xref: /openbmc/linux/drivers/md/dm.c (revision 7b73a9c8e26ce5769c41d4b787767c10fe7269db)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set bs;
152 	struct bio_set io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 /*
162  * Bio-based DM's mempools' reserved IOs set by the user.
163  */
164 #define RESERVED_BIO_BASED_IOS		16
165 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
166 
167 static int __dm_get_module_param_int(int *module_param, int min, int max)
168 {
169 	int param = READ_ONCE(*module_param);
170 	int modified_param = 0;
171 	bool modified = true;
172 
173 	if (param < min)
174 		modified_param = min;
175 	else if (param > max)
176 		modified_param = max;
177 	else
178 		modified = false;
179 
180 	if (modified) {
181 		(void)cmpxchg(module_param, param, modified_param);
182 		param = modified_param;
183 	}
184 
185 	return param;
186 }
187 
188 unsigned __dm_get_module_param(unsigned *module_param,
189 			       unsigned def, unsigned max)
190 {
191 	unsigned param = READ_ONCE(*module_param);
192 	unsigned modified_param = 0;
193 
194 	if (!param)
195 		modified_param = def;
196 	else if (param > max)
197 		modified_param = max;
198 
199 	if (modified_param) {
200 		(void)cmpxchg(module_param, param, modified_param);
201 		param = modified_param;
202 	}
203 
204 	return param;
205 }
206 
207 unsigned dm_get_reserved_bio_based_ios(void)
208 {
209 	return __dm_get_module_param(&reserved_bio_based_ios,
210 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
211 }
212 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
213 
214 static unsigned dm_get_numa_node(void)
215 {
216 	return __dm_get_module_param_int(&dm_numa_node,
217 					 DM_NUMA_NODE, num_online_nodes() - 1);
218 }
219 
220 static int __init local_init(void)
221 {
222 	int r;
223 
224 	r = dm_uevent_init();
225 	if (r)
226 		return r;
227 
228 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
229 	if (!deferred_remove_workqueue) {
230 		r = -ENOMEM;
231 		goto out_uevent_exit;
232 	}
233 
234 	_major = major;
235 	r = register_blkdev(_major, _name);
236 	if (r < 0)
237 		goto out_free_workqueue;
238 
239 	if (!_major)
240 		_major = r;
241 
242 	return 0;
243 
244 out_free_workqueue:
245 	destroy_workqueue(deferred_remove_workqueue);
246 out_uevent_exit:
247 	dm_uevent_exit();
248 
249 	return r;
250 }
251 
252 static void local_exit(void)
253 {
254 	flush_scheduled_work();
255 	destroy_workqueue(deferred_remove_workqueue);
256 
257 	unregister_blkdev(_major, _name);
258 	dm_uevent_exit();
259 
260 	_major = 0;
261 
262 	DMINFO("cleaned up");
263 }
264 
265 static int (*_inits[])(void) __initdata = {
266 	local_init,
267 	dm_target_init,
268 	dm_linear_init,
269 	dm_stripe_init,
270 	dm_io_init,
271 	dm_kcopyd_init,
272 	dm_interface_init,
273 	dm_statistics_init,
274 };
275 
276 static void (*_exits[])(void) = {
277 	local_exit,
278 	dm_target_exit,
279 	dm_linear_exit,
280 	dm_stripe_exit,
281 	dm_io_exit,
282 	dm_kcopyd_exit,
283 	dm_interface_exit,
284 	dm_statistics_exit,
285 };
286 
287 static int __init dm_init(void)
288 {
289 	const int count = ARRAY_SIZE(_inits);
290 
291 	int r, i;
292 
293 	for (i = 0; i < count; i++) {
294 		r = _inits[i]();
295 		if (r)
296 			goto bad;
297 	}
298 
299 	return 0;
300 
301       bad:
302 	while (i--)
303 		_exits[i]();
304 
305 	return r;
306 }
307 
308 static void __exit dm_exit(void)
309 {
310 	int i = ARRAY_SIZE(_exits);
311 
312 	while (i--)
313 		_exits[i]();
314 
315 	/*
316 	 * Should be empty by this point.
317 	 */
318 	idr_destroy(&_minor_idr);
319 }
320 
321 /*
322  * Block device functions
323  */
324 int dm_deleting_md(struct mapped_device *md)
325 {
326 	return test_bit(DMF_DELETING, &md->flags);
327 }
328 
329 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
330 {
331 	struct mapped_device *md;
332 
333 	spin_lock(&_minor_lock);
334 
335 	md = bdev->bd_disk->private_data;
336 	if (!md)
337 		goto out;
338 
339 	if (test_bit(DMF_FREEING, &md->flags) ||
340 	    dm_deleting_md(md)) {
341 		md = NULL;
342 		goto out;
343 	}
344 
345 	dm_get(md);
346 	atomic_inc(&md->open_count);
347 out:
348 	spin_unlock(&_minor_lock);
349 
350 	return md ? 0 : -ENXIO;
351 }
352 
353 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
354 {
355 	struct mapped_device *md;
356 
357 	spin_lock(&_minor_lock);
358 
359 	md = disk->private_data;
360 	if (WARN_ON(!md))
361 		goto out;
362 
363 	if (atomic_dec_and_test(&md->open_count) &&
364 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
365 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
366 
367 	dm_put(md);
368 out:
369 	spin_unlock(&_minor_lock);
370 }
371 
372 int dm_open_count(struct mapped_device *md)
373 {
374 	return atomic_read(&md->open_count);
375 }
376 
377 /*
378  * Guarantees nothing is using the device before it's deleted.
379  */
380 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
381 {
382 	int r = 0;
383 
384 	spin_lock(&_minor_lock);
385 
386 	if (dm_open_count(md)) {
387 		r = -EBUSY;
388 		if (mark_deferred)
389 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
390 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
391 		r = -EEXIST;
392 	else
393 		set_bit(DMF_DELETING, &md->flags);
394 
395 	spin_unlock(&_minor_lock);
396 
397 	return r;
398 }
399 
400 int dm_cancel_deferred_remove(struct mapped_device *md)
401 {
402 	int r = 0;
403 
404 	spin_lock(&_minor_lock);
405 
406 	if (test_bit(DMF_DELETING, &md->flags))
407 		r = -EBUSY;
408 	else
409 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
410 
411 	spin_unlock(&_minor_lock);
412 
413 	return r;
414 }
415 
416 static void do_deferred_remove(struct work_struct *w)
417 {
418 	dm_deferred_remove();
419 }
420 
421 sector_t dm_get_size(struct mapped_device *md)
422 {
423 	return get_capacity(md->disk);
424 }
425 
426 struct request_queue *dm_get_md_queue(struct mapped_device *md)
427 {
428 	return md->queue;
429 }
430 
431 struct dm_stats *dm_get_stats(struct mapped_device *md)
432 {
433 	return &md->stats;
434 }
435 
436 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
437 {
438 	struct mapped_device *md = bdev->bd_disk->private_data;
439 
440 	return dm_get_geometry(md, geo);
441 }
442 
443 #ifdef CONFIG_BLK_DEV_ZONED
444 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
445 {
446 	struct dm_report_zones_args *args = data;
447 	sector_t sector_diff = args->tgt->begin - args->start;
448 
449 	/*
450 	 * Ignore zones beyond the target range.
451 	 */
452 	if (zone->start >= args->start + args->tgt->len)
453 		return 0;
454 
455 	/*
456 	 * Remap the start sector and write pointer position of the zone
457 	 * to match its position in the target range.
458 	 */
459 	zone->start += sector_diff;
460 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
461 		if (zone->cond == BLK_ZONE_COND_FULL)
462 			zone->wp = zone->start + zone->len;
463 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
464 			zone->wp = zone->start;
465 		else
466 			zone->wp += sector_diff;
467 	}
468 
469 	args->next_sector = zone->start + zone->len;
470 	return args->orig_cb(zone, args->zone_idx++, args->orig_data);
471 }
472 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
473 
474 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
475 		unsigned int nr_zones, report_zones_cb cb, void *data)
476 {
477 	struct mapped_device *md = disk->private_data;
478 	struct dm_table *map;
479 	int srcu_idx, ret;
480 	struct dm_report_zones_args args = {
481 		.next_sector = sector,
482 		.orig_data = data,
483 		.orig_cb = cb,
484 	};
485 
486 	if (dm_suspended_md(md))
487 		return -EAGAIN;
488 
489 	map = dm_get_live_table(md, &srcu_idx);
490 	if (!map)
491 		return -EIO;
492 
493 	do {
494 		struct dm_target *tgt;
495 
496 		tgt = dm_table_find_target(map, args.next_sector);
497 		if (WARN_ON_ONCE(!tgt->type->report_zones)) {
498 			ret = -EIO;
499 			goto out;
500 		}
501 
502 		args.tgt = tgt;
503 		ret = tgt->type->report_zones(tgt, &args, nr_zones);
504 		if (ret < 0)
505 			goto out;
506 	} while (args.zone_idx < nr_zones &&
507 		 args.next_sector < get_capacity(disk));
508 
509 	ret = args.zone_idx;
510 out:
511 	dm_put_live_table(md, srcu_idx);
512 	return ret;
513 }
514 #else
515 #define dm_blk_report_zones		NULL
516 #endif /* CONFIG_BLK_DEV_ZONED */
517 
518 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
519 			    struct block_device **bdev)
520 	__acquires(md->io_barrier)
521 {
522 	struct dm_target *tgt;
523 	struct dm_table *map;
524 	int r;
525 
526 retry:
527 	r = -ENOTTY;
528 	map = dm_get_live_table(md, srcu_idx);
529 	if (!map || !dm_table_get_size(map))
530 		return r;
531 
532 	/* We only support devices that have a single target */
533 	if (dm_table_get_num_targets(map) != 1)
534 		return r;
535 
536 	tgt = dm_table_get_target(map, 0);
537 	if (!tgt->type->prepare_ioctl)
538 		return r;
539 
540 	if (dm_suspended_md(md))
541 		return -EAGAIN;
542 
543 	r = tgt->type->prepare_ioctl(tgt, bdev);
544 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
545 		dm_put_live_table(md, *srcu_idx);
546 		msleep(10);
547 		goto retry;
548 	}
549 
550 	return r;
551 }
552 
553 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
554 	__releases(md->io_barrier)
555 {
556 	dm_put_live_table(md, srcu_idx);
557 }
558 
559 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
560 			unsigned int cmd, unsigned long arg)
561 {
562 	struct mapped_device *md = bdev->bd_disk->private_data;
563 	int r, srcu_idx;
564 
565 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
566 	if (r < 0)
567 		goto out;
568 
569 	if (r > 0) {
570 		/*
571 		 * Target determined this ioctl is being issued against a
572 		 * subset of the parent bdev; require extra privileges.
573 		 */
574 		if (!capable(CAP_SYS_RAWIO)) {
575 			DMWARN_LIMIT(
576 	"%s: sending ioctl %x to DM device without required privilege.",
577 				current->comm, cmd);
578 			r = -ENOIOCTLCMD;
579 			goto out;
580 		}
581 	}
582 
583 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
584 out:
585 	dm_unprepare_ioctl(md, srcu_idx);
586 	return r;
587 }
588 
589 static void start_io_acct(struct dm_io *io);
590 
591 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
592 {
593 	struct dm_io *io;
594 	struct dm_target_io *tio;
595 	struct bio *clone;
596 
597 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
598 	if (!clone)
599 		return NULL;
600 
601 	tio = container_of(clone, struct dm_target_io, clone);
602 	tio->inside_dm_io = true;
603 	tio->io = NULL;
604 
605 	io = container_of(tio, struct dm_io, tio);
606 	io->magic = DM_IO_MAGIC;
607 	io->status = 0;
608 	atomic_set(&io->io_count, 1);
609 	io->orig_bio = bio;
610 	io->md = md;
611 	spin_lock_init(&io->endio_lock);
612 
613 	start_io_acct(io);
614 
615 	return io;
616 }
617 
618 static void free_io(struct mapped_device *md, struct dm_io *io)
619 {
620 	bio_put(&io->tio.clone);
621 }
622 
623 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
624 				      unsigned target_bio_nr, gfp_t gfp_mask)
625 {
626 	struct dm_target_io *tio;
627 
628 	if (!ci->io->tio.io) {
629 		/* the dm_target_io embedded in ci->io is available */
630 		tio = &ci->io->tio;
631 	} else {
632 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
633 		if (!clone)
634 			return NULL;
635 
636 		tio = container_of(clone, struct dm_target_io, clone);
637 		tio->inside_dm_io = false;
638 	}
639 
640 	tio->magic = DM_TIO_MAGIC;
641 	tio->io = ci->io;
642 	tio->ti = ti;
643 	tio->target_bio_nr = target_bio_nr;
644 
645 	return tio;
646 }
647 
648 static void free_tio(struct dm_target_io *tio)
649 {
650 	if (tio->inside_dm_io)
651 		return;
652 	bio_put(&tio->clone);
653 }
654 
655 static bool md_in_flight_bios(struct mapped_device *md)
656 {
657 	int cpu;
658 	struct hd_struct *part = &dm_disk(md)->part0;
659 	long sum = 0;
660 
661 	for_each_possible_cpu(cpu) {
662 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
663 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
664 	}
665 
666 	return sum != 0;
667 }
668 
669 static bool md_in_flight(struct mapped_device *md)
670 {
671 	if (queue_is_mq(md->queue))
672 		return blk_mq_queue_inflight(md->queue);
673 	else
674 		return md_in_flight_bios(md);
675 }
676 
677 static void start_io_acct(struct dm_io *io)
678 {
679 	struct mapped_device *md = io->md;
680 	struct bio *bio = io->orig_bio;
681 
682 	io->start_time = jiffies;
683 
684 	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
685 			      &dm_disk(md)->part0);
686 
687 	if (unlikely(dm_stats_used(&md->stats)))
688 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
689 				    bio->bi_iter.bi_sector, bio_sectors(bio),
690 				    false, 0, &io->stats_aux);
691 }
692 
693 static void end_io_acct(struct dm_io *io)
694 {
695 	struct mapped_device *md = io->md;
696 	struct bio *bio = io->orig_bio;
697 	unsigned long duration = jiffies - io->start_time;
698 
699 	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
700 			    io->start_time);
701 
702 	if (unlikely(dm_stats_used(&md->stats)))
703 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
704 				    bio->bi_iter.bi_sector, bio_sectors(bio),
705 				    true, duration, &io->stats_aux);
706 
707 	/* nudge anyone waiting on suspend queue */
708 	if (unlikely(wq_has_sleeper(&md->wait)))
709 		wake_up(&md->wait);
710 }
711 
712 /*
713  * Add the bio to the list of deferred io.
714  */
715 static void queue_io(struct mapped_device *md, struct bio *bio)
716 {
717 	unsigned long flags;
718 
719 	spin_lock_irqsave(&md->deferred_lock, flags);
720 	bio_list_add(&md->deferred, bio);
721 	spin_unlock_irqrestore(&md->deferred_lock, flags);
722 	queue_work(md->wq, &md->work);
723 }
724 
725 /*
726  * Everyone (including functions in this file), should use this
727  * function to access the md->map field, and make sure they call
728  * dm_put_live_table() when finished.
729  */
730 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
731 {
732 	*srcu_idx = srcu_read_lock(&md->io_barrier);
733 
734 	return srcu_dereference(md->map, &md->io_barrier);
735 }
736 
737 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
738 {
739 	srcu_read_unlock(&md->io_barrier, srcu_idx);
740 }
741 
742 void dm_sync_table(struct mapped_device *md)
743 {
744 	synchronize_srcu(&md->io_barrier);
745 	synchronize_rcu_expedited();
746 }
747 
748 /*
749  * A fast alternative to dm_get_live_table/dm_put_live_table.
750  * The caller must not block between these two functions.
751  */
752 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
753 {
754 	rcu_read_lock();
755 	return rcu_dereference(md->map);
756 }
757 
758 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
759 {
760 	rcu_read_unlock();
761 }
762 
763 static char *_dm_claim_ptr = "I belong to device-mapper";
764 
765 /*
766  * Open a table device so we can use it as a map destination.
767  */
768 static int open_table_device(struct table_device *td, dev_t dev,
769 			     struct mapped_device *md)
770 {
771 	struct block_device *bdev;
772 
773 	int r;
774 
775 	BUG_ON(td->dm_dev.bdev);
776 
777 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
778 	if (IS_ERR(bdev))
779 		return PTR_ERR(bdev);
780 
781 	r = bd_link_disk_holder(bdev, dm_disk(md));
782 	if (r) {
783 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
784 		return r;
785 	}
786 
787 	td->dm_dev.bdev = bdev;
788 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
789 	return 0;
790 }
791 
792 /*
793  * Close a table device that we've been using.
794  */
795 static void close_table_device(struct table_device *td, struct mapped_device *md)
796 {
797 	if (!td->dm_dev.bdev)
798 		return;
799 
800 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
801 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
802 	put_dax(td->dm_dev.dax_dev);
803 	td->dm_dev.bdev = NULL;
804 	td->dm_dev.dax_dev = NULL;
805 }
806 
807 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
808 					      fmode_t mode)
809 {
810 	struct table_device *td;
811 
812 	list_for_each_entry(td, l, list)
813 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
814 			return td;
815 
816 	return NULL;
817 }
818 
819 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
820 			struct dm_dev **result)
821 {
822 	int r;
823 	struct table_device *td;
824 
825 	mutex_lock(&md->table_devices_lock);
826 	td = find_table_device(&md->table_devices, dev, mode);
827 	if (!td) {
828 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
829 		if (!td) {
830 			mutex_unlock(&md->table_devices_lock);
831 			return -ENOMEM;
832 		}
833 
834 		td->dm_dev.mode = mode;
835 		td->dm_dev.bdev = NULL;
836 
837 		if ((r = open_table_device(td, dev, md))) {
838 			mutex_unlock(&md->table_devices_lock);
839 			kfree(td);
840 			return r;
841 		}
842 
843 		format_dev_t(td->dm_dev.name, dev);
844 
845 		refcount_set(&td->count, 1);
846 		list_add(&td->list, &md->table_devices);
847 	} else {
848 		refcount_inc(&td->count);
849 	}
850 	mutex_unlock(&md->table_devices_lock);
851 
852 	*result = &td->dm_dev;
853 	return 0;
854 }
855 EXPORT_SYMBOL_GPL(dm_get_table_device);
856 
857 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
858 {
859 	struct table_device *td = container_of(d, struct table_device, dm_dev);
860 
861 	mutex_lock(&md->table_devices_lock);
862 	if (refcount_dec_and_test(&td->count)) {
863 		close_table_device(td, md);
864 		list_del(&td->list);
865 		kfree(td);
866 	}
867 	mutex_unlock(&md->table_devices_lock);
868 }
869 EXPORT_SYMBOL(dm_put_table_device);
870 
871 static void free_table_devices(struct list_head *devices)
872 {
873 	struct list_head *tmp, *next;
874 
875 	list_for_each_safe(tmp, next, devices) {
876 		struct table_device *td = list_entry(tmp, struct table_device, list);
877 
878 		DMWARN("dm_destroy: %s still exists with %d references",
879 		       td->dm_dev.name, refcount_read(&td->count));
880 		kfree(td);
881 	}
882 }
883 
884 /*
885  * Get the geometry associated with a dm device
886  */
887 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
888 {
889 	*geo = md->geometry;
890 
891 	return 0;
892 }
893 
894 /*
895  * Set the geometry of a device.
896  */
897 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
898 {
899 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
900 
901 	if (geo->start > sz) {
902 		DMWARN("Start sector is beyond the geometry limits.");
903 		return -EINVAL;
904 	}
905 
906 	md->geometry = *geo;
907 
908 	return 0;
909 }
910 
911 static int __noflush_suspending(struct mapped_device *md)
912 {
913 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
914 }
915 
916 /*
917  * Decrements the number of outstanding ios that a bio has been
918  * cloned into, completing the original io if necc.
919  */
920 static void dec_pending(struct dm_io *io, blk_status_t error)
921 {
922 	unsigned long flags;
923 	blk_status_t io_error;
924 	struct bio *bio;
925 	struct mapped_device *md = io->md;
926 
927 	/* Push-back supersedes any I/O errors */
928 	if (unlikely(error)) {
929 		spin_lock_irqsave(&io->endio_lock, flags);
930 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
931 			io->status = error;
932 		spin_unlock_irqrestore(&io->endio_lock, flags);
933 	}
934 
935 	if (atomic_dec_and_test(&io->io_count)) {
936 		if (io->status == BLK_STS_DM_REQUEUE) {
937 			/*
938 			 * Target requested pushing back the I/O.
939 			 */
940 			spin_lock_irqsave(&md->deferred_lock, flags);
941 			if (__noflush_suspending(md))
942 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
943 				bio_list_add_head(&md->deferred, io->orig_bio);
944 			else
945 				/* noflush suspend was interrupted. */
946 				io->status = BLK_STS_IOERR;
947 			spin_unlock_irqrestore(&md->deferred_lock, flags);
948 		}
949 
950 		io_error = io->status;
951 		bio = io->orig_bio;
952 		end_io_acct(io);
953 		free_io(md, io);
954 
955 		if (io_error == BLK_STS_DM_REQUEUE)
956 			return;
957 
958 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
959 			/*
960 			 * Preflush done for flush with data, reissue
961 			 * without REQ_PREFLUSH.
962 			 */
963 			bio->bi_opf &= ~REQ_PREFLUSH;
964 			queue_io(md, bio);
965 		} else {
966 			/* done with normal IO or empty flush */
967 			if (io_error)
968 				bio->bi_status = io_error;
969 			bio_endio(bio);
970 		}
971 	}
972 }
973 
974 void disable_discard(struct mapped_device *md)
975 {
976 	struct queue_limits *limits = dm_get_queue_limits(md);
977 
978 	/* device doesn't really support DISCARD, disable it */
979 	limits->max_discard_sectors = 0;
980 	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
981 }
982 
983 void disable_write_same(struct mapped_device *md)
984 {
985 	struct queue_limits *limits = dm_get_queue_limits(md);
986 
987 	/* device doesn't really support WRITE SAME, disable it */
988 	limits->max_write_same_sectors = 0;
989 }
990 
991 void disable_write_zeroes(struct mapped_device *md)
992 {
993 	struct queue_limits *limits = dm_get_queue_limits(md);
994 
995 	/* device doesn't really support WRITE ZEROES, disable it */
996 	limits->max_write_zeroes_sectors = 0;
997 }
998 
999 static void clone_endio(struct bio *bio)
1000 {
1001 	blk_status_t error = bio->bi_status;
1002 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1003 	struct dm_io *io = tio->io;
1004 	struct mapped_device *md = tio->io->md;
1005 	dm_endio_fn endio = tio->ti->type->end_io;
1006 
1007 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
1008 		if (bio_op(bio) == REQ_OP_DISCARD &&
1009 		    !bio->bi_disk->queue->limits.max_discard_sectors)
1010 			disable_discard(md);
1011 		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1012 			 !bio->bi_disk->queue->limits.max_write_same_sectors)
1013 			disable_write_same(md);
1014 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1015 			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1016 			disable_write_zeroes(md);
1017 	}
1018 
1019 	if (endio) {
1020 		int r = endio(tio->ti, bio, &error);
1021 		switch (r) {
1022 		case DM_ENDIO_REQUEUE:
1023 			error = BLK_STS_DM_REQUEUE;
1024 			/*FALLTHRU*/
1025 		case DM_ENDIO_DONE:
1026 			break;
1027 		case DM_ENDIO_INCOMPLETE:
1028 			/* The target will handle the io */
1029 			return;
1030 		default:
1031 			DMWARN("unimplemented target endio return value: %d", r);
1032 			BUG();
1033 		}
1034 	}
1035 
1036 	free_tio(tio);
1037 	dec_pending(io, error);
1038 }
1039 
1040 /*
1041  * Return maximum size of I/O possible at the supplied sector up to the current
1042  * target boundary.
1043  */
1044 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1045 {
1046 	sector_t target_offset = dm_target_offset(ti, sector);
1047 
1048 	return ti->len - target_offset;
1049 }
1050 
1051 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1052 {
1053 	sector_t len = max_io_len_target_boundary(sector, ti);
1054 	sector_t offset, max_len;
1055 
1056 	/*
1057 	 * Does the target need to split even further?
1058 	 */
1059 	if (ti->max_io_len) {
1060 		offset = dm_target_offset(ti, sector);
1061 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1062 			max_len = sector_div(offset, ti->max_io_len);
1063 		else
1064 			max_len = offset & (ti->max_io_len - 1);
1065 		max_len = ti->max_io_len - max_len;
1066 
1067 		if (len > max_len)
1068 			len = max_len;
1069 	}
1070 
1071 	return len;
1072 }
1073 
1074 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1075 {
1076 	if (len > UINT_MAX) {
1077 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1078 		      (unsigned long long)len, UINT_MAX);
1079 		ti->error = "Maximum size of target IO is too large";
1080 		return -EINVAL;
1081 	}
1082 
1083 	ti->max_io_len = (uint32_t) len;
1084 
1085 	return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1088 
1089 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1090 						sector_t sector, int *srcu_idx)
1091 	__acquires(md->io_barrier)
1092 {
1093 	struct dm_table *map;
1094 	struct dm_target *ti;
1095 
1096 	map = dm_get_live_table(md, srcu_idx);
1097 	if (!map)
1098 		return NULL;
1099 
1100 	ti = dm_table_find_target(map, sector);
1101 	if (!ti)
1102 		return NULL;
1103 
1104 	return ti;
1105 }
1106 
1107 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1108 				 long nr_pages, void **kaddr, pfn_t *pfn)
1109 {
1110 	struct mapped_device *md = dax_get_private(dax_dev);
1111 	sector_t sector = pgoff * PAGE_SECTORS;
1112 	struct dm_target *ti;
1113 	long len, ret = -EIO;
1114 	int srcu_idx;
1115 
1116 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1117 
1118 	if (!ti)
1119 		goto out;
1120 	if (!ti->type->direct_access)
1121 		goto out;
1122 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1123 	if (len < 1)
1124 		goto out;
1125 	nr_pages = min(len, nr_pages);
1126 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1127 
1128  out:
1129 	dm_put_live_table(md, srcu_idx);
1130 
1131 	return ret;
1132 }
1133 
1134 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1135 		int blocksize, sector_t start, sector_t len)
1136 {
1137 	struct mapped_device *md = dax_get_private(dax_dev);
1138 	struct dm_table *map;
1139 	int srcu_idx;
1140 	bool ret;
1141 
1142 	map = dm_get_live_table(md, &srcu_idx);
1143 	if (!map)
1144 		return false;
1145 
1146 	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1147 
1148 	dm_put_live_table(md, srcu_idx);
1149 
1150 	return ret;
1151 }
1152 
1153 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1154 				    void *addr, size_t bytes, struct iov_iter *i)
1155 {
1156 	struct mapped_device *md = dax_get_private(dax_dev);
1157 	sector_t sector = pgoff * PAGE_SECTORS;
1158 	struct dm_target *ti;
1159 	long ret = 0;
1160 	int srcu_idx;
1161 
1162 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1163 
1164 	if (!ti)
1165 		goto out;
1166 	if (!ti->type->dax_copy_from_iter) {
1167 		ret = copy_from_iter(addr, bytes, i);
1168 		goto out;
1169 	}
1170 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1171  out:
1172 	dm_put_live_table(md, srcu_idx);
1173 
1174 	return ret;
1175 }
1176 
1177 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1178 		void *addr, size_t bytes, struct iov_iter *i)
1179 {
1180 	struct mapped_device *md = dax_get_private(dax_dev);
1181 	sector_t sector = pgoff * PAGE_SECTORS;
1182 	struct dm_target *ti;
1183 	long ret = 0;
1184 	int srcu_idx;
1185 
1186 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1187 
1188 	if (!ti)
1189 		goto out;
1190 	if (!ti->type->dax_copy_to_iter) {
1191 		ret = copy_to_iter(addr, bytes, i);
1192 		goto out;
1193 	}
1194 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1195  out:
1196 	dm_put_live_table(md, srcu_idx);
1197 
1198 	return ret;
1199 }
1200 
1201 /*
1202  * A target may call dm_accept_partial_bio only from the map routine.  It is
1203  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1204  * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1205  *
1206  * dm_accept_partial_bio informs the dm that the target only wants to process
1207  * additional n_sectors sectors of the bio and the rest of the data should be
1208  * sent in a next bio.
1209  *
1210  * A diagram that explains the arithmetics:
1211  * +--------------------+---------------+-------+
1212  * |         1          |       2       |   3   |
1213  * +--------------------+---------------+-------+
1214  *
1215  * <-------------- *tio->len_ptr --------------->
1216  *                      <------- bi_size ------->
1217  *                      <-- n_sectors -->
1218  *
1219  * Region 1 was already iterated over with bio_advance or similar function.
1220  *	(it may be empty if the target doesn't use bio_advance)
1221  * Region 2 is the remaining bio size that the target wants to process.
1222  *	(it may be empty if region 1 is non-empty, although there is no reason
1223  *	 to make it empty)
1224  * The target requires that region 3 is to be sent in the next bio.
1225  *
1226  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1227  * the partially processed part (the sum of regions 1+2) must be the same for all
1228  * copies of the bio.
1229  */
1230 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1231 {
1232 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1233 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1234 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1235 	BUG_ON(bi_size > *tio->len_ptr);
1236 	BUG_ON(n_sectors > bi_size);
1237 	*tio->len_ptr -= bi_size - n_sectors;
1238 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1239 }
1240 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1241 
1242 static blk_qc_t __map_bio(struct dm_target_io *tio)
1243 {
1244 	int r;
1245 	sector_t sector;
1246 	struct bio *clone = &tio->clone;
1247 	struct dm_io *io = tio->io;
1248 	struct mapped_device *md = io->md;
1249 	struct dm_target *ti = tio->ti;
1250 	blk_qc_t ret = BLK_QC_T_NONE;
1251 
1252 	clone->bi_end_io = clone_endio;
1253 
1254 	/*
1255 	 * Map the clone.  If r == 0 we don't need to do
1256 	 * anything, the target has assumed ownership of
1257 	 * this io.
1258 	 */
1259 	atomic_inc(&io->io_count);
1260 	sector = clone->bi_iter.bi_sector;
1261 
1262 	r = ti->type->map(ti, clone);
1263 	switch (r) {
1264 	case DM_MAPIO_SUBMITTED:
1265 		break;
1266 	case DM_MAPIO_REMAPPED:
1267 		/* the bio has been remapped so dispatch it */
1268 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1269 				      bio_dev(io->orig_bio), sector);
1270 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1271 			ret = direct_make_request(clone);
1272 		else
1273 			ret = generic_make_request(clone);
1274 		break;
1275 	case DM_MAPIO_KILL:
1276 		free_tio(tio);
1277 		dec_pending(io, BLK_STS_IOERR);
1278 		break;
1279 	case DM_MAPIO_REQUEUE:
1280 		free_tio(tio);
1281 		dec_pending(io, BLK_STS_DM_REQUEUE);
1282 		break;
1283 	default:
1284 		DMWARN("unimplemented target map return value: %d", r);
1285 		BUG();
1286 	}
1287 
1288 	return ret;
1289 }
1290 
1291 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1292 {
1293 	bio->bi_iter.bi_sector = sector;
1294 	bio->bi_iter.bi_size = to_bytes(len);
1295 }
1296 
1297 /*
1298  * Creates a bio that consists of range of complete bvecs.
1299  */
1300 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1301 		     sector_t sector, unsigned len)
1302 {
1303 	struct bio *clone = &tio->clone;
1304 
1305 	__bio_clone_fast(clone, bio);
1306 
1307 	if (bio_integrity(bio)) {
1308 		int r;
1309 
1310 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1311 			     !dm_target_passes_integrity(tio->ti->type))) {
1312 			DMWARN("%s: the target %s doesn't support integrity data.",
1313 				dm_device_name(tio->io->md),
1314 				tio->ti->type->name);
1315 			return -EIO;
1316 		}
1317 
1318 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1319 		if (r < 0)
1320 			return r;
1321 	}
1322 
1323 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1324 	clone->bi_iter.bi_size = to_bytes(len);
1325 
1326 	if (bio_integrity(bio))
1327 		bio_integrity_trim(clone);
1328 
1329 	return 0;
1330 }
1331 
1332 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1333 				struct dm_target *ti, unsigned num_bios)
1334 {
1335 	struct dm_target_io *tio;
1336 	int try;
1337 
1338 	if (!num_bios)
1339 		return;
1340 
1341 	if (num_bios == 1) {
1342 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1343 		bio_list_add(blist, &tio->clone);
1344 		return;
1345 	}
1346 
1347 	for (try = 0; try < 2; try++) {
1348 		int bio_nr;
1349 		struct bio *bio;
1350 
1351 		if (try)
1352 			mutex_lock(&ci->io->md->table_devices_lock);
1353 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1354 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1355 			if (!tio)
1356 				break;
1357 
1358 			bio_list_add(blist, &tio->clone);
1359 		}
1360 		if (try)
1361 			mutex_unlock(&ci->io->md->table_devices_lock);
1362 		if (bio_nr == num_bios)
1363 			return;
1364 
1365 		while ((bio = bio_list_pop(blist))) {
1366 			tio = container_of(bio, struct dm_target_io, clone);
1367 			free_tio(tio);
1368 		}
1369 	}
1370 }
1371 
1372 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1373 					   struct dm_target_io *tio, unsigned *len)
1374 {
1375 	struct bio *clone = &tio->clone;
1376 
1377 	tio->len_ptr = len;
1378 
1379 	__bio_clone_fast(clone, ci->bio);
1380 	if (len)
1381 		bio_setup_sector(clone, ci->sector, *len);
1382 
1383 	return __map_bio(tio);
1384 }
1385 
1386 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1387 				  unsigned num_bios, unsigned *len)
1388 {
1389 	struct bio_list blist = BIO_EMPTY_LIST;
1390 	struct bio *bio;
1391 	struct dm_target_io *tio;
1392 
1393 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1394 
1395 	while ((bio = bio_list_pop(&blist))) {
1396 		tio = container_of(bio, struct dm_target_io, clone);
1397 		(void) __clone_and_map_simple_bio(ci, tio, len);
1398 	}
1399 }
1400 
1401 static int __send_empty_flush(struct clone_info *ci)
1402 {
1403 	unsigned target_nr = 0;
1404 	struct dm_target *ti;
1405 
1406 	/*
1407 	 * Empty flush uses a statically initialized bio, as the base for
1408 	 * cloning.  However, blkg association requires that a bdev is
1409 	 * associated with a gendisk, which doesn't happen until the bdev is
1410 	 * opened.  So, blkg association is done at issue time of the flush
1411 	 * rather than when the device is created in alloc_dev().
1412 	 */
1413 	bio_set_dev(ci->bio, ci->io->md->bdev);
1414 
1415 	BUG_ON(bio_has_data(ci->bio));
1416 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1417 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1418 
1419 	bio_disassociate_blkg(ci->bio);
1420 
1421 	return 0;
1422 }
1423 
1424 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1425 				    sector_t sector, unsigned *len)
1426 {
1427 	struct bio *bio = ci->bio;
1428 	struct dm_target_io *tio;
1429 	int r;
1430 
1431 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1432 	tio->len_ptr = len;
1433 	r = clone_bio(tio, bio, sector, *len);
1434 	if (r < 0) {
1435 		free_tio(tio);
1436 		return r;
1437 	}
1438 	(void) __map_bio(tio);
1439 
1440 	return 0;
1441 }
1442 
1443 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1444 
1445 static unsigned get_num_discard_bios(struct dm_target *ti)
1446 {
1447 	return ti->num_discard_bios;
1448 }
1449 
1450 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1451 {
1452 	return ti->num_secure_erase_bios;
1453 }
1454 
1455 static unsigned get_num_write_same_bios(struct dm_target *ti)
1456 {
1457 	return ti->num_write_same_bios;
1458 }
1459 
1460 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1461 {
1462 	return ti->num_write_zeroes_bios;
1463 }
1464 
1465 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1466 				       unsigned num_bios)
1467 {
1468 	unsigned len;
1469 
1470 	/*
1471 	 * Even though the device advertised support for this type of
1472 	 * request, that does not mean every target supports it, and
1473 	 * reconfiguration might also have changed that since the
1474 	 * check was performed.
1475 	 */
1476 	if (!num_bios)
1477 		return -EOPNOTSUPP;
1478 
1479 	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1480 
1481 	__send_duplicate_bios(ci, ti, num_bios, &len);
1482 
1483 	ci->sector += len;
1484 	ci->sector_count -= len;
1485 
1486 	return 0;
1487 }
1488 
1489 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1490 {
1491 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1492 }
1493 
1494 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1495 {
1496 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1497 }
1498 
1499 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1500 {
1501 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1502 }
1503 
1504 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1505 {
1506 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1507 }
1508 
1509 static bool is_abnormal_io(struct bio *bio)
1510 {
1511 	bool r = false;
1512 
1513 	switch (bio_op(bio)) {
1514 	case REQ_OP_DISCARD:
1515 	case REQ_OP_SECURE_ERASE:
1516 	case REQ_OP_WRITE_SAME:
1517 	case REQ_OP_WRITE_ZEROES:
1518 		r = true;
1519 		break;
1520 	}
1521 
1522 	return r;
1523 }
1524 
1525 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1526 				  int *result)
1527 {
1528 	struct bio *bio = ci->bio;
1529 
1530 	if (bio_op(bio) == REQ_OP_DISCARD)
1531 		*result = __send_discard(ci, ti);
1532 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1533 		*result = __send_secure_erase(ci, ti);
1534 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1535 		*result = __send_write_same(ci, ti);
1536 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1537 		*result = __send_write_zeroes(ci, ti);
1538 	else
1539 		return false;
1540 
1541 	return true;
1542 }
1543 
1544 /*
1545  * Select the correct strategy for processing a non-flush bio.
1546  */
1547 static int __split_and_process_non_flush(struct clone_info *ci)
1548 {
1549 	struct dm_target *ti;
1550 	unsigned len;
1551 	int r;
1552 
1553 	ti = dm_table_find_target(ci->map, ci->sector);
1554 	if (!ti)
1555 		return -EIO;
1556 
1557 	if (__process_abnormal_io(ci, ti, &r))
1558 		return r;
1559 
1560 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1561 
1562 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1563 	if (r < 0)
1564 		return r;
1565 
1566 	ci->sector += len;
1567 	ci->sector_count -= len;
1568 
1569 	return 0;
1570 }
1571 
1572 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1573 			    struct dm_table *map, struct bio *bio)
1574 {
1575 	ci->map = map;
1576 	ci->io = alloc_io(md, bio);
1577 	ci->sector = bio->bi_iter.bi_sector;
1578 }
1579 
1580 #define __dm_part_stat_sub(part, field, subnd)	\
1581 	(part_stat_get(part, field) -= (subnd))
1582 
1583 /*
1584  * Entry point to split a bio into clones and submit them to the targets.
1585  */
1586 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1587 					struct dm_table *map, struct bio *bio)
1588 {
1589 	struct clone_info ci;
1590 	blk_qc_t ret = BLK_QC_T_NONE;
1591 	int error = 0;
1592 
1593 	init_clone_info(&ci, md, map, bio);
1594 
1595 	if (bio->bi_opf & REQ_PREFLUSH) {
1596 		struct bio flush_bio;
1597 
1598 		/*
1599 		 * Use an on-stack bio for this, it's safe since we don't
1600 		 * need to reference it after submit. It's just used as
1601 		 * the basis for the clone(s).
1602 		 */
1603 		bio_init(&flush_bio, NULL, 0);
1604 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1605 		ci.bio = &flush_bio;
1606 		ci.sector_count = 0;
1607 		error = __send_empty_flush(&ci);
1608 		/* dec_pending submits any data associated with flush */
1609 	} else if (op_is_zone_mgmt(bio_op(bio))) {
1610 		ci.bio = bio;
1611 		ci.sector_count = 0;
1612 		error = __split_and_process_non_flush(&ci);
1613 	} else {
1614 		ci.bio = bio;
1615 		ci.sector_count = bio_sectors(bio);
1616 		while (ci.sector_count && !error) {
1617 			error = __split_and_process_non_flush(&ci);
1618 			if (current->bio_list && ci.sector_count && !error) {
1619 				/*
1620 				 * Remainder must be passed to generic_make_request()
1621 				 * so that it gets handled *after* bios already submitted
1622 				 * have been completely processed.
1623 				 * We take a clone of the original to store in
1624 				 * ci.io->orig_bio to be used by end_io_acct() and
1625 				 * for dec_pending to use for completion handling.
1626 				 */
1627 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1628 							  GFP_NOIO, &md->queue->bio_split);
1629 				ci.io->orig_bio = b;
1630 
1631 				/*
1632 				 * Adjust IO stats for each split, otherwise upon queue
1633 				 * reentry there will be redundant IO accounting.
1634 				 * NOTE: this is a stop-gap fix, a proper fix involves
1635 				 * significant refactoring of DM core's bio splitting
1636 				 * (by eliminating DM's splitting and just using bio_split)
1637 				 */
1638 				part_stat_lock();
1639 				__dm_part_stat_sub(&dm_disk(md)->part0,
1640 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1641 				part_stat_unlock();
1642 
1643 				bio_chain(b, bio);
1644 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1645 				ret = generic_make_request(bio);
1646 				break;
1647 			}
1648 		}
1649 	}
1650 
1651 	/* drop the extra reference count */
1652 	dec_pending(ci.io, errno_to_blk_status(error));
1653 	return ret;
1654 }
1655 
1656 /*
1657  * Optimized variant of __split_and_process_bio that leverages the
1658  * fact that targets that use it do _not_ have a need to split bios.
1659  */
1660 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1661 			      struct bio *bio, struct dm_target *ti)
1662 {
1663 	struct clone_info ci;
1664 	blk_qc_t ret = BLK_QC_T_NONE;
1665 	int error = 0;
1666 
1667 	init_clone_info(&ci, md, map, bio);
1668 
1669 	if (bio->bi_opf & REQ_PREFLUSH) {
1670 		struct bio flush_bio;
1671 
1672 		/*
1673 		 * Use an on-stack bio for this, it's safe since we don't
1674 		 * need to reference it after submit. It's just used as
1675 		 * the basis for the clone(s).
1676 		 */
1677 		bio_init(&flush_bio, NULL, 0);
1678 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1679 		ci.bio = &flush_bio;
1680 		ci.sector_count = 0;
1681 		error = __send_empty_flush(&ci);
1682 		/* dec_pending submits any data associated with flush */
1683 	} else {
1684 		struct dm_target_io *tio;
1685 
1686 		ci.bio = bio;
1687 		ci.sector_count = bio_sectors(bio);
1688 		if (__process_abnormal_io(&ci, ti, &error))
1689 			goto out;
1690 
1691 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1692 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1693 	}
1694 out:
1695 	/* drop the extra reference count */
1696 	dec_pending(ci.io, errno_to_blk_status(error));
1697 	return ret;
1698 }
1699 
1700 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1701 {
1702 	unsigned len, sector_count;
1703 
1704 	sector_count = bio_sectors(*bio);
1705 	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1706 
1707 	if (sector_count > len) {
1708 		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
1709 
1710 		bio_chain(split, *bio);
1711 		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1712 		generic_make_request(*bio);
1713 		*bio = split;
1714 	}
1715 }
1716 
1717 static blk_qc_t dm_process_bio(struct mapped_device *md,
1718 			       struct dm_table *map, struct bio *bio)
1719 {
1720 	blk_qc_t ret = BLK_QC_T_NONE;
1721 	struct dm_target *ti = md->immutable_target;
1722 
1723 	if (unlikely(!map)) {
1724 		bio_io_error(bio);
1725 		return ret;
1726 	}
1727 
1728 	if (!ti) {
1729 		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1730 		if (unlikely(!ti)) {
1731 			bio_io_error(bio);
1732 			return ret;
1733 		}
1734 	}
1735 
1736 	/*
1737 	 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1738 	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1739 	 * won't be imposed.
1740 	 */
1741 	if (current->bio_list) {
1742 		blk_queue_split(md->queue, &bio);
1743 		if (!is_abnormal_io(bio))
1744 			dm_queue_split(md, ti, &bio);
1745 	}
1746 
1747 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1748 		return __process_bio(md, map, bio, ti);
1749 	else
1750 		return __split_and_process_bio(md, map, bio);
1751 }
1752 
1753 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1754 {
1755 	struct mapped_device *md = q->queuedata;
1756 	blk_qc_t ret = BLK_QC_T_NONE;
1757 	int srcu_idx;
1758 	struct dm_table *map;
1759 
1760 	map = dm_get_live_table(md, &srcu_idx);
1761 
1762 	/* if we're suspended, we have to queue this io for later */
1763 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1764 		dm_put_live_table(md, srcu_idx);
1765 
1766 		if (!(bio->bi_opf & REQ_RAHEAD))
1767 			queue_io(md, bio);
1768 		else
1769 			bio_io_error(bio);
1770 		return ret;
1771 	}
1772 
1773 	ret = dm_process_bio(md, map, bio);
1774 
1775 	dm_put_live_table(md, srcu_idx);
1776 	return ret;
1777 }
1778 
1779 static int dm_any_congested(void *congested_data, int bdi_bits)
1780 {
1781 	int r = bdi_bits;
1782 	struct mapped_device *md = congested_data;
1783 	struct dm_table *map;
1784 
1785 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1786 		if (dm_request_based(md)) {
1787 			/*
1788 			 * With request-based DM we only need to check the
1789 			 * top-level queue for congestion.
1790 			 */
1791 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1792 		} else {
1793 			map = dm_get_live_table_fast(md);
1794 			if (map)
1795 				r = dm_table_any_congested(map, bdi_bits);
1796 			dm_put_live_table_fast(md);
1797 		}
1798 	}
1799 
1800 	return r;
1801 }
1802 
1803 /*-----------------------------------------------------------------
1804  * An IDR is used to keep track of allocated minor numbers.
1805  *---------------------------------------------------------------*/
1806 static void free_minor(int minor)
1807 {
1808 	spin_lock(&_minor_lock);
1809 	idr_remove(&_minor_idr, minor);
1810 	spin_unlock(&_minor_lock);
1811 }
1812 
1813 /*
1814  * See if the device with a specific minor # is free.
1815  */
1816 static int specific_minor(int minor)
1817 {
1818 	int r;
1819 
1820 	if (minor >= (1 << MINORBITS))
1821 		return -EINVAL;
1822 
1823 	idr_preload(GFP_KERNEL);
1824 	spin_lock(&_minor_lock);
1825 
1826 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1827 
1828 	spin_unlock(&_minor_lock);
1829 	idr_preload_end();
1830 	if (r < 0)
1831 		return r == -ENOSPC ? -EBUSY : r;
1832 	return 0;
1833 }
1834 
1835 static int next_free_minor(int *minor)
1836 {
1837 	int r;
1838 
1839 	idr_preload(GFP_KERNEL);
1840 	spin_lock(&_minor_lock);
1841 
1842 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1843 
1844 	spin_unlock(&_minor_lock);
1845 	idr_preload_end();
1846 	if (r < 0)
1847 		return r;
1848 	*minor = r;
1849 	return 0;
1850 }
1851 
1852 static const struct block_device_operations dm_blk_dops;
1853 static const struct dax_operations dm_dax_ops;
1854 
1855 static void dm_wq_work(struct work_struct *work);
1856 
1857 static void dm_init_normal_md_queue(struct mapped_device *md)
1858 {
1859 	/*
1860 	 * Initialize aspects of queue that aren't relevant for blk-mq
1861 	 */
1862 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1863 }
1864 
1865 static void cleanup_mapped_device(struct mapped_device *md)
1866 {
1867 	if (md->wq)
1868 		destroy_workqueue(md->wq);
1869 	bioset_exit(&md->bs);
1870 	bioset_exit(&md->io_bs);
1871 
1872 	if (md->dax_dev) {
1873 		kill_dax(md->dax_dev);
1874 		put_dax(md->dax_dev);
1875 		md->dax_dev = NULL;
1876 	}
1877 
1878 	if (md->disk) {
1879 		spin_lock(&_minor_lock);
1880 		md->disk->private_data = NULL;
1881 		spin_unlock(&_minor_lock);
1882 		del_gendisk(md->disk);
1883 		put_disk(md->disk);
1884 	}
1885 
1886 	if (md->queue)
1887 		blk_cleanup_queue(md->queue);
1888 
1889 	cleanup_srcu_struct(&md->io_barrier);
1890 
1891 	if (md->bdev) {
1892 		bdput(md->bdev);
1893 		md->bdev = NULL;
1894 	}
1895 
1896 	mutex_destroy(&md->suspend_lock);
1897 	mutex_destroy(&md->type_lock);
1898 	mutex_destroy(&md->table_devices_lock);
1899 
1900 	dm_mq_cleanup_mapped_device(md);
1901 }
1902 
1903 /*
1904  * Allocate and initialise a blank device with a given minor.
1905  */
1906 static struct mapped_device *alloc_dev(int minor)
1907 {
1908 	int r, numa_node_id = dm_get_numa_node();
1909 	struct mapped_device *md;
1910 	void *old_md;
1911 
1912 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1913 	if (!md) {
1914 		DMWARN("unable to allocate device, out of memory.");
1915 		return NULL;
1916 	}
1917 
1918 	if (!try_module_get(THIS_MODULE))
1919 		goto bad_module_get;
1920 
1921 	/* get a minor number for the dev */
1922 	if (minor == DM_ANY_MINOR)
1923 		r = next_free_minor(&minor);
1924 	else
1925 		r = specific_minor(minor);
1926 	if (r < 0)
1927 		goto bad_minor;
1928 
1929 	r = init_srcu_struct(&md->io_barrier);
1930 	if (r < 0)
1931 		goto bad_io_barrier;
1932 
1933 	md->numa_node_id = numa_node_id;
1934 	md->init_tio_pdu = false;
1935 	md->type = DM_TYPE_NONE;
1936 	mutex_init(&md->suspend_lock);
1937 	mutex_init(&md->type_lock);
1938 	mutex_init(&md->table_devices_lock);
1939 	spin_lock_init(&md->deferred_lock);
1940 	atomic_set(&md->holders, 1);
1941 	atomic_set(&md->open_count, 0);
1942 	atomic_set(&md->event_nr, 0);
1943 	atomic_set(&md->uevent_seq, 0);
1944 	INIT_LIST_HEAD(&md->uevent_list);
1945 	INIT_LIST_HEAD(&md->table_devices);
1946 	spin_lock_init(&md->uevent_lock);
1947 
1948 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1949 	if (!md->queue)
1950 		goto bad;
1951 	md->queue->queuedata = md;
1952 	md->queue->backing_dev_info->congested_data = md;
1953 
1954 	md->disk = alloc_disk_node(1, md->numa_node_id);
1955 	if (!md->disk)
1956 		goto bad;
1957 
1958 	init_waitqueue_head(&md->wait);
1959 	INIT_WORK(&md->work, dm_wq_work);
1960 	init_waitqueue_head(&md->eventq);
1961 	init_completion(&md->kobj_holder.completion);
1962 
1963 	md->disk->major = _major;
1964 	md->disk->first_minor = minor;
1965 	md->disk->fops = &dm_blk_dops;
1966 	md->disk->queue = md->queue;
1967 	md->disk->private_data = md;
1968 	sprintf(md->disk->disk_name, "dm-%d", minor);
1969 
1970 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1971 		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1972 					&dm_dax_ops, 0);
1973 		if (!md->dax_dev)
1974 			goto bad;
1975 	}
1976 
1977 	add_disk_no_queue_reg(md->disk);
1978 	format_dev_t(md->name, MKDEV(_major, minor));
1979 
1980 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1981 	if (!md->wq)
1982 		goto bad;
1983 
1984 	md->bdev = bdget_disk(md->disk, 0);
1985 	if (!md->bdev)
1986 		goto bad;
1987 
1988 	dm_stats_init(&md->stats);
1989 
1990 	/* Populate the mapping, nobody knows we exist yet */
1991 	spin_lock(&_minor_lock);
1992 	old_md = idr_replace(&_minor_idr, md, minor);
1993 	spin_unlock(&_minor_lock);
1994 
1995 	BUG_ON(old_md != MINOR_ALLOCED);
1996 
1997 	return md;
1998 
1999 bad:
2000 	cleanup_mapped_device(md);
2001 bad_io_barrier:
2002 	free_minor(minor);
2003 bad_minor:
2004 	module_put(THIS_MODULE);
2005 bad_module_get:
2006 	kvfree(md);
2007 	return NULL;
2008 }
2009 
2010 static void unlock_fs(struct mapped_device *md);
2011 
2012 static void free_dev(struct mapped_device *md)
2013 {
2014 	int minor = MINOR(disk_devt(md->disk));
2015 
2016 	unlock_fs(md);
2017 
2018 	cleanup_mapped_device(md);
2019 
2020 	free_table_devices(&md->table_devices);
2021 	dm_stats_cleanup(&md->stats);
2022 	free_minor(minor);
2023 
2024 	module_put(THIS_MODULE);
2025 	kvfree(md);
2026 }
2027 
2028 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2029 {
2030 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2031 	int ret = 0;
2032 
2033 	if (dm_table_bio_based(t)) {
2034 		/*
2035 		 * The md may already have mempools that need changing.
2036 		 * If so, reload bioset because front_pad may have changed
2037 		 * because a different table was loaded.
2038 		 */
2039 		bioset_exit(&md->bs);
2040 		bioset_exit(&md->io_bs);
2041 
2042 	} else if (bioset_initialized(&md->bs)) {
2043 		/*
2044 		 * There's no need to reload with request-based dm
2045 		 * because the size of front_pad doesn't change.
2046 		 * Note for future: If you are to reload bioset,
2047 		 * prep-ed requests in the queue may refer
2048 		 * to bio from the old bioset, so you must walk
2049 		 * through the queue to unprep.
2050 		 */
2051 		goto out;
2052 	}
2053 
2054 	BUG_ON(!p ||
2055 	       bioset_initialized(&md->bs) ||
2056 	       bioset_initialized(&md->io_bs));
2057 
2058 	ret = bioset_init_from_src(&md->bs, &p->bs);
2059 	if (ret)
2060 		goto out;
2061 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2062 	if (ret)
2063 		bioset_exit(&md->bs);
2064 out:
2065 	/* mempool bind completed, no longer need any mempools in the table */
2066 	dm_table_free_md_mempools(t);
2067 	return ret;
2068 }
2069 
2070 /*
2071  * Bind a table to the device.
2072  */
2073 static void event_callback(void *context)
2074 {
2075 	unsigned long flags;
2076 	LIST_HEAD(uevents);
2077 	struct mapped_device *md = (struct mapped_device *) context;
2078 
2079 	spin_lock_irqsave(&md->uevent_lock, flags);
2080 	list_splice_init(&md->uevent_list, &uevents);
2081 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2082 
2083 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2084 
2085 	atomic_inc(&md->event_nr);
2086 	wake_up(&md->eventq);
2087 	dm_issue_global_event();
2088 }
2089 
2090 /*
2091  * Protected by md->suspend_lock obtained by dm_swap_table().
2092  */
2093 static void __set_size(struct mapped_device *md, sector_t size)
2094 {
2095 	lockdep_assert_held(&md->suspend_lock);
2096 
2097 	set_capacity(md->disk, size);
2098 
2099 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2100 }
2101 
2102 /*
2103  * Returns old map, which caller must destroy.
2104  */
2105 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2106 			       struct queue_limits *limits)
2107 {
2108 	struct dm_table *old_map;
2109 	struct request_queue *q = md->queue;
2110 	bool request_based = dm_table_request_based(t);
2111 	sector_t size;
2112 	int ret;
2113 
2114 	lockdep_assert_held(&md->suspend_lock);
2115 
2116 	size = dm_table_get_size(t);
2117 
2118 	/*
2119 	 * Wipe any geometry if the size of the table changed.
2120 	 */
2121 	if (size != dm_get_size(md))
2122 		memset(&md->geometry, 0, sizeof(md->geometry));
2123 
2124 	__set_size(md, size);
2125 
2126 	dm_table_event_callback(t, event_callback, md);
2127 
2128 	/*
2129 	 * The queue hasn't been stopped yet, if the old table type wasn't
2130 	 * for request-based during suspension.  So stop it to prevent
2131 	 * I/O mapping before resume.
2132 	 * This must be done before setting the queue restrictions,
2133 	 * because request-based dm may be run just after the setting.
2134 	 */
2135 	if (request_based)
2136 		dm_stop_queue(q);
2137 
2138 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2139 		/*
2140 		 * Leverage the fact that request-based DM targets and
2141 		 * NVMe bio based targets are immutable singletons
2142 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2143 		 *   and __process_bio.
2144 		 */
2145 		md->immutable_target = dm_table_get_immutable_target(t);
2146 	}
2147 
2148 	ret = __bind_mempools(md, t);
2149 	if (ret) {
2150 		old_map = ERR_PTR(ret);
2151 		goto out;
2152 	}
2153 
2154 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2155 	rcu_assign_pointer(md->map, (void *)t);
2156 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2157 
2158 	dm_table_set_restrictions(t, q, limits);
2159 	if (old_map)
2160 		dm_sync_table(md);
2161 
2162 out:
2163 	return old_map;
2164 }
2165 
2166 /*
2167  * Returns unbound table for the caller to free.
2168  */
2169 static struct dm_table *__unbind(struct mapped_device *md)
2170 {
2171 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2172 
2173 	if (!map)
2174 		return NULL;
2175 
2176 	dm_table_event_callback(map, NULL, NULL);
2177 	RCU_INIT_POINTER(md->map, NULL);
2178 	dm_sync_table(md);
2179 
2180 	return map;
2181 }
2182 
2183 /*
2184  * Constructor for a new device.
2185  */
2186 int dm_create(int minor, struct mapped_device **result)
2187 {
2188 	int r;
2189 	struct mapped_device *md;
2190 
2191 	md = alloc_dev(minor);
2192 	if (!md)
2193 		return -ENXIO;
2194 
2195 	r = dm_sysfs_init(md);
2196 	if (r) {
2197 		free_dev(md);
2198 		return r;
2199 	}
2200 
2201 	*result = md;
2202 	return 0;
2203 }
2204 
2205 /*
2206  * Functions to manage md->type.
2207  * All are required to hold md->type_lock.
2208  */
2209 void dm_lock_md_type(struct mapped_device *md)
2210 {
2211 	mutex_lock(&md->type_lock);
2212 }
2213 
2214 void dm_unlock_md_type(struct mapped_device *md)
2215 {
2216 	mutex_unlock(&md->type_lock);
2217 }
2218 
2219 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2220 {
2221 	BUG_ON(!mutex_is_locked(&md->type_lock));
2222 	md->type = type;
2223 }
2224 
2225 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2226 {
2227 	return md->type;
2228 }
2229 
2230 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2231 {
2232 	return md->immutable_target_type;
2233 }
2234 
2235 /*
2236  * The queue_limits are only valid as long as you have a reference
2237  * count on 'md'.
2238  */
2239 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2240 {
2241 	BUG_ON(!atomic_read(&md->holders));
2242 	return &md->queue->limits;
2243 }
2244 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2245 
2246 /*
2247  * Setup the DM device's queue based on md's type
2248  */
2249 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2250 {
2251 	int r;
2252 	struct queue_limits limits;
2253 	enum dm_queue_mode type = dm_get_md_type(md);
2254 
2255 	switch (type) {
2256 	case DM_TYPE_REQUEST_BASED:
2257 		r = dm_mq_init_request_queue(md, t);
2258 		if (r) {
2259 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2260 			return r;
2261 		}
2262 		break;
2263 	case DM_TYPE_BIO_BASED:
2264 	case DM_TYPE_DAX_BIO_BASED:
2265 	case DM_TYPE_NVME_BIO_BASED:
2266 		dm_init_normal_md_queue(md);
2267 		blk_queue_make_request(md->queue, dm_make_request);
2268 		break;
2269 	case DM_TYPE_NONE:
2270 		WARN_ON_ONCE(true);
2271 		break;
2272 	}
2273 
2274 	r = dm_calculate_queue_limits(t, &limits);
2275 	if (r) {
2276 		DMERR("Cannot calculate initial queue limits");
2277 		return r;
2278 	}
2279 	dm_table_set_restrictions(t, md->queue, &limits);
2280 	blk_register_queue(md->disk);
2281 
2282 	return 0;
2283 }
2284 
2285 struct mapped_device *dm_get_md(dev_t dev)
2286 {
2287 	struct mapped_device *md;
2288 	unsigned minor = MINOR(dev);
2289 
2290 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2291 		return NULL;
2292 
2293 	spin_lock(&_minor_lock);
2294 
2295 	md = idr_find(&_minor_idr, minor);
2296 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2297 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2298 		md = NULL;
2299 		goto out;
2300 	}
2301 	dm_get(md);
2302 out:
2303 	spin_unlock(&_minor_lock);
2304 
2305 	return md;
2306 }
2307 EXPORT_SYMBOL_GPL(dm_get_md);
2308 
2309 void *dm_get_mdptr(struct mapped_device *md)
2310 {
2311 	return md->interface_ptr;
2312 }
2313 
2314 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2315 {
2316 	md->interface_ptr = ptr;
2317 }
2318 
2319 void dm_get(struct mapped_device *md)
2320 {
2321 	atomic_inc(&md->holders);
2322 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2323 }
2324 
2325 int dm_hold(struct mapped_device *md)
2326 {
2327 	spin_lock(&_minor_lock);
2328 	if (test_bit(DMF_FREEING, &md->flags)) {
2329 		spin_unlock(&_minor_lock);
2330 		return -EBUSY;
2331 	}
2332 	dm_get(md);
2333 	spin_unlock(&_minor_lock);
2334 	return 0;
2335 }
2336 EXPORT_SYMBOL_GPL(dm_hold);
2337 
2338 const char *dm_device_name(struct mapped_device *md)
2339 {
2340 	return md->name;
2341 }
2342 EXPORT_SYMBOL_GPL(dm_device_name);
2343 
2344 static void __dm_destroy(struct mapped_device *md, bool wait)
2345 {
2346 	struct dm_table *map;
2347 	int srcu_idx;
2348 
2349 	might_sleep();
2350 
2351 	spin_lock(&_minor_lock);
2352 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2353 	set_bit(DMF_FREEING, &md->flags);
2354 	spin_unlock(&_minor_lock);
2355 
2356 	blk_set_queue_dying(md->queue);
2357 
2358 	/*
2359 	 * Take suspend_lock so that presuspend and postsuspend methods
2360 	 * do not race with internal suspend.
2361 	 */
2362 	mutex_lock(&md->suspend_lock);
2363 	map = dm_get_live_table(md, &srcu_idx);
2364 	if (!dm_suspended_md(md)) {
2365 		dm_table_presuspend_targets(map);
2366 		dm_table_postsuspend_targets(map);
2367 	}
2368 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2369 	dm_put_live_table(md, srcu_idx);
2370 	mutex_unlock(&md->suspend_lock);
2371 
2372 	/*
2373 	 * Rare, but there may be I/O requests still going to complete,
2374 	 * for example.  Wait for all references to disappear.
2375 	 * No one should increment the reference count of the mapped_device,
2376 	 * after the mapped_device state becomes DMF_FREEING.
2377 	 */
2378 	if (wait)
2379 		while (atomic_read(&md->holders))
2380 			msleep(1);
2381 	else if (atomic_read(&md->holders))
2382 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2383 		       dm_device_name(md), atomic_read(&md->holders));
2384 
2385 	dm_sysfs_exit(md);
2386 	dm_table_destroy(__unbind(md));
2387 	free_dev(md);
2388 }
2389 
2390 void dm_destroy(struct mapped_device *md)
2391 {
2392 	__dm_destroy(md, true);
2393 }
2394 
2395 void dm_destroy_immediate(struct mapped_device *md)
2396 {
2397 	__dm_destroy(md, false);
2398 }
2399 
2400 void dm_put(struct mapped_device *md)
2401 {
2402 	atomic_dec(&md->holders);
2403 }
2404 EXPORT_SYMBOL_GPL(dm_put);
2405 
2406 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2407 {
2408 	int r = 0;
2409 	DEFINE_WAIT(wait);
2410 
2411 	while (1) {
2412 		prepare_to_wait(&md->wait, &wait, task_state);
2413 
2414 		if (!md_in_flight(md))
2415 			break;
2416 
2417 		if (signal_pending_state(task_state, current)) {
2418 			r = -EINTR;
2419 			break;
2420 		}
2421 
2422 		io_schedule();
2423 	}
2424 	finish_wait(&md->wait, &wait);
2425 
2426 	return r;
2427 }
2428 
2429 /*
2430  * Process the deferred bios
2431  */
2432 static void dm_wq_work(struct work_struct *work)
2433 {
2434 	struct mapped_device *md = container_of(work, struct mapped_device,
2435 						work);
2436 	struct bio *c;
2437 	int srcu_idx;
2438 	struct dm_table *map;
2439 
2440 	map = dm_get_live_table(md, &srcu_idx);
2441 
2442 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2443 		spin_lock_irq(&md->deferred_lock);
2444 		c = bio_list_pop(&md->deferred);
2445 		spin_unlock_irq(&md->deferred_lock);
2446 
2447 		if (!c)
2448 			break;
2449 
2450 		if (dm_request_based(md))
2451 			(void) generic_make_request(c);
2452 		else
2453 			(void) dm_process_bio(md, map, c);
2454 	}
2455 
2456 	dm_put_live_table(md, srcu_idx);
2457 }
2458 
2459 static void dm_queue_flush(struct mapped_device *md)
2460 {
2461 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2462 	smp_mb__after_atomic();
2463 	queue_work(md->wq, &md->work);
2464 }
2465 
2466 /*
2467  * Swap in a new table, returning the old one for the caller to destroy.
2468  */
2469 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2470 {
2471 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2472 	struct queue_limits limits;
2473 	int r;
2474 
2475 	mutex_lock(&md->suspend_lock);
2476 
2477 	/* device must be suspended */
2478 	if (!dm_suspended_md(md))
2479 		goto out;
2480 
2481 	/*
2482 	 * If the new table has no data devices, retain the existing limits.
2483 	 * This helps multipath with queue_if_no_path if all paths disappear,
2484 	 * then new I/O is queued based on these limits, and then some paths
2485 	 * reappear.
2486 	 */
2487 	if (dm_table_has_no_data_devices(table)) {
2488 		live_map = dm_get_live_table_fast(md);
2489 		if (live_map)
2490 			limits = md->queue->limits;
2491 		dm_put_live_table_fast(md);
2492 	}
2493 
2494 	if (!live_map) {
2495 		r = dm_calculate_queue_limits(table, &limits);
2496 		if (r) {
2497 			map = ERR_PTR(r);
2498 			goto out;
2499 		}
2500 	}
2501 
2502 	map = __bind(md, table, &limits);
2503 	dm_issue_global_event();
2504 
2505 out:
2506 	mutex_unlock(&md->suspend_lock);
2507 	return map;
2508 }
2509 
2510 /*
2511  * Functions to lock and unlock any filesystem running on the
2512  * device.
2513  */
2514 static int lock_fs(struct mapped_device *md)
2515 {
2516 	int r;
2517 
2518 	WARN_ON(md->frozen_sb);
2519 
2520 	md->frozen_sb = freeze_bdev(md->bdev);
2521 	if (IS_ERR(md->frozen_sb)) {
2522 		r = PTR_ERR(md->frozen_sb);
2523 		md->frozen_sb = NULL;
2524 		return r;
2525 	}
2526 
2527 	set_bit(DMF_FROZEN, &md->flags);
2528 
2529 	return 0;
2530 }
2531 
2532 static void unlock_fs(struct mapped_device *md)
2533 {
2534 	if (!test_bit(DMF_FROZEN, &md->flags))
2535 		return;
2536 
2537 	thaw_bdev(md->bdev, md->frozen_sb);
2538 	md->frozen_sb = NULL;
2539 	clear_bit(DMF_FROZEN, &md->flags);
2540 }
2541 
2542 /*
2543  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2544  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2545  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2546  *
2547  * If __dm_suspend returns 0, the device is completely quiescent
2548  * now. There is no request-processing activity. All new requests
2549  * are being added to md->deferred list.
2550  */
2551 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2552 			unsigned suspend_flags, long task_state,
2553 			int dmf_suspended_flag)
2554 {
2555 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2556 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2557 	int r;
2558 
2559 	lockdep_assert_held(&md->suspend_lock);
2560 
2561 	/*
2562 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2563 	 * This flag is cleared before dm_suspend returns.
2564 	 */
2565 	if (noflush)
2566 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2567 	else
2568 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2569 
2570 	/*
2571 	 * This gets reverted if there's an error later and the targets
2572 	 * provide the .presuspend_undo hook.
2573 	 */
2574 	dm_table_presuspend_targets(map);
2575 
2576 	/*
2577 	 * Flush I/O to the device.
2578 	 * Any I/O submitted after lock_fs() may not be flushed.
2579 	 * noflush takes precedence over do_lockfs.
2580 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2581 	 */
2582 	if (!noflush && do_lockfs) {
2583 		r = lock_fs(md);
2584 		if (r) {
2585 			dm_table_presuspend_undo_targets(map);
2586 			return r;
2587 		}
2588 	}
2589 
2590 	/*
2591 	 * Here we must make sure that no processes are submitting requests
2592 	 * to target drivers i.e. no one may be executing
2593 	 * __split_and_process_bio. This is called from dm_request and
2594 	 * dm_wq_work.
2595 	 *
2596 	 * To get all processes out of __split_and_process_bio in dm_request,
2597 	 * we take the write lock. To prevent any process from reentering
2598 	 * __split_and_process_bio from dm_request and quiesce the thread
2599 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2600 	 * flush_workqueue(md->wq).
2601 	 */
2602 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2603 	if (map)
2604 		synchronize_srcu(&md->io_barrier);
2605 
2606 	/*
2607 	 * Stop md->queue before flushing md->wq in case request-based
2608 	 * dm defers requests to md->wq from md->queue.
2609 	 */
2610 	if (dm_request_based(md))
2611 		dm_stop_queue(md->queue);
2612 
2613 	flush_workqueue(md->wq);
2614 
2615 	/*
2616 	 * At this point no more requests are entering target request routines.
2617 	 * We call dm_wait_for_completion to wait for all existing requests
2618 	 * to finish.
2619 	 */
2620 	r = dm_wait_for_completion(md, task_state);
2621 	if (!r)
2622 		set_bit(dmf_suspended_flag, &md->flags);
2623 
2624 	if (noflush)
2625 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2626 	if (map)
2627 		synchronize_srcu(&md->io_barrier);
2628 
2629 	/* were we interrupted ? */
2630 	if (r < 0) {
2631 		dm_queue_flush(md);
2632 
2633 		if (dm_request_based(md))
2634 			dm_start_queue(md->queue);
2635 
2636 		unlock_fs(md);
2637 		dm_table_presuspend_undo_targets(map);
2638 		/* pushback list is already flushed, so skip flush */
2639 	}
2640 
2641 	return r;
2642 }
2643 
2644 /*
2645  * We need to be able to change a mapping table under a mounted
2646  * filesystem.  For example we might want to move some data in
2647  * the background.  Before the table can be swapped with
2648  * dm_bind_table, dm_suspend must be called to flush any in
2649  * flight bios and ensure that any further io gets deferred.
2650  */
2651 /*
2652  * Suspend mechanism in request-based dm.
2653  *
2654  * 1. Flush all I/Os by lock_fs() if needed.
2655  * 2. Stop dispatching any I/O by stopping the request_queue.
2656  * 3. Wait for all in-flight I/Os to be completed or requeued.
2657  *
2658  * To abort suspend, start the request_queue.
2659  */
2660 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2661 {
2662 	struct dm_table *map = NULL;
2663 	int r = 0;
2664 
2665 retry:
2666 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2667 
2668 	if (dm_suspended_md(md)) {
2669 		r = -EINVAL;
2670 		goto out_unlock;
2671 	}
2672 
2673 	if (dm_suspended_internally_md(md)) {
2674 		/* already internally suspended, wait for internal resume */
2675 		mutex_unlock(&md->suspend_lock);
2676 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2677 		if (r)
2678 			return r;
2679 		goto retry;
2680 	}
2681 
2682 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2683 
2684 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2685 	if (r)
2686 		goto out_unlock;
2687 
2688 	dm_table_postsuspend_targets(map);
2689 
2690 out_unlock:
2691 	mutex_unlock(&md->suspend_lock);
2692 	return r;
2693 }
2694 
2695 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2696 {
2697 	if (map) {
2698 		int r = dm_table_resume_targets(map);
2699 		if (r)
2700 			return r;
2701 	}
2702 
2703 	dm_queue_flush(md);
2704 
2705 	/*
2706 	 * Flushing deferred I/Os must be done after targets are resumed
2707 	 * so that mapping of targets can work correctly.
2708 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2709 	 */
2710 	if (dm_request_based(md))
2711 		dm_start_queue(md->queue);
2712 
2713 	unlock_fs(md);
2714 
2715 	return 0;
2716 }
2717 
2718 int dm_resume(struct mapped_device *md)
2719 {
2720 	int r;
2721 	struct dm_table *map = NULL;
2722 
2723 retry:
2724 	r = -EINVAL;
2725 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2726 
2727 	if (!dm_suspended_md(md))
2728 		goto out;
2729 
2730 	if (dm_suspended_internally_md(md)) {
2731 		/* already internally suspended, wait for internal resume */
2732 		mutex_unlock(&md->suspend_lock);
2733 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2734 		if (r)
2735 			return r;
2736 		goto retry;
2737 	}
2738 
2739 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2740 	if (!map || !dm_table_get_size(map))
2741 		goto out;
2742 
2743 	r = __dm_resume(md, map);
2744 	if (r)
2745 		goto out;
2746 
2747 	clear_bit(DMF_SUSPENDED, &md->flags);
2748 out:
2749 	mutex_unlock(&md->suspend_lock);
2750 
2751 	return r;
2752 }
2753 
2754 /*
2755  * Internal suspend/resume works like userspace-driven suspend. It waits
2756  * until all bios finish and prevents issuing new bios to the target drivers.
2757  * It may be used only from the kernel.
2758  */
2759 
2760 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2761 {
2762 	struct dm_table *map = NULL;
2763 
2764 	lockdep_assert_held(&md->suspend_lock);
2765 
2766 	if (md->internal_suspend_count++)
2767 		return; /* nested internal suspend */
2768 
2769 	if (dm_suspended_md(md)) {
2770 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2771 		return; /* nest suspend */
2772 	}
2773 
2774 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2775 
2776 	/*
2777 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2778 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2779 	 * would require changing .presuspend to return an error -- avoid this
2780 	 * until there is a need for more elaborate variants of internal suspend.
2781 	 */
2782 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2783 			    DMF_SUSPENDED_INTERNALLY);
2784 
2785 	dm_table_postsuspend_targets(map);
2786 }
2787 
2788 static void __dm_internal_resume(struct mapped_device *md)
2789 {
2790 	BUG_ON(!md->internal_suspend_count);
2791 
2792 	if (--md->internal_suspend_count)
2793 		return; /* resume from nested internal suspend */
2794 
2795 	if (dm_suspended_md(md))
2796 		goto done; /* resume from nested suspend */
2797 
2798 	/*
2799 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2800 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2801 	 */
2802 	(void) __dm_resume(md, NULL);
2803 
2804 done:
2805 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2806 	smp_mb__after_atomic();
2807 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2808 }
2809 
2810 void dm_internal_suspend_noflush(struct mapped_device *md)
2811 {
2812 	mutex_lock(&md->suspend_lock);
2813 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2814 	mutex_unlock(&md->suspend_lock);
2815 }
2816 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2817 
2818 void dm_internal_resume(struct mapped_device *md)
2819 {
2820 	mutex_lock(&md->suspend_lock);
2821 	__dm_internal_resume(md);
2822 	mutex_unlock(&md->suspend_lock);
2823 }
2824 EXPORT_SYMBOL_GPL(dm_internal_resume);
2825 
2826 /*
2827  * Fast variants of internal suspend/resume hold md->suspend_lock,
2828  * which prevents interaction with userspace-driven suspend.
2829  */
2830 
2831 void dm_internal_suspend_fast(struct mapped_device *md)
2832 {
2833 	mutex_lock(&md->suspend_lock);
2834 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2835 		return;
2836 
2837 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2838 	synchronize_srcu(&md->io_barrier);
2839 	flush_workqueue(md->wq);
2840 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2841 }
2842 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2843 
2844 void dm_internal_resume_fast(struct mapped_device *md)
2845 {
2846 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2847 		goto done;
2848 
2849 	dm_queue_flush(md);
2850 
2851 done:
2852 	mutex_unlock(&md->suspend_lock);
2853 }
2854 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2855 
2856 /*-----------------------------------------------------------------
2857  * Event notification.
2858  *---------------------------------------------------------------*/
2859 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2860 		       unsigned cookie)
2861 {
2862 	char udev_cookie[DM_COOKIE_LENGTH];
2863 	char *envp[] = { udev_cookie, NULL };
2864 
2865 	if (!cookie)
2866 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2867 	else {
2868 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2869 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2870 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2871 					  action, envp);
2872 	}
2873 }
2874 
2875 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2876 {
2877 	return atomic_add_return(1, &md->uevent_seq);
2878 }
2879 
2880 uint32_t dm_get_event_nr(struct mapped_device *md)
2881 {
2882 	return atomic_read(&md->event_nr);
2883 }
2884 
2885 int dm_wait_event(struct mapped_device *md, int event_nr)
2886 {
2887 	return wait_event_interruptible(md->eventq,
2888 			(event_nr != atomic_read(&md->event_nr)));
2889 }
2890 
2891 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2892 {
2893 	unsigned long flags;
2894 
2895 	spin_lock_irqsave(&md->uevent_lock, flags);
2896 	list_add(elist, &md->uevent_list);
2897 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2898 }
2899 
2900 /*
2901  * The gendisk is only valid as long as you have a reference
2902  * count on 'md'.
2903  */
2904 struct gendisk *dm_disk(struct mapped_device *md)
2905 {
2906 	return md->disk;
2907 }
2908 EXPORT_SYMBOL_GPL(dm_disk);
2909 
2910 struct kobject *dm_kobject(struct mapped_device *md)
2911 {
2912 	return &md->kobj_holder.kobj;
2913 }
2914 
2915 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2916 {
2917 	struct mapped_device *md;
2918 
2919 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2920 
2921 	spin_lock(&_minor_lock);
2922 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2923 		md = NULL;
2924 		goto out;
2925 	}
2926 	dm_get(md);
2927 out:
2928 	spin_unlock(&_minor_lock);
2929 
2930 	return md;
2931 }
2932 
2933 int dm_suspended_md(struct mapped_device *md)
2934 {
2935 	return test_bit(DMF_SUSPENDED, &md->flags);
2936 }
2937 
2938 int dm_suspended_internally_md(struct mapped_device *md)
2939 {
2940 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2941 }
2942 
2943 int dm_test_deferred_remove_flag(struct mapped_device *md)
2944 {
2945 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2946 }
2947 
2948 int dm_suspended(struct dm_target *ti)
2949 {
2950 	return dm_suspended_md(dm_table_get_md(ti->table));
2951 }
2952 EXPORT_SYMBOL_GPL(dm_suspended);
2953 
2954 int dm_noflush_suspending(struct dm_target *ti)
2955 {
2956 	return __noflush_suspending(dm_table_get_md(ti->table));
2957 }
2958 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2959 
2960 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2961 					    unsigned integrity, unsigned per_io_data_size,
2962 					    unsigned min_pool_size)
2963 {
2964 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2965 	unsigned int pool_size = 0;
2966 	unsigned int front_pad, io_front_pad;
2967 	int ret;
2968 
2969 	if (!pools)
2970 		return NULL;
2971 
2972 	switch (type) {
2973 	case DM_TYPE_BIO_BASED:
2974 	case DM_TYPE_DAX_BIO_BASED:
2975 	case DM_TYPE_NVME_BIO_BASED:
2976 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2977 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2978 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2979 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2980 		if (ret)
2981 			goto out;
2982 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2983 			goto out;
2984 		break;
2985 	case DM_TYPE_REQUEST_BASED:
2986 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2987 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2988 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2989 		break;
2990 	default:
2991 		BUG();
2992 	}
2993 
2994 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2995 	if (ret)
2996 		goto out;
2997 
2998 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2999 		goto out;
3000 
3001 	return pools;
3002 
3003 out:
3004 	dm_free_md_mempools(pools);
3005 
3006 	return NULL;
3007 }
3008 
3009 void dm_free_md_mempools(struct dm_md_mempools *pools)
3010 {
3011 	if (!pools)
3012 		return;
3013 
3014 	bioset_exit(&pools->bs);
3015 	bioset_exit(&pools->io_bs);
3016 
3017 	kfree(pools);
3018 }
3019 
3020 struct dm_pr {
3021 	u64	old_key;
3022 	u64	new_key;
3023 	u32	flags;
3024 	bool	fail_early;
3025 };
3026 
3027 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3028 		      void *data)
3029 {
3030 	struct mapped_device *md = bdev->bd_disk->private_data;
3031 	struct dm_table *table;
3032 	struct dm_target *ti;
3033 	int ret = -ENOTTY, srcu_idx;
3034 
3035 	table = dm_get_live_table(md, &srcu_idx);
3036 	if (!table || !dm_table_get_size(table))
3037 		goto out;
3038 
3039 	/* We only support devices that have a single target */
3040 	if (dm_table_get_num_targets(table) != 1)
3041 		goto out;
3042 	ti = dm_table_get_target(table, 0);
3043 
3044 	ret = -EINVAL;
3045 	if (!ti->type->iterate_devices)
3046 		goto out;
3047 
3048 	ret = ti->type->iterate_devices(ti, fn, data);
3049 out:
3050 	dm_put_live_table(md, srcu_idx);
3051 	return ret;
3052 }
3053 
3054 /*
3055  * For register / unregister we need to manually call out to every path.
3056  */
3057 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3058 			    sector_t start, sector_t len, void *data)
3059 {
3060 	struct dm_pr *pr = data;
3061 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3062 
3063 	if (!ops || !ops->pr_register)
3064 		return -EOPNOTSUPP;
3065 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3066 }
3067 
3068 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3069 			  u32 flags)
3070 {
3071 	struct dm_pr pr = {
3072 		.old_key	= old_key,
3073 		.new_key	= new_key,
3074 		.flags		= flags,
3075 		.fail_early	= true,
3076 	};
3077 	int ret;
3078 
3079 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3080 	if (ret && new_key) {
3081 		/* unregister all paths if we failed to register any path */
3082 		pr.old_key = new_key;
3083 		pr.new_key = 0;
3084 		pr.flags = 0;
3085 		pr.fail_early = false;
3086 		dm_call_pr(bdev, __dm_pr_register, &pr);
3087 	}
3088 
3089 	return ret;
3090 }
3091 
3092 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3093 			 u32 flags)
3094 {
3095 	struct mapped_device *md = bdev->bd_disk->private_data;
3096 	const struct pr_ops *ops;
3097 	int r, srcu_idx;
3098 
3099 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3100 	if (r < 0)
3101 		goto out;
3102 
3103 	ops = bdev->bd_disk->fops->pr_ops;
3104 	if (ops && ops->pr_reserve)
3105 		r = ops->pr_reserve(bdev, key, type, flags);
3106 	else
3107 		r = -EOPNOTSUPP;
3108 out:
3109 	dm_unprepare_ioctl(md, srcu_idx);
3110 	return r;
3111 }
3112 
3113 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3114 {
3115 	struct mapped_device *md = bdev->bd_disk->private_data;
3116 	const struct pr_ops *ops;
3117 	int r, srcu_idx;
3118 
3119 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3120 	if (r < 0)
3121 		goto out;
3122 
3123 	ops = bdev->bd_disk->fops->pr_ops;
3124 	if (ops && ops->pr_release)
3125 		r = ops->pr_release(bdev, key, type);
3126 	else
3127 		r = -EOPNOTSUPP;
3128 out:
3129 	dm_unprepare_ioctl(md, srcu_idx);
3130 	return r;
3131 }
3132 
3133 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3134 			 enum pr_type type, bool abort)
3135 {
3136 	struct mapped_device *md = bdev->bd_disk->private_data;
3137 	const struct pr_ops *ops;
3138 	int r, srcu_idx;
3139 
3140 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3141 	if (r < 0)
3142 		goto out;
3143 
3144 	ops = bdev->bd_disk->fops->pr_ops;
3145 	if (ops && ops->pr_preempt)
3146 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3147 	else
3148 		r = -EOPNOTSUPP;
3149 out:
3150 	dm_unprepare_ioctl(md, srcu_idx);
3151 	return r;
3152 }
3153 
3154 static int dm_pr_clear(struct block_device *bdev, u64 key)
3155 {
3156 	struct mapped_device *md = bdev->bd_disk->private_data;
3157 	const struct pr_ops *ops;
3158 	int r, srcu_idx;
3159 
3160 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3161 	if (r < 0)
3162 		goto out;
3163 
3164 	ops = bdev->bd_disk->fops->pr_ops;
3165 	if (ops && ops->pr_clear)
3166 		r = ops->pr_clear(bdev, key);
3167 	else
3168 		r = -EOPNOTSUPP;
3169 out:
3170 	dm_unprepare_ioctl(md, srcu_idx);
3171 	return r;
3172 }
3173 
3174 static const struct pr_ops dm_pr_ops = {
3175 	.pr_register	= dm_pr_register,
3176 	.pr_reserve	= dm_pr_reserve,
3177 	.pr_release	= dm_pr_release,
3178 	.pr_preempt	= dm_pr_preempt,
3179 	.pr_clear	= dm_pr_clear,
3180 };
3181 
3182 static const struct block_device_operations dm_blk_dops = {
3183 	.open = dm_blk_open,
3184 	.release = dm_blk_close,
3185 	.ioctl = dm_blk_ioctl,
3186 	.getgeo = dm_blk_getgeo,
3187 	.report_zones = dm_blk_report_zones,
3188 	.pr_ops = &dm_pr_ops,
3189 	.owner = THIS_MODULE
3190 };
3191 
3192 static const struct dax_operations dm_dax_ops = {
3193 	.direct_access = dm_dax_direct_access,
3194 	.dax_supported = dm_dax_supported,
3195 	.copy_from_iter = dm_dax_copy_from_iter,
3196 	.copy_to_iter = dm_dax_copy_to_iter,
3197 };
3198 
3199 /*
3200  * module hooks
3201  */
3202 module_init(dm_init);
3203 module_exit(dm_exit);
3204 
3205 module_param(major, uint, 0);
3206 MODULE_PARM_DESC(major, "The major number of the device mapper");
3207 
3208 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3209 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3210 
3211 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3212 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3213 
3214 MODULE_DESCRIPTION(DM_NAME " driver");
3215 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3216 MODULE_LICENSE("GPL");
3217