xref: /openbmc/linux/drivers/md/dm.c (revision 828678b8)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
31 
32 #define DM_MSG_PREFIX "core"
33 
34 /*
35  * Cookies are numeric values sent with CHANGE and REMOVE
36  * uevents while resuming, removing or renaming the device.
37  */
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
40 
41 static const char *_name = DM_NAME;
42 
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
45 
46 static DEFINE_IDR(_minor_idr);
47 
48 static DEFINE_SPINLOCK(_minor_lock);
49 
50 static void do_deferred_remove(struct work_struct *w);
51 
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
53 
54 static struct workqueue_struct *deferred_remove_workqueue;
55 
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
58 
59 void dm_issue_global_event(void)
60 {
61 	atomic_inc(&dm_global_event_nr);
62 	wake_up(&dm_global_eventq);
63 }
64 
65 /*
66  * One of these is allocated (on-stack) per original bio.
67  */
68 struct clone_info {
69 	struct dm_table *map;
70 	struct bio *bio;
71 	struct dm_io *io;
72 	sector_t sector;
73 	unsigned sector_count;
74 };
75 
76 /*
77  * One of these is allocated per clone bio.
78  */
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 	unsigned magic;
82 	struct dm_io *io;
83 	struct dm_target *ti;
84 	unsigned target_bio_nr;
85 	unsigned *len_ptr;
86 	bool inside_dm_io;
87 	struct bio clone;
88 };
89 
90 /*
91  * One of these is allocated per original bio.
92  * It contains the first clone used for that original.
93  */
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 	unsigned magic;
97 	struct mapped_device *md;
98 	blk_status_t status;
99 	atomic_t io_count;
100 	struct bio *orig_bio;
101 	unsigned long start_time;
102 	spinlock_t endio_lock;
103 	struct dm_stats_aux stats_aux;
104 	/* last member of dm_target_io is 'struct bio' */
105 	struct dm_target_io tio;
106 };
107 
108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
109 {
110 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 	if (!tio->inside_dm_io)
112 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
114 }
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
116 
117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
118 {
119 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 	if (io->magic == DM_IO_MAGIC)
121 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 	BUG_ON(io->magic != DM_TIO_MAGIC);
123 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
124 }
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
126 
127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
128 {
129 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
130 }
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
132 
133 #define MINOR_ALLOCED ((void *)-1)
134 
135 /*
136  * Bits for the md->flags field.
137  */
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
147 
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
150 
151 /*
152  * For mempools pre-allocation at the table loading time.
153  */
154 struct dm_md_mempools {
155 	struct bio_set bs;
156 	struct bio_set io_bs;
157 };
158 
159 struct table_device {
160 	struct list_head list;
161 	refcount_t count;
162 	struct dm_dev dm_dev;
163 };
164 
165 /*
166  * Bio-based DM's mempools' reserved IOs set by the user.
167  */
168 #define RESERVED_BIO_BASED_IOS		16
169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
170 
171 static int __dm_get_module_param_int(int *module_param, int min, int max)
172 {
173 	int param = READ_ONCE(*module_param);
174 	int modified_param = 0;
175 	bool modified = true;
176 
177 	if (param < min)
178 		modified_param = min;
179 	else if (param > max)
180 		modified_param = max;
181 	else
182 		modified = false;
183 
184 	if (modified) {
185 		(void)cmpxchg(module_param, param, modified_param);
186 		param = modified_param;
187 	}
188 
189 	return param;
190 }
191 
192 unsigned __dm_get_module_param(unsigned *module_param,
193 			       unsigned def, unsigned max)
194 {
195 	unsigned param = READ_ONCE(*module_param);
196 	unsigned modified_param = 0;
197 
198 	if (!param)
199 		modified_param = def;
200 	else if (param > max)
201 		modified_param = max;
202 
203 	if (modified_param) {
204 		(void)cmpxchg(module_param, param, modified_param);
205 		param = modified_param;
206 	}
207 
208 	return param;
209 }
210 
211 unsigned dm_get_reserved_bio_based_ios(void)
212 {
213 	return __dm_get_module_param(&reserved_bio_based_ios,
214 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
215 }
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
217 
218 static unsigned dm_get_numa_node(void)
219 {
220 	return __dm_get_module_param_int(&dm_numa_node,
221 					 DM_NUMA_NODE, num_online_nodes() - 1);
222 }
223 
224 static int __init local_init(void)
225 {
226 	int r;
227 
228 	r = dm_uevent_init();
229 	if (r)
230 		return r;
231 
232 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
233 	if (!deferred_remove_workqueue) {
234 		r = -ENOMEM;
235 		goto out_uevent_exit;
236 	}
237 
238 	_major = major;
239 	r = register_blkdev(_major, _name);
240 	if (r < 0)
241 		goto out_free_workqueue;
242 
243 	if (!_major)
244 		_major = r;
245 
246 	return 0;
247 
248 out_free_workqueue:
249 	destroy_workqueue(deferred_remove_workqueue);
250 out_uevent_exit:
251 	dm_uevent_exit();
252 
253 	return r;
254 }
255 
256 static void local_exit(void)
257 {
258 	flush_scheduled_work();
259 	destroy_workqueue(deferred_remove_workqueue);
260 
261 	unregister_blkdev(_major, _name);
262 	dm_uevent_exit();
263 
264 	_major = 0;
265 
266 	DMINFO("cleaned up");
267 }
268 
269 static int (*_inits[])(void) __initdata = {
270 	local_init,
271 	dm_target_init,
272 	dm_linear_init,
273 	dm_stripe_init,
274 	dm_io_init,
275 	dm_kcopyd_init,
276 	dm_interface_init,
277 	dm_statistics_init,
278 };
279 
280 static void (*_exits[])(void) = {
281 	local_exit,
282 	dm_target_exit,
283 	dm_linear_exit,
284 	dm_stripe_exit,
285 	dm_io_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 	dm_statistics_exit,
289 };
290 
291 static int __init dm_init(void)
292 {
293 	const int count = ARRAY_SIZE(_inits);
294 
295 	int r, i;
296 
297 	for (i = 0; i < count; i++) {
298 		r = _inits[i]();
299 		if (r)
300 			goto bad;
301 	}
302 
303 	return 0;
304 
305       bad:
306 	while (i--)
307 		_exits[i]();
308 
309 	return r;
310 }
311 
312 static void __exit dm_exit(void)
313 {
314 	int i = ARRAY_SIZE(_exits);
315 
316 	while (i--)
317 		_exits[i]();
318 
319 	/*
320 	 * Should be empty by this point.
321 	 */
322 	idr_destroy(&_minor_idr);
323 }
324 
325 /*
326  * Block device functions
327  */
328 int dm_deleting_md(struct mapped_device *md)
329 {
330 	return test_bit(DMF_DELETING, &md->flags);
331 }
332 
333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
334 {
335 	struct mapped_device *md;
336 
337 	spin_lock(&_minor_lock);
338 
339 	md = bdev->bd_disk->private_data;
340 	if (!md)
341 		goto out;
342 
343 	if (test_bit(DMF_FREEING, &md->flags) ||
344 	    dm_deleting_md(md)) {
345 		md = NULL;
346 		goto out;
347 	}
348 
349 	dm_get(md);
350 	atomic_inc(&md->open_count);
351 out:
352 	spin_unlock(&_minor_lock);
353 
354 	return md ? 0 : -ENXIO;
355 }
356 
357 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
358 {
359 	struct mapped_device *md;
360 
361 	spin_lock(&_minor_lock);
362 
363 	md = disk->private_data;
364 	if (WARN_ON(!md))
365 		goto out;
366 
367 	if (atomic_dec_and_test(&md->open_count) &&
368 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
369 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
370 
371 	dm_put(md);
372 out:
373 	spin_unlock(&_minor_lock);
374 }
375 
376 int dm_open_count(struct mapped_device *md)
377 {
378 	return atomic_read(&md->open_count);
379 }
380 
381 /*
382  * Guarantees nothing is using the device before it's deleted.
383  */
384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
385 {
386 	int r = 0;
387 
388 	spin_lock(&_minor_lock);
389 
390 	if (dm_open_count(md)) {
391 		r = -EBUSY;
392 		if (mark_deferred)
393 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
395 		r = -EEXIST;
396 	else
397 		set_bit(DMF_DELETING, &md->flags);
398 
399 	spin_unlock(&_minor_lock);
400 
401 	return r;
402 }
403 
404 int dm_cancel_deferred_remove(struct mapped_device *md)
405 {
406 	int r = 0;
407 
408 	spin_lock(&_minor_lock);
409 
410 	if (test_bit(DMF_DELETING, &md->flags))
411 		r = -EBUSY;
412 	else
413 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
414 
415 	spin_unlock(&_minor_lock);
416 
417 	return r;
418 }
419 
420 static void do_deferred_remove(struct work_struct *w)
421 {
422 	dm_deferred_remove();
423 }
424 
425 sector_t dm_get_size(struct mapped_device *md)
426 {
427 	return get_capacity(md->disk);
428 }
429 
430 struct request_queue *dm_get_md_queue(struct mapped_device *md)
431 {
432 	return md->queue;
433 }
434 
435 struct dm_stats *dm_get_stats(struct mapped_device *md)
436 {
437 	return &md->stats;
438 }
439 
440 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
441 {
442 	struct mapped_device *md = bdev->bd_disk->private_data;
443 
444 	return dm_get_geometry(md, geo);
445 }
446 
447 #ifdef CONFIG_BLK_DEV_ZONED
448 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
449 {
450 	struct dm_report_zones_args *args = data;
451 	sector_t sector_diff = args->tgt->begin - args->start;
452 
453 	/*
454 	 * Ignore zones beyond the target range.
455 	 */
456 	if (zone->start >= args->start + args->tgt->len)
457 		return 0;
458 
459 	/*
460 	 * Remap the start sector and write pointer position of the zone
461 	 * to match its position in the target range.
462 	 */
463 	zone->start += sector_diff;
464 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
465 		if (zone->cond == BLK_ZONE_COND_FULL)
466 			zone->wp = zone->start + zone->len;
467 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
468 			zone->wp = zone->start;
469 		else
470 			zone->wp += sector_diff;
471 	}
472 
473 	args->next_sector = zone->start + zone->len;
474 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
475 }
476 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
477 
478 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
479 		unsigned int nr_zones, report_zones_cb cb, void *data)
480 {
481 	struct mapped_device *md = disk->private_data;
482 	struct dm_table *map;
483 	int srcu_idx, ret;
484 	struct dm_report_zones_args args = {
485 		.next_sector = sector,
486 		.orig_data = data,
487 		.orig_cb = cb,
488 	};
489 
490 	if (dm_suspended_md(md))
491 		return -EAGAIN;
492 
493 	map = dm_get_live_table(md, &srcu_idx);
494 	if (!map)
495 		return -EIO;
496 
497 	do {
498 		struct dm_target *tgt;
499 
500 		tgt = dm_table_find_target(map, args.next_sector);
501 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
502 			ret = -EIO;
503 			goto out;
504 		}
505 
506 		args.tgt = tgt;
507 		ret = tgt->type->report_zones(tgt, &args,
508 					      nr_zones - args.zone_idx);
509 		if (ret < 0)
510 			goto out;
511 	} while (args.zone_idx < nr_zones &&
512 		 args.next_sector < get_capacity(disk));
513 
514 	ret = args.zone_idx;
515 out:
516 	dm_put_live_table(md, srcu_idx);
517 	return ret;
518 }
519 #else
520 #define dm_blk_report_zones		NULL
521 #endif /* CONFIG_BLK_DEV_ZONED */
522 
523 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
524 			    struct block_device **bdev)
525 	__acquires(md->io_barrier)
526 {
527 	struct dm_target *tgt;
528 	struct dm_table *map;
529 	int r;
530 
531 retry:
532 	r = -ENOTTY;
533 	map = dm_get_live_table(md, srcu_idx);
534 	if (!map || !dm_table_get_size(map))
535 		return r;
536 
537 	/* We only support devices that have a single target */
538 	if (dm_table_get_num_targets(map) != 1)
539 		return r;
540 
541 	tgt = dm_table_get_target(map, 0);
542 	if (!tgt->type->prepare_ioctl)
543 		return r;
544 
545 	if (dm_suspended_md(md))
546 		return -EAGAIN;
547 
548 	r = tgt->type->prepare_ioctl(tgt, bdev);
549 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
550 		dm_put_live_table(md, *srcu_idx);
551 		msleep(10);
552 		goto retry;
553 	}
554 
555 	return r;
556 }
557 
558 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
559 	__releases(md->io_barrier)
560 {
561 	dm_put_live_table(md, srcu_idx);
562 }
563 
564 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
565 			unsigned int cmd, unsigned long arg)
566 {
567 	struct mapped_device *md = bdev->bd_disk->private_data;
568 	int r, srcu_idx;
569 
570 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
571 	if (r < 0)
572 		goto out;
573 
574 	if (r > 0) {
575 		/*
576 		 * Target determined this ioctl is being issued against a
577 		 * subset of the parent bdev; require extra privileges.
578 		 */
579 		if (!capable(CAP_SYS_RAWIO)) {
580 			DMWARN_LIMIT(
581 	"%s: sending ioctl %x to DM device without required privilege.",
582 				current->comm, cmd);
583 			r = -ENOIOCTLCMD;
584 			goto out;
585 		}
586 	}
587 
588 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
589 out:
590 	dm_unprepare_ioctl(md, srcu_idx);
591 	return r;
592 }
593 
594 static void start_io_acct(struct dm_io *io);
595 
596 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
597 {
598 	struct dm_io *io;
599 	struct dm_target_io *tio;
600 	struct bio *clone;
601 
602 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
603 	if (!clone)
604 		return NULL;
605 
606 	tio = container_of(clone, struct dm_target_io, clone);
607 	tio->inside_dm_io = true;
608 	tio->io = NULL;
609 
610 	io = container_of(tio, struct dm_io, tio);
611 	io->magic = DM_IO_MAGIC;
612 	io->status = 0;
613 	atomic_set(&io->io_count, 1);
614 	io->orig_bio = bio;
615 	io->md = md;
616 	spin_lock_init(&io->endio_lock);
617 
618 	start_io_acct(io);
619 
620 	return io;
621 }
622 
623 static void free_io(struct mapped_device *md, struct dm_io *io)
624 {
625 	bio_put(&io->tio.clone);
626 }
627 
628 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
629 				      unsigned target_bio_nr, gfp_t gfp_mask)
630 {
631 	struct dm_target_io *tio;
632 
633 	if (!ci->io->tio.io) {
634 		/* the dm_target_io embedded in ci->io is available */
635 		tio = &ci->io->tio;
636 	} else {
637 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
638 		if (!clone)
639 			return NULL;
640 
641 		tio = container_of(clone, struct dm_target_io, clone);
642 		tio->inside_dm_io = false;
643 	}
644 
645 	tio->magic = DM_TIO_MAGIC;
646 	tio->io = ci->io;
647 	tio->ti = ti;
648 	tio->target_bio_nr = target_bio_nr;
649 
650 	return tio;
651 }
652 
653 static void free_tio(struct dm_target_io *tio)
654 {
655 	if (tio->inside_dm_io)
656 		return;
657 	bio_put(&tio->clone);
658 }
659 
660 u64 dm_start_time_ns_from_clone(struct bio *bio)
661 {
662 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
663 	struct dm_io *io = tio->io;
664 
665 	return jiffies_to_nsecs(io->start_time);
666 }
667 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
668 
669 static void start_io_acct(struct dm_io *io)
670 {
671 	struct mapped_device *md = io->md;
672 	struct bio *bio = io->orig_bio;
673 
674 	io->start_time = bio_start_io_acct(bio);
675 	if (unlikely(dm_stats_used(&md->stats)))
676 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
677 				    bio->bi_iter.bi_sector, bio_sectors(bio),
678 				    false, 0, &io->stats_aux);
679 }
680 
681 static void end_io_acct(struct dm_io *io)
682 {
683 	struct mapped_device *md = io->md;
684 	struct bio *bio = io->orig_bio;
685 	unsigned long duration = jiffies - io->start_time;
686 
687 	bio_end_io_acct(bio, io->start_time);
688 
689 	if (unlikely(dm_stats_used(&md->stats)))
690 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
691 				    bio->bi_iter.bi_sector, bio_sectors(bio),
692 				    true, duration, &io->stats_aux);
693 
694 	/* nudge anyone waiting on suspend queue */
695 	if (unlikely(wq_has_sleeper(&md->wait)))
696 		wake_up(&md->wait);
697 }
698 
699 /*
700  * Add the bio to the list of deferred io.
701  */
702 static void queue_io(struct mapped_device *md, struct bio *bio)
703 {
704 	unsigned long flags;
705 
706 	spin_lock_irqsave(&md->deferred_lock, flags);
707 	bio_list_add(&md->deferred, bio);
708 	spin_unlock_irqrestore(&md->deferred_lock, flags);
709 	queue_work(md->wq, &md->work);
710 }
711 
712 /*
713  * Everyone (including functions in this file), should use this
714  * function to access the md->map field, and make sure they call
715  * dm_put_live_table() when finished.
716  */
717 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
718 {
719 	*srcu_idx = srcu_read_lock(&md->io_barrier);
720 
721 	return srcu_dereference(md->map, &md->io_barrier);
722 }
723 
724 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
725 {
726 	srcu_read_unlock(&md->io_barrier, srcu_idx);
727 }
728 
729 void dm_sync_table(struct mapped_device *md)
730 {
731 	synchronize_srcu(&md->io_barrier);
732 	synchronize_rcu_expedited();
733 }
734 
735 /*
736  * A fast alternative to dm_get_live_table/dm_put_live_table.
737  * The caller must not block between these two functions.
738  */
739 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
740 {
741 	rcu_read_lock();
742 	return rcu_dereference(md->map);
743 }
744 
745 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
746 {
747 	rcu_read_unlock();
748 }
749 
750 static char *_dm_claim_ptr = "I belong to device-mapper";
751 
752 /*
753  * Open a table device so we can use it as a map destination.
754  */
755 static int open_table_device(struct table_device *td, dev_t dev,
756 			     struct mapped_device *md)
757 {
758 	struct block_device *bdev;
759 
760 	int r;
761 
762 	BUG_ON(td->dm_dev.bdev);
763 
764 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
765 	if (IS_ERR(bdev))
766 		return PTR_ERR(bdev);
767 
768 	r = bd_link_disk_holder(bdev, dm_disk(md));
769 	if (r) {
770 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
771 		return r;
772 	}
773 
774 	td->dm_dev.bdev = bdev;
775 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
776 	return 0;
777 }
778 
779 /*
780  * Close a table device that we've been using.
781  */
782 static void close_table_device(struct table_device *td, struct mapped_device *md)
783 {
784 	if (!td->dm_dev.bdev)
785 		return;
786 
787 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
788 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
789 	put_dax(td->dm_dev.dax_dev);
790 	td->dm_dev.bdev = NULL;
791 	td->dm_dev.dax_dev = NULL;
792 }
793 
794 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
795 					      fmode_t mode)
796 {
797 	struct table_device *td;
798 
799 	list_for_each_entry(td, l, list)
800 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
801 			return td;
802 
803 	return NULL;
804 }
805 
806 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
807 			struct dm_dev **result)
808 {
809 	int r;
810 	struct table_device *td;
811 
812 	mutex_lock(&md->table_devices_lock);
813 	td = find_table_device(&md->table_devices, dev, mode);
814 	if (!td) {
815 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
816 		if (!td) {
817 			mutex_unlock(&md->table_devices_lock);
818 			return -ENOMEM;
819 		}
820 
821 		td->dm_dev.mode = mode;
822 		td->dm_dev.bdev = NULL;
823 
824 		if ((r = open_table_device(td, dev, md))) {
825 			mutex_unlock(&md->table_devices_lock);
826 			kfree(td);
827 			return r;
828 		}
829 
830 		format_dev_t(td->dm_dev.name, dev);
831 
832 		refcount_set(&td->count, 1);
833 		list_add(&td->list, &md->table_devices);
834 	} else {
835 		refcount_inc(&td->count);
836 	}
837 	mutex_unlock(&md->table_devices_lock);
838 
839 	*result = &td->dm_dev;
840 	return 0;
841 }
842 EXPORT_SYMBOL_GPL(dm_get_table_device);
843 
844 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
845 {
846 	struct table_device *td = container_of(d, struct table_device, dm_dev);
847 
848 	mutex_lock(&md->table_devices_lock);
849 	if (refcount_dec_and_test(&td->count)) {
850 		close_table_device(td, md);
851 		list_del(&td->list);
852 		kfree(td);
853 	}
854 	mutex_unlock(&md->table_devices_lock);
855 }
856 EXPORT_SYMBOL(dm_put_table_device);
857 
858 static void free_table_devices(struct list_head *devices)
859 {
860 	struct list_head *tmp, *next;
861 
862 	list_for_each_safe(tmp, next, devices) {
863 		struct table_device *td = list_entry(tmp, struct table_device, list);
864 
865 		DMWARN("dm_destroy: %s still exists with %d references",
866 		       td->dm_dev.name, refcount_read(&td->count));
867 		kfree(td);
868 	}
869 }
870 
871 /*
872  * Get the geometry associated with a dm device
873  */
874 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
875 {
876 	*geo = md->geometry;
877 
878 	return 0;
879 }
880 
881 /*
882  * Set the geometry of a device.
883  */
884 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
885 {
886 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
887 
888 	if (geo->start > sz) {
889 		DMWARN("Start sector is beyond the geometry limits.");
890 		return -EINVAL;
891 	}
892 
893 	md->geometry = *geo;
894 
895 	return 0;
896 }
897 
898 static int __noflush_suspending(struct mapped_device *md)
899 {
900 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
901 }
902 
903 /*
904  * Decrements the number of outstanding ios that a bio has been
905  * cloned into, completing the original io if necc.
906  */
907 static void dec_pending(struct dm_io *io, blk_status_t error)
908 {
909 	unsigned long flags;
910 	blk_status_t io_error;
911 	struct bio *bio;
912 	struct mapped_device *md = io->md;
913 
914 	/* Push-back supersedes any I/O errors */
915 	if (unlikely(error)) {
916 		spin_lock_irqsave(&io->endio_lock, flags);
917 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
918 			io->status = error;
919 		spin_unlock_irqrestore(&io->endio_lock, flags);
920 	}
921 
922 	if (atomic_dec_and_test(&io->io_count)) {
923 		if (io->status == BLK_STS_DM_REQUEUE) {
924 			/*
925 			 * Target requested pushing back the I/O.
926 			 */
927 			spin_lock_irqsave(&md->deferred_lock, flags);
928 			if (__noflush_suspending(md))
929 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
930 				bio_list_add_head(&md->deferred, io->orig_bio);
931 			else
932 				/* noflush suspend was interrupted. */
933 				io->status = BLK_STS_IOERR;
934 			spin_unlock_irqrestore(&md->deferred_lock, flags);
935 		}
936 
937 		io_error = io->status;
938 		bio = io->orig_bio;
939 		end_io_acct(io);
940 		free_io(md, io);
941 
942 		if (io_error == BLK_STS_DM_REQUEUE)
943 			return;
944 
945 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
946 			/*
947 			 * Preflush done for flush with data, reissue
948 			 * without REQ_PREFLUSH.
949 			 */
950 			bio->bi_opf &= ~REQ_PREFLUSH;
951 			queue_io(md, bio);
952 		} else {
953 			/* done with normal IO or empty flush */
954 			if (io_error)
955 				bio->bi_status = io_error;
956 			bio_endio(bio);
957 		}
958 	}
959 }
960 
961 void disable_discard(struct mapped_device *md)
962 {
963 	struct queue_limits *limits = dm_get_queue_limits(md);
964 
965 	/* device doesn't really support DISCARD, disable it */
966 	limits->max_discard_sectors = 0;
967 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
968 }
969 
970 void disable_write_same(struct mapped_device *md)
971 {
972 	struct queue_limits *limits = dm_get_queue_limits(md);
973 
974 	/* device doesn't really support WRITE SAME, disable it */
975 	limits->max_write_same_sectors = 0;
976 }
977 
978 void disable_write_zeroes(struct mapped_device *md)
979 {
980 	struct queue_limits *limits = dm_get_queue_limits(md);
981 
982 	/* device doesn't really support WRITE ZEROES, disable it */
983 	limits->max_write_zeroes_sectors = 0;
984 }
985 
986 static void clone_endio(struct bio *bio)
987 {
988 	blk_status_t error = bio->bi_status;
989 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
990 	struct dm_io *io = tio->io;
991 	struct mapped_device *md = tio->io->md;
992 	dm_endio_fn endio = tio->ti->type->end_io;
993 	struct bio *orig_bio = io->orig_bio;
994 
995 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
996 		if (bio_op(bio) == REQ_OP_DISCARD &&
997 		    !bio->bi_disk->queue->limits.max_discard_sectors)
998 			disable_discard(md);
999 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1000 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
1001 			disable_write_same(md);
1002 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1003 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1004 			disable_write_zeroes(md);
1005 	}
1006 
1007 	/*
1008 	 * For zone-append bios get offset in zone of the written
1009 	 * sector and add that to the original bio sector pos.
1010 	 */
1011 	if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1012 		sector_t written_sector = bio->bi_iter.bi_sector;
1013 		struct request_queue *q = orig_bio->bi_disk->queue;
1014 		u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1015 
1016 		orig_bio->bi_iter.bi_sector += written_sector & mask;
1017 	}
1018 
1019 	if (endio) {
1020 		int r = endio(tio->ti, bio, &error);
1021 		switch (r) {
1022 		case DM_ENDIO_REQUEUE:
1023 			error = BLK_STS_DM_REQUEUE;
1024 			fallthrough;
1025 		case DM_ENDIO_DONE:
1026 			break;
1027 		case DM_ENDIO_INCOMPLETE:
1028 			/* The target will handle the io */
1029 			return;
1030 		default:
1031 			DMWARN("unimplemented target endio return value: %d", r);
1032 			BUG();
1033 		}
1034 	}
1035 
1036 	free_tio(tio);
1037 	dec_pending(io, error);
1038 }
1039 
1040 /*
1041  * Return maximum size of I/O possible at the supplied sector up to the current
1042  * target boundary.
1043  */
1044 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1045 						  sector_t target_offset)
1046 {
1047 	return ti->len - target_offset;
1048 }
1049 
1050 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1051 {
1052 	sector_t target_offset = dm_target_offset(ti, sector);
1053 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1054 	sector_t max_len;
1055 
1056 	/*
1057 	 * Does the target need to split even further?
1058 	 * - q->limits.chunk_sectors reflects ti->max_io_len so
1059 	 *   blk_max_size_offset() provides required splitting.
1060 	 * - blk_max_size_offset() also respects q->limits.max_sectors
1061 	 */
1062 	max_len = blk_max_size_offset(dm_table_get_md(ti->table)->queue,
1063 				      target_offset);
1064 	if (len > max_len)
1065 		len = max_len;
1066 
1067 	return len;
1068 }
1069 
1070 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1071 {
1072 	if (len > UINT_MAX) {
1073 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1074 		      (unsigned long long)len, UINT_MAX);
1075 		ti->error = "Maximum size of target IO is too large";
1076 		return -EINVAL;
1077 	}
1078 
1079 	ti->max_io_len = (uint32_t) len;
1080 
1081 	return 0;
1082 }
1083 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1084 
1085 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1086 						sector_t sector, int *srcu_idx)
1087 	__acquires(md->io_barrier)
1088 {
1089 	struct dm_table *map;
1090 	struct dm_target *ti;
1091 
1092 	map = dm_get_live_table(md, srcu_idx);
1093 	if (!map)
1094 		return NULL;
1095 
1096 	ti = dm_table_find_target(map, sector);
1097 	if (!ti)
1098 		return NULL;
1099 
1100 	return ti;
1101 }
1102 
1103 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1104 				 long nr_pages, void **kaddr, pfn_t *pfn)
1105 {
1106 	struct mapped_device *md = dax_get_private(dax_dev);
1107 	sector_t sector = pgoff * PAGE_SECTORS;
1108 	struct dm_target *ti;
1109 	long len, ret = -EIO;
1110 	int srcu_idx;
1111 
1112 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1113 
1114 	if (!ti)
1115 		goto out;
1116 	if (!ti->type->direct_access)
1117 		goto out;
1118 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1119 	if (len < 1)
1120 		goto out;
1121 	nr_pages = min(len, nr_pages);
1122 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1123 
1124  out:
1125 	dm_put_live_table(md, srcu_idx);
1126 
1127 	return ret;
1128 }
1129 
1130 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1131 		int blocksize, sector_t start, sector_t len)
1132 {
1133 	struct mapped_device *md = dax_get_private(dax_dev);
1134 	struct dm_table *map;
1135 	bool ret = false;
1136 	int srcu_idx;
1137 
1138 	map = dm_get_live_table(md, &srcu_idx);
1139 	if (!map)
1140 		goto out;
1141 
1142 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1143 
1144 out:
1145 	dm_put_live_table(md, srcu_idx);
1146 
1147 	return ret;
1148 }
1149 
1150 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1151 				    void *addr, size_t bytes, struct iov_iter *i)
1152 {
1153 	struct mapped_device *md = dax_get_private(dax_dev);
1154 	sector_t sector = pgoff * PAGE_SECTORS;
1155 	struct dm_target *ti;
1156 	long ret = 0;
1157 	int srcu_idx;
1158 
1159 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1160 
1161 	if (!ti)
1162 		goto out;
1163 	if (!ti->type->dax_copy_from_iter) {
1164 		ret = copy_from_iter(addr, bytes, i);
1165 		goto out;
1166 	}
1167 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1168  out:
1169 	dm_put_live_table(md, srcu_idx);
1170 
1171 	return ret;
1172 }
1173 
1174 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1175 		void *addr, size_t bytes, struct iov_iter *i)
1176 {
1177 	struct mapped_device *md = dax_get_private(dax_dev);
1178 	sector_t sector = pgoff * PAGE_SECTORS;
1179 	struct dm_target *ti;
1180 	long ret = 0;
1181 	int srcu_idx;
1182 
1183 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1184 
1185 	if (!ti)
1186 		goto out;
1187 	if (!ti->type->dax_copy_to_iter) {
1188 		ret = copy_to_iter(addr, bytes, i);
1189 		goto out;
1190 	}
1191 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1192  out:
1193 	dm_put_live_table(md, srcu_idx);
1194 
1195 	return ret;
1196 }
1197 
1198 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1199 				  size_t nr_pages)
1200 {
1201 	struct mapped_device *md = dax_get_private(dax_dev);
1202 	sector_t sector = pgoff * PAGE_SECTORS;
1203 	struct dm_target *ti;
1204 	int ret = -EIO;
1205 	int srcu_idx;
1206 
1207 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1208 
1209 	if (!ti)
1210 		goto out;
1211 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1212 		/*
1213 		 * ->zero_page_range() is mandatory dax operation. If we are
1214 		 *  here, something is wrong.
1215 		 */
1216 		dm_put_live_table(md, srcu_idx);
1217 		goto out;
1218 	}
1219 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1220 
1221  out:
1222 	dm_put_live_table(md, srcu_idx);
1223 
1224 	return ret;
1225 }
1226 
1227 /*
1228  * A target may call dm_accept_partial_bio only from the map routine.  It is
1229  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1230  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1231  *
1232  * dm_accept_partial_bio informs the dm that the target only wants to process
1233  * additional n_sectors sectors of the bio and the rest of the data should be
1234  * sent in a next bio.
1235  *
1236  * A diagram that explains the arithmetics:
1237  * +--------------------+---------------+-------+
1238  * |         1          |       2       |   3   |
1239  * +--------------------+---------------+-------+
1240  *
1241  * <-------------- *tio->len_ptr --------------->
1242  *                      <------- bi_size ------->
1243  *                      <-- n_sectors -->
1244  *
1245  * Region 1 was already iterated over with bio_advance or similar function.
1246  *	(it may be empty if the target doesn't use bio_advance)
1247  * Region 2 is the remaining bio size that the target wants to process.
1248  *	(it may be empty if region 1 is non-empty, although there is no reason
1249  *	 to make it empty)
1250  * The target requires that region 3 is to be sent in the next bio.
1251  *
1252  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1253  * the partially processed part (the sum of regions 1+2) must be the same for all
1254  * copies of the bio.
1255  */
1256 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1257 {
1258 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1259 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1260 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1261 	BUG_ON(bi_size > *tio->len_ptr);
1262 	BUG_ON(n_sectors > bi_size);
1263 	*tio->len_ptr -= bi_size - n_sectors;
1264 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1265 }
1266 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1267 
1268 static blk_qc_t __map_bio(struct dm_target_io *tio)
1269 {
1270 	int r;
1271 	sector_t sector;
1272 	struct bio *clone = &tio->clone;
1273 	struct dm_io *io = tio->io;
1274 	struct dm_target *ti = tio->ti;
1275 	blk_qc_t ret = BLK_QC_T_NONE;
1276 
1277 	clone->bi_end_io = clone_endio;
1278 
1279 	/*
1280 	 * Map the clone.  If r == 0 we don't need to do
1281 	 * anything, the target has assumed ownership of
1282 	 * this io.
1283 	 */
1284 	atomic_inc(&io->io_count);
1285 	sector = clone->bi_iter.bi_sector;
1286 
1287 	r = ti->type->map(ti, clone);
1288 	switch (r) {
1289 	case DM_MAPIO_SUBMITTED:
1290 		break;
1291 	case DM_MAPIO_REMAPPED:
1292 		/* the bio has been remapped so dispatch it */
1293 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1294 				      bio_dev(io->orig_bio), sector);
1295 		ret = submit_bio_noacct(clone);
1296 		break;
1297 	case DM_MAPIO_KILL:
1298 		free_tio(tio);
1299 		dec_pending(io, BLK_STS_IOERR);
1300 		break;
1301 	case DM_MAPIO_REQUEUE:
1302 		free_tio(tio);
1303 		dec_pending(io, BLK_STS_DM_REQUEUE);
1304 		break;
1305 	default:
1306 		DMWARN("unimplemented target map return value: %d", r);
1307 		BUG();
1308 	}
1309 
1310 	return ret;
1311 }
1312 
1313 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1314 {
1315 	bio->bi_iter.bi_sector = sector;
1316 	bio->bi_iter.bi_size = to_bytes(len);
1317 }
1318 
1319 /*
1320  * Creates a bio that consists of range of complete bvecs.
1321  */
1322 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1323 		     sector_t sector, unsigned len)
1324 {
1325 	struct bio *clone = &tio->clone;
1326 
1327 	__bio_clone_fast(clone, bio);
1328 
1329 	bio_crypt_clone(clone, bio, GFP_NOIO);
1330 
1331 	if (bio_integrity(bio)) {
1332 		int r;
1333 
1334 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1335 			     !dm_target_passes_integrity(tio->ti->type))) {
1336 			DMWARN("%s: the target %s doesn't support integrity data.",
1337 				dm_device_name(tio->io->md),
1338 				tio->ti->type->name);
1339 			return -EIO;
1340 		}
1341 
1342 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1343 		if (r < 0)
1344 			return r;
1345 	}
1346 
1347 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1348 	clone->bi_iter.bi_size = to_bytes(len);
1349 
1350 	if (bio_integrity(bio))
1351 		bio_integrity_trim(clone);
1352 
1353 	return 0;
1354 }
1355 
1356 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1357 				struct dm_target *ti, unsigned num_bios)
1358 {
1359 	struct dm_target_io *tio;
1360 	int try;
1361 
1362 	if (!num_bios)
1363 		return;
1364 
1365 	if (num_bios == 1) {
1366 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1367 		bio_list_add(blist, &tio->clone);
1368 		return;
1369 	}
1370 
1371 	for (try = 0; try < 2; try++) {
1372 		int bio_nr;
1373 		struct bio *bio;
1374 
1375 		if (try)
1376 			mutex_lock(&ci->io->md->table_devices_lock);
1377 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1378 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1379 			if (!tio)
1380 				break;
1381 
1382 			bio_list_add(blist, &tio->clone);
1383 		}
1384 		if (try)
1385 			mutex_unlock(&ci->io->md->table_devices_lock);
1386 		if (bio_nr == num_bios)
1387 			return;
1388 
1389 		while ((bio = bio_list_pop(blist))) {
1390 			tio = container_of(bio, struct dm_target_io, clone);
1391 			free_tio(tio);
1392 		}
1393 	}
1394 }
1395 
1396 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1397 					   struct dm_target_io *tio, unsigned *len)
1398 {
1399 	struct bio *clone = &tio->clone;
1400 
1401 	tio->len_ptr = len;
1402 
1403 	__bio_clone_fast(clone, ci->bio);
1404 	if (len)
1405 		bio_setup_sector(clone, ci->sector, *len);
1406 
1407 	return __map_bio(tio);
1408 }
1409 
1410 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1411 				  unsigned num_bios, unsigned *len)
1412 {
1413 	struct bio_list blist = BIO_EMPTY_LIST;
1414 	struct bio *bio;
1415 	struct dm_target_io *tio;
1416 
1417 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1418 
1419 	while ((bio = bio_list_pop(&blist))) {
1420 		tio = container_of(bio, struct dm_target_io, clone);
1421 		(void) __clone_and_map_simple_bio(ci, tio, len);
1422 	}
1423 }
1424 
1425 static int __send_empty_flush(struct clone_info *ci)
1426 {
1427 	unsigned target_nr = 0;
1428 	struct dm_target *ti;
1429 	struct bio flush_bio;
1430 
1431 	/*
1432 	 * Use an on-stack bio for this, it's safe since we don't
1433 	 * need to reference it after submit. It's just used as
1434 	 * the basis for the clone(s).
1435 	 */
1436 	bio_init(&flush_bio, NULL, 0);
1437 	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1438 	ci->bio = &flush_bio;
1439 	ci->sector_count = 0;
1440 
1441 	/*
1442 	 * Empty flush uses a statically initialized bio, as the base for
1443 	 * cloning.  However, blkg association requires that a bdev is
1444 	 * associated with a gendisk, which doesn't happen until the bdev is
1445 	 * opened.  So, blkg association is done at issue time of the flush
1446 	 * rather than when the device is created in alloc_dev().
1447 	 */
1448 	bio_set_dev(ci->bio, ci->io->md->bdev);
1449 
1450 	BUG_ON(bio_has_data(ci->bio));
1451 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1452 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1453 
1454 	bio_uninit(ci->bio);
1455 	return 0;
1456 }
1457 
1458 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1459 				    sector_t sector, unsigned *len)
1460 {
1461 	struct bio *bio = ci->bio;
1462 	struct dm_target_io *tio;
1463 	int r;
1464 
1465 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1466 	tio->len_ptr = len;
1467 	r = clone_bio(tio, bio, sector, *len);
1468 	if (r < 0) {
1469 		free_tio(tio);
1470 		return r;
1471 	}
1472 	(void) __map_bio(tio);
1473 
1474 	return 0;
1475 }
1476 
1477 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1478 
1479 static unsigned get_num_discard_bios(struct dm_target *ti)
1480 {
1481 	return ti->num_discard_bios;
1482 }
1483 
1484 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1485 {
1486 	return ti->num_secure_erase_bios;
1487 }
1488 
1489 static unsigned get_num_write_same_bios(struct dm_target *ti)
1490 {
1491 	return ti->num_write_same_bios;
1492 }
1493 
1494 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1495 {
1496 	return ti->num_write_zeroes_bios;
1497 }
1498 
1499 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1500 				       unsigned num_bios)
1501 {
1502 	unsigned len;
1503 
1504 	/*
1505 	 * Even though the device advertised support for this type of
1506 	 * request, that does not mean every target supports it, and
1507 	 * reconfiguration might also have changed that since the
1508 	 * check was performed.
1509 	 */
1510 	if (!num_bios)
1511 		return -EOPNOTSUPP;
1512 
1513 	len = min_t(sector_t, ci->sector_count,
1514 		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1515 
1516 	__send_duplicate_bios(ci, ti, num_bios, &len);
1517 
1518 	ci->sector += len;
1519 	ci->sector_count -= len;
1520 
1521 	return 0;
1522 }
1523 
1524 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1525 {
1526 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1527 }
1528 
1529 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1530 {
1531 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1532 }
1533 
1534 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1535 {
1536 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1537 }
1538 
1539 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1540 {
1541 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1542 }
1543 
1544 static bool is_abnormal_io(struct bio *bio)
1545 {
1546 	bool r = false;
1547 
1548 	switch (bio_op(bio)) {
1549 	case REQ_OP_DISCARD:
1550 	case REQ_OP_SECURE_ERASE:
1551 	case REQ_OP_WRITE_SAME:
1552 	case REQ_OP_WRITE_ZEROES:
1553 		r = true;
1554 		break;
1555 	}
1556 
1557 	return r;
1558 }
1559 
1560 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1561 				  int *result)
1562 {
1563 	struct bio *bio = ci->bio;
1564 
1565 	if (bio_op(bio) == REQ_OP_DISCARD)
1566 		*result = __send_discard(ci, ti);
1567 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1568 		*result = __send_secure_erase(ci, ti);
1569 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1570 		*result = __send_write_same(ci, ti);
1571 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1572 		*result = __send_write_zeroes(ci, ti);
1573 	else
1574 		return false;
1575 
1576 	return true;
1577 }
1578 
1579 /*
1580  * Select the correct strategy for processing a non-flush bio.
1581  */
1582 static int __split_and_process_non_flush(struct clone_info *ci)
1583 {
1584 	struct dm_target *ti;
1585 	unsigned len;
1586 	int r;
1587 
1588 	ti = dm_table_find_target(ci->map, ci->sector);
1589 	if (!ti)
1590 		return -EIO;
1591 
1592 	if (__process_abnormal_io(ci, ti, &r))
1593 		return r;
1594 
1595 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1596 
1597 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1598 	if (r < 0)
1599 		return r;
1600 
1601 	ci->sector += len;
1602 	ci->sector_count -= len;
1603 
1604 	return 0;
1605 }
1606 
1607 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1608 			    struct dm_table *map, struct bio *bio)
1609 {
1610 	ci->map = map;
1611 	ci->io = alloc_io(md, bio);
1612 	ci->sector = bio->bi_iter.bi_sector;
1613 }
1614 
1615 #define __dm_part_stat_sub(part, field, subnd)	\
1616 	(part_stat_get(part, field) -= (subnd))
1617 
1618 /*
1619  * Entry point to split a bio into clones and submit them to the targets.
1620  */
1621 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1622 					struct dm_table *map, struct bio *bio)
1623 {
1624 	struct clone_info ci;
1625 	blk_qc_t ret = BLK_QC_T_NONE;
1626 	int error = 0;
1627 
1628 	init_clone_info(&ci, md, map, bio);
1629 
1630 	if (bio->bi_opf & REQ_PREFLUSH) {
1631 		error = __send_empty_flush(&ci);
1632 		/* dec_pending submits any data associated with flush */
1633 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1634 		ci.bio = bio;
1635 		ci.sector_count = 0;
1636 		error = __split_and_process_non_flush(&ci);
1637 	} else {
1638 		ci.bio = bio;
1639 		ci.sector_count = bio_sectors(bio);
1640 		while (ci.sector_count && !error) {
1641 			error = __split_and_process_non_flush(&ci);
1642 			if (current->bio_list && ci.sector_count && !error) {
1643 				/*
1644 				 * Remainder must be passed to submit_bio_noacct()
1645 				 * so that it gets handled *after* bios already submitted
1646 				 * have been completely processed.
1647 				 * We take a clone of the original to store in
1648 				 * ci.io->orig_bio to be used by end_io_acct() and
1649 				 * for dec_pending to use for completion handling.
1650 				 */
1651 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1652 							  GFP_NOIO, &md->queue->bio_split);
1653 				ci.io->orig_bio = b;
1654 
1655 				/*
1656 				 * Adjust IO stats for each split, otherwise upon queue
1657 				 * reentry there will be redundant IO accounting.
1658 				 * NOTE: this is a stop-gap fix, a proper fix involves
1659 				 * significant refactoring of DM core's bio splitting
1660 				 * (by eliminating DM's splitting and just using bio_split)
1661 				 */
1662 				part_stat_lock();
1663 				__dm_part_stat_sub(&dm_disk(md)->part0,
1664 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1665 				part_stat_unlock();
1666 
1667 				bio_chain(b, bio);
1668 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1669 				ret = submit_bio_noacct(bio);
1670 				break;
1671 			}
1672 		}
1673 	}
1674 
1675 	/* drop the extra reference count */
1676 	dec_pending(ci.io, errno_to_blk_status(error));
1677 	return ret;
1678 }
1679 
1680 /*
1681  * Optimized variant of __split_and_process_bio that leverages the
1682  * fact that targets that use it do _not_ have a need to split bios.
1683  */
1684 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1685 			      struct bio *bio)
1686 {
1687 	struct clone_info ci;
1688 	blk_qc_t ret = BLK_QC_T_NONE;
1689 	int error = 0;
1690 
1691 	init_clone_info(&ci, md, map, bio);
1692 
1693 	if (bio->bi_opf & REQ_PREFLUSH) {
1694 		error = __send_empty_flush(&ci);
1695 		/* dec_pending submits any data associated with flush */
1696 	} else {
1697 		struct dm_target_io *tio;
1698 		struct dm_target *ti = md->immutable_target;
1699 
1700 		if (WARN_ON_ONCE(!ti)) {
1701 			error = -EIO;
1702 			goto out;
1703 		}
1704 
1705 		ci.bio = bio;
1706 		ci.sector_count = bio_sectors(bio);
1707 		if (__process_abnormal_io(&ci, ti, &error))
1708 			goto out;
1709 
1710 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1711 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1712 	}
1713 out:
1714 	/* drop the extra reference count */
1715 	dec_pending(ci.io, errno_to_blk_status(error));
1716 	return ret;
1717 }
1718 
1719 static blk_qc_t dm_process_bio(struct mapped_device *md,
1720 			       struct dm_table *map, struct bio *bio)
1721 {
1722 	blk_qc_t ret = BLK_QC_T_NONE;
1723 
1724 	if (unlikely(!map)) {
1725 		bio_io_error(bio);
1726 		return ret;
1727 	}
1728 
1729 	/*
1730 	 * If in ->submit_bio we need to use blk_queue_split(), otherwise
1731 	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1732 	 * won't be imposed.
1733 	 * If called from dm_wq_work() for deferred bio processing, bio
1734 	 * was already handled by following code with previous ->submit_bio.
1735 	 */
1736 	if (current->bio_list) {
1737 		if (is_abnormal_io(bio))
1738 			blk_queue_split(&bio);
1739 		/* regular IO is split by __split_and_process_bio */
1740 	}
1741 
1742 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1743 		return __process_bio(md, map, bio);
1744 	return __split_and_process_bio(md, map, bio);
1745 }
1746 
1747 static blk_qc_t dm_submit_bio(struct bio *bio)
1748 {
1749 	struct mapped_device *md = bio->bi_disk->private_data;
1750 	blk_qc_t ret = BLK_QC_T_NONE;
1751 	int srcu_idx;
1752 	struct dm_table *map;
1753 
1754 	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
1755 		/*
1756 		 * We are called with a live reference on q_usage_counter, but
1757 		 * that one will be released as soon as we return.  Grab an
1758 		 * extra one as blk_mq_submit_bio expects to be able to consume
1759 		 * a reference (which lives until the request is freed in case a
1760 		 * request is allocated).
1761 		 */
1762 		percpu_ref_get(&bio->bi_disk->queue->q_usage_counter);
1763 		return blk_mq_submit_bio(bio);
1764 	}
1765 
1766 	map = dm_get_live_table(md, &srcu_idx);
1767 
1768 	/* if we're suspended, we have to queue this io for later */
1769 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1770 		dm_put_live_table(md, srcu_idx);
1771 
1772 		if (bio->bi_opf & REQ_NOWAIT)
1773 			bio_wouldblock_error(bio);
1774 		else if (!(bio->bi_opf & REQ_RAHEAD))
1775 			queue_io(md, bio);
1776 		else
1777 			bio_io_error(bio);
1778 		return ret;
1779 	}
1780 
1781 	ret = dm_process_bio(md, map, bio);
1782 
1783 	dm_put_live_table(md, srcu_idx);
1784 	return ret;
1785 }
1786 
1787 /*-----------------------------------------------------------------
1788  * An IDR is used to keep track of allocated minor numbers.
1789  *---------------------------------------------------------------*/
1790 static void free_minor(int minor)
1791 {
1792 	spin_lock(&_minor_lock);
1793 	idr_remove(&_minor_idr, minor);
1794 	spin_unlock(&_minor_lock);
1795 }
1796 
1797 /*
1798  * See if the device with a specific minor # is free.
1799  */
1800 static int specific_minor(int minor)
1801 {
1802 	int r;
1803 
1804 	if (minor >= (1 << MINORBITS))
1805 		return -EINVAL;
1806 
1807 	idr_preload(GFP_KERNEL);
1808 	spin_lock(&_minor_lock);
1809 
1810 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1811 
1812 	spin_unlock(&_minor_lock);
1813 	idr_preload_end();
1814 	if (r < 0)
1815 		return r == -ENOSPC ? -EBUSY : r;
1816 	return 0;
1817 }
1818 
1819 static int next_free_minor(int *minor)
1820 {
1821 	int r;
1822 
1823 	idr_preload(GFP_KERNEL);
1824 	spin_lock(&_minor_lock);
1825 
1826 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1827 
1828 	spin_unlock(&_minor_lock);
1829 	idr_preload_end();
1830 	if (r < 0)
1831 		return r;
1832 	*minor = r;
1833 	return 0;
1834 }
1835 
1836 static const struct block_device_operations dm_blk_dops;
1837 static const struct dax_operations dm_dax_ops;
1838 
1839 static void dm_wq_work(struct work_struct *work);
1840 
1841 static void cleanup_mapped_device(struct mapped_device *md)
1842 {
1843 	if (md->wq)
1844 		destroy_workqueue(md->wq);
1845 	bioset_exit(&md->bs);
1846 	bioset_exit(&md->io_bs);
1847 
1848 	if (md->dax_dev) {
1849 		kill_dax(md->dax_dev);
1850 		put_dax(md->dax_dev);
1851 		md->dax_dev = NULL;
1852 	}
1853 
1854 	if (md->disk) {
1855 		spin_lock(&_minor_lock);
1856 		md->disk->private_data = NULL;
1857 		spin_unlock(&_minor_lock);
1858 		del_gendisk(md->disk);
1859 		put_disk(md->disk);
1860 	}
1861 
1862 	if (md->queue)
1863 		blk_cleanup_queue(md->queue);
1864 
1865 	cleanup_srcu_struct(&md->io_barrier);
1866 
1867 	if (md->bdev) {
1868 		bdput(md->bdev);
1869 		md->bdev = NULL;
1870 	}
1871 
1872 	mutex_destroy(&md->suspend_lock);
1873 	mutex_destroy(&md->type_lock);
1874 	mutex_destroy(&md->table_devices_lock);
1875 
1876 	dm_mq_cleanup_mapped_device(md);
1877 }
1878 
1879 /*
1880  * Allocate and initialise a blank device with a given minor.
1881  */
1882 static struct mapped_device *alloc_dev(int minor)
1883 {
1884 	int r, numa_node_id = dm_get_numa_node();
1885 	struct mapped_device *md;
1886 	void *old_md;
1887 
1888 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1889 	if (!md) {
1890 		DMWARN("unable to allocate device, out of memory.");
1891 		return NULL;
1892 	}
1893 
1894 	if (!try_module_get(THIS_MODULE))
1895 		goto bad_module_get;
1896 
1897 	/* get a minor number for the dev */
1898 	if (minor == DM_ANY_MINOR)
1899 		r = next_free_minor(&minor);
1900 	else
1901 		r = specific_minor(minor);
1902 	if (r < 0)
1903 		goto bad_minor;
1904 
1905 	r = init_srcu_struct(&md->io_barrier);
1906 	if (r < 0)
1907 		goto bad_io_barrier;
1908 
1909 	md->numa_node_id = numa_node_id;
1910 	md->init_tio_pdu = false;
1911 	md->type = DM_TYPE_NONE;
1912 	mutex_init(&md->suspend_lock);
1913 	mutex_init(&md->type_lock);
1914 	mutex_init(&md->table_devices_lock);
1915 	spin_lock_init(&md->deferred_lock);
1916 	atomic_set(&md->holders, 1);
1917 	atomic_set(&md->open_count, 0);
1918 	atomic_set(&md->event_nr, 0);
1919 	atomic_set(&md->uevent_seq, 0);
1920 	INIT_LIST_HEAD(&md->uevent_list);
1921 	INIT_LIST_HEAD(&md->table_devices);
1922 	spin_lock_init(&md->uevent_lock);
1923 
1924 	/*
1925 	 * default to bio-based until DM table is loaded and md->type
1926 	 * established. If request-based table is loaded: blk-mq will
1927 	 * override accordingly.
1928 	 */
1929 	md->queue = blk_alloc_queue(numa_node_id);
1930 	if (!md->queue)
1931 		goto bad;
1932 
1933 	md->disk = alloc_disk_node(1, md->numa_node_id);
1934 	if (!md->disk)
1935 		goto bad;
1936 
1937 	init_waitqueue_head(&md->wait);
1938 	INIT_WORK(&md->work, dm_wq_work);
1939 	init_waitqueue_head(&md->eventq);
1940 	init_completion(&md->kobj_holder.completion);
1941 
1942 	md->disk->major = _major;
1943 	md->disk->first_minor = minor;
1944 	md->disk->fops = &dm_blk_dops;
1945 	md->disk->queue = md->queue;
1946 	md->disk->private_data = md;
1947 	sprintf(md->disk->disk_name, "dm-%d", minor);
1948 
1949 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1950 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1951 					&dm_dax_ops, 0);
1952 		if (IS_ERR(md->dax_dev))
1953 			goto bad;
1954 	}
1955 
1956 	add_disk_no_queue_reg(md->disk);
1957 	format_dev_t(md->name, MKDEV(_major, minor));
1958 
1959 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1960 	if (!md->wq)
1961 		goto bad;
1962 
1963 	md->bdev = bdget_disk(md->disk, 0);
1964 	if (!md->bdev)
1965 		goto bad;
1966 
1967 	dm_stats_init(&md->stats);
1968 
1969 	/* Populate the mapping, nobody knows we exist yet */
1970 	spin_lock(&_minor_lock);
1971 	old_md = idr_replace(&_minor_idr, md, minor);
1972 	spin_unlock(&_minor_lock);
1973 
1974 	BUG_ON(old_md != MINOR_ALLOCED);
1975 
1976 	return md;
1977 
1978 bad:
1979 	cleanup_mapped_device(md);
1980 bad_io_barrier:
1981 	free_minor(minor);
1982 bad_minor:
1983 	module_put(THIS_MODULE);
1984 bad_module_get:
1985 	kvfree(md);
1986 	return NULL;
1987 }
1988 
1989 static void unlock_fs(struct mapped_device *md);
1990 
1991 static void free_dev(struct mapped_device *md)
1992 {
1993 	int minor = MINOR(disk_devt(md->disk));
1994 
1995 	unlock_fs(md);
1996 
1997 	cleanup_mapped_device(md);
1998 
1999 	free_table_devices(&md->table_devices);
2000 	dm_stats_cleanup(&md->stats);
2001 	free_minor(minor);
2002 
2003 	module_put(THIS_MODULE);
2004 	kvfree(md);
2005 }
2006 
2007 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2008 {
2009 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2010 	int ret = 0;
2011 
2012 	if (dm_table_bio_based(t)) {
2013 		/*
2014 		 * The md may already have mempools that need changing.
2015 		 * If so, reload bioset because front_pad may have changed
2016 		 * because a different table was loaded.
2017 		 */
2018 		bioset_exit(&md->bs);
2019 		bioset_exit(&md->io_bs);
2020 
2021 	} else if (bioset_initialized(&md->bs)) {
2022 		/*
2023 		 * There's no need to reload with request-based dm
2024 		 * because the size of front_pad doesn't change.
2025 		 * Note for future: If you are to reload bioset,
2026 		 * prep-ed requests in the queue may refer
2027 		 * to bio from the old bioset, so you must walk
2028 		 * through the queue to unprep.
2029 		 */
2030 		goto out;
2031 	}
2032 
2033 	BUG_ON(!p ||
2034 	       bioset_initialized(&md->bs) ||
2035 	       bioset_initialized(&md->io_bs));
2036 
2037 	ret = bioset_init_from_src(&md->bs, &p->bs);
2038 	if (ret)
2039 		goto out;
2040 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2041 	if (ret)
2042 		bioset_exit(&md->bs);
2043 out:
2044 	/* mempool bind completed, no longer need any mempools in the table */
2045 	dm_table_free_md_mempools(t);
2046 	return ret;
2047 }
2048 
2049 /*
2050  * Bind a table to the device.
2051  */
2052 static void event_callback(void *context)
2053 {
2054 	unsigned long flags;
2055 	LIST_HEAD(uevents);
2056 	struct mapped_device *md = (struct mapped_device *) context;
2057 
2058 	spin_lock_irqsave(&md->uevent_lock, flags);
2059 	list_splice_init(&md->uevent_list, &uevents);
2060 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2061 
2062 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2063 
2064 	atomic_inc(&md->event_nr);
2065 	wake_up(&md->eventq);
2066 	dm_issue_global_event();
2067 }
2068 
2069 /*
2070  * Returns old map, which caller must destroy.
2071  */
2072 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2073 			       struct queue_limits *limits)
2074 {
2075 	struct dm_table *old_map;
2076 	struct request_queue *q = md->queue;
2077 	bool request_based = dm_table_request_based(t);
2078 	sector_t size;
2079 	int ret;
2080 
2081 	lockdep_assert_held(&md->suspend_lock);
2082 
2083 	size = dm_table_get_size(t);
2084 
2085 	/*
2086 	 * Wipe any geometry if the size of the table changed.
2087 	 */
2088 	if (size != dm_get_size(md))
2089 		memset(&md->geometry, 0, sizeof(md->geometry));
2090 
2091 	set_capacity(md->disk, size);
2092 	bd_set_nr_sectors(md->bdev, size);
2093 
2094 	dm_table_event_callback(t, event_callback, md);
2095 
2096 	/*
2097 	 * The queue hasn't been stopped yet, if the old table type wasn't
2098 	 * for request-based during suspension.  So stop it to prevent
2099 	 * I/O mapping before resume.
2100 	 * This must be done before setting the queue restrictions,
2101 	 * because request-based dm may be run just after the setting.
2102 	 */
2103 	if (request_based)
2104 		dm_stop_queue(q);
2105 
2106 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2107 		/*
2108 		 * Leverage the fact that request-based DM targets and
2109 		 * NVMe bio based targets are immutable singletons
2110 		 * - used to optimize both __process_bio and dm_mq_queue_rq
2111 		 */
2112 		md->immutable_target = dm_table_get_immutable_target(t);
2113 	}
2114 
2115 	ret = __bind_mempools(md, t);
2116 	if (ret) {
2117 		old_map = ERR_PTR(ret);
2118 		goto out;
2119 	}
2120 
2121 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2122 	rcu_assign_pointer(md->map, (void *)t);
2123 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2124 
2125 	dm_table_set_restrictions(t, q, limits);
2126 	if (old_map)
2127 		dm_sync_table(md);
2128 
2129 out:
2130 	return old_map;
2131 }
2132 
2133 /*
2134  * Returns unbound table for the caller to free.
2135  */
2136 static struct dm_table *__unbind(struct mapped_device *md)
2137 {
2138 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2139 
2140 	if (!map)
2141 		return NULL;
2142 
2143 	dm_table_event_callback(map, NULL, NULL);
2144 	RCU_INIT_POINTER(md->map, NULL);
2145 	dm_sync_table(md);
2146 
2147 	return map;
2148 }
2149 
2150 /*
2151  * Constructor for a new device.
2152  */
2153 int dm_create(int minor, struct mapped_device **result)
2154 {
2155 	int r;
2156 	struct mapped_device *md;
2157 
2158 	md = alloc_dev(minor);
2159 	if (!md)
2160 		return -ENXIO;
2161 
2162 	r = dm_sysfs_init(md);
2163 	if (r) {
2164 		free_dev(md);
2165 		return r;
2166 	}
2167 
2168 	*result = md;
2169 	return 0;
2170 }
2171 
2172 /*
2173  * Functions to manage md->type.
2174  * All are required to hold md->type_lock.
2175  */
2176 void dm_lock_md_type(struct mapped_device *md)
2177 {
2178 	mutex_lock(&md->type_lock);
2179 }
2180 
2181 void dm_unlock_md_type(struct mapped_device *md)
2182 {
2183 	mutex_unlock(&md->type_lock);
2184 }
2185 
2186 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2187 {
2188 	BUG_ON(!mutex_is_locked(&md->type_lock));
2189 	md->type = type;
2190 }
2191 
2192 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2193 {
2194 	return md->type;
2195 }
2196 
2197 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2198 {
2199 	return md->immutable_target_type;
2200 }
2201 
2202 /*
2203  * The queue_limits are only valid as long as you have a reference
2204  * count on 'md'.
2205  */
2206 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2207 {
2208 	BUG_ON(!atomic_read(&md->holders));
2209 	return &md->queue->limits;
2210 }
2211 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2212 
2213 /*
2214  * Setup the DM device's queue based on md's type
2215  */
2216 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2217 {
2218 	int r;
2219 	struct queue_limits limits;
2220 	enum dm_queue_mode type = dm_get_md_type(md);
2221 
2222 	switch (type) {
2223 	case DM_TYPE_REQUEST_BASED:
2224 		r = dm_mq_init_request_queue(md, t);
2225 		if (r) {
2226 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2227 			return r;
2228 		}
2229 		break;
2230 	case DM_TYPE_BIO_BASED:
2231 	case DM_TYPE_DAX_BIO_BASED:
2232 	case DM_TYPE_NVME_BIO_BASED:
2233 		break;
2234 	case DM_TYPE_NONE:
2235 		WARN_ON_ONCE(true);
2236 		break;
2237 	}
2238 
2239 	r = dm_calculate_queue_limits(t, &limits);
2240 	if (r) {
2241 		DMERR("Cannot calculate initial queue limits");
2242 		return r;
2243 	}
2244 	dm_table_set_restrictions(t, md->queue, &limits);
2245 	blk_register_queue(md->disk);
2246 
2247 	return 0;
2248 }
2249 
2250 struct mapped_device *dm_get_md(dev_t dev)
2251 {
2252 	struct mapped_device *md;
2253 	unsigned minor = MINOR(dev);
2254 
2255 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2256 		return NULL;
2257 
2258 	spin_lock(&_minor_lock);
2259 
2260 	md = idr_find(&_minor_idr, minor);
2261 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2262 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2263 		md = NULL;
2264 		goto out;
2265 	}
2266 	dm_get(md);
2267 out:
2268 	spin_unlock(&_minor_lock);
2269 
2270 	return md;
2271 }
2272 EXPORT_SYMBOL_GPL(dm_get_md);
2273 
2274 void *dm_get_mdptr(struct mapped_device *md)
2275 {
2276 	return md->interface_ptr;
2277 }
2278 
2279 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2280 {
2281 	md->interface_ptr = ptr;
2282 }
2283 
2284 void dm_get(struct mapped_device *md)
2285 {
2286 	atomic_inc(&md->holders);
2287 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2288 }
2289 
2290 int dm_hold(struct mapped_device *md)
2291 {
2292 	spin_lock(&_minor_lock);
2293 	if (test_bit(DMF_FREEING, &md->flags)) {
2294 		spin_unlock(&_minor_lock);
2295 		return -EBUSY;
2296 	}
2297 	dm_get(md);
2298 	spin_unlock(&_minor_lock);
2299 	return 0;
2300 }
2301 EXPORT_SYMBOL_GPL(dm_hold);
2302 
2303 const char *dm_device_name(struct mapped_device *md)
2304 {
2305 	return md->name;
2306 }
2307 EXPORT_SYMBOL_GPL(dm_device_name);
2308 
2309 static void __dm_destroy(struct mapped_device *md, bool wait)
2310 {
2311 	struct dm_table *map;
2312 	int srcu_idx;
2313 
2314 	might_sleep();
2315 
2316 	spin_lock(&_minor_lock);
2317 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2318 	set_bit(DMF_FREEING, &md->flags);
2319 	spin_unlock(&_minor_lock);
2320 
2321 	blk_set_queue_dying(md->queue);
2322 
2323 	/*
2324 	 * Take suspend_lock so that presuspend and postsuspend methods
2325 	 * do not race with internal suspend.
2326 	 */
2327 	mutex_lock(&md->suspend_lock);
2328 	map = dm_get_live_table(md, &srcu_idx);
2329 	if (!dm_suspended_md(md)) {
2330 		dm_table_presuspend_targets(map);
2331 		set_bit(DMF_SUSPENDED, &md->flags);
2332 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2333 		dm_table_postsuspend_targets(map);
2334 	}
2335 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2336 	dm_put_live_table(md, srcu_idx);
2337 	mutex_unlock(&md->suspend_lock);
2338 
2339 	/*
2340 	 * Rare, but there may be I/O requests still going to complete,
2341 	 * for example.  Wait for all references to disappear.
2342 	 * No one should increment the reference count of the mapped_device,
2343 	 * after the mapped_device state becomes DMF_FREEING.
2344 	 */
2345 	if (wait)
2346 		while (atomic_read(&md->holders))
2347 			msleep(1);
2348 	else if (atomic_read(&md->holders))
2349 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2350 		       dm_device_name(md), atomic_read(&md->holders));
2351 
2352 	dm_sysfs_exit(md);
2353 	dm_table_destroy(__unbind(md));
2354 	free_dev(md);
2355 }
2356 
2357 void dm_destroy(struct mapped_device *md)
2358 {
2359 	__dm_destroy(md, true);
2360 }
2361 
2362 void dm_destroy_immediate(struct mapped_device *md)
2363 {
2364 	__dm_destroy(md, false);
2365 }
2366 
2367 void dm_put(struct mapped_device *md)
2368 {
2369 	atomic_dec(&md->holders);
2370 }
2371 EXPORT_SYMBOL_GPL(dm_put);
2372 
2373 static bool md_in_flight_bios(struct mapped_device *md)
2374 {
2375 	int cpu;
2376 	struct hd_struct *part = &dm_disk(md)->part0;
2377 	long sum = 0;
2378 
2379 	for_each_possible_cpu(cpu) {
2380 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2381 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2382 	}
2383 
2384 	return sum != 0;
2385 }
2386 
2387 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2388 {
2389 	int r = 0;
2390 	DEFINE_WAIT(wait);
2391 
2392 	while (true) {
2393 		prepare_to_wait(&md->wait, &wait, task_state);
2394 
2395 		if (!md_in_flight_bios(md))
2396 			break;
2397 
2398 		if (signal_pending_state(task_state, current)) {
2399 			r = -EINTR;
2400 			break;
2401 		}
2402 
2403 		io_schedule();
2404 	}
2405 	finish_wait(&md->wait, &wait);
2406 
2407 	return r;
2408 }
2409 
2410 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2411 {
2412 	int r = 0;
2413 
2414 	if (!queue_is_mq(md->queue))
2415 		return dm_wait_for_bios_completion(md, task_state);
2416 
2417 	while (true) {
2418 		if (!blk_mq_queue_inflight(md->queue))
2419 			break;
2420 
2421 		if (signal_pending_state(task_state, current)) {
2422 			r = -EINTR;
2423 			break;
2424 		}
2425 
2426 		msleep(5);
2427 	}
2428 
2429 	return r;
2430 }
2431 
2432 /*
2433  * Process the deferred bios
2434  */
2435 static void dm_wq_work(struct work_struct *work)
2436 {
2437 	struct mapped_device *md = container_of(work, struct mapped_device,
2438 						work);
2439 	struct bio *c;
2440 	int srcu_idx;
2441 	struct dm_table *map;
2442 
2443 	map = dm_get_live_table(md, &srcu_idx);
2444 
2445 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2446 		spin_lock_irq(&md->deferred_lock);
2447 		c = bio_list_pop(&md->deferred);
2448 		spin_unlock_irq(&md->deferred_lock);
2449 
2450 		if (!c)
2451 			break;
2452 
2453 		if (dm_request_based(md))
2454 			(void) submit_bio_noacct(c);
2455 		else
2456 			(void) dm_process_bio(md, map, c);
2457 	}
2458 
2459 	dm_put_live_table(md, srcu_idx);
2460 }
2461 
2462 static void dm_queue_flush(struct mapped_device *md)
2463 {
2464 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2465 	smp_mb__after_atomic();
2466 	queue_work(md->wq, &md->work);
2467 }
2468 
2469 /*
2470  * Swap in a new table, returning the old one for the caller to destroy.
2471  */
2472 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2473 {
2474 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2475 	struct queue_limits limits;
2476 	int r;
2477 
2478 	mutex_lock(&md->suspend_lock);
2479 
2480 	/* device must be suspended */
2481 	if (!dm_suspended_md(md))
2482 		goto out;
2483 
2484 	/*
2485 	 * If the new table has no data devices, retain the existing limits.
2486 	 * This helps multipath with queue_if_no_path if all paths disappear,
2487 	 * then new I/O is queued based on these limits, and then some paths
2488 	 * reappear.
2489 	 */
2490 	if (dm_table_has_no_data_devices(table)) {
2491 		live_map = dm_get_live_table_fast(md);
2492 		if (live_map)
2493 			limits = md->queue->limits;
2494 		dm_put_live_table_fast(md);
2495 	}
2496 
2497 	if (!live_map) {
2498 		r = dm_calculate_queue_limits(table, &limits);
2499 		if (r) {
2500 			map = ERR_PTR(r);
2501 			goto out;
2502 		}
2503 	}
2504 
2505 	map = __bind(md, table, &limits);
2506 	dm_issue_global_event();
2507 
2508 out:
2509 	mutex_unlock(&md->suspend_lock);
2510 	return map;
2511 }
2512 
2513 /*
2514  * Functions to lock and unlock any filesystem running on the
2515  * device.
2516  */
2517 static int lock_fs(struct mapped_device *md)
2518 {
2519 	int r;
2520 
2521 	WARN_ON(md->frozen_sb);
2522 
2523 	md->frozen_sb = freeze_bdev(md->bdev);
2524 	if (IS_ERR(md->frozen_sb)) {
2525 		r = PTR_ERR(md->frozen_sb);
2526 		md->frozen_sb = NULL;
2527 		return r;
2528 	}
2529 
2530 	set_bit(DMF_FROZEN, &md->flags);
2531 
2532 	return 0;
2533 }
2534 
2535 static void unlock_fs(struct mapped_device *md)
2536 {
2537 	if (!test_bit(DMF_FROZEN, &md->flags))
2538 		return;
2539 
2540 	thaw_bdev(md->bdev, md->frozen_sb);
2541 	md->frozen_sb = NULL;
2542 	clear_bit(DMF_FROZEN, &md->flags);
2543 }
2544 
2545 /*
2546  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2547  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2548  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2549  *
2550  * If __dm_suspend returns 0, the device is completely quiescent
2551  * now. There is no request-processing activity. All new requests
2552  * are being added to md->deferred list.
2553  */
2554 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2555 			unsigned suspend_flags, long task_state,
2556 			int dmf_suspended_flag)
2557 {
2558 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2559 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2560 	int r;
2561 
2562 	lockdep_assert_held(&md->suspend_lock);
2563 
2564 	/*
2565 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2566 	 * This flag is cleared before dm_suspend returns.
2567 	 */
2568 	if (noflush)
2569 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2570 	else
2571 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2572 
2573 	/*
2574 	 * This gets reverted if there's an error later and the targets
2575 	 * provide the .presuspend_undo hook.
2576 	 */
2577 	dm_table_presuspend_targets(map);
2578 
2579 	/*
2580 	 * Flush I/O to the device.
2581 	 * Any I/O submitted after lock_fs() may not be flushed.
2582 	 * noflush takes precedence over do_lockfs.
2583 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2584 	 */
2585 	if (!noflush && do_lockfs) {
2586 		r = lock_fs(md);
2587 		if (r) {
2588 			dm_table_presuspend_undo_targets(map);
2589 			return r;
2590 		}
2591 	}
2592 
2593 	/*
2594 	 * Here we must make sure that no processes are submitting requests
2595 	 * to target drivers i.e. no one may be executing
2596 	 * __split_and_process_bio. This is called from dm_request and
2597 	 * dm_wq_work.
2598 	 *
2599 	 * To get all processes out of __split_and_process_bio in dm_request,
2600 	 * we take the write lock. To prevent any process from reentering
2601 	 * __split_and_process_bio from dm_request and quiesce the thread
2602 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2603 	 * flush_workqueue(md->wq).
2604 	 */
2605 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2606 	if (map)
2607 		synchronize_srcu(&md->io_barrier);
2608 
2609 	/*
2610 	 * Stop md->queue before flushing md->wq in case request-based
2611 	 * dm defers requests to md->wq from md->queue.
2612 	 */
2613 	if (dm_request_based(md))
2614 		dm_stop_queue(md->queue);
2615 
2616 	flush_workqueue(md->wq);
2617 
2618 	/*
2619 	 * At this point no more requests are entering target request routines.
2620 	 * We call dm_wait_for_completion to wait for all existing requests
2621 	 * to finish.
2622 	 */
2623 	r = dm_wait_for_completion(md, task_state);
2624 	if (!r)
2625 		set_bit(dmf_suspended_flag, &md->flags);
2626 
2627 	if (noflush)
2628 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2629 	if (map)
2630 		synchronize_srcu(&md->io_barrier);
2631 
2632 	/* were we interrupted ? */
2633 	if (r < 0) {
2634 		dm_queue_flush(md);
2635 
2636 		if (dm_request_based(md))
2637 			dm_start_queue(md->queue);
2638 
2639 		unlock_fs(md);
2640 		dm_table_presuspend_undo_targets(map);
2641 		/* pushback list is already flushed, so skip flush */
2642 	}
2643 
2644 	return r;
2645 }
2646 
2647 /*
2648  * We need to be able to change a mapping table under a mounted
2649  * filesystem.  For example we might want to move some data in
2650  * the background.  Before the table can be swapped with
2651  * dm_bind_table, dm_suspend must be called to flush any in
2652  * flight bios and ensure that any further io gets deferred.
2653  */
2654 /*
2655  * Suspend mechanism in request-based dm.
2656  *
2657  * 1. Flush all I/Os by lock_fs() if needed.
2658  * 2. Stop dispatching any I/O by stopping the request_queue.
2659  * 3. Wait for all in-flight I/Os to be completed or requeued.
2660  *
2661  * To abort suspend, start the request_queue.
2662  */
2663 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2664 {
2665 	struct dm_table *map = NULL;
2666 	int r = 0;
2667 
2668 retry:
2669 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2670 
2671 	if (dm_suspended_md(md)) {
2672 		r = -EINVAL;
2673 		goto out_unlock;
2674 	}
2675 
2676 	if (dm_suspended_internally_md(md)) {
2677 		/* already internally suspended, wait for internal resume */
2678 		mutex_unlock(&md->suspend_lock);
2679 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2680 		if (r)
2681 			return r;
2682 		goto retry;
2683 	}
2684 
2685 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2686 
2687 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2688 	if (r)
2689 		goto out_unlock;
2690 
2691 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2692 	dm_table_postsuspend_targets(map);
2693 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2694 
2695 out_unlock:
2696 	mutex_unlock(&md->suspend_lock);
2697 	return r;
2698 }
2699 
2700 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2701 {
2702 	if (map) {
2703 		int r = dm_table_resume_targets(map);
2704 		if (r)
2705 			return r;
2706 	}
2707 
2708 	dm_queue_flush(md);
2709 
2710 	/*
2711 	 * Flushing deferred I/Os must be done after targets are resumed
2712 	 * so that mapping of targets can work correctly.
2713 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2714 	 */
2715 	if (dm_request_based(md))
2716 		dm_start_queue(md->queue);
2717 
2718 	unlock_fs(md);
2719 
2720 	return 0;
2721 }
2722 
2723 int dm_resume(struct mapped_device *md)
2724 {
2725 	int r;
2726 	struct dm_table *map = NULL;
2727 
2728 retry:
2729 	r = -EINVAL;
2730 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2731 
2732 	if (!dm_suspended_md(md))
2733 		goto out;
2734 
2735 	if (dm_suspended_internally_md(md)) {
2736 		/* already internally suspended, wait for internal resume */
2737 		mutex_unlock(&md->suspend_lock);
2738 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2739 		if (r)
2740 			return r;
2741 		goto retry;
2742 	}
2743 
2744 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2745 	if (!map || !dm_table_get_size(map))
2746 		goto out;
2747 
2748 	r = __dm_resume(md, map);
2749 	if (r)
2750 		goto out;
2751 
2752 	clear_bit(DMF_SUSPENDED, &md->flags);
2753 out:
2754 	mutex_unlock(&md->suspend_lock);
2755 
2756 	return r;
2757 }
2758 
2759 /*
2760  * Internal suspend/resume works like userspace-driven suspend. It waits
2761  * until all bios finish and prevents issuing new bios to the target drivers.
2762  * It may be used only from the kernel.
2763  */
2764 
2765 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2766 {
2767 	struct dm_table *map = NULL;
2768 
2769 	lockdep_assert_held(&md->suspend_lock);
2770 
2771 	if (md->internal_suspend_count++)
2772 		return; /* nested internal suspend */
2773 
2774 	if (dm_suspended_md(md)) {
2775 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2776 		return; /* nest suspend */
2777 	}
2778 
2779 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2780 
2781 	/*
2782 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2783 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2784 	 * would require changing .presuspend to return an error -- avoid this
2785 	 * until there is a need for more elaborate variants of internal suspend.
2786 	 */
2787 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2788 			    DMF_SUSPENDED_INTERNALLY);
2789 
2790 	set_bit(DMF_POST_SUSPENDING, &md->flags);
2791 	dm_table_postsuspend_targets(map);
2792 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2793 }
2794 
2795 static void __dm_internal_resume(struct mapped_device *md)
2796 {
2797 	BUG_ON(!md->internal_suspend_count);
2798 
2799 	if (--md->internal_suspend_count)
2800 		return; /* resume from nested internal suspend */
2801 
2802 	if (dm_suspended_md(md))
2803 		goto done; /* resume from nested suspend */
2804 
2805 	/*
2806 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2807 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2808 	 */
2809 	(void) __dm_resume(md, NULL);
2810 
2811 done:
2812 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2813 	smp_mb__after_atomic();
2814 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2815 }
2816 
2817 void dm_internal_suspend_noflush(struct mapped_device *md)
2818 {
2819 	mutex_lock(&md->suspend_lock);
2820 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2821 	mutex_unlock(&md->suspend_lock);
2822 }
2823 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2824 
2825 void dm_internal_resume(struct mapped_device *md)
2826 {
2827 	mutex_lock(&md->suspend_lock);
2828 	__dm_internal_resume(md);
2829 	mutex_unlock(&md->suspend_lock);
2830 }
2831 EXPORT_SYMBOL_GPL(dm_internal_resume);
2832 
2833 /*
2834  * Fast variants of internal suspend/resume hold md->suspend_lock,
2835  * which prevents interaction with userspace-driven suspend.
2836  */
2837 
2838 void dm_internal_suspend_fast(struct mapped_device *md)
2839 {
2840 	mutex_lock(&md->suspend_lock);
2841 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2842 		return;
2843 
2844 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2845 	synchronize_srcu(&md->io_barrier);
2846 	flush_workqueue(md->wq);
2847 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2848 }
2849 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2850 
2851 void dm_internal_resume_fast(struct mapped_device *md)
2852 {
2853 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2854 		goto done;
2855 
2856 	dm_queue_flush(md);
2857 
2858 done:
2859 	mutex_unlock(&md->suspend_lock);
2860 }
2861 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2862 
2863 /*-----------------------------------------------------------------
2864  * Event notification.
2865  *---------------------------------------------------------------*/
2866 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2867 		       unsigned cookie)
2868 {
2869 	int r;
2870 	unsigned noio_flag;
2871 	char udev_cookie[DM_COOKIE_LENGTH];
2872 	char *envp[] = { udev_cookie, NULL };
2873 
2874 	noio_flag = memalloc_noio_save();
2875 
2876 	if (!cookie)
2877 		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2878 	else {
2879 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2880 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2881 		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2882 				       action, envp);
2883 	}
2884 
2885 	memalloc_noio_restore(noio_flag);
2886 
2887 	return r;
2888 }
2889 
2890 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2891 {
2892 	return atomic_add_return(1, &md->uevent_seq);
2893 }
2894 
2895 uint32_t dm_get_event_nr(struct mapped_device *md)
2896 {
2897 	return atomic_read(&md->event_nr);
2898 }
2899 
2900 int dm_wait_event(struct mapped_device *md, int event_nr)
2901 {
2902 	return wait_event_interruptible(md->eventq,
2903 			(event_nr != atomic_read(&md->event_nr)));
2904 }
2905 
2906 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2907 {
2908 	unsigned long flags;
2909 
2910 	spin_lock_irqsave(&md->uevent_lock, flags);
2911 	list_add(elist, &md->uevent_list);
2912 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2913 }
2914 
2915 /*
2916  * The gendisk is only valid as long as you have a reference
2917  * count on 'md'.
2918  */
2919 struct gendisk *dm_disk(struct mapped_device *md)
2920 {
2921 	return md->disk;
2922 }
2923 EXPORT_SYMBOL_GPL(dm_disk);
2924 
2925 struct kobject *dm_kobject(struct mapped_device *md)
2926 {
2927 	return &md->kobj_holder.kobj;
2928 }
2929 
2930 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2931 {
2932 	struct mapped_device *md;
2933 
2934 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2935 
2936 	spin_lock(&_minor_lock);
2937 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2938 		md = NULL;
2939 		goto out;
2940 	}
2941 	dm_get(md);
2942 out:
2943 	spin_unlock(&_minor_lock);
2944 
2945 	return md;
2946 }
2947 
2948 int dm_suspended_md(struct mapped_device *md)
2949 {
2950 	return test_bit(DMF_SUSPENDED, &md->flags);
2951 }
2952 
2953 static int dm_post_suspending_md(struct mapped_device *md)
2954 {
2955 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2956 }
2957 
2958 int dm_suspended_internally_md(struct mapped_device *md)
2959 {
2960 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2961 }
2962 
2963 int dm_test_deferred_remove_flag(struct mapped_device *md)
2964 {
2965 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2966 }
2967 
2968 int dm_suspended(struct dm_target *ti)
2969 {
2970 	return dm_suspended_md(dm_table_get_md(ti->table));
2971 }
2972 EXPORT_SYMBOL_GPL(dm_suspended);
2973 
2974 int dm_post_suspending(struct dm_target *ti)
2975 {
2976 	return dm_post_suspending_md(dm_table_get_md(ti->table));
2977 }
2978 EXPORT_SYMBOL_GPL(dm_post_suspending);
2979 
2980 int dm_noflush_suspending(struct dm_target *ti)
2981 {
2982 	return __noflush_suspending(dm_table_get_md(ti->table));
2983 }
2984 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2985 
2986 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2987 					    unsigned integrity, unsigned per_io_data_size,
2988 					    unsigned min_pool_size)
2989 {
2990 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2991 	unsigned int pool_size = 0;
2992 	unsigned int front_pad, io_front_pad;
2993 	int ret;
2994 
2995 	if (!pools)
2996 		return NULL;
2997 
2998 	switch (type) {
2999 	case DM_TYPE_BIO_BASED:
3000 	case DM_TYPE_DAX_BIO_BASED:
3001 	case DM_TYPE_NVME_BIO_BASED:
3002 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3003 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3004 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3005 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3006 		if (ret)
3007 			goto out;
3008 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3009 			goto out;
3010 		break;
3011 	case DM_TYPE_REQUEST_BASED:
3012 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3013 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3014 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3015 		break;
3016 	default:
3017 		BUG();
3018 	}
3019 
3020 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3021 	if (ret)
3022 		goto out;
3023 
3024 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3025 		goto out;
3026 
3027 	return pools;
3028 
3029 out:
3030 	dm_free_md_mempools(pools);
3031 
3032 	return NULL;
3033 }
3034 
3035 void dm_free_md_mempools(struct dm_md_mempools *pools)
3036 {
3037 	if (!pools)
3038 		return;
3039 
3040 	bioset_exit(&pools->bs);
3041 	bioset_exit(&pools->io_bs);
3042 
3043 	kfree(pools);
3044 }
3045 
3046 struct dm_pr {
3047 	u64	old_key;
3048 	u64	new_key;
3049 	u32	flags;
3050 	bool	fail_early;
3051 };
3052 
3053 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3054 		      void *data)
3055 {
3056 	struct mapped_device *md = bdev->bd_disk->private_data;
3057 	struct dm_table *table;
3058 	struct dm_target *ti;
3059 	int ret = -ENOTTY, srcu_idx;
3060 
3061 	table = dm_get_live_table(md, &srcu_idx);
3062 	if (!table || !dm_table_get_size(table))
3063 		goto out;
3064 
3065 	/* We only support devices that have a single target */
3066 	if (dm_table_get_num_targets(table) != 1)
3067 		goto out;
3068 	ti = dm_table_get_target(table, 0);
3069 
3070 	ret = -EINVAL;
3071 	if (!ti->type->iterate_devices)
3072 		goto out;
3073 
3074 	ret = ti->type->iterate_devices(ti, fn, data);
3075 out:
3076 	dm_put_live_table(md, srcu_idx);
3077 	return ret;
3078 }
3079 
3080 /*
3081  * For register / unregister we need to manually call out to every path.
3082  */
3083 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3084 			    sector_t start, sector_t len, void *data)
3085 {
3086 	struct dm_pr *pr = data;
3087 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3088 
3089 	if (!ops || !ops->pr_register)
3090 		return -EOPNOTSUPP;
3091 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3092 }
3093 
3094 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3095 			  u32 flags)
3096 {
3097 	struct dm_pr pr = {
3098 		.old_key	= old_key,
3099 		.new_key	= new_key,
3100 		.flags		= flags,
3101 		.fail_early	= true,
3102 	};
3103 	int ret;
3104 
3105 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3106 	if (ret && new_key) {
3107 		/* unregister all paths if we failed to register any path */
3108 		pr.old_key = new_key;
3109 		pr.new_key = 0;
3110 		pr.flags = 0;
3111 		pr.fail_early = false;
3112 		dm_call_pr(bdev, __dm_pr_register, &pr);
3113 	}
3114 
3115 	return ret;
3116 }
3117 
3118 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3119 			 u32 flags)
3120 {
3121 	struct mapped_device *md = bdev->bd_disk->private_data;
3122 	const struct pr_ops *ops;
3123 	int r, srcu_idx;
3124 
3125 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3126 	if (r < 0)
3127 		goto out;
3128 
3129 	ops = bdev->bd_disk->fops->pr_ops;
3130 	if (ops && ops->pr_reserve)
3131 		r = ops->pr_reserve(bdev, key, type, flags);
3132 	else
3133 		r = -EOPNOTSUPP;
3134 out:
3135 	dm_unprepare_ioctl(md, srcu_idx);
3136 	return r;
3137 }
3138 
3139 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3140 {
3141 	struct mapped_device *md = bdev->bd_disk->private_data;
3142 	const struct pr_ops *ops;
3143 	int r, srcu_idx;
3144 
3145 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3146 	if (r < 0)
3147 		goto out;
3148 
3149 	ops = bdev->bd_disk->fops->pr_ops;
3150 	if (ops && ops->pr_release)
3151 		r = ops->pr_release(bdev, key, type);
3152 	else
3153 		r = -EOPNOTSUPP;
3154 out:
3155 	dm_unprepare_ioctl(md, srcu_idx);
3156 	return r;
3157 }
3158 
3159 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3160 			 enum pr_type type, bool abort)
3161 {
3162 	struct mapped_device *md = bdev->bd_disk->private_data;
3163 	const struct pr_ops *ops;
3164 	int r, srcu_idx;
3165 
3166 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3167 	if (r < 0)
3168 		goto out;
3169 
3170 	ops = bdev->bd_disk->fops->pr_ops;
3171 	if (ops && ops->pr_preempt)
3172 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3173 	else
3174 		r = -EOPNOTSUPP;
3175 out:
3176 	dm_unprepare_ioctl(md, srcu_idx);
3177 	return r;
3178 }
3179 
3180 static int dm_pr_clear(struct block_device *bdev, u64 key)
3181 {
3182 	struct mapped_device *md = bdev->bd_disk->private_data;
3183 	const struct pr_ops *ops;
3184 	int r, srcu_idx;
3185 
3186 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3187 	if (r < 0)
3188 		goto out;
3189 
3190 	ops = bdev->bd_disk->fops->pr_ops;
3191 	if (ops && ops->pr_clear)
3192 		r = ops->pr_clear(bdev, key);
3193 	else
3194 		r = -EOPNOTSUPP;
3195 out:
3196 	dm_unprepare_ioctl(md, srcu_idx);
3197 	return r;
3198 }
3199 
3200 static const struct pr_ops dm_pr_ops = {
3201 	.pr_register	= dm_pr_register,
3202 	.pr_reserve	= dm_pr_reserve,
3203 	.pr_release	= dm_pr_release,
3204 	.pr_preempt	= dm_pr_preempt,
3205 	.pr_clear	= dm_pr_clear,
3206 };
3207 
3208 static const struct block_device_operations dm_blk_dops = {
3209 	.submit_bio = dm_submit_bio,
3210 	.open = dm_blk_open,
3211 	.release = dm_blk_close,
3212 	.ioctl = dm_blk_ioctl,
3213 	.getgeo = dm_blk_getgeo,
3214 	.report_zones = dm_blk_report_zones,
3215 	.pr_ops = &dm_pr_ops,
3216 	.owner = THIS_MODULE
3217 };
3218 
3219 static const struct dax_operations dm_dax_ops = {
3220 	.direct_access = dm_dax_direct_access,
3221 	.dax_supported = dm_dax_supported,
3222 	.copy_from_iter = dm_dax_copy_from_iter,
3223 	.copy_to_iter = dm_dax_copy_to_iter,
3224 	.zero_page_range = dm_dax_zero_page_range,
3225 };
3226 
3227 /*
3228  * module hooks
3229  */
3230 module_init(dm_init);
3231 module_exit(dm_exit);
3232 
3233 module_param(major, uint, 0);
3234 MODULE_PARM_DESC(major, "The major number of the device mapper");
3235 
3236 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3237 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3238 
3239 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3240 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3241 
3242 MODULE_DESCRIPTION(DM_NAME " driver");
3243 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3244 MODULE_LICENSE("GPL");
3245