimplemented target map return value: %d", r); 1816 BUG(); 1817 } 1818 1819 /* The target wants to complete the I/O */ 1820 dm_kill_unmapped_request(clone, r); 1821 break; 1822 } 1823 1824 return requeued; 1825 } 1826 1827 static struct request *dm_start_request(struct mapped_device *md, struct request *orig) 1828 { 1829 struct request *clone; 1830 1831 blk_start_request(orig); 1832 clone = orig->special; 1833 atomic_inc(&md->pending[rq_data_dir(clone)]); 1834 1835 /* 1836 * Hold the md reference here for the in-flight I/O. 1837 * We can't rely on the reference count by device opener, 1838 * because the device may be closed during the request completion 1839 * when all bios are completed. 1840 * See the comment in rq_completed() too. 1841 */ 1842 dm_get(md); 1843 1844 return clone; 1845 } 1846 1847 /* 1848 * q->request_fn for request-based dm. 1849 * Called with the queue lock held. 1850 */ 1851 static void dm_request_fn(struct request_queue *q) 1852 { 1853 struct mapped_device *md = q->queuedata; 1854 int srcu_idx; 1855 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 1856 struct dm_target *ti; 1857 struct request *rq, *clone; 1858 sector_t pos; 1859 1860 /* 1861 * For suspend, check blk_queue_stopped() and increment 1862 * ->pending within a single queue_lock not to increment the 1863 * number of in-flight I/Os after the queue is stopped in 1864 * dm_suspend(). 1865 */ 1866 while (!blk_queue_stopped(q)) { 1867 rq = blk_peek_request(q); 1868 if (!rq) 1869 goto delay_and_out; 1870 1871 /* always use block 0 to find the target for flushes for now */ 1872 pos = 0; 1873 if (!(rq->cmd_flags & REQ_FLUSH)) 1874 pos = blk_rq_pos(rq); 1875 1876 ti = dm_table_find_target(map, pos); 1877 if (!dm_target_is_valid(ti)) { 1878 /* 1879 * Must perform setup, that dm_done() requires, 1880 * before calling dm_kill_unmapped_request 1881 */ 1882 DMERR_LIMIT("request attempted access beyond the end of device"); 1883 clone = dm_start_request(md, rq); 1884 dm_kill_unmapped_request(clone, -EIO); 1885 continue; 1886 } 1887 1888 if (ti->type->busy && ti->type->busy(ti)) 1889 goto delay_and_out; 1890 1891 clone = dm_start_request(md, rq); 1892 1893 spin_unlock(q->queue_lock); 1894 if (map_request(ti, clone, md)) 1895 goto requeued; 1896 1897 BUG_ON(!irqs_disabled()); 1898 spin_lock(q->queue_lock); 1899 } 1900 1901 goto out; 1902 1903 requeued: 1904 BUG_ON(!irqs_disabled()); 1905 spin_lock(q->queue_lock); 1906 1907 delay_and_out: 1908 blk_delay_queue(q, HZ / 10); 1909 out: 1910 dm_put_live_table(md, srcu_idx); 1911 } 1912 1913 int dm_underlying_device_busy(struct request_queue *q) 1914 { 1915 return blk_lld_busy(q); 1916 } 1917 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1918 1919 static int dm_lld_busy(struct request_queue *q) 1920 { 1921 int r; 1922 struct mapped_device *md = q->queuedata; 1923 struct dm_table *map = dm_get_live_table_fast(md); 1924 1925 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1926 r = 1; 1927 else 1928 r = dm_table_any_busy_target(map); 1929 1930 dm_put_live_table_fast(md); 1931 1932 return r; 1933 } 1934 1935 static int dm_any_congested(void *congested_data, int bdi_bits) 1936 { 1937 int r = bdi_bits; 1938 struct mapped_device *md = congested_data; 1939 struct dm_table *map; 1940 1941 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1942 map = dm_get_live_table_fast(md); 1943 if (map) { 1944 /* 1945 * Request-based dm cares about only own queue for 1946 * the query about congestion status of request_queue 1947 */ 1948 if (dm_request_based(md)) 1949 r = md->queue->backing_dev_info.state & 1950 bdi_bits; 1951 else 1952 r = dm_table_any_congested(map, bdi_bits); 1953 } 1954 dm_put_live_table_fast(md); 1955 } 1956 1957 return r; 1958 } 1959 1960 /*----------------------------------------------------------------- 1961 * An IDR is used to keep track of allocated minor numbers. 1962 *---------------------------------------------------------------*/ 1963 static void free_minor(int minor) 1964 { 1965 spin_lock(&_minor_lock); 1966 idr_remove(&_minor_idr, minor); 1967 spin_unlock(&_minor_lock); 1968 } 1969 1970 /* 1971 * See if the device with a specific minor # is free. 1972 */ 1973 static int specific_minor(int minor) 1974 { 1975 int r; 1976 1977 if (minor >= (1 << MINORBITS)) 1978 return -EINVAL; 1979 1980 idr_preload(GFP_KERNEL); 1981 spin_lock(&_minor_lock); 1982 1983 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1984 1985 spin_unlock(&_minor_lock); 1986 idr_preload_end(); 1987 if (r < 0) 1988 return r == -ENOSPC ? -EBUSY : r; 1989 return 0; 1990 } 1991 1992 static int next_free_minor(int *minor) 1993 { 1994 int r; 1995 1996 idr_preload(GFP_KERNEL); 1997 spin_lock(&_minor_lock); 1998 1999 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2000 2001 spin_unlock(&_minor_lock); 2002 idr_preload_end(); 2003 if (r < 0) 2004 return r; 2005 *minor = r; 2006 return 0; 2007 } 2008 2009 static const struct block_device_operations dm_blk_dops; 2010 2011 static void dm_wq_work(struct work_struct *work); 2012 2013 static void dm_init_md_queue(struct mapped_device *md) 2014 { 2015 /* 2016 * Request-based dm devices cannot be stacked on top of bio-based dm 2017 * devices. The type of this dm device has not been decided yet. 2018 * The type is decided at the first table loading time. 2019 * To prevent problematic device stacking, clear the queue flag 2020 * for request stacking support until then. 2021 * 2022 * This queue is new, so no concurrency on the queue_flags. 2023 */ 2024 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 2025 2026 md->queue->queuedata = md; 2027 md->queue->backing_dev_info.congested_fn = dm_any_congested; 2028 md->queue->backing_dev_info.congested_data = md; 2029 blk_queue_make_request(md->queue, dm_request); 2030 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 2031 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 2032 } 2033 2034 /* 2035 * Allocate and initialise a blank device with a given minor. 2036 */ 2037 static struct mapped_device *alloc_dev(int minor) 2038 { 2039 int r; 2040 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 2041 void *old_md; 2042 2043 if (!md) { 2044 DMWARN("unable to allocate device, out of memory."); 2045 return NULL; 2046 } 2047 2048 if (!try_module_get(THIS_MODULE)) 2049 goto bad_module_get; 2050 2051 /* get a minor number for the dev */ 2052 if (minor == DM_ANY_MINOR) 2053 r = next_free_minor(&minor); 2054 else 2055 r = specific_minor(minor); 2056 if (r < 0) 2057 goto bad_minor; 2058 2059 r = init_srcu_struct(&md->io_barrier); 2060 if (r < 0) 2061 goto bad_io_barrier; 2062 2063 md->type = DM_TYPE_NONE; 2064 mutex_init(&md->suspend_lock); 2065 mutex_init(&md->type_lock); 2066 mutex_init(&md->table_devices_lock); 2067 spin_lock_init(&md->deferred_lock); 2068 atomic_set(&md->holders, 1); 2069 atomic_set(&md->open_count, 0); 2070 atomic_set(&md->event_nr, 0); 2071 atomic_set(&md->uevent_seq, 0); 2072 INIT_LIST_HEAD(&md->uevent_list); 2073 INIT_LIST_HEAD(&md->table_devices); 2074 spin_lock_init(&md->uevent_lock); 2075 2076 md->queue = blk_alloc_queue(GFP_KERNEL); 2077 if (!md->queue) 2078 goto bad_queue; 2079 2080 dm_init_md_queue(md); 2081 2082 md->disk = alloc_disk(1); 2083 if (!md->disk) 2084 goto bad_disk; 2085 2086 atomic_set(&md->pending[0], 0); 2087 atomic_set(&md->pending[1], 0); 2088 init_waitqueue_head(&md->wait); 2089 INIT_WORK(&md->work, dm_wq_work); 2090 init_waitqueue_head(&md->eventq); 2091 init_completion(&md->kobj_holder.completion); 2092 2093 md->disk->major = _major; 2094 md->disk->first_minor = minor; 2095 md->disk->fops = &dm_blk_dops; 2096 md->disk->queue = md->queue; 2097 md->disk->private_data = md; 2098 sprintf(md->disk->disk_name, "dm-%d", minor); 2099 add_disk(md->disk); 2100 format_dev_t(md->name, MKDEV(_major, minor)); 2101 2102 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2103 if (!md->wq) 2104 goto bad_thread; 2105 2106 md->bdev = bdget_disk(md->disk, 0); 2107 if (!md->bdev) 2108 goto bad_bdev; 2109 2110 bio_init(&md->flush_bio); 2111 md->flush_bio.bi_bdev = md->bdev; 2112 md->flush_bio.bi_rw = WRITE_FLUSH; 2113 2114 dm_stats_init(&md->stats); 2115 2116 /* Populate the mapping, nobody knows we exist yet */ 2117 spin_lock(&_minor_lock); 2118 old_md = idr_replace(&_minor_idr, md, minor); 2119 spin_unlock(&_minor_lock); 2120 2121 BUG_ON(old_md != MINOR_ALLOCED); 2122 2123 return md; 2124 2125 bad_bdev: 2126 destroy_workqueue(md->wq); 2127 bad_thread: 2128 del_gendisk(md->disk); 2129 put_disk(md->disk); 2130 bad_disk: 2131 blk_cleanup_queue(md->queue); 2132 bad_queue: 2133 cleanup_srcu_struct(&md->io_barrier); 2134 bad_io_barrier: 2135 free_minor(minor); 2136 bad_minor: 2137 module_put(THIS_MODULE); 2138 bad_module_get: 2139 kfree(md); 2140 return NULL; 2141 } 2142 2143 static void unlock_fs(struct mapped_device *md); 2144 2145 static void free_dev(struct mapped_device *md) 2146 { 2147 int minor = MINOR(disk_devt(md->disk)); 2148 2149 unlock_fs(md); 2150 bdput(md->bdev); 2151 destroy_workqueue(md->wq); 2152 if (md->io_pool) 2153 mempool_destroy(md->io_pool); 2154 if (md->bs) 2155 bioset_free(md->bs); 2156 blk_integrity_unregister(md->disk); 2157 del_gendisk(md->disk); 2158 cleanup_srcu_struct(&md->io_barrier); 2159 free_table_devices(&md->table_devices); 2160 free_minor(minor); 2161 2162 spin_lock(&_minor_lock); 2163 md->disk->private_data = NULL; 2164 spin_unlock(&_minor_lock); 2165 2166 put_disk(md->disk); 2167 blk_cleanup_queue(md->queue); 2168 dm_stats_cleanup(&md->stats); 2169 module_put(THIS_MODULE); 2170 kfree(md); 2171 } 2172 2173 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2174 { 2175 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2176 2177 if (md->io_pool && md->bs) { 2178 /* The md already has necessary mempools. */ 2179 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2180 /* 2181 * Reload bioset because front_pad may have changed 2182 * because a different table was loaded. 2183 */ 2184 bioset_free(md->bs); 2185 md->bs = p->bs; 2186 p->bs = NULL; 2187 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) { 2188 /* 2189 * There's no need to reload with request-based dm 2190 * because the size of front_pad doesn't change. 2191 * Note for future: If you are to reload bioset, 2192 * prep-ed requests in the queue may refer 2193 * to bio from the old bioset, so you must walk 2194 * through the queue to unprep. 2195 */ 2196 } 2197 goto out; 2198 } 2199 2200 BUG_ON(!p || md->io_pool || md->bs); 2201 2202 md->io_pool = p->io_pool; 2203 p->io_pool = NULL; 2204 md->bs = p->bs; 2205 p->bs = NULL; 2206 2207 out: 2208 /* mempool bind completed, now no need any mempools in the table */ 2209 dm_table_free_md_mempools(t); 2210 } 2211 2212 /* 2213 * Bind a table to the device. 2214 */ 2215 static void event_callback(void *context) 2216 { 2217 unsigned long flags; 2218 LIST_HEAD(uevents); 2219 struct mapped_device *md = (struct mapped_device *) context; 2220 2221 spin_lock_irqsave(&md->uevent_lock, flags); 2222 list_splice_init(&md->uevent_list, &uevents); 2223 spin_unlock_irqrestore(&md->uevent_lock, flags); 2224 2225 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2226 2227 atomic_inc(&md->event_nr); 2228 wake_up(&md->eventq); 2229 } 2230 2231 /* 2232 * Protected by md->suspend_lock obtained by dm_swap_table(). 2233 */ 2234 static void __set_size(struct mapped_device *md, sector_t size) 2235 { 2236 set_capacity(md->disk, size); 2237 2238 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2239 } 2240 2241 /* 2242 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2243 * 2244 * If this function returns 0, then the device is either a non-dm 2245 * device without a merge_bvec_fn, or it is a dm device that is 2246 * able to split any bios it receives that are too big. 2247 */ 2248 int dm_queue_merge_is_compulsory(struct request_queue *q) 2249 { 2250 struct mapped_device *dev_md; 2251 2252 if (!q->merge_bvec_fn) 2253 return 0; 2254 2255 if (q->make_request_fn == dm_request) { 2256 dev_md = q->queuedata; 2257 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2258 return 0; 2259 } 2260 2261 return 1; 2262 } 2263 2264 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2265 struct dm_dev *dev, sector_t start, 2266 sector_t len, void *data) 2267 { 2268 struct block_device *bdev = dev->bdev; 2269 struct request_queue *q = bdev_get_queue(bdev); 2270 2271 return dm_queue_merge_is_compulsory(q); 2272 } 2273 2274 /* 2275 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2276 * on the properties of the underlying devices. 2277 */ 2278 static int dm_table_merge_is_optional(struct dm_table *table) 2279 { 2280 unsigned i = 0; 2281 struct dm_target *ti; 2282 2283 while (i < dm_table_get_num_targets(table)) { 2284 ti = dm_table_get_target(table, i++); 2285 2286 if (ti->type->iterate_devices && 2287 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2288 return 0; 2289 } 2290 2291 return 1; 2292 } 2293 2294 /* 2295 * Returns old map, which caller must destroy. 2296 */ 2297 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2298 struct queue_limits *limits) 2299 { 2300 struct dm_table *old_map; 2301 struct request_queue *q = md->queue; 2302 sector_t size; 2303 int merge_is_optional; 2304 2305 size = dm_table_get_size(t); 2306 2307 /* 2308 * Wipe any geometry if the size of the table changed. 2309 */ 2310 if (size != dm_get_size(md)) 2311 memset(&md->geometry, 0, sizeof(md->geometry)); 2312 2313 __set_size(md, size); 2314 2315 dm_table_event_callback(t, event_callback, md); 2316 2317 /* 2318 * The queue hasn't been stopped yet, if the old table type wasn't 2319 * for request-based during suspension. So stop it to prevent 2320 * I/O mapping before resume. 2321 * This must be done before setting the queue restrictions, 2322 * because request-based dm may be run just after the setting. 2323 */ 2324 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2325 stop_queue(q); 2326 2327 __bind_mempools(md, t); 2328 2329 merge_is_optional = dm_table_merge_is_optional(t); 2330 2331 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2332 rcu_assign_pointer(md->map, t); 2333 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2334 2335 dm_table_set_restrictions(t, q, limits); 2336 if (merge_is_optional) 2337 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2338 else 2339 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2340 if (old_map) 2341 dm_sync_table(md); 2342 2343 return old_map; 2344 } 2345 2346 /* 2347 * Returns unbound table for the caller to free. 2348 */ 2349 static struct dm_table *__unbind(struct mapped_device *md) 2350 { 2351 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2352 2353 if (!map) 2354 return NULL; 2355 2356 dm_table_event_callback(map, NULL, NULL); 2357 RCU_INIT_POINTER(md->map, NULL); 2358 dm_sync_table(md); 2359 2360 return map; 2361 } 2362 2363 /* 2364 * Constructor for a new device. 2365 */ 2366 int dm_create(int minor, struct mapped_device **result) 2367 { 2368 struct mapped_device *md; 2369 2370 md = alloc_dev(minor); 2371 if (!md) 2372 return -ENXIO; 2373 2374 dm_sysfs_init(md); 2375 2376 *result = md; 2377 return 0; 2378 } 2379 2380 /* 2381 * Functions to manage md->type. 2382 * All are required to hold md->type_lock. 2383 */ 2384 void dm_lock_md_type(struct mapped_device *md) 2385 { 2386 mutex_lock(&md->type_lock); 2387 } 2388 2389 void dm_unlock_md_type(struct mapped_device *md) 2390 { 2391 mutex_unlock(&md->type_lock); 2392 } 2393 2394 void dm_set_md_type(struct mapped_device *md, unsigned type) 2395 { 2396 BUG_ON(!mutex_is_locked(&md->type_lock)); 2397 md->type = type; 2398 } 2399 2400 unsigned dm_get_md_type(struct mapped_device *md) 2401 { 2402 BUG_ON(!mutex_is_locked(&md->type_lock)); 2403 return md->type; 2404 } 2405 2406 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2407 { 2408 return md->immutable_target_type; 2409 } 2410 2411 /* 2412 * The queue_limits are only valid as long as you have a reference 2413 * count on 'md'. 2414 */ 2415 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2416 { 2417 BUG_ON(!atomic_read(&md->holders)); 2418 return &md->queue->limits; 2419 } 2420 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2421 2422 /* 2423 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2424 */ 2425 static int dm_init_request_based_queue(struct mapped_device *md) 2426 { 2427 struct request_queue *q = NULL; 2428 2429 if (md->queue->elevator) 2430 return 1; 2431 2432 /* Fully initialize the queue */ 2433 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2434 if (!q) 2435 return 0; 2436 2437 md->queue = q; 2438 dm_init_md_queue(md); 2439 blk_queue_softirq_done(md->queue, dm_softirq_done); 2440 blk_queue_prep_rq(md->queue, dm_prep_fn); 2441 blk_queue_lld_busy(md->queue, dm_lld_busy); 2442 2443 elv_register_queue(md->queue); 2444 2445 return 1; 2446 } 2447 2448 /* 2449 * Setup the DM device's queue based on md's type 2450 */ 2451 int dm_setup_md_queue(struct mapped_device *md) 2452 { 2453 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2454 !dm_init_request_based_queue(md)) { 2455 DMWARN("Cannot initialize queue for request-based mapped device"); 2456 return -EINVAL; 2457 } 2458 2459 return 0; 2460 } 2461 2462 static struct mapped_device *dm_find_md(dev_t dev) 2463 { 2464 struct mapped_device *md; 2465 unsigned minor = MINOR(dev); 2466 2467 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2468 return NULL; 2469 2470 spin_lock(&_minor_lock); 2471 2472 md = idr_find(&_minor_idr, minor); 2473 if (md && (md == MINOR_ALLOCED || 2474 (MINOR(disk_devt(dm_disk(md))) != minor) || 2475 dm_deleting_md(md) || 2476 test_bit(DMF_FREEING, &md->flags))) { 2477 md = NULL; 2478 goto out; 2479 } 2480 2481 out: 2482 spin_unlock(&_minor_lock); 2483 2484 return md; 2485 } 2486 2487 struct mapped_device *dm_get_md(dev_t dev) 2488 { 2489 struct mapped_device *md = dm_find_md(dev); 2490 2491 if (md) 2492 dm_get(md); 2493 2494 return md; 2495 } 2496 EXPORT_SYMBOL_GPL(dm_get_md); 2497 2498 void *dm_get_mdptr(struct mapped_device *md) 2499 { 2500 return md->interface_ptr; 2501 } 2502 2503 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2504 { 2505 md->interface_ptr = ptr; 2506 } 2507 2508 void dm_get(struct mapped_device *md) 2509 { 2510 atomic_inc(&md->holders); 2511 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2512 } 2513 2514 const char *dm_device_name(struct mapped_device *md) 2515 { 2516 return md->name; 2517 } 2518 EXPORT_SYMBOL_GPL(dm_device_name); 2519 2520 static void __dm_destroy(struct mapped_device *md, bool wait) 2521 { 2522 struct dm_table *map; 2523 int srcu_idx; 2524 2525 might_sleep(); 2526 2527 spin_lock(&_minor_lock); 2528 map = dm_get_live_table(md, &srcu_idx); 2529 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2530 set_bit(DMF_FREEING, &md->flags); 2531 spin_unlock(&_minor_lock); 2532 2533 if (!dm_suspended_md(md)) { 2534 dm_table_presuspend_targets(map); 2535 dm_table_postsuspend_targets(map); 2536 } 2537 2538 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2539 dm_put_live_table(md, srcu_idx); 2540 2541 /* 2542 * Rare, but there may be I/O requests still going to complete, 2543 * for example. Wait for all references to disappear. 2544 * No one should increment the reference count of the mapped_device, 2545 * after the mapped_device state becomes DMF_FREEING. 2546 */ 2547 if (wait) 2548 while (atomic_read(&md->holders)) 2549 msleep(1); 2550 else if (atomic_read(&md->holders)) 2551 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2552 dm_device_name(md), atomic_read(&md->holders)); 2553 2554 dm_sysfs_exit(md); 2555 dm_table_destroy(__unbind(md)); 2556 free_dev(md); 2557 } 2558 2559 void dm_destroy(struct mapped_device *md) 2560 { 2561 __dm_destroy(md, true); 2562 } 2563 2564 void dm_destroy_immediate(struct mapped_device *md) 2565 { 2566 __dm_destroy(md, false); 2567 } 2568 2569 void dm_put(struct mapped_device *md) 2570 { 2571 atomic_dec(&md->holders); 2572 } 2573 EXPORT_SYMBOL_GPL(dm_put); 2574 2575 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2576 { 2577 int r = 0; 2578 DECLARE_WAITQUEUE(wait, current); 2579 2580 add_wait_queue(&md->wait, &wait); 2581 2582 while (1) { 2583 set_current_state(interruptible); 2584 2585 if (!md_in_flight(md)) 2586 break; 2587 2588 if (interruptible == TASK_INTERRUPTIBLE && 2589 signal_pending(current)) { 2590 r = -EINTR; 2591 break; 2592 } 2593 2594 io_schedule(); 2595 } 2596 set_current_state(TASK_RUNNING); 2597 2598 remove_wait_queue(&md->wait, &wait); 2599 2600 return r; 2601 } 2602 2603 /* 2604 * Process the deferred bios 2605 */ 2606 static void dm_wq_work(struct work_struct *work) 2607 { 2608 struct mapped_device *md = container_of(work, struct mapped_device, 2609 work); 2610 struct bio *c; 2611 int srcu_idx; 2612 struct dm_table *map; 2613 2614 map = dm_get_live_table(md, &srcu_idx); 2615 2616 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2617 spin_lock_irq(&md->deferred_lock); 2618 c = bio_list_pop(&md->deferred); 2619 spin_unlock_irq(&md->deferred_lock); 2620 2621 if (!c) 2622 break; 2623 2624 if (dm_request_based(md)) 2625 generic_make_request(c); 2626 else 2627 __split_and_process_bio(md, map, c); 2628 } 2629 2630 dm_put_live_table(md, srcu_idx); 2631 } 2632 2633 static void dm_queue_flush(struct mapped_device *md) 2634 { 2635 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2636 smp_mb__after_atomic(); 2637 queue_work(md->wq, &md->work); 2638 } 2639 2640 /* 2641 * Swap in a new table, returning the old one for the caller to destroy. 2642 */ 2643 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2644 { 2645 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2646 struct queue_limits limits; 2647 int r; 2648 2649 mutex_lock(&md->suspend_lock); 2650 2651 /* device must be suspended */ 2652 if (!dm_suspended_md(md)) 2653 goto out; 2654 2655 /* 2656 * If the new table has no data devices, retain the existing limits. 2657 * This helps multipath with queue_if_no_path if all paths disappear, 2658 * then new I/O is queued based on these limits, and then some paths 2659 * reappear. 2660 */ 2661 if (dm_table_has_no_data_devices(table)) { 2662 live_map = dm_get_live_table_fast(md); 2663 if (live_map) 2664 limits = md->queue->limits; 2665 dm_put_live_table_fast(md); 2666 } 2667 2668 if (!live_map) { 2669 r = dm_calculate_queue_limits(table, &limits); 2670 if (r) { 2671 map = ERR_PTR(r); 2672 goto out; 2673 } 2674 } 2675 2676 map = __bind(md, table, &limits); 2677 2678 out: 2679 mutex_unlock(&md->suspend_lock); 2680 return map; 2681 } 2682 2683 /* 2684 * Functions to lock and unlock any filesystem running on the 2685 * device. 2686 */ 2687 static int lock_fs(struct mapped_device *md) 2688 { 2689 int r; 2690 2691 WARN_ON(md->frozen_sb); 2692 2693 md->frozen_sb = freeze_bdev(md->bdev); 2694 if (IS_ERR(md->frozen_sb)) { 2695 r = PTR_ERR(md->frozen_sb); 2696 md->frozen_sb = NULL; 2697 return r; 2698 } 2699 2700 set_bit(DMF_FROZEN, &md->flags); 2701 2702 return 0; 2703 } 2704 2705 static void unlock_fs(struct mapped_device *md) 2706 { 2707 if (!test_bit(DMF_FROZEN, &md->flags)) 2708 return; 2709 2710 thaw_bdev(md->bdev, md->frozen_sb); 2711 md->frozen_sb = NULL; 2712 clear_bit(DMF_FROZEN, &md->flags); 2713 } 2714 2715 /* 2716 * If __dm_suspend returns 0, the device is completely quiescent 2717 * now. There is no request-processing activity. All new requests 2718 * are being added to md->deferred list. 2719 * 2720 * Caller must hold md->suspend_lock 2721 */ 2722 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2723 unsigned suspend_flags, int interruptible) 2724 { 2725 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2726 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2727 int r; 2728 2729 /* 2730 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2731 * This flag is cleared before dm_suspend returns. 2732 */ 2733 if (noflush) 2734 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2735 2736 /* 2737 * This gets reverted if there's an error later and the targets 2738 * provide the .presuspend_undo hook. 2739 */ 2740 dm_table_presuspend_targets(map); 2741 2742 /* 2743 * Flush I/O to the device. 2744 * Any I/O submitted after lock_fs() may not be flushed. 2745 * noflush takes precedence over do_lockfs. 2746 * (lock_fs() flushes I/Os and waits for them to complete.) 2747 */ 2748 if (!noflush && do_lockfs) { 2749 r = lock_fs(md); 2750 if (r) { 2751 dm_table_presuspend_undo_targets(map); 2752 return r; 2753 } 2754 } 2755 2756 /* 2757 * Here we must make sure that no processes are submitting requests 2758 * to target drivers i.e. no one may be executing 2759 * __split_and_process_bio. This is called from dm_request and 2760 * dm_wq_work. 2761 * 2762 * To get all processes out of __split_and_process_bio in dm_request, 2763 * we take the write lock. To prevent any process from reentering 2764 * __split_and_process_bio from dm_request and quiesce the thread 2765 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2766 * flush_workqueue(md->wq). 2767 */ 2768 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2769 if (map) 2770 synchronize_srcu(&md->io_barrier); 2771 2772 /* 2773 * Stop md->queue before flushing md->wq in case request-based 2774 * dm defers requests to md->wq from md->queue. 2775 */ 2776 if (dm_request_based(md)) 2777 stop_queue(md->queue); 2778 2779 flush_workqueue(md->wq); 2780 2781 /* 2782 * At this point no more requests are entering target request routines. 2783 * We call dm_wait_for_completion to wait for all existing requests 2784 * to finish. 2785 */ 2786 r = dm_wait_for_completion(md, interruptible); 2787 2788 if (noflush) 2789 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2790 if (map) 2791 synchronize_srcu(&md->io_barrier); 2792 2793 /* were we interrupted ? */ 2794 if (r < 0) { 2795 dm_queue_flush(md); 2796 2797 if (dm_request_based(md)) 2798 start_queue(md->queue); 2799 2800 unlock_fs(md); 2801 dm_table_presuspend_undo_targets(map); 2802 /* pushback list is already flushed, so skip flush */ 2803 } 2804 2805 return r; 2806 } 2807 2808 /* 2809 * We need to be able to change a mapping table under a mounted 2810 * filesystem. For example we might want to move some data in 2811 * the background. Before the table can be swapped with 2812 * dm_bind_table, dm_suspend must be called to flush any in 2813 * flight bios and ensure that any further io gets deferred. 2814 */ 2815 /* 2816 * Suspend mechanism in request-based dm. 2817 * 2818 * 1. Flush all I/Os by lock_fs() if needed. 2819 * 2. Stop dispatching any I/O by stopping the request_queue. 2820 * 3. Wait for all in-flight I/Os to be completed or requeued. 2821 * 2822 * To abort suspend, start the request_queue. 2823 */ 2824 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2825 { 2826 struct dm_table *map = NULL; 2827 int r = 0; 2828 2829 retry: 2830 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2831 2832 if (dm_suspended_md(md)) { 2833 r = -EINVAL; 2834 goto out_unlock; 2835 } 2836 2837 if (dm_suspended_internally_md(md)) { 2838 /* already internally suspended, wait for internal resume */ 2839 mutex_unlock(&md->suspend_lock); 2840 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2841 if (r) 2842 return r; 2843 goto retry; 2844 } 2845 2846 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2847 2848 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE); 2849 if (r) 2850 goto out_unlock; 2851 2852 set_bit(DMF_SUSPENDED, &md->flags); 2853 2854 dm_table_postsuspend_targets(map); 2855 2856 out_unlock: 2857 mutex_unlock(&md->suspend_lock); 2858 return r; 2859 } 2860 2861 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2862 { 2863 if (map) { 2864 int r = dm_table_resume_targets(map); 2865 if (r) 2866 return r; 2867 } 2868 2869 dm_queue_flush(md); 2870 2871 /* 2872 * Flushing deferred I/Os must be done after targets are resumed 2873 * so that mapping of targets can work correctly. 2874 * Request-based dm is queueing the deferred I/Os in its request_queue. 2875 */ 2876 if (dm_request_based(md)) 2877 start_queue(md->queue); 2878 2879 unlock_fs(md); 2880 2881 return 0; 2882 } 2883 2884 int dm_resume(struct mapped_device *md) 2885 { 2886 int r = -EINVAL; 2887 struct dm_table *map = NULL; 2888 2889 retry: 2890 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2891 2892 if (!dm_suspended_md(md)) 2893 goto out; 2894 2895 if (dm_suspended_internally_md(md)) { 2896 /* already internally suspended, wait for internal resume */ 2897 mutex_unlock(&md->suspend_lock); 2898 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2899 if (r) 2900 return r; 2901 goto retry; 2902 } 2903 2904 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2905 if (!map || !dm_table_get_size(map)) 2906 goto out; 2907 2908 r = __dm_resume(md, map); 2909 if (r) 2910 goto out; 2911 2912 clear_bit(DMF_SUSPENDED, &md->flags); 2913 2914 r = 0; 2915 out: 2916 mutex_unlock(&md->suspend_lock); 2917 2918 return r; 2919 } 2920 2921 /* 2922 * Internal suspend/resume works like userspace-driven suspend. It waits 2923 * until all bios finish and prevents issuing new bios to the target drivers. 2924 * It may be used only from the kernel. 2925 */ 2926 2927 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2928 { 2929 struct dm_table *map = NULL; 2930 2931 if (dm_suspended_internally_md(md)) 2932 return; /* nested internal suspend */ 2933 2934 if (dm_suspended_md(md)) { 2935 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2936 return; /* nest suspend */ 2937 } 2938 2939 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2940 2941 /* 2942 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2943 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2944 * would require changing .presuspend to return an error -- avoid this 2945 * until there is a need for more elaborate variants of internal suspend. 2946 */ 2947 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE); 2948 2949 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2950 2951 dm_table_postsuspend_targets(map); 2952 } 2953 2954 static void __dm_internal_resume(struct mapped_device *md) 2955 { 2956 if (!dm_suspended_internally_md(md)) 2957 return; /* resume from nested internal suspend */ 2958 2959 if (dm_suspended_md(md)) 2960 goto done; /* resume from nested suspend */ 2961 2962 /* 2963 * NOTE: existing callers don't need to call dm_table_resume_targets 2964 * (which may fail -- so best to avoid it for now by passing NULL map) 2965 */ 2966 (void) __dm_resume(md, NULL); 2967 2968 done: 2969 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2970 smp_mb__after_atomic(); 2971 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2972 } 2973 2974 void dm_internal_suspend_noflush(struct mapped_device *md) 2975 { 2976 mutex_lock(&md->suspend_lock); 2977 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2978 mutex_unlock(&md->suspend_lock); 2979 } 2980 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2981 2982 void dm_internal_resume(struct mapped_device *md) 2983 { 2984 mutex_lock(&md->suspend_lock); 2985 __dm_internal_resume(md); 2986 mutex_unlock(&md->suspend_lock); 2987 } 2988 EXPORT_SYMBOL_GPL(dm_internal_resume); 2989 2990 /* 2991 * Fast variants of internal suspend/resume hold md->suspend_lock, 2992 * which prevents interaction with userspace-driven suspend. 2993 */ 2994 2995 void dm_internal_suspend_fast(struct mapped_device *md) 2996 { 2997 mutex_lock(&md->suspend_lock); 2998 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2999 return; 3000 3001 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3002 synchronize_srcu(&md->io_barrier); 3003 flush_workqueue(md->wq); 3004 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3005 } 3006 3007 void dm_internal_resume_fast(struct mapped_device *md) 3008 { 3009 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3010 goto done; 3011 3012 dm_queue_flush(md); 3013 3014 done: 3015 mutex_unlock(&md->suspend_lock); 3016 } 3017 3018 /*----------------------------------------------------------------- 3019 * Event notification. 3020 *---------------------------------------------------------------*/ 3021 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3022 unsigned cookie) 3023 { 3024 char udev_cookie[DM_COOKIE_LENGTH]; 3025 char *envp[] = { udev_cookie, NULL }; 3026 3027 if (!cookie) 3028 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 3029 else { 3030 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3031 DM_COOKIE_ENV_VAR_NAME, cookie); 3032 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 3033 action, envp); 3034 } 3035 } 3036 3037 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3038 { 3039 return atomic_add_return(1, &md->uevent_seq); 3040 } 3041 3042 uint32_t dm_get_event_nr(struct mapped_device *md) 3043 { 3044 return atomic_read(&md->event_nr); 3045 } 3046 3047 int dm_wait_event(struct mapped_device *md, int event_nr) 3048 { 3049 return wait_event_interruptible(md->eventq, 3050 (event_nr != atomic_read(&md->event_nr))); 3051 } 3052 3053 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3054 { 3055 unsigned long flags; 3056 3057 spin_lock_irqsave(&md->uevent_lock, flags); 3058 list_add(elist, &md->uevent_list); 3059 spin_unlock_irqrestore(&md->uevent_lock, flags); 3060 } 3061 3062 /* 3063 * The gendisk is only valid as long as you have a reference 3064 * count on 'md'. 3065 */ 3066 struct gendisk *dm_disk(struct mapped_device *md) 3067 { 3068 return md->disk; 3069 } 3070 3071 struct kobject *dm_kobject(struct mapped_device *md) 3072 { 3073 return &md->kobj_holder.kobj; 3074 } 3075 3076 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3077 { 3078 struct mapped_device *md; 3079 3080 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3081 3082 if (test_bit(DMF_FREEING, &md->flags) || 3083 dm_deleting_md(md)) 3084 return NULL; 3085 3086 dm_get(md); 3087 return md; 3088 } 3089 3090 int dm_suspended_md(struct mapped_device *md) 3091 { 3092 return test_bit(DMF_SUSPENDED, &md->flags); 3093 } 3094 3095 int dm_suspended_internally_md(struct mapped_device *md) 3096 { 3097 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3098 } 3099 3100 int dm_test_deferred_remove_flag(struct mapped_device *md) 3101 { 3102 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3103 } 3104 3105 int dm_suspended(struct dm_target *ti) 3106 { 3107 return dm_suspended_md(dm_table_get_md(ti->table)); 3108 } 3109 EXPORT_SYMBOL_GPL(dm_suspended); 3110 3111 int dm_noflush_suspending(struct dm_target *ti) 3112 { 3113 return __noflush_suspending(dm_table_get_md(ti->table)); 3114 } 3115 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3116 3117 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) 3118 { 3119 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 3120 struct kmem_cache *cachep; 3121 unsigned int pool_size; 3122 unsigned int front_pad; 3123 3124 if (!pools) 3125 return NULL; 3126 3127 if (type == DM_TYPE_BIO_BASED) { 3128 cachep = _io_cache; 3129 pool_size = dm_get_reserved_bio_based_ios(); 3130 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3131 } else if (type == DM_TYPE_REQUEST_BASED) { 3132 cachep = _rq_tio_cache; 3133 pool_size = dm_get_reserved_rq_based_ios(); 3134 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3135 /* per_bio_data_size is not used. See __bind_mempools(). */ 3136 WARN_ON(per_bio_data_size != 0); 3137 } else 3138 goto out; 3139 3140 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 3141 if (!pools->io_pool) 3142 goto out; 3143 3144 pools->bs = bioset_create_nobvec(pool_size, front_pad); 3145 if (!pools->bs) 3146 goto out; 3147 3148 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 3149 goto out; 3150 3151 return pools; 3152 3153 out: 3154 dm_free_md_mempools(pools); 3155 3156 return NULL; 3157 } 3158 3159 void dm_free_md_mempools(struct dm_md_mempools *pools) 3160 { 3161 if (!pools) 3162 return; 3163 3164 if (pools->io_pool) 3165 mempool_destroy(pools->io_pool); 3166 3167 if (pools->bs) 3168 bioset_free(pools->bs); 3169 3170 kfree(pools); 3171 } 3172 3173 static const struct block_device_operations dm_blk_dops = { 3174 .open = dm_blk_open, 3175 .release = dm_blk_close, 3176 .ioctl = dm_blk_ioctl, 3177 .getgeo = dm_blk_getgeo, 3178 .owner = THIS_MODULE 3179 }; 3180 3181 /* 3182 * module hooks 3183 */ 3184 module_init(dm_init); 3185 module_exit(dm_exit); 3186 3187 module_param(major, uint, 0); 3188 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3189 3190 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3191 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3192 3193 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 3194 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 3195 3196 MODULE_DESCRIPTION(DM_NAME " driver"); 3197 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3198 MODULE_LICENSE("GPL"); 3199