xref: /openbmc/linux/drivers/md/dm.c (revision 78c99ba1)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/blktrace_api.h>
23 
24 #include <trace/events/block.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 static const char *_name = DM_NAME;
29 
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32 
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35  * For bio-based dm.
36  * One of these is allocated per bio.
37  */
38 struct dm_io {
39 	struct mapped_device *md;
40 	int error;
41 	atomic_t io_count;
42 	struct bio *bio;
43 	unsigned long start_time;
44 };
45 
46 /*
47  * For bio-based dm.
48  * One of these is allocated per target within a bio.  Hopefully
49  * this will be simplified out one day.
50  */
51 struct dm_target_io {
52 	struct dm_io *io;
53 	struct dm_target *ti;
54 	union map_info info;
55 };
56 
57 /*
58  * For request-based dm.
59  * One of these is allocated per request.
60  */
61 struct dm_rq_target_io {
62 	struct mapped_device *md;
63 	struct dm_target *ti;
64 	struct request *orig, clone;
65 	int error;
66 	union map_info info;
67 };
68 
69 /*
70  * For request-based dm.
71  * One of these is allocated per bio.
72  */
73 struct dm_rq_clone_bio_info {
74 	struct bio *orig;
75 	struct request *rq;
76 };
77 
78 union map_info *dm_get_mapinfo(struct bio *bio)
79 {
80 	if (bio && bio->bi_private)
81 		return &((struct dm_target_io *)bio->bi_private)->info;
82 	return NULL;
83 }
84 
85 #define MINOR_ALLOCED ((void *)-1)
86 
87 /*
88  * Bits for the md->flags field.
89  */
90 #define DMF_BLOCK_IO_FOR_SUSPEND 0
91 #define DMF_SUSPENDED 1
92 #define DMF_FROZEN 2
93 #define DMF_FREEING 3
94 #define DMF_DELETING 4
95 #define DMF_NOFLUSH_SUSPENDING 5
96 #define DMF_QUEUE_IO_TO_THREAD 6
97 
98 /*
99  * Work processed by per-device workqueue.
100  */
101 struct mapped_device {
102 	struct rw_semaphore io_lock;
103 	struct mutex suspend_lock;
104 	rwlock_t map_lock;
105 	atomic_t holders;
106 	atomic_t open_count;
107 
108 	unsigned long flags;
109 
110 	struct request_queue *queue;
111 	struct gendisk *disk;
112 	char name[16];
113 
114 	void *interface_ptr;
115 
116 	/*
117 	 * A list of ios that arrived while we were suspended.
118 	 */
119 	atomic_t pending;
120 	wait_queue_head_t wait;
121 	struct work_struct work;
122 	struct bio_list deferred;
123 	spinlock_t deferred_lock;
124 
125 	/*
126 	 * An error from the barrier request currently being processed.
127 	 */
128 	int barrier_error;
129 
130 	/*
131 	 * Processing queue (flush/barriers)
132 	 */
133 	struct workqueue_struct *wq;
134 
135 	/*
136 	 * The current mapping.
137 	 */
138 	struct dm_table *map;
139 
140 	/*
141 	 * io objects are allocated from here.
142 	 */
143 	mempool_t *io_pool;
144 	mempool_t *tio_pool;
145 
146 	struct bio_set *bs;
147 
148 	/*
149 	 * Event handling.
150 	 */
151 	atomic_t event_nr;
152 	wait_queue_head_t eventq;
153 	atomic_t uevent_seq;
154 	struct list_head uevent_list;
155 	spinlock_t uevent_lock; /* Protect access to uevent_list */
156 
157 	/*
158 	 * freeze/thaw support require holding onto a super block
159 	 */
160 	struct super_block *frozen_sb;
161 	struct block_device *suspended_bdev;
162 
163 	/* forced geometry settings */
164 	struct hd_geometry geometry;
165 
166 	/* sysfs handle */
167 	struct kobject kobj;
168 };
169 
170 #define MIN_IOS 256
171 static struct kmem_cache *_io_cache;
172 static struct kmem_cache *_tio_cache;
173 static struct kmem_cache *_rq_tio_cache;
174 static struct kmem_cache *_rq_bio_info_cache;
175 
176 static int __init local_init(void)
177 {
178 	int r = -ENOMEM;
179 
180 	/* allocate a slab for the dm_ios */
181 	_io_cache = KMEM_CACHE(dm_io, 0);
182 	if (!_io_cache)
183 		return r;
184 
185 	/* allocate a slab for the target ios */
186 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
187 	if (!_tio_cache)
188 		goto out_free_io_cache;
189 
190 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
191 	if (!_rq_tio_cache)
192 		goto out_free_tio_cache;
193 
194 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
195 	if (!_rq_bio_info_cache)
196 		goto out_free_rq_tio_cache;
197 
198 	r = dm_uevent_init();
199 	if (r)
200 		goto out_free_rq_bio_info_cache;
201 
202 	_major = major;
203 	r = register_blkdev(_major, _name);
204 	if (r < 0)
205 		goto out_uevent_exit;
206 
207 	if (!_major)
208 		_major = r;
209 
210 	return 0;
211 
212 out_uevent_exit:
213 	dm_uevent_exit();
214 out_free_rq_bio_info_cache:
215 	kmem_cache_destroy(_rq_bio_info_cache);
216 out_free_rq_tio_cache:
217 	kmem_cache_destroy(_rq_tio_cache);
218 out_free_tio_cache:
219 	kmem_cache_destroy(_tio_cache);
220 out_free_io_cache:
221 	kmem_cache_destroy(_io_cache);
222 
223 	return r;
224 }
225 
226 static void local_exit(void)
227 {
228 	kmem_cache_destroy(_rq_bio_info_cache);
229 	kmem_cache_destroy(_rq_tio_cache);
230 	kmem_cache_destroy(_tio_cache);
231 	kmem_cache_destroy(_io_cache);
232 	unregister_blkdev(_major, _name);
233 	dm_uevent_exit();
234 
235 	_major = 0;
236 
237 	DMINFO("cleaned up");
238 }
239 
240 static int (*_inits[])(void) __initdata = {
241 	local_init,
242 	dm_target_init,
243 	dm_linear_init,
244 	dm_stripe_init,
245 	dm_kcopyd_init,
246 	dm_interface_init,
247 };
248 
249 static void (*_exits[])(void) = {
250 	local_exit,
251 	dm_target_exit,
252 	dm_linear_exit,
253 	dm_stripe_exit,
254 	dm_kcopyd_exit,
255 	dm_interface_exit,
256 };
257 
258 static int __init dm_init(void)
259 {
260 	const int count = ARRAY_SIZE(_inits);
261 
262 	int r, i;
263 
264 	for (i = 0; i < count; i++) {
265 		r = _inits[i]();
266 		if (r)
267 			goto bad;
268 	}
269 
270 	return 0;
271 
272       bad:
273 	while (i--)
274 		_exits[i]();
275 
276 	return r;
277 }
278 
279 static void __exit dm_exit(void)
280 {
281 	int i = ARRAY_SIZE(_exits);
282 
283 	while (i--)
284 		_exits[i]();
285 }
286 
287 /*
288  * Block device functions
289  */
290 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
291 {
292 	struct mapped_device *md;
293 
294 	spin_lock(&_minor_lock);
295 
296 	md = bdev->bd_disk->private_data;
297 	if (!md)
298 		goto out;
299 
300 	if (test_bit(DMF_FREEING, &md->flags) ||
301 	    test_bit(DMF_DELETING, &md->flags)) {
302 		md = NULL;
303 		goto out;
304 	}
305 
306 	dm_get(md);
307 	atomic_inc(&md->open_count);
308 
309 out:
310 	spin_unlock(&_minor_lock);
311 
312 	return md ? 0 : -ENXIO;
313 }
314 
315 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
316 {
317 	struct mapped_device *md = disk->private_data;
318 	atomic_dec(&md->open_count);
319 	dm_put(md);
320 	return 0;
321 }
322 
323 int dm_open_count(struct mapped_device *md)
324 {
325 	return atomic_read(&md->open_count);
326 }
327 
328 /*
329  * Guarantees nothing is using the device before it's deleted.
330  */
331 int dm_lock_for_deletion(struct mapped_device *md)
332 {
333 	int r = 0;
334 
335 	spin_lock(&_minor_lock);
336 
337 	if (dm_open_count(md))
338 		r = -EBUSY;
339 	else
340 		set_bit(DMF_DELETING, &md->flags);
341 
342 	spin_unlock(&_minor_lock);
343 
344 	return r;
345 }
346 
347 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
348 {
349 	struct mapped_device *md = bdev->bd_disk->private_data;
350 
351 	return dm_get_geometry(md, geo);
352 }
353 
354 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
355 			unsigned int cmd, unsigned long arg)
356 {
357 	struct mapped_device *md = bdev->bd_disk->private_data;
358 	struct dm_table *map = dm_get_table(md);
359 	struct dm_target *tgt;
360 	int r = -ENOTTY;
361 
362 	if (!map || !dm_table_get_size(map))
363 		goto out;
364 
365 	/* We only support devices that have a single target */
366 	if (dm_table_get_num_targets(map) != 1)
367 		goto out;
368 
369 	tgt = dm_table_get_target(map, 0);
370 
371 	if (dm_suspended(md)) {
372 		r = -EAGAIN;
373 		goto out;
374 	}
375 
376 	if (tgt->type->ioctl)
377 		r = tgt->type->ioctl(tgt, cmd, arg);
378 
379 out:
380 	dm_table_put(map);
381 
382 	return r;
383 }
384 
385 static struct dm_io *alloc_io(struct mapped_device *md)
386 {
387 	return mempool_alloc(md->io_pool, GFP_NOIO);
388 }
389 
390 static void free_io(struct mapped_device *md, struct dm_io *io)
391 {
392 	mempool_free(io, md->io_pool);
393 }
394 
395 static struct dm_target_io *alloc_tio(struct mapped_device *md)
396 {
397 	return mempool_alloc(md->tio_pool, GFP_NOIO);
398 }
399 
400 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
401 {
402 	mempool_free(tio, md->tio_pool);
403 }
404 
405 static void start_io_acct(struct dm_io *io)
406 {
407 	struct mapped_device *md = io->md;
408 	int cpu;
409 
410 	io->start_time = jiffies;
411 
412 	cpu = part_stat_lock();
413 	part_round_stats(cpu, &dm_disk(md)->part0);
414 	part_stat_unlock();
415 	dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
416 }
417 
418 static void end_io_acct(struct dm_io *io)
419 {
420 	struct mapped_device *md = io->md;
421 	struct bio *bio = io->bio;
422 	unsigned long duration = jiffies - io->start_time;
423 	int pending, cpu;
424 	int rw = bio_data_dir(bio);
425 
426 	cpu = part_stat_lock();
427 	part_round_stats(cpu, &dm_disk(md)->part0);
428 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
429 	part_stat_unlock();
430 
431 	/*
432 	 * After this is decremented the bio must not be touched if it is
433 	 * a barrier.
434 	 */
435 	dm_disk(md)->part0.in_flight = pending =
436 		atomic_dec_return(&md->pending);
437 
438 	/* nudge anyone waiting on suspend queue */
439 	if (!pending)
440 		wake_up(&md->wait);
441 }
442 
443 /*
444  * Add the bio to the list of deferred io.
445  */
446 static void queue_io(struct mapped_device *md, struct bio *bio)
447 {
448 	down_write(&md->io_lock);
449 
450 	spin_lock_irq(&md->deferred_lock);
451 	bio_list_add(&md->deferred, bio);
452 	spin_unlock_irq(&md->deferred_lock);
453 
454 	if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
455 		queue_work(md->wq, &md->work);
456 
457 	up_write(&md->io_lock);
458 }
459 
460 /*
461  * Everyone (including functions in this file), should use this
462  * function to access the md->map field, and make sure they call
463  * dm_table_put() when finished.
464  */
465 struct dm_table *dm_get_table(struct mapped_device *md)
466 {
467 	struct dm_table *t;
468 
469 	read_lock(&md->map_lock);
470 	t = md->map;
471 	if (t)
472 		dm_table_get(t);
473 	read_unlock(&md->map_lock);
474 
475 	return t;
476 }
477 
478 /*
479  * Get the geometry associated with a dm device
480  */
481 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
482 {
483 	*geo = md->geometry;
484 
485 	return 0;
486 }
487 
488 /*
489  * Set the geometry of a device.
490  */
491 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
492 {
493 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
494 
495 	if (geo->start > sz) {
496 		DMWARN("Start sector is beyond the geometry limits.");
497 		return -EINVAL;
498 	}
499 
500 	md->geometry = *geo;
501 
502 	return 0;
503 }
504 
505 /*-----------------------------------------------------------------
506  * CRUD START:
507  *   A more elegant soln is in the works that uses the queue
508  *   merge fn, unfortunately there are a couple of changes to
509  *   the block layer that I want to make for this.  So in the
510  *   interests of getting something for people to use I give
511  *   you this clearly demarcated crap.
512  *---------------------------------------------------------------*/
513 
514 static int __noflush_suspending(struct mapped_device *md)
515 {
516 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
517 }
518 
519 /*
520  * Decrements the number of outstanding ios that a bio has been
521  * cloned into, completing the original io if necc.
522  */
523 static void dec_pending(struct dm_io *io, int error)
524 {
525 	unsigned long flags;
526 	int io_error;
527 	struct bio *bio;
528 	struct mapped_device *md = io->md;
529 
530 	/* Push-back supersedes any I/O errors */
531 	if (error && !(io->error > 0 && __noflush_suspending(md)))
532 		io->error = error;
533 
534 	if (atomic_dec_and_test(&io->io_count)) {
535 		if (io->error == DM_ENDIO_REQUEUE) {
536 			/*
537 			 * Target requested pushing back the I/O.
538 			 */
539 			spin_lock_irqsave(&md->deferred_lock, flags);
540 			if (__noflush_suspending(md))
541 				bio_list_add_head(&md->deferred, io->bio);
542 			else
543 				/* noflush suspend was interrupted. */
544 				io->error = -EIO;
545 			spin_unlock_irqrestore(&md->deferred_lock, flags);
546 		}
547 
548 		io_error = io->error;
549 		bio = io->bio;
550 
551 		if (bio_barrier(bio)) {
552 			/*
553 			 * There can be just one barrier request so we use
554 			 * a per-device variable for error reporting.
555 			 * Note that you can't touch the bio after end_io_acct
556 			 */
557 			md->barrier_error = io_error;
558 			end_io_acct(io);
559 		} else {
560 			end_io_acct(io);
561 
562 			if (io_error != DM_ENDIO_REQUEUE) {
563 				trace_block_bio_complete(md->queue, bio);
564 
565 				bio_endio(bio, io_error);
566 			}
567 		}
568 
569 		free_io(md, io);
570 	}
571 }
572 
573 static void clone_endio(struct bio *bio, int error)
574 {
575 	int r = 0;
576 	struct dm_target_io *tio = bio->bi_private;
577 	struct dm_io *io = tio->io;
578 	struct mapped_device *md = tio->io->md;
579 	dm_endio_fn endio = tio->ti->type->end_io;
580 
581 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
582 		error = -EIO;
583 
584 	if (endio) {
585 		r = endio(tio->ti, bio, error, &tio->info);
586 		if (r < 0 || r == DM_ENDIO_REQUEUE)
587 			/*
588 			 * error and requeue request are handled
589 			 * in dec_pending().
590 			 */
591 			error = r;
592 		else if (r == DM_ENDIO_INCOMPLETE)
593 			/* The target will handle the io */
594 			return;
595 		else if (r) {
596 			DMWARN("unimplemented target endio return value: %d", r);
597 			BUG();
598 		}
599 	}
600 
601 	/*
602 	 * Store md for cleanup instead of tio which is about to get freed.
603 	 */
604 	bio->bi_private = md->bs;
605 
606 	free_tio(md, tio);
607 	bio_put(bio);
608 	dec_pending(io, error);
609 }
610 
611 static sector_t max_io_len(struct mapped_device *md,
612 			   sector_t sector, struct dm_target *ti)
613 {
614 	sector_t offset = sector - ti->begin;
615 	sector_t len = ti->len - offset;
616 
617 	/*
618 	 * Does the target need to split even further ?
619 	 */
620 	if (ti->split_io) {
621 		sector_t boundary;
622 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
623 			   - offset;
624 		if (len > boundary)
625 			len = boundary;
626 	}
627 
628 	return len;
629 }
630 
631 static void __map_bio(struct dm_target *ti, struct bio *clone,
632 		      struct dm_target_io *tio)
633 {
634 	int r;
635 	sector_t sector;
636 	struct mapped_device *md;
637 
638 	/*
639 	 * Sanity checks.
640 	 */
641 	BUG_ON(!clone->bi_size);
642 
643 	clone->bi_end_io = clone_endio;
644 	clone->bi_private = tio;
645 
646 	/*
647 	 * Map the clone.  If r == 0 we don't need to do
648 	 * anything, the target has assumed ownership of
649 	 * this io.
650 	 */
651 	atomic_inc(&tio->io->io_count);
652 	sector = clone->bi_sector;
653 	r = ti->type->map(ti, clone, &tio->info);
654 	if (r == DM_MAPIO_REMAPPED) {
655 		/* the bio has been remapped so dispatch it */
656 
657 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
658 				    tio->io->bio->bi_bdev->bd_dev, sector);
659 
660 		generic_make_request(clone);
661 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
662 		/* error the io and bail out, or requeue it if needed */
663 		md = tio->io->md;
664 		dec_pending(tio->io, r);
665 		/*
666 		 * Store bio_set for cleanup.
667 		 */
668 		clone->bi_private = md->bs;
669 		bio_put(clone);
670 		free_tio(md, tio);
671 	} else if (r) {
672 		DMWARN("unimplemented target map return value: %d", r);
673 		BUG();
674 	}
675 }
676 
677 struct clone_info {
678 	struct mapped_device *md;
679 	struct dm_table *map;
680 	struct bio *bio;
681 	struct dm_io *io;
682 	sector_t sector;
683 	sector_t sector_count;
684 	unsigned short idx;
685 };
686 
687 static void dm_bio_destructor(struct bio *bio)
688 {
689 	struct bio_set *bs = bio->bi_private;
690 
691 	bio_free(bio, bs);
692 }
693 
694 /*
695  * Creates a little bio that is just does part of a bvec.
696  */
697 static struct bio *split_bvec(struct bio *bio, sector_t sector,
698 			      unsigned short idx, unsigned int offset,
699 			      unsigned int len, struct bio_set *bs)
700 {
701 	struct bio *clone;
702 	struct bio_vec *bv = bio->bi_io_vec + idx;
703 
704 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
705 	clone->bi_destructor = dm_bio_destructor;
706 	*clone->bi_io_vec = *bv;
707 
708 	clone->bi_sector = sector;
709 	clone->bi_bdev = bio->bi_bdev;
710 	clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
711 	clone->bi_vcnt = 1;
712 	clone->bi_size = to_bytes(len);
713 	clone->bi_io_vec->bv_offset = offset;
714 	clone->bi_io_vec->bv_len = clone->bi_size;
715 	clone->bi_flags |= 1 << BIO_CLONED;
716 
717 	if (bio_integrity(bio)) {
718 		bio_integrity_clone(clone, bio, GFP_NOIO);
719 		bio_integrity_trim(clone,
720 				   bio_sector_offset(bio, idx, offset), len);
721 	}
722 
723 	return clone;
724 }
725 
726 /*
727  * Creates a bio that consists of range of complete bvecs.
728  */
729 static struct bio *clone_bio(struct bio *bio, sector_t sector,
730 			     unsigned short idx, unsigned short bv_count,
731 			     unsigned int len, struct bio_set *bs)
732 {
733 	struct bio *clone;
734 
735 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
736 	__bio_clone(clone, bio);
737 	clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
738 	clone->bi_destructor = dm_bio_destructor;
739 	clone->bi_sector = sector;
740 	clone->bi_idx = idx;
741 	clone->bi_vcnt = idx + bv_count;
742 	clone->bi_size = to_bytes(len);
743 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
744 
745 	if (bio_integrity(bio)) {
746 		bio_integrity_clone(clone, bio, GFP_NOIO);
747 
748 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
749 			bio_integrity_trim(clone,
750 					   bio_sector_offset(bio, idx, 0), len);
751 	}
752 
753 	return clone;
754 }
755 
756 static int __clone_and_map(struct clone_info *ci)
757 {
758 	struct bio *clone, *bio = ci->bio;
759 	struct dm_target *ti;
760 	sector_t len = 0, max;
761 	struct dm_target_io *tio;
762 
763 	ti = dm_table_find_target(ci->map, ci->sector);
764 	if (!dm_target_is_valid(ti))
765 		return -EIO;
766 
767 	max = max_io_len(ci->md, ci->sector, ti);
768 
769 	/*
770 	 * Allocate a target io object.
771 	 */
772 	tio = alloc_tio(ci->md);
773 	tio->io = ci->io;
774 	tio->ti = ti;
775 	memset(&tio->info, 0, sizeof(tio->info));
776 
777 	if (ci->sector_count <= max) {
778 		/*
779 		 * Optimise for the simple case where we can do all of
780 		 * the remaining io with a single clone.
781 		 */
782 		clone = clone_bio(bio, ci->sector, ci->idx,
783 				  bio->bi_vcnt - ci->idx, ci->sector_count,
784 				  ci->md->bs);
785 		__map_bio(ti, clone, tio);
786 		ci->sector_count = 0;
787 
788 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
789 		/*
790 		 * There are some bvecs that don't span targets.
791 		 * Do as many of these as possible.
792 		 */
793 		int i;
794 		sector_t remaining = max;
795 		sector_t bv_len;
796 
797 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
798 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
799 
800 			if (bv_len > remaining)
801 				break;
802 
803 			remaining -= bv_len;
804 			len += bv_len;
805 		}
806 
807 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
808 				  ci->md->bs);
809 		__map_bio(ti, clone, tio);
810 
811 		ci->sector += len;
812 		ci->sector_count -= len;
813 		ci->idx = i;
814 
815 	} else {
816 		/*
817 		 * Handle a bvec that must be split between two or more targets.
818 		 */
819 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
820 		sector_t remaining = to_sector(bv->bv_len);
821 		unsigned int offset = 0;
822 
823 		do {
824 			if (offset) {
825 				ti = dm_table_find_target(ci->map, ci->sector);
826 				if (!dm_target_is_valid(ti))
827 					return -EIO;
828 
829 				max = max_io_len(ci->md, ci->sector, ti);
830 
831 				tio = alloc_tio(ci->md);
832 				tio->io = ci->io;
833 				tio->ti = ti;
834 				memset(&tio->info, 0, sizeof(tio->info));
835 			}
836 
837 			len = min(remaining, max);
838 
839 			clone = split_bvec(bio, ci->sector, ci->idx,
840 					   bv->bv_offset + offset, len,
841 					   ci->md->bs);
842 
843 			__map_bio(ti, clone, tio);
844 
845 			ci->sector += len;
846 			ci->sector_count -= len;
847 			offset += to_bytes(len);
848 		} while (remaining -= len);
849 
850 		ci->idx++;
851 	}
852 
853 	return 0;
854 }
855 
856 /*
857  * Split the bio into several clones and submit it to targets.
858  */
859 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
860 {
861 	struct clone_info ci;
862 	int error = 0;
863 
864 	ci.map = dm_get_table(md);
865 	if (unlikely(!ci.map)) {
866 		if (!bio_barrier(bio))
867 			bio_io_error(bio);
868 		else
869 			md->barrier_error = -EIO;
870 		return;
871 	}
872 
873 	ci.md = md;
874 	ci.bio = bio;
875 	ci.io = alloc_io(md);
876 	ci.io->error = 0;
877 	atomic_set(&ci.io->io_count, 1);
878 	ci.io->bio = bio;
879 	ci.io->md = md;
880 	ci.sector = bio->bi_sector;
881 	ci.sector_count = bio_sectors(bio);
882 	ci.idx = bio->bi_idx;
883 
884 	start_io_acct(ci.io);
885 	while (ci.sector_count && !error)
886 		error = __clone_and_map(&ci);
887 
888 	/* drop the extra reference count */
889 	dec_pending(ci.io, error);
890 	dm_table_put(ci.map);
891 }
892 /*-----------------------------------------------------------------
893  * CRUD END
894  *---------------------------------------------------------------*/
895 
896 static int dm_merge_bvec(struct request_queue *q,
897 			 struct bvec_merge_data *bvm,
898 			 struct bio_vec *biovec)
899 {
900 	struct mapped_device *md = q->queuedata;
901 	struct dm_table *map = dm_get_table(md);
902 	struct dm_target *ti;
903 	sector_t max_sectors;
904 	int max_size = 0;
905 
906 	if (unlikely(!map))
907 		goto out;
908 
909 	ti = dm_table_find_target(map, bvm->bi_sector);
910 	if (!dm_target_is_valid(ti))
911 		goto out_table;
912 
913 	/*
914 	 * Find maximum amount of I/O that won't need splitting
915 	 */
916 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
917 			  (sector_t) BIO_MAX_SECTORS);
918 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
919 	if (max_size < 0)
920 		max_size = 0;
921 
922 	/*
923 	 * merge_bvec_fn() returns number of bytes
924 	 * it can accept at this offset
925 	 * max is precomputed maximal io size
926 	 */
927 	if (max_size && ti->type->merge)
928 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
929 
930 out_table:
931 	dm_table_put(map);
932 
933 out:
934 	/*
935 	 * Always allow an entire first page
936 	 */
937 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
938 		max_size = biovec->bv_len;
939 
940 	return max_size;
941 }
942 
943 /*
944  * The request function that just remaps the bio built up by
945  * dm_merge_bvec.
946  */
947 static int dm_request(struct request_queue *q, struct bio *bio)
948 {
949 	int rw = bio_data_dir(bio);
950 	struct mapped_device *md = q->queuedata;
951 	int cpu;
952 
953 	down_read(&md->io_lock);
954 
955 	cpu = part_stat_lock();
956 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
957 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
958 	part_stat_unlock();
959 
960 	/*
961 	 * If we're suspended or the thread is processing barriers
962 	 * we have to queue this io for later.
963 	 */
964 	if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
965 	    unlikely(bio_barrier(bio))) {
966 		up_read(&md->io_lock);
967 
968 		if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
969 		    bio_rw(bio) == READA) {
970 			bio_io_error(bio);
971 			return 0;
972 		}
973 
974 		queue_io(md, bio);
975 
976 		return 0;
977 	}
978 
979 	__split_and_process_bio(md, bio);
980 	up_read(&md->io_lock);
981 	return 0;
982 }
983 
984 static void dm_unplug_all(struct request_queue *q)
985 {
986 	struct mapped_device *md = q->queuedata;
987 	struct dm_table *map = dm_get_table(md);
988 
989 	if (map) {
990 		dm_table_unplug_all(map);
991 		dm_table_put(map);
992 	}
993 }
994 
995 static int dm_any_congested(void *congested_data, int bdi_bits)
996 {
997 	int r = bdi_bits;
998 	struct mapped_device *md = congested_data;
999 	struct dm_table *map;
1000 
1001 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1002 		map = dm_get_table(md);
1003 		if (map) {
1004 			r = dm_table_any_congested(map, bdi_bits);
1005 			dm_table_put(map);
1006 		}
1007 	}
1008 
1009 	return r;
1010 }
1011 
1012 /*-----------------------------------------------------------------
1013  * An IDR is used to keep track of allocated minor numbers.
1014  *---------------------------------------------------------------*/
1015 static DEFINE_IDR(_minor_idr);
1016 
1017 static void free_minor(int minor)
1018 {
1019 	spin_lock(&_minor_lock);
1020 	idr_remove(&_minor_idr, minor);
1021 	spin_unlock(&_minor_lock);
1022 }
1023 
1024 /*
1025  * See if the device with a specific minor # is free.
1026  */
1027 static int specific_minor(int minor)
1028 {
1029 	int r, m;
1030 
1031 	if (minor >= (1 << MINORBITS))
1032 		return -EINVAL;
1033 
1034 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1035 	if (!r)
1036 		return -ENOMEM;
1037 
1038 	spin_lock(&_minor_lock);
1039 
1040 	if (idr_find(&_minor_idr, minor)) {
1041 		r = -EBUSY;
1042 		goto out;
1043 	}
1044 
1045 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1046 	if (r)
1047 		goto out;
1048 
1049 	if (m != minor) {
1050 		idr_remove(&_minor_idr, m);
1051 		r = -EBUSY;
1052 		goto out;
1053 	}
1054 
1055 out:
1056 	spin_unlock(&_minor_lock);
1057 	return r;
1058 }
1059 
1060 static int next_free_minor(int *minor)
1061 {
1062 	int r, m;
1063 
1064 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1065 	if (!r)
1066 		return -ENOMEM;
1067 
1068 	spin_lock(&_minor_lock);
1069 
1070 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1071 	if (r)
1072 		goto out;
1073 
1074 	if (m >= (1 << MINORBITS)) {
1075 		idr_remove(&_minor_idr, m);
1076 		r = -ENOSPC;
1077 		goto out;
1078 	}
1079 
1080 	*minor = m;
1081 
1082 out:
1083 	spin_unlock(&_minor_lock);
1084 	return r;
1085 }
1086 
1087 static struct block_device_operations dm_blk_dops;
1088 
1089 static void dm_wq_work(struct work_struct *work);
1090 
1091 /*
1092  * Allocate and initialise a blank device with a given minor.
1093  */
1094 static struct mapped_device *alloc_dev(int minor)
1095 {
1096 	int r;
1097 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1098 	void *old_md;
1099 
1100 	if (!md) {
1101 		DMWARN("unable to allocate device, out of memory.");
1102 		return NULL;
1103 	}
1104 
1105 	if (!try_module_get(THIS_MODULE))
1106 		goto bad_module_get;
1107 
1108 	/* get a minor number for the dev */
1109 	if (minor == DM_ANY_MINOR)
1110 		r = next_free_minor(&minor);
1111 	else
1112 		r = specific_minor(minor);
1113 	if (r < 0)
1114 		goto bad_minor;
1115 
1116 	init_rwsem(&md->io_lock);
1117 	mutex_init(&md->suspend_lock);
1118 	spin_lock_init(&md->deferred_lock);
1119 	rwlock_init(&md->map_lock);
1120 	atomic_set(&md->holders, 1);
1121 	atomic_set(&md->open_count, 0);
1122 	atomic_set(&md->event_nr, 0);
1123 	atomic_set(&md->uevent_seq, 0);
1124 	INIT_LIST_HEAD(&md->uevent_list);
1125 	spin_lock_init(&md->uevent_lock);
1126 
1127 	md->queue = blk_alloc_queue(GFP_KERNEL);
1128 	if (!md->queue)
1129 		goto bad_queue;
1130 
1131 	md->queue->queuedata = md;
1132 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1133 	md->queue->backing_dev_info.congested_data = md;
1134 	blk_queue_make_request(md->queue, dm_request);
1135 	blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1136 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1137 	md->queue->unplug_fn = dm_unplug_all;
1138 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1139 
1140 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1141 	if (!md->io_pool)
1142 		goto bad_io_pool;
1143 
1144 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1145 	if (!md->tio_pool)
1146 		goto bad_tio_pool;
1147 
1148 	md->bs = bioset_create(16, 0);
1149 	if (!md->bs)
1150 		goto bad_no_bioset;
1151 
1152 	md->disk = alloc_disk(1);
1153 	if (!md->disk)
1154 		goto bad_disk;
1155 
1156 	atomic_set(&md->pending, 0);
1157 	init_waitqueue_head(&md->wait);
1158 	INIT_WORK(&md->work, dm_wq_work);
1159 	init_waitqueue_head(&md->eventq);
1160 
1161 	md->disk->major = _major;
1162 	md->disk->first_minor = minor;
1163 	md->disk->fops = &dm_blk_dops;
1164 	md->disk->queue = md->queue;
1165 	md->disk->private_data = md;
1166 	sprintf(md->disk->disk_name, "dm-%d", minor);
1167 	add_disk(md->disk);
1168 	format_dev_t(md->name, MKDEV(_major, minor));
1169 
1170 	md->wq = create_singlethread_workqueue("kdmflush");
1171 	if (!md->wq)
1172 		goto bad_thread;
1173 
1174 	/* Populate the mapping, nobody knows we exist yet */
1175 	spin_lock(&_minor_lock);
1176 	old_md = idr_replace(&_minor_idr, md, minor);
1177 	spin_unlock(&_minor_lock);
1178 
1179 	BUG_ON(old_md != MINOR_ALLOCED);
1180 
1181 	return md;
1182 
1183 bad_thread:
1184 	put_disk(md->disk);
1185 bad_disk:
1186 	bioset_free(md->bs);
1187 bad_no_bioset:
1188 	mempool_destroy(md->tio_pool);
1189 bad_tio_pool:
1190 	mempool_destroy(md->io_pool);
1191 bad_io_pool:
1192 	blk_cleanup_queue(md->queue);
1193 bad_queue:
1194 	free_minor(minor);
1195 bad_minor:
1196 	module_put(THIS_MODULE);
1197 bad_module_get:
1198 	kfree(md);
1199 	return NULL;
1200 }
1201 
1202 static void unlock_fs(struct mapped_device *md);
1203 
1204 static void free_dev(struct mapped_device *md)
1205 {
1206 	int minor = MINOR(disk_devt(md->disk));
1207 
1208 	if (md->suspended_bdev) {
1209 		unlock_fs(md);
1210 		bdput(md->suspended_bdev);
1211 	}
1212 	destroy_workqueue(md->wq);
1213 	mempool_destroy(md->tio_pool);
1214 	mempool_destroy(md->io_pool);
1215 	bioset_free(md->bs);
1216 	blk_integrity_unregister(md->disk);
1217 	del_gendisk(md->disk);
1218 	free_minor(minor);
1219 
1220 	spin_lock(&_minor_lock);
1221 	md->disk->private_data = NULL;
1222 	spin_unlock(&_minor_lock);
1223 
1224 	put_disk(md->disk);
1225 	blk_cleanup_queue(md->queue);
1226 	module_put(THIS_MODULE);
1227 	kfree(md);
1228 }
1229 
1230 /*
1231  * Bind a table to the device.
1232  */
1233 static void event_callback(void *context)
1234 {
1235 	unsigned long flags;
1236 	LIST_HEAD(uevents);
1237 	struct mapped_device *md = (struct mapped_device *) context;
1238 
1239 	spin_lock_irqsave(&md->uevent_lock, flags);
1240 	list_splice_init(&md->uevent_list, &uevents);
1241 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1242 
1243 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1244 
1245 	atomic_inc(&md->event_nr);
1246 	wake_up(&md->eventq);
1247 }
1248 
1249 static void __set_size(struct mapped_device *md, sector_t size)
1250 {
1251 	set_capacity(md->disk, size);
1252 
1253 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1254 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1255 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1256 }
1257 
1258 static int __bind(struct mapped_device *md, struct dm_table *t)
1259 {
1260 	struct request_queue *q = md->queue;
1261 	sector_t size;
1262 
1263 	size = dm_table_get_size(t);
1264 
1265 	/*
1266 	 * Wipe any geometry if the size of the table changed.
1267 	 */
1268 	if (size != get_capacity(md->disk))
1269 		memset(&md->geometry, 0, sizeof(md->geometry));
1270 
1271 	if (md->suspended_bdev)
1272 		__set_size(md, size);
1273 
1274 	if (!size) {
1275 		dm_table_destroy(t);
1276 		return 0;
1277 	}
1278 
1279 	dm_table_event_callback(t, event_callback, md);
1280 
1281 	write_lock(&md->map_lock);
1282 	md->map = t;
1283 	dm_table_set_restrictions(t, q);
1284 	write_unlock(&md->map_lock);
1285 
1286 	return 0;
1287 }
1288 
1289 static void __unbind(struct mapped_device *md)
1290 {
1291 	struct dm_table *map = md->map;
1292 
1293 	if (!map)
1294 		return;
1295 
1296 	dm_table_event_callback(map, NULL, NULL);
1297 	write_lock(&md->map_lock);
1298 	md->map = NULL;
1299 	write_unlock(&md->map_lock);
1300 	dm_table_destroy(map);
1301 }
1302 
1303 /*
1304  * Constructor for a new device.
1305  */
1306 int dm_create(int minor, struct mapped_device **result)
1307 {
1308 	struct mapped_device *md;
1309 
1310 	md = alloc_dev(minor);
1311 	if (!md)
1312 		return -ENXIO;
1313 
1314 	dm_sysfs_init(md);
1315 
1316 	*result = md;
1317 	return 0;
1318 }
1319 
1320 static struct mapped_device *dm_find_md(dev_t dev)
1321 {
1322 	struct mapped_device *md;
1323 	unsigned minor = MINOR(dev);
1324 
1325 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1326 		return NULL;
1327 
1328 	spin_lock(&_minor_lock);
1329 
1330 	md = idr_find(&_minor_idr, minor);
1331 	if (md && (md == MINOR_ALLOCED ||
1332 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
1333 		   test_bit(DMF_FREEING, &md->flags))) {
1334 		md = NULL;
1335 		goto out;
1336 	}
1337 
1338 out:
1339 	spin_unlock(&_minor_lock);
1340 
1341 	return md;
1342 }
1343 
1344 struct mapped_device *dm_get_md(dev_t dev)
1345 {
1346 	struct mapped_device *md = dm_find_md(dev);
1347 
1348 	if (md)
1349 		dm_get(md);
1350 
1351 	return md;
1352 }
1353 
1354 void *dm_get_mdptr(struct mapped_device *md)
1355 {
1356 	return md->interface_ptr;
1357 }
1358 
1359 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1360 {
1361 	md->interface_ptr = ptr;
1362 }
1363 
1364 void dm_get(struct mapped_device *md)
1365 {
1366 	atomic_inc(&md->holders);
1367 }
1368 
1369 const char *dm_device_name(struct mapped_device *md)
1370 {
1371 	return md->name;
1372 }
1373 EXPORT_SYMBOL_GPL(dm_device_name);
1374 
1375 void dm_put(struct mapped_device *md)
1376 {
1377 	struct dm_table *map;
1378 
1379 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1380 
1381 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1382 		map = dm_get_table(md);
1383 		idr_replace(&_minor_idr, MINOR_ALLOCED,
1384 			    MINOR(disk_devt(dm_disk(md))));
1385 		set_bit(DMF_FREEING, &md->flags);
1386 		spin_unlock(&_minor_lock);
1387 		if (!dm_suspended(md)) {
1388 			dm_table_presuspend_targets(map);
1389 			dm_table_postsuspend_targets(map);
1390 		}
1391 		dm_sysfs_exit(md);
1392 		dm_table_put(map);
1393 		__unbind(md);
1394 		free_dev(md);
1395 	}
1396 }
1397 EXPORT_SYMBOL_GPL(dm_put);
1398 
1399 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1400 {
1401 	int r = 0;
1402 	DECLARE_WAITQUEUE(wait, current);
1403 
1404 	dm_unplug_all(md->queue);
1405 
1406 	add_wait_queue(&md->wait, &wait);
1407 
1408 	while (1) {
1409 		set_current_state(interruptible);
1410 
1411 		smp_mb();
1412 		if (!atomic_read(&md->pending))
1413 			break;
1414 
1415 		if (interruptible == TASK_INTERRUPTIBLE &&
1416 		    signal_pending(current)) {
1417 			r = -EINTR;
1418 			break;
1419 		}
1420 
1421 		io_schedule();
1422 	}
1423 	set_current_state(TASK_RUNNING);
1424 
1425 	remove_wait_queue(&md->wait, &wait);
1426 
1427 	return r;
1428 }
1429 
1430 static int dm_flush(struct mapped_device *md)
1431 {
1432 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1433 	return 0;
1434 }
1435 
1436 static void process_barrier(struct mapped_device *md, struct bio *bio)
1437 {
1438 	int error = dm_flush(md);
1439 
1440 	if (unlikely(error)) {
1441 		bio_endio(bio, error);
1442 		return;
1443 	}
1444 	if (bio_empty_barrier(bio)) {
1445 		bio_endio(bio, 0);
1446 		return;
1447 	}
1448 
1449 	__split_and_process_bio(md, bio);
1450 
1451 	error = dm_flush(md);
1452 
1453 	if (!error && md->barrier_error)
1454 		error = md->barrier_error;
1455 
1456 	if (md->barrier_error != DM_ENDIO_REQUEUE)
1457 		bio_endio(bio, error);
1458 }
1459 
1460 /*
1461  * Process the deferred bios
1462  */
1463 static void dm_wq_work(struct work_struct *work)
1464 {
1465 	struct mapped_device *md = container_of(work, struct mapped_device,
1466 						work);
1467 	struct bio *c;
1468 
1469 	down_write(&md->io_lock);
1470 
1471 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1472 		spin_lock_irq(&md->deferred_lock);
1473 		c = bio_list_pop(&md->deferred);
1474 		spin_unlock_irq(&md->deferred_lock);
1475 
1476 		if (!c) {
1477 			clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1478 			break;
1479 		}
1480 
1481 		up_write(&md->io_lock);
1482 
1483 		if (bio_barrier(c))
1484 			process_barrier(md, c);
1485 		else
1486 			__split_and_process_bio(md, c);
1487 
1488 		down_write(&md->io_lock);
1489 	}
1490 
1491 	up_write(&md->io_lock);
1492 }
1493 
1494 static void dm_queue_flush(struct mapped_device *md)
1495 {
1496 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1497 	smp_mb__after_clear_bit();
1498 	queue_work(md->wq, &md->work);
1499 }
1500 
1501 /*
1502  * Swap in a new table (destroying old one).
1503  */
1504 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1505 {
1506 	int r = -EINVAL;
1507 
1508 	mutex_lock(&md->suspend_lock);
1509 
1510 	/* device must be suspended */
1511 	if (!dm_suspended(md))
1512 		goto out;
1513 
1514 	/* without bdev, the device size cannot be changed */
1515 	if (!md->suspended_bdev)
1516 		if (get_capacity(md->disk) != dm_table_get_size(table))
1517 			goto out;
1518 
1519 	__unbind(md);
1520 	r = __bind(md, table);
1521 
1522 out:
1523 	mutex_unlock(&md->suspend_lock);
1524 	return r;
1525 }
1526 
1527 /*
1528  * Functions to lock and unlock any filesystem running on the
1529  * device.
1530  */
1531 static int lock_fs(struct mapped_device *md)
1532 {
1533 	int r;
1534 
1535 	WARN_ON(md->frozen_sb);
1536 
1537 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1538 	if (IS_ERR(md->frozen_sb)) {
1539 		r = PTR_ERR(md->frozen_sb);
1540 		md->frozen_sb = NULL;
1541 		return r;
1542 	}
1543 
1544 	set_bit(DMF_FROZEN, &md->flags);
1545 
1546 	/* don't bdput right now, we don't want the bdev
1547 	 * to go away while it is locked.
1548 	 */
1549 	return 0;
1550 }
1551 
1552 static void unlock_fs(struct mapped_device *md)
1553 {
1554 	if (!test_bit(DMF_FROZEN, &md->flags))
1555 		return;
1556 
1557 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1558 	md->frozen_sb = NULL;
1559 	clear_bit(DMF_FROZEN, &md->flags);
1560 }
1561 
1562 /*
1563  * We need to be able to change a mapping table under a mounted
1564  * filesystem.  For example we might want to move some data in
1565  * the background.  Before the table can be swapped with
1566  * dm_bind_table, dm_suspend must be called to flush any in
1567  * flight bios and ensure that any further io gets deferred.
1568  */
1569 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1570 {
1571 	struct dm_table *map = NULL;
1572 	int r = 0;
1573 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1574 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1575 
1576 	mutex_lock(&md->suspend_lock);
1577 
1578 	if (dm_suspended(md)) {
1579 		r = -EINVAL;
1580 		goto out_unlock;
1581 	}
1582 
1583 	map = dm_get_table(md);
1584 
1585 	/*
1586 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1587 	 * This flag is cleared before dm_suspend returns.
1588 	 */
1589 	if (noflush)
1590 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1591 
1592 	/* This does not get reverted if there's an error later. */
1593 	dm_table_presuspend_targets(map);
1594 
1595 	/* bdget() can stall if the pending I/Os are not flushed */
1596 	if (!noflush) {
1597 		md->suspended_bdev = bdget_disk(md->disk, 0);
1598 		if (!md->suspended_bdev) {
1599 			DMWARN("bdget failed in dm_suspend");
1600 			r = -ENOMEM;
1601 			goto out;
1602 		}
1603 
1604 		/*
1605 		 * Flush I/O to the device. noflush supersedes do_lockfs,
1606 		 * because lock_fs() needs to flush I/Os.
1607 		 */
1608 		if (do_lockfs) {
1609 			r = lock_fs(md);
1610 			if (r)
1611 				goto out;
1612 		}
1613 	}
1614 
1615 	/*
1616 	 * Here we must make sure that no processes are submitting requests
1617 	 * to target drivers i.e. no one may be executing
1618 	 * __split_and_process_bio. This is called from dm_request and
1619 	 * dm_wq_work.
1620 	 *
1621 	 * To get all processes out of __split_and_process_bio in dm_request,
1622 	 * we take the write lock. To prevent any process from reentering
1623 	 * __split_and_process_bio from dm_request, we set
1624 	 * DMF_QUEUE_IO_TO_THREAD.
1625 	 *
1626 	 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1627 	 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1628 	 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1629 	 * further calls to __split_and_process_bio from dm_wq_work.
1630 	 */
1631 	down_write(&md->io_lock);
1632 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1633 	set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1634 	up_write(&md->io_lock);
1635 
1636 	flush_workqueue(md->wq);
1637 
1638 	/*
1639 	 * At this point no more requests are entering target request routines.
1640 	 * We call dm_wait_for_completion to wait for all existing requests
1641 	 * to finish.
1642 	 */
1643 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1644 
1645 	down_write(&md->io_lock);
1646 	if (noflush)
1647 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1648 	up_write(&md->io_lock);
1649 
1650 	/* were we interrupted ? */
1651 	if (r < 0) {
1652 		dm_queue_flush(md);
1653 
1654 		unlock_fs(md);
1655 		goto out; /* pushback list is already flushed, so skip flush */
1656 	}
1657 
1658 	/*
1659 	 * If dm_wait_for_completion returned 0, the device is completely
1660 	 * quiescent now. There is no request-processing activity. All new
1661 	 * requests are being added to md->deferred list.
1662 	 */
1663 
1664 	dm_table_postsuspend_targets(map);
1665 
1666 	set_bit(DMF_SUSPENDED, &md->flags);
1667 
1668 out:
1669 	if (r && md->suspended_bdev) {
1670 		bdput(md->suspended_bdev);
1671 		md->suspended_bdev = NULL;
1672 	}
1673 
1674 	dm_table_put(map);
1675 
1676 out_unlock:
1677 	mutex_unlock(&md->suspend_lock);
1678 	return r;
1679 }
1680 
1681 int dm_resume(struct mapped_device *md)
1682 {
1683 	int r = -EINVAL;
1684 	struct dm_table *map = NULL;
1685 
1686 	mutex_lock(&md->suspend_lock);
1687 	if (!dm_suspended(md))
1688 		goto out;
1689 
1690 	map = dm_get_table(md);
1691 	if (!map || !dm_table_get_size(map))
1692 		goto out;
1693 
1694 	r = dm_table_resume_targets(map);
1695 	if (r)
1696 		goto out;
1697 
1698 	dm_queue_flush(md);
1699 
1700 	unlock_fs(md);
1701 
1702 	if (md->suspended_bdev) {
1703 		bdput(md->suspended_bdev);
1704 		md->suspended_bdev = NULL;
1705 	}
1706 
1707 	clear_bit(DMF_SUSPENDED, &md->flags);
1708 
1709 	dm_table_unplug_all(map);
1710 
1711 	dm_kobject_uevent(md);
1712 
1713 	r = 0;
1714 
1715 out:
1716 	dm_table_put(map);
1717 	mutex_unlock(&md->suspend_lock);
1718 
1719 	return r;
1720 }
1721 
1722 /*-----------------------------------------------------------------
1723  * Event notification.
1724  *---------------------------------------------------------------*/
1725 void dm_kobject_uevent(struct mapped_device *md)
1726 {
1727 	kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1728 }
1729 
1730 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1731 {
1732 	return atomic_add_return(1, &md->uevent_seq);
1733 }
1734 
1735 uint32_t dm_get_event_nr(struct mapped_device *md)
1736 {
1737 	return atomic_read(&md->event_nr);
1738 }
1739 
1740 int dm_wait_event(struct mapped_device *md, int event_nr)
1741 {
1742 	return wait_event_interruptible(md->eventq,
1743 			(event_nr != atomic_read(&md->event_nr)));
1744 }
1745 
1746 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1747 {
1748 	unsigned long flags;
1749 
1750 	spin_lock_irqsave(&md->uevent_lock, flags);
1751 	list_add(elist, &md->uevent_list);
1752 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1753 }
1754 
1755 /*
1756  * The gendisk is only valid as long as you have a reference
1757  * count on 'md'.
1758  */
1759 struct gendisk *dm_disk(struct mapped_device *md)
1760 {
1761 	return md->disk;
1762 }
1763 
1764 struct kobject *dm_kobject(struct mapped_device *md)
1765 {
1766 	return &md->kobj;
1767 }
1768 
1769 /*
1770  * struct mapped_device should not be exported outside of dm.c
1771  * so use this check to verify that kobj is part of md structure
1772  */
1773 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1774 {
1775 	struct mapped_device *md;
1776 
1777 	md = container_of(kobj, struct mapped_device, kobj);
1778 	if (&md->kobj != kobj)
1779 		return NULL;
1780 
1781 	dm_get(md);
1782 	return md;
1783 }
1784 
1785 int dm_suspended(struct mapped_device *md)
1786 {
1787 	return test_bit(DMF_SUSPENDED, &md->flags);
1788 }
1789 
1790 int dm_noflush_suspending(struct dm_target *ti)
1791 {
1792 	struct mapped_device *md = dm_table_get_md(ti->table);
1793 	int r = __noflush_suspending(md);
1794 
1795 	dm_put(md);
1796 
1797 	return r;
1798 }
1799 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1800 
1801 static struct block_device_operations dm_blk_dops = {
1802 	.open = dm_blk_open,
1803 	.release = dm_blk_close,
1804 	.ioctl = dm_blk_ioctl,
1805 	.getgeo = dm_blk_getgeo,
1806 	.owner = THIS_MODULE
1807 };
1808 
1809 EXPORT_SYMBOL(dm_get_mapinfo);
1810 
1811 /*
1812  * module hooks
1813  */
1814 module_init(dm_init);
1815 module_exit(dm_exit);
1816 
1817 module_param(major, uint, 0);
1818 MODULE_PARM_DESC(major, "The major number of the device mapper");
1819 MODULE_DESCRIPTION(DM_NAME " driver");
1820 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1821 MODULE_LICENSE("GPL");
1822