1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/signal.h> 19 #include <linux/blkpg.h> 20 #include <linux/bio.h> 21 #include <linux/mempool.h> 22 #include <linux/dax.h> 23 #include <linux/slab.h> 24 #include <linux/idr.h> 25 #include <linux/uio.h> 26 #include <linux/hdreg.h> 27 #include <linux/delay.h> 28 #include <linux/wait.h> 29 #include <linux/pr.h> 30 #include <linux/refcount.h> 31 #include <linux/part_stat.h> 32 #include <linux/blk-crypto.h> 33 #include <linux/blk-crypto-profile.h> 34 35 #define DM_MSG_PREFIX "core" 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 /* 45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 46 * dm_io into one list, and reuse bio->bi_private as the list head. Before 47 * ending this fs bio, we will recover its ->bi_private. 48 */ 49 #define REQ_DM_POLL_LIST REQ_DRV 50 51 static const char *_name = DM_NAME; 52 53 static unsigned int major; 54 static unsigned int _major; 55 56 static DEFINE_IDR(_minor_idr); 57 58 static DEFINE_SPINLOCK(_minor_lock); 59 60 static void do_deferred_remove(struct work_struct *w); 61 62 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 63 64 static struct workqueue_struct *deferred_remove_workqueue; 65 66 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 67 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 68 69 void dm_issue_global_event(void) 70 { 71 atomic_inc(&dm_global_event_nr); 72 wake_up(&dm_global_eventq); 73 } 74 75 DEFINE_STATIC_KEY_FALSE(stats_enabled); 76 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 77 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 78 79 /* 80 * One of these is allocated (on-stack) per original bio. 81 */ 82 struct clone_info { 83 struct dm_table *map; 84 struct bio *bio; 85 struct dm_io *io; 86 sector_t sector; 87 unsigned int sector_count; 88 bool is_abnormal_io:1; 89 bool submit_as_polled:1; 90 }; 91 92 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 93 { 94 return container_of(clone, struct dm_target_io, clone); 95 } 96 97 void *dm_per_bio_data(struct bio *bio, size_t data_size) 98 { 99 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 100 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 101 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 102 } 103 EXPORT_SYMBOL_GPL(dm_per_bio_data); 104 105 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 106 { 107 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 108 109 if (io->magic == DM_IO_MAGIC) 110 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 111 BUG_ON(io->magic != DM_TIO_MAGIC); 112 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 113 } 114 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 115 116 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 117 { 118 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 119 } 120 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 121 122 #define MINOR_ALLOCED ((void *)-1) 123 124 #define DM_NUMA_NODE NUMA_NO_NODE 125 static int dm_numa_node = DM_NUMA_NODE; 126 127 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 128 static int swap_bios = DEFAULT_SWAP_BIOS; 129 static int get_swap_bios(void) 130 { 131 int latch = READ_ONCE(swap_bios); 132 133 if (unlikely(latch <= 0)) 134 latch = DEFAULT_SWAP_BIOS; 135 return latch; 136 } 137 138 struct table_device { 139 struct list_head list; 140 refcount_t count; 141 struct dm_dev dm_dev; 142 }; 143 144 /* 145 * Bio-based DM's mempools' reserved IOs set by the user. 146 */ 147 #define RESERVED_BIO_BASED_IOS 16 148 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 149 150 static int __dm_get_module_param_int(int *module_param, int min, int max) 151 { 152 int param = READ_ONCE(*module_param); 153 int modified_param = 0; 154 bool modified = true; 155 156 if (param < min) 157 modified_param = min; 158 else if (param > max) 159 modified_param = max; 160 else 161 modified = false; 162 163 if (modified) { 164 (void)cmpxchg(module_param, param, modified_param); 165 param = modified_param; 166 } 167 168 return param; 169 } 170 171 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 172 { 173 unsigned int param = READ_ONCE(*module_param); 174 unsigned int modified_param = 0; 175 176 if (!param) 177 modified_param = def; 178 else if (param > max) 179 modified_param = max; 180 181 if (modified_param) { 182 (void)cmpxchg(module_param, param, modified_param); 183 param = modified_param; 184 } 185 186 return param; 187 } 188 189 unsigned int dm_get_reserved_bio_based_ios(void) 190 { 191 return __dm_get_module_param(&reserved_bio_based_ios, 192 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 193 } 194 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 195 196 static unsigned int dm_get_numa_node(void) 197 { 198 return __dm_get_module_param_int(&dm_numa_node, 199 DM_NUMA_NODE, num_online_nodes() - 1); 200 } 201 202 static int __init local_init(void) 203 { 204 int r; 205 206 r = dm_uevent_init(); 207 if (r) 208 return r; 209 210 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 211 if (!deferred_remove_workqueue) { 212 r = -ENOMEM; 213 goto out_uevent_exit; 214 } 215 216 _major = major; 217 r = register_blkdev(_major, _name); 218 if (r < 0) 219 goto out_free_workqueue; 220 221 if (!_major) 222 _major = r; 223 224 return 0; 225 226 out_free_workqueue: 227 destroy_workqueue(deferred_remove_workqueue); 228 out_uevent_exit: 229 dm_uevent_exit(); 230 231 return r; 232 } 233 234 static void local_exit(void) 235 { 236 destroy_workqueue(deferred_remove_workqueue); 237 238 unregister_blkdev(_major, _name); 239 dm_uevent_exit(); 240 241 _major = 0; 242 243 DMINFO("cleaned up"); 244 } 245 246 static int (*_inits[])(void) __initdata = { 247 local_init, 248 dm_target_init, 249 dm_linear_init, 250 dm_stripe_init, 251 dm_io_init, 252 dm_kcopyd_init, 253 dm_interface_init, 254 dm_statistics_init, 255 }; 256 257 static void (*_exits[])(void) = { 258 local_exit, 259 dm_target_exit, 260 dm_linear_exit, 261 dm_stripe_exit, 262 dm_io_exit, 263 dm_kcopyd_exit, 264 dm_interface_exit, 265 dm_statistics_exit, 266 }; 267 268 static int __init dm_init(void) 269 { 270 const int count = ARRAY_SIZE(_inits); 271 int r, i; 272 273 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 274 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 275 " Duplicate IMA measurements will not be recorded in the IMA log."); 276 #endif 277 278 for (i = 0; i < count; i++) { 279 r = _inits[i](); 280 if (r) 281 goto bad; 282 } 283 284 return 0; 285 bad: 286 while (i--) 287 _exits[i](); 288 289 return r; 290 } 291 292 static void __exit dm_exit(void) 293 { 294 int i = ARRAY_SIZE(_exits); 295 296 while (i--) 297 _exits[i](); 298 299 /* 300 * Should be empty by this point. 301 */ 302 idr_destroy(&_minor_idr); 303 } 304 305 /* 306 * Block device functions 307 */ 308 int dm_deleting_md(struct mapped_device *md) 309 { 310 return test_bit(DMF_DELETING, &md->flags); 311 } 312 313 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 314 { 315 struct mapped_device *md; 316 317 spin_lock(&_minor_lock); 318 319 md = bdev->bd_disk->private_data; 320 if (!md) 321 goto out; 322 323 if (test_bit(DMF_FREEING, &md->flags) || 324 dm_deleting_md(md)) { 325 md = NULL; 326 goto out; 327 } 328 329 dm_get(md); 330 atomic_inc(&md->open_count); 331 out: 332 spin_unlock(&_minor_lock); 333 334 return md ? 0 : -ENXIO; 335 } 336 337 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 338 { 339 struct mapped_device *md; 340 341 spin_lock(&_minor_lock); 342 343 md = disk->private_data; 344 if (WARN_ON(!md)) 345 goto out; 346 347 if (atomic_dec_and_test(&md->open_count) && 348 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 349 queue_work(deferred_remove_workqueue, &deferred_remove_work); 350 351 dm_put(md); 352 out: 353 spin_unlock(&_minor_lock); 354 } 355 356 int dm_open_count(struct mapped_device *md) 357 { 358 return atomic_read(&md->open_count); 359 } 360 361 /* 362 * Guarantees nothing is using the device before it's deleted. 363 */ 364 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 365 { 366 int r = 0; 367 368 spin_lock(&_minor_lock); 369 370 if (dm_open_count(md)) { 371 r = -EBUSY; 372 if (mark_deferred) 373 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 374 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 375 r = -EEXIST; 376 else 377 set_bit(DMF_DELETING, &md->flags); 378 379 spin_unlock(&_minor_lock); 380 381 return r; 382 } 383 384 int dm_cancel_deferred_remove(struct mapped_device *md) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (test_bit(DMF_DELETING, &md->flags)) 391 r = -EBUSY; 392 else 393 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 395 spin_unlock(&_minor_lock); 396 397 return r; 398 } 399 400 static void do_deferred_remove(struct work_struct *w) 401 { 402 dm_deferred_remove(); 403 } 404 405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 406 { 407 struct mapped_device *md = bdev->bd_disk->private_data; 408 409 return dm_get_geometry(md, geo); 410 } 411 412 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 413 struct block_device **bdev) 414 { 415 struct dm_target *ti; 416 struct dm_table *map; 417 int r; 418 419 retry: 420 r = -ENOTTY; 421 map = dm_get_live_table(md, srcu_idx); 422 if (!map || !dm_table_get_size(map)) 423 return r; 424 425 /* We only support devices that have a single target */ 426 if (map->num_targets != 1) 427 return r; 428 429 ti = dm_table_get_target(map, 0); 430 if (!ti->type->prepare_ioctl) 431 return r; 432 433 if (dm_suspended_md(md)) 434 return -EAGAIN; 435 436 r = ti->type->prepare_ioctl(ti, bdev); 437 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 438 dm_put_live_table(md, *srcu_idx); 439 fsleep(10000); 440 goto retry; 441 } 442 443 return r; 444 } 445 446 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 447 { 448 dm_put_live_table(md, srcu_idx); 449 } 450 451 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 452 unsigned int cmd, unsigned long arg) 453 { 454 struct mapped_device *md = bdev->bd_disk->private_data; 455 int r, srcu_idx; 456 457 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 458 if (r < 0) 459 goto out; 460 461 if (r > 0) { 462 /* 463 * Target determined this ioctl is being issued against a 464 * subset of the parent bdev; require extra privileges. 465 */ 466 if (!capable(CAP_SYS_RAWIO)) { 467 DMDEBUG_LIMIT( 468 "%s: sending ioctl %x to DM device without required privilege.", 469 current->comm, cmd); 470 r = -ENOIOCTLCMD; 471 goto out; 472 } 473 } 474 475 if (!bdev->bd_disk->fops->ioctl) 476 r = -ENOTTY; 477 else 478 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 479 out: 480 dm_unprepare_ioctl(md, srcu_idx); 481 return r; 482 } 483 484 u64 dm_start_time_ns_from_clone(struct bio *bio) 485 { 486 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 487 } 488 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 489 490 static bool bio_is_flush_with_data(struct bio *bio) 491 { 492 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 493 } 494 495 static void dm_io_acct(struct dm_io *io, bool end) 496 { 497 struct dm_stats_aux *stats_aux = &io->stats_aux; 498 unsigned long start_time = io->start_time; 499 struct mapped_device *md = io->md; 500 struct bio *bio = io->orig_bio; 501 unsigned int sectors; 502 503 /* 504 * If REQ_PREFLUSH set, don't account payload, it will be 505 * submitted (and accounted) after this flush completes. 506 */ 507 if (bio_is_flush_with_data(bio)) 508 sectors = 0; 509 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT)))) 510 sectors = bio_sectors(bio); 511 else 512 sectors = io->sectors; 513 514 if (!end) 515 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), start_time); 516 else 517 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), sectors, 518 start_time); 519 520 if (static_branch_unlikely(&stats_enabled) && 521 unlikely(dm_stats_used(&md->stats))) { 522 sector_t sector; 523 524 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT))) 525 sector = bio->bi_iter.bi_sector; 526 else 527 sector = bio_end_sector(bio) - io->sector_offset; 528 529 dm_stats_account_io(&md->stats, bio_data_dir(bio), 530 sector, sectors, 531 end, start_time, stats_aux); 532 } 533 } 534 535 static void __dm_start_io_acct(struct dm_io *io) 536 { 537 dm_io_acct(io, false); 538 } 539 540 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 541 { 542 /* 543 * Ensure IO accounting is only ever started once. 544 */ 545 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 546 return; 547 548 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 549 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 550 dm_io_set_flag(io, DM_IO_ACCOUNTED); 551 } else { 552 unsigned long flags; 553 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 554 spin_lock_irqsave(&io->lock, flags); 555 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 556 spin_unlock_irqrestore(&io->lock, flags); 557 return; 558 } 559 dm_io_set_flag(io, DM_IO_ACCOUNTED); 560 spin_unlock_irqrestore(&io->lock, flags); 561 } 562 563 __dm_start_io_acct(io); 564 } 565 566 static void dm_end_io_acct(struct dm_io *io) 567 { 568 dm_io_acct(io, true); 569 } 570 571 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 572 { 573 struct dm_io *io; 574 struct dm_target_io *tio; 575 struct bio *clone; 576 577 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs); 578 tio = clone_to_tio(clone); 579 tio->flags = 0; 580 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 581 tio->io = NULL; 582 583 io = container_of(tio, struct dm_io, tio); 584 io->magic = DM_IO_MAGIC; 585 io->status = BLK_STS_OK; 586 587 /* one ref is for submission, the other is for completion */ 588 atomic_set(&io->io_count, 2); 589 this_cpu_inc(*md->pending_io); 590 io->orig_bio = bio; 591 io->md = md; 592 spin_lock_init(&io->lock); 593 io->start_time = jiffies; 594 io->flags = 0; 595 596 if (static_branch_unlikely(&stats_enabled)) 597 dm_stats_record_start(&md->stats, &io->stats_aux); 598 599 return io; 600 } 601 602 static void free_io(struct dm_io *io) 603 { 604 bio_put(&io->tio.clone); 605 } 606 607 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 608 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 609 { 610 struct mapped_device *md = ci->io->md; 611 struct dm_target_io *tio; 612 struct bio *clone; 613 614 if (!ci->io->tio.io) { 615 /* the dm_target_io embedded in ci->io is available */ 616 tio = &ci->io->tio; 617 /* alloc_io() already initialized embedded clone */ 618 clone = &tio->clone; 619 } else { 620 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 621 &md->mempools->bs); 622 if (!clone) 623 return NULL; 624 625 /* REQ_DM_POLL_LIST shouldn't be inherited */ 626 clone->bi_opf &= ~REQ_DM_POLL_LIST; 627 628 tio = clone_to_tio(clone); 629 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 630 } 631 632 tio->magic = DM_TIO_MAGIC; 633 tio->io = ci->io; 634 tio->ti = ti; 635 tio->target_bio_nr = target_bio_nr; 636 tio->len_ptr = len; 637 tio->old_sector = 0; 638 639 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 640 clone->bi_bdev = md->disk->part0; 641 if (unlikely(ti->needs_bio_set_dev)) 642 bio_set_dev(clone, md->disk->part0); 643 644 if (len) { 645 clone->bi_iter.bi_size = to_bytes(*len); 646 if (bio_integrity(clone)) 647 bio_integrity_trim(clone); 648 } 649 650 return clone; 651 } 652 653 static void free_tio(struct bio *clone) 654 { 655 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 656 return; 657 bio_put(clone); 658 } 659 660 /* 661 * Add the bio to the list of deferred io. 662 */ 663 static void queue_io(struct mapped_device *md, struct bio *bio) 664 { 665 unsigned long flags; 666 667 spin_lock_irqsave(&md->deferred_lock, flags); 668 bio_list_add(&md->deferred, bio); 669 spin_unlock_irqrestore(&md->deferred_lock, flags); 670 queue_work(md->wq, &md->work); 671 } 672 673 /* 674 * Everyone (including functions in this file), should use this 675 * function to access the md->map field, and make sure they call 676 * dm_put_live_table() when finished. 677 */ 678 struct dm_table *dm_get_live_table(struct mapped_device *md, 679 int *srcu_idx) __acquires(md->io_barrier) 680 { 681 *srcu_idx = srcu_read_lock(&md->io_barrier); 682 683 return srcu_dereference(md->map, &md->io_barrier); 684 } 685 686 void dm_put_live_table(struct mapped_device *md, 687 int srcu_idx) __releases(md->io_barrier) 688 { 689 srcu_read_unlock(&md->io_barrier, srcu_idx); 690 } 691 692 void dm_sync_table(struct mapped_device *md) 693 { 694 synchronize_srcu(&md->io_barrier); 695 synchronize_rcu_expedited(); 696 } 697 698 /* 699 * A fast alternative to dm_get_live_table/dm_put_live_table. 700 * The caller must not block between these two functions. 701 */ 702 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 703 { 704 rcu_read_lock(); 705 return rcu_dereference(md->map); 706 } 707 708 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 709 { 710 rcu_read_unlock(); 711 } 712 713 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md, 714 int *srcu_idx, blk_opf_t bio_opf) 715 { 716 if (bio_opf & REQ_NOWAIT) 717 return dm_get_live_table_fast(md); 718 else 719 return dm_get_live_table(md, srcu_idx); 720 } 721 722 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx, 723 blk_opf_t bio_opf) 724 { 725 if (bio_opf & REQ_NOWAIT) 726 dm_put_live_table_fast(md); 727 else 728 dm_put_live_table(md, srcu_idx); 729 } 730 731 static char *_dm_claim_ptr = "I belong to device-mapper"; 732 733 /* 734 * Open a table device so we can use it as a map destination. 735 */ 736 static struct table_device *open_table_device(struct mapped_device *md, 737 dev_t dev, fmode_t mode) 738 { 739 struct table_device *td; 740 struct block_device *bdev; 741 u64 part_off; 742 int r; 743 744 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 745 if (!td) 746 return ERR_PTR(-ENOMEM); 747 refcount_set(&td->count, 1); 748 749 bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr); 750 if (IS_ERR(bdev)) { 751 r = PTR_ERR(bdev); 752 goto out_free_td; 753 } 754 755 /* 756 * We can be called before the dm disk is added. In that case we can't 757 * register the holder relation here. It will be done once add_disk was 758 * called. 759 */ 760 if (md->disk->slave_dir) { 761 r = bd_link_disk_holder(bdev, md->disk); 762 if (r) 763 goto out_blkdev_put; 764 } 765 766 td->dm_dev.mode = mode; 767 td->dm_dev.bdev = bdev; 768 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL); 769 format_dev_t(td->dm_dev.name, dev); 770 list_add(&td->list, &md->table_devices); 771 return td; 772 773 out_blkdev_put: 774 blkdev_put(bdev, mode | FMODE_EXCL); 775 out_free_td: 776 kfree(td); 777 return ERR_PTR(r); 778 } 779 780 /* 781 * Close a table device that we've been using. 782 */ 783 static void close_table_device(struct table_device *td, struct mapped_device *md) 784 { 785 if (md->disk->slave_dir) 786 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 787 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 788 put_dax(td->dm_dev.dax_dev); 789 list_del(&td->list); 790 kfree(td); 791 } 792 793 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 794 fmode_t mode) 795 { 796 struct table_device *td; 797 798 list_for_each_entry(td, l, list) 799 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 800 return td; 801 802 return NULL; 803 } 804 805 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 806 struct dm_dev **result) 807 { 808 struct table_device *td; 809 810 mutex_lock(&md->table_devices_lock); 811 td = find_table_device(&md->table_devices, dev, mode); 812 if (!td) { 813 td = open_table_device(md, dev, mode); 814 if (IS_ERR(td)) { 815 mutex_unlock(&md->table_devices_lock); 816 return PTR_ERR(td); 817 } 818 } else { 819 refcount_inc(&td->count); 820 } 821 mutex_unlock(&md->table_devices_lock); 822 823 *result = &td->dm_dev; 824 return 0; 825 } 826 827 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 828 { 829 struct table_device *td = container_of(d, struct table_device, dm_dev); 830 831 mutex_lock(&md->table_devices_lock); 832 if (refcount_dec_and_test(&td->count)) 833 close_table_device(td, md); 834 mutex_unlock(&md->table_devices_lock); 835 } 836 837 /* 838 * Get the geometry associated with a dm device 839 */ 840 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 841 { 842 *geo = md->geometry; 843 844 return 0; 845 } 846 847 /* 848 * Set the geometry of a device. 849 */ 850 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 851 { 852 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 853 854 if (geo->start > sz) { 855 DMERR("Start sector is beyond the geometry limits."); 856 return -EINVAL; 857 } 858 859 md->geometry = *geo; 860 861 return 0; 862 } 863 864 static int __noflush_suspending(struct mapped_device *md) 865 { 866 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 867 } 868 869 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 870 { 871 struct mapped_device *md = io->md; 872 873 if (first_stage) { 874 struct dm_io *next = md->requeue_list; 875 876 md->requeue_list = io; 877 io->next = next; 878 } else { 879 bio_list_add_head(&md->deferred, io->orig_bio); 880 } 881 } 882 883 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 884 { 885 if (first_stage) 886 queue_work(md->wq, &md->requeue_work); 887 else 888 queue_work(md->wq, &md->work); 889 } 890 891 /* 892 * Return true if the dm_io's original bio is requeued. 893 * io->status is updated with error if requeue disallowed. 894 */ 895 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 896 { 897 struct bio *bio = io->orig_bio; 898 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 899 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 900 (bio->bi_opf & REQ_POLLED)); 901 struct mapped_device *md = io->md; 902 bool requeued = false; 903 904 if (handle_requeue || handle_polled_eagain) { 905 unsigned long flags; 906 907 if (bio->bi_opf & REQ_POLLED) { 908 /* 909 * Upper layer won't help us poll split bio 910 * (io->orig_bio may only reflect a subset of the 911 * pre-split original) so clear REQ_POLLED. 912 */ 913 bio_clear_polled(bio); 914 } 915 916 /* 917 * Target requested pushing back the I/O or 918 * polled IO hit BLK_STS_AGAIN. 919 */ 920 spin_lock_irqsave(&md->deferred_lock, flags); 921 if ((__noflush_suspending(md) && 922 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 923 handle_polled_eagain || first_stage) { 924 dm_requeue_add_io(io, first_stage); 925 requeued = true; 926 } else { 927 /* 928 * noflush suspend was interrupted or this is 929 * a write to a zoned target. 930 */ 931 io->status = BLK_STS_IOERR; 932 } 933 spin_unlock_irqrestore(&md->deferred_lock, flags); 934 } 935 936 if (requeued) 937 dm_kick_requeue(md, first_stage); 938 939 return requeued; 940 } 941 942 static void __dm_io_complete(struct dm_io *io, bool first_stage) 943 { 944 struct bio *bio = io->orig_bio; 945 struct mapped_device *md = io->md; 946 blk_status_t io_error; 947 bool requeued; 948 949 requeued = dm_handle_requeue(io, first_stage); 950 if (requeued && first_stage) 951 return; 952 953 io_error = io->status; 954 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 955 dm_end_io_acct(io); 956 else if (!io_error) { 957 /* 958 * Must handle target that DM_MAPIO_SUBMITTED only to 959 * then bio_endio() rather than dm_submit_bio_remap() 960 */ 961 __dm_start_io_acct(io); 962 dm_end_io_acct(io); 963 } 964 free_io(io); 965 smp_wmb(); 966 this_cpu_dec(*md->pending_io); 967 968 /* nudge anyone waiting on suspend queue */ 969 if (unlikely(wq_has_sleeper(&md->wait))) 970 wake_up(&md->wait); 971 972 /* Return early if the original bio was requeued */ 973 if (requeued) 974 return; 975 976 if (bio_is_flush_with_data(bio)) { 977 /* 978 * Preflush done for flush with data, reissue 979 * without REQ_PREFLUSH. 980 */ 981 bio->bi_opf &= ~REQ_PREFLUSH; 982 queue_io(md, bio); 983 } else { 984 /* done with normal IO or empty flush */ 985 if (io_error) 986 bio->bi_status = io_error; 987 bio_endio(bio); 988 } 989 } 990 991 static void dm_wq_requeue_work(struct work_struct *work) 992 { 993 struct mapped_device *md = container_of(work, struct mapped_device, 994 requeue_work); 995 unsigned long flags; 996 struct dm_io *io; 997 998 /* reuse deferred lock to simplify dm_handle_requeue */ 999 spin_lock_irqsave(&md->deferred_lock, flags); 1000 io = md->requeue_list; 1001 md->requeue_list = NULL; 1002 spin_unlock_irqrestore(&md->deferred_lock, flags); 1003 1004 while (io) { 1005 struct dm_io *next = io->next; 1006 1007 dm_io_rewind(io, &md->disk->bio_split); 1008 1009 io->next = NULL; 1010 __dm_io_complete(io, false); 1011 io = next; 1012 cond_resched(); 1013 } 1014 } 1015 1016 /* 1017 * Two staged requeue: 1018 * 1019 * 1) io->orig_bio points to the real original bio, and the part mapped to 1020 * this io must be requeued, instead of other parts of the original bio. 1021 * 1022 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1023 */ 1024 static void dm_io_complete(struct dm_io *io) 1025 { 1026 bool first_requeue; 1027 1028 /* 1029 * Only dm_io that has been split needs two stage requeue, otherwise 1030 * we may run into long bio clone chain during suspend and OOM could 1031 * be triggered. 1032 * 1033 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1034 * also aren't handled via the first stage requeue. 1035 */ 1036 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1037 first_requeue = true; 1038 else 1039 first_requeue = false; 1040 1041 __dm_io_complete(io, first_requeue); 1042 } 1043 1044 /* 1045 * Decrements the number of outstanding ios that a bio has been 1046 * cloned into, completing the original io if necc. 1047 */ 1048 static inline void __dm_io_dec_pending(struct dm_io *io) 1049 { 1050 if (atomic_dec_and_test(&io->io_count)) 1051 dm_io_complete(io); 1052 } 1053 1054 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1055 { 1056 unsigned long flags; 1057 1058 /* Push-back supersedes any I/O errors */ 1059 spin_lock_irqsave(&io->lock, flags); 1060 if (!(io->status == BLK_STS_DM_REQUEUE && 1061 __noflush_suspending(io->md))) { 1062 io->status = error; 1063 } 1064 spin_unlock_irqrestore(&io->lock, flags); 1065 } 1066 1067 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1068 { 1069 if (unlikely(error)) 1070 dm_io_set_error(io, error); 1071 1072 __dm_io_dec_pending(io); 1073 } 1074 1075 /* 1076 * The queue_limits are only valid as long as you have a reference 1077 * count on 'md'. But _not_ imposing verification to avoid atomic_read(), 1078 */ 1079 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1080 { 1081 return &md->queue->limits; 1082 } 1083 1084 void disable_discard(struct mapped_device *md) 1085 { 1086 struct queue_limits *limits = dm_get_queue_limits(md); 1087 1088 /* device doesn't really support DISCARD, disable it */ 1089 limits->max_discard_sectors = 0; 1090 } 1091 1092 void disable_write_zeroes(struct mapped_device *md) 1093 { 1094 struct queue_limits *limits = dm_get_queue_limits(md); 1095 1096 /* device doesn't really support WRITE ZEROES, disable it */ 1097 limits->max_write_zeroes_sectors = 0; 1098 } 1099 1100 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1101 { 1102 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1103 } 1104 1105 static void clone_endio(struct bio *bio) 1106 { 1107 blk_status_t error = bio->bi_status; 1108 struct dm_target_io *tio = clone_to_tio(bio); 1109 struct dm_target *ti = tio->ti; 1110 dm_endio_fn endio = ti->type->end_io; 1111 struct dm_io *io = tio->io; 1112 struct mapped_device *md = io->md; 1113 1114 if (unlikely(error == BLK_STS_TARGET)) { 1115 if (bio_op(bio) == REQ_OP_DISCARD && 1116 !bdev_max_discard_sectors(bio->bi_bdev)) 1117 disable_discard(md); 1118 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1119 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1120 disable_write_zeroes(md); 1121 } 1122 1123 if (static_branch_unlikely(&zoned_enabled) && 1124 unlikely(bdev_is_zoned(bio->bi_bdev))) 1125 dm_zone_endio(io, bio); 1126 1127 if (endio) { 1128 int r = endio(ti, bio, &error); 1129 1130 switch (r) { 1131 case DM_ENDIO_REQUEUE: 1132 if (static_branch_unlikely(&zoned_enabled)) { 1133 /* 1134 * Requeuing writes to a sequential zone of a zoned 1135 * target will break the sequential write pattern: 1136 * fail such IO. 1137 */ 1138 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1139 error = BLK_STS_IOERR; 1140 else 1141 error = BLK_STS_DM_REQUEUE; 1142 } else 1143 error = BLK_STS_DM_REQUEUE; 1144 fallthrough; 1145 case DM_ENDIO_DONE: 1146 break; 1147 case DM_ENDIO_INCOMPLETE: 1148 /* The target will handle the io */ 1149 return; 1150 default: 1151 DMCRIT("unimplemented target endio return value: %d", r); 1152 BUG(); 1153 } 1154 } 1155 1156 if (static_branch_unlikely(&swap_bios_enabled) && 1157 unlikely(swap_bios_limit(ti, bio))) 1158 up(&md->swap_bios_semaphore); 1159 1160 free_tio(bio); 1161 dm_io_dec_pending(io, error); 1162 } 1163 1164 /* 1165 * Return maximum size of I/O possible at the supplied sector up to the current 1166 * target boundary. 1167 */ 1168 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1169 sector_t target_offset) 1170 { 1171 return ti->len - target_offset; 1172 } 1173 1174 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1175 unsigned int max_granularity) 1176 { 1177 sector_t target_offset = dm_target_offset(ti, sector); 1178 sector_t len = max_io_len_target_boundary(ti, target_offset); 1179 1180 /* 1181 * Does the target need to split IO even further? 1182 * - varied (per target) IO splitting is a tenet of DM; this 1183 * explains why stacked chunk_sectors based splitting via 1184 * bio_split_to_limits() isn't possible here. 1185 */ 1186 if (!max_granularity) 1187 return len; 1188 return min_t(sector_t, len, 1189 min(queue_max_sectors(ti->table->md->queue), 1190 blk_chunk_sectors_left(target_offset, max_granularity))); 1191 } 1192 1193 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1194 { 1195 return __max_io_len(ti, sector, ti->max_io_len); 1196 } 1197 1198 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1199 { 1200 if (len > UINT_MAX) { 1201 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1202 (unsigned long long)len, UINT_MAX); 1203 ti->error = "Maximum size of target IO is too large"; 1204 return -EINVAL; 1205 } 1206 1207 ti->max_io_len = (uint32_t) len; 1208 1209 return 0; 1210 } 1211 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1212 1213 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1214 sector_t sector, int *srcu_idx) 1215 __acquires(md->io_barrier) 1216 { 1217 struct dm_table *map; 1218 struct dm_target *ti; 1219 1220 map = dm_get_live_table(md, srcu_idx); 1221 if (!map) 1222 return NULL; 1223 1224 ti = dm_table_find_target(map, sector); 1225 if (!ti) 1226 return NULL; 1227 1228 return ti; 1229 } 1230 1231 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1232 long nr_pages, enum dax_access_mode mode, void **kaddr, 1233 pfn_t *pfn) 1234 { 1235 struct mapped_device *md = dax_get_private(dax_dev); 1236 sector_t sector = pgoff * PAGE_SECTORS; 1237 struct dm_target *ti; 1238 long len, ret = -EIO; 1239 int srcu_idx; 1240 1241 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1242 1243 if (!ti) 1244 goto out; 1245 if (!ti->type->direct_access) 1246 goto out; 1247 len = max_io_len(ti, sector) / PAGE_SECTORS; 1248 if (len < 1) 1249 goto out; 1250 nr_pages = min(len, nr_pages); 1251 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1252 1253 out: 1254 dm_put_live_table(md, srcu_idx); 1255 1256 return ret; 1257 } 1258 1259 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1260 size_t nr_pages) 1261 { 1262 struct mapped_device *md = dax_get_private(dax_dev); 1263 sector_t sector = pgoff * PAGE_SECTORS; 1264 struct dm_target *ti; 1265 int ret = -EIO; 1266 int srcu_idx; 1267 1268 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1269 1270 if (!ti) 1271 goto out; 1272 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1273 /* 1274 * ->zero_page_range() is mandatory dax operation. If we are 1275 * here, something is wrong. 1276 */ 1277 goto out; 1278 } 1279 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1280 out: 1281 dm_put_live_table(md, srcu_idx); 1282 1283 return ret; 1284 } 1285 1286 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1287 void *addr, size_t bytes, struct iov_iter *i) 1288 { 1289 struct mapped_device *md = dax_get_private(dax_dev); 1290 sector_t sector = pgoff * PAGE_SECTORS; 1291 struct dm_target *ti; 1292 int srcu_idx; 1293 long ret = 0; 1294 1295 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1296 if (!ti || !ti->type->dax_recovery_write) 1297 goto out; 1298 1299 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1300 out: 1301 dm_put_live_table(md, srcu_idx); 1302 return ret; 1303 } 1304 1305 /* 1306 * A target may call dm_accept_partial_bio only from the map routine. It is 1307 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1308 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1309 * __send_duplicate_bios(). 1310 * 1311 * dm_accept_partial_bio informs the dm that the target only wants to process 1312 * additional n_sectors sectors of the bio and the rest of the data should be 1313 * sent in a next bio. 1314 * 1315 * A diagram that explains the arithmetics: 1316 * +--------------------+---------------+-------+ 1317 * | 1 | 2 | 3 | 1318 * +--------------------+---------------+-------+ 1319 * 1320 * <-------------- *tio->len_ptr ---------------> 1321 * <----- bio_sectors -----> 1322 * <-- n_sectors --> 1323 * 1324 * Region 1 was already iterated over with bio_advance or similar function. 1325 * (it may be empty if the target doesn't use bio_advance) 1326 * Region 2 is the remaining bio size that the target wants to process. 1327 * (it may be empty if region 1 is non-empty, although there is no reason 1328 * to make it empty) 1329 * The target requires that region 3 is to be sent in the next bio. 1330 * 1331 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1332 * the partially processed part (the sum of regions 1+2) must be the same for all 1333 * copies of the bio. 1334 */ 1335 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1336 { 1337 struct dm_target_io *tio = clone_to_tio(bio); 1338 struct dm_io *io = tio->io; 1339 unsigned int bio_sectors = bio_sectors(bio); 1340 1341 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1342 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1343 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1344 BUG_ON(bio_sectors > *tio->len_ptr); 1345 BUG_ON(n_sectors > bio_sectors); 1346 1347 *tio->len_ptr -= bio_sectors - n_sectors; 1348 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1349 1350 /* 1351 * __split_and_process_bio() may have already saved mapped part 1352 * for accounting but it is being reduced so update accordingly. 1353 */ 1354 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1355 io->sectors = n_sectors; 1356 io->sector_offset = bio_sectors(io->orig_bio); 1357 } 1358 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1359 1360 /* 1361 * @clone: clone bio that DM core passed to target's .map function 1362 * @tgt_clone: clone of @clone bio that target needs submitted 1363 * 1364 * Targets should use this interface to submit bios they take 1365 * ownership of when returning DM_MAPIO_SUBMITTED. 1366 * 1367 * Target should also enable ti->accounts_remapped_io 1368 */ 1369 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1370 { 1371 struct dm_target_io *tio = clone_to_tio(clone); 1372 struct dm_io *io = tio->io; 1373 1374 /* establish bio that will get submitted */ 1375 if (!tgt_clone) 1376 tgt_clone = clone; 1377 1378 /* 1379 * Account io->origin_bio to DM dev on behalf of target 1380 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1381 */ 1382 dm_start_io_acct(io, clone); 1383 1384 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1385 tio->old_sector); 1386 submit_bio_noacct(tgt_clone); 1387 } 1388 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1389 1390 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1391 { 1392 mutex_lock(&md->swap_bios_lock); 1393 while (latch < md->swap_bios) { 1394 cond_resched(); 1395 down(&md->swap_bios_semaphore); 1396 md->swap_bios--; 1397 } 1398 while (latch > md->swap_bios) { 1399 cond_resched(); 1400 up(&md->swap_bios_semaphore); 1401 md->swap_bios++; 1402 } 1403 mutex_unlock(&md->swap_bios_lock); 1404 } 1405 1406 static void __map_bio(struct bio *clone) 1407 { 1408 struct dm_target_io *tio = clone_to_tio(clone); 1409 struct dm_target *ti = tio->ti; 1410 struct dm_io *io = tio->io; 1411 struct mapped_device *md = io->md; 1412 int r; 1413 1414 clone->bi_end_io = clone_endio; 1415 1416 /* 1417 * Map the clone. 1418 */ 1419 tio->old_sector = clone->bi_iter.bi_sector; 1420 1421 if (static_branch_unlikely(&swap_bios_enabled) && 1422 unlikely(swap_bios_limit(ti, clone))) { 1423 int latch = get_swap_bios(); 1424 1425 if (unlikely(latch != md->swap_bios)) 1426 __set_swap_bios_limit(md, latch); 1427 down(&md->swap_bios_semaphore); 1428 } 1429 1430 if (static_branch_unlikely(&zoned_enabled)) { 1431 /* 1432 * Check if the IO needs a special mapping due to zone append 1433 * emulation on zoned target. In this case, dm_zone_map_bio() 1434 * calls the target map operation. 1435 */ 1436 if (unlikely(dm_emulate_zone_append(md))) 1437 r = dm_zone_map_bio(tio); 1438 else 1439 r = ti->type->map(ti, clone); 1440 } else 1441 r = ti->type->map(ti, clone); 1442 1443 switch (r) { 1444 case DM_MAPIO_SUBMITTED: 1445 /* target has assumed ownership of this io */ 1446 if (!ti->accounts_remapped_io) 1447 dm_start_io_acct(io, clone); 1448 break; 1449 case DM_MAPIO_REMAPPED: 1450 dm_submit_bio_remap(clone, NULL); 1451 break; 1452 case DM_MAPIO_KILL: 1453 case DM_MAPIO_REQUEUE: 1454 if (static_branch_unlikely(&swap_bios_enabled) && 1455 unlikely(swap_bios_limit(ti, clone))) 1456 up(&md->swap_bios_semaphore); 1457 free_tio(clone); 1458 if (r == DM_MAPIO_KILL) 1459 dm_io_dec_pending(io, BLK_STS_IOERR); 1460 else 1461 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1462 break; 1463 default: 1464 DMCRIT("unimplemented target map return value: %d", r); 1465 BUG(); 1466 } 1467 } 1468 1469 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1470 { 1471 struct dm_io *io = ci->io; 1472 1473 if (ci->sector_count > len) { 1474 /* 1475 * Split needed, save the mapped part for accounting. 1476 * NOTE: dm_accept_partial_bio() will update accordingly. 1477 */ 1478 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1479 io->sectors = len; 1480 io->sector_offset = bio_sectors(ci->bio); 1481 } 1482 } 1483 1484 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1485 struct dm_target *ti, unsigned int num_bios, 1486 unsigned *len) 1487 { 1488 struct bio *bio; 1489 int try; 1490 1491 for (try = 0; try < 2; try++) { 1492 int bio_nr; 1493 1494 if (try) 1495 mutex_lock(&ci->io->md->table_devices_lock); 1496 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1497 bio = alloc_tio(ci, ti, bio_nr, len, 1498 try ? GFP_NOIO : GFP_NOWAIT); 1499 if (!bio) 1500 break; 1501 1502 bio_list_add(blist, bio); 1503 } 1504 if (try) 1505 mutex_unlock(&ci->io->md->table_devices_lock); 1506 if (bio_nr == num_bios) 1507 return; 1508 1509 while ((bio = bio_list_pop(blist))) 1510 free_tio(bio); 1511 } 1512 } 1513 1514 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1515 unsigned int num_bios, unsigned int *len) 1516 { 1517 struct bio_list blist = BIO_EMPTY_LIST; 1518 struct bio *clone; 1519 unsigned int ret = 0; 1520 1521 switch (num_bios) { 1522 case 0: 1523 break; 1524 case 1: 1525 if (len) 1526 setup_split_accounting(ci, *len); 1527 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO); 1528 __map_bio(clone); 1529 ret = 1; 1530 break; 1531 default: 1532 if (len) 1533 setup_split_accounting(ci, *len); 1534 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1535 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1536 while ((clone = bio_list_pop(&blist))) { 1537 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1538 __map_bio(clone); 1539 ret += 1; 1540 } 1541 break; 1542 } 1543 1544 return ret; 1545 } 1546 1547 static void __send_empty_flush(struct clone_info *ci) 1548 { 1549 struct dm_table *t = ci->map; 1550 struct bio flush_bio; 1551 1552 /* 1553 * Use an on-stack bio for this, it's safe since we don't 1554 * need to reference it after submit. It's just used as 1555 * the basis for the clone(s). 1556 */ 1557 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1558 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1559 1560 ci->bio = &flush_bio; 1561 ci->sector_count = 0; 1562 ci->io->tio.clone.bi_iter.bi_size = 0; 1563 1564 for (unsigned int i = 0; i < t->num_targets; i++) { 1565 unsigned int bios; 1566 struct dm_target *ti = dm_table_get_target(t, i); 1567 1568 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1569 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1570 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1571 } 1572 1573 /* 1574 * alloc_io() takes one extra reference for submission, so the 1575 * reference won't reach 0 without the following subtraction 1576 */ 1577 atomic_sub(1, &ci->io->io_count); 1578 1579 bio_uninit(ci->bio); 1580 } 1581 1582 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1583 unsigned int num_bios, 1584 unsigned int max_granularity) 1585 { 1586 unsigned int len, bios; 1587 1588 len = min_t(sector_t, ci->sector_count, 1589 __max_io_len(ti, ci->sector, max_granularity)); 1590 1591 atomic_add(num_bios, &ci->io->io_count); 1592 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1593 /* 1594 * alloc_io() takes one extra reference for submission, so the 1595 * reference won't reach 0 without the following (+1) subtraction 1596 */ 1597 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1598 1599 ci->sector += len; 1600 ci->sector_count -= len; 1601 } 1602 1603 static bool is_abnormal_io(struct bio *bio) 1604 { 1605 enum req_op op = bio_op(bio); 1606 1607 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) { 1608 switch (op) { 1609 case REQ_OP_DISCARD: 1610 case REQ_OP_SECURE_ERASE: 1611 case REQ_OP_WRITE_ZEROES: 1612 return true; 1613 default: 1614 break; 1615 } 1616 } 1617 1618 return false; 1619 } 1620 1621 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1622 struct dm_target *ti) 1623 { 1624 unsigned int num_bios = 0; 1625 unsigned int max_granularity = 0; 1626 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1627 1628 switch (bio_op(ci->bio)) { 1629 case REQ_OP_DISCARD: 1630 num_bios = ti->num_discard_bios; 1631 if (ti->max_discard_granularity) 1632 max_granularity = limits->max_discard_sectors; 1633 break; 1634 case REQ_OP_SECURE_ERASE: 1635 num_bios = ti->num_secure_erase_bios; 1636 if (ti->max_secure_erase_granularity) 1637 max_granularity = limits->max_secure_erase_sectors; 1638 break; 1639 case REQ_OP_WRITE_ZEROES: 1640 num_bios = ti->num_write_zeroes_bios; 1641 if (ti->max_write_zeroes_granularity) 1642 max_granularity = limits->max_write_zeroes_sectors; 1643 break; 1644 default: 1645 break; 1646 } 1647 1648 /* 1649 * Even though the device advertised support for this type of 1650 * request, that does not mean every target supports it, and 1651 * reconfiguration might also have changed that since the 1652 * check was performed. 1653 */ 1654 if (unlikely(!num_bios)) 1655 return BLK_STS_NOTSUPP; 1656 1657 __send_changing_extent_only(ci, ti, num_bios, max_granularity); 1658 return BLK_STS_OK; 1659 } 1660 1661 /* 1662 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1663 * associated with this bio, and this bio's bi_private needs to be 1664 * stored in dm_io->data before the reuse. 1665 * 1666 * bio->bi_private is owned by fs or upper layer, so block layer won't 1667 * touch it after splitting. Meantime it won't be changed by anyone after 1668 * bio is submitted. So this reuse is safe. 1669 */ 1670 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1671 { 1672 return (struct dm_io **)&bio->bi_private; 1673 } 1674 1675 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1676 { 1677 struct dm_io **head = dm_poll_list_head(bio); 1678 1679 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1680 bio->bi_opf |= REQ_DM_POLL_LIST; 1681 /* 1682 * Save .bi_private into dm_io, so that we can reuse 1683 * .bi_private as dm_io list head for storing dm_io list 1684 */ 1685 io->data = bio->bi_private; 1686 1687 /* tell block layer to poll for completion */ 1688 bio->bi_cookie = ~BLK_QC_T_NONE; 1689 1690 io->next = NULL; 1691 } else { 1692 /* 1693 * bio recursed due to split, reuse original poll list, 1694 * and save bio->bi_private too. 1695 */ 1696 io->data = (*head)->data; 1697 io->next = *head; 1698 } 1699 1700 *head = io; 1701 } 1702 1703 /* 1704 * Select the correct strategy for processing a non-flush bio. 1705 */ 1706 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1707 { 1708 struct bio *clone; 1709 struct dm_target *ti; 1710 unsigned int len; 1711 1712 ti = dm_table_find_target(ci->map, ci->sector); 1713 if (unlikely(!ti)) 1714 return BLK_STS_IOERR; 1715 1716 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) && 1717 unlikely(!dm_target_supports_nowait(ti->type))) 1718 return BLK_STS_NOTSUPP; 1719 1720 if (unlikely(ci->is_abnormal_io)) 1721 return __process_abnormal_io(ci, ti); 1722 1723 /* 1724 * Only support bio polling for normal IO, and the target io is 1725 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1726 */ 1727 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1728 1729 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1730 setup_split_accounting(ci, len); 1731 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1732 __map_bio(clone); 1733 1734 ci->sector += len; 1735 ci->sector_count -= len; 1736 1737 return BLK_STS_OK; 1738 } 1739 1740 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1741 struct dm_table *map, struct bio *bio, bool is_abnormal) 1742 { 1743 ci->map = map; 1744 ci->io = alloc_io(md, bio); 1745 ci->bio = bio; 1746 ci->is_abnormal_io = is_abnormal; 1747 ci->submit_as_polled = false; 1748 ci->sector = bio->bi_iter.bi_sector; 1749 ci->sector_count = bio_sectors(bio); 1750 1751 /* Shouldn't happen but sector_count was being set to 0 so... */ 1752 if (static_branch_unlikely(&zoned_enabled) && 1753 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1754 ci->sector_count = 0; 1755 } 1756 1757 /* 1758 * Entry point to split a bio into clones and submit them to the targets. 1759 */ 1760 static void dm_split_and_process_bio(struct mapped_device *md, 1761 struct dm_table *map, struct bio *bio) 1762 { 1763 struct clone_info ci; 1764 struct dm_io *io; 1765 blk_status_t error = BLK_STS_OK; 1766 bool is_abnormal; 1767 1768 is_abnormal = is_abnormal_io(bio); 1769 if (unlikely(is_abnormal)) { 1770 /* 1771 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1772 * otherwise associated queue_limits won't be imposed. 1773 */ 1774 bio = bio_split_to_limits(bio); 1775 if (!bio) 1776 return; 1777 } 1778 1779 init_clone_info(&ci, md, map, bio, is_abnormal); 1780 io = ci.io; 1781 1782 if (bio->bi_opf & REQ_PREFLUSH) { 1783 __send_empty_flush(&ci); 1784 /* dm_io_complete submits any data associated with flush */ 1785 goto out; 1786 } 1787 1788 error = __split_and_process_bio(&ci); 1789 if (error || !ci.sector_count) 1790 goto out; 1791 /* 1792 * Remainder must be passed to submit_bio_noacct() so it gets handled 1793 * *after* bios already submitted have been completely processed. 1794 */ 1795 bio_trim(bio, io->sectors, ci.sector_count); 1796 trace_block_split(bio, bio->bi_iter.bi_sector); 1797 bio_inc_remaining(bio); 1798 submit_bio_noacct(bio); 1799 out: 1800 /* 1801 * Drop the extra reference count for non-POLLED bio, and hold one 1802 * reference for POLLED bio, which will be released in dm_poll_bio 1803 * 1804 * Add every dm_io instance into the dm_io list head which is stored 1805 * in bio->bi_private, so that dm_poll_bio can poll them all. 1806 */ 1807 if (error || !ci.submit_as_polled) { 1808 /* 1809 * In case of submission failure, the extra reference for 1810 * submitting io isn't consumed yet 1811 */ 1812 if (error) 1813 atomic_dec(&io->io_count); 1814 dm_io_dec_pending(io, error); 1815 } else 1816 dm_queue_poll_io(bio, io); 1817 } 1818 1819 static void dm_submit_bio(struct bio *bio) 1820 { 1821 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 1822 int srcu_idx; 1823 struct dm_table *map; 1824 blk_opf_t bio_opf = bio->bi_opf; 1825 1826 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf); 1827 1828 /* If suspended, or map not yet available, queue this IO for later */ 1829 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 1830 unlikely(!map)) { 1831 if (bio->bi_opf & REQ_NOWAIT) 1832 bio_wouldblock_error(bio); 1833 else if (bio->bi_opf & REQ_RAHEAD) 1834 bio_io_error(bio); 1835 else 1836 queue_io(md, bio); 1837 goto out; 1838 } 1839 1840 dm_split_and_process_bio(md, map, bio); 1841 out: 1842 dm_put_live_table_bio(md, srcu_idx, bio_opf); 1843 } 1844 1845 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 1846 unsigned int flags) 1847 { 1848 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 1849 1850 /* don't poll if the mapped io is done */ 1851 if (atomic_read(&io->io_count) > 1) 1852 bio_poll(&io->tio.clone, iob, flags); 1853 1854 /* bio_poll holds the last reference */ 1855 return atomic_read(&io->io_count) == 1; 1856 } 1857 1858 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 1859 unsigned int flags) 1860 { 1861 struct dm_io **head = dm_poll_list_head(bio); 1862 struct dm_io *list = *head; 1863 struct dm_io *tmp = NULL; 1864 struct dm_io *curr, *next; 1865 1866 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 1867 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 1868 return 0; 1869 1870 WARN_ON_ONCE(!list); 1871 1872 /* 1873 * Restore .bi_private before possibly completing dm_io. 1874 * 1875 * bio_poll() is only possible once @bio has been completely 1876 * submitted via submit_bio_noacct()'s depth-first submission. 1877 * So there is no dm_queue_poll_io() race associated with 1878 * clearing REQ_DM_POLL_LIST here. 1879 */ 1880 bio->bi_opf &= ~REQ_DM_POLL_LIST; 1881 bio->bi_private = list->data; 1882 1883 for (curr = list, next = curr->next; curr; curr = next, next = 1884 curr ? curr->next : NULL) { 1885 if (dm_poll_dm_io(curr, iob, flags)) { 1886 /* 1887 * clone_endio() has already occurred, so no 1888 * error handling is needed here. 1889 */ 1890 __dm_io_dec_pending(curr); 1891 } else { 1892 curr->next = tmp; 1893 tmp = curr; 1894 } 1895 } 1896 1897 /* Not done? */ 1898 if (tmp) { 1899 bio->bi_opf |= REQ_DM_POLL_LIST; 1900 /* Reset bio->bi_private to dm_io list head */ 1901 *head = tmp; 1902 return 0; 1903 } 1904 return 1; 1905 } 1906 1907 /* 1908 *--------------------------------------------------------------- 1909 * An IDR is used to keep track of allocated minor numbers. 1910 *--------------------------------------------------------------- 1911 */ 1912 static void free_minor(int minor) 1913 { 1914 spin_lock(&_minor_lock); 1915 idr_remove(&_minor_idr, minor); 1916 spin_unlock(&_minor_lock); 1917 } 1918 1919 /* 1920 * See if the device with a specific minor # is free. 1921 */ 1922 static int specific_minor(int minor) 1923 { 1924 int r; 1925 1926 if (minor >= (1 << MINORBITS)) 1927 return -EINVAL; 1928 1929 idr_preload(GFP_KERNEL); 1930 spin_lock(&_minor_lock); 1931 1932 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1933 1934 spin_unlock(&_minor_lock); 1935 idr_preload_end(); 1936 if (r < 0) 1937 return r == -ENOSPC ? -EBUSY : r; 1938 return 0; 1939 } 1940 1941 static int next_free_minor(int *minor) 1942 { 1943 int r; 1944 1945 idr_preload(GFP_KERNEL); 1946 spin_lock(&_minor_lock); 1947 1948 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1949 1950 spin_unlock(&_minor_lock); 1951 idr_preload_end(); 1952 if (r < 0) 1953 return r; 1954 *minor = r; 1955 return 0; 1956 } 1957 1958 static const struct block_device_operations dm_blk_dops; 1959 static const struct block_device_operations dm_rq_blk_dops; 1960 static const struct dax_operations dm_dax_ops; 1961 1962 static void dm_wq_work(struct work_struct *work); 1963 1964 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1965 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 1966 { 1967 dm_destroy_crypto_profile(q->crypto_profile); 1968 } 1969 1970 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1971 1972 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 1973 { 1974 } 1975 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1976 1977 static void cleanup_mapped_device(struct mapped_device *md) 1978 { 1979 if (md->wq) 1980 destroy_workqueue(md->wq); 1981 dm_free_md_mempools(md->mempools); 1982 1983 if (md->dax_dev) { 1984 dax_remove_host(md->disk); 1985 kill_dax(md->dax_dev); 1986 put_dax(md->dax_dev); 1987 md->dax_dev = NULL; 1988 } 1989 1990 dm_cleanup_zoned_dev(md); 1991 if (md->disk) { 1992 spin_lock(&_minor_lock); 1993 md->disk->private_data = NULL; 1994 spin_unlock(&_minor_lock); 1995 if (dm_get_md_type(md) != DM_TYPE_NONE) { 1996 struct table_device *td; 1997 1998 dm_sysfs_exit(md); 1999 list_for_each_entry(td, &md->table_devices, list) { 2000 bd_unlink_disk_holder(td->dm_dev.bdev, 2001 md->disk); 2002 } 2003 2004 /* 2005 * Hold lock to make sure del_gendisk() won't concurrent 2006 * with open/close_table_device(). 2007 */ 2008 mutex_lock(&md->table_devices_lock); 2009 del_gendisk(md->disk); 2010 mutex_unlock(&md->table_devices_lock); 2011 } 2012 dm_queue_destroy_crypto_profile(md->queue); 2013 put_disk(md->disk); 2014 } 2015 2016 if (md->pending_io) { 2017 free_percpu(md->pending_io); 2018 md->pending_io = NULL; 2019 } 2020 2021 cleanup_srcu_struct(&md->io_barrier); 2022 2023 mutex_destroy(&md->suspend_lock); 2024 mutex_destroy(&md->type_lock); 2025 mutex_destroy(&md->table_devices_lock); 2026 mutex_destroy(&md->swap_bios_lock); 2027 2028 dm_mq_cleanup_mapped_device(md); 2029 } 2030 2031 /* 2032 * Allocate and initialise a blank device with a given minor. 2033 */ 2034 static struct mapped_device *alloc_dev(int minor) 2035 { 2036 int r, numa_node_id = dm_get_numa_node(); 2037 struct mapped_device *md; 2038 void *old_md; 2039 2040 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2041 if (!md) { 2042 DMERR("unable to allocate device, out of memory."); 2043 return NULL; 2044 } 2045 2046 if (!try_module_get(THIS_MODULE)) 2047 goto bad_module_get; 2048 2049 /* get a minor number for the dev */ 2050 if (minor == DM_ANY_MINOR) 2051 r = next_free_minor(&minor); 2052 else 2053 r = specific_minor(minor); 2054 if (r < 0) 2055 goto bad_minor; 2056 2057 r = init_srcu_struct(&md->io_barrier); 2058 if (r < 0) 2059 goto bad_io_barrier; 2060 2061 md->numa_node_id = numa_node_id; 2062 md->init_tio_pdu = false; 2063 md->type = DM_TYPE_NONE; 2064 mutex_init(&md->suspend_lock); 2065 mutex_init(&md->type_lock); 2066 mutex_init(&md->table_devices_lock); 2067 spin_lock_init(&md->deferred_lock); 2068 atomic_set(&md->holders, 1); 2069 atomic_set(&md->open_count, 0); 2070 atomic_set(&md->event_nr, 0); 2071 atomic_set(&md->uevent_seq, 0); 2072 INIT_LIST_HEAD(&md->uevent_list); 2073 INIT_LIST_HEAD(&md->table_devices); 2074 spin_lock_init(&md->uevent_lock); 2075 2076 /* 2077 * default to bio-based until DM table is loaded and md->type 2078 * established. If request-based table is loaded: blk-mq will 2079 * override accordingly. 2080 */ 2081 md->disk = blk_alloc_disk(md->numa_node_id); 2082 if (!md->disk) 2083 goto bad; 2084 md->queue = md->disk->queue; 2085 2086 init_waitqueue_head(&md->wait); 2087 INIT_WORK(&md->work, dm_wq_work); 2088 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2089 init_waitqueue_head(&md->eventq); 2090 init_completion(&md->kobj_holder.completion); 2091 2092 md->requeue_list = NULL; 2093 md->swap_bios = get_swap_bios(); 2094 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2095 mutex_init(&md->swap_bios_lock); 2096 2097 md->disk->major = _major; 2098 md->disk->first_minor = minor; 2099 md->disk->minors = 1; 2100 md->disk->flags |= GENHD_FL_NO_PART; 2101 md->disk->fops = &dm_blk_dops; 2102 md->disk->private_data = md; 2103 sprintf(md->disk->disk_name, "dm-%d", minor); 2104 2105 if (IS_ENABLED(CONFIG_FS_DAX)) { 2106 md->dax_dev = alloc_dax(md, &dm_dax_ops); 2107 if (IS_ERR(md->dax_dev)) { 2108 md->dax_dev = NULL; 2109 goto bad; 2110 } 2111 set_dax_nocache(md->dax_dev); 2112 set_dax_nomc(md->dax_dev); 2113 if (dax_add_host(md->dax_dev, md->disk)) 2114 goto bad; 2115 } 2116 2117 format_dev_t(md->name, MKDEV(_major, minor)); 2118 2119 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2120 if (!md->wq) 2121 goto bad; 2122 2123 md->pending_io = alloc_percpu(unsigned long); 2124 if (!md->pending_io) 2125 goto bad; 2126 2127 r = dm_stats_init(&md->stats); 2128 if (r < 0) 2129 goto bad; 2130 2131 /* Populate the mapping, nobody knows we exist yet */ 2132 spin_lock(&_minor_lock); 2133 old_md = idr_replace(&_minor_idr, md, minor); 2134 spin_unlock(&_minor_lock); 2135 2136 BUG_ON(old_md != MINOR_ALLOCED); 2137 2138 return md; 2139 2140 bad: 2141 cleanup_mapped_device(md); 2142 bad_io_barrier: 2143 free_minor(minor); 2144 bad_minor: 2145 module_put(THIS_MODULE); 2146 bad_module_get: 2147 kvfree(md); 2148 return NULL; 2149 } 2150 2151 static void unlock_fs(struct mapped_device *md); 2152 2153 static void free_dev(struct mapped_device *md) 2154 { 2155 int minor = MINOR(disk_devt(md->disk)); 2156 2157 unlock_fs(md); 2158 2159 cleanup_mapped_device(md); 2160 2161 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2162 dm_stats_cleanup(&md->stats); 2163 free_minor(minor); 2164 2165 module_put(THIS_MODULE); 2166 kvfree(md); 2167 } 2168 2169 /* 2170 * Bind a table to the device. 2171 */ 2172 static void event_callback(void *context) 2173 { 2174 unsigned long flags; 2175 LIST_HEAD(uevents); 2176 struct mapped_device *md = context; 2177 2178 spin_lock_irqsave(&md->uevent_lock, flags); 2179 list_splice_init(&md->uevent_list, &uevents); 2180 spin_unlock_irqrestore(&md->uevent_lock, flags); 2181 2182 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2183 2184 atomic_inc(&md->event_nr); 2185 wake_up(&md->eventq); 2186 dm_issue_global_event(); 2187 } 2188 2189 /* 2190 * Returns old map, which caller must destroy. 2191 */ 2192 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2193 struct queue_limits *limits) 2194 { 2195 struct dm_table *old_map; 2196 sector_t size; 2197 int ret; 2198 2199 lockdep_assert_held(&md->suspend_lock); 2200 2201 size = dm_table_get_size(t); 2202 2203 /* 2204 * Wipe any geometry if the size of the table changed. 2205 */ 2206 if (size != dm_get_size(md)) 2207 memset(&md->geometry, 0, sizeof(md->geometry)); 2208 2209 set_capacity(md->disk, size); 2210 2211 dm_table_event_callback(t, event_callback, md); 2212 2213 if (dm_table_request_based(t)) { 2214 /* 2215 * Leverage the fact that request-based DM targets are 2216 * immutable singletons - used to optimize dm_mq_queue_rq. 2217 */ 2218 md->immutable_target = dm_table_get_immutable_target(t); 2219 2220 /* 2221 * There is no need to reload with request-based dm because the 2222 * size of front_pad doesn't change. 2223 * 2224 * Note for future: If you are to reload bioset, prep-ed 2225 * requests in the queue may refer to bio from the old bioset, 2226 * so you must walk through the queue to unprep. 2227 */ 2228 if (!md->mempools) { 2229 md->mempools = t->mempools; 2230 t->mempools = NULL; 2231 } 2232 } else { 2233 /* 2234 * The md may already have mempools that need changing. 2235 * If so, reload bioset because front_pad may have changed 2236 * because a different table was loaded. 2237 */ 2238 dm_free_md_mempools(md->mempools); 2239 md->mempools = t->mempools; 2240 t->mempools = NULL; 2241 } 2242 2243 ret = dm_table_set_restrictions(t, md->queue, limits); 2244 if (ret) { 2245 old_map = ERR_PTR(ret); 2246 goto out; 2247 } 2248 2249 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2250 rcu_assign_pointer(md->map, (void *)t); 2251 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2252 2253 if (old_map) 2254 dm_sync_table(md); 2255 out: 2256 return old_map; 2257 } 2258 2259 /* 2260 * Returns unbound table for the caller to free. 2261 */ 2262 static struct dm_table *__unbind(struct mapped_device *md) 2263 { 2264 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2265 2266 if (!map) 2267 return NULL; 2268 2269 dm_table_event_callback(map, NULL, NULL); 2270 RCU_INIT_POINTER(md->map, NULL); 2271 dm_sync_table(md); 2272 2273 return map; 2274 } 2275 2276 /* 2277 * Constructor for a new device. 2278 */ 2279 int dm_create(int minor, struct mapped_device **result) 2280 { 2281 struct mapped_device *md; 2282 2283 md = alloc_dev(minor); 2284 if (!md) 2285 return -ENXIO; 2286 2287 dm_ima_reset_data(md); 2288 2289 *result = md; 2290 return 0; 2291 } 2292 2293 /* 2294 * Functions to manage md->type. 2295 * All are required to hold md->type_lock. 2296 */ 2297 void dm_lock_md_type(struct mapped_device *md) 2298 { 2299 mutex_lock(&md->type_lock); 2300 } 2301 2302 void dm_unlock_md_type(struct mapped_device *md) 2303 { 2304 mutex_unlock(&md->type_lock); 2305 } 2306 2307 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2308 { 2309 BUG_ON(!mutex_is_locked(&md->type_lock)); 2310 md->type = type; 2311 } 2312 2313 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2314 { 2315 return md->type; 2316 } 2317 2318 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2319 { 2320 return md->immutable_target_type; 2321 } 2322 2323 /* 2324 * Setup the DM device's queue based on md's type 2325 */ 2326 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2327 { 2328 enum dm_queue_mode type = dm_table_get_type(t); 2329 struct queue_limits limits; 2330 struct table_device *td; 2331 int r; 2332 2333 switch (type) { 2334 case DM_TYPE_REQUEST_BASED: 2335 md->disk->fops = &dm_rq_blk_dops; 2336 r = dm_mq_init_request_queue(md, t); 2337 if (r) { 2338 DMERR("Cannot initialize queue for request-based dm mapped device"); 2339 return r; 2340 } 2341 break; 2342 case DM_TYPE_BIO_BASED: 2343 case DM_TYPE_DAX_BIO_BASED: 2344 break; 2345 case DM_TYPE_NONE: 2346 WARN_ON_ONCE(true); 2347 break; 2348 } 2349 2350 r = dm_calculate_queue_limits(t, &limits); 2351 if (r) { 2352 DMERR("Cannot calculate initial queue limits"); 2353 return r; 2354 } 2355 r = dm_table_set_restrictions(t, md->queue, &limits); 2356 if (r) 2357 return r; 2358 2359 /* 2360 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2361 * with open_table_device() and close_table_device(). 2362 */ 2363 mutex_lock(&md->table_devices_lock); 2364 r = add_disk(md->disk); 2365 mutex_unlock(&md->table_devices_lock); 2366 if (r) 2367 return r; 2368 2369 /* 2370 * Register the holder relationship for devices added before the disk 2371 * was live. 2372 */ 2373 list_for_each_entry(td, &md->table_devices, list) { 2374 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2375 if (r) 2376 goto out_undo_holders; 2377 } 2378 2379 r = dm_sysfs_init(md); 2380 if (r) 2381 goto out_undo_holders; 2382 2383 md->type = type; 2384 return 0; 2385 2386 out_undo_holders: 2387 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2388 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2389 mutex_lock(&md->table_devices_lock); 2390 del_gendisk(md->disk); 2391 mutex_unlock(&md->table_devices_lock); 2392 return r; 2393 } 2394 2395 struct mapped_device *dm_get_md(dev_t dev) 2396 { 2397 struct mapped_device *md; 2398 unsigned int minor = MINOR(dev); 2399 2400 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2401 return NULL; 2402 2403 spin_lock(&_minor_lock); 2404 2405 md = idr_find(&_minor_idr, minor); 2406 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2407 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2408 md = NULL; 2409 goto out; 2410 } 2411 dm_get(md); 2412 out: 2413 spin_unlock(&_minor_lock); 2414 2415 return md; 2416 } 2417 EXPORT_SYMBOL_GPL(dm_get_md); 2418 2419 void *dm_get_mdptr(struct mapped_device *md) 2420 { 2421 return md->interface_ptr; 2422 } 2423 2424 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2425 { 2426 md->interface_ptr = ptr; 2427 } 2428 2429 void dm_get(struct mapped_device *md) 2430 { 2431 atomic_inc(&md->holders); 2432 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2433 } 2434 2435 int dm_hold(struct mapped_device *md) 2436 { 2437 spin_lock(&_minor_lock); 2438 if (test_bit(DMF_FREEING, &md->flags)) { 2439 spin_unlock(&_minor_lock); 2440 return -EBUSY; 2441 } 2442 dm_get(md); 2443 spin_unlock(&_minor_lock); 2444 return 0; 2445 } 2446 EXPORT_SYMBOL_GPL(dm_hold); 2447 2448 const char *dm_device_name(struct mapped_device *md) 2449 { 2450 return md->name; 2451 } 2452 EXPORT_SYMBOL_GPL(dm_device_name); 2453 2454 static void __dm_destroy(struct mapped_device *md, bool wait) 2455 { 2456 struct dm_table *map; 2457 int srcu_idx; 2458 2459 might_sleep(); 2460 2461 spin_lock(&_minor_lock); 2462 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2463 set_bit(DMF_FREEING, &md->flags); 2464 spin_unlock(&_minor_lock); 2465 2466 blk_mark_disk_dead(md->disk); 2467 2468 /* 2469 * Take suspend_lock so that presuspend and postsuspend methods 2470 * do not race with internal suspend. 2471 */ 2472 mutex_lock(&md->suspend_lock); 2473 map = dm_get_live_table(md, &srcu_idx); 2474 if (!dm_suspended_md(md)) { 2475 dm_table_presuspend_targets(map); 2476 set_bit(DMF_SUSPENDED, &md->flags); 2477 set_bit(DMF_POST_SUSPENDING, &md->flags); 2478 dm_table_postsuspend_targets(map); 2479 } 2480 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2481 dm_put_live_table(md, srcu_idx); 2482 mutex_unlock(&md->suspend_lock); 2483 2484 /* 2485 * Rare, but there may be I/O requests still going to complete, 2486 * for example. Wait for all references to disappear. 2487 * No one should increment the reference count of the mapped_device, 2488 * after the mapped_device state becomes DMF_FREEING. 2489 */ 2490 if (wait) 2491 while (atomic_read(&md->holders)) 2492 fsleep(1000); 2493 else if (atomic_read(&md->holders)) 2494 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2495 dm_device_name(md), atomic_read(&md->holders)); 2496 2497 dm_table_destroy(__unbind(md)); 2498 free_dev(md); 2499 } 2500 2501 void dm_destroy(struct mapped_device *md) 2502 { 2503 __dm_destroy(md, true); 2504 } 2505 2506 void dm_destroy_immediate(struct mapped_device *md) 2507 { 2508 __dm_destroy(md, false); 2509 } 2510 2511 void dm_put(struct mapped_device *md) 2512 { 2513 atomic_dec(&md->holders); 2514 } 2515 EXPORT_SYMBOL_GPL(dm_put); 2516 2517 static bool dm_in_flight_bios(struct mapped_device *md) 2518 { 2519 int cpu; 2520 unsigned long sum = 0; 2521 2522 for_each_possible_cpu(cpu) 2523 sum += *per_cpu_ptr(md->pending_io, cpu); 2524 2525 return sum != 0; 2526 } 2527 2528 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2529 { 2530 int r = 0; 2531 DEFINE_WAIT(wait); 2532 2533 while (true) { 2534 prepare_to_wait(&md->wait, &wait, task_state); 2535 2536 if (!dm_in_flight_bios(md)) 2537 break; 2538 2539 if (signal_pending_state(task_state, current)) { 2540 r = -EINTR; 2541 break; 2542 } 2543 2544 io_schedule(); 2545 } 2546 finish_wait(&md->wait, &wait); 2547 2548 smp_rmb(); 2549 2550 return r; 2551 } 2552 2553 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2554 { 2555 int r = 0; 2556 2557 if (!queue_is_mq(md->queue)) 2558 return dm_wait_for_bios_completion(md, task_state); 2559 2560 while (true) { 2561 if (!blk_mq_queue_inflight(md->queue)) 2562 break; 2563 2564 if (signal_pending_state(task_state, current)) { 2565 r = -EINTR; 2566 break; 2567 } 2568 2569 fsleep(5000); 2570 } 2571 2572 return r; 2573 } 2574 2575 /* 2576 * Process the deferred bios 2577 */ 2578 static void dm_wq_work(struct work_struct *work) 2579 { 2580 struct mapped_device *md = container_of(work, struct mapped_device, work); 2581 struct bio *bio; 2582 2583 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2584 spin_lock_irq(&md->deferred_lock); 2585 bio = bio_list_pop(&md->deferred); 2586 spin_unlock_irq(&md->deferred_lock); 2587 2588 if (!bio) 2589 break; 2590 2591 submit_bio_noacct(bio); 2592 cond_resched(); 2593 } 2594 } 2595 2596 static void dm_queue_flush(struct mapped_device *md) 2597 { 2598 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2599 smp_mb__after_atomic(); 2600 queue_work(md->wq, &md->work); 2601 } 2602 2603 /* 2604 * Swap in a new table, returning the old one for the caller to destroy. 2605 */ 2606 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2607 { 2608 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2609 struct queue_limits limits; 2610 int r; 2611 2612 mutex_lock(&md->suspend_lock); 2613 2614 /* device must be suspended */ 2615 if (!dm_suspended_md(md)) 2616 goto out; 2617 2618 /* 2619 * If the new table has no data devices, retain the existing limits. 2620 * This helps multipath with queue_if_no_path if all paths disappear, 2621 * then new I/O is queued based on these limits, and then some paths 2622 * reappear. 2623 */ 2624 if (dm_table_has_no_data_devices(table)) { 2625 live_map = dm_get_live_table_fast(md); 2626 if (live_map) 2627 limits = md->queue->limits; 2628 dm_put_live_table_fast(md); 2629 } 2630 2631 if (!live_map) { 2632 r = dm_calculate_queue_limits(table, &limits); 2633 if (r) { 2634 map = ERR_PTR(r); 2635 goto out; 2636 } 2637 } 2638 2639 map = __bind(md, table, &limits); 2640 dm_issue_global_event(); 2641 2642 out: 2643 mutex_unlock(&md->suspend_lock); 2644 return map; 2645 } 2646 2647 /* 2648 * Functions to lock and unlock any filesystem running on the 2649 * device. 2650 */ 2651 static int lock_fs(struct mapped_device *md) 2652 { 2653 int r; 2654 2655 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2656 2657 r = freeze_bdev(md->disk->part0); 2658 if (!r) 2659 set_bit(DMF_FROZEN, &md->flags); 2660 return r; 2661 } 2662 2663 static void unlock_fs(struct mapped_device *md) 2664 { 2665 if (!test_bit(DMF_FROZEN, &md->flags)) 2666 return; 2667 thaw_bdev(md->disk->part0); 2668 clear_bit(DMF_FROZEN, &md->flags); 2669 } 2670 2671 /* 2672 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2673 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2674 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2675 * 2676 * If __dm_suspend returns 0, the device is completely quiescent 2677 * now. There is no request-processing activity. All new requests 2678 * are being added to md->deferred list. 2679 */ 2680 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2681 unsigned int suspend_flags, unsigned int task_state, 2682 int dmf_suspended_flag) 2683 { 2684 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2685 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2686 int r; 2687 2688 lockdep_assert_held(&md->suspend_lock); 2689 2690 /* 2691 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2692 * This flag is cleared before dm_suspend returns. 2693 */ 2694 if (noflush) 2695 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2696 else 2697 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2698 2699 /* 2700 * This gets reverted if there's an error later and the targets 2701 * provide the .presuspend_undo hook. 2702 */ 2703 dm_table_presuspend_targets(map); 2704 2705 /* 2706 * Flush I/O to the device. 2707 * Any I/O submitted after lock_fs() may not be flushed. 2708 * noflush takes precedence over do_lockfs. 2709 * (lock_fs() flushes I/Os and waits for them to complete.) 2710 */ 2711 if (!noflush && do_lockfs) { 2712 r = lock_fs(md); 2713 if (r) { 2714 dm_table_presuspend_undo_targets(map); 2715 return r; 2716 } 2717 } 2718 2719 /* 2720 * Here we must make sure that no processes are submitting requests 2721 * to target drivers i.e. no one may be executing 2722 * dm_split_and_process_bio from dm_submit_bio. 2723 * 2724 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2725 * we take the write lock. To prevent any process from reentering 2726 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2727 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2728 * flush_workqueue(md->wq). 2729 */ 2730 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2731 if (map) 2732 synchronize_srcu(&md->io_barrier); 2733 2734 /* 2735 * Stop md->queue before flushing md->wq in case request-based 2736 * dm defers requests to md->wq from md->queue. 2737 */ 2738 if (dm_request_based(md)) 2739 dm_stop_queue(md->queue); 2740 2741 flush_workqueue(md->wq); 2742 2743 /* 2744 * At this point no more requests are entering target request routines. 2745 * We call dm_wait_for_completion to wait for all existing requests 2746 * to finish. 2747 */ 2748 r = dm_wait_for_completion(md, task_state); 2749 if (!r) 2750 set_bit(dmf_suspended_flag, &md->flags); 2751 2752 if (noflush) 2753 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2754 if (map) 2755 synchronize_srcu(&md->io_barrier); 2756 2757 /* were we interrupted ? */ 2758 if (r < 0) { 2759 dm_queue_flush(md); 2760 2761 if (dm_request_based(md)) 2762 dm_start_queue(md->queue); 2763 2764 unlock_fs(md); 2765 dm_table_presuspend_undo_targets(map); 2766 /* pushback list is already flushed, so skip flush */ 2767 } 2768 2769 return r; 2770 } 2771 2772 /* 2773 * We need to be able to change a mapping table under a mounted 2774 * filesystem. For example we might want to move some data in 2775 * the background. Before the table can be swapped with 2776 * dm_bind_table, dm_suspend must be called to flush any in 2777 * flight bios and ensure that any further io gets deferred. 2778 */ 2779 /* 2780 * Suspend mechanism in request-based dm. 2781 * 2782 * 1. Flush all I/Os by lock_fs() if needed. 2783 * 2. Stop dispatching any I/O by stopping the request_queue. 2784 * 3. Wait for all in-flight I/Os to be completed or requeued. 2785 * 2786 * To abort suspend, start the request_queue. 2787 */ 2788 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 2789 { 2790 struct dm_table *map = NULL; 2791 int r = 0; 2792 2793 retry: 2794 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2795 2796 if (dm_suspended_md(md)) { 2797 r = -EINVAL; 2798 goto out_unlock; 2799 } 2800 2801 if (dm_suspended_internally_md(md)) { 2802 /* already internally suspended, wait for internal resume */ 2803 mutex_unlock(&md->suspend_lock); 2804 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2805 if (r) 2806 return r; 2807 goto retry; 2808 } 2809 2810 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2811 2812 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2813 if (r) 2814 goto out_unlock; 2815 2816 set_bit(DMF_POST_SUSPENDING, &md->flags); 2817 dm_table_postsuspend_targets(map); 2818 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2819 2820 out_unlock: 2821 mutex_unlock(&md->suspend_lock); 2822 return r; 2823 } 2824 2825 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2826 { 2827 if (map) { 2828 int r = dm_table_resume_targets(map); 2829 2830 if (r) 2831 return r; 2832 } 2833 2834 dm_queue_flush(md); 2835 2836 /* 2837 * Flushing deferred I/Os must be done after targets are resumed 2838 * so that mapping of targets can work correctly. 2839 * Request-based dm is queueing the deferred I/Os in its request_queue. 2840 */ 2841 if (dm_request_based(md)) 2842 dm_start_queue(md->queue); 2843 2844 unlock_fs(md); 2845 2846 return 0; 2847 } 2848 2849 int dm_resume(struct mapped_device *md) 2850 { 2851 int r; 2852 struct dm_table *map = NULL; 2853 2854 retry: 2855 r = -EINVAL; 2856 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2857 2858 if (!dm_suspended_md(md)) 2859 goto out; 2860 2861 if (dm_suspended_internally_md(md)) { 2862 /* already internally suspended, wait for internal resume */ 2863 mutex_unlock(&md->suspend_lock); 2864 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2865 if (r) 2866 return r; 2867 goto retry; 2868 } 2869 2870 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2871 if (!map || !dm_table_get_size(map)) 2872 goto out; 2873 2874 r = __dm_resume(md, map); 2875 if (r) 2876 goto out; 2877 2878 clear_bit(DMF_SUSPENDED, &md->flags); 2879 out: 2880 mutex_unlock(&md->suspend_lock); 2881 2882 return r; 2883 } 2884 2885 /* 2886 * Internal suspend/resume works like userspace-driven suspend. It waits 2887 * until all bios finish and prevents issuing new bios to the target drivers. 2888 * It may be used only from the kernel. 2889 */ 2890 2891 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 2892 { 2893 struct dm_table *map = NULL; 2894 2895 lockdep_assert_held(&md->suspend_lock); 2896 2897 if (md->internal_suspend_count++) 2898 return; /* nested internal suspend */ 2899 2900 if (dm_suspended_md(md)) { 2901 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2902 return; /* nest suspend */ 2903 } 2904 2905 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2906 2907 /* 2908 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2909 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2910 * would require changing .presuspend to return an error -- avoid this 2911 * until there is a need for more elaborate variants of internal suspend. 2912 */ 2913 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2914 DMF_SUSPENDED_INTERNALLY); 2915 2916 set_bit(DMF_POST_SUSPENDING, &md->flags); 2917 dm_table_postsuspend_targets(map); 2918 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2919 } 2920 2921 static void __dm_internal_resume(struct mapped_device *md) 2922 { 2923 BUG_ON(!md->internal_suspend_count); 2924 2925 if (--md->internal_suspend_count) 2926 return; /* resume from nested internal suspend */ 2927 2928 if (dm_suspended_md(md)) 2929 goto done; /* resume from nested suspend */ 2930 2931 /* 2932 * NOTE: existing callers don't need to call dm_table_resume_targets 2933 * (which may fail -- so best to avoid it for now by passing NULL map) 2934 */ 2935 (void) __dm_resume(md, NULL); 2936 2937 done: 2938 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2939 smp_mb__after_atomic(); 2940 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2941 } 2942 2943 void dm_internal_suspend_noflush(struct mapped_device *md) 2944 { 2945 mutex_lock(&md->suspend_lock); 2946 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2947 mutex_unlock(&md->suspend_lock); 2948 } 2949 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2950 2951 void dm_internal_resume(struct mapped_device *md) 2952 { 2953 mutex_lock(&md->suspend_lock); 2954 __dm_internal_resume(md); 2955 mutex_unlock(&md->suspend_lock); 2956 } 2957 EXPORT_SYMBOL_GPL(dm_internal_resume); 2958 2959 /* 2960 * Fast variants of internal suspend/resume hold md->suspend_lock, 2961 * which prevents interaction with userspace-driven suspend. 2962 */ 2963 2964 void dm_internal_suspend_fast(struct mapped_device *md) 2965 { 2966 mutex_lock(&md->suspend_lock); 2967 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2968 return; 2969 2970 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2971 synchronize_srcu(&md->io_barrier); 2972 flush_workqueue(md->wq); 2973 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2974 } 2975 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2976 2977 void dm_internal_resume_fast(struct mapped_device *md) 2978 { 2979 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2980 goto done; 2981 2982 dm_queue_flush(md); 2983 2984 done: 2985 mutex_unlock(&md->suspend_lock); 2986 } 2987 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2988 2989 /* 2990 *--------------------------------------------------------------- 2991 * Event notification. 2992 *--------------------------------------------------------------- 2993 */ 2994 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2995 unsigned int cookie, bool need_resize_uevent) 2996 { 2997 int r; 2998 unsigned int noio_flag; 2999 char udev_cookie[DM_COOKIE_LENGTH]; 3000 char *envp[3] = { NULL, NULL, NULL }; 3001 char **envpp = envp; 3002 if (cookie) { 3003 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3004 DM_COOKIE_ENV_VAR_NAME, cookie); 3005 *envpp++ = udev_cookie; 3006 } 3007 if (need_resize_uevent) { 3008 *envpp++ = "RESIZE=1"; 3009 } 3010 3011 noio_flag = memalloc_noio_save(); 3012 3013 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3014 3015 memalloc_noio_restore(noio_flag); 3016 3017 return r; 3018 } 3019 3020 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3021 { 3022 return atomic_add_return(1, &md->uevent_seq); 3023 } 3024 3025 uint32_t dm_get_event_nr(struct mapped_device *md) 3026 { 3027 return atomic_read(&md->event_nr); 3028 } 3029 3030 int dm_wait_event(struct mapped_device *md, int event_nr) 3031 { 3032 return wait_event_interruptible(md->eventq, 3033 (event_nr != atomic_read(&md->event_nr))); 3034 } 3035 3036 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3037 { 3038 unsigned long flags; 3039 3040 spin_lock_irqsave(&md->uevent_lock, flags); 3041 list_add(elist, &md->uevent_list); 3042 spin_unlock_irqrestore(&md->uevent_lock, flags); 3043 } 3044 3045 /* 3046 * The gendisk is only valid as long as you have a reference 3047 * count on 'md'. 3048 */ 3049 struct gendisk *dm_disk(struct mapped_device *md) 3050 { 3051 return md->disk; 3052 } 3053 EXPORT_SYMBOL_GPL(dm_disk); 3054 3055 struct kobject *dm_kobject(struct mapped_device *md) 3056 { 3057 return &md->kobj_holder.kobj; 3058 } 3059 3060 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3061 { 3062 struct mapped_device *md; 3063 3064 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3065 3066 spin_lock(&_minor_lock); 3067 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3068 md = NULL; 3069 goto out; 3070 } 3071 dm_get(md); 3072 out: 3073 spin_unlock(&_minor_lock); 3074 3075 return md; 3076 } 3077 3078 int dm_suspended_md(struct mapped_device *md) 3079 { 3080 return test_bit(DMF_SUSPENDED, &md->flags); 3081 } 3082 3083 static int dm_post_suspending_md(struct mapped_device *md) 3084 { 3085 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3086 } 3087 3088 int dm_suspended_internally_md(struct mapped_device *md) 3089 { 3090 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3091 } 3092 3093 int dm_test_deferred_remove_flag(struct mapped_device *md) 3094 { 3095 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3096 } 3097 3098 int dm_suspended(struct dm_target *ti) 3099 { 3100 return dm_suspended_md(ti->table->md); 3101 } 3102 EXPORT_SYMBOL_GPL(dm_suspended); 3103 3104 int dm_post_suspending(struct dm_target *ti) 3105 { 3106 return dm_post_suspending_md(ti->table->md); 3107 } 3108 EXPORT_SYMBOL_GPL(dm_post_suspending); 3109 3110 int dm_noflush_suspending(struct dm_target *ti) 3111 { 3112 return __noflush_suspending(ti->table->md); 3113 } 3114 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3115 3116 void dm_free_md_mempools(struct dm_md_mempools *pools) 3117 { 3118 if (!pools) 3119 return; 3120 3121 bioset_exit(&pools->bs); 3122 bioset_exit(&pools->io_bs); 3123 3124 kfree(pools); 3125 } 3126 3127 struct dm_pr { 3128 u64 old_key; 3129 u64 new_key; 3130 u32 flags; 3131 bool abort; 3132 bool fail_early; 3133 int ret; 3134 enum pr_type type; 3135 }; 3136 3137 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3138 struct dm_pr *pr) 3139 { 3140 struct mapped_device *md = bdev->bd_disk->private_data; 3141 struct dm_table *table; 3142 struct dm_target *ti; 3143 int ret = -ENOTTY, srcu_idx; 3144 3145 table = dm_get_live_table(md, &srcu_idx); 3146 if (!table || !dm_table_get_size(table)) 3147 goto out; 3148 3149 /* We only support devices that have a single target */ 3150 if (table->num_targets != 1) 3151 goto out; 3152 ti = dm_table_get_target(table, 0); 3153 3154 if (dm_suspended_md(md)) { 3155 ret = -EAGAIN; 3156 goto out; 3157 } 3158 3159 ret = -EINVAL; 3160 if (!ti->type->iterate_devices) 3161 goto out; 3162 3163 ti->type->iterate_devices(ti, fn, pr); 3164 ret = 0; 3165 out: 3166 dm_put_live_table(md, srcu_idx); 3167 return ret; 3168 } 3169 3170 /* 3171 * For register / unregister we need to manually call out to every path. 3172 */ 3173 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3174 sector_t start, sector_t len, void *data) 3175 { 3176 struct dm_pr *pr = data; 3177 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3178 int ret; 3179 3180 if (!ops || !ops->pr_register) { 3181 pr->ret = -EOPNOTSUPP; 3182 return -1; 3183 } 3184 3185 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3186 if (!ret) 3187 return 0; 3188 3189 if (!pr->ret) 3190 pr->ret = ret; 3191 3192 if (pr->fail_early) 3193 return -1; 3194 3195 return 0; 3196 } 3197 3198 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3199 u32 flags) 3200 { 3201 struct dm_pr pr = { 3202 .old_key = old_key, 3203 .new_key = new_key, 3204 .flags = flags, 3205 .fail_early = true, 3206 .ret = 0, 3207 }; 3208 int ret; 3209 3210 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3211 if (ret) { 3212 /* Didn't even get to register a path */ 3213 return ret; 3214 } 3215 3216 if (!pr.ret) 3217 return 0; 3218 ret = pr.ret; 3219 3220 if (!new_key) 3221 return ret; 3222 3223 /* unregister all paths if we failed to register any path */ 3224 pr.old_key = new_key; 3225 pr.new_key = 0; 3226 pr.flags = 0; 3227 pr.fail_early = false; 3228 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3229 return ret; 3230 } 3231 3232 3233 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3234 sector_t start, sector_t len, void *data) 3235 { 3236 struct dm_pr *pr = data; 3237 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3238 3239 if (!ops || !ops->pr_reserve) { 3240 pr->ret = -EOPNOTSUPP; 3241 return -1; 3242 } 3243 3244 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3245 if (!pr->ret) 3246 return -1; 3247 3248 return 0; 3249 } 3250 3251 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3252 u32 flags) 3253 { 3254 struct dm_pr pr = { 3255 .old_key = key, 3256 .flags = flags, 3257 .type = type, 3258 .fail_early = false, 3259 .ret = 0, 3260 }; 3261 int ret; 3262 3263 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3264 if (ret) 3265 return ret; 3266 3267 return pr.ret; 3268 } 3269 3270 /* 3271 * If there is a non-All Registrants type of reservation, the release must be 3272 * sent down the holding path. For the cases where there is no reservation or 3273 * the path is not the holder the device will also return success, so we must 3274 * try each path to make sure we got the correct path. 3275 */ 3276 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3277 sector_t start, sector_t len, void *data) 3278 { 3279 struct dm_pr *pr = data; 3280 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3281 3282 if (!ops || !ops->pr_release) { 3283 pr->ret = -EOPNOTSUPP; 3284 return -1; 3285 } 3286 3287 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3288 if (pr->ret) 3289 return -1; 3290 3291 return 0; 3292 } 3293 3294 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3295 { 3296 struct dm_pr pr = { 3297 .old_key = key, 3298 .type = type, 3299 .fail_early = false, 3300 }; 3301 int ret; 3302 3303 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3304 if (ret) 3305 return ret; 3306 3307 return pr.ret; 3308 } 3309 3310 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3311 sector_t start, sector_t len, void *data) 3312 { 3313 struct dm_pr *pr = data; 3314 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3315 3316 if (!ops || !ops->pr_preempt) { 3317 pr->ret = -EOPNOTSUPP; 3318 return -1; 3319 } 3320 3321 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3322 pr->abort); 3323 if (!pr->ret) 3324 return -1; 3325 3326 return 0; 3327 } 3328 3329 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3330 enum pr_type type, bool abort) 3331 { 3332 struct dm_pr pr = { 3333 .new_key = new_key, 3334 .old_key = old_key, 3335 .type = type, 3336 .fail_early = false, 3337 }; 3338 int ret; 3339 3340 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3341 if (ret) 3342 return ret; 3343 3344 return pr.ret; 3345 } 3346 3347 static int dm_pr_clear(struct block_device *bdev, u64 key) 3348 { 3349 struct mapped_device *md = bdev->bd_disk->private_data; 3350 const struct pr_ops *ops; 3351 int r, srcu_idx; 3352 3353 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3354 if (r < 0) 3355 goto out; 3356 3357 ops = bdev->bd_disk->fops->pr_ops; 3358 if (ops && ops->pr_clear) 3359 r = ops->pr_clear(bdev, key); 3360 else 3361 r = -EOPNOTSUPP; 3362 out: 3363 dm_unprepare_ioctl(md, srcu_idx); 3364 return r; 3365 } 3366 3367 static const struct pr_ops dm_pr_ops = { 3368 .pr_register = dm_pr_register, 3369 .pr_reserve = dm_pr_reserve, 3370 .pr_release = dm_pr_release, 3371 .pr_preempt = dm_pr_preempt, 3372 .pr_clear = dm_pr_clear, 3373 }; 3374 3375 static const struct block_device_operations dm_blk_dops = { 3376 .submit_bio = dm_submit_bio, 3377 .poll_bio = dm_poll_bio, 3378 .open = dm_blk_open, 3379 .release = dm_blk_close, 3380 .ioctl = dm_blk_ioctl, 3381 .getgeo = dm_blk_getgeo, 3382 .report_zones = dm_blk_report_zones, 3383 .pr_ops = &dm_pr_ops, 3384 .owner = THIS_MODULE 3385 }; 3386 3387 static const struct block_device_operations dm_rq_blk_dops = { 3388 .open = dm_blk_open, 3389 .release = dm_blk_close, 3390 .ioctl = dm_blk_ioctl, 3391 .getgeo = dm_blk_getgeo, 3392 .pr_ops = &dm_pr_ops, 3393 .owner = THIS_MODULE 3394 }; 3395 3396 static const struct dax_operations dm_dax_ops = { 3397 .direct_access = dm_dax_direct_access, 3398 .zero_page_range = dm_dax_zero_page_range, 3399 .recovery_write = dm_dax_recovery_write, 3400 }; 3401 3402 /* 3403 * module hooks 3404 */ 3405 module_init(dm_init); 3406 module_exit(dm_exit); 3407 3408 module_param(major, uint, 0); 3409 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3410 3411 module_param(reserved_bio_based_ios, uint, 0644); 3412 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3413 3414 module_param(dm_numa_node, int, 0644); 3415 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3416 3417 module_param(swap_bios, int, 0644); 3418 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3419 3420 MODULE_DESCRIPTION(DM_NAME " driver"); 3421 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3422 MODULE_LICENSE("GPL"); 3423