1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/kthread.h> 24 #include <linux/ktime.h> 25 #include <linux/elevator.h> /* for rq_end_sector() */ 26 #include <linux/blk-mq.h> 27 28 #include <trace/events/block.h> 29 30 #define DM_MSG_PREFIX "core" 31 32 #ifdef CONFIG_PRINTK 33 /* 34 * ratelimit state to be used in DMXXX_LIMIT(). 35 */ 36 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 37 DEFAULT_RATELIMIT_INTERVAL, 38 DEFAULT_RATELIMIT_BURST); 39 EXPORT_SYMBOL(dm_ratelimit_state); 40 #endif 41 42 /* 43 * Cookies are numeric values sent with CHANGE and REMOVE 44 * uevents while resuming, removing or renaming the device. 45 */ 46 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 47 #define DM_COOKIE_LENGTH 24 48 49 static const char *_name = DM_NAME; 50 51 static unsigned int major = 0; 52 static unsigned int _major = 0; 53 54 static DEFINE_IDR(_minor_idr); 55 56 static DEFINE_SPINLOCK(_minor_lock); 57 58 static void do_deferred_remove(struct work_struct *w); 59 60 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 61 62 static struct workqueue_struct *deferred_remove_workqueue; 63 64 /* 65 * For bio-based dm. 66 * One of these is allocated per bio. 67 */ 68 struct dm_io { 69 struct mapped_device *md; 70 int error; 71 atomic_t io_count; 72 struct bio *bio; 73 unsigned long start_time; 74 spinlock_t endio_lock; 75 struct dm_stats_aux stats_aux; 76 }; 77 78 /* 79 * For request-based dm. 80 * One of these is allocated per request. 81 */ 82 struct dm_rq_target_io { 83 struct mapped_device *md; 84 struct dm_target *ti; 85 struct request *orig, *clone; 86 struct kthread_work work; 87 int error; 88 union map_info info; 89 }; 90 91 /* 92 * For request-based dm - the bio clones we allocate are embedded in these 93 * structs. 94 * 95 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 96 * the bioset is created - this means the bio has to come at the end of the 97 * struct. 98 */ 99 struct dm_rq_clone_bio_info { 100 struct bio *orig; 101 struct dm_rq_target_io *tio; 102 struct bio clone; 103 }; 104 105 union map_info *dm_get_rq_mapinfo(struct request *rq) 106 { 107 if (rq && rq->end_io_data) 108 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 109 return NULL; 110 } 111 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 112 113 #define MINOR_ALLOCED ((void *)-1) 114 115 /* 116 * Bits for the md->flags field. 117 */ 118 #define DMF_BLOCK_IO_FOR_SUSPEND 0 119 #define DMF_SUSPENDED 1 120 #define DMF_FROZEN 2 121 #define DMF_FREEING 3 122 #define DMF_DELETING 4 123 #define DMF_NOFLUSH_SUSPENDING 5 124 #define DMF_MERGE_IS_OPTIONAL 6 125 #define DMF_DEFERRED_REMOVE 7 126 #define DMF_SUSPENDED_INTERNALLY 8 127 128 /* 129 * A dummy definition to make RCU happy. 130 * struct dm_table should never be dereferenced in this file. 131 */ 132 struct dm_table { 133 int undefined__; 134 }; 135 136 /* 137 * Work processed by per-device workqueue. 138 */ 139 struct mapped_device { 140 struct srcu_struct io_barrier; 141 struct mutex suspend_lock; 142 atomic_t holders; 143 atomic_t open_count; 144 145 /* 146 * The current mapping. 147 * Use dm_get_live_table{_fast} or take suspend_lock for 148 * dereference. 149 */ 150 struct dm_table __rcu *map; 151 152 struct list_head table_devices; 153 struct mutex table_devices_lock; 154 155 unsigned long flags; 156 157 struct request_queue *queue; 158 unsigned type; 159 /* Protect queue and type against concurrent access. */ 160 struct mutex type_lock; 161 162 struct target_type *immutable_target_type; 163 164 struct gendisk *disk; 165 char name[16]; 166 167 void *interface_ptr; 168 169 /* 170 * A list of ios that arrived while we were suspended. 171 */ 172 atomic_t pending[2]; 173 wait_queue_head_t wait; 174 struct work_struct work; 175 struct bio_list deferred; 176 spinlock_t deferred_lock; 177 178 /* 179 * Processing queue (flush) 180 */ 181 struct workqueue_struct *wq; 182 183 /* 184 * io objects are allocated from here. 185 */ 186 mempool_t *io_pool; 187 mempool_t *rq_pool; 188 189 struct bio_set *bs; 190 191 /* 192 * Event handling. 193 */ 194 atomic_t event_nr; 195 wait_queue_head_t eventq; 196 atomic_t uevent_seq; 197 struct list_head uevent_list; 198 spinlock_t uevent_lock; /* Protect access to uevent_list */ 199 200 /* 201 * freeze/thaw support require holding onto a super block 202 */ 203 struct super_block *frozen_sb; 204 struct block_device *bdev; 205 206 /* forced geometry settings */ 207 struct hd_geometry geometry; 208 209 /* kobject and completion */ 210 struct dm_kobject_holder kobj_holder; 211 212 /* zero-length flush that will be cloned and submitted to targets */ 213 struct bio flush_bio; 214 215 /* the number of internal suspends */ 216 unsigned internal_suspend_count; 217 218 struct dm_stats stats; 219 220 struct kthread_worker kworker; 221 struct task_struct *kworker_task; 222 223 /* for request-based merge heuristic in dm_request_fn() */ 224 unsigned seq_rq_merge_deadline_usecs; 225 int last_rq_rw; 226 sector_t last_rq_pos; 227 ktime_t last_rq_start_time; 228 229 /* for blk-mq request-based DM support */ 230 struct blk_mq_tag_set tag_set; 231 bool use_blk_mq; 232 }; 233 234 #ifdef CONFIG_DM_MQ_DEFAULT 235 static bool use_blk_mq = true; 236 #else 237 static bool use_blk_mq = false; 238 #endif 239 240 bool dm_use_blk_mq(struct mapped_device *md) 241 { 242 return md->use_blk_mq; 243 } 244 245 /* 246 * For mempools pre-allocation at the table loading time. 247 */ 248 struct dm_md_mempools { 249 mempool_t *io_pool; 250 mempool_t *rq_pool; 251 struct bio_set *bs; 252 }; 253 254 struct table_device { 255 struct list_head list; 256 atomic_t count; 257 struct dm_dev dm_dev; 258 }; 259 260 #define RESERVED_BIO_BASED_IOS 16 261 #define RESERVED_REQUEST_BASED_IOS 256 262 #define RESERVED_MAX_IOS 1024 263 static struct kmem_cache *_io_cache; 264 static struct kmem_cache *_rq_tio_cache; 265 static struct kmem_cache *_rq_cache; 266 267 /* 268 * Bio-based DM's mempools' reserved IOs set by the user. 269 */ 270 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 271 272 /* 273 * Request-based DM's mempools' reserved IOs set by the user. 274 */ 275 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS; 276 277 static unsigned __dm_get_module_param(unsigned *module_param, 278 unsigned def, unsigned max) 279 { 280 unsigned param = ACCESS_ONCE(*module_param); 281 unsigned modified_param = 0; 282 283 if (!param) 284 modified_param = def; 285 else if (param > max) 286 modified_param = max; 287 288 if (modified_param) { 289 (void)cmpxchg(module_param, param, modified_param); 290 param = modified_param; 291 } 292 293 return param; 294 } 295 296 unsigned dm_get_reserved_bio_based_ios(void) 297 { 298 return __dm_get_module_param(&reserved_bio_based_ios, 299 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS); 300 } 301 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 302 303 unsigned dm_get_reserved_rq_based_ios(void) 304 { 305 return __dm_get_module_param(&reserved_rq_based_ios, 306 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS); 307 } 308 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios); 309 310 static int __init local_init(void) 311 { 312 int r = -ENOMEM; 313 314 /* allocate a slab for the dm_ios */ 315 _io_cache = KMEM_CACHE(dm_io, 0); 316 if (!_io_cache) 317 return r; 318 319 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 320 if (!_rq_tio_cache) 321 goto out_free_io_cache; 322 323 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request), 324 __alignof__(struct request), 0, NULL); 325 if (!_rq_cache) 326 goto out_free_rq_tio_cache; 327 328 r = dm_uevent_init(); 329 if (r) 330 goto out_free_rq_cache; 331 332 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 333 if (!deferred_remove_workqueue) { 334 r = -ENOMEM; 335 goto out_uevent_exit; 336 } 337 338 _major = major; 339 r = register_blkdev(_major, _name); 340 if (r < 0) 341 goto out_free_workqueue; 342 343 if (!_major) 344 _major = r; 345 346 return 0; 347 348 out_free_workqueue: 349 destroy_workqueue(deferred_remove_workqueue); 350 out_uevent_exit: 351 dm_uevent_exit(); 352 out_free_rq_cache: 353 kmem_cache_destroy(_rq_cache); 354 out_free_rq_tio_cache: 355 kmem_cache_destroy(_rq_tio_cache); 356 out_free_io_cache: 357 kmem_cache_destroy(_io_cache); 358 359 return r; 360 } 361 362 static void local_exit(void) 363 { 364 flush_scheduled_work(); 365 destroy_workqueue(deferred_remove_workqueue); 366 367 kmem_cache_destroy(_rq_cache); 368 kmem_cache_destroy(_rq_tio_cache); 369 kmem_cache_destroy(_io_cache); 370 unregister_blkdev(_major, _name); 371 dm_uevent_exit(); 372 373 _major = 0; 374 375 DMINFO("cleaned up"); 376 } 377 378 static int (*_inits[])(void) __initdata = { 379 local_init, 380 dm_target_init, 381 dm_linear_init, 382 dm_stripe_init, 383 dm_io_init, 384 dm_kcopyd_init, 385 dm_interface_init, 386 dm_statistics_init, 387 }; 388 389 static void (*_exits[])(void) = { 390 local_exit, 391 dm_target_exit, 392 dm_linear_exit, 393 dm_stripe_exit, 394 dm_io_exit, 395 dm_kcopyd_exit, 396 dm_interface_exit, 397 dm_statistics_exit, 398 }; 399 400 static int __init dm_init(void) 401 { 402 const int count = ARRAY_SIZE(_inits); 403 404 int r, i; 405 406 for (i = 0; i < count; i++) { 407 r = _inits[i](); 408 if (r) 409 goto bad; 410 } 411 412 return 0; 413 414 bad: 415 while (i--) 416 _exits[i](); 417 418 return r; 419 } 420 421 static void __exit dm_exit(void) 422 { 423 int i = ARRAY_SIZE(_exits); 424 425 while (i--) 426 _exits[i](); 427 428 /* 429 * Should be empty by this point. 430 */ 431 idr_destroy(&_minor_idr); 432 } 433 434 /* 435 * Block device functions 436 */ 437 int dm_deleting_md(struct mapped_device *md) 438 { 439 return test_bit(DMF_DELETING, &md->flags); 440 } 441 442 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 443 { 444 struct mapped_device *md; 445 446 spin_lock(&_minor_lock); 447 448 md = bdev->bd_disk->private_data; 449 if (!md) 450 goto out; 451 452 if (test_bit(DMF_FREEING, &md->flags) || 453 dm_deleting_md(md)) { 454 md = NULL; 455 goto out; 456 } 457 458 dm_get(md); 459 atomic_inc(&md->open_count); 460 out: 461 spin_unlock(&_minor_lock); 462 463 return md ? 0 : -ENXIO; 464 } 465 466 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 467 { 468 struct mapped_device *md; 469 470 spin_lock(&_minor_lock); 471 472 md = disk->private_data; 473 if (WARN_ON(!md)) 474 goto out; 475 476 if (atomic_dec_and_test(&md->open_count) && 477 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 478 queue_work(deferred_remove_workqueue, &deferred_remove_work); 479 480 dm_put(md); 481 out: 482 spin_unlock(&_minor_lock); 483 } 484 485 int dm_open_count(struct mapped_device *md) 486 { 487 return atomic_read(&md->open_count); 488 } 489 490 /* 491 * Guarantees nothing is using the device before it's deleted. 492 */ 493 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 494 { 495 int r = 0; 496 497 spin_lock(&_minor_lock); 498 499 if (dm_open_count(md)) { 500 r = -EBUSY; 501 if (mark_deferred) 502 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 503 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 504 r = -EEXIST; 505 else 506 set_bit(DMF_DELETING, &md->flags); 507 508 spin_unlock(&_minor_lock); 509 510 return r; 511 } 512 513 int dm_cancel_deferred_remove(struct mapped_device *md) 514 { 515 int r = 0; 516 517 spin_lock(&_minor_lock); 518 519 if (test_bit(DMF_DELETING, &md->flags)) 520 r = -EBUSY; 521 else 522 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 523 524 spin_unlock(&_minor_lock); 525 526 return r; 527 } 528 529 static void do_deferred_remove(struct work_struct *w) 530 { 531 dm_deferred_remove(); 532 } 533 534 sector_t dm_get_size(struct mapped_device *md) 535 { 536 return get_capacity(md->disk); 537 } 538 539 struct request_queue *dm_get_md_queue(struct mapped_device *md) 540 { 541 return md->queue; 542 } 543 544 struct dm_stats *dm_get_stats(struct mapped_device *md) 545 { 546 return &md->stats; 547 } 548 549 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 550 { 551 struct mapped_device *md = bdev->bd_disk->private_data; 552 553 return dm_get_geometry(md, geo); 554 } 555 556 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 557 unsigned int cmd, unsigned long arg) 558 { 559 struct mapped_device *md = bdev->bd_disk->private_data; 560 int srcu_idx; 561 struct dm_table *map; 562 struct dm_target *tgt; 563 int r = -ENOTTY; 564 565 retry: 566 map = dm_get_live_table(md, &srcu_idx); 567 568 if (!map || !dm_table_get_size(map)) 569 goto out; 570 571 /* We only support devices that have a single target */ 572 if (dm_table_get_num_targets(map) != 1) 573 goto out; 574 575 tgt = dm_table_get_target(map, 0); 576 if (!tgt->type->ioctl) 577 goto out; 578 579 if (dm_suspended_md(md)) { 580 r = -EAGAIN; 581 goto out; 582 } 583 584 r = tgt->type->ioctl(tgt, cmd, arg); 585 586 out: 587 dm_put_live_table(md, srcu_idx); 588 589 if (r == -ENOTCONN) { 590 msleep(10); 591 goto retry; 592 } 593 594 return r; 595 } 596 597 static struct dm_io *alloc_io(struct mapped_device *md) 598 { 599 return mempool_alloc(md->io_pool, GFP_NOIO); 600 } 601 602 static void free_io(struct mapped_device *md, struct dm_io *io) 603 { 604 mempool_free(io, md->io_pool); 605 } 606 607 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 608 { 609 bio_put(&tio->clone); 610 } 611 612 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 613 gfp_t gfp_mask) 614 { 615 return mempool_alloc(md->io_pool, gfp_mask); 616 } 617 618 static void free_rq_tio(struct dm_rq_target_io *tio) 619 { 620 mempool_free(tio, tio->md->io_pool); 621 } 622 623 static struct request *alloc_clone_request(struct mapped_device *md, 624 gfp_t gfp_mask) 625 { 626 return mempool_alloc(md->rq_pool, gfp_mask); 627 } 628 629 static void free_clone_request(struct mapped_device *md, struct request *rq) 630 { 631 mempool_free(rq, md->rq_pool); 632 } 633 634 static int md_in_flight(struct mapped_device *md) 635 { 636 return atomic_read(&md->pending[READ]) + 637 atomic_read(&md->pending[WRITE]); 638 } 639 640 static void start_io_acct(struct dm_io *io) 641 { 642 struct mapped_device *md = io->md; 643 struct bio *bio = io->bio; 644 int cpu; 645 int rw = bio_data_dir(bio); 646 647 io->start_time = jiffies; 648 649 cpu = part_stat_lock(); 650 part_round_stats(cpu, &dm_disk(md)->part0); 651 part_stat_unlock(); 652 atomic_set(&dm_disk(md)->part0.in_flight[rw], 653 atomic_inc_return(&md->pending[rw])); 654 655 if (unlikely(dm_stats_used(&md->stats))) 656 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 657 bio_sectors(bio), false, 0, &io->stats_aux); 658 } 659 660 static void end_io_acct(struct dm_io *io) 661 { 662 struct mapped_device *md = io->md; 663 struct bio *bio = io->bio; 664 unsigned long duration = jiffies - io->start_time; 665 int pending; 666 int rw = bio_data_dir(bio); 667 668 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 669 670 if (unlikely(dm_stats_used(&md->stats))) 671 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector, 672 bio_sectors(bio), true, duration, &io->stats_aux); 673 674 /* 675 * After this is decremented the bio must not be touched if it is 676 * a flush. 677 */ 678 pending = atomic_dec_return(&md->pending[rw]); 679 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 680 pending += atomic_read(&md->pending[rw^0x1]); 681 682 /* nudge anyone waiting on suspend queue */ 683 if (!pending) 684 wake_up(&md->wait); 685 } 686 687 /* 688 * Add the bio to the list of deferred io. 689 */ 690 static void queue_io(struct mapped_device *md, struct bio *bio) 691 { 692 unsigned long flags; 693 694 spin_lock_irqsave(&md->deferred_lock, flags); 695 bio_list_add(&md->deferred, bio); 696 spin_unlock_irqrestore(&md->deferred_lock, flags); 697 queue_work(md->wq, &md->work); 698 } 699 700 /* 701 * Everyone (including functions in this file), should use this 702 * function to access the md->map field, and make sure they call 703 * dm_put_live_table() when finished. 704 */ 705 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 706 { 707 *srcu_idx = srcu_read_lock(&md->io_barrier); 708 709 return srcu_dereference(md->map, &md->io_barrier); 710 } 711 712 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 713 { 714 srcu_read_unlock(&md->io_barrier, srcu_idx); 715 } 716 717 void dm_sync_table(struct mapped_device *md) 718 { 719 synchronize_srcu(&md->io_barrier); 720 synchronize_rcu_expedited(); 721 } 722 723 /* 724 * A fast alternative to dm_get_live_table/dm_put_live_table. 725 * The caller must not block between these two functions. 726 */ 727 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 728 { 729 rcu_read_lock(); 730 return rcu_dereference(md->map); 731 } 732 733 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 734 { 735 rcu_read_unlock(); 736 } 737 738 /* 739 * Open a table device so we can use it as a map destination. 740 */ 741 static int open_table_device(struct table_device *td, dev_t dev, 742 struct mapped_device *md) 743 { 744 static char *_claim_ptr = "I belong to device-mapper"; 745 struct block_device *bdev; 746 747 int r; 748 749 BUG_ON(td->dm_dev.bdev); 750 751 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 752 if (IS_ERR(bdev)) 753 return PTR_ERR(bdev); 754 755 r = bd_link_disk_holder(bdev, dm_disk(md)); 756 if (r) { 757 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 758 return r; 759 } 760 761 td->dm_dev.bdev = bdev; 762 return 0; 763 } 764 765 /* 766 * Close a table device that we've been using. 767 */ 768 static void close_table_device(struct table_device *td, struct mapped_device *md) 769 { 770 if (!td->dm_dev.bdev) 771 return; 772 773 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 774 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 775 td->dm_dev.bdev = NULL; 776 } 777 778 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 779 fmode_t mode) { 780 struct table_device *td; 781 782 list_for_each_entry(td, l, list) 783 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 784 return td; 785 786 return NULL; 787 } 788 789 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 790 struct dm_dev **result) { 791 int r; 792 struct table_device *td; 793 794 mutex_lock(&md->table_devices_lock); 795 td = find_table_device(&md->table_devices, dev, mode); 796 if (!td) { 797 td = kmalloc(sizeof(*td), GFP_KERNEL); 798 if (!td) { 799 mutex_unlock(&md->table_devices_lock); 800 return -ENOMEM; 801 } 802 803 td->dm_dev.mode = mode; 804 td->dm_dev.bdev = NULL; 805 806 if ((r = open_table_device(td, dev, md))) { 807 mutex_unlock(&md->table_devices_lock); 808 kfree(td); 809 return r; 810 } 811 812 format_dev_t(td->dm_dev.name, dev); 813 814 atomic_set(&td->count, 0); 815 list_add(&td->list, &md->table_devices); 816 } 817 atomic_inc(&td->count); 818 mutex_unlock(&md->table_devices_lock); 819 820 *result = &td->dm_dev; 821 return 0; 822 } 823 EXPORT_SYMBOL_GPL(dm_get_table_device); 824 825 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 826 { 827 struct table_device *td = container_of(d, struct table_device, dm_dev); 828 829 mutex_lock(&md->table_devices_lock); 830 if (atomic_dec_and_test(&td->count)) { 831 close_table_device(td, md); 832 list_del(&td->list); 833 kfree(td); 834 } 835 mutex_unlock(&md->table_devices_lock); 836 } 837 EXPORT_SYMBOL(dm_put_table_device); 838 839 static void free_table_devices(struct list_head *devices) 840 { 841 struct list_head *tmp, *next; 842 843 list_for_each_safe(tmp, next, devices) { 844 struct table_device *td = list_entry(tmp, struct table_device, list); 845 846 DMWARN("dm_destroy: %s still exists with %d references", 847 td->dm_dev.name, atomic_read(&td->count)); 848 kfree(td); 849 } 850 } 851 852 /* 853 * Get the geometry associated with a dm device 854 */ 855 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 856 { 857 *geo = md->geometry; 858 859 return 0; 860 } 861 862 /* 863 * Set the geometry of a device. 864 */ 865 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 866 { 867 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 868 869 if (geo->start > sz) { 870 DMWARN("Start sector is beyond the geometry limits."); 871 return -EINVAL; 872 } 873 874 md->geometry = *geo; 875 876 return 0; 877 } 878 879 /*----------------------------------------------------------------- 880 * CRUD START: 881 * A more elegant soln is in the works that uses the queue 882 * merge fn, unfortunately there are a couple of changes to 883 * the block layer that I want to make for this. So in the 884 * interests of getting something for people to use I give 885 * you this clearly demarcated crap. 886 *---------------------------------------------------------------*/ 887 888 static int __noflush_suspending(struct mapped_device *md) 889 { 890 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 891 } 892 893 /* 894 * Decrements the number of outstanding ios that a bio has been 895 * cloned into, completing the original io if necc. 896 */ 897 static void dec_pending(struct dm_io *io, int error) 898 { 899 unsigned long flags; 900 int io_error; 901 struct bio *bio; 902 struct mapped_device *md = io->md; 903 904 /* Push-back supersedes any I/O errors */ 905 if (unlikely(error)) { 906 spin_lock_irqsave(&io->endio_lock, flags); 907 if (!(io->error > 0 && __noflush_suspending(md))) 908 io->error = error; 909 spin_unlock_irqrestore(&io->endio_lock, flags); 910 } 911 912 if (atomic_dec_and_test(&io->io_count)) { 913 if (io->error == DM_ENDIO_REQUEUE) { 914 /* 915 * Target requested pushing back the I/O. 916 */ 917 spin_lock_irqsave(&md->deferred_lock, flags); 918 if (__noflush_suspending(md)) 919 bio_list_add_head(&md->deferred, io->bio); 920 else 921 /* noflush suspend was interrupted. */ 922 io->error = -EIO; 923 spin_unlock_irqrestore(&md->deferred_lock, flags); 924 } 925 926 io_error = io->error; 927 bio = io->bio; 928 end_io_acct(io); 929 free_io(md, io); 930 931 if (io_error == DM_ENDIO_REQUEUE) 932 return; 933 934 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) { 935 /* 936 * Preflush done for flush with data, reissue 937 * without REQ_FLUSH. 938 */ 939 bio->bi_rw &= ~REQ_FLUSH; 940 queue_io(md, bio); 941 } else { 942 /* done with normal IO or empty flush */ 943 trace_block_bio_complete(md->queue, bio, io_error); 944 bio_endio(bio, io_error); 945 } 946 } 947 } 948 949 static void disable_write_same(struct mapped_device *md) 950 { 951 struct queue_limits *limits = dm_get_queue_limits(md); 952 953 /* device doesn't really support WRITE SAME, disable it */ 954 limits->max_write_same_sectors = 0; 955 } 956 957 static void clone_endio(struct bio *bio, int error) 958 { 959 int r = error; 960 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 961 struct dm_io *io = tio->io; 962 struct mapped_device *md = tio->io->md; 963 dm_endio_fn endio = tio->ti->type->end_io; 964 965 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 966 error = -EIO; 967 968 if (endio) { 969 r = endio(tio->ti, bio, error); 970 if (r < 0 || r == DM_ENDIO_REQUEUE) 971 /* 972 * error and requeue request are handled 973 * in dec_pending(). 974 */ 975 error = r; 976 else if (r == DM_ENDIO_INCOMPLETE) 977 /* The target will handle the io */ 978 return; 979 else if (r) { 980 DMWARN("unimplemented target endio return value: %d", r); 981 BUG(); 982 } 983 } 984 985 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) && 986 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 987 disable_write_same(md); 988 989 free_tio(md, tio); 990 dec_pending(io, error); 991 } 992 993 /* 994 * Partial completion handling for request-based dm 995 */ 996 static void end_clone_bio(struct bio *clone, int error) 997 { 998 struct dm_rq_clone_bio_info *info = 999 container_of(clone, struct dm_rq_clone_bio_info, clone); 1000 struct dm_rq_target_io *tio = info->tio; 1001 struct bio *bio = info->orig; 1002 unsigned int nr_bytes = info->orig->bi_iter.bi_size; 1003 1004 bio_put(clone); 1005 1006 if (tio->error) 1007 /* 1008 * An error has already been detected on the request. 1009 * Once error occurred, just let clone->end_io() handle 1010 * the remainder. 1011 */ 1012 return; 1013 else if (error) { 1014 /* 1015 * Don't notice the error to the upper layer yet. 1016 * The error handling decision is made by the target driver, 1017 * when the request is completed. 1018 */ 1019 tio->error = error; 1020 return; 1021 } 1022 1023 /* 1024 * I/O for the bio successfully completed. 1025 * Notice the data completion to the upper layer. 1026 */ 1027 1028 /* 1029 * bios are processed from the head of the list. 1030 * So the completing bio should always be rq->bio. 1031 * If it's not, something wrong is happening. 1032 */ 1033 if (tio->orig->bio != bio) 1034 DMERR("bio completion is going in the middle of the request"); 1035 1036 /* 1037 * Update the original request. 1038 * Do not use blk_end_request() here, because it may complete 1039 * the original request before the clone, and break the ordering. 1040 */ 1041 blk_update_request(tio->orig, 0, nr_bytes); 1042 } 1043 1044 static struct dm_rq_target_io *tio_from_request(struct request *rq) 1045 { 1046 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special); 1047 } 1048 1049 /* 1050 * Don't touch any member of the md after calling this function because 1051 * the md may be freed in dm_put() at the end of this function. 1052 * Or do dm_get() before calling this function and dm_put() later. 1053 */ 1054 static void rq_completed(struct mapped_device *md, int rw, bool run_queue) 1055 { 1056 int nr_requests_pending; 1057 1058 atomic_dec(&md->pending[rw]); 1059 1060 /* nudge anyone waiting on suspend queue */ 1061 nr_requests_pending = md_in_flight(md); 1062 if (!nr_requests_pending) 1063 wake_up(&md->wait); 1064 1065 /* 1066 * Run this off this callpath, as drivers could invoke end_io while 1067 * inside their request_fn (and holding the queue lock). Calling 1068 * back into ->request_fn() could deadlock attempting to grab the 1069 * queue lock again. 1070 */ 1071 if (run_queue) { 1072 if (md->queue->mq_ops) 1073 blk_mq_run_hw_queues(md->queue, true); 1074 else if (!nr_requests_pending || 1075 (nr_requests_pending >= md->queue->nr_congestion_on)) 1076 blk_run_queue_async(md->queue); 1077 } 1078 1079 /* 1080 * dm_put() must be at the end of this function. See the comment above 1081 */ 1082 dm_put(md); 1083 } 1084 1085 static void free_rq_clone(struct request *clone, bool must_be_mapped) 1086 { 1087 struct dm_rq_target_io *tio = clone->end_io_data; 1088 struct mapped_device *md = tio->md; 1089 1090 WARN_ON_ONCE(must_be_mapped && !clone->q); 1091 1092 blk_rq_unprep_clone(clone); 1093 1094 if (md->type == DM_TYPE_MQ_REQUEST_BASED) 1095 /* stacked on blk-mq queue(s) */ 1096 tio->ti->type->release_clone_rq(clone); 1097 else if (!md->queue->mq_ops) 1098 /* request_fn queue stacked on request_fn queue(s) */ 1099 free_clone_request(md, clone); 1100 /* 1101 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case: 1102 * no need to call free_clone_request() because we leverage blk-mq by 1103 * allocating the clone at the end of the blk-mq pdu (see: clone_rq) 1104 */ 1105 1106 if (!md->queue->mq_ops) 1107 free_rq_tio(tio); 1108 } 1109 1110 /* 1111 * Complete the clone and the original request. 1112 * Must be called without clone's queue lock held, 1113 * see end_clone_request() for more details. 1114 */ 1115 static void dm_end_request(struct request *clone, int error) 1116 { 1117 int rw = rq_data_dir(clone); 1118 struct dm_rq_target_io *tio = clone->end_io_data; 1119 struct mapped_device *md = tio->md; 1120 struct request *rq = tio->orig; 1121 1122 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 1123 rq->errors = clone->errors; 1124 rq->resid_len = clone->resid_len; 1125 1126 if (rq->sense) 1127 /* 1128 * We are using the sense buffer of the original 1129 * request. 1130 * So setting the length of the sense data is enough. 1131 */ 1132 rq->sense_len = clone->sense_len; 1133 } 1134 1135 free_rq_clone(clone, true); 1136 if (!rq->q->mq_ops) 1137 blk_end_request_all(rq, error); 1138 else 1139 blk_mq_end_request(rq, error); 1140 rq_completed(md, rw, true); 1141 } 1142 1143 static void dm_unprep_request(struct request *rq) 1144 { 1145 struct dm_rq_target_io *tio = tio_from_request(rq); 1146 struct request *clone = tio->clone; 1147 1148 if (!rq->q->mq_ops) { 1149 rq->special = NULL; 1150 rq->cmd_flags &= ~REQ_DONTPREP; 1151 } 1152 1153 if (clone) 1154 free_rq_clone(clone, false); 1155 } 1156 1157 /* 1158 * Requeue the original request of a clone. 1159 */ 1160 static void old_requeue_request(struct request *rq) 1161 { 1162 struct request_queue *q = rq->q; 1163 unsigned long flags; 1164 1165 spin_lock_irqsave(q->queue_lock, flags); 1166 blk_requeue_request(q, rq); 1167 spin_unlock_irqrestore(q->queue_lock, flags); 1168 } 1169 1170 static void dm_requeue_unmapped_original_request(struct mapped_device *md, 1171 struct request *rq) 1172 { 1173 int rw = rq_data_dir(rq); 1174 1175 dm_unprep_request(rq); 1176 1177 if (!rq->q->mq_ops) 1178 old_requeue_request(rq); 1179 else { 1180 blk_mq_requeue_request(rq); 1181 blk_mq_kick_requeue_list(rq->q); 1182 } 1183 1184 rq_completed(md, rw, false); 1185 } 1186 1187 static void dm_requeue_unmapped_request(struct request *clone) 1188 { 1189 struct dm_rq_target_io *tio = clone->end_io_data; 1190 1191 dm_requeue_unmapped_original_request(tio->md, tio->orig); 1192 } 1193 1194 static void old_stop_queue(struct request_queue *q) 1195 { 1196 unsigned long flags; 1197 1198 if (blk_queue_stopped(q)) 1199 return; 1200 1201 spin_lock_irqsave(q->queue_lock, flags); 1202 blk_stop_queue(q); 1203 spin_unlock_irqrestore(q->queue_lock, flags); 1204 } 1205 1206 static void stop_queue(struct request_queue *q) 1207 { 1208 if (!q->mq_ops) 1209 old_stop_queue(q); 1210 else 1211 blk_mq_stop_hw_queues(q); 1212 } 1213 1214 static void old_start_queue(struct request_queue *q) 1215 { 1216 unsigned long flags; 1217 1218 spin_lock_irqsave(q->queue_lock, flags); 1219 if (blk_queue_stopped(q)) 1220 blk_start_queue(q); 1221 spin_unlock_irqrestore(q->queue_lock, flags); 1222 } 1223 1224 static void start_queue(struct request_queue *q) 1225 { 1226 if (!q->mq_ops) 1227 old_start_queue(q); 1228 else 1229 blk_mq_start_stopped_hw_queues(q, true); 1230 } 1231 1232 static void dm_done(struct request *clone, int error, bool mapped) 1233 { 1234 int r = error; 1235 struct dm_rq_target_io *tio = clone->end_io_data; 1236 dm_request_endio_fn rq_end_io = NULL; 1237 1238 if (tio->ti) { 1239 rq_end_io = tio->ti->type->rq_end_io; 1240 1241 if (mapped && rq_end_io) 1242 r = rq_end_io(tio->ti, clone, error, &tio->info); 1243 } 1244 1245 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) && 1246 !clone->q->limits.max_write_same_sectors)) 1247 disable_write_same(tio->md); 1248 1249 if (r <= 0) 1250 /* The target wants to complete the I/O */ 1251 dm_end_request(clone, r); 1252 else if (r == DM_ENDIO_INCOMPLETE) 1253 /* The target will handle the I/O */ 1254 return; 1255 else if (r == DM_ENDIO_REQUEUE) 1256 /* The target wants to requeue the I/O */ 1257 dm_requeue_unmapped_request(clone); 1258 else { 1259 DMWARN("unimplemented target endio return value: %d", r); 1260 BUG(); 1261 } 1262 } 1263 1264 /* 1265 * Request completion handler for request-based dm 1266 */ 1267 static void dm_softirq_done(struct request *rq) 1268 { 1269 bool mapped = true; 1270 struct dm_rq_target_io *tio = tio_from_request(rq); 1271 struct request *clone = tio->clone; 1272 int rw; 1273 1274 if (!clone) { 1275 rw = rq_data_dir(rq); 1276 if (!rq->q->mq_ops) { 1277 blk_end_request_all(rq, tio->error); 1278 rq_completed(tio->md, rw, false); 1279 free_rq_tio(tio); 1280 } else { 1281 blk_mq_end_request(rq, tio->error); 1282 rq_completed(tio->md, rw, false); 1283 } 1284 return; 1285 } 1286 1287 if (rq->cmd_flags & REQ_FAILED) 1288 mapped = false; 1289 1290 dm_done(clone, tio->error, mapped); 1291 } 1292 1293 /* 1294 * Complete the clone and the original request with the error status 1295 * through softirq context. 1296 */ 1297 static void dm_complete_request(struct request *rq, int error) 1298 { 1299 struct dm_rq_target_io *tio = tio_from_request(rq); 1300 1301 tio->error = error; 1302 blk_complete_request(rq); 1303 } 1304 1305 /* 1306 * Complete the not-mapped clone and the original request with the error status 1307 * through softirq context. 1308 * Target's rq_end_io() function isn't called. 1309 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail. 1310 */ 1311 static void dm_kill_unmapped_request(struct request *rq, int error) 1312 { 1313 rq->cmd_flags |= REQ_FAILED; 1314 dm_complete_request(rq, error); 1315 } 1316 1317 /* 1318 * Called with the clone's queue lock held (for non-blk-mq) 1319 */ 1320 static void end_clone_request(struct request *clone, int error) 1321 { 1322 struct dm_rq_target_io *tio = clone->end_io_data; 1323 1324 if (!clone->q->mq_ops) { 1325 /* 1326 * For just cleaning up the information of the queue in which 1327 * the clone was dispatched. 1328 * The clone is *NOT* freed actually here because it is alloced 1329 * from dm own mempool (REQ_ALLOCED isn't set). 1330 */ 1331 __blk_put_request(clone->q, clone); 1332 } 1333 1334 /* 1335 * Actual request completion is done in a softirq context which doesn't 1336 * hold the clone's queue lock. Otherwise, deadlock could occur because: 1337 * - another request may be submitted by the upper level driver 1338 * of the stacking during the completion 1339 * - the submission which requires queue lock may be done 1340 * against this clone's queue 1341 */ 1342 dm_complete_request(tio->orig, error); 1343 } 1344 1345 /* 1346 * Return maximum size of I/O possible at the supplied sector up to the current 1347 * target boundary. 1348 */ 1349 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1350 { 1351 sector_t target_offset = dm_target_offset(ti, sector); 1352 1353 return ti->len - target_offset; 1354 } 1355 1356 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1357 { 1358 sector_t len = max_io_len_target_boundary(sector, ti); 1359 sector_t offset, max_len; 1360 1361 /* 1362 * Does the target need to split even further? 1363 */ 1364 if (ti->max_io_len) { 1365 offset = dm_target_offset(ti, sector); 1366 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1367 max_len = sector_div(offset, ti->max_io_len); 1368 else 1369 max_len = offset & (ti->max_io_len - 1); 1370 max_len = ti->max_io_len - max_len; 1371 1372 if (len > max_len) 1373 len = max_len; 1374 } 1375 1376 return len; 1377 } 1378 1379 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1380 { 1381 if (len > UINT_MAX) { 1382 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1383 (unsigned long long)len, UINT_MAX); 1384 ti->error = "Maximum size of target IO is too large"; 1385 return -EINVAL; 1386 } 1387 1388 ti->max_io_len = (uint32_t) len; 1389 1390 return 0; 1391 } 1392 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1393 1394 /* 1395 * A target may call dm_accept_partial_bio only from the map routine. It is 1396 * allowed for all bio types except REQ_FLUSH. 1397 * 1398 * dm_accept_partial_bio informs the dm that the target only wants to process 1399 * additional n_sectors sectors of the bio and the rest of the data should be 1400 * sent in a next bio. 1401 * 1402 * A diagram that explains the arithmetics: 1403 * +--------------------+---------------+-------+ 1404 * | 1 | 2 | 3 | 1405 * +--------------------+---------------+-------+ 1406 * 1407 * <-------------- *tio->len_ptr ---------------> 1408 * <------- bi_size -------> 1409 * <-- n_sectors --> 1410 * 1411 * Region 1 was already iterated over with bio_advance or similar function. 1412 * (it may be empty if the target doesn't use bio_advance) 1413 * Region 2 is the remaining bio size that the target wants to process. 1414 * (it may be empty if region 1 is non-empty, although there is no reason 1415 * to make it empty) 1416 * The target requires that region 3 is to be sent in the next bio. 1417 * 1418 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1419 * the partially processed part (the sum of regions 1+2) must be the same for all 1420 * copies of the bio. 1421 */ 1422 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1423 { 1424 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1425 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1426 BUG_ON(bio->bi_rw & REQ_FLUSH); 1427 BUG_ON(bi_size > *tio->len_ptr); 1428 BUG_ON(n_sectors > bi_size); 1429 *tio->len_ptr -= bi_size - n_sectors; 1430 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1431 } 1432 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1433 1434 static void __map_bio(struct dm_target_io *tio) 1435 { 1436 int r; 1437 sector_t sector; 1438 struct mapped_device *md; 1439 struct bio *clone = &tio->clone; 1440 struct dm_target *ti = tio->ti; 1441 1442 clone->bi_end_io = clone_endio; 1443 1444 /* 1445 * Map the clone. If r == 0 we don't need to do 1446 * anything, the target has assumed ownership of 1447 * this io. 1448 */ 1449 atomic_inc(&tio->io->io_count); 1450 sector = clone->bi_iter.bi_sector; 1451 r = ti->type->map(ti, clone); 1452 if (r == DM_MAPIO_REMAPPED) { 1453 /* the bio has been remapped so dispatch it */ 1454 1455 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1456 tio->io->bio->bi_bdev->bd_dev, sector); 1457 1458 generic_make_request(clone); 1459 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1460 /* error the io and bail out, or requeue it if needed */ 1461 md = tio->io->md; 1462 dec_pending(tio->io, r); 1463 free_tio(md, tio); 1464 } else if (r) { 1465 DMWARN("unimplemented target map return value: %d", r); 1466 BUG(); 1467 } 1468 } 1469 1470 struct clone_info { 1471 struct mapped_device *md; 1472 struct dm_table *map; 1473 struct bio *bio; 1474 struct dm_io *io; 1475 sector_t sector; 1476 unsigned sector_count; 1477 }; 1478 1479 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1480 { 1481 bio->bi_iter.bi_sector = sector; 1482 bio->bi_iter.bi_size = to_bytes(len); 1483 } 1484 1485 /* 1486 * Creates a bio that consists of range of complete bvecs. 1487 */ 1488 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1489 sector_t sector, unsigned len) 1490 { 1491 struct bio *clone = &tio->clone; 1492 1493 __bio_clone_fast(clone, bio); 1494 1495 if (bio_integrity(bio)) 1496 bio_integrity_clone(clone, bio, GFP_NOIO); 1497 1498 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1499 clone->bi_iter.bi_size = to_bytes(len); 1500 1501 if (bio_integrity(bio)) 1502 bio_integrity_trim(clone, 0, len); 1503 } 1504 1505 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1506 struct dm_target *ti, 1507 unsigned target_bio_nr) 1508 { 1509 struct dm_target_io *tio; 1510 struct bio *clone; 1511 1512 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1513 tio = container_of(clone, struct dm_target_io, clone); 1514 1515 tio->io = ci->io; 1516 tio->ti = ti; 1517 tio->target_bio_nr = target_bio_nr; 1518 1519 return tio; 1520 } 1521 1522 static void __clone_and_map_simple_bio(struct clone_info *ci, 1523 struct dm_target *ti, 1524 unsigned target_bio_nr, unsigned *len) 1525 { 1526 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1527 struct bio *clone = &tio->clone; 1528 1529 tio->len_ptr = len; 1530 1531 __bio_clone_fast(clone, ci->bio); 1532 if (len) 1533 bio_setup_sector(clone, ci->sector, *len); 1534 1535 __map_bio(tio); 1536 } 1537 1538 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1539 unsigned num_bios, unsigned *len) 1540 { 1541 unsigned target_bio_nr; 1542 1543 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1544 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1545 } 1546 1547 static int __send_empty_flush(struct clone_info *ci) 1548 { 1549 unsigned target_nr = 0; 1550 struct dm_target *ti; 1551 1552 BUG_ON(bio_has_data(ci->bio)); 1553 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1554 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1555 1556 return 0; 1557 } 1558 1559 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1560 sector_t sector, unsigned *len) 1561 { 1562 struct bio *bio = ci->bio; 1563 struct dm_target_io *tio; 1564 unsigned target_bio_nr; 1565 unsigned num_target_bios = 1; 1566 1567 /* 1568 * Does the target want to receive duplicate copies of the bio? 1569 */ 1570 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1571 num_target_bios = ti->num_write_bios(ti, bio); 1572 1573 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1574 tio = alloc_tio(ci, ti, target_bio_nr); 1575 tio->len_ptr = len; 1576 clone_bio(tio, bio, sector, *len); 1577 __map_bio(tio); 1578 } 1579 } 1580 1581 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1582 1583 static unsigned get_num_discard_bios(struct dm_target *ti) 1584 { 1585 return ti->num_discard_bios; 1586 } 1587 1588 static unsigned get_num_write_same_bios(struct dm_target *ti) 1589 { 1590 return ti->num_write_same_bios; 1591 } 1592 1593 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1594 1595 static bool is_split_required_for_discard(struct dm_target *ti) 1596 { 1597 return ti->split_discard_bios; 1598 } 1599 1600 static int __send_changing_extent_only(struct clone_info *ci, 1601 get_num_bios_fn get_num_bios, 1602 is_split_required_fn is_split_required) 1603 { 1604 struct dm_target *ti; 1605 unsigned len; 1606 unsigned num_bios; 1607 1608 do { 1609 ti = dm_table_find_target(ci->map, ci->sector); 1610 if (!dm_target_is_valid(ti)) 1611 return -EIO; 1612 1613 /* 1614 * Even though the device advertised support for this type of 1615 * request, that does not mean every target supports it, and 1616 * reconfiguration might also have changed that since the 1617 * check was performed. 1618 */ 1619 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1620 if (!num_bios) 1621 return -EOPNOTSUPP; 1622 1623 if (is_split_required && !is_split_required(ti)) 1624 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1625 else 1626 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1627 1628 __send_duplicate_bios(ci, ti, num_bios, &len); 1629 1630 ci->sector += len; 1631 } while (ci->sector_count -= len); 1632 1633 return 0; 1634 } 1635 1636 static int __send_discard(struct clone_info *ci) 1637 { 1638 return __send_changing_extent_only(ci, get_num_discard_bios, 1639 is_split_required_for_discard); 1640 } 1641 1642 static int __send_write_same(struct clone_info *ci) 1643 { 1644 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1645 } 1646 1647 /* 1648 * Select the correct strategy for processing a non-flush bio. 1649 */ 1650 static int __split_and_process_non_flush(struct clone_info *ci) 1651 { 1652 struct bio *bio = ci->bio; 1653 struct dm_target *ti; 1654 unsigned len; 1655 1656 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1657 return __send_discard(ci); 1658 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1659 return __send_write_same(ci); 1660 1661 ti = dm_table_find_target(ci->map, ci->sector); 1662 if (!dm_target_is_valid(ti)) 1663 return -EIO; 1664 1665 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1666 1667 __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1668 1669 ci->sector += len; 1670 ci->sector_count -= len; 1671 1672 return 0; 1673 } 1674 1675 /* 1676 * Entry point to split a bio into clones and submit them to the targets. 1677 */ 1678 static void __split_and_process_bio(struct mapped_device *md, 1679 struct dm_table *map, struct bio *bio) 1680 { 1681 struct clone_info ci; 1682 int error = 0; 1683 1684 if (unlikely(!map)) { 1685 bio_io_error(bio); 1686 return; 1687 } 1688 1689 ci.map = map; 1690 ci.md = md; 1691 ci.io = alloc_io(md); 1692 ci.io->error = 0; 1693 atomic_set(&ci.io->io_count, 1); 1694 ci.io->bio = bio; 1695 ci.io->md = md; 1696 spin_lock_init(&ci.io->endio_lock); 1697 ci.sector = bio->bi_iter.bi_sector; 1698 1699 start_io_acct(ci.io); 1700 1701 if (bio->bi_rw & REQ_FLUSH) { 1702 ci.bio = &ci.md->flush_bio; 1703 ci.sector_count = 0; 1704 error = __send_empty_flush(&ci); 1705 /* dec_pending submits any data associated with flush */ 1706 } else { 1707 ci.bio = bio; 1708 ci.sector_count = bio_sectors(bio); 1709 while (ci.sector_count && !error) 1710 error = __split_and_process_non_flush(&ci); 1711 } 1712 1713 /* drop the extra reference count */ 1714 dec_pending(ci.io, error); 1715 } 1716 /*----------------------------------------------------------------- 1717 * CRUD END 1718 *---------------------------------------------------------------*/ 1719 1720 static int dm_merge_bvec(struct request_queue *q, 1721 struct bvec_merge_data *bvm, 1722 struct bio_vec *biovec) 1723 { 1724 struct mapped_device *md = q->queuedata; 1725 struct dm_table *map = dm_get_live_table_fast(md); 1726 struct dm_target *ti; 1727 sector_t max_sectors; 1728 int max_size = 0; 1729 1730 if (unlikely(!map)) 1731 goto out; 1732 1733 ti = dm_table_find_target(map, bvm->bi_sector); 1734 if (!dm_target_is_valid(ti)) 1735 goto out; 1736 1737 /* 1738 * Find maximum amount of I/O that won't need splitting 1739 */ 1740 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1741 (sector_t) queue_max_sectors(q)); 1742 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1743 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */ 1744 max_size = 0; 1745 1746 /* 1747 * merge_bvec_fn() returns number of bytes 1748 * it can accept at this offset 1749 * max is precomputed maximal io size 1750 */ 1751 if (max_size && ti->type->merge) 1752 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1753 /* 1754 * If the target doesn't support merge method and some of the devices 1755 * provided their merge_bvec method (we know this by looking for the 1756 * max_hw_sectors that dm_set_device_limits may set), then we can't 1757 * allow bios with multiple vector entries. So always set max_size 1758 * to 0, and the code below allows just one page. 1759 */ 1760 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1761 max_size = 0; 1762 1763 out: 1764 dm_put_live_table_fast(md); 1765 /* 1766 * Always allow an entire first page 1767 */ 1768 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1769 max_size = biovec->bv_len; 1770 1771 return max_size; 1772 } 1773 1774 /* 1775 * The request function that just remaps the bio built up by 1776 * dm_merge_bvec. 1777 */ 1778 static void dm_make_request(struct request_queue *q, struct bio *bio) 1779 { 1780 int rw = bio_data_dir(bio); 1781 struct mapped_device *md = q->queuedata; 1782 int srcu_idx; 1783 struct dm_table *map; 1784 1785 map = dm_get_live_table(md, &srcu_idx); 1786 1787 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1788 1789 /* if we're suspended, we have to queue this io for later */ 1790 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1791 dm_put_live_table(md, srcu_idx); 1792 1793 if (bio_rw(bio) != READA) 1794 queue_io(md, bio); 1795 else 1796 bio_io_error(bio); 1797 return; 1798 } 1799 1800 __split_and_process_bio(md, map, bio); 1801 dm_put_live_table(md, srcu_idx); 1802 return; 1803 } 1804 1805 int dm_request_based(struct mapped_device *md) 1806 { 1807 return blk_queue_stackable(md->queue); 1808 } 1809 1810 static void dm_dispatch_clone_request(struct request *clone, struct request *rq) 1811 { 1812 int r; 1813 1814 if (blk_queue_io_stat(clone->q)) 1815 clone->cmd_flags |= REQ_IO_STAT; 1816 1817 clone->start_time = jiffies; 1818 r = blk_insert_cloned_request(clone->q, clone); 1819 if (r) 1820 /* must complete clone in terms of original request */ 1821 dm_complete_request(rq, r); 1822 } 1823 1824 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1825 void *data) 1826 { 1827 struct dm_rq_target_io *tio = data; 1828 struct dm_rq_clone_bio_info *info = 1829 container_of(bio, struct dm_rq_clone_bio_info, clone); 1830 1831 info->orig = bio_orig; 1832 info->tio = tio; 1833 bio->bi_end_io = end_clone_bio; 1834 1835 return 0; 1836 } 1837 1838 static int setup_clone(struct request *clone, struct request *rq, 1839 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1840 { 1841 int r; 1842 1843 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask, 1844 dm_rq_bio_constructor, tio); 1845 if (r) 1846 return r; 1847 1848 clone->cmd = rq->cmd; 1849 clone->cmd_len = rq->cmd_len; 1850 clone->sense = rq->sense; 1851 clone->end_io = end_clone_request; 1852 clone->end_io_data = tio; 1853 1854 tio->clone = clone; 1855 1856 return 0; 1857 } 1858 1859 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1860 struct dm_rq_target_io *tio, gfp_t gfp_mask) 1861 { 1862 /* 1863 * Do not allocate a clone if tio->clone was already set 1864 * (see: dm_mq_queue_rq). 1865 */ 1866 bool alloc_clone = !tio->clone; 1867 struct request *clone; 1868 1869 if (alloc_clone) { 1870 clone = alloc_clone_request(md, gfp_mask); 1871 if (!clone) 1872 return NULL; 1873 } else 1874 clone = tio->clone; 1875 1876 blk_rq_init(NULL, clone); 1877 if (setup_clone(clone, rq, tio, gfp_mask)) { 1878 /* -ENOMEM */ 1879 if (alloc_clone) 1880 free_clone_request(md, clone); 1881 return NULL; 1882 } 1883 1884 return clone; 1885 } 1886 1887 static void map_tio_request(struct kthread_work *work); 1888 1889 static void init_tio(struct dm_rq_target_io *tio, struct request *rq, 1890 struct mapped_device *md) 1891 { 1892 tio->md = md; 1893 tio->ti = NULL; 1894 tio->clone = NULL; 1895 tio->orig = rq; 1896 tio->error = 0; 1897 memset(&tio->info, 0, sizeof(tio->info)); 1898 if (md->kworker_task) 1899 init_kthread_work(&tio->work, map_tio_request); 1900 } 1901 1902 static struct dm_rq_target_io *prep_tio(struct request *rq, 1903 struct mapped_device *md, gfp_t gfp_mask) 1904 { 1905 struct dm_rq_target_io *tio; 1906 int srcu_idx; 1907 struct dm_table *table; 1908 1909 tio = alloc_rq_tio(md, gfp_mask); 1910 if (!tio) 1911 return NULL; 1912 1913 init_tio(tio, rq, md); 1914 1915 table = dm_get_live_table(md, &srcu_idx); 1916 if (!dm_table_mq_request_based(table)) { 1917 if (!clone_rq(rq, md, tio, gfp_mask)) { 1918 dm_put_live_table(md, srcu_idx); 1919 free_rq_tio(tio); 1920 return NULL; 1921 } 1922 } 1923 dm_put_live_table(md, srcu_idx); 1924 1925 return tio; 1926 } 1927 1928 /* 1929 * Called with the queue lock held. 1930 */ 1931 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1932 { 1933 struct mapped_device *md = q->queuedata; 1934 struct dm_rq_target_io *tio; 1935 1936 if (unlikely(rq->special)) { 1937 DMWARN("Already has something in rq->special."); 1938 return BLKPREP_KILL; 1939 } 1940 1941 tio = prep_tio(rq, md, GFP_ATOMIC); 1942 if (!tio) 1943 return BLKPREP_DEFER; 1944 1945 rq->special = tio; 1946 rq->cmd_flags |= REQ_DONTPREP; 1947 1948 return BLKPREP_OK; 1949 } 1950 1951 /* 1952 * Returns: 1953 * 0 : the request has been processed 1954 * DM_MAPIO_REQUEUE : the original request needs to be requeued 1955 * < 0 : the request was completed due to failure 1956 */ 1957 static int map_request(struct dm_rq_target_io *tio, struct request *rq, 1958 struct mapped_device *md) 1959 { 1960 int r; 1961 struct dm_target *ti = tio->ti; 1962 struct request *clone = NULL; 1963 1964 if (tio->clone) { 1965 clone = tio->clone; 1966 r = ti->type->map_rq(ti, clone, &tio->info); 1967 } else { 1968 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone); 1969 if (r < 0) { 1970 /* The target wants to complete the I/O */ 1971 dm_kill_unmapped_request(rq, r); 1972 return r; 1973 } 1974 if (IS_ERR(clone)) 1975 return DM_MAPIO_REQUEUE; 1976 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) { 1977 /* -ENOMEM */ 1978 ti->type->release_clone_rq(clone); 1979 return DM_MAPIO_REQUEUE; 1980 } 1981 } 1982 1983 switch (r) { 1984 case DM_MAPIO_SUBMITTED: 1985 /* The target has taken the I/O to submit by itself later */ 1986 break; 1987 case DM_MAPIO_REMAPPED: 1988 /* The target has remapped the I/O so dispatch it */ 1989 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1990 blk_rq_pos(rq)); 1991 dm_dispatch_clone_request(clone, rq); 1992 break; 1993 case DM_MAPIO_REQUEUE: 1994 /* The target wants to requeue the I/O */ 1995 dm_requeue_unmapped_request(clone); 1996 break; 1997 default: 1998 if (r > 0) { 1999 DMWARN("unimplemented target map return value: %d", r); 2000 BUG(); 2001 } 2002 2003 /* The target wants to complete the I/O */ 2004 dm_kill_unmapped_request(rq, r); 2005 return r; 2006 } 2007 2008 return 0; 2009 } 2010 2011 static void map_tio_request(struct kthread_work *work) 2012 { 2013 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work); 2014 struct request *rq = tio->orig; 2015 struct mapped_device *md = tio->md; 2016 2017 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) 2018 dm_requeue_unmapped_original_request(md, rq); 2019 } 2020 2021 static void dm_start_request(struct mapped_device *md, struct request *orig) 2022 { 2023 if (!orig->q->mq_ops) 2024 blk_start_request(orig); 2025 else 2026 blk_mq_start_request(orig); 2027 atomic_inc(&md->pending[rq_data_dir(orig)]); 2028 2029 if (md->seq_rq_merge_deadline_usecs) { 2030 md->last_rq_pos = rq_end_sector(orig); 2031 md->last_rq_rw = rq_data_dir(orig); 2032 md->last_rq_start_time = ktime_get(); 2033 } 2034 2035 /* 2036 * Hold the md reference here for the in-flight I/O. 2037 * We can't rely on the reference count by device opener, 2038 * because the device may be closed during the request completion 2039 * when all bios are completed. 2040 * See the comment in rq_completed() too. 2041 */ 2042 dm_get(md); 2043 } 2044 2045 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000 2046 2047 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf) 2048 { 2049 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs); 2050 } 2051 2052 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md, 2053 const char *buf, size_t count) 2054 { 2055 unsigned deadline; 2056 2057 if (!dm_request_based(md) || md->use_blk_mq) 2058 return count; 2059 2060 if (kstrtouint(buf, 10, &deadline)) 2061 return -EINVAL; 2062 2063 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS) 2064 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS; 2065 2066 md->seq_rq_merge_deadline_usecs = deadline; 2067 2068 return count; 2069 } 2070 2071 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md) 2072 { 2073 ktime_t kt_deadline; 2074 2075 if (!md->seq_rq_merge_deadline_usecs) 2076 return false; 2077 2078 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC); 2079 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline); 2080 2081 return !ktime_after(ktime_get(), kt_deadline); 2082 } 2083 2084 /* 2085 * q->request_fn for request-based dm. 2086 * Called with the queue lock held. 2087 */ 2088 static void dm_request_fn(struct request_queue *q) 2089 { 2090 struct mapped_device *md = q->queuedata; 2091 int srcu_idx; 2092 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2093 struct dm_target *ti; 2094 struct request *rq; 2095 struct dm_rq_target_io *tio; 2096 sector_t pos; 2097 2098 /* 2099 * For suspend, check blk_queue_stopped() and increment 2100 * ->pending within a single queue_lock not to increment the 2101 * number of in-flight I/Os after the queue is stopped in 2102 * dm_suspend(). 2103 */ 2104 while (!blk_queue_stopped(q)) { 2105 rq = blk_peek_request(q); 2106 if (!rq) 2107 goto out; 2108 2109 /* always use block 0 to find the target for flushes for now */ 2110 pos = 0; 2111 if (!(rq->cmd_flags & REQ_FLUSH)) 2112 pos = blk_rq_pos(rq); 2113 2114 ti = dm_table_find_target(map, pos); 2115 if (!dm_target_is_valid(ti)) { 2116 /* 2117 * Must perform setup, that rq_completed() requires, 2118 * before calling dm_kill_unmapped_request 2119 */ 2120 DMERR_LIMIT("request attempted access beyond the end of device"); 2121 dm_start_request(md, rq); 2122 dm_kill_unmapped_request(rq, -EIO); 2123 continue; 2124 } 2125 2126 if (dm_request_peeked_before_merge_deadline(md) && 2127 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 && 2128 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) 2129 goto delay_and_out; 2130 2131 if (ti->type->busy && ti->type->busy(ti)) 2132 goto delay_and_out; 2133 2134 dm_start_request(md, rq); 2135 2136 tio = tio_from_request(rq); 2137 /* Establish tio->ti before queuing work (map_tio_request) */ 2138 tio->ti = ti; 2139 queue_kthread_work(&md->kworker, &tio->work); 2140 BUG_ON(!irqs_disabled()); 2141 } 2142 2143 goto out; 2144 2145 delay_and_out: 2146 blk_delay_queue(q, HZ / 100); 2147 out: 2148 dm_put_live_table(md, srcu_idx); 2149 } 2150 2151 static int dm_any_congested(void *congested_data, int bdi_bits) 2152 { 2153 int r = bdi_bits; 2154 struct mapped_device *md = congested_data; 2155 struct dm_table *map; 2156 2157 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2158 map = dm_get_live_table_fast(md); 2159 if (map) { 2160 /* 2161 * Request-based dm cares about only own queue for 2162 * the query about congestion status of request_queue 2163 */ 2164 if (dm_request_based(md)) 2165 r = md->queue->backing_dev_info.state & 2166 bdi_bits; 2167 else 2168 r = dm_table_any_congested(map, bdi_bits); 2169 } 2170 dm_put_live_table_fast(md); 2171 } 2172 2173 return r; 2174 } 2175 2176 /*----------------------------------------------------------------- 2177 * An IDR is used to keep track of allocated minor numbers. 2178 *---------------------------------------------------------------*/ 2179 static void free_minor(int minor) 2180 { 2181 spin_lock(&_minor_lock); 2182 idr_remove(&_minor_idr, minor); 2183 spin_unlock(&_minor_lock); 2184 } 2185 2186 /* 2187 * See if the device with a specific minor # is free. 2188 */ 2189 static int specific_minor(int minor) 2190 { 2191 int r; 2192 2193 if (minor >= (1 << MINORBITS)) 2194 return -EINVAL; 2195 2196 idr_preload(GFP_KERNEL); 2197 spin_lock(&_minor_lock); 2198 2199 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2200 2201 spin_unlock(&_minor_lock); 2202 idr_preload_end(); 2203 if (r < 0) 2204 return r == -ENOSPC ? -EBUSY : r; 2205 return 0; 2206 } 2207 2208 static int next_free_minor(int *minor) 2209 { 2210 int r; 2211 2212 idr_preload(GFP_KERNEL); 2213 spin_lock(&_minor_lock); 2214 2215 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2216 2217 spin_unlock(&_minor_lock); 2218 idr_preload_end(); 2219 if (r < 0) 2220 return r; 2221 *minor = r; 2222 return 0; 2223 } 2224 2225 static const struct block_device_operations dm_blk_dops; 2226 2227 static void dm_wq_work(struct work_struct *work); 2228 2229 static void dm_init_md_queue(struct mapped_device *md) 2230 { 2231 /* 2232 * Request-based dm devices cannot be stacked on top of bio-based dm 2233 * devices. The type of this dm device may not have been decided yet. 2234 * The type is decided at the first table loading time. 2235 * To prevent problematic device stacking, clear the queue flag 2236 * for request stacking support until then. 2237 * 2238 * This queue is new, so no concurrency on the queue_flags. 2239 */ 2240 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 2241 } 2242 2243 static void dm_init_old_md_queue(struct mapped_device *md) 2244 { 2245 md->use_blk_mq = false; 2246 dm_init_md_queue(md); 2247 2248 /* 2249 * Initialize aspects of queue that aren't relevant for blk-mq 2250 */ 2251 md->queue->queuedata = md; 2252 md->queue->backing_dev_info.congested_fn = dm_any_congested; 2253 md->queue->backing_dev_info.congested_data = md; 2254 2255 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 2256 } 2257 2258 /* 2259 * Allocate and initialise a blank device with a given minor. 2260 */ 2261 static struct mapped_device *alloc_dev(int minor) 2262 { 2263 int r; 2264 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 2265 void *old_md; 2266 2267 if (!md) { 2268 DMWARN("unable to allocate device, out of memory."); 2269 return NULL; 2270 } 2271 2272 if (!try_module_get(THIS_MODULE)) 2273 goto bad_module_get; 2274 2275 /* get a minor number for the dev */ 2276 if (minor == DM_ANY_MINOR) 2277 r = next_free_minor(&minor); 2278 else 2279 r = specific_minor(minor); 2280 if (r < 0) 2281 goto bad_minor; 2282 2283 r = init_srcu_struct(&md->io_barrier); 2284 if (r < 0) 2285 goto bad_io_barrier; 2286 2287 md->use_blk_mq = use_blk_mq; 2288 md->type = DM_TYPE_NONE; 2289 mutex_init(&md->suspend_lock); 2290 mutex_init(&md->type_lock); 2291 mutex_init(&md->table_devices_lock); 2292 spin_lock_init(&md->deferred_lock); 2293 atomic_set(&md->holders, 1); 2294 atomic_set(&md->open_count, 0); 2295 atomic_set(&md->event_nr, 0); 2296 atomic_set(&md->uevent_seq, 0); 2297 INIT_LIST_HEAD(&md->uevent_list); 2298 INIT_LIST_HEAD(&md->table_devices); 2299 spin_lock_init(&md->uevent_lock); 2300 2301 md->queue = blk_alloc_queue(GFP_KERNEL); 2302 if (!md->queue) 2303 goto bad_queue; 2304 2305 dm_init_md_queue(md); 2306 2307 md->disk = alloc_disk(1); 2308 if (!md->disk) 2309 goto bad_disk; 2310 2311 atomic_set(&md->pending[0], 0); 2312 atomic_set(&md->pending[1], 0); 2313 init_waitqueue_head(&md->wait); 2314 INIT_WORK(&md->work, dm_wq_work); 2315 init_waitqueue_head(&md->eventq); 2316 init_completion(&md->kobj_holder.completion); 2317 md->kworker_task = NULL; 2318 2319 md->disk->major = _major; 2320 md->disk->first_minor = minor; 2321 md->disk->fops = &dm_blk_dops; 2322 md->disk->queue = md->queue; 2323 md->disk->private_data = md; 2324 sprintf(md->disk->disk_name, "dm-%d", minor); 2325 add_disk(md->disk); 2326 format_dev_t(md->name, MKDEV(_major, minor)); 2327 2328 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2329 if (!md->wq) 2330 goto bad_thread; 2331 2332 md->bdev = bdget_disk(md->disk, 0); 2333 if (!md->bdev) 2334 goto bad_bdev; 2335 2336 bio_init(&md->flush_bio); 2337 md->flush_bio.bi_bdev = md->bdev; 2338 md->flush_bio.bi_rw = WRITE_FLUSH; 2339 2340 dm_stats_init(&md->stats); 2341 2342 /* Populate the mapping, nobody knows we exist yet */ 2343 spin_lock(&_minor_lock); 2344 old_md = idr_replace(&_minor_idr, md, minor); 2345 spin_unlock(&_minor_lock); 2346 2347 BUG_ON(old_md != MINOR_ALLOCED); 2348 2349 return md; 2350 2351 bad_bdev: 2352 destroy_workqueue(md->wq); 2353 bad_thread: 2354 del_gendisk(md->disk); 2355 put_disk(md->disk); 2356 bad_disk: 2357 blk_cleanup_queue(md->queue); 2358 bad_queue: 2359 cleanup_srcu_struct(&md->io_barrier); 2360 bad_io_barrier: 2361 free_minor(minor); 2362 bad_minor: 2363 module_put(THIS_MODULE); 2364 bad_module_get: 2365 kfree(md); 2366 return NULL; 2367 } 2368 2369 static void unlock_fs(struct mapped_device *md); 2370 2371 static void free_dev(struct mapped_device *md) 2372 { 2373 int minor = MINOR(disk_devt(md->disk)); 2374 2375 unlock_fs(md); 2376 destroy_workqueue(md->wq); 2377 2378 if (md->kworker_task) 2379 kthread_stop(md->kworker_task); 2380 if (md->io_pool) 2381 mempool_destroy(md->io_pool); 2382 if (md->rq_pool) 2383 mempool_destroy(md->rq_pool); 2384 if (md->bs) 2385 bioset_free(md->bs); 2386 2387 cleanup_srcu_struct(&md->io_barrier); 2388 free_table_devices(&md->table_devices); 2389 dm_stats_cleanup(&md->stats); 2390 2391 spin_lock(&_minor_lock); 2392 md->disk->private_data = NULL; 2393 spin_unlock(&_minor_lock); 2394 if (blk_get_integrity(md->disk)) 2395 blk_integrity_unregister(md->disk); 2396 del_gendisk(md->disk); 2397 put_disk(md->disk); 2398 blk_cleanup_queue(md->queue); 2399 if (md->use_blk_mq) 2400 blk_mq_free_tag_set(&md->tag_set); 2401 bdput(md->bdev); 2402 free_minor(minor); 2403 2404 module_put(THIS_MODULE); 2405 kfree(md); 2406 } 2407 2408 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2409 { 2410 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2411 2412 if (md->bs) { 2413 /* The md already has necessary mempools. */ 2414 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2415 /* 2416 * Reload bioset because front_pad may have changed 2417 * because a different table was loaded. 2418 */ 2419 bioset_free(md->bs); 2420 md->bs = p->bs; 2421 p->bs = NULL; 2422 } 2423 /* 2424 * There's no need to reload with request-based dm 2425 * because the size of front_pad doesn't change. 2426 * Note for future: If you are to reload bioset, 2427 * prep-ed requests in the queue may refer 2428 * to bio from the old bioset, so you must walk 2429 * through the queue to unprep. 2430 */ 2431 goto out; 2432 } 2433 2434 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs); 2435 2436 md->io_pool = p->io_pool; 2437 p->io_pool = NULL; 2438 md->rq_pool = p->rq_pool; 2439 p->rq_pool = NULL; 2440 md->bs = p->bs; 2441 p->bs = NULL; 2442 2443 out: 2444 /* mempool bind completed, no longer need any mempools in the table */ 2445 dm_table_free_md_mempools(t); 2446 } 2447 2448 /* 2449 * Bind a table to the device. 2450 */ 2451 static void event_callback(void *context) 2452 { 2453 unsigned long flags; 2454 LIST_HEAD(uevents); 2455 struct mapped_device *md = (struct mapped_device *) context; 2456 2457 spin_lock_irqsave(&md->uevent_lock, flags); 2458 list_splice_init(&md->uevent_list, &uevents); 2459 spin_unlock_irqrestore(&md->uevent_lock, flags); 2460 2461 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2462 2463 atomic_inc(&md->event_nr); 2464 wake_up(&md->eventq); 2465 } 2466 2467 /* 2468 * Protected by md->suspend_lock obtained by dm_swap_table(). 2469 */ 2470 static void __set_size(struct mapped_device *md, sector_t size) 2471 { 2472 set_capacity(md->disk, size); 2473 2474 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2475 } 2476 2477 /* 2478 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2479 * 2480 * If this function returns 0, then the device is either a non-dm 2481 * device without a merge_bvec_fn, or it is a dm device that is 2482 * able to split any bios it receives that are too big. 2483 */ 2484 int dm_queue_merge_is_compulsory(struct request_queue *q) 2485 { 2486 struct mapped_device *dev_md; 2487 2488 if (!q->merge_bvec_fn) 2489 return 0; 2490 2491 if (q->make_request_fn == dm_make_request) { 2492 dev_md = q->queuedata; 2493 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2494 return 0; 2495 } 2496 2497 return 1; 2498 } 2499 2500 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2501 struct dm_dev *dev, sector_t start, 2502 sector_t len, void *data) 2503 { 2504 struct block_device *bdev = dev->bdev; 2505 struct request_queue *q = bdev_get_queue(bdev); 2506 2507 return dm_queue_merge_is_compulsory(q); 2508 } 2509 2510 /* 2511 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2512 * on the properties of the underlying devices. 2513 */ 2514 static int dm_table_merge_is_optional(struct dm_table *table) 2515 { 2516 unsigned i = 0; 2517 struct dm_target *ti; 2518 2519 while (i < dm_table_get_num_targets(table)) { 2520 ti = dm_table_get_target(table, i++); 2521 2522 if (ti->type->iterate_devices && 2523 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2524 return 0; 2525 } 2526 2527 return 1; 2528 } 2529 2530 /* 2531 * Returns old map, which caller must destroy. 2532 */ 2533 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2534 struct queue_limits *limits) 2535 { 2536 struct dm_table *old_map; 2537 struct request_queue *q = md->queue; 2538 sector_t size; 2539 int merge_is_optional; 2540 2541 size = dm_table_get_size(t); 2542 2543 /* 2544 * Wipe any geometry if the size of the table changed. 2545 */ 2546 if (size != dm_get_size(md)) 2547 memset(&md->geometry, 0, sizeof(md->geometry)); 2548 2549 __set_size(md, size); 2550 2551 dm_table_event_callback(t, event_callback, md); 2552 2553 /* 2554 * The queue hasn't been stopped yet, if the old table type wasn't 2555 * for request-based during suspension. So stop it to prevent 2556 * I/O mapping before resume. 2557 * This must be done before setting the queue restrictions, 2558 * because request-based dm may be run just after the setting. 2559 */ 2560 if (dm_table_request_based(t)) 2561 stop_queue(q); 2562 2563 __bind_mempools(md, t); 2564 2565 merge_is_optional = dm_table_merge_is_optional(t); 2566 2567 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2568 rcu_assign_pointer(md->map, t); 2569 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2570 2571 dm_table_set_restrictions(t, q, limits); 2572 if (merge_is_optional) 2573 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2574 else 2575 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2576 if (old_map) 2577 dm_sync_table(md); 2578 2579 return old_map; 2580 } 2581 2582 /* 2583 * Returns unbound table for the caller to free. 2584 */ 2585 static struct dm_table *__unbind(struct mapped_device *md) 2586 { 2587 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2588 2589 if (!map) 2590 return NULL; 2591 2592 dm_table_event_callback(map, NULL, NULL); 2593 RCU_INIT_POINTER(md->map, NULL); 2594 dm_sync_table(md); 2595 2596 return map; 2597 } 2598 2599 /* 2600 * Constructor for a new device. 2601 */ 2602 int dm_create(int minor, struct mapped_device **result) 2603 { 2604 struct mapped_device *md; 2605 2606 md = alloc_dev(minor); 2607 if (!md) 2608 return -ENXIO; 2609 2610 dm_sysfs_init(md); 2611 2612 *result = md; 2613 return 0; 2614 } 2615 2616 /* 2617 * Functions to manage md->type. 2618 * All are required to hold md->type_lock. 2619 */ 2620 void dm_lock_md_type(struct mapped_device *md) 2621 { 2622 mutex_lock(&md->type_lock); 2623 } 2624 2625 void dm_unlock_md_type(struct mapped_device *md) 2626 { 2627 mutex_unlock(&md->type_lock); 2628 } 2629 2630 void dm_set_md_type(struct mapped_device *md, unsigned type) 2631 { 2632 BUG_ON(!mutex_is_locked(&md->type_lock)); 2633 md->type = type; 2634 } 2635 2636 unsigned dm_get_md_type(struct mapped_device *md) 2637 { 2638 BUG_ON(!mutex_is_locked(&md->type_lock)); 2639 return md->type; 2640 } 2641 2642 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2643 { 2644 return md->immutable_target_type; 2645 } 2646 2647 /* 2648 * The queue_limits are only valid as long as you have a reference 2649 * count on 'md'. 2650 */ 2651 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2652 { 2653 BUG_ON(!atomic_read(&md->holders)); 2654 return &md->queue->limits; 2655 } 2656 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2657 2658 static void init_rq_based_worker_thread(struct mapped_device *md) 2659 { 2660 /* Initialize the request-based DM worker thread */ 2661 init_kthread_worker(&md->kworker); 2662 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker, 2663 "kdmwork-%s", dm_device_name(md)); 2664 } 2665 2666 /* 2667 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2668 */ 2669 static int dm_init_request_based_queue(struct mapped_device *md) 2670 { 2671 struct request_queue *q = NULL; 2672 2673 /* Fully initialize the queue */ 2674 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2675 if (!q) 2676 return -EINVAL; 2677 2678 /* disable dm_request_fn's merge heuristic by default */ 2679 md->seq_rq_merge_deadline_usecs = 0; 2680 2681 md->queue = q; 2682 dm_init_old_md_queue(md); 2683 blk_queue_softirq_done(md->queue, dm_softirq_done); 2684 blk_queue_prep_rq(md->queue, dm_prep_fn); 2685 2686 init_rq_based_worker_thread(md); 2687 2688 elv_register_queue(md->queue); 2689 2690 return 0; 2691 } 2692 2693 static int dm_mq_init_request(void *data, struct request *rq, 2694 unsigned int hctx_idx, unsigned int request_idx, 2695 unsigned int numa_node) 2696 { 2697 struct mapped_device *md = data; 2698 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2699 2700 /* 2701 * Must initialize md member of tio, otherwise it won't 2702 * be available in dm_mq_queue_rq. 2703 */ 2704 tio->md = md; 2705 2706 return 0; 2707 } 2708 2709 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx, 2710 const struct blk_mq_queue_data *bd) 2711 { 2712 struct request *rq = bd->rq; 2713 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq); 2714 struct mapped_device *md = tio->md; 2715 int srcu_idx; 2716 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 2717 struct dm_target *ti; 2718 sector_t pos; 2719 2720 /* always use block 0 to find the target for flushes for now */ 2721 pos = 0; 2722 if (!(rq->cmd_flags & REQ_FLUSH)) 2723 pos = blk_rq_pos(rq); 2724 2725 ti = dm_table_find_target(map, pos); 2726 if (!dm_target_is_valid(ti)) { 2727 dm_put_live_table(md, srcu_idx); 2728 DMERR_LIMIT("request attempted access beyond the end of device"); 2729 /* 2730 * Must perform setup, that rq_completed() requires, 2731 * before returning BLK_MQ_RQ_QUEUE_ERROR 2732 */ 2733 dm_start_request(md, rq); 2734 return BLK_MQ_RQ_QUEUE_ERROR; 2735 } 2736 dm_put_live_table(md, srcu_idx); 2737 2738 if (ti->type->busy && ti->type->busy(ti)) 2739 return BLK_MQ_RQ_QUEUE_BUSY; 2740 2741 dm_start_request(md, rq); 2742 2743 /* Init tio using md established in .init_request */ 2744 init_tio(tio, rq, md); 2745 2746 /* 2747 * Establish tio->ti before queuing work (map_tio_request) 2748 * or making direct call to map_request(). 2749 */ 2750 tio->ti = ti; 2751 2752 /* Clone the request if underlying devices aren't blk-mq */ 2753 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) { 2754 /* clone request is allocated at the end of the pdu */ 2755 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io); 2756 if (!clone_rq(rq, md, tio, GFP_ATOMIC)) 2757 return BLK_MQ_RQ_QUEUE_BUSY; 2758 queue_kthread_work(&md->kworker, &tio->work); 2759 } else { 2760 /* Direct call is fine since .queue_rq allows allocations */ 2761 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) 2762 dm_requeue_unmapped_original_request(md, rq); 2763 } 2764 2765 return BLK_MQ_RQ_QUEUE_OK; 2766 } 2767 2768 static struct blk_mq_ops dm_mq_ops = { 2769 .queue_rq = dm_mq_queue_rq, 2770 .map_queue = blk_mq_map_queue, 2771 .complete = dm_softirq_done, 2772 .init_request = dm_mq_init_request, 2773 }; 2774 2775 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md) 2776 { 2777 unsigned md_type = dm_get_md_type(md); 2778 struct request_queue *q; 2779 int err; 2780 2781 memset(&md->tag_set, 0, sizeof(md->tag_set)); 2782 md->tag_set.ops = &dm_mq_ops; 2783 md->tag_set.queue_depth = BLKDEV_MAX_RQ; 2784 md->tag_set.numa_node = NUMA_NO_NODE; 2785 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2786 md->tag_set.nr_hw_queues = 1; 2787 if (md_type == DM_TYPE_REQUEST_BASED) { 2788 /* make the memory for non-blk-mq clone part of the pdu */ 2789 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request); 2790 } else 2791 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io); 2792 md->tag_set.driver_data = md; 2793 2794 err = blk_mq_alloc_tag_set(&md->tag_set); 2795 if (err) 2796 return err; 2797 2798 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue); 2799 if (IS_ERR(q)) { 2800 err = PTR_ERR(q); 2801 goto out_tag_set; 2802 } 2803 md->queue = q; 2804 dm_init_md_queue(md); 2805 2806 /* backfill 'mq' sysfs registration normally done in blk_register_queue */ 2807 blk_mq_register_disk(md->disk); 2808 2809 if (md_type == DM_TYPE_REQUEST_BASED) 2810 init_rq_based_worker_thread(md); 2811 2812 return 0; 2813 2814 out_tag_set: 2815 blk_mq_free_tag_set(&md->tag_set); 2816 return err; 2817 } 2818 2819 static unsigned filter_md_type(unsigned type, struct mapped_device *md) 2820 { 2821 if (type == DM_TYPE_BIO_BASED) 2822 return type; 2823 2824 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED; 2825 } 2826 2827 /* 2828 * Setup the DM device's queue based on md's type 2829 */ 2830 int dm_setup_md_queue(struct mapped_device *md) 2831 { 2832 int r; 2833 unsigned md_type = filter_md_type(dm_get_md_type(md), md); 2834 2835 switch (md_type) { 2836 case DM_TYPE_REQUEST_BASED: 2837 r = dm_init_request_based_queue(md); 2838 if (r) { 2839 DMWARN("Cannot initialize queue for request-based mapped device"); 2840 return r; 2841 } 2842 break; 2843 case DM_TYPE_MQ_REQUEST_BASED: 2844 r = dm_init_request_based_blk_mq_queue(md); 2845 if (r) { 2846 DMWARN("Cannot initialize queue for request-based blk-mq mapped device"); 2847 return r; 2848 } 2849 break; 2850 case DM_TYPE_BIO_BASED: 2851 dm_init_old_md_queue(md); 2852 blk_queue_make_request(md->queue, dm_make_request); 2853 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 2854 break; 2855 } 2856 2857 return 0; 2858 } 2859 2860 struct mapped_device *dm_get_md(dev_t dev) 2861 { 2862 struct mapped_device *md; 2863 unsigned minor = MINOR(dev); 2864 2865 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2866 return NULL; 2867 2868 spin_lock(&_minor_lock); 2869 2870 md = idr_find(&_minor_idr, minor); 2871 if (md) { 2872 if ((md == MINOR_ALLOCED || 2873 (MINOR(disk_devt(dm_disk(md))) != minor) || 2874 dm_deleting_md(md) || 2875 test_bit(DMF_FREEING, &md->flags))) { 2876 md = NULL; 2877 goto out; 2878 } 2879 dm_get(md); 2880 } 2881 2882 out: 2883 spin_unlock(&_minor_lock); 2884 2885 return md; 2886 } 2887 EXPORT_SYMBOL_GPL(dm_get_md); 2888 2889 void *dm_get_mdptr(struct mapped_device *md) 2890 { 2891 return md->interface_ptr; 2892 } 2893 2894 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2895 { 2896 md->interface_ptr = ptr; 2897 } 2898 2899 void dm_get(struct mapped_device *md) 2900 { 2901 atomic_inc(&md->holders); 2902 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2903 } 2904 2905 int dm_hold(struct mapped_device *md) 2906 { 2907 spin_lock(&_minor_lock); 2908 if (test_bit(DMF_FREEING, &md->flags)) { 2909 spin_unlock(&_minor_lock); 2910 return -EBUSY; 2911 } 2912 dm_get(md); 2913 spin_unlock(&_minor_lock); 2914 return 0; 2915 } 2916 EXPORT_SYMBOL_GPL(dm_hold); 2917 2918 const char *dm_device_name(struct mapped_device *md) 2919 { 2920 return md->name; 2921 } 2922 EXPORT_SYMBOL_GPL(dm_device_name); 2923 2924 static void __dm_destroy(struct mapped_device *md, bool wait) 2925 { 2926 struct dm_table *map; 2927 int srcu_idx; 2928 2929 might_sleep(); 2930 2931 map = dm_get_live_table(md, &srcu_idx); 2932 2933 spin_lock(&_minor_lock); 2934 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2935 set_bit(DMF_FREEING, &md->flags); 2936 spin_unlock(&_minor_lock); 2937 2938 if (dm_request_based(md) && md->kworker_task) 2939 flush_kthread_worker(&md->kworker); 2940 2941 /* 2942 * Take suspend_lock so that presuspend and postsuspend methods 2943 * do not race with internal suspend. 2944 */ 2945 mutex_lock(&md->suspend_lock); 2946 if (!dm_suspended_md(md)) { 2947 dm_table_presuspend_targets(map); 2948 dm_table_postsuspend_targets(map); 2949 } 2950 mutex_unlock(&md->suspend_lock); 2951 2952 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2953 dm_put_live_table(md, srcu_idx); 2954 2955 /* 2956 * Rare, but there may be I/O requests still going to complete, 2957 * for example. Wait for all references to disappear. 2958 * No one should increment the reference count of the mapped_device, 2959 * after the mapped_device state becomes DMF_FREEING. 2960 */ 2961 if (wait) 2962 while (atomic_read(&md->holders)) 2963 msleep(1); 2964 else if (atomic_read(&md->holders)) 2965 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2966 dm_device_name(md), atomic_read(&md->holders)); 2967 2968 dm_sysfs_exit(md); 2969 dm_table_destroy(__unbind(md)); 2970 free_dev(md); 2971 } 2972 2973 void dm_destroy(struct mapped_device *md) 2974 { 2975 __dm_destroy(md, true); 2976 } 2977 2978 void dm_destroy_immediate(struct mapped_device *md) 2979 { 2980 __dm_destroy(md, false); 2981 } 2982 2983 void dm_put(struct mapped_device *md) 2984 { 2985 atomic_dec(&md->holders); 2986 } 2987 EXPORT_SYMBOL_GPL(dm_put); 2988 2989 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2990 { 2991 int r = 0; 2992 DECLARE_WAITQUEUE(wait, current); 2993 2994 add_wait_queue(&md->wait, &wait); 2995 2996 while (1) { 2997 set_current_state(interruptible); 2998 2999 if (!md_in_flight(md)) 3000 break; 3001 3002 if (interruptible == TASK_INTERRUPTIBLE && 3003 signal_pending(current)) { 3004 r = -EINTR; 3005 break; 3006 } 3007 3008 io_schedule(); 3009 } 3010 set_current_state(TASK_RUNNING); 3011 3012 remove_wait_queue(&md->wait, &wait); 3013 3014 return r; 3015 } 3016 3017 /* 3018 * Process the deferred bios 3019 */ 3020 static void dm_wq_work(struct work_struct *work) 3021 { 3022 struct mapped_device *md = container_of(work, struct mapped_device, 3023 work); 3024 struct bio *c; 3025 int srcu_idx; 3026 struct dm_table *map; 3027 3028 map = dm_get_live_table(md, &srcu_idx); 3029 3030 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 3031 spin_lock_irq(&md->deferred_lock); 3032 c = bio_list_pop(&md->deferred); 3033 spin_unlock_irq(&md->deferred_lock); 3034 3035 if (!c) 3036 break; 3037 3038 if (dm_request_based(md)) 3039 generic_make_request(c); 3040 else 3041 __split_and_process_bio(md, map, c); 3042 } 3043 3044 dm_put_live_table(md, srcu_idx); 3045 } 3046 3047 static void dm_queue_flush(struct mapped_device *md) 3048 { 3049 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3050 smp_mb__after_atomic(); 3051 queue_work(md->wq, &md->work); 3052 } 3053 3054 /* 3055 * Swap in a new table, returning the old one for the caller to destroy. 3056 */ 3057 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 3058 { 3059 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 3060 struct queue_limits limits; 3061 int r; 3062 3063 mutex_lock(&md->suspend_lock); 3064 3065 /* device must be suspended */ 3066 if (!dm_suspended_md(md)) 3067 goto out; 3068 3069 /* 3070 * If the new table has no data devices, retain the existing limits. 3071 * This helps multipath with queue_if_no_path if all paths disappear, 3072 * then new I/O is queued based on these limits, and then some paths 3073 * reappear. 3074 */ 3075 if (dm_table_has_no_data_devices(table)) { 3076 live_map = dm_get_live_table_fast(md); 3077 if (live_map) 3078 limits = md->queue->limits; 3079 dm_put_live_table_fast(md); 3080 } 3081 3082 if (!live_map) { 3083 r = dm_calculate_queue_limits(table, &limits); 3084 if (r) { 3085 map = ERR_PTR(r); 3086 goto out; 3087 } 3088 } 3089 3090 map = __bind(md, table, &limits); 3091 3092 out: 3093 mutex_unlock(&md->suspend_lock); 3094 return map; 3095 } 3096 3097 /* 3098 * Functions to lock and unlock any filesystem running on the 3099 * device. 3100 */ 3101 static int lock_fs(struct mapped_device *md) 3102 { 3103 int r; 3104 3105 WARN_ON(md->frozen_sb); 3106 3107 md->frozen_sb = freeze_bdev(md->bdev); 3108 if (IS_ERR(md->frozen_sb)) { 3109 r = PTR_ERR(md->frozen_sb); 3110 md->frozen_sb = NULL; 3111 return r; 3112 } 3113 3114 set_bit(DMF_FROZEN, &md->flags); 3115 3116 return 0; 3117 } 3118 3119 static void unlock_fs(struct mapped_device *md) 3120 { 3121 if (!test_bit(DMF_FROZEN, &md->flags)) 3122 return; 3123 3124 thaw_bdev(md->bdev, md->frozen_sb); 3125 md->frozen_sb = NULL; 3126 clear_bit(DMF_FROZEN, &md->flags); 3127 } 3128 3129 /* 3130 * If __dm_suspend returns 0, the device is completely quiescent 3131 * now. There is no request-processing activity. All new requests 3132 * are being added to md->deferred list. 3133 * 3134 * Caller must hold md->suspend_lock 3135 */ 3136 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 3137 unsigned suspend_flags, int interruptible) 3138 { 3139 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 3140 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 3141 int r; 3142 3143 /* 3144 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 3145 * This flag is cleared before dm_suspend returns. 3146 */ 3147 if (noflush) 3148 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3149 3150 /* 3151 * This gets reverted if there's an error later and the targets 3152 * provide the .presuspend_undo hook. 3153 */ 3154 dm_table_presuspend_targets(map); 3155 3156 /* 3157 * Flush I/O to the device. 3158 * Any I/O submitted after lock_fs() may not be flushed. 3159 * noflush takes precedence over do_lockfs. 3160 * (lock_fs() flushes I/Os and waits for them to complete.) 3161 */ 3162 if (!noflush && do_lockfs) { 3163 r = lock_fs(md); 3164 if (r) { 3165 dm_table_presuspend_undo_targets(map); 3166 return r; 3167 } 3168 } 3169 3170 /* 3171 * Here we must make sure that no processes are submitting requests 3172 * to target drivers i.e. no one may be executing 3173 * __split_and_process_bio. This is called from dm_request and 3174 * dm_wq_work. 3175 * 3176 * To get all processes out of __split_and_process_bio in dm_request, 3177 * we take the write lock. To prevent any process from reentering 3178 * __split_and_process_bio from dm_request and quiesce the thread 3179 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 3180 * flush_workqueue(md->wq). 3181 */ 3182 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3183 if (map) 3184 synchronize_srcu(&md->io_barrier); 3185 3186 /* 3187 * Stop md->queue before flushing md->wq in case request-based 3188 * dm defers requests to md->wq from md->queue. 3189 */ 3190 if (dm_request_based(md)) { 3191 stop_queue(md->queue); 3192 if (md->kworker_task) 3193 flush_kthread_worker(&md->kworker); 3194 } 3195 3196 flush_workqueue(md->wq); 3197 3198 /* 3199 * At this point no more requests are entering target request routines. 3200 * We call dm_wait_for_completion to wait for all existing requests 3201 * to finish. 3202 */ 3203 r = dm_wait_for_completion(md, interruptible); 3204 3205 if (noflush) 3206 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 3207 if (map) 3208 synchronize_srcu(&md->io_barrier); 3209 3210 /* were we interrupted ? */ 3211 if (r < 0) { 3212 dm_queue_flush(md); 3213 3214 if (dm_request_based(md)) 3215 start_queue(md->queue); 3216 3217 unlock_fs(md); 3218 dm_table_presuspend_undo_targets(map); 3219 /* pushback list is already flushed, so skip flush */ 3220 } 3221 3222 return r; 3223 } 3224 3225 /* 3226 * We need to be able to change a mapping table under a mounted 3227 * filesystem. For example we might want to move some data in 3228 * the background. Before the table can be swapped with 3229 * dm_bind_table, dm_suspend must be called to flush any in 3230 * flight bios and ensure that any further io gets deferred. 3231 */ 3232 /* 3233 * Suspend mechanism in request-based dm. 3234 * 3235 * 1. Flush all I/Os by lock_fs() if needed. 3236 * 2. Stop dispatching any I/O by stopping the request_queue. 3237 * 3. Wait for all in-flight I/Os to be completed or requeued. 3238 * 3239 * To abort suspend, start the request_queue. 3240 */ 3241 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 3242 { 3243 struct dm_table *map = NULL; 3244 int r = 0; 3245 3246 retry: 3247 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3248 3249 if (dm_suspended_md(md)) { 3250 r = -EINVAL; 3251 goto out_unlock; 3252 } 3253 3254 if (dm_suspended_internally_md(md)) { 3255 /* already internally suspended, wait for internal resume */ 3256 mutex_unlock(&md->suspend_lock); 3257 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3258 if (r) 3259 return r; 3260 goto retry; 3261 } 3262 3263 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3264 3265 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE); 3266 if (r) 3267 goto out_unlock; 3268 3269 set_bit(DMF_SUSPENDED, &md->flags); 3270 3271 dm_table_postsuspend_targets(map); 3272 3273 out_unlock: 3274 mutex_unlock(&md->suspend_lock); 3275 return r; 3276 } 3277 3278 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3279 { 3280 if (map) { 3281 int r = dm_table_resume_targets(map); 3282 if (r) 3283 return r; 3284 } 3285 3286 dm_queue_flush(md); 3287 3288 /* 3289 * Flushing deferred I/Os must be done after targets are resumed 3290 * so that mapping of targets can work correctly. 3291 * Request-based dm is queueing the deferred I/Os in its request_queue. 3292 */ 3293 if (dm_request_based(md)) 3294 start_queue(md->queue); 3295 3296 unlock_fs(md); 3297 3298 return 0; 3299 } 3300 3301 int dm_resume(struct mapped_device *md) 3302 { 3303 int r = -EINVAL; 3304 struct dm_table *map = NULL; 3305 3306 retry: 3307 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3308 3309 if (!dm_suspended_md(md)) 3310 goto out; 3311 3312 if (dm_suspended_internally_md(md)) { 3313 /* already internally suspended, wait for internal resume */ 3314 mutex_unlock(&md->suspend_lock); 3315 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3316 if (r) 3317 return r; 3318 goto retry; 3319 } 3320 3321 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3322 if (!map || !dm_table_get_size(map)) 3323 goto out; 3324 3325 r = __dm_resume(md, map); 3326 if (r) 3327 goto out; 3328 3329 clear_bit(DMF_SUSPENDED, &md->flags); 3330 3331 r = 0; 3332 out: 3333 mutex_unlock(&md->suspend_lock); 3334 3335 return r; 3336 } 3337 3338 /* 3339 * Internal suspend/resume works like userspace-driven suspend. It waits 3340 * until all bios finish and prevents issuing new bios to the target drivers. 3341 * It may be used only from the kernel. 3342 */ 3343 3344 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 3345 { 3346 struct dm_table *map = NULL; 3347 3348 if (md->internal_suspend_count++) 3349 return; /* nested internal suspend */ 3350 3351 if (dm_suspended_md(md)) { 3352 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3353 return; /* nest suspend */ 3354 } 3355 3356 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3357 3358 /* 3359 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3360 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3361 * would require changing .presuspend to return an error -- avoid this 3362 * until there is a need for more elaborate variants of internal suspend. 3363 */ 3364 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE); 3365 3366 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3367 3368 dm_table_postsuspend_targets(map); 3369 } 3370 3371 static void __dm_internal_resume(struct mapped_device *md) 3372 { 3373 BUG_ON(!md->internal_suspend_count); 3374 3375 if (--md->internal_suspend_count) 3376 return; /* resume from nested internal suspend */ 3377 3378 if (dm_suspended_md(md)) 3379 goto done; /* resume from nested suspend */ 3380 3381 /* 3382 * NOTE: existing callers don't need to call dm_table_resume_targets 3383 * (which may fail -- so best to avoid it for now by passing NULL map) 3384 */ 3385 (void) __dm_resume(md, NULL); 3386 3387 done: 3388 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3389 smp_mb__after_atomic(); 3390 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3391 } 3392 3393 void dm_internal_suspend_noflush(struct mapped_device *md) 3394 { 3395 mutex_lock(&md->suspend_lock); 3396 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3397 mutex_unlock(&md->suspend_lock); 3398 } 3399 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3400 3401 void dm_internal_resume(struct mapped_device *md) 3402 { 3403 mutex_lock(&md->suspend_lock); 3404 __dm_internal_resume(md); 3405 mutex_unlock(&md->suspend_lock); 3406 } 3407 EXPORT_SYMBOL_GPL(dm_internal_resume); 3408 3409 /* 3410 * Fast variants of internal suspend/resume hold md->suspend_lock, 3411 * which prevents interaction with userspace-driven suspend. 3412 */ 3413 3414 void dm_internal_suspend_fast(struct mapped_device *md) 3415 { 3416 mutex_lock(&md->suspend_lock); 3417 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3418 return; 3419 3420 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3421 synchronize_srcu(&md->io_barrier); 3422 flush_workqueue(md->wq); 3423 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3424 } 3425 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3426 3427 void dm_internal_resume_fast(struct mapped_device *md) 3428 { 3429 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3430 goto done; 3431 3432 dm_queue_flush(md); 3433 3434 done: 3435 mutex_unlock(&md->suspend_lock); 3436 } 3437 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3438 3439 /*----------------------------------------------------------------- 3440 * Event notification. 3441 *---------------------------------------------------------------*/ 3442 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3443 unsigned cookie) 3444 { 3445 char udev_cookie[DM_COOKIE_LENGTH]; 3446 char *envp[] = { udev_cookie, NULL }; 3447 3448 if (!cookie) 3449 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 3450 else { 3451 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3452 DM_COOKIE_ENV_VAR_NAME, cookie); 3453 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 3454 action, envp); 3455 } 3456 } 3457 3458 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3459 { 3460 return atomic_add_return(1, &md->uevent_seq); 3461 } 3462 3463 uint32_t dm_get_event_nr(struct mapped_device *md) 3464 { 3465 return atomic_read(&md->event_nr); 3466 } 3467 3468 int dm_wait_event(struct mapped_device *md, int event_nr) 3469 { 3470 return wait_event_interruptible(md->eventq, 3471 (event_nr != atomic_read(&md->event_nr))); 3472 } 3473 3474 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3475 { 3476 unsigned long flags; 3477 3478 spin_lock_irqsave(&md->uevent_lock, flags); 3479 list_add(elist, &md->uevent_list); 3480 spin_unlock_irqrestore(&md->uevent_lock, flags); 3481 } 3482 3483 /* 3484 * The gendisk is only valid as long as you have a reference 3485 * count on 'md'. 3486 */ 3487 struct gendisk *dm_disk(struct mapped_device *md) 3488 { 3489 return md->disk; 3490 } 3491 EXPORT_SYMBOL_GPL(dm_disk); 3492 3493 struct kobject *dm_kobject(struct mapped_device *md) 3494 { 3495 return &md->kobj_holder.kobj; 3496 } 3497 3498 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3499 { 3500 struct mapped_device *md; 3501 3502 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3503 3504 if (test_bit(DMF_FREEING, &md->flags) || 3505 dm_deleting_md(md)) 3506 return NULL; 3507 3508 dm_get(md); 3509 return md; 3510 } 3511 3512 int dm_suspended_md(struct mapped_device *md) 3513 { 3514 return test_bit(DMF_SUSPENDED, &md->flags); 3515 } 3516 3517 int dm_suspended_internally_md(struct mapped_device *md) 3518 { 3519 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3520 } 3521 3522 int dm_test_deferred_remove_flag(struct mapped_device *md) 3523 { 3524 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3525 } 3526 3527 int dm_suspended(struct dm_target *ti) 3528 { 3529 return dm_suspended_md(dm_table_get_md(ti->table)); 3530 } 3531 EXPORT_SYMBOL_GPL(dm_suspended); 3532 3533 int dm_noflush_suspending(struct dm_target *ti) 3534 { 3535 return __noflush_suspending(dm_table_get_md(ti->table)); 3536 } 3537 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3538 3539 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 3540 unsigned integrity, unsigned per_bio_data_size) 3541 { 3542 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 3543 struct kmem_cache *cachep = NULL; 3544 unsigned int pool_size = 0; 3545 unsigned int front_pad; 3546 3547 if (!pools) 3548 return NULL; 3549 3550 type = filter_md_type(type, md); 3551 3552 switch (type) { 3553 case DM_TYPE_BIO_BASED: 3554 cachep = _io_cache; 3555 pool_size = dm_get_reserved_bio_based_ios(); 3556 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3557 break; 3558 case DM_TYPE_REQUEST_BASED: 3559 cachep = _rq_tio_cache; 3560 pool_size = dm_get_reserved_rq_based_ios(); 3561 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache); 3562 if (!pools->rq_pool) 3563 goto out; 3564 /* fall through to setup remaining rq-based pools */ 3565 case DM_TYPE_MQ_REQUEST_BASED: 3566 if (!pool_size) 3567 pool_size = dm_get_reserved_rq_based_ios(); 3568 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3569 /* per_bio_data_size is not used. See __bind_mempools(). */ 3570 WARN_ON(per_bio_data_size != 0); 3571 break; 3572 default: 3573 BUG(); 3574 } 3575 3576 if (cachep) { 3577 pools->io_pool = mempool_create_slab_pool(pool_size, cachep); 3578 if (!pools->io_pool) 3579 goto out; 3580 } 3581 3582 pools->bs = bioset_create_nobvec(pool_size, front_pad); 3583 if (!pools->bs) 3584 goto out; 3585 3586 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 3587 goto out; 3588 3589 return pools; 3590 3591 out: 3592 dm_free_md_mempools(pools); 3593 3594 return NULL; 3595 } 3596 3597 void dm_free_md_mempools(struct dm_md_mempools *pools) 3598 { 3599 if (!pools) 3600 return; 3601 3602 if (pools->io_pool) 3603 mempool_destroy(pools->io_pool); 3604 3605 if (pools->rq_pool) 3606 mempool_destroy(pools->rq_pool); 3607 3608 if (pools->bs) 3609 bioset_free(pools->bs); 3610 3611 kfree(pools); 3612 } 3613 3614 static const struct block_device_operations dm_blk_dops = { 3615 .open = dm_blk_open, 3616 .release = dm_blk_close, 3617 .ioctl = dm_blk_ioctl, 3618 .getgeo = dm_blk_getgeo, 3619 .owner = THIS_MODULE 3620 }; 3621 3622 /* 3623 * module hooks 3624 */ 3625 module_init(dm_init); 3626 module_exit(dm_exit); 3627 3628 module_param(major, uint, 0); 3629 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3630 3631 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3632 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3633 3634 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR); 3635 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools"); 3636 3637 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR); 3638 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices"); 3639 3640 MODULE_DESCRIPTION(DM_NAME " driver"); 3641 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3642 MODULE_LICENSE("GPL"); 3643