xref: /openbmc/linux/drivers/md/dm.c (revision 827634ad)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 
28 #include <trace/events/block.h>
29 
30 #define DM_MSG_PREFIX "core"
31 
32 #ifdef CONFIG_PRINTK
33 /*
34  * ratelimit state to be used in DMXXX_LIMIT().
35  */
36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
37 		       DEFAULT_RATELIMIT_INTERVAL,
38 		       DEFAULT_RATELIMIT_BURST);
39 EXPORT_SYMBOL(dm_ratelimit_state);
40 #endif
41 
42 /*
43  * Cookies are numeric values sent with CHANGE and REMOVE
44  * uevents while resuming, removing or renaming the device.
45  */
46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
47 #define DM_COOKIE_LENGTH 24
48 
49 static const char *_name = DM_NAME;
50 
51 static unsigned int major = 0;
52 static unsigned int _major = 0;
53 
54 static DEFINE_IDR(_minor_idr);
55 
56 static DEFINE_SPINLOCK(_minor_lock);
57 
58 static void do_deferred_remove(struct work_struct *w);
59 
60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
61 
62 static struct workqueue_struct *deferred_remove_workqueue;
63 
64 /*
65  * For bio-based dm.
66  * One of these is allocated per bio.
67  */
68 struct dm_io {
69 	struct mapped_device *md;
70 	int error;
71 	atomic_t io_count;
72 	struct bio *bio;
73 	unsigned long start_time;
74 	spinlock_t endio_lock;
75 	struct dm_stats_aux stats_aux;
76 };
77 
78 /*
79  * For request-based dm.
80  * One of these is allocated per request.
81  */
82 struct dm_rq_target_io {
83 	struct mapped_device *md;
84 	struct dm_target *ti;
85 	struct request *orig, *clone;
86 	struct kthread_work work;
87 	int error;
88 	union map_info info;
89 };
90 
91 /*
92  * For request-based dm - the bio clones we allocate are embedded in these
93  * structs.
94  *
95  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
96  * the bioset is created - this means the bio has to come at the end of the
97  * struct.
98  */
99 struct dm_rq_clone_bio_info {
100 	struct bio *orig;
101 	struct dm_rq_target_io *tio;
102 	struct bio clone;
103 };
104 
105 union map_info *dm_get_rq_mapinfo(struct request *rq)
106 {
107 	if (rq && rq->end_io_data)
108 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
109 	return NULL;
110 }
111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
112 
113 #define MINOR_ALLOCED ((void *)-1)
114 
115 /*
116  * Bits for the md->flags field.
117  */
118 #define DMF_BLOCK_IO_FOR_SUSPEND 0
119 #define DMF_SUSPENDED 1
120 #define DMF_FROZEN 2
121 #define DMF_FREEING 3
122 #define DMF_DELETING 4
123 #define DMF_NOFLUSH_SUSPENDING 5
124 #define DMF_MERGE_IS_OPTIONAL 6
125 #define DMF_DEFERRED_REMOVE 7
126 #define DMF_SUSPENDED_INTERNALLY 8
127 
128 /*
129  * A dummy definition to make RCU happy.
130  * struct dm_table should never be dereferenced in this file.
131  */
132 struct dm_table {
133 	int undefined__;
134 };
135 
136 /*
137  * Work processed by per-device workqueue.
138  */
139 struct mapped_device {
140 	struct srcu_struct io_barrier;
141 	struct mutex suspend_lock;
142 	atomic_t holders;
143 	atomic_t open_count;
144 
145 	/*
146 	 * The current mapping.
147 	 * Use dm_get_live_table{_fast} or take suspend_lock for
148 	 * dereference.
149 	 */
150 	struct dm_table __rcu *map;
151 
152 	struct list_head table_devices;
153 	struct mutex table_devices_lock;
154 
155 	unsigned long flags;
156 
157 	struct request_queue *queue;
158 	unsigned type;
159 	/* Protect queue and type against concurrent access. */
160 	struct mutex type_lock;
161 
162 	struct target_type *immutable_target_type;
163 
164 	struct gendisk *disk;
165 	char name[16];
166 
167 	void *interface_ptr;
168 
169 	/*
170 	 * A list of ios that arrived while we were suspended.
171 	 */
172 	atomic_t pending[2];
173 	wait_queue_head_t wait;
174 	struct work_struct work;
175 	struct bio_list deferred;
176 	spinlock_t deferred_lock;
177 
178 	/*
179 	 * Processing queue (flush)
180 	 */
181 	struct workqueue_struct *wq;
182 
183 	/*
184 	 * io objects are allocated from here.
185 	 */
186 	mempool_t *io_pool;
187 	mempool_t *rq_pool;
188 
189 	struct bio_set *bs;
190 
191 	/*
192 	 * Event handling.
193 	 */
194 	atomic_t event_nr;
195 	wait_queue_head_t eventq;
196 	atomic_t uevent_seq;
197 	struct list_head uevent_list;
198 	spinlock_t uevent_lock; /* Protect access to uevent_list */
199 
200 	/*
201 	 * freeze/thaw support require holding onto a super block
202 	 */
203 	struct super_block *frozen_sb;
204 	struct block_device *bdev;
205 
206 	/* forced geometry settings */
207 	struct hd_geometry geometry;
208 
209 	/* kobject and completion */
210 	struct dm_kobject_holder kobj_holder;
211 
212 	/* zero-length flush that will be cloned and submitted to targets */
213 	struct bio flush_bio;
214 
215 	/* the number of internal suspends */
216 	unsigned internal_suspend_count;
217 
218 	struct dm_stats stats;
219 
220 	struct kthread_worker kworker;
221 	struct task_struct *kworker_task;
222 
223 	/* for request-based merge heuristic in dm_request_fn() */
224 	unsigned seq_rq_merge_deadline_usecs;
225 	int last_rq_rw;
226 	sector_t last_rq_pos;
227 	ktime_t last_rq_start_time;
228 
229 	/* for blk-mq request-based DM support */
230 	struct blk_mq_tag_set tag_set;
231 	bool use_blk_mq;
232 };
233 
234 #ifdef CONFIG_DM_MQ_DEFAULT
235 static bool use_blk_mq = true;
236 #else
237 static bool use_blk_mq = false;
238 #endif
239 
240 bool dm_use_blk_mq(struct mapped_device *md)
241 {
242 	return md->use_blk_mq;
243 }
244 
245 /*
246  * For mempools pre-allocation at the table loading time.
247  */
248 struct dm_md_mempools {
249 	mempool_t *io_pool;
250 	mempool_t *rq_pool;
251 	struct bio_set *bs;
252 };
253 
254 struct table_device {
255 	struct list_head list;
256 	atomic_t count;
257 	struct dm_dev dm_dev;
258 };
259 
260 #define RESERVED_BIO_BASED_IOS		16
261 #define RESERVED_REQUEST_BASED_IOS	256
262 #define RESERVED_MAX_IOS		1024
263 static struct kmem_cache *_io_cache;
264 static struct kmem_cache *_rq_tio_cache;
265 static struct kmem_cache *_rq_cache;
266 
267 /*
268  * Bio-based DM's mempools' reserved IOs set by the user.
269  */
270 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
271 
272 /*
273  * Request-based DM's mempools' reserved IOs set by the user.
274  */
275 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
276 
277 static unsigned __dm_get_module_param(unsigned *module_param,
278 				      unsigned def, unsigned max)
279 {
280 	unsigned param = ACCESS_ONCE(*module_param);
281 	unsigned modified_param = 0;
282 
283 	if (!param)
284 		modified_param = def;
285 	else if (param > max)
286 		modified_param = max;
287 
288 	if (modified_param) {
289 		(void)cmpxchg(module_param, param, modified_param);
290 		param = modified_param;
291 	}
292 
293 	return param;
294 }
295 
296 unsigned dm_get_reserved_bio_based_ios(void)
297 {
298 	return __dm_get_module_param(&reserved_bio_based_ios,
299 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
300 }
301 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
302 
303 unsigned dm_get_reserved_rq_based_ios(void)
304 {
305 	return __dm_get_module_param(&reserved_rq_based_ios,
306 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
307 }
308 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
309 
310 static int __init local_init(void)
311 {
312 	int r = -ENOMEM;
313 
314 	/* allocate a slab for the dm_ios */
315 	_io_cache = KMEM_CACHE(dm_io, 0);
316 	if (!_io_cache)
317 		return r;
318 
319 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
320 	if (!_rq_tio_cache)
321 		goto out_free_io_cache;
322 
323 	_rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
324 				      __alignof__(struct request), 0, NULL);
325 	if (!_rq_cache)
326 		goto out_free_rq_tio_cache;
327 
328 	r = dm_uevent_init();
329 	if (r)
330 		goto out_free_rq_cache;
331 
332 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
333 	if (!deferred_remove_workqueue) {
334 		r = -ENOMEM;
335 		goto out_uevent_exit;
336 	}
337 
338 	_major = major;
339 	r = register_blkdev(_major, _name);
340 	if (r < 0)
341 		goto out_free_workqueue;
342 
343 	if (!_major)
344 		_major = r;
345 
346 	return 0;
347 
348 out_free_workqueue:
349 	destroy_workqueue(deferred_remove_workqueue);
350 out_uevent_exit:
351 	dm_uevent_exit();
352 out_free_rq_cache:
353 	kmem_cache_destroy(_rq_cache);
354 out_free_rq_tio_cache:
355 	kmem_cache_destroy(_rq_tio_cache);
356 out_free_io_cache:
357 	kmem_cache_destroy(_io_cache);
358 
359 	return r;
360 }
361 
362 static void local_exit(void)
363 {
364 	flush_scheduled_work();
365 	destroy_workqueue(deferred_remove_workqueue);
366 
367 	kmem_cache_destroy(_rq_cache);
368 	kmem_cache_destroy(_rq_tio_cache);
369 	kmem_cache_destroy(_io_cache);
370 	unregister_blkdev(_major, _name);
371 	dm_uevent_exit();
372 
373 	_major = 0;
374 
375 	DMINFO("cleaned up");
376 }
377 
378 static int (*_inits[])(void) __initdata = {
379 	local_init,
380 	dm_target_init,
381 	dm_linear_init,
382 	dm_stripe_init,
383 	dm_io_init,
384 	dm_kcopyd_init,
385 	dm_interface_init,
386 	dm_statistics_init,
387 };
388 
389 static void (*_exits[])(void) = {
390 	local_exit,
391 	dm_target_exit,
392 	dm_linear_exit,
393 	dm_stripe_exit,
394 	dm_io_exit,
395 	dm_kcopyd_exit,
396 	dm_interface_exit,
397 	dm_statistics_exit,
398 };
399 
400 static int __init dm_init(void)
401 {
402 	const int count = ARRAY_SIZE(_inits);
403 
404 	int r, i;
405 
406 	for (i = 0; i < count; i++) {
407 		r = _inits[i]();
408 		if (r)
409 			goto bad;
410 	}
411 
412 	return 0;
413 
414       bad:
415 	while (i--)
416 		_exits[i]();
417 
418 	return r;
419 }
420 
421 static void __exit dm_exit(void)
422 {
423 	int i = ARRAY_SIZE(_exits);
424 
425 	while (i--)
426 		_exits[i]();
427 
428 	/*
429 	 * Should be empty by this point.
430 	 */
431 	idr_destroy(&_minor_idr);
432 }
433 
434 /*
435  * Block device functions
436  */
437 int dm_deleting_md(struct mapped_device *md)
438 {
439 	return test_bit(DMF_DELETING, &md->flags);
440 }
441 
442 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
443 {
444 	struct mapped_device *md;
445 
446 	spin_lock(&_minor_lock);
447 
448 	md = bdev->bd_disk->private_data;
449 	if (!md)
450 		goto out;
451 
452 	if (test_bit(DMF_FREEING, &md->flags) ||
453 	    dm_deleting_md(md)) {
454 		md = NULL;
455 		goto out;
456 	}
457 
458 	dm_get(md);
459 	atomic_inc(&md->open_count);
460 out:
461 	spin_unlock(&_minor_lock);
462 
463 	return md ? 0 : -ENXIO;
464 }
465 
466 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
467 {
468 	struct mapped_device *md;
469 
470 	spin_lock(&_minor_lock);
471 
472 	md = disk->private_data;
473 	if (WARN_ON(!md))
474 		goto out;
475 
476 	if (atomic_dec_and_test(&md->open_count) &&
477 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
478 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
479 
480 	dm_put(md);
481 out:
482 	spin_unlock(&_minor_lock);
483 }
484 
485 int dm_open_count(struct mapped_device *md)
486 {
487 	return atomic_read(&md->open_count);
488 }
489 
490 /*
491  * Guarantees nothing is using the device before it's deleted.
492  */
493 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
494 {
495 	int r = 0;
496 
497 	spin_lock(&_minor_lock);
498 
499 	if (dm_open_count(md)) {
500 		r = -EBUSY;
501 		if (mark_deferred)
502 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
503 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
504 		r = -EEXIST;
505 	else
506 		set_bit(DMF_DELETING, &md->flags);
507 
508 	spin_unlock(&_minor_lock);
509 
510 	return r;
511 }
512 
513 int dm_cancel_deferred_remove(struct mapped_device *md)
514 {
515 	int r = 0;
516 
517 	spin_lock(&_minor_lock);
518 
519 	if (test_bit(DMF_DELETING, &md->flags))
520 		r = -EBUSY;
521 	else
522 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
523 
524 	spin_unlock(&_minor_lock);
525 
526 	return r;
527 }
528 
529 static void do_deferred_remove(struct work_struct *w)
530 {
531 	dm_deferred_remove();
532 }
533 
534 sector_t dm_get_size(struct mapped_device *md)
535 {
536 	return get_capacity(md->disk);
537 }
538 
539 struct request_queue *dm_get_md_queue(struct mapped_device *md)
540 {
541 	return md->queue;
542 }
543 
544 struct dm_stats *dm_get_stats(struct mapped_device *md)
545 {
546 	return &md->stats;
547 }
548 
549 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
550 {
551 	struct mapped_device *md = bdev->bd_disk->private_data;
552 
553 	return dm_get_geometry(md, geo);
554 }
555 
556 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
557 			unsigned int cmd, unsigned long arg)
558 {
559 	struct mapped_device *md = bdev->bd_disk->private_data;
560 	int srcu_idx;
561 	struct dm_table *map;
562 	struct dm_target *tgt;
563 	int r = -ENOTTY;
564 
565 retry:
566 	map = dm_get_live_table(md, &srcu_idx);
567 
568 	if (!map || !dm_table_get_size(map))
569 		goto out;
570 
571 	/* We only support devices that have a single target */
572 	if (dm_table_get_num_targets(map) != 1)
573 		goto out;
574 
575 	tgt = dm_table_get_target(map, 0);
576 	if (!tgt->type->ioctl)
577 		goto out;
578 
579 	if (dm_suspended_md(md)) {
580 		r = -EAGAIN;
581 		goto out;
582 	}
583 
584 	r = tgt->type->ioctl(tgt, cmd, arg);
585 
586 out:
587 	dm_put_live_table(md, srcu_idx);
588 
589 	if (r == -ENOTCONN) {
590 		msleep(10);
591 		goto retry;
592 	}
593 
594 	return r;
595 }
596 
597 static struct dm_io *alloc_io(struct mapped_device *md)
598 {
599 	return mempool_alloc(md->io_pool, GFP_NOIO);
600 }
601 
602 static void free_io(struct mapped_device *md, struct dm_io *io)
603 {
604 	mempool_free(io, md->io_pool);
605 }
606 
607 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
608 {
609 	bio_put(&tio->clone);
610 }
611 
612 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
613 					    gfp_t gfp_mask)
614 {
615 	return mempool_alloc(md->io_pool, gfp_mask);
616 }
617 
618 static void free_rq_tio(struct dm_rq_target_io *tio)
619 {
620 	mempool_free(tio, tio->md->io_pool);
621 }
622 
623 static struct request *alloc_clone_request(struct mapped_device *md,
624 					   gfp_t gfp_mask)
625 {
626 	return mempool_alloc(md->rq_pool, gfp_mask);
627 }
628 
629 static void free_clone_request(struct mapped_device *md, struct request *rq)
630 {
631 	mempool_free(rq, md->rq_pool);
632 }
633 
634 static int md_in_flight(struct mapped_device *md)
635 {
636 	return atomic_read(&md->pending[READ]) +
637 	       atomic_read(&md->pending[WRITE]);
638 }
639 
640 static void start_io_acct(struct dm_io *io)
641 {
642 	struct mapped_device *md = io->md;
643 	struct bio *bio = io->bio;
644 	int cpu;
645 	int rw = bio_data_dir(bio);
646 
647 	io->start_time = jiffies;
648 
649 	cpu = part_stat_lock();
650 	part_round_stats(cpu, &dm_disk(md)->part0);
651 	part_stat_unlock();
652 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
653 		atomic_inc_return(&md->pending[rw]));
654 
655 	if (unlikely(dm_stats_used(&md->stats)))
656 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
657 				    bio_sectors(bio), false, 0, &io->stats_aux);
658 }
659 
660 static void end_io_acct(struct dm_io *io)
661 {
662 	struct mapped_device *md = io->md;
663 	struct bio *bio = io->bio;
664 	unsigned long duration = jiffies - io->start_time;
665 	int pending;
666 	int rw = bio_data_dir(bio);
667 
668 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
669 
670 	if (unlikely(dm_stats_used(&md->stats)))
671 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
672 				    bio_sectors(bio), true, duration, &io->stats_aux);
673 
674 	/*
675 	 * After this is decremented the bio must not be touched if it is
676 	 * a flush.
677 	 */
678 	pending = atomic_dec_return(&md->pending[rw]);
679 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
680 	pending += atomic_read(&md->pending[rw^0x1]);
681 
682 	/* nudge anyone waiting on suspend queue */
683 	if (!pending)
684 		wake_up(&md->wait);
685 }
686 
687 /*
688  * Add the bio to the list of deferred io.
689  */
690 static void queue_io(struct mapped_device *md, struct bio *bio)
691 {
692 	unsigned long flags;
693 
694 	spin_lock_irqsave(&md->deferred_lock, flags);
695 	bio_list_add(&md->deferred, bio);
696 	spin_unlock_irqrestore(&md->deferred_lock, flags);
697 	queue_work(md->wq, &md->work);
698 }
699 
700 /*
701  * Everyone (including functions in this file), should use this
702  * function to access the md->map field, and make sure they call
703  * dm_put_live_table() when finished.
704  */
705 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
706 {
707 	*srcu_idx = srcu_read_lock(&md->io_barrier);
708 
709 	return srcu_dereference(md->map, &md->io_barrier);
710 }
711 
712 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
713 {
714 	srcu_read_unlock(&md->io_barrier, srcu_idx);
715 }
716 
717 void dm_sync_table(struct mapped_device *md)
718 {
719 	synchronize_srcu(&md->io_barrier);
720 	synchronize_rcu_expedited();
721 }
722 
723 /*
724  * A fast alternative to dm_get_live_table/dm_put_live_table.
725  * The caller must not block between these two functions.
726  */
727 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
728 {
729 	rcu_read_lock();
730 	return rcu_dereference(md->map);
731 }
732 
733 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
734 {
735 	rcu_read_unlock();
736 }
737 
738 /*
739  * Open a table device so we can use it as a map destination.
740  */
741 static int open_table_device(struct table_device *td, dev_t dev,
742 			     struct mapped_device *md)
743 {
744 	static char *_claim_ptr = "I belong to device-mapper";
745 	struct block_device *bdev;
746 
747 	int r;
748 
749 	BUG_ON(td->dm_dev.bdev);
750 
751 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
752 	if (IS_ERR(bdev))
753 		return PTR_ERR(bdev);
754 
755 	r = bd_link_disk_holder(bdev, dm_disk(md));
756 	if (r) {
757 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
758 		return r;
759 	}
760 
761 	td->dm_dev.bdev = bdev;
762 	return 0;
763 }
764 
765 /*
766  * Close a table device that we've been using.
767  */
768 static void close_table_device(struct table_device *td, struct mapped_device *md)
769 {
770 	if (!td->dm_dev.bdev)
771 		return;
772 
773 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
774 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
775 	td->dm_dev.bdev = NULL;
776 }
777 
778 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
779 					      fmode_t mode) {
780 	struct table_device *td;
781 
782 	list_for_each_entry(td, l, list)
783 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
784 			return td;
785 
786 	return NULL;
787 }
788 
789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
790 			struct dm_dev **result) {
791 	int r;
792 	struct table_device *td;
793 
794 	mutex_lock(&md->table_devices_lock);
795 	td = find_table_device(&md->table_devices, dev, mode);
796 	if (!td) {
797 		td = kmalloc(sizeof(*td), GFP_KERNEL);
798 		if (!td) {
799 			mutex_unlock(&md->table_devices_lock);
800 			return -ENOMEM;
801 		}
802 
803 		td->dm_dev.mode = mode;
804 		td->dm_dev.bdev = NULL;
805 
806 		if ((r = open_table_device(td, dev, md))) {
807 			mutex_unlock(&md->table_devices_lock);
808 			kfree(td);
809 			return r;
810 		}
811 
812 		format_dev_t(td->dm_dev.name, dev);
813 
814 		atomic_set(&td->count, 0);
815 		list_add(&td->list, &md->table_devices);
816 	}
817 	atomic_inc(&td->count);
818 	mutex_unlock(&md->table_devices_lock);
819 
820 	*result = &td->dm_dev;
821 	return 0;
822 }
823 EXPORT_SYMBOL_GPL(dm_get_table_device);
824 
825 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
826 {
827 	struct table_device *td = container_of(d, struct table_device, dm_dev);
828 
829 	mutex_lock(&md->table_devices_lock);
830 	if (atomic_dec_and_test(&td->count)) {
831 		close_table_device(td, md);
832 		list_del(&td->list);
833 		kfree(td);
834 	}
835 	mutex_unlock(&md->table_devices_lock);
836 }
837 EXPORT_SYMBOL(dm_put_table_device);
838 
839 static void free_table_devices(struct list_head *devices)
840 {
841 	struct list_head *tmp, *next;
842 
843 	list_for_each_safe(tmp, next, devices) {
844 		struct table_device *td = list_entry(tmp, struct table_device, list);
845 
846 		DMWARN("dm_destroy: %s still exists with %d references",
847 		       td->dm_dev.name, atomic_read(&td->count));
848 		kfree(td);
849 	}
850 }
851 
852 /*
853  * Get the geometry associated with a dm device
854  */
855 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
856 {
857 	*geo = md->geometry;
858 
859 	return 0;
860 }
861 
862 /*
863  * Set the geometry of a device.
864  */
865 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
866 {
867 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
868 
869 	if (geo->start > sz) {
870 		DMWARN("Start sector is beyond the geometry limits.");
871 		return -EINVAL;
872 	}
873 
874 	md->geometry = *geo;
875 
876 	return 0;
877 }
878 
879 /*-----------------------------------------------------------------
880  * CRUD START:
881  *   A more elegant soln is in the works that uses the queue
882  *   merge fn, unfortunately there are a couple of changes to
883  *   the block layer that I want to make for this.  So in the
884  *   interests of getting something for people to use I give
885  *   you this clearly demarcated crap.
886  *---------------------------------------------------------------*/
887 
888 static int __noflush_suspending(struct mapped_device *md)
889 {
890 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
891 }
892 
893 /*
894  * Decrements the number of outstanding ios that a bio has been
895  * cloned into, completing the original io if necc.
896  */
897 static void dec_pending(struct dm_io *io, int error)
898 {
899 	unsigned long flags;
900 	int io_error;
901 	struct bio *bio;
902 	struct mapped_device *md = io->md;
903 
904 	/* Push-back supersedes any I/O errors */
905 	if (unlikely(error)) {
906 		spin_lock_irqsave(&io->endio_lock, flags);
907 		if (!(io->error > 0 && __noflush_suspending(md)))
908 			io->error = error;
909 		spin_unlock_irqrestore(&io->endio_lock, flags);
910 	}
911 
912 	if (atomic_dec_and_test(&io->io_count)) {
913 		if (io->error == DM_ENDIO_REQUEUE) {
914 			/*
915 			 * Target requested pushing back the I/O.
916 			 */
917 			spin_lock_irqsave(&md->deferred_lock, flags);
918 			if (__noflush_suspending(md))
919 				bio_list_add_head(&md->deferred, io->bio);
920 			else
921 				/* noflush suspend was interrupted. */
922 				io->error = -EIO;
923 			spin_unlock_irqrestore(&md->deferred_lock, flags);
924 		}
925 
926 		io_error = io->error;
927 		bio = io->bio;
928 		end_io_acct(io);
929 		free_io(md, io);
930 
931 		if (io_error == DM_ENDIO_REQUEUE)
932 			return;
933 
934 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
935 			/*
936 			 * Preflush done for flush with data, reissue
937 			 * without REQ_FLUSH.
938 			 */
939 			bio->bi_rw &= ~REQ_FLUSH;
940 			queue_io(md, bio);
941 		} else {
942 			/* done with normal IO or empty flush */
943 			trace_block_bio_complete(md->queue, bio, io_error);
944 			bio_endio(bio, io_error);
945 		}
946 	}
947 }
948 
949 static void disable_write_same(struct mapped_device *md)
950 {
951 	struct queue_limits *limits = dm_get_queue_limits(md);
952 
953 	/* device doesn't really support WRITE SAME, disable it */
954 	limits->max_write_same_sectors = 0;
955 }
956 
957 static void clone_endio(struct bio *bio, int error)
958 {
959 	int r = error;
960 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
961 	struct dm_io *io = tio->io;
962 	struct mapped_device *md = tio->io->md;
963 	dm_endio_fn endio = tio->ti->type->end_io;
964 
965 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
966 		error = -EIO;
967 
968 	if (endio) {
969 		r = endio(tio->ti, bio, error);
970 		if (r < 0 || r == DM_ENDIO_REQUEUE)
971 			/*
972 			 * error and requeue request are handled
973 			 * in dec_pending().
974 			 */
975 			error = r;
976 		else if (r == DM_ENDIO_INCOMPLETE)
977 			/* The target will handle the io */
978 			return;
979 		else if (r) {
980 			DMWARN("unimplemented target endio return value: %d", r);
981 			BUG();
982 		}
983 	}
984 
985 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
986 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
987 		disable_write_same(md);
988 
989 	free_tio(md, tio);
990 	dec_pending(io, error);
991 }
992 
993 /*
994  * Partial completion handling for request-based dm
995  */
996 static void end_clone_bio(struct bio *clone, int error)
997 {
998 	struct dm_rq_clone_bio_info *info =
999 		container_of(clone, struct dm_rq_clone_bio_info, clone);
1000 	struct dm_rq_target_io *tio = info->tio;
1001 	struct bio *bio = info->orig;
1002 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1003 
1004 	bio_put(clone);
1005 
1006 	if (tio->error)
1007 		/*
1008 		 * An error has already been detected on the request.
1009 		 * Once error occurred, just let clone->end_io() handle
1010 		 * the remainder.
1011 		 */
1012 		return;
1013 	else if (error) {
1014 		/*
1015 		 * Don't notice the error to the upper layer yet.
1016 		 * The error handling decision is made by the target driver,
1017 		 * when the request is completed.
1018 		 */
1019 		tio->error = error;
1020 		return;
1021 	}
1022 
1023 	/*
1024 	 * I/O for the bio successfully completed.
1025 	 * Notice the data completion to the upper layer.
1026 	 */
1027 
1028 	/*
1029 	 * bios are processed from the head of the list.
1030 	 * So the completing bio should always be rq->bio.
1031 	 * If it's not, something wrong is happening.
1032 	 */
1033 	if (tio->orig->bio != bio)
1034 		DMERR("bio completion is going in the middle of the request");
1035 
1036 	/*
1037 	 * Update the original request.
1038 	 * Do not use blk_end_request() here, because it may complete
1039 	 * the original request before the clone, and break the ordering.
1040 	 */
1041 	blk_update_request(tio->orig, 0, nr_bytes);
1042 }
1043 
1044 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1045 {
1046 	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1047 }
1048 
1049 /*
1050  * Don't touch any member of the md after calling this function because
1051  * the md may be freed in dm_put() at the end of this function.
1052  * Or do dm_get() before calling this function and dm_put() later.
1053  */
1054 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1055 {
1056 	int nr_requests_pending;
1057 
1058 	atomic_dec(&md->pending[rw]);
1059 
1060 	/* nudge anyone waiting on suspend queue */
1061 	nr_requests_pending = md_in_flight(md);
1062 	if (!nr_requests_pending)
1063 		wake_up(&md->wait);
1064 
1065 	/*
1066 	 * Run this off this callpath, as drivers could invoke end_io while
1067 	 * inside their request_fn (and holding the queue lock). Calling
1068 	 * back into ->request_fn() could deadlock attempting to grab the
1069 	 * queue lock again.
1070 	 */
1071 	if (run_queue) {
1072 		if (md->queue->mq_ops)
1073 			blk_mq_run_hw_queues(md->queue, true);
1074 		else if (!nr_requests_pending ||
1075 			 (nr_requests_pending >= md->queue->nr_congestion_on))
1076 			blk_run_queue_async(md->queue);
1077 	}
1078 
1079 	/*
1080 	 * dm_put() must be at the end of this function. See the comment above
1081 	 */
1082 	dm_put(md);
1083 }
1084 
1085 static void free_rq_clone(struct request *clone, bool must_be_mapped)
1086 {
1087 	struct dm_rq_target_io *tio = clone->end_io_data;
1088 	struct mapped_device *md = tio->md;
1089 
1090 	WARN_ON_ONCE(must_be_mapped && !clone->q);
1091 
1092 	blk_rq_unprep_clone(clone);
1093 
1094 	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1095 		/* stacked on blk-mq queue(s) */
1096 		tio->ti->type->release_clone_rq(clone);
1097 	else if (!md->queue->mq_ops)
1098 		/* request_fn queue stacked on request_fn queue(s) */
1099 		free_clone_request(md, clone);
1100 	/*
1101 	 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1102 	 * no need to call free_clone_request() because we leverage blk-mq by
1103 	 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1104 	 */
1105 
1106 	if (!md->queue->mq_ops)
1107 		free_rq_tio(tio);
1108 }
1109 
1110 /*
1111  * Complete the clone and the original request.
1112  * Must be called without clone's queue lock held,
1113  * see end_clone_request() for more details.
1114  */
1115 static void dm_end_request(struct request *clone, int error)
1116 {
1117 	int rw = rq_data_dir(clone);
1118 	struct dm_rq_target_io *tio = clone->end_io_data;
1119 	struct mapped_device *md = tio->md;
1120 	struct request *rq = tio->orig;
1121 
1122 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1123 		rq->errors = clone->errors;
1124 		rq->resid_len = clone->resid_len;
1125 
1126 		if (rq->sense)
1127 			/*
1128 			 * We are using the sense buffer of the original
1129 			 * request.
1130 			 * So setting the length of the sense data is enough.
1131 			 */
1132 			rq->sense_len = clone->sense_len;
1133 	}
1134 
1135 	free_rq_clone(clone, true);
1136 	if (!rq->q->mq_ops)
1137 		blk_end_request_all(rq, error);
1138 	else
1139 		blk_mq_end_request(rq, error);
1140 	rq_completed(md, rw, true);
1141 }
1142 
1143 static void dm_unprep_request(struct request *rq)
1144 {
1145 	struct dm_rq_target_io *tio = tio_from_request(rq);
1146 	struct request *clone = tio->clone;
1147 
1148 	if (!rq->q->mq_ops) {
1149 		rq->special = NULL;
1150 		rq->cmd_flags &= ~REQ_DONTPREP;
1151 	}
1152 
1153 	if (clone)
1154 		free_rq_clone(clone, false);
1155 }
1156 
1157 /*
1158  * Requeue the original request of a clone.
1159  */
1160 static void old_requeue_request(struct request *rq)
1161 {
1162 	struct request_queue *q = rq->q;
1163 	unsigned long flags;
1164 
1165 	spin_lock_irqsave(q->queue_lock, flags);
1166 	blk_requeue_request(q, rq);
1167 	spin_unlock_irqrestore(q->queue_lock, flags);
1168 }
1169 
1170 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1171 						 struct request *rq)
1172 {
1173 	int rw = rq_data_dir(rq);
1174 
1175 	dm_unprep_request(rq);
1176 
1177 	if (!rq->q->mq_ops)
1178 		old_requeue_request(rq);
1179 	else {
1180 		blk_mq_requeue_request(rq);
1181 		blk_mq_kick_requeue_list(rq->q);
1182 	}
1183 
1184 	rq_completed(md, rw, false);
1185 }
1186 
1187 static void dm_requeue_unmapped_request(struct request *clone)
1188 {
1189 	struct dm_rq_target_io *tio = clone->end_io_data;
1190 
1191 	dm_requeue_unmapped_original_request(tio->md, tio->orig);
1192 }
1193 
1194 static void old_stop_queue(struct request_queue *q)
1195 {
1196 	unsigned long flags;
1197 
1198 	if (blk_queue_stopped(q))
1199 		return;
1200 
1201 	spin_lock_irqsave(q->queue_lock, flags);
1202 	blk_stop_queue(q);
1203 	spin_unlock_irqrestore(q->queue_lock, flags);
1204 }
1205 
1206 static void stop_queue(struct request_queue *q)
1207 {
1208 	if (!q->mq_ops)
1209 		old_stop_queue(q);
1210 	else
1211 		blk_mq_stop_hw_queues(q);
1212 }
1213 
1214 static void old_start_queue(struct request_queue *q)
1215 {
1216 	unsigned long flags;
1217 
1218 	spin_lock_irqsave(q->queue_lock, flags);
1219 	if (blk_queue_stopped(q))
1220 		blk_start_queue(q);
1221 	spin_unlock_irqrestore(q->queue_lock, flags);
1222 }
1223 
1224 static void start_queue(struct request_queue *q)
1225 {
1226 	if (!q->mq_ops)
1227 		old_start_queue(q);
1228 	else
1229 		blk_mq_start_stopped_hw_queues(q, true);
1230 }
1231 
1232 static void dm_done(struct request *clone, int error, bool mapped)
1233 {
1234 	int r = error;
1235 	struct dm_rq_target_io *tio = clone->end_io_data;
1236 	dm_request_endio_fn rq_end_io = NULL;
1237 
1238 	if (tio->ti) {
1239 		rq_end_io = tio->ti->type->rq_end_io;
1240 
1241 		if (mapped && rq_end_io)
1242 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1243 	}
1244 
1245 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1246 		     !clone->q->limits.max_write_same_sectors))
1247 		disable_write_same(tio->md);
1248 
1249 	if (r <= 0)
1250 		/* The target wants to complete the I/O */
1251 		dm_end_request(clone, r);
1252 	else if (r == DM_ENDIO_INCOMPLETE)
1253 		/* The target will handle the I/O */
1254 		return;
1255 	else if (r == DM_ENDIO_REQUEUE)
1256 		/* The target wants to requeue the I/O */
1257 		dm_requeue_unmapped_request(clone);
1258 	else {
1259 		DMWARN("unimplemented target endio return value: %d", r);
1260 		BUG();
1261 	}
1262 }
1263 
1264 /*
1265  * Request completion handler for request-based dm
1266  */
1267 static void dm_softirq_done(struct request *rq)
1268 {
1269 	bool mapped = true;
1270 	struct dm_rq_target_io *tio = tio_from_request(rq);
1271 	struct request *clone = tio->clone;
1272 	int rw;
1273 
1274 	if (!clone) {
1275 		rw = rq_data_dir(rq);
1276 		if (!rq->q->mq_ops) {
1277 			blk_end_request_all(rq, tio->error);
1278 			rq_completed(tio->md, rw, false);
1279 			free_rq_tio(tio);
1280 		} else {
1281 			blk_mq_end_request(rq, tio->error);
1282 			rq_completed(tio->md, rw, false);
1283 		}
1284 		return;
1285 	}
1286 
1287 	if (rq->cmd_flags & REQ_FAILED)
1288 		mapped = false;
1289 
1290 	dm_done(clone, tio->error, mapped);
1291 }
1292 
1293 /*
1294  * Complete the clone and the original request with the error status
1295  * through softirq context.
1296  */
1297 static void dm_complete_request(struct request *rq, int error)
1298 {
1299 	struct dm_rq_target_io *tio = tio_from_request(rq);
1300 
1301 	tio->error = error;
1302 	blk_complete_request(rq);
1303 }
1304 
1305 /*
1306  * Complete the not-mapped clone and the original request with the error status
1307  * through softirq context.
1308  * Target's rq_end_io() function isn't called.
1309  * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1310  */
1311 static void dm_kill_unmapped_request(struct request *rq, int error)
1312 {
1313 	rq->cmd_flags |= REQ_FAILED;
1314 	dm_complete_request(rq, error);
1315 }
1316 
1317 /*
1318  * Called with the clone's queue lock held (for non-blk-mq)
1319  */
1320 static void end_clone_request(struct request *clone, int error)
1321 {
1322 	struct dm_rq_target_io *tio = clone->end_io_data;
1323 
1324 	if (!clone->q->mq_ops) {
1325 		/*
1326 		 * For just cleaning up the information of the queue in which
1327 		 * the clone was dispatched.
1328 		 * The clone is *NOT* freed actually here because it is alloced
1329 		 * from dm own mempool (REQ_ALLOCED isn't set).
1330 		 */
1331 		__blk_put_request(clone->q, clone);
1332 	}
1333 
1334 	/*
1335 	 * Actual request completion is done in a softirq context which doesn't
1336 	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1337 	 *     - another request may be submitted by the upper level driver
1338 	 *       of the stacking during the completion
1339 	 *     - the submission which requires queue lock may be done
1340 	 *       against this clone's queue
1341 	 */
1342 	dm_complete_request(tio->orig, error);
1343 }
1344 
1345 /*
1346  * Return maximum size of I/O possible at the supplied sector up to the current
1347  * target boundary.
1348  */
1349 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1350 {
1351 	sector_t target_offset = dm_target_offset(ti, sector);
1352 
1353 	return ti->len - target_offset;
1354 }
1355 
1356 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1357 {
1358 	sector_t len = max_io_len_target_boundary(sector, ti);
1359 	sector_t offset, max_len;
1360 
1361 	/*
1362 	 * Does the target need to split even further?
1363 	 */
1364 	if (ti->max_io_len) {
1365 		offset = dm_target_offset(ti, sector);
1366 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1367 			max_len = sector_div(offset, ti->max_io_len);
1368 		else
1369 			max_len = offset & (ti->max_io_len - 1);
1370 		max_len = ti->max_io_len - max_len;
1371 
1372 		if (len > max_len)
1373 			len = max_len;
1374 	}
1375 
1376 	return len;
1377 }
1378 
1379 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1380 {
1381 	if (len > UINT_MAX) {
1382 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1383 		      (unsigned long long)len, UINT_MAX);
1384 		ti->error = "Maximum size of target IO is too large";
1385 		return -EINVAL;
1386 	}
1387 
1388 	ti->max_io_len = (uint32_t) len;
1389 
1390 	return 0;
1391 }
1392 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1393 
1394 /*
1395  * A target may call dm_accept_partial_bio only from the map routine.  It is
1396  * allowed for all bio types except REQ_FLUSH.
1397  *
1398  * dm_accept_partial_bio informs the dm that the target only wants to process
1399  * additional n_sectors sectors of the bio and the rest of the data should be
1400  * sent in a next bio.
1401  *
1402  * A diagram that explains the arithmetics:
1403  * +--------------------+---------------+-------+
1404  * |         1          |       2       |   3   |
1405  * +--------------------+---------------+-------+
1406  *
1407  * <-------------- *tio->len_ptr --------------->
1408  *                      <------- bi_size ------->
1409  *                      <-- n_sectors -->
1410  *
1411  * Region 1 was already iterated over with bio_advance or similar function.
1412  *	(it may be empty if the target doesn't use bio_advance)
1413  * Region 2 is the remaining bio size that the target wants to process.
1414  *	(it may be empty if region 1 is non-empty, although there is no reason
1415  *	 to make it empty)
1416  * The target requires that region 3 is to be sent in the next bio.
1417  *
1418  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1419  * the partially processed part (the sum of regions 1+2) must be the same for all
1420  * copies of the bio.
1421  */
1422 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1423 {
1424 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1425 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1426 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1427 	BUG_ON(bi_size > *tio->len_ptr);
1428 	BUG_ON(n_sectors > bi_size);
1429 	*tio->len_ptr -= bi_size - n_sectors;
1430 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1431 }
1432 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1433 
1434 static void __map_bio(struct dm_target_io *tio)
1435 {
1436 	int r;
1437 	sector_t sector;
1438 	struct mapped_device *md;
1439 	struct bio *clone = &tio->clone;
1440 	struct dm_target *ti = tio->ti;
1441 
1442 	clone->bi_end_io = clone_endio;
1443 
1444 	/*
1445 	 * Map the clone.  If r == 0 we don't need to do
1446 	 * anything, the target has assumed ownership of
1447 	 * this io.
1448 	 */
1449 	atomic_inc(&tio->io->io_count);
1450 	sector = clone->bi_iter.bi_sector;
1451 	r = ti->type->map(ti, clone);
1452 	if (r == DM_MAPIO_REMAPPED) {
1453 		/* the bio has been remapped so dispatch it */
1454 
1455 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1456 				      tio->io->bio->bi_bdev->bd_dev, sector);
1457 
1458 		generic_make_request(clone);
1459 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1460 		/* error the io and bail out, or requeue it if needed */
1461 		md = tio->io->md;
1462 		dec_pending(tio->io, r);
1463 		free_tio(md, tio);
1464 	} else if (r) {
1465 		DMWARN("unimplemented target map return value: %d", r);
1466 		BUG();
1467 	}
1468 }
1469 
1470 struct clone_info {
1471 	struct mapped_device *md;
1472 	struct dm_table *map;
1473 	struct bio *bio;
1474 	struct dm_io *io;
1475 	sector_t sector;
1476 	unsigned sector_count;
1477 };
1478 
1479 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1480 {
1481 	bio->bi_iter.bi_sector = sector;
1482 	bio->bi_iter.bi_size = to_bytes(len);
1483 }
1484 
1485 /*
1486  * Creates a bio that consists of range of complete bvecs.
1487  */
1488 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1489 		      sector_t sector, unsigned len)
1490 {
1491 	struct bio *clone = &tio->clone;
1492 
1493 	__bio_clone_fast(clone, bio);
1494 
1495 	if (bio_integrity(bio))
1496 		bio_integrity_clone(clone, bio, GFP_NOIO);
1497 
1498 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1499 	clone->bi_iter.bi_size = to_bytes(len);
1500 
1501 	if (bio_integrity(bio))
1502 		bio_integrity_trim(clone, 0, len);
1503 }
1504 
1505 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1506 				      struct dm_target *ti,
1507 				      unsigned target_bio_nr)
1508 {
1509 	struct dm_target_io *tio;
1510 	struct bio *clone;
1511 
1512 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1513 	tio = container_of(clone, struct dm_target_io, clone);
1514 
1515 	tio->io = ci->io;
1516 	tio->ti = ti;
1517 	tio->target_bio_nr = target_bio_nr;
1518 
1519 	return tio;
1520 }
1521 
1522 static void __clone_and_map_simple_bio(struct clone_info *ci,
1523 				       struct dm_target *ti,
1524 				       unsigned target_bio_nr, unsigned *len)
1525 {
1526 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1527 	struct bio *clone = &tio->clone;
1528 
1529 	tio->len_ptr = len;
1530 
1531 	__bio_clone_fast(clone, ci->bio);
1532 	if (len)
1533 		bio_setup_sector(clone, ci->sector, *len);
1534 
1535 	__map_bio(tio);
1536 }
1537 
1538 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1539 				  unsigned num_bios, unsigned *len)
1540 {
1541 	unsigned target_bio_nr;
1542 
1543 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1544 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1545 }
1546 
1547 static int __send_empty_flush(struct clone_info *ci)
1548 {
1549 	unsigned target_nr = 0;
1550 	struct dm_target *ti;
1551 
1552 	BUG_ON(bio_has_data(ci->bio));
1553 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1554 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1555 
1556 	return 0;
1557 }
1558 
1559 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1560 				     sector_t sector, unsigned *len)
1561 {
1562 	struct bio *bio = ci->bio;
1563 	struct dm_target_io *tio;
1564 	unsigned target_bio_nr;
1565 	unsigned num_target_bios = 1;
1566 
1567 	/*
1568 	 * Does the target want to receive duplicate copies of the bio?
1569 	 */
1570 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1571 		num_target_bios = ti->num_write_bios(ti, bio);
1572 
1573 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1574 		tio = alloc_tio(ci, ti, target_bio_nr);
1575 		tio->len_ptr = len;
1576 		clone_bio(tio, bio, sector, *len);
1577 		__map_bio(tio);
1578 	}
1579 }
1580 
1581 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1582 
1583 static unsigned get_num_discard_bios(struct dm_target *ti)
1584 {
1585 	return ti->num_discard_bios;
1586 }
1587 
1588 static unsigned get_num_write_same_bios(struct dm_target *ti)
1589 {
1590 	return ti->num_write_same_bios;
1591 }
1592 
1593 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1594 
1595 static bool is_split_required_for_discard(struct dm_target *ti)
1596 {
1597 	return ti->split_discard_bios;
1598 }
1599 
1600 static int __send_changing_extent_only(struct clone_info *ci,
1601 				       get_num_bios_fn get_num_bios,
1602 				       is_split_required_fn is_split_required)
1603 {
1604 	struct dm_target *ti;
1605 	unsigned len;
1606 	unsigned num_bios;
1607 
1608 	do {
1609 		ti = dm_table_find_target(ci->map, ci->sector);
1610 		if (!dm_target_is_valid(ti))
1611 			return -EIO;
1612 
1613 		/*
1614 		 * Even though the device advertised support for this type of
1615 		 * request, that does not mean every target supports it, and
1616 		 * reconfiguration might also have changed that since the
1617 		 * check was performed.
1618 		 */
1619 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1620 		if (!num_bios)
1621 			return -EOPNOTSUPP;
1622 
1623 		if (is_split_required && !is_split_required(ti))
1624 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1625 		else
1626 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1627 
1628 		__send_duplicate_bios(ci, ti, num_bios, &len);
1629 
1630 		ci->sector += len;
1631 	} while (ci->sector_count -= len);
1632 
1633 	return 0;
1634 }
1635 
1636 static int __send_discard(struct clone_info *ci)
1637 {
1638 	return __send_changing_extent_only(ci, get_num_discard_bios,
1639 					   is_split_required_for_discard);
1640 }
1641 
1642 static int __send_write_same(struct clone_info *ci)
1643 {
1644 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1645 }
1646 
1647 /*
1648  * Select the correct strategy for processing a non-flush bio.
1649  */
1650 static int __split_and_process_non_flush(struct clone_info *ci)
1651 {
1652 	struct bio *bio = ci->bio;
1653 	struct dm_target *ti;
1654 	unsigned len;
1655 
1656 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1657 		return __send_discard(ci);
1658 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1659 		return __send_write_same(ci);
1660 
1661 	ti = dm_table_find_target(ci->map, ci->sector);
1662 	if (!dm_target_is_valid(ti))
1663 		return -EIO;
1664 
1665 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1666 
1667 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1668 
1669 	ci->sector += len;
1670 	ci->sector_count -= len;
1671 
1672 	return 0;
1673 }
1674 
1675 /*
1676  * Entry point to split a bio into clones and submit them to the targets.
1677  */
1678 static void __split_and_process_bio(struct mapped_device *md,
1679 				    struct dm_table *map, struct bio *bio)
1680 {
1681 	struct clone_info ci;
1682 	int error = 0;
1683 
1684 	if (unlikely(!map)) {
1685 		bio_io_error(bio);
1686 		return;
1687 	}
1688 
1689 	ci.map = map;
1690 	ci.md = md;
1691 	ci.io = alloc_io(md);
1692 	ci.io->error = 0;
1693 	atomic_set(&ci.io->io_count, 1);
1694 	ci.io->bio = bio;
1695 	ci.io->md = md;
1696 	spin_lock_init(&ci.io->endio_lock);
1697 	ci.sector = bio->bi_iter.bi_sector;
1698 
1699 	start_io_acct(ci.io);
1700 
1701 	if (bio->bi_rw & REQ_FLUSH) {
1702 		ci.bio = &ci.md->flush_bio;
1703 		ci.sector_count = 0;
1704 		error = __send_empty_flush(&ci);
1705 		/* dec_pending submits any data associated with flush */
1706 	} else {
1707 		ci.bio = bio;
1708 		ci.sector_count = bio_sectors(bio);
1709 		while (ci.sector_count && !error)
1710 			error = __split_and_process_non_flush(&ci);
1711 	}
1712 
1713 	/* drop the extra reference count */
1714 	dec_pending(ci.io, error);
1715 }
1716 /*-----------------------------------------------------------------
1717  * CRUD END
1718  *---------------------------------------------------------------*/
1719 
1720 static int dm_merge_bvec(struct request_queue *q,
1721 			 struct bvec_merge_data *bvm,
1722 			 struct bio_vec *biovec)
1723 {
1724 	struct mapped_device *md = q->queuedata;
1725 	struct dm_table *map = dm_get_live_table_fast(md);
1726 	struct dm_target *ti;
1727 	sector_t max_sectors;
1728 	int max_size = 0;
1729 
1730 	if (unlikely(!map))
1731 		goto out;
1732 
1733 	ti = dm_table_find_target(map, bvm->bi_sector);
1734 	if (!dm_target_is_valid(ti))
1735 		goto out;
1736 
1737 	/*
1738 	 * Find maximum amount of I/O that won't need splitting
1739 	 */
1740 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1741 			  (sector_t) queue_max_sectors(q));
1742 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1743 	if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1744 		max_size = 0;
1745 
1746 	/*
1747 	 * merge_bvec_fn() returns number of bytes
1748 	 * it can accept at this offset
1749 	 * max is precomputed maximal io size
1750 	 */
1751 	if (max_size && ti->type->merge)
1752 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1753 	/*
1754 	 * If the target doesn't support merge method and some of the devices
1755 	 * provided their merge_bvec method (we know this by looking for the
1756 	 * max_hw_sectors that dm_set_device_limits may set), then we can't
1757 	 * allow bios with multiple vector entries.  So always set max_size
1758 	 * to 0, and the code below allows just one page.
1759 	 */
1760 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1761 		max_size = 0;
1762 
1763 out:
1764 	dm_put_live_table_fast(md);
1765 	/*
1766 	 * Always allow an entire first page
1767 	 */
1768 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1769 		max_size = biovec->bv_len;
1770 
1771 	return max_size;
1772 }
1773 
1774 /*
1775  * The request function that just remaps the bio built up by
1776  * dm_merge_bvec.
1777  */
1778 static void dm_make_request(struct request_queue *q, struct bio *bio)
1779 {
1780 	int rw = bio_data_dir(bio);
1781 	struct mapped_device *md = q->queuedata;
1782 	int srcu_idx;
1783 	struct dm_table *map;
1784 
1785 	map = dm_get_live_table(md, &srcu_idx);
1786 
1787 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1788 
1789 	/* if we're suspended, we have to queue this io for later */
1790 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1791 		dm_put_live_table(md, srcu_idx);
1792 
1793 		if (bio_rw(bio) != READA)
1794 			queue_io(md, bio);
1795 		else
1796 			bio_io_error(bio);
1797 		return;
1798 	}
1799 
1800 	__split_and_process_bio(md, map, bio);
1801 	dm_put_live_table(md, srcu_idx);
1802 	return;
1803 }
1804 
1805 int dm_request_based(struct mapped_device *md)
1806 {
1807 	return blk_queue_stackable(md->queue);
1808 }
1809 
1810 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1811 {
1812 	int r;
1813 
1814 	if (blk_queue_io_stat(clone->q))
1815 		clone->cmd_flags |= REQ_IO_STAT;
1816 
1817 	clone->start_time = jiffies;
1818 	r = blk_insert_cloned_request(clone->q, clone);
1819 	if (r)
1820 		/* must complete clone in terms of original request */
1821 		dm_complete_request(rq, r);
1822 }
1823 
1824 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1825 				 void *data)
1826 {
1827 	struct dm_rq_target_io *tio = data;
1828 	struct dm_rq_clone_bio_info *info =
1829 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1830 
1831 	info->orig = bio_orig;
1832 	info->tio = tio;
1833 	bio->bi_end_io = end_clone_bio;
1834 
1835 	return 0;
1836 }
1837 
1838 static int setup_clone(struct request *clone, struct request *rq,
1839 		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1840 {
1841 	int r;
1842 
1843 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1844 			      dm_rq_bio_constructor, tio);
1845 	if (r)
1846 		return r;
1847 
1848 	clone->cmd = rq->cmd;
1849 	clone->cmd_len = rq->cmd_len;
1850 	clone->sense = rq->sense;
1851 	clone->end_io = end_clone_request;
1852 	clone->end_io_data = tio;
1853 
1854 	tio->clone = clone;
1855 
1856 	return 0;
1857 }
1858 
1859 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1860 				struct dm_rq_target_io *tio, gfp_t gfp_mask)
1861 {
1862 	/*
1863 	 * Do not allocate a clone if tio->clone was already set
1864 	 * (see: dm_mq_queue_rq).
1865 	 */
1866 	bool alloc_clone = !tio->clone;
1867 	struct request *clone;
1868 
1869 	if (alloc_clone) {
1870 		clone = alloc_clone_request(md, gfp_mask);
1871 		if (!clone)
1872 			return NULL;
1873 	} else
1874 		clone = tio->clone;
1875 
1876 	blk_rq_init(NULL, clone);
1877 	if (setup_clone(clone, rq, tio, gfp_mask)) {
1878 		/* -ENOMEM */
1879 		if (alloc_clone)
1880 			free_clone_request(md, clone);
1881 		return NULL;
1882 	}
1883 
1884 	return clone;
1885 }
1886 
1887 static void map_tio_request(struct kthread_work *work);
1888 
1889 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1890 		     struct mapped_device *md)
1891 {
1892 	tio->md = md;
1893 	tio->ti = NULL;
1894 	tio->clone = NULL;
1895 	tio->orig = rq;
1896 	tio->error = 0;
1897 	memset(&tio->info, 0, sizeof(tio->info));
1898 	if (md->kworker_task)
1899 		init_kthread_work(&tio->work, map_tio_request);
1900 }
1901 
1902 static struct dm_rq_target_io *prep_tio(struct request *rq,
1903 					struct mapped_device *md, gfp_t gfp_mask)
1904 {
1905 	struct dm_rq_target_io *tio;
1906 	int srcu_idx;
1907 	struct dm_table *table;
1908 
1909 	tio = alloc_rq_tio(md, gfp_mask);
1910 	if (!tio)
1911 		return NULL;
1912 
1913 	init_tio(tio, rq, md);
1914 
1915 	table = dm_get_live_table(md, &srcu_idx);
1916 	if (!dm_table_mq_request_based(table)) {
1917 		if (!clone_rq(rq, md, tio, gfp_mask)) {
1918 			dm_put_live_table(md, srcu_idx);
1919 			free_rq_tio(tio);
1920 			return NULL;
1921 		}
1922 	}
1923 	dm_put_live_table(md, srcu_idx);
1924 
1925 	return tio;
1926 }
1927 
1928 /*
1929  * Called with the queue lock held.
1930  */
1931 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1932 {
1933 	struct mapped_device *md = q->queuedata;
1934 	struct dm_rq_target_io *tio;
1935 
1936 	if (unlikely(rq->special)) {
1937 		DMWARN("Already has something in rq->special.");
1938 		return BLKPREP_KILL;
1939 	}
1940 
1941 	tio = prep_tio(rq, md, GFP_ATOMIC);
1942 	if (!tio)
1943 		return BLKPREP_DEFER;
1944 
1945 	rq->special = tio;
1946 	rq->cmd_flags |= REQ_DONTPREP;
1947 
1948 	return BLKPREP_OK;
1949 }
1950 
1951 /*
1952  * Returns:
1953  * 0                : the request has been processed
1954  * DM_MAPIO_REQUEUE : the original request needs to be requeued
1955  * < 0              : the request was completed due to failure
1956  */
1957 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1958 		       struct mapped_device *md)
1959 {
1960 	int r;
1961 	struct dm_target *ti = tio->ti;
1962 	struct request *clone = NULL;
1963 
1964 	if (tio->clone) {
1965 		clone = tio->clone;
1966 		r = ti->type->map_rq(ti, clone, &tio->info);
1967 	} else {
1968 		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1969 		if (r < 0) {
1970 			/* The target wants to complete the I/O */
1971 			dm_kill_unmapped_request(rq, r);
1972 			return r;
1973 		}
1974 		if (IS_ERR(clone))
1975 			return DM_MAPIO_REQUEUE;
1976 		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
1977 			/* -ENOMEM */
1978 			ti->type->release_clone_rq(clone);
1979 			return DM_MAPIO_REQUEUE;
1980 		}
1981 	}
1982 
1983 	switch (r) {
1984 	case DM_MAPIO_SUBMITTED:
1985 		/* The target has taken the I/O to submit by itself later */
1986 		break;
1987 	case DM_MAPIO_REMAPPED:
1988 		/* The target has remapped the I/O so dispatch it */
1989 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1990 				     blk_rq_pos(rq));
1991 		dm_dispatch_clone_request(clone, rq);
1992 		break;
1993 	case DM_MAPIO_REQUEUE:
1994 		/* The target wants to requeue the I/O */
1995 		dm_requeue_unmapped_request(clone);
1996 		break;
1997 	default:
1998 		if (r > 0) {
1999 			DMWARN("unimplemented target map return value: %d", r);
2000 			BUG();
2001 		}
2002 
2003 		/* The target wants to complete the I/O */
2004 		dm_kill_unmapped_request(rq, r);
2005 		return r;
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static void map_tio_request(struct kthread_work *work)
2012 {
2013 	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2014 	struct request *rq = tio->orig;
2015 	struct mapped_device *md = tio->md;
2016 
2017 	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2018 		dm_requeue_unmapped_original_request(md, rq);
2019 }
2020 
2021 static void dm_start_request(struct mapped_device *md, struct request *orig)
2022 {
2023 	if (!orig->q->mq_ops)
2024 		blk_start_request(orig);
2025 	else
2026 		blk_mq_start_request(orig);
2027 	atomic_inc(&md->pending[rq_data_dir(orig)]);
2028 
2029 	if (md->seq_rq_merge_deadline_usecs) {
2030 		md->last_rq_pos = rq_end_sector(orig);
2031 		md->last_rq_rw = rq_data_dir(orig);
2032 		md->last_rq_start_time = ktime_get();
2033 	}
2034 
2035 	/*
2036 	 * Hold the md reference here for the in-flight I/O.
2037 	 * We can't rely on the reference count by device opener,
2038 	 * because the device may be closed during the request completion
2039 	 * when all bios are completed.
2040 	 * See the comment in rq_completed() too.
2041 	 */
2042 	dm_get(md);
2043 }
2044 
2045 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2046 
2047 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2048 {
2049 	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2050 }
2051 
2052 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2053 						     const char *buf, size_t count)
2054 {
2055 	unsigned deadline;
2056 
2057 	if (!dm_request_based(md) || md->use_blk_mq)
2058 		return count;
2059 
2060 	if (kstrtouint(buf, 10, &deadline))
2061 		return -EINVAL;
2062 
2063 	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2064 		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2065 
2066 	md->seq_rq_merge_deadline_usecs = deadline;
2067 
2068 	return count;
2069 }
2070 
2071 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2072 {
2073 	ktime_t kt_deadline;
2074 
2075 	if (!md->seq_rq_merge_deadline_usecs)
2076 		return false;
2077 
2078 	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2079 	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2080 
2081 	return !ktime_after(ktime_get(), kt_deadline);
2082 }
2083 
2084 /*
2085  * q->request_fn for request-based dm.
2086  * Called with the queue lock held.
2087  */
2088 static void dm_request_fn(struct request_queue *q)
2089 {
2090 	struct mapped_device *md = q->queuedata;
2091 	int srcu_idx;
2092 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2093 	struct dm_target *ti;
2094 	struct request *rq;
2095 	struct dm_rq_target_io *tio;
2096 	sector_t pos;
2097 
2098 	/*
2099 	 * For suspend, check blk_queue_stopped() and increment
2100 	 * ->pending within a single queue_lock not to increment the
2101 	 * number of in-flight I/Os after the queue is stopped in
2102 	 * dm_suspend().
2103 	 */
2104 	while (!blk_queue_stopped(q)) {
2105 		rq = blk_peek_request(q);
2106 		if (!rq)
2107 			goto out;
2108 
2109 		/* always use block 0 to find the target for flushes for now */
2110 		pos = 0;
2111 		if (!(rq->cmd_flags & REQ_FLUSH))
2112 			pos = blk_rq_pos(rq);
2113 
2114 		ti = dm_table_find_target(map, pos);
2115 		if (!dm_target_is_valid(ti)) {
2116 			/*
2117 			 * Must perform setup, that rq_completed() requires,
2118 			 * before calling dm_kill_unmapped_request
2119 			 */
2120 			DMERR_LIMIT("request attempted access beyond the end of device");
2121 			dm_start_request(md, rq);
2122 			dm_kill_unmapped_request(rq, -EIO);
2123 			continue;
2124 		}
2125 
2126 		if (dm_request_peeked_before_merge_deadline(md) &&
2127 		    md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2128 		    md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2129 			goto delay_and_out;
2130 
2131 		if (ti->type->busy && ti->type->busy(ti))
2132 			goto delay_and_out;
2133 
2134 		dm_start_request(md, rq);
2135 
2136 		tio = tio_from_request(rq);
2137 		/* Establish tio->ti before queuing work (map_tio_request) */
2138 		tio->ti = ti;
2139 		queue_kthread_work(&md->kworker, &tio->work);
2140 		BUG_ON(!irqs_disabled());
2141 	}
2142 
2143 	goto out;
2144 
2145 delay_and_out:
2146 	blk_delay_queue(q, HZ / 100);
2147 out:
2148 	dm_put_live_table(md, srcu_idx);
2149 }
2150 
2151 static int dm_any_congested(void *congested_data, int bdi_bits)
2152 {
2153 	int r = bdi_bits;
2154 	struct mapped_device *md = congested_data;
2155 	struct dm_table *map;
2156 
2157 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2158 		map = dm_get_live_table_fast(md);
2159 		if (map) {
2160 			/*
2161 			 * Request-based dm cares about only own queue for
2162 			 * the query about congestion status of request_queue
2163 			 */
2164 			if (dm_request_based(md))
2165 				r = md->queue->backing_dev_info.state &
2166 				    bdi_bits;
2167 			else
2168 				r = dm_table_any_congested(map, bdi_bits);
2169 		}
2170 		dm_put_live_table_fast(md);
2171 	}
2172 
2173 	return r;
2174 }
2175 
2176 /*-----------------------------------------------------------------
2177  * An IDR is used to keep track of allocated minor numbers.
2178  *---------------------------------------------------------------*/
2179 static void free_minor(int minor)
2180 {
2181 	spin_lock(&_minor_lock);
2182 	idr_remove(&_minor_idr, minor);
2183 	spin_unlock(&_minor_lock);
2184 }
2185 
2186 /*
2187  * See if the device with a specific minor # is free.
2188  */
2189 static int specific_minor(int minor)
2190 {
2191 	int r;
2192 
2193 	if (minor >= (1 << MINORBITS))
2194 		return -EINVAL;
2195 
2196 	idr_preload(GFP_KERNEL);
2197 	spin_lock(&_minor_lock);
2198 
2199 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2200 
2201 	spin_unlock(&_minor_lock);
2202 	idr_preload_end();
2203 	if (r < 0)
2204 		return r == -ENOSPC ? -EBUSY : r;
2205 	return 0;
2206 }
2207 
2208 static int next_free_minor(int *minor)
2209 {
2210 	int r;
2211 
2212 	idr_preload(GFP_KERNEL);
2213 	spin_lock(&_minor_lock);
2214 
2215 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2216 
2217 	spin_unlock(&_minor_lock);
2218 	idr_preload_end();
2219 	if (r < 0)
2220 		return r;
2221 	*minor = r;
2222 	return 0;
2223 }
2224 
2225 static const struct block_device_operations dm_blk_dops;
2226 
2227 static void dm_wq_work(struct work_struct *work);
2228 
2229 static void dm_init_md_queue(struct mapped_device *md)
2230 {
2231 	/*
2232 	 * Request-based dm devices cannot be stacked on top of bio-based dm
2233 	 * devices.  The type of this dm device may not have been decided yet.
2234 	 * The type is decided at the first table loading time.
2235 	 * To prevent problematic device stacking, clear the queue flag
2236 	 * for request stacking support until then.
2237 	 *
2238 	 * This queue is new, so no concurrency on the queue_flags.
2239 	 */
2240 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2241 }
2242 
2243 static void dm_init_old_md_queue(struct mapped_device *md)
2244 {
2245 	md->use_blk_mq = false;
2246 	dm_init_md_queue(md);
2247 
2248 	/*
2249 	 * Initialize aspects of queue that aren't relevant for blk-mq
2250 	 */
2251 	md->queue->queuedata = md;
2252 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2253 	md->queue->backing_dev_info.congested_data = md;
2254 
2255 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2256 }
2257 
2258 /*
2259  * Allocate and initialise a blank device with a given minor.
2260  */
2261 static struct mapped_device *alloc_dev(int minor)
2262 {
2263 	int r;
2264 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2265 	void *old_md;
2266 
2267 	if (!md) {
2268 		DMWARN("unable to allocate device, out of memory.");
2269 		return NULL;
2270 	}
2271 
2272 	if (!try_module_get(THIS_MODULE))
2273 		goto bad_module_get;
2274 
2275 	/* get a minor number for the dev */
2276 	if (minor == DM_ANY_MINOR)
2277 		r = next_free_minor(&minor);
2278 	else
2279 		r = specific_minor(minor);
2280 	if (r < 0)
2281 		goto bad_minor;
2282 
2283 	r = init_srcu_struct(&md->io_barrier);
2284 	if (r < 0)
2285 		goto bad_io_barrier;
2286 
2287 	md->use_blk_mq = use_blk_mq;
2288 	md->type = DM_TYPE_NONE;
2289 	mutex_init(&md->suspend_lock);
2290 	mutex_init(&md->type_lock);
2291 	mutex_init(&md->table_devices_lock);
2292 	spin_lock_init(&md->deferred_lock);
2293 	atomic_set(&md->holders, 1);
2294 	atomic_set(&md->open_count, 0);
2295 	atomic_set(&md->event_nr, 0);
2296 	atomic_set(&md->uevent_seq, 0);
2297 	INIT_LIST_HEAD(&md->uevent_list);
2298 	INIT_LIST_HEAD(&md->table_devices);
2299 	spin_lock_init(&md->uevent_lock);
2300 
2301 	md->queue = blk_alloc_queue(GFP_KERNEL);
2302 	if (!md->queue)
2303 		goto bad_queue;
2304 
2305 	dm_init_md_queue(md);
2306 
2307 	md->disk = alloc_disk(1);
2308 	if (!md->disk)
2309 		goto bad_disk;
2310 
2311 	atomic_set(&md->pending[0], 0);
2312 	atomic_set(&md->pending[1], 0);
2313 	init_waitqueue_head(&md->wait);
2314 	INIT_WORK(&md->work, dm_wq_work);
2315 	init_waitqueue_head(&md->eventq);
2316 	init_completion(&md->kobj_holder.completion);
2317 	md->kworker_task = NULL;
2318 
2319 	md->disk->major = _major;
2320 	md->disk->first_minor = minor;
2321 	md->disk->fops = &dm_blk_dops;
2322 	md->disk->queue = md->queue;
2323 	md->disk->private_data = md;
2324 	sprintf(md->disk->disk_name, "dm-%d", minor);
2325 	add_disk(md->disk);
2326 	format_dev_t(md->name, MKDEV(_major, minor));
2327 
2328 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2329 	if (!md->wq)
2330 		goto bad_thread;
2331 
2332 	md->bdev = bdget_disk(md->disk, 0);
2333 	if (!md->bdev)
2334 		goto bad_bdev;
2335 
2336 	bio_init(&md->flush_bio);
2337 	md->flush_bio.bi_bdev = md->bdev;
2338 	md->flush_bio.bi_rw = WRITE_FLUSH;
2339 
2340 	dm_stats_init(&md->stats);
2341 
2342 	/* Populate the mapping, nobody knows we exist yet */
2343 	spin_lock(&_minor_lock);
2344 	old_md = idr_replace(&_minor_idr, md, minor);
2345 	spin_unlock(&_minor_lock);
2346 
2347 	BUG_ON(old_md != MINOR_ALLOCED);
2348 
2349 	return md;
2350 
2351 bad_bdev:
2352 	destroy_workqueue(md->wq);
2353 bad_thread:
2354 	del_gendisk(md->disk);
2355 	put_disk(md->disk);
2356 bad_disk:
2357 	blk_cleanup_queue(md->queue);
2358 bad_queue:
2359 	cleanup_srcu_struct(&md->io_barrier);
2360 bad_io_barrier:
2361 	free_minor(minor);
2362 bad_minor:
2363 	module_put(THIS_MODULE);
2364 bad_module_get:
2365 	kfree(md);
2366 	return NULL;
2367 }
2368 
2369 static void unlock_fs(struct mapped_device *md);
2370 
2371 static void free_dev(struct mapped_device *md)
2372 {
2373 	int minor = MINOR(disk_devt(md->disk));
2374 
2375 	unlock_fs(md);
2376 	destroy_workqueue(md->wq);
2377 
2378 	if (md->kworker_task)
2379 		kthread_stop(md->kworker_task);
2380 	if (md->io_pool)
2381 		mempool_destroy(md->io_pool);
2382 	if (md->rq_pool)
2383 		mempool_destroy(md->rq_pool);
2384 	if (md->bs)
2385 		bioset_free(md->bs);
2386 
2387 	cleanup_srcu_struct(&md->io_barrier);
2388 	free_table_devices(&md->table_devices);
2389 	dm_stats_cleanup(&md->stats);
2390 
2391 	spin_lock(&_minor_lock);
2392 	md->disk->private_data = NULL;
2393 	spin_unlock(&_minor_lock);
2394 	if (blk_get_integrity(md->disk))
2395 		blk_integrity_unregister(md->disk);
2396 	del_gendisk(md->disk);
2397 	put_disk(md->disk);
2398 	blk_cleanup_queue(md->queue);
2399 	if (md->use_blk_mq)
2400 		blk_mq_free_tag_set(&md->tag_set);
2401 	bdput(md->bdev);
2402 	free_minor(minor);
2403 
2404 	module_put(THIS_MODULE);
2405 	kfree(md);
2406 }
2407 
2408 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2409 {
2410 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2411 
2412 	if (md->bs) {
2413 		/* The md already has necessary mempools. */
2414 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2415 			/*
2416 			 * Reload bioset because front_pad may have changed
2417 			 * because a different table was loaded.
2418 			 */
2419 			bioset_free(md->bs);
2420 			md->bs = p->bs;
2421 			p->bs = NULL;
2422 		}
2423 		/*
2424 		 * There's no need to reload with request-based dm
2425 		 * because the size of front_pad doesn't change.
2426 		 * Note for future: If you are to reload bioset,
2427 		 * prep-ed requests in the queue may refer
2428 		 * to bio from the old bioset, so you must walk
2429 		 * through the queue to unprep.
2430 		 */
2431 		goto out;
2432 	}
2433 
2434 	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2435 
2436 	md->io_pool = p->io_pool;
2437 	p->io_pool = NULL;
2438 	md->rq_pool = p->rq_pool;
2439 	p->rq_pool = NULL;
2440 	md->bs = p->bs;
2441 	p->bs = NULL;
2442 
2443 out:
2444 	/* mempool bind completed, no longer need any mempools in the table */
2445 	dm_table_free_md_mempools(t);
2446 }
2447 
2448 /*
2449  * Bind a table to the device.
2450  */
2451 static void event_callback(void *context)
2452 {
2453 	unsigned long flags;
2454 	LIST_HEAD(uevents);
2455 	struct mapped_device *md = (struct mapped_device *) context;
2456 
2457 	spin_lock_irqsave(&md->uevent_lock, flags);
2458 	list_splice_init(&md->uevent_list, &uevents);
2459 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2460 
2461 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2462 
2463 	atomic_inc(&md->event_nr);
2464 	wake_up(&md->eventq);
2465 }
2466 
2467 /*
2468  * Protected by md->suspend_lock obtained by dm_swap_table().
2469  */
2470 static void __set_size(struct mapped_device *md, sector_t size)
2471 {
2472 	set_capacity(md->disk, size);
2473 
2474 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2475 }
2476 
2477 /*
2478  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2479  *
2480  * If this function returns 0, then the device is either a non-dm
2481  * device without a merge_bvec_fn, or it is a dm device that is
2482  * able to split any bios it receives that are too big.
2483  */
2484 int dm_queue_merge_is_compulsory(struct request_queue *q)
2485 {
2486 	struct mapped_device *dev_md;
2487 
2488 	if (!q->merge_bvec_fn)
2489 		return 0;
2490 
2491 	if (q->make_request_fn == dm_make_request) {
2492 		dev_md = q->queuedata;
2493 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2494 			return 0;
2495 	}
2496 
2497 	return 1;
2498 }
2499 
2500 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2501 					 struct dm_dev *dev, sector_t start,
2502 					 sector_t len, void *data)
2503 {
2504 	struct block_device *bdev = dev->bdev;
2505 	struct request_queue *q = bdev_get_queue(bdev);
2506 
2507 	return dm_queue_merge_is_compulsory(q);
2508 }
2509 
2510 /*
2511  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2512  * on the properties of the underlying devices.
2513  */
2514 static int dm_table_merge_is_optional(struct dm_table *table)
2515 {
2516 	unsigned i = 0;
2517 	struct dm_target *ti;
2518 
2519 	while (i < dm_table_get_num_targets(table)) {
2520 		ti = dm_table_get_target(table, i++);
2521 
2522 		if (ti->type->iterate_devices &&
2523 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2524 			return 0;
2525 	}
2526 
2527 	return 1;
2528 }
2529 
2530 /*
2531  * Returns old map, which caller must destroy.
2532  */
2533 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2534 			       struct queue_limits *limits)
2535 {
2536 	struct dm_table *old_map;
2537 	struct request_queue *q = md->queue;
2538 	sector_t size;
2539 	int merge_is_optional;
2540 
2541 	size = dm_table_get_size(t);
2542 
2543 	/*
2544 	 * Wipe any geometry if the size of the table changed.
2545 	 */
2546 	if (size != dm_get_size(md))
2547 		memset(&md->geometry, 0, sizeof(md->geometry));
2548 
2549 	__set_size(md, size);
2550 
2551 	dm_table_event_callback(t, event_callback, md);
2552 
2553 	/*
2554 	 * The queue hasn't been stopped yet, if the old table type wasn't
2555 	 * for request-based during suspension.  So stop it to prevent
2556 	 * I/O mapping before resume.
2557 	 * This must be done before setting the queue restrictions,
2558 	 * because request-based dm may be run just after the setting.
2559 	 */
2560 	if (dm_table_request_based(t))
2561 		stop_queue(q);
2562 
2563 	__bind_mempools(md, t);
2564 
2565 	merge_is_optional = dm_table_merge_is_optional(t);
2566 
2567 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2568 	rcu_assign_pointer(md->map, t);
2569 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2570 
2571 	dm_table_set_restrictions(t, q, limits);
2572 	if (merge_is_optional)
2573 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2574 	else
2575 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2576 	if (old_map)
2577 		dm_sync_table(md);
2578 
2579 	return old_map;
2580 }
2581 
2582 /*
2583  * Returns unbound table for the caller to free.
2584  */
2585 static struct dm_table *__unbind(struct mapped_device *md)
2586 {
2587 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2588 
2589 	if (!map)
2590 		return NULL;
2591 
2592 	dm_table_event_callback(map, NULL, NULL);
2593 	RCU_INIT_POINTER(md->map, NULL);
2594 	dm_sync_table(md);
2595 
2596 	return map;
2597 }
2598 
2599 /*
2600  * Constructor for a new device.
2601  */
2602 int dm_create(int minor, struct mapped_device **result)
2603 {
2604 	struct mapped_device *md;
2605 
2606 	md = alloc_dev(minor);
2607 	if (!md)
2608 		return -ENXIO;
2609 
2610 	dm_sysfs_init(md);
2611 
2612 	*result = md;
2613 	return 0;
2614 }
2615 
2616 /*
2617  * Functions to manage md->type.
2618  * All are required to hold md->type_lock.
2619  */
2620 void dm_lock_md_type(struct mapped_device *md)
2621 {
2622 	mutex_lock(&md->type_lock);
2623 }
2624 
2625 void dm_unlock_md_type(struct mapped_device *md)
2626 {
2627 	mutex_unlock(&md->type_lock);
2628 }
2629 
2630 void dm_set_md_type(struct mapped_device *md, unsigned type)
2631 {
2632 	BUG_ON(!mutex_is_locked(&md->type_lock));
2633 	md->type = type;
2634 }
2635 
2636 unsigned dm_get_md_type(struct mapped_device *md)
2637 {
2638 	BUG_ON(!mutex_is_locked(&md->type_lock));
2639 	return md->type;
2640 }
2641 
2642 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2643 {
2644 	return md->immutable_target_type;
2645 }
2646 
2647 /*
2648  * The queue_limits are only valid as long as you have a reference
2649  * count on 'md'.
2650  */
2651 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2652 {
2653 	BUG_ON(!atomic_read(&md->holders));
2654 	return &md->queue->limits;
2655 }
2656 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2657 
2658 static void init_rq_based_worker_thread(struct mapped_device *md)
2659 {
2660 	/* Initialize the request-based DM worker thread */
2661 	init_kthread_worker(&md->kworker);
2662 	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2663 				       "kdmwork-%s", dm_device_name(md));
2664 }
2665 
2666 /*
2667  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2668  */
2669 static int dm_init_request_based_queue(struct mapped_device *md)
2670 {
2671 	struct request_queue *q = NULL;
2672 
2673 	/* Fully initialize the queue */
2674 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2675 	if (!q)
2676 		return -EINVAL;
2677 
2678 	/* disable dm_request_fn's merge heuristic by default */
2679 	md->seq_rq_merge_deadline_usecs = 0;
2680 
2681 	md->queue = q;
2682 	dm_init_old_md_queue(md);
2683 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2684 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2685 
2686 	init_rq_based_worker_thread(md);
2687 
2688 	elv_register_queue(md->queue);
2689 
2690 	return 0;
2691 }
2692 
2693 static int dm_mq_init_request(void *data, struct request *rq,
2694 			      unsigned int hctx_idx, unsigned int request_idx,
2695 			      unsigned int numa_node)
2696 {
2697 	struct mapped_device *md = data;
2698 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2699 
2700 	/*
2701 	 * Must initialize md member of tio, otherwise it won't
2702 	 * be available in dm_mq_queue_rq.
2703 	 */
2704 	tio->md = md;
2705 
2706 	return 0;
2707 }
2708 
2709 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2710 			  const struct blk_mq_queue_data *bd)
2711 {
2712 	struct request *rq = bd->rq;
2713 	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2714 	struct mapped_device *md = tio->md;
2715 	int srcu_idx;
2716 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2717 	struct dm_target *ti;
2718 	sector_t pos;
2719 
2720 	/* always use block 0 to find the target for flushes for now */
2721 	pos = 0;
2722 	if (!(rq->cmd_flags & REQ_FLUSH))
2723 		pos = blk_rq_pos(rq);
2724 
2725 	ti = dm_table_find_target(map, pos);
2726 	if (!dm_target_is_valid(ti)) {
2727 		dm_put_live_table(md, srcu_idx);
2728 		DMERR_LIMIT("request attempted access beyond the end of device");
2729 		/*
2730 		 * Must perform setup, that rq_completed() requires,
2731 		 * before returning BLK_MQ_RQ_QUEUE_ERROR
2732 		 */
2733 		dm_start_request(md, rq);
2734 		return BLK_MQ_RQ_QUEUE_ERROR;
2735 	}
2736 	dm_put_live_table(md, srcu_idx);
2737 
2738 	if (ti->type->busy && ti->type->busy(ti))
2739 		return BLK_MQ_RQ_QUEUE_BUSY;
2740 
2741 	dm_start_request(md, rq);
2742 
2743 	/* Init tio using md established in .init_request */
2744 	init_tio(tio, rq, md);
2745 
2746 	/*
2747 	 * Establish tio->ti before queuing work (map_tio_request)
2748 	 * or making direct call to map_request().
2749 	 */
2750 	tio->ti = ti;
2751 
2752 	/* Clone the request if underlying devices aren't blk-mq */
2753 	if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2754 		/* clone request is allocated at the end of the pdu */
2755 		tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2756 		if (!clone_rq(rq, md, tio, GFP_ATOMIC))
2757 			return BLK_MQ_RQ_QUEUE_BUSY;
2758 		queue_kthread_work(&md->kworker, &tio->work);
2759 	} else {
2760 		/* Direct call is fine since .queue_rq allows allocations */
2761 		if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2762 			dm_requeue_unmapped_original_request(md, rq);
2763 	}
2764 
2765 	return BLK_MQ_RQ_QUEUE_OK;
2766 }
2767 
2768 static struct blk_mq_ops dm_mq_ops = {
2769 	.queue_rq = dm_mq_queue_rq,
2770 	.map_queue = blk_mq_map_queue,
2771 	.complete = dm_softirq_done,
2772 	.init_request = dm_mq_init_request,
2773 };
2774 
2775 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2776 {
2777 	unsigned md_type = dm_get_md_type(md);
2778 	struct request_queue *q;
2779 	int err;
2780 
2781 	memset(&md->tag_set, 0, sizeof(md->tag_set));
2782 	md->tag_set.ops = &dm_mq_ops;
2783 	md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2784 	md->tag_set.numa_node = NUMA_NO_NODE;
2785 	md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2786 	md->tag_set.nr_hw_queues = 1;
2787 	if (md_type == DM_TYPE_REQUEST_BASED) {
2788 		/* make the memory for non-blk-mq clone part of the pdu */
2789 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2790 	} else
2791 		md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2792 	md->tag_set.driver_data = md;
2793 
2794 	err = blk_mq_alloc_tag_set(&md->tag_set);
2795 	if (err)
2796 		return err;
2797 
2798 	q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2799 	if (IS_ERR(q)) {
2800 		err = PTR_ERR(q);
2801 		goto out_tag_set;
2802 	}
2803 	md->queue = q;
2804 	dm_init_md_queue(md);
2805 
2806 	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2807 	blk_mq_register_disk(md->disk);
2808 
2809 	if (md_type == DM_TYPE_REQUEST_BASED)
2810 		init_rq_based_worker_thread(md);
2811 
2812 	return 0;
2813 
2814 out_tag_set:
2815 	blk_mq_free_tag_set(&md->tag_set);
2816 	return err;
2817 }
2818 
2819 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2820 {
2821 	if (type == DM_TYPE_BIO_BASED)
2822 		return type;
2823 
2824 	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2825 }
2826 
2827 /*
2828  * Setup the DM device's queue based on md's type
2829  */
2830 int dm_setup_md_queue(struct mapped_device *md)
2831 {
2832 	int r;
2833 	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2834 
2835 	switch (md_type) {
2836 	case DM_TYPE_REQUEST_BASED:
2837 		r = dm_init_request_based_queue(md);
2838 		if (r) {
2839 			DMWARN("Cannot initialize queue for request-based mapped device");
2840 			return r;
2841 		}
2842 		break;
2843 	case DM_TYPE_MQ_REQUEST_BASED:
2844 		r = dm_init_request_based_blk_mq_queue(md);
2845 		if (r) {
2846 			DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2847 			return r;
2848 		}
2849 		break;
2850 	case DM_TYPE_BIO_BASED:
2851 		dm_init_old_md_queue(md);
2852 		blk_queue_make_request(md->queue, dm_make_request);
2853 		blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2854 		break;
2855 	}
2856 
2857 	return 0;
2858 }
2859 
2860 struct mapped_device *dm_get_md(dev_t dev)
2861 {
2862 	struct mapped_device *md;
2863 	unsigned minor = MINOR(dev);
2864 
2865 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2866 		return NULL;
2867 
2868 	spin_lock(&_minor_lock);
2869 
2870 	md = idr_find(&_minor_idr, minor);
2871 	if (md) {
2872 		if ((md == MINOR_ALLOCED ||
2873 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2874 		     dm_deleting_md(md) ||
2875 		     test_bit(DMF_FREEING, &md->flags))) {
2876 			md = NULL;
2877 			goto out;
2878 		}
2879 		dm_get(md);
2880 	}
2881 
2882 out:
2883 	spin_unlock(&_minor_lock);
2884 
2885 	return md;
2886 }
2887 EXPORT_SYMBOL_GPL(dm_get_md);
2888 
2889 void *dm_get_mdptr(struct mapped_device *md)
2890 {
2891 	return md->interface_ptr;
2892 }
2893 
2894 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2895 {
2896 	md->interface_ptr = ptr;
2897 }
2898 
2899 void dm_get(struct mapped_device *md)
2900 {
2901 	atomic_inc(&md->holders);
2902 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2903 }
2904 
2905 int dm_hold(struct mapped_device *md)
2906 {
2907 	spin_lock(&_minor_lock);
2908 	if (test_bit(DMF_FREEING, &md->flags)) {
2909 		spin_unlock(&_minor_lock);
2910 		return -EBUSY;
2911 	}
2912 	dm_get(md);
2913 	spin_unlock(&_minor_lock);
2914 	return 0;
2915 }
2916 EXPORT_SYMBOL_GPL(dm_hold);
2917 
2918 const char *dm_device_name(struct mapped_device *md)
2919 {
2920 	return md->name;
2921 }
2922 EXPORT_SYMBOL_GPL(dm_device_name);
2923 
2924 static void __dm_destroy(struct mapped_device *md, bool wait)
2925 {
2926 	struct dm_table *map;
2927 	int srcu_idx;
2928 
2929 	might_sleep();
2930 
2931 	map = dm_get_live_table(md, &srcu_idx);
2932 
2933 	spin_lock(&_minor_lock);
2934 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2935 	set_bit(DMF_FREEING, &md->flags);
2936 	spin_unlock(&_minor_lock);
2937 
2938 	if (dm_request_based(md) && md->kworker_task)
2939 		flush_kthread_worker(&md->kworker);
2940 
2941 	/*
2942 	 * Take suspend_lock so that presuspend and postsuspend methods
2943 	 * do not race with internal suspend.
2944 	 */
2945 	mutex_lock(&md->suspend_lock);
2946 	if (!dm_suspended_md(md)) {
2947 		dm_table_presuspend_targets(map);
2948 		dm_table_postsuspend_targets(map);
2949 	}
2950 	mutex_unlock(&md->suspend_lock);
2951 
2952 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2953 	dm_put_live_table(md, srcu_idx);
2954 
2955 	/*
2956 	 * Rare, but there may be I/O requests still going to complete,
2957 	 * for example.  Wait for all references to disappear.
2958 	 * No one should increment the reference count of the mapped_device,
2959 	 * after the mapped_device state becomes DMF_FREEING.
2960 	 */
2961 	if (wait)
2962 		while (atomic_read(&md->holders))
2963 			msleep(1);
2964 	else if (atomic_read(&md->holders))
2965 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2966 		       dm_device_name(md), atomic_read(&md->holders));
2967 
2968 	dm_sysfs_exit(md);
2969 	dm_table_destroy(__unbind(md));
2970 	free_dev(md);
2971 }
2972 
2973 void dm_destroy(struct mapped_device *md)
2974 {
2975 	__dm_destroy(md, true);
2976 }
2977 
2978 void dm_destroy_immediate(struct mapped_device *md)
2979 {
2980 	__dm_destroy(md, false);
2981 }
2982 
2983 void dm_put(struct mapped_device *md)
2984 {
2985 	atomic_dec(&md->holders);
2986 }
2987 EXPORT_SYMBOL_GPL(dm_put);
2988 
2989 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2990 {
2991 	int r = 0;
2992 	DECLARE_WAITQUEUE(wait, current);
2993 
2994 	add_wait_queue(&md->wait, &wait);
2995 
2996 	while (1) {
2997 		set_current_state(interruptible);
2998 
2999 		if (!md_in_flight(md))
3000 			break;
3001 
3002 		if (interruptible == TASK_INTERRUPTIBLE &&
3003 		    signal_pending(current)) {
3004 			r = -EINTR;
3005 			break;
3006 		}
3007 
3008 		io_schedule();
3009 	}
3010 	set_current_state(TASK_RUNNING);
3011 
3012 	remove_wait_queue(&md->wait, &wait);
3013 
3014 	return r;
3015 }
3016 
3017 /*
3018  * Process the deferred bios
3019  */
3020 static void dm_wq_work(struct work_struct *work)
3021 {
3022 	struct mapped_device *md = container_of(work, struct mapped_device,
3023 						work);
3024 	struct bio *c;
3025 	int srcu_idx;
3026 	struct dm_table *map;
3027 
3028 	map = dm_get_live_table(md, &srcu_idx);
3029 
3030 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3031 		spin_lock_irq(&md->deferred_lock);
3032 		c = bio_list_pop(&md->deferred);
3033 		spin_unlock_irq(&md->deferred_lock);
3034 
3035 		if (!c)
3036 			break;
3037 
3038 		if (dm_request_based(md))
3039 			generic_make_request(c);
3040 		else
3041 			__split_and_process_bio(md, map, c);
3042 	}
3043 
3044 	dm_put_live_table(md, srcu_idx);
3045 }
3046 
3047 static void dm_queue_flush(struct mapped_device *md)
3048 {
3049 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3050 	smp_mb__after_atomic();
3051 	queue_work(md->wq, &md->work);
3052 }
3053 
3054 /*
3055  * Swap in a new table, returning the old one for the caller to destroy.
3056  */
3057 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3058 {
3059 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3060 	struct queue_limits limits;
3061 	int r;
3062 
3063 	mutex_lock(&md->suspend_lock);
3064 
3065 	/* device must be suspended */
3066 	if (!dm_suspended_md(md))
3067 		goto out;
3068 
3069 	/*
3070 	 * If the new table has no data devices, retain the existing limits.
3071 	 * This helps multipath with queue_if_no_path if all paths disappear,
3072 	 * then new I/O is queued based on these limits, and then some paths
3073 	 * reappear.
3074 	 */
3075 	if (dm_table_has_no_data_devices(table)) {
3076 		live_map = dm_get_live_table_fast(md);
3077 		if (live_map)
3078 			limits = md->queue->limits;
3079 		dm_put_live_table_fast(md);
3080 	}
3081 
3082 	if (!live_map) {
3083 		r = dm_calculate_queue_limits(table, &limits);
3084 		if (r) {
3085 			map = ERR_PTR(r);
3086 			goto out;
3087 		}
3088 	}
3089 
3090 	map = __bind(md, table, &limits);
3091 
3092 out:
3093 	mutex_unlock(&md->suspend_lock);
3094 	return map;
3095 }
3096 
3097 /*
3098  * Functions to lock and unlock any filesystem running on the
3099  * device.
3100  */
3101 static int lock_fs(struct mapped_device *md)
3102 {
3103 	int r;
3104 
3105 	WARN_ON(md->frozen_sb);
3106 
3107 	md->frozen_sb = freeze_bdev(md->bdev);
3108 	if (IS_ERR(md->frozen_sb)) {
3109 		r = PTR_ERR(md->frozen_sb);
3110 		md->frozen_sb = NULL;
3111 		return r;
3112 	}
3113 
3114 	set_bit(DMF_FROZEN, &md->flags);
3115 
3116 	return 0;
3117 }
3118 
3119 static void unlock_fs(struct mapped_device *md)
3120 {
3121 	if (!test_bit(DMF_FROZEN, &md->flags))
3122 		return;
3123 
3124 	thaw_bdev(md->bdev, md->frozen_sb);
3125 	md->frozen_sb = NULL;
3126 	clear_bit(DMF_FROZEN, &md->flags);
3127 }
3128 
3129 /*
3130  * If __dm_suspend returns 0, the device is completely quiescent
3131  * now. There is no request-processing activity. All new requests
3132  * are being added to md->deferred list.
3133  *
3134  * Caller must hold md->suspend_lock
3135  */
3136 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3137 			unsigned suspend_flags, int interruptible)
3138 {
3139 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3140 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3141 	int r;
3142 
3143 	/*
3144 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3145 	 * This flag is cleared before dm_suspend returns.
3146 	 */
3147 	if (noflush)
3148 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3149 
3150 	/*
3151 	 * This gets reverted if there's an error later and the targets
3152 	 * provide the .presuspend_undo hook.
3153 	 */
3154 	dm_table_presuspend_targets(map);
3155 
3156 	/*
3157 	 * Flush I/O to the device.
3158 	 * Any I/O submitted after lock_fs() may not be flushed.
3159 	 * noflush takes precedence over do_lockfs.
3160 	 * (lock_fs() flushes I/Os and waits for them to complete.)
3161 	 */
3162 	if (!noflush && do_lockfs) {
3163 		r = lock_fs(md);
3164 		if (r) {
3165 			dm_table_presuspend_undo_targets(map);
3166 			return r;
3167 		}
3168 	}
3169 
3170 	/*
3171 	 * Here we must make sure that no processes are submitting requests
3172 	 * to target drivers i.e. no one may be executing
3173 	 * __split_and_process_bio. This is called from dm_request and
3174 	 * dm_wq_work.
3175 	 *
3176 	 * To get all processes out of __split_and_process_bio in dm_request,
3177 	 * we take the write lock. To prevent any process from reentering
3178 	 * __split_and_process_bio from dm_request and quiesce the thread
3179 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3180 	 * flush_workqueue(md->wq).
3181 	 */
3182 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3183 	if (map)
3184 		synchronize_srcu(&md->io_barrier);
3185 
3186 	/*
3187 	 * Stop md->queue before flushing md->wq in case request-based
3188 	 * dm defers requests to md->wq from md->queue.
3189 	 */
3190 	if (dm_request_based(md)) {
3191 		stop_queue(md->queue);
3192 		if (md->kworker_task)
3193 			flush_kthread_worker(&md->kworker);
3194 	}
3195 
3196 	flush_workqueue(md->wq);
3197 
3198 	/*
3199 	 * At this point no more requests are entering target request routines.
3200 	 * We call dm_wait_for_completion to wait for all existing requests
3201 	 * to finish.
3202 	 */
3203 	r = dm_wait_for_completion(md, interruptible);
3204 
3205 	if (noflush)
3206 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3207 	if (map)
3208 		synchronize_srcu(&md->io_barrier);
3209 
3210 	/* were we interrupted ? */
3211 	if (r < 0) {
3212 		dm_queue_flush(md);
3213 
3214 		if (dm_request_based(md))
3215 			start_queue(md->queue);
3216 
3217 		unlock_fs(md);
3218 		dm_table_presuspend_undo_targets(map);
3219 		/* pushback list is already flushed, so skip flush */
3220 	}
3221 
3222 	return r;
3223 }
3224 
3225 /*
3226  * We need to be able to change a mapping table under a mounted
3227  * filesystem.  For example we might want to move some data in
3228  * the background.  Before the table can be swapped with
3229  * dm_bind_table, dm_suspend must be called to flush any in
3230  * flight bios and ensure that any further io gets deferred.
3231  */
3232 /*
3233  * Suspend mechanism in request-based dm.
3234  *
3235  * 1. Flush all I/Os by lock_fs() if needed.
3236  * 2. Stop dispatching any I/O by stopping the request_queue.
3237  * 3. Wait for all in-flight I/Os to be completed or requeued.
3238  *
3239  * To abort suspend, start the request_queue.
3240  */
3241 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3242 {
3243 	struct dm_table *map = NULL;
3244 	int r = 0;
3245 
3246 retry:
3247 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3248 
3249 	if (dm_suspended_md(md)) {
3250 		r = -EINVAL;
3251 		goto out_unlock;
3252 	}
3253 
3254 	if (dm_suspended_internally_md(md)) {
3255 		/* already internally suspended, wait for internal resume */
3256 		mutex_unlock(&md->suspend_lock);
3257 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3258 		if (r)
3259 			return r;
3260 		goto retry;
3261 	}
3262 
3263 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3264 
3265 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3266 	if (r)
3267 		goto out_unlock;
3268 
3269 	set_bit(DMF_SUSPENDED, &md->flags);
3270 
3271 	dm_table_postsuspend_targets(map);
3272 
3273 out_unlock:
3274 	mutex_unlock(&md->suspend_lock);
3275 	return r;
3276 }
3277 
3278 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3279 {
3280 	if (map) {
3281 		int r = dm_table_resume_targets(map);
3282 		if (r)
3283 			return r;
3284 	}
3285 
3286 	dm_queue_flush(md);
3287 
3288 	/*
3289 	 * Flushing deferred I/Os must be done after targets are resumed
3290 	 * so that mapping of targets can work correctly.
3291 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3292 	 */
3293 	if (dm_request_based(md))
3294 		start_queue(md->queue);
3295 
3296 	unlock_fs(md);
3297 
3298 	return 0;
3299 }
3300 
3301 int dm_resume(struct mapped_device *md)
3302 {
3303 	int r = -EINVAL;
3304 	struct dm_table *map = NULL;
3305 
3306 retry:
3307 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3308 
3309 	if (!dm_suspended_md(md))
3310 		goto out;
3311 
3312 	if (dm_suspended_internally_md(md)) {
3313 		/* already internally suspended, wait for internal resume */
3314 		mutex_unlock(&md->suspend_lock);
3315 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3316 		if (r)
3317 			return r;
3318 		goto retry;
3319 	}
3320 
3321 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3322 	if (!map || !dm_table_get_size(map))
3323 		goto out;
3324 
3325 	r = __dm_resume(md, map);
3326 	if (r)
3327 		goto out;
3328 
3329 	clear_bit(DMF_SUSPENDED, &md->flags);
3330 
3331 	r = 0;
3332 out:
3333 	mutex_unlock(&md->suspend_lock);
3334 
3335 	return r;
3336 }
3337 
3338 /*
3339  * Internal suspend/resume works like userspace-driven suspend. It waits
3340  * until all bios finish and prevents issuing new bios to the target drivers.
3341  * It may be used only from the kernel.
3342  */
3343 
3344 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3345 {
3346 	struct dm_table *map = NULL;
3347 
3348 	if (md->internal_suspend_count++)
3349 		return; /* nested internal suspend */
3350 
3351 	if (dm_suspended_md(md)) {
3352 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3353 		return; /* nest suspend */
3354 	}
3355 
3356 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3357 
3358 	/*
3359 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3360 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3361 	 * would require changing .presuspend to return an error -- avoid this
3362 	 * until there is a need for more elaborate variants of internal suspend.
3363 	 */
3364 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3365 
3366 	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3367 
3368 	dm_table_postsuspend_targets(map);
3369 }
3370 
3371 static void __dm_internal_resume(struct mapped_device *md)
3372 {
3373 	BUG_ON(!md->internal_suspend_count);
3374 
3375 	if (--md->internal_suspend_count)
3376 		return; /* resume from nested internal suspend */
3377 
3378 	if (dm_suspended_md(md))
3379 		goto done; /* resume from nested suspend */
3380 
3381 	/*
3382 	 * NOTE: existing callers don't need to call dm_table_resume_targets
3383 	 * (which may fail -- so best to avoid it for now by passing NULL map)
3384 	 */
3385 	(void) __dm_resume(md, NULL);
3386 
3387 done:
3388 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3389 	smp_mb__after_atomic();
3390 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3391 }
3392 
3393 void dm_internal_suspend_noflush(struct mapped_device *md)
3394 {
3395 	mutex_lock(&md->suspend_lock);
3396 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3397 	mutex_unlock(&md->suspend_lock);
3398 }
3399 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3400 
3401 void dm_internal_resume(struct mapped_device *md)
3402 {
3403 	mutex_lock(&md->suspend_lock);
3404 	__dm_internal_resume(md);
3405 	mutex_unlock(&md->suspend_lock);
3406 }
3407 EXPORT_SYMBOL_GPL(dm_internal_resume);
3408 
3409 /*
3410  * Fast variants of internal suspend/resume hold md->suspend_lock,
3411  * which prevents interaction with userspace-driven suspend.
3412  */
3413 
3414 void dm_internal_suspend_fast(struct mapped_device *md)
3415 {
3416 	mutex_lock(&md->suspend_lock);
3417 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3418 		return;
3419 
3420 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3421 	synchronize_srcu(&md->io_barrier);
3422 	flush_workqueue(md->wq);
3423 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3424 }
3425 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3426 
3427 void dm_internal_resume_fast(struct mapped_device *md)
3428 {
3429 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3430 		goto done;
3431 
3432 	dm_queue_flush(md);
3433 
3434 done:
3435 	mutex_unlock(&md->suspend_lock);
3436 }
3437 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3438 
3439 /*-----------------------------------------------------------------
3440  * Event notification.
3441  *---------------------------------------------------------------*/
3442 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3443 		       unsigned cookie)
3444 {
3445 	char udev_cookie[DM_COOKIE_LENGTH];
3446 	char *envp[] = { udev_cookie, NULL };
3447 
3448 	if (!cookie)
3449 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3450 	else {
3451 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3452 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3453 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3454 					  action, envp);
3455 	}
3456 }
3457 
3458 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3459 {
3460 	return atomic_add_return(1, &md->uevent_seq);
3461 }
3462 
3463 uint32_t dm_get_event_nr(struct mapped_device *md)
3464 {
3465 	return atomic_read(&md->event_nr);
3466 }
3467 
3468 int dm_wait_event(struct mapped_device *md, int event_nr)
3469 {
3470 	return wait_event_interruptible(md->eventq,
3471 			(event_nr != atomic_read(&md->event_nr)));
3472 }
3473 
3474 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3475 {
3476 	unsigned long flags;
3477 
3478 	spin_lock_irqsave(&md->uevent_lock, flags);
3479 	list_add(elist, &md->uevent_list);
3480 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3481 }
3482 
3483 /*
3484  * The gendisk is only valid as long as you have a reference
3485  * count on 'md'.
3486  */
3487 struct gendisk *dm_disk(struct mapped_device *md)
3488 {
3489 	return md->disk;
3490 }
3491 EXPORT_SYMBOL_GPL(dm_disk);
3492 
3493 struct kobject *dm_kobject(struct mapped_device *md)
3494 {
3495 	return &md->kobj_holder.kobj;
3496 }
3497 
3498 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3499 {
3500 	struct mapped_device *md;
3501 
3502 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3503 
3504 	if (test_bit(DMF_FREEING, &md->flags) ||
3505 	    dm_deleting_md(md))
3506 		return NULL;
3507 
3508 	dm_get(md);
3509 	return md;
3510 }
3511 
3512 int dm_suspended_md(struct mapped_device *md)
3513 {
3514 	return test_bit(DMF_SUSPENDED, &md->flags);
3515 }
3516 
3517 int dm_suspended_internally_md(struct mapped_device *md)
3518 {
3519 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3520 }
3521 
3522 int dm_test_deferred_remove_flag(struct mapped_device *md)
3523 {
3524 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3525 }
3526 
3527 int dm_suspended(struct dm_target *ti)
3528 {
3529 	return dm_suspended_md(dm_table_get_md(ti->table));
3530 }
3531 EXPORT_SYMBOL_GPL(dm_suspended);
3532 
3533 int dm_noflush_suspending(struct dm_target *ti)
3534 {
3535 	return __noflush_suspending(dm_table_get_md(ti->table));
3536 }
3537 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3538 
3539 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3540 					    unsigned integrity, unsigned per_bio_data_size)
3541 {
3542 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3543 	struct kmem_cache *cachep = NULL;
3544 	unsigned int pool_size = 0;
3545 	unsigned int front_pad;
3546 
3547 	if (!pools)
3548 		return NULL;
3549 
3550 	type = filter_md_type(type, md);
3551 
3552 	switch (type) {
3553 	case DM_TYPE_BIO_BASED:
3554 		cachep = _io_cache;
3555 		pool_size = dm_get_reserved_bio_based_ios();
3556 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3557 		break;
3558 	case DM_TYPE_REQUEST_BASED:
3559 		cachep = _rq_tio_cache;
3560 		pool_size = dm_get_reserved_rq_based_ios();
3561 		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3562 		if (!pools->rq_pool)
3563 			goto out;
3564 		/* fall through to setup remaining rq-based pools */
3565 	case DM_TYPE_MQ_REQUEST_BASED:
3566 		if (!pool_size)
3567 			pool_size = dm_get_reserved_rq_based_ios();
3568 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3569 		/* per_bio_data_size is not used. See __bind_mempools(). */
3570 		WARN_ON(per_bio_data_size != 0);
3571 		break;
3572 	default:
3573 		BUG();
3574 	}
3575 
3576 	if (cachep) {
3577 		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3578 		if (!pools->io_pool)
3579 			goto out;
3580 	}
3581 
3582 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3583 	if (!pools->bs)
3584 		goto out;
3585 
3586 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
3587 		goto out;
3588 
3589 	return pools;
3590 
3591 out:
3592 	dm_free_md_mempools(pools);
3593 
3594 	return NULL;
3595 }
3596 
3597 void dm_free_md_mempools(struct dm_md_mempools *pools)
3598 {
3599 	if (!pools)
3600 		return;
3601 
3602 	if (pools->io_pool)
3603 		mempool_destroy(pools->io_pool);
3604 
3605 	if (pools->rq_pool)
3606 		mempool_destroy(pools->rq_pool);
3607 
3608 	if (pools->bs)
3609 		bioset_free(pools->bs);
3610 
3611 	kfree(pools);
3612 }
3613 
3614 static const struct block_device_operations dm_blk_dops = {
3615 	.open = dm_blk_open,
3616 	.release = dm_blk_close,
3617 	.ioctl = dm_blk_ioctl,
3618 	.getgeo = dm_blk_getgeo,
3619 	.owner = THIS_MODULE
3620 };
3621 
3622 /*
3623  * module hooks
3624  */
3625 module_init(dm_init);
3626 module_exit(dm_exit);
3627 
3628 module_param(major, uint, 0);
3629 MODULE_PARM_DESC(major, "The major number of the device mapper");
3630 
3631 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3632 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3633 
3634 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3635 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3636 
3637 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3638 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3639 
3640 MODULE_DESCRIPTION(DM_NAME " driver");
3641 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3642 MODULE_LICENSE("GPL");
3643